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Chapter 1

Introduction

Breast cancer is the second most common malignancy that affects women worldwide

and is the leading cause among non-preventable cancer death [1]. The American Cancer

Society (ACS) estimates that on an average, in every 15 minutes five women are

diagnosed with breast cancer. It is also estimated that one in eight women will be

diagnosed with this disease in her lifetime, and 1 in 30 will die from it [2]. Breast cancer

is the second most prevalent cancer among Indian women, the first being cervical

cancer [3]. In the age group of 30-70 years, one in fifty eight women are affected by this

disease and the occurrence is mainly seen in the urban areas.

Mammography is the best technique for reliable detection of early, non-palpable,

potentially curable breast cancer [4]. As a result of the increasing utilization of

mammographic screening, the mortality rate due to this disease was observed to

decrease for the first time in 1995 [5]. Since the interpretation of mammograms is a

repetitive task that requires much attention to minute details, the opinion of radiologists

may vary. To overcome this difficulty, during the past decade, the use of image

processing techniques [6], [7], [8], [9], [10] for Computer Aided Diagnosis (CAD) in

digital mammograms has been initiated. This has increased diagnostic accuracy as well

as the reproducibility of mammographic interpretation.



2 Chapter I . Introduction
1.1 Digital Image Processing

Digital image processing is a rapidly evolving field with growing applications in the

fields of science and Engineering. Interest in Digital Image Processing stems from two

principal application areas: improvement of pictorial information for human

interpretation and processing of scenic data for machine perception. It finds application

in a wide range of areas like image transmission and storage for remote sensing via

satellites, automated inspection of industrial parts, industrial machine vision for product

assembly, automatic character recognition, automatic processing of finger prints,

RADAR, SONAR and acoustic image processing, Medical image processing etc.

Images have their information encoded in the spatial domain. In other words,

features in images are represented by edges, not by sinusoids. Hence, the spacing and

number of pixels are determined by how small a feature need to be seen, rather than by

the formal constraints of the sampling theorem. A digital image can be considered as a

matrix whose row and column indices identify a point in the image and the

corresponding matrix element value identifies the gray level at that point.

Processing of digital images involve procedures that are usually expressed in

algorithmic form. Thus with the exception ofimage acquisition and display, most image

processing functions can be implemented in software. Transforms are the fundamental

tools that are used in most of the image processing applications. The wavelet based

multiresolution analysis is found to be one ofthe best tools for this.

The various realms of image processing are briefly described below [1 1], [12]:

1.1.1 Image enhancement

The principal objective of image enhancement techniques is to process a given image to

make it more suitable than the original for some specific application. These techniques

do not increase the inherent information content in the data but emphasize certain image

characteristics. Enhancement is useful for feature extraction, image analysis and display

of visual information. The enhancement techniques fall into two broad categories:
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frequency domain methods and spatial domain methods. The former is based on the

modification of the Fourier Transform of an image and the latter refers to the direct

manipulation of pixels in an image. Image enhancement operations include contrast and

edge enhancement, pseudo coloring, sharpening, magnifying and noise filtering.

1.1.2 Image Restoration

Image restoration is the process that reconstructs or recovers a degraded image, using

some apriori knowledge of the degrading phenomenon. The ultimate goal of restoration

is to improve a given image in some sense, as in image enhancement. The difference

between enhancement and restoration is that the former is concerned with accentuation

and extraction of image features while the latter restores degradations.

1.1.3 Image compression

Digital representations of images usually require a very large number of bits. In many

applications it is important to consider techniques for representing an image or the

information contained in it using fewer number of bits. Image compression addresses

this problem. Image data compression methods fall into two categories: Predictive

coding and Transform coding. In predictive coding compression is achieved by

exploiting the redundancy of the data. Techniques such as delta modulation, differential

pulse code modulation etc. fall into this category. In transform coding the given image

is transformed into another domain such that a large amount of information is packed

into a small number of samples. The compression process inevitably results in some

distortion due to the removal of relatively insignificant information.

1.1.4 Image segmentation

Image segmentation is an essential preliminary step in most automatic pictorial pattern

recognition and scene analysis problems. It is the process that subdivides an image into

its constituent parts or objects. The concept of segmenting an image is generally based
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on the similarity or discontinuity ofthe gray level values ofits pixels and can be applied

to both static and dynamic images.

1.1.5 Image description and representation

Representation and description of objects or regions of interest, that have been

segmented out of an image are the initial steps in the operation of most automated

image analysis systems. After segmentation, the resulting aggregates of pixels are

represented and described in a form suitable for further processing. Generally, an

external representation is chosen when the primary focus is on morphological features.

When one is interested in reflectivity properties such as color and texture, an internal

representation is selected. The choice is dictated by the problem under consideration, so

as to capture the essential differences between objects or class of objects, maintaining as

much independence as possible to changes in factors such as location, size and
orientation.

1.2 Medical Image Processing

The advent of medical imaging is one of the milestones in the progress of medical

science. It serves as a beneficial tool for the medical practitioners during diagnosis of

ailments. The application of image processing techniques to medical imaging has made

the results accurate and reliable. In many cases it is possible to eliminate the necessity

for invasive surgery, thus avoiding trauma to the patient as well as an inevitable element

of risk.

One of the early applications of image processing in the medical field is the

enhancement of conventional radiograms. When converted to digital form, it is possible

to remove noise elements from X-ray images, thereby enhancing their contrast. This

aids interpretation and removes blurring caused by unwanted movement of the patient.

This form of representation also enables the physicians to measure the extent of tumors

and other significant features accurately.
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The basic image processing operations on medical images are conveniently

placed in four categories: filtering, shape modeling. segmentation and classification

[13]. Filtering includes linear and non-linear enhancement, deblurring and edge

detection techniques using local operators or classification techniques. Shape modeling

includes three-dimensional representation and graphics manipulation such as three­

dimensional contours of the spinal column, coronary artery or shaded images.

Clustering, object detection, and boundary detection are the main operations that come

under segmentation. Simple histogram or thresholding teclmiques are used to segment

objects of interest. When adequate prior information is available matched filters can be

used effectively. Heuristic techniques are useful for tracing contours in the presence of

highly structured background such as chest radiographs. Feature selection, texture

characterization and pattern recognition are the major operations in classification. [14],

[15].

Another application of digital image processing in medical imaging is

‘tomography’, the generation of images of a slice through the body [16] involving the

reconstruction of two-dimensional images.

1.3 Tools for image processing

The first step after obtaining the image in any digital image processing system is

preprocessing that image. The key function of this is to improve the image in ways that

increase the chances of success of other processes. Wavelet Transfonn (WT) techniques

are found to be a very effective processing tool for this purpose.

Neural Networks are found to be efficient tools for classification applications.

They are rough models of human mental processes with powerful learning,

memorization, and associative recall capabilities of pattern formatted information.

A brief introduction to these two image processing tools are provided in the
sections below:
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1.3.1 The Wavelet Transform

Perhaps the most prominent signal analysis technique is Fourier analysis, which

breaks down a signal into its constituent sinusoids of different frequencies or transfonns

our view of the signal from a time-based one to a frequency-based one. But, This has

the serious drawback of loss of time infomiation while transforming into the frequency

domain. This is not very prominent for stationary signals. However, Fourier analysis

become inadequate when the local frequency contents of the signal are of interest or

when it contains non-stationary or transitory characteristics like drift, trends, abrupt

changes, etc.

In an effort to correct this, Dennis Gabor [17] adapted the Fourier transform to

analyze only a small section of the signal at a time — a technique called windowing the

signal. Gabor’s adaptation, called the Short-Time Fourier Transform (STFT), maps a

signal into a two-Dimensional (2-D) function of time and frequency. While the STFT’s

compromise between time and frequency information can be useful, the drawback is

that once a particular size is chosen for the time window, it remains the same for all

frequencies.

Wavelet analysis, a windowing technique with variable-sized regions, represents

the next logical step. It allows the use of long time intervals where more precise low

frequency information is needed and shorter intervals where high frequency information

is needed. One major advantage offered by wavelets is the ability to analyze a localized

area of a larger signal. Further, because it offers a different view of data than those

presented by traditional techniques, wavelet analysis can often compress or de-noise a

signal without appreciable degradation. Indeed, in their brief history within the signal

processing field, wavelets have already proven themselves to be an indispensable

addition to the analyst’s collection of tools and continue to enjoy a burgeoning

popularity today.

Wavelets are oscillatory functions that exist for a few cycles only and satisfy

certain properties. Most ofthe wavelets are associated with a scaling function. There are
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various kinds of wavelets like compactly supported wavelets, symmetric and non­

symmetric wavelets, orthogonal and biorthogonal wavelets and smooth wavelets.

1.3.1.1 History of Wavelets

From a historical point of view, wavelet analysis is a new method, though its

mathematical underpinnings date back to the work of Joseph Fourier in the nineteenth

century [18]. Fourier laid the foundations of frequency analysis with his theories, which

proved to be enormously important and influential. When it became clear that an

approach measuring average fluctuations at different scales might prove less sensitive to

noise, the attention of researchers gradually turned from frequency-based analysis to

scale-based analysis. The first recorded mention of the term “wavelet" was in 1909, in a

thesis by Alfred Haar [19]. Morlet and the team working under Alex Grossmann at the

Marseille Theoretical Physics Center in France first proposed the concept of wavelets in

its present theoretical form [20]. The main algorithm for WT computation dates back to

the work of S. Mallat in 1988 [21]. Since then, research on wavelets has become

international and is particularly active in the United States, spearheaded by veteran

scientists Ingrid Daubechies, Ronald Coifman, and Victor Wickerhauser [22].

1.3.1.2 The Continuous Wavelet Transform (CWT)

The WT of a signal represents the signal as a linear combination of scaled and shifted

versions of the wavelets and scaling functions. When the scale and shift parameters are

continuous, the transform under consideration is called a CWT. In the CWT a function

w, which in practice looks like a little wave, is used to create a family of wavelets

y/ (at + b) where a and b are real numbers, a dilating (compressing or stretching) the

function 51/ and b translating or displacing it. The word continuous refers to the

transform, not to the wavelet. The CWT turns a signalf(t) into a function Wwfoftwo

variables, scale and time as:
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WVf(a,h) = |a|'”’ cl/(1).;/' (at + b)d1 (1.1)

where V/° is the complex conjugate of I,//. This transfonnation in theory is infinitely

redundant, but it can be useful in recognizing certain characteristics ofa signal.

1.3.1.3 The Discrete Wavelet Transform (DWT)

The CWT maps a signal of one independent variable 1 into a function of two

independent variables a and b. The highly redundant nature of this transfonn makes it

inefficient from a computational point of view. One way to eliminate the problem of

redundancy is to sample the CWT on a 2-D dyadic grid. That is, use wavelets only of

the form 1,11 (2" I + I ) with k and I being whole numbers. The resulting WT is called

DWT. DWT is still the transform of a continuous time signal, with discretization

performed in the a and b variables only. Hence it is analogous to the Fourier series, and

also referred to as a continuous time wavelet series [23], [24].

1.3.1.4 The Multiplexed Wavelet Transform (MWT)

MWT is an alternate method for the time-scale representation of pseudo periodic signals

with constant period, first proposed by Evangelista [25]. This transform simplifies the

analysis of a pseudo periodic signal by decomposing it into a regular asymptotically

periodic signal and a number of fluctuations over this.

Images can be treated as oscillatory signals, although they are not periodic in a

strict mathematical sense. Contrary to the ease of one-Dimensional (1-D) signals, no

period detection is required in the case of images. When treated as quasi-periodic

signals, the periods along the horizontal and vertical directions respectively are the

width and length of the image segment. Hence, the DWT of the rows of the image gives

the MWT of the image taken as a 1-D signal along the vertical direction and that ofthe

columns corresponds to the MWT of the image taken as a 1-D signal along the
horizontal direction.
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1.3.1.5 WT in Two l)imensions

When the input signal is 2-D. it is necessary to represent the signal components by 2-D

wavelets and 2-D approximation function. Often this is done by using separable

products of 1-D wavelets and scaling functions which make it possible to use the Fast

Wavelet Transform (FWT) algorithms.

For any scaling function and its corresponding wavelet function, we can

construct three different 2-D wavelets and one 2-D approximation function using the

tensor product approach. Each new wavelet measures the variations along a different

direction ; vertical, horizontal and diagonal. As a result the 2-D extension ofthe wavelet

transfonn is achieved by applying the 1-D algorithm along the rows and columns of the

image. That is, the image is decomposed row wise first, for every row and then this is

repeated column wise for every column.

1.3.1.6 Computation of DWT

The DWT of a signal is determined by finding the detail in the signal at each level of

resolution; that is, for each successive value ofthe dilation variable. In essence, this is

done by convolving the input signal with the appropriately dilated wavelet function at

each translation. As the dilation increases, the number of translation points for which

values must be detennined drops; at the highest resolution the wavelet is being used to

measure the difference between successive samples while at the lowest resolution the

wavelet is comparing the first half of the signal with the second half. When the wavelet

family is orthogonal, adding the detail at all levels of resolution yields the original

signal.

Stephane Mallat [21] has shown how at scaling function and a wavelet function

can be used in a recursive algorithm to compute the orthogonal forward and inverse WT

of a signaluin O (n log n) time. This is considered as the standard algorithm for WT

computation. The scaling and wavelet functions are in effect low and high pass filters;

at each level of recursion wavelet function is used to extract the details at that level of
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resolution and scaling function is used to construct a coarser version of the signal for

analysis at the next level. The process is repeated on successively coarser

representations of the signal, until only the steady-state (average) value of the signal

remains.

1.3.1.6.] Sectioned computation

Generally, the sequences involved in real time implementations are quasi-infinite and

processing of such data is done after segmenting it to smaller blocks or frames. The

DWT and Inverse Discrete Wavelet Transform (IDWT) are recursive-filtering

processes. Hence, WT is not a block transform and due to the lack of data beyond block

boundaries, edge artifacts will be produced on block boundaries in the reconstructed

signals. For correct computation near the data boundaries each processor would need to

access data allocated to other processors. This demands frequent data exchange between

processors or requires large buffer storage for intermediate transform coefficients.

1.3.1.7 WT in Biomedical Image Processing

In the past few years, researchers in applied mathematics and signal processing have

developed powerful wavelet methods for the multiscale representation and analysis of

signals [23], [26]. These new tools differ from the traditional Fourier techniques by the

way in which they localize the information in the time-frequency plane. They are

capable of trading one type of resolution for the other, which makes them suitable for

non-stationary signal analysis. One important area where these properties are found

relevant is biomedical engineering.

The main difficulty in dealing with biomedical signals is their extreme

variability and the necessity to operate on a case-by-case basis. Often there is no apriori

knowledge about the pertinent information and /or at which scale it is located.

Frequently, the deviation of some signal feature from the normal is the most relevant

information for diagnosis. Another important aspect of biomedical signals is that the
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information ofinterest is often a combination of features that are well localized spatially

or temporally (e.g. microcalcifications in mammograms) and others that are more

diffuse (e.g. texture). This requires the use of sufficiently versatile analysis methods, to

handle events that can be at opposite extremes in terms of their time-frequency
localization.

The applications of wavelets in biomedical field include performing image

processing tasks like noise reduction, enhancement, detection and reconstruction,

acquisition techniques for X-ray tomography and MRI and statistical methods for

localizing patterns ofactivity in the brain using functional imaging.

1.3.l.7.l Computer Assisted Mammography

Image enhancement is especially relevant in mammography where the contrast between

the soft tissues of the breast is inherently small and a relatively small change in the

mammary structure can signify the presence ofa malignant breast tumor. Because ofthe

current interest in mammographic screening, wavelet based enhancement methods have

been recently designed with that application in mind [27], [28], [29]. All these

approaches invariably use reversible redundant or non-redundant wavelet

decomposition and perform the enhancement by selective modification of WT

coefficients. These enhancement techniques are not fundamentally different from the

noise reduction techniques, since in the former case certain features of interest are

amplified while in the latter some unwanted features are suppressed.

One of the key issues in computer-assisted mammography is the detection of

clusters of fine granular microealcifications, which are one of the primary signs of

breast cancer. Individual calcifications typically range from 0.05-1mm in diameter. The

detection of microcalcifications is closely related to the enhancement task described

earlier, except that detection is typically performed by thresholding in the wavelet

domain. The detection results so far reported suggest that wavelet techniques perform

better than the best available single scale methods [30], [31], [32], [33].
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l.3.l.7.2 Computer Assisted Tomography (CAT)

ln 2-D computerized X-ray tomography image of an object is reconstructed from the

measured values of its angular projections. These measurements are described by the

Radon transform. The primary motivation for using wavelets for tomography is that the

wavelet reconstruction formulas tend to be localized spatially and can be applied to

obtain partial reconstructions when only a portion of the Radon transform is available

(limited angle tomography). The WT also appears to have some merits for noise

reduction in tomography.

1.3.l.7.3 Magnetic Resonance Imaging (MRI)

One of the major applications of the WT in medical imaging is the noise reduction in

MR images. One approach proposed is to compute an orthogonal wavelet

decomposition of the image after applying a soft thresholding rule on the coefficients

[34]. A more sophisticated approach is an over complete wavelet decomposition

followed by a reconstruction from the retained significant WT maxima by exploiting the

correlation between adjacent scales [35], [36]. When applied to MR images this method

compared favorably with the optimal Wiener filter and produced images with much

sharper edges and did not induce any ringing artifacts [36], [37].

1.3.1.7.4 Functional Image Analysis

Functional neuro-imaging is a fast developing area aimed at investigating the neuronal

activity of the brain in vivo. Positron Emission Tomography (PET) and fMRI are the

two modalities that are used to obtain functional images. PET measures the spatial

distribution of certain function specific radiotracers injected into the blood stream prior

to imaging. A typical example is the measurement of cerebral glucose utilization with

the tracer 2-fluoro-2-dioxy-D- Glucose (FDG)._/MRI allows for a visualization of local

changes in blood oxygenation induced by neuronal activation. It is substantially faster

than PET and also offers better spatial resolution.
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The functional images obtained with these two modalities are extremely noisy

and variable and their interpretation requires the use ofstatistical analysis methods. The

first step in this analysis is the registration of various images, which compensates for

intersubjcct anatomical variability or intrasubject movement in the scanner. Efficient

multiresolution solutions to this problem have been proposed resulting in much faster

and robust algorithms compared to single scale counterparts [38].

The second step is the computation of difference between the aligned group

averages and performing the statistical analysis. Direct testing in the image domain is

difficult because of the amount of residual noise and the necessity to use a very

conservative significance level to compensate for multiple testing. Testing in the

wavelet domain has the advantage that the discriminative infonnation, which is smooth

and well localized spatially, becomes concentrated into a relatively small number of

coefficients while the noise remains evenly distributed among all coefficients.

1.3.2 Neural Network

Traditional DSP is based on algorithms, changing data from one form to another

through step-by-step procedures. Most of these techniques also need parameters to

operate. For example, recursive filters using recursion coefficients, feature detection

implemented by correlation and thresholds, image display depending on the brightness

and contrast settings, etc. Algorithms describe what is to be done while parameters

provide a benchmark to judge the data. The proper selection ofparameters is often more

important than the algorithm itself. Neural networks take this idea to the extreme by

using very simple algorithms, but many highly optimized parameters. They replace the

traditional problem-solving strategies with trial and error pragmatic solutions, and a

"this works better than that" methodology.

A neural network structure can be defined as a collection of parallel processors

connected together in the fonn of a directed graph, organized such that the network

structure tends itself to the problem being considered [39]. It is radically different from
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the notions of ordinary serial computing strategy and forms a powerful tool for

applications where the processing is to be done in parallel. They offer the following

advantages:

i) Adaptive learning: This is learning to perform specific tasks by undergoing

training with illustrated examples. This feature eliminates the need of

elaborating apriori models or specifying probability distribution functions.

ii) Self-organization: Neural networks use self-organizing capabilities to create

representations of distinct features in the presented data, which leads to the

generalization of features.

iii) Fault tolerance: Networks can learn to recognize noisy and incomplete data and

also exhibit graceful degradation when part of the network itself is destroyed.

iv) Real-time operation: Due to its parallel distributive structure most networks

operate in the real time environment and the only time consuming operation is

training the network.

Neural networks have been applied in many fields, some of which are mentioned

below. In Aerospace applications it is used for high performance aircraft autopilot,

flight path simulation, aircraft control systems, autopilot enhancements, and aircraft

component simulation and fault detection. In automotive industry it is used for

automobile automatic guidance system and warranty activity analysis. It is used in

banking sector for cheque and other document reading and credit application evaluation.

In the field of communication, neural network finds extensive applications in image and

data compression, automated infonnation services, real-time translation of spoken

language and customer payment processing systems. In medical field neural networks

are employed for breast cancer cell analysis, EEG and ECG analysis, prosthesis design,

optimization of transplant times, hospital expense reduction and hospital quality

improvement. It is also used in the fields of defense, entertainment, finance,

manufacturing, oil and gas exploration, robotics, transportation etc [40], [41].
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1.3.2.1 Target detection

Scientists and engineers often need to know if a particular object or condition is present.

For instance, geophysicists explore the earth for oil, physicians examine patients for

disease, astronomers search the universe for extraterrestrial intelligence, etc. These

problems usually involve the comparison of the acquired data against a threshold and if

the threshold is exceeded, the target is deemed present. The conventional approach to

target detection (sometimes called pattern recognition) is a two-step process. The first

step is called feature extraction, which uses algorithms to reduce the raw data to a few

parameters, such as diameter, brightness, edge sharpness, etc. These parameters are

often called features or classifiers. Feature extraction is needed to reduce the amount of

data and to distill the infonnation into a more concentrated and manageable form.

In the second step, an evaluation is made of the classifiers to determine if the

target is present or not. This is quite straightforward for one and two-parameter spaces;

the known data points are plotted on a graph and the regions separated by eye. As the

number of parameters increases this cannot be done by the human brain and dedicated

networks are required to carry out this .The neural network is the best solution for this

type of problems. Some of the important neural classifiers include Perceptrons,

Backpropagation network, Self-organizing map, Competitive networks, Learning

Vector Quantization (LVQ) and Probabilistic Neural Network (PNN).

1.4 Objective of the work

Cancer is not preventable, but early detection leads to a much higher chance of recovery

and lowers the mortality rate. Considering the incidence of breast cancer and the

favorable prognosis associated with early detection, it is surprising to note that only 15

to 30% of eligible women have ever had a mammogram [42] and even fewer are

involved in a regular screening program. Reasons for this are high cost, skepticism

about reliability and the physical discomfort of the process.
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The high cost of a mammography-screening program can be partly attributed to

the fact that the mammographic images are difficult to interpret even for skilled

radiologists with years of experience. One reason for this is that a mammographic image

is a highly textured 3-D structure, which has been projected onto a 2-D plane.

Additionally the images are often of low contrast, in order to maintain low radiation

dose to the patients. It can be assumed that less than 10 percent of the mammograms

from a screening population contain some type of abnormality. The visual fatigue of

reading numerous mammograms, most of which are negative, and the existence of a

wide variation of breast tissue structures lead to inconsistent readings between

radiologists, and even by a single radiologist at different times.

CAD and automated pre-screening by computer makes it easy to interpret the

multitudes of mammographic readings. Even if there is no large screening program

computerized mammogram image analysis could be used to improve the quality of

conventional mammography. In a CAD scenario, computerized image analysis is used

to suggest possible suspicious regions in the image so that a radiologist can then

examine these regions more carefully. Evidence is mounting that prompting the

radiologist with computer detection results of mammographic images leads to an

increased sensitivity without affecting specificity [5], [43], [44].

Cancer treatment is most effective when it is detected early and the progress in

treatment will be closely related to the ability to reduce the proportion of misses in the

cancer detection task. The effectiveness of algorithms for detecting cancers can be

greatly increased if these algorithms work synergistically with those for characterizing

normal mammograms. This research work combines computerized image analysis

techniques and neural networks to separate out some fraction of the normal

mammograms with extremely high reliability, based on normal tissue identification and

removal.

The presence of clustered microcalcifications is one of the most important and

sometimes the only sign of cancer on a mammogram. 60% to 70% of non-palpable

breast carcinoma demonstrates microcalcifications on mammograms [44], [45], [46].
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WT based techniques are applied on the remaining mammograms, those are obviously

abnormal, to detect possible microcalcifications. The goal of this work is to improve the

detection performance and throughput of screening-mammography, thus providing a

‘second opinion ‘ to the radiologists.

The state-of- the- art DWT computation algorithms are not suitable for practical

applications with memory and delay constraints, as it is not a block transfonn. Hence in

this work, the development of a Block DWT (BDWT) computational structure having

low processing memory requirement has also been taken up.

1.5 Layout of the Thesis

The thesis is organized in the following way:

A brief review of the previous research works in the field of computer-aided

breast cancer detection is presented in chapter 2. Special stress is given to
microcalcification detection and neural network based classification of normal /

abnormal tissue in mammograms. Different methods of computation of both 1-D and

2-D WT are also reviewed in this section.

Chapter 3 summarizes the features of different types of breast lesions in digital

mammograms, namely, microcalcifications, circumscribed lesions, and spiculated

lesions.

Chapter 4 describes the basic theory for classification using neural networks and

detection of microcalcifications using WT. An overview of neural networks for

classification purposes and multiresolution representations of signals using wavelets are

provided. One- dimensional wavelet analysis is discussed; including the orthogonal and

biorthogonal wavelet representations and is extended to 2-D. Different types of WTs are

also considered in this chapter.

Chapter 5 describes the algorithms developed for block—wise computation of

both 1-D and 2-D DWT. The conventional method and its computational complexity are
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described in detail. The computational complexity of the BDWT algorithm is evaluated

and compared against the standard methods.

Chapter 6 presents the classification of mammograms into nonnal and abnonnal

classes using neural networks. First the features of normal mammograms are explained

followed by the derivation of different features for classification purpose. Finally results

and conclusion are presented.

The new MWT based algorithms for automatic detection of microcalcifications

is presented in chapter 7. The microcalcification detection problem is represented as an

edge detection operation and different WT based edge detection methods are discussed

in detail. Experimental results on mammographic data and discussions are also

provided.

Chapter 8 is the concluding chapter, wherein the observations and inferences

already brought out in the previous chapters are summarized. The suggestions for

further work are also given.

This thesis includes one appendix, which describes a line detector that is capable

of extracting linear mammographic features. This line detector is used to find out and

remove nonnal linear markings from mammograms.



Chapter 2

Literature Review

Studies have shown that mammography can be used to detect breast cancer two years

before it is palpable and can reduce the overall mortality due to this by up to 30% [47].

When detected early, localized cancers can be removed without resorting to breast

removal (masectomy). However, radiologists‘ interpretation of the same mammogram

may differ substantially [48] since mammograms are generally low in contrast and high

in noise, while breast structures are small and complex. The false negative rate in

current clinical mammography is reported to vary from 4% to 20% [2], [49], [50], [51],

[52], [53]. Also, in the cases where positive mammograms have been reported and sent

for biopsy, only 15 to 34% actually have been found to have cancer [54], [55].

Therefore, in the past decade tremendous research has been done on CAD techniques in

mammography, so as to increase diagnostic accuracy of marnmographic interpretation.

However, the current state in computerized mammography techniques is not sufficient

for large scale screening programs.



20 Chapter 2. Literature Review
2.1 CAD in Mammography

Many researchers have attempted automated breast cancer detection by employing

image processing techniques for detection of masses, lesions and microcalcifications.

Other work in the field of digital mammography has been directed towards the

enhancement of digital mammograms either to improve radiologist’s reading or as a

preprocessing step for some computerized process [56].

For circumscribed mass detection, a combination of criteria including shape,

brightness, contrast, and unifonn density of tumor areas was employed by Lai et a1 [57]

and thresholding and fuzzy pyramid linking was used by Brzakovic er al [58]. Bilateral

subtraction technique based on the alignment of corresponding right and lefi

mammograms was tried by Yin et al [59] and Mendez et al [60]. Li et al [61], Comer er

al [10] and Zheng et al [62] used Markov random fields to classify a mammogram into

different texture regions, thereby singling out cancerous masses. A statistical method

based on fitting broken regression lines to local intensity plots is proposed by Hastie el

al [63]. Petrick et al used an adaptive density-weighted contrast enhancement filter in

conjunction with Laplacian-Gaussian edge detection to detect suspicious mass regions

in mammograms [64]. Wei et al proposed the use of local texture features in

combination with global multiresolution texture features for the detection of masses

from normal breast tissue [65]. Kupinski and Giger [66] developed two lesion

segmentation techniques: one based on a single feature called the radial gradient index

(RG1) and the other based on simple probabilistic models. Bovis and Singh employed a

texture feature based mass detection technique [67]. A WT technique in conjunction

with a novel Kalman-filtering neural network is proposed by Qian et al [68]. A multiple

circular path convolution neural network (MCPCNN) architecture specifically designed

for the analysis of tumor and tumor-like structures has been constructed by Lo et al

[69].

For spiculated lesions, Kegelmeyer et al [5], [70] extracted a five-dimensional

feature vector for each pixel, which included the standard deviation of the edge
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orientation histogram and the output of four spatial filters. Each feature vector was then

classified using a binary decision tree. Huo at al [71] developed a technique that

involves lesion extraction using region growing and feature extraction using radial

edge-gradient analysis. Karssemeijer and Brake [72] investigated a method based on

statistical analysis of a map of edge orientations. Kobatake and Yoshinaga [73]

proposed the use of line skeletons and a modified Hough transform to characterize

spiculated patterns. Liu et a1 designed a multiresolution scheme using a binary tree

classifier for the detection of spiculated and stellate lesions [74], [75]. Qi & Snyder

proposed a lesion-detection-and-characterization technique using Bezier histograms

[76].

H.P.Chan et al [77], [78] investigated the application of computer-based

methods for the detection of microcalcifications. Their system was based on an image

subtracting technique in which a signal-suppressed image was subtracted from a signal­

enhanced image to remove the background. Signal extraction techniques adapted to the

known physical properties of the microealcifications were used to isolate them from the

remaining noise background. They have obtained a true positive cluster detection rate of

approximately 80% at a false positive detection rate of 1 cluster per image on 20

mammograms, all of which containing clustered microcalcifications.

Davies and Dance [79] report a 96% true positive rate for clusters with an

average of 0.18 false clusters per image for 50 mammograms, half of which were

normal, using segmentation and local area thresholding. Karssemeijer [8] reports an

algorithm using which he had obtained zero false negatives with about 2 false positive

clusters per image on 40 mammograms containing microcalcifications.

Nishikawa et al [80] used a difference image technique to enhance

microcalcifications first and then extracted potential microcalcifications with a series of

three techniques: a global thresholding, an erosion operator, and a local adaptive

thresholding. Finally, some false positives are eliminated by a texture analysis technique

and remaining detections are grouped by a non-linear clustering algorithm. Employing a

WT technique for enhancing the microcalcifications and combining this with the
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difference image technique mentioned above, Yoshida er al. [81] obtained an overall

detection sensitivity of approximately 95%, with a false positive rate of 1.5 clusters per

image on a database consisting of 39 mammograms with 41 clusters.

Chan et a1 [82] investigated a Convolution Neural Network (CNN) based

approach and showed its effectiveness in reducing false positive detections. Strickland

and Hahn [32] designed multiscale matched filters using WT for enhancing and

detecting ealcifications. On the Nijmegen database containing 40 mammograms, they

had obtained a detection rate of 55% true positives at the cost of 0.7 false positives per

image. Based on matching pursuit with optimally weighted wavelet packets, Yoshida

[83], [84] achieved a sensitivity of 93% with a specificity of 80% in classifying 297

ROIs as containing microcalcifications or belonging to the background.

Gurcan er al [85] described a statistical method using skewness and kurtosis to

detect microcalcifications. Ibrahim er al [86] employed a triple ring filter to extract the

specific features of the pattern of the microcalcifications from contrast corrected

mammograms. They have obtained a sensitivity of 95.8% with a false positive rate of

1.8 clusters per image on 43 mammograms from the Mammographic Image Analysis

Society (MIAS) database.

Cheng et al [87] proposed a five-step approach based on fuzzy logic technique,

which includes image fuzzification, enhancement, irrelevant structure removal,

segmentation, and reconstruction. Nagel et al [88] examined three feature analysis

methods, namely, rule based, Artificial Neural Network (ANN) and a combined method

and concluded that the combined method performs best because each of the methods

eliminates different types of false positives. A WT based technique where the detection

is directly accomplished into the wavelet domain is presented in [89]. Texture-analysis

methods can be applied to detect clustered microcalcifications in digitized

mammograms. The surrounding region-dependence method of texture analysis is shown

to be superior to the conventional texture-analysis methods with respect to classification

accuracy and computational complexity [90].
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Schmidt et a1 [91], [92] developed a fully automatic computer system for the

identification and interpretation of clustered microcalcifications in mammograms with

the ability to differentiate most benign lesions from malignant ones in an automatically

selected subset of cases. From a total of 272 films of 100 patients, they have found 247

clusters of microcalcifications containing 5349 single microcalcifications with

sensitivities of 0.90, 0.98 and 1.0 at the respective false positive alann rates of 1.3, 5.3

and 7.4 groups per image.

Combining difference-image technique, gaussianity, statistical properties and

multiresolution properties of WT, Bazzani et al [93] yielded a sensitivity of 91.4% with

0.4 false positive clusters per image on the 40 images of the Nijmegen database. Yu and

Guan developed a method that segments potential microcalcification pixels in the

mammograms by using wavelet features and gray level statistical features [94]. 90%

mean true positive detection rate is achieved at the cost of 0.5 false positive per image

by applying this to the 40 mammograms of Nijmegen database containing 105 clusters

of microcalcifications. By exploiting information gained through evaluation of Renyi's

entropy at the different decomposition levels of the wavelet space, microcalcifications

are separated from background tissue. Gulsrud and Husoy [95] proposed a scheme for

texture feature extraction based on the use of a single optimal filter for
microcalcification detection achieving approximately 89% true positive detection rate

with only one false positive cluster per image on the MIAS database.

A method is presented by Diekmanna et al [96] for visualizing
microcalcifications by full-field mammography using wavelet frames, an enhancement

operator, and a suitable reconstruction technique. In all cases, microcalcifications were

depicted with a markedly higher contrast for 24 digital mammographies (Senographe

2000D,GE Medical Systems) containing microcalcifications. Serrano et al [97] detected

microcalcifications in mammograms based on region growing with pre-filtering and a

seed selection procedure based on 2-D linear prediction error. They have achieved a

detection capability of 86% over all of the existing microcalcifications in three test

mammograms.
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Mclloul and Joskowicz [98] described a fully automatic, parameter-free

algorithm for microcalcification segmentation in mammograms. Removing the

background tissue with a multiscale morphological operation and then applying

thresholding based on a 3-dimensional co-occurrence matrix, they have obtained

detection rates of 93.75% of true positives, 6.25% of false positives, and 2% of false

negatives on the MIAS database. A hybrid intelligent system is presented by

Papadopoulosa er al [99] for the identification of microcalcification clusters in digital

mammograms based on a three-step procedure of preprocessing and segmentation,

Regions Of Interest (ROI) specification, and feature extraction and classification. The

proposed methodology produced a detection accuracy of 0.91 and 0.92 for the Nijmegen

and MIAS mammographic databases respectively with 1.80 and 1.15 false positive

clusters per image, at a sensitivity level higher than 0.90.

Mammographic image enhancement methods are typically aimed at either the

improvement of the overall visibility of features or the enhancement of a specific sign of

malignancy. Laine and Schuler [27], [100] introduced a method of contrast

enhancement on digital mammograms based on the hexagonal wavelet transform that

improved the visualization of breast pathology without excessive noise amplification.

Gagnon et al [101] proposed a multiscale sharpening enhancement algorithm using

complex symmetric Daubechies wavelets, useful for low contrast digitized

mammograms. Li et al [102] showed that general mammographic parenchymal and

ductal patterns could be well modeled by a set of parameters of affine transfonnations

and hence, microcalcifications can be enhanced by taking the difference between the

original image and the modeled image. They also demonstrated that the fractal

modeling method is an effective way to enhance microcalcifications so that the

detection and classification of them in a computer-aided diagnosis system can be

improved.

Kim et al [103] proposed an adaptive image enhancement method for

enhancement of microcalcifications in mammographic images, which is based on the

first derivative and the local statistics. Local statistics of the image is utilized for
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adaptive realization of the enhancement whereby image details can be enhanced and

image noises can be suppressed. Koren er al [104] used a redundant B-spline WT

decomposition followed by image fusion for enhancement of microcalcifications,

circumscribed masses and stellate lesions. Sersic and Loncaric [105] introduced an

approach based on redundant DWT to enhance digital mammography images for more

accurate detection of microcalcification clusters. In [106] filter banks derived from the

CWT, called integrated wavelets, were employed for the enhancement of

microcalcifications in mammograms.

2.1.1 Classification of microcalcifications into benign and malignant

In the United States, the positive predictive value, i.e., the ratio of the number of breast

cancers found to the total number of biopsies, of mammography is typically between 15

and 34% [54], [I07]. An improvement in the positive predictive value would reduce

health care costs and eliminate the anxiety and morbidity of patients who would have to

undergo unnecessary biopsy otherwise. One of the potential approaches to improving

the specificity of mammography is the use of computerized feature extraction

techniques to extract information that may not be readily perceived by human readers.

These features may complement the visual characteristics of the mammographic

abnormalities and provide additional infonnation to the radiologists in distinguishing

malignant and benign lesions. The computer-extracted features, alone or in combination

with human-perceived features, may also be input to a trained classifier to estimate the

likelihood of malignancy of a mammographic lesion, thereby assisting radiologists in

making diagnostic decisions.

Shen et al [108] developed a set of shape factors, including measures of

compactness, moments and Fourier descriptors, to measure the roughness of contours of

calcifications for using in their classification as malignant or benign. Dhawan et al [109]

presented a feature analysis approach using features from first and second order gray­

level histograms.
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Using a back propagation ANN and texture features, Chan et al [110] have got

39% specificity without missing any malignant cases (l0O% sensitivity) for patients

who had undergone biopsy. The test was conducted on a data set of 54 cases (26 benign

and 28 malignant). The ANN was trained and tested with a leave-one-case-out method

to recognize the malignant or benign microcalcification clusters.

Salfity et at [111] identified clusters by a detection scheme based on

morphological filtering and classified the data in benign and malignant cases using K­

nearest neighbor method and a naive Bayesian classifier. On a database containing 23

malignant and 59 benign microcalcification clusters, they have attained true positive

fractions of 87% and 78% respectively at a false positive fraction of 10%.

Christoyianni et al [112] investigated the efficiency of Radial-Basis-Function

(RBF) and Multilayer perceptron (MLP) classifiers in recognizing cancer regions of

suspicion on mammograms. Similar recognition scores were obtained on the MIAS

database, for two types of texture features: statistical descriptors based on high-order

statistics and the Spatial Gray-Level Dependence (SGLD) matrix.

Varma and Zakos [113] presented an intelligent computer-aided diagnosis

system which distinguishes a benign microcalcification pattern from a malignant one

using a fuzzy technique in conjunction with combination of 3 features; entropy,

standard deviation and number of pixels. A total of 40 microcalcification areas (20

benign, 20 malignant) from Nijmegen database were used as training samples and 10

images (5 benign and 5 malignant) were used for testing. The algorithm detected most

microcalcification areas with detection rates of 83.3% for benign case and 77.8% for

malignant case.

Buchbinder et al [114] investigated whether the size of mammographically

detected microcalcifications is predictive of malignancy and came to the conclusion that

the average length and area of the calcifications in benign clusters were significantly

smaller than those in malignant clusters.
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Others have explored methods for classifying breast lesions as benign or

malignant. Kilday er al [115] studied the use of tumor boundary roughness, circularity

and other shape factors for classification of mammographic lesions as fibroadenomas,

cysts and cancers. Pohlman er al [116] developed a technique based on shape

morphology for classifying breast lesions as benign or malignant. Rangayyan et al [117]

investigated the potential of acutance in quantifying the sharpness of the boundaries of

tumors and distinguishing between benign and malignant mammographic tumors.

Sahiner er al [118] introduced a Rubber Band Straightening Transform (RBST) for

characterization of mammographic masses. Features extracted from the RBST images

were found to be significantly more effective for tumor classification than those

extracted from the original images.

Guliato er al [119] proposed two segmentation methods, one based on region

growing and enhancing the ROI using fuzzy sets and the other based on fuzzy region

growing method that takes into account the uncertainty around the boundary of a mass.

The methods are successful not only in identifying a mass, but also classifying it into

benign or malignant.

2.1.2 Normal mammogram characterization

The effectiveness of algorithms for detecting cancers can be greatly increased if these

algorithms work synergistically with algorithms for characterizing normal

mammograms. However, little work has been done on understanding normal

mammograms [120]. Sahiner er al [121] developed a fast and stable implementation of

the CNN to classify ROIs in mammograms as either mass or normal tissue. On a data

set consisting of 168 biopsy proven ROIs with masses and 504 ROls having normal

breast tissue, they have got a true positive detection rate of 90% at a false positive
fraction of31%.

I-leine, et al [122] used a statistical method based on wavelet expansion to

separate normal regions from potentially abnormal regions containing isolated
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calcifications. This is the initial phase of the development of a general method for the

automatic recognition of nonnal mammograms. On a dataset of 30 mammograms

containing 17 clinically abnormal ones and the rest nomtal, they were able to achieve

92% specificity and 89% sensitivity at the cost of 0.12 false positives per image.

Kalman, et al [123] studied the feasibility of combining WT and ANN to screen normal

mammograms from those containing masses. They have obtained a sensitivity of 75%

and specificity of 56% using a dataset of 350 mammograms with 221 cases containing

masses.

Liu et al [120], [124] presented the development of algorithms for recognizing

nonnal mammograms by eliminating the effects produced by normal glandular tissues

and connective tissues in mammograms. Bovis and Singh [125] investigated a new

approach to the classification of mammographic images based on the underlying texture

contained within the breast tissue. This study demonstrated a high sensitivity in the

classification of breast types justifying the use of this prior knowledge for the detection

of lesions in a proposed CAD system.

Zayane et al [126] proposed a classification method based on association rule

mining to classify digital mammograms into three categories: normal, benign and

malignant. The experimental results show that the method performs well reaching over

80% in accuracy for the MIAS database. Lo et al [127] developed an ensemble

classifier that identifies whether suspicious calcification clusters are benign or

malignant based on features extracted by automated image processing algorithms as

well as features manually interpreted by radiologists.

With the advent of digital mammography systems, the implementation of CAD

systems in everyday clinical applications looks highly promising [128] and is obviously

revolutionizing the practice of radiology.
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2.2 DWT Computation

In recent years, there have been considerable research activities centered on building

efficient systems for computing the DWT. This is certainly because the WT is a

powerful tool for multiscale time-frequency signal decomposition and analysis which

has found applications in many areas such as signal processing, digital communications,

numerical analysis, and computer graphics [129]. Moreover, practical system design is

itself a very challenging problem because of the stringent constraints, such as buffer

size, delay, power, chip area and control complexity, imposed by specific DWT

applications [130], [I31], [132].

The most popular DWT algorithm is the recursive filtering approach using the

corresponding wavelet filter bank, the so-called standard algorithm [21], whose

computational complexity is 0(L) per output coefficient (L is the filter length). The

FFT-based DWT algorithm proposed by Rioul et al [24] reduced the complexity from 0

(L) to 0(log L) for large filter lengths. For short filters, a “fast running FIR filtering"

technique was presented [I33], which has achieved 30% saving in computations. Using

a lattice structure, Vaidyanathan et al [I34], [135] have shown that the complexity can

be reduced by a factor of 50% for orthogonal wavelet filter banks. The ladder structure

by Marshall [136] and the lifting algorithm by Daubechies and Sweldens [137] further

show that, for large filter lengths, 50% savings in computations can be achieved for any

FIR wavelet filter bank.

In many cases, a sequential architecture is used where the DWT is computed by

splitting the input into blocks, with the processor operating on one block at a time [138],

[139], [I40]. One reason for such a choice is that only a limited amount of memory is

available for the transform computation. Example scenarios include image

compression/decompression systems using a DSP/ASIC chip in consumer electronics

products (e.g., digital cameras) or space-borne instruments [21], [133]. In these

applications, reducing the memory buffer size helps not only to maintain low costs but

also to reduce the chip design area and thus the volume of the final product.
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As an alternative a parallel architecture would split the input among several

processors to speed up the transform computation [l3l], [l4l], [I42], [I43]. This is

typical for applications such as the seismic data processing [143] or illumination

computations in computer graphics [129] where a large volume of data has to be

processed in a reasonably short time. Obviously, fast DWT computation to meet

stringent delay constraints is critical to the success of any wavelet-based techniques.

In sequential architecture designs, most approaches adopt the standard FFT­

based filtering techniques [I44], overlap-add or overlap-save. These include the

recursive pyramid algorithm (RPA) by Vishwanath [138], the Spatially Segmented

Wavelet Transfonn (SSWT) by Kossentini [I45], and the reduced line-based

compression system by Chrysafis et al [l46]. Since the SSWT overlaps data only once

before the start of the transform, the overlap buffer size increases exponentially with the

increase of decomposition levels. Alternatives are implemented in [138] and [146]

where data is overlapped at each level of decomposition and the buffer size is reduced.

In parallel architecture designs, most approaches proposed require

communication of the boundary data at each level of decomposition [I31]. To reduce

the overhead caused by frequent inter-processor communication, Yang at el. [147]

proposed to use boundary extensions in their DWT system configured from a cluster of

SGI workstations. However, this computes incorrect wavelet coefficients near data

boundaries, which causes performance degradation in some applications, for example

low-bit rate image coding.

Various image codecs using hierarchical subband decomposition emerged

during the last decade. One of the first algorithms ofthis family is due to Shapiro [148]

and is known as the Embedded Zero-tree Wavelet algorithm (EZW). Said and Pearlman

[149] successfully improved the EZW algorithm by providing symbols for combination

of parallel zero-trees. The implementation is based on a set-partitioning sorting

algorithm called Set-Partitioning in Hierarchical Trees (SPIHT).

These wavelet based image codecs can produce smoother and more perceptually

pleasant reconstructed images than conventional Discrete Cosine Transform (DCT)
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based image codecs. However, implementing these codccs for the entire image is

cumbersome for large images, since it requires a large amount of memory. To reduce

the memory requirement, the most direct approach is to divide the image into non­

overlapping blocks and process each block independently. However, due to the lack of

pixels beyond block boundaries, edge artifacts will be produced on block boundaries in

the reconstructed image. Williams and Amaratunga [150] removed edge artifacts by

extrapolating the missing pixels using polynomials, but their method introduces a large

computational overhead. Eom and Kim [151] proposed a different method of removing

the edge artifacts by using samples of adjacent blocks. Their scheme can perform the

forward WT independently for each block, but independence is not achieved for the

inverse transform.

The edge artifacts are removed in SSWT algorithm by making use of the

overlapping between blocks. This algorithm was evaluated by M. Adams [l45], [I52].

Within the JPEGZOOO baseline system and found suitable. Chrysafis and Ortega [146]

proposed a complete low-memory image compression system using a line-based

approach. The memory requirement of this method was reduced to be proportional to

the width of image, which when very large, still require large amount of memory for

both transform and coding. Also, the line-based codec is not easily parallelized.

Recently Nealand er al [153] proposed an overlap save convolution method for

wavelet analysis, which eliminated boundary distortion with the exception of first and

last frames. But they have not considered reconstruction. Devassia er al [154], [155]

introduced a Parallel Multiple Subsequence (PMS) structure which involves much less

computation than state-of-the-art algorithms up to 6 levels of processing for Haar

wavelet and 3 levels for others, for any data length. For higher decomposition levels and

for real-time applications, this algorithm can be used effectively by optimal selection of

processing frame size.
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Chapter 3

Breast Cancer — A Medical Perspective

Breast cancer is one among the most common and deadly cancers. affecting nearly one

in ten women. Standard Film Mammography is an important type of medical imaging

used to uniquely screen healthy women for small curable breast cancers. (‘urrentl_\. it is

the "gold standard " in breast cancer detection. Controlled medical studies have Sho\\‘n

that mammography can lead to decreases in death due to breast cancer sutlicient to

measurably lengthen life. The reported cancer free 5 year survival for cancer detected

by mammography is 92%, with 96% overall 5 year survival [ll]. [2].

To construct a system for automatic detection of abnormalities in

mammographic images, it is important to have some basic medical knowledge in the

area. It is also important to investigate how an expert radiologist works. Hence a

medical point ofview of mammography is presented in this section.
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3.] Anatomy of the female breast

The breast is a complex organ consisting of different types of tissue (see ligure 3.1).

The female breast contains milk-producing glands cailed lobes or lobules. 'l‘hese glands

vary in size during the nienstrual cycle due to the difference in hormone levels. and

regress after menopause [1 56]. The lobules are linked together by tin} tubes called duets

through which the milk is transported from the lobuies to the nipple. The surrounding

fatty tissue and ligaments. called parenchyma. supports the lobules and ducts. The

structure of the breasts ofdifferent women varies much. but usually the two breasts of

the same woman are much alike.

There are also blood vessels and lymphatics. small thin channels that collect and

carry tissue fluids. present in the breast. Breast tissue fluid drains through the

lympliatics into axillary lymph nodes. located in the underarm. The} tiller the lymph

fluid and sewe as a barrier to the further spread of cancerous cells or bacteria that may

'%"ieu1‘e 3.1: SCl‘l‘;3E:‘i.'tIlC Diagram oftha: l‘.‘m-ale Bic-:t:~.t.e
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have entered the lymph fluid. Lymph nodes are not completely effective in filtering out

cancerous cells and despite their presence, once cancerous cells have gained access

either to lymph channels or blood stream they have the potential to spread to any part of

the body, particularly bone, lungs, liver and brain [I57].

3.2 Malignancy in the breast

Cancer is a disease in which abnonnal, mutated cells in some organs grow out of control

[158]. Healthy cells reproduce themselves continuously throughout life, growing new

tissue and replacing old or damaged ones, which is a nonnal, controlled and orderly

process. However, sometimes this orderly process is disturbed and cells begin to

reproduce in an abnormal way building a tumor.

A tumor may refer to both benign and malignant growth. Benign tumors remain

similar to the tissue of their origin and generally do not invade surrounding tissues or

produce metastasis [156] and their growth is usually slow. Malignant cells appear in

many different forms. Some remain similar to the surrounding tissue and are referred to

as well-differentiated. Cells bearing very little similarity to surrounding tissue are

referred to as undifferentiated or anaplastic. These are usually more aggressive in their

growth and behaviour than well-differentiated malignancies [I56]. Metastasis occur

when cancerous cells break away from the primary tumor, and travel through the body

via blood or lymphatic channels to other organs where they grow and form new tumors.

A cancerous cell has characteristics that differentiate it from normal tissue cells

with respect to the cell outline, shape, structure of nucleus and most importantly, its

ability to metastasize and infiltrate. When this happens in the breast, it is commonly

termed as ‘Breast Cancer’. Cancer is confirmed after a biopsy (surgically extracting

tissue samples) and pathological evaluation.

The majority of breast cancers begin in either lobules or ducts [I58]. Breast

cancer is classified as either invasive (infiltrating) or non-invasive (in-situ). Invasive

cancer has the ability to spread to other parts of the body, whereas in-situ cancers does
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not spread to other parts, but may develop and become invasive and should therefore be

removed.

Since breast cancer grows close to lymphatic channels, detection, diagnosis and

treatment of the cancer in an early stage is important. According to Greshon [157] a

tumor may be considered early, not because it is small or because it is believed to have

existed for a short time, but because it has not metastasized. Few palpable tumors can be

thought of as early [I57]. The most important tool for early detection is the use of

mammography in mass screening programs [I56], [I57], [l59]. Clinical examination

and self-examination are the other methods of finding breast cancer.

The exact cause of breast cancer is not known. However, studies show that a

woman’s chance of getting breast cancer increases with age, personal and family history

and certain genetic alterations. Also, breast cancer occurs more often in white women

than in African or Asian women.

3.2.1 Symptoms & Diagnosis

Early breast cancer usually does not cause pain. In fact when breast cancer first

develops, there may be no symptom at all. As the cancer grows it can cause changes that

women should watch for. Some of them are:

1) A lump or thickening in or near the breast or in the underarm area.

2) A change in the size or shape of the breast.

3) Nipple discharge or tenderness or the nipple pulled back into the breast

4) Ridges or pitting of the breast

5) A change in the way the skin of the breast, aerola or nipple looks or feels like

wann, swollen, red or scaly.

To find the cause of any sign or symptom, a doctor does a careful physical

examination and analyses family and personal medical history. In addition the doctor

may do one or more ofthe following examinations:
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Clinical Breast Examination: The doctor can tell a lot about a lump by carefully

feeling it and the tissue around it. Benign lumps often feel different from

cancerous ones. The doctor can examine the size and texture of the lump and

detennine whether the lump moves easily.

Mammography: X-rays of the breast can give the doctor important infonnation

about a breast lump.

Ultrasonograpltyz Using high frequency sound waves, ultrasonography can

often show whether a lump is a fluid-filled cyst (not cancerous) or a solid mass

(which may or may not be cancerous). This examination may be used along with

mammography.

Based on these tests the doctor may decide whether further tests are needed or

treatment is necessary. In such cases, the doctor may need to check the woman regularly

to watch for any changes.

Biopsy

Often fluid or tissue must be removed from the breast so that the doctor can make a

diagnosis. This is done by:

Fine needle aspiration: A thin needle is used to remove fluid and /or cells from

a breast lump. If the fluid is clear, it need not be checked in a lab.

Needle biopsy: Using special techniques, tissue can be removed with a needle

from an area that looks suspicious in a mammogram but cannot be felt. Tissue

removed in a needle biopsy goes to a lab to be checked by pathologists for

cancerous cells.

Surgical biopsy: In an incisional biopsy, the surgeon cuts out a sample of a lump

or suspicious area. In an excisional biopsy, the surgeon removes all of a lump or

suspicious area and an area of healthy tissue around the edges. A pathologist

then examines the tissue under a microscope for cancerous cells.
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3.3 Mammography

A mammogram is a specialized X-ray examination of the breast. It is an effective non­

invasive means of examining the breast, searching for breast cancer. Two types of

mammogram studies are commonly perfonned: screening mammography and

diagnostic mammography.

A Screening mammogram is performed on women who have no current

symptoms or breast problems while a diagnostic mammogram is performed specifically

to evaluate a breast problem or revisit a previous abnormal finding. Mammograms are

done using two different positions for each breast, the details of which are given in table

3.1. This allows more thorough evaluation of breast tissue. A compression paddle is

used to spread out the breast tissue and obtain more unifonn thickness. This greatly

improves detail and image quality, making it possible to see very small abnonnalities.

At the same time the amount of X-rays needed for the examination are significantly

reduced.

Abbreviation Projection/Position Direction of the X-Ray
CC Crani0_Caudal Direction from head (cranium) to the

feet (caudal)
X-ray direction is from medial

MLO Medio-Lateral (inner) to lateral (outer) aspect and
Oblique the orientation of the breast is at an

angle (Oblique)
Table 3.1: Positioning on performing mammograms

When a mammogram of the breast is taken, the different forms of tissue appear

as different shades of gray depending on the level of absorbed radiation. Skin and fat

tissue absorb very little radiation and does not usually show. Glandular tissues normally

appear in medium or light gray shades. The pectoralis muscle located behind the

glandular tissue covering the ribs is visible as a white area in a normal mammogram.

X-ray images depend on differences in x-ray stopping power (attenuation) of

separate tissues. In general, a clear separation between normal functioning tissue and
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abnormal cancerous tissue is not possible since their attcnuations are very similar.

However, both functional tissue and cancerous ones can be separated from fatty storage

tissue, which normally surround active breast tissue, even in lean persons. This is due to

a substantially lower attenuation caused by fat.

In older women, the functional glandular tissue diminishes leaving only thin

supporting tissues clearly outlined by fatty tissue. Mammography in these "mature"

breasts is very effective since even small cancers are well outlined by fat. In addition,

many cancers develop calcium deposits that strongly stop X-rays and are easily seen on

mammograms.

Since mammography cannot separate normal gland tissue from tumors, it is

much more effective when gland tissue diminishes with age. Many women retain

glandular tissue as they "mature" and it camouflages tumors until they are large. The

young women's breast normally contains more active tissue that again interferes with

detection of small cancers.

3.3.1 The Mammography Machine

The first dedicated mammography machine was developed in 1966 [I60]. Until then,

mammographic images had been produced using standard X-ray machines. They have a

reciprocating grid to reduce scatter radiation, thus avoiding fog and blurry images. A

0.03 mm molybdenum filter is generally used to make the beam hard and more

penetrable.

The second-generation design introduced in l980’s reduced the exposure time

significantly. The machine also provided increased resolution and accuracy and used

more advanced type of film to provide better detail. Film processing is done under

specific conditions. Depending on the type of film used, standard processing or

extended processing techniques are employed to develop an exposed film [I61]. The

Films used for mammography are single emulsion fast films, which enhance image

sharpness by eliminating geometric distortion. Films commonly used are Kodak Min­
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R15, Agfa, Fuji, Dupont, and Konica. The screens consist ofa rare earth phosphor called

terbitrm activated gadolinium oxysulfide. Screens have to be compatible with the film.

The newest film-screen combination is responsible for dose reduction by 30 - 50 °/o.

The technique used for mammography is low Kilo-voltage Peak (Kvl’) ofabout

24 to 30. The milli-Ampere-seconds (mAs) vary depending on breast tissue density.

When the photo timer cells are used, it provides the optimum rnAs for the tissue to be

imaged. This technique results in mammograms with a high film contrast, making it

easier for the radiologist to read.

The design of mammography equipment has progressed rapidly over the last

four decades. In developed countries, dedicated mammography units are used. A whole

range of manufacturers, GE, Bennett, Lorad, Siemens, Fischer, Phillips, etc. make these

machines. In 2000 GE introduced the first full field digital mammography system the

Senographe 2000D [I60]. A digital mammography system uses essentially the same

system as conventional mammography, but it is equipped with a digital receptor and a

computer instead of a film cassette.

3.3.2 Breast Composition Determination

Because mammographic screening procedures are applied to all persons at risk, millions

of mammograms and hundreds of thousands of biopsies must be preformed. To

minimize the natural anxiety and inconvenience, mammographic procedures must be

quick and accessible and every effort must be made to inform, counsel and support

women undergoing the procedure.

Breast care involves many people, viz, personal physicians who order

mammograms, radiologists who interpret mammograms and do needle biopsies,

surgeons who perform incisional biopsies and curative cancer operations, pathologists

who interpret biopsies, and radiotherapists who deliver radiation treatment. Patients

often must function under great stress in evaluating several physician recommendations

to make important treatment decisions. Hence, clear and accurate communication is
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almost as important as teclmical competence. To facilitate communication, the

American College of Radiology (ACR) has created a standardized system for reporting,

the results of mammography, called ACR - Breast Imaging Reporting and I)ata System

(BIRADS). It includes standard interpretation and reporting formats, a standard

dictionary of terms, and standard disease classifications used in checking program
effectiveness.

The ACR-BIRADS recognizes the background composition of the breast in the

following categories:

1. Almost Entirely Fatty: Mammography very effective, sensitive to even
small tumors.

2. Scattered Fibroglandular tissue: Minor decrease in sensitivity.

3. Heterogeneously Dense tissue present: moderate decrease in sensitivity.

4. Extremely dense tissue present: marked decrease in sensitivity.

Mammography does retain some value even in dense breasts by detecting

calcium deposits (which are so dense, surrounding tissue does not interfere), but is not

reliable in detecting small non-calcified cancers. In general, women with "dense"

breasts remain so from year to year and it is possible to let a women know when she

cannot depend on mammography. In dense breasts, more emphasis on self-examination

may be appropriate, particularly if there is a family history of breast cancer.

3.4 Normal Mammograms

Unfortunately, there is no "normal" appearance on a mammogram that can be

memorized. What constitutes "normal" varies within a wide spectrum. In addition, the

appearance of the breast differs during pregnancy and in the postpartum period. This

spectrum is due to the differences in breast composition. A breast with a high

composition of adipose tissue will appear darker on a mammogram than a breast with a

high composition of connective tissue stroma (lighter). From a population perspective,

the mammogram will appear radiographically denser in a higher percentage of younger
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women than in older women. Even for an individual female, the image ofbreast density

may vary over the years. Such changes are often gradual and the trend is generally

towards a less dense (higher percentage of fat) breast tissue, but the reverse trend may

happen as in the case of weight loss or hormone replacement therapy. Examples of

different, entirely nomtal mammograms are shown in Figures 3.2 to 3.4.

Other normal variations of breast tissue include asymmetric patterns and

asymmetric size. Although the breasts usually develop symmetrically, dilTercnccs in the

symmetry of breast tissue patterns or breast size are not necessarily abnomial. Without

other indices of an abnormal process, such asymmetry may simply be a developmental

phenomenon.

Figure 3.2: Normal Mammogram
Dense-glandular type
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Figure 3.3: I\or1nal .\zia1nrnogr‘:1tit
Fatt) type

3.5 Mammographic Abnormalities

3.5.] Microcalcifications

A microcalcification is a tiny calcium deposit that has accumulated in the tissue in the

breast and it appears as a small bright spot in the mammogram. A cluster is t_\‘pic;ill_\

defined to be at least 3 to 5 microcalcifications within a 1 square centimeter region | I ].

[3]]. Up to 50% of malignant masses demonstrate clustered microcalcifications and in at

number ofcases the clusters are the only sign of malignancy [T l _|.

Suspicious calcifications occur in about one-third of breast cancers. and Inn}

develop prior to the invasive phase of tumor growth (in sim cancer) when cancers are

most curable. Calcium deposits are easy to be seen in X-rays because the) are much

denser (have higher X-ray stopping power) than all t_\ pes of soft tissues in the breast.

(‘alcitications associated with cancer are usually \'er_\ srnall. llo\~,e\.cr calcit'te;t1imt:-.
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Figure 3.4: Normal lylammogram
l7atty-glandular type

commonly occur in benign breast processes. where they may be confused with cancer.

Figure 3.5 shows snippets of mammograms containing malignant and benign
microcalcifications.

Malignant microcalcifications vary extremely in form. size. density and number.

They are usually clustered within one area of the breast, often within one lobe. They are

of two types: granular and casting.

Pleomorphic or heterogeneous calc1_'/Ications (Granular): These are tiny

calcifications with dot—like or elongated shape and innumerable. They are having

varying size. usually less than 0.5 mm..
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(a) (b)
Figure 3.5: Snippets of mammograms containing microcalcilications

a) Benign calcifications b) Malignant calcifications

Fine and/or branching (casting) calcifications: These are thin. irregular

calcifications that appear linear. but are discontinuous and under 0.5 mm in

width.

Figure 3.6 shows examples of these types of calcifications. They are often

associated with cancer and clearly merit immediate biopsy.

(a) (b)
Figure 3.6: Basic types of malignant microcalcifications

(a) Granular type (b) Casting type
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Benign microcalcifications are characterized by homogeneous shape. uniform

density. sharp outline. or radio lucent density. They are usually larger than that

associated with malignancy. They are coarser, often round with smooth margins and are

easily seen. Some examples of benign calcifications are given in Figure 3.7.

Skin calciflcationsz These are typically dense. smooth and lueent centered (less

dense in center than margin) that are pathogmmmmc (appearance is always benign).

They are situated in the skin. resulting from calcium deposits in hair follicles and are

more common in the center ofthe chest at the inner edge ofthe breast.

(0) (C1)
Figure 3.7: Different forms of benign calcifications.
a) Skin calcifications b) Vascular calcifications
c) Rod shaped calcification d) Round calcifications.
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Vascular calci/icatious: These are parallel paired tracks or linear tubular

calciiications that are clearly associated with small arteries.

Coarse or popcorn like calcification: Rounded groups of coarse calcifications

develop in an involuting _/ibro azlenomu. When completely developed the

appearance is reliable, but during early phases ofdevelopment calcifications in libro

adenomas may be suspicious.

Large roll shaped calcification: These are benign calcifications fonning continuous

rods that may occasionally branch. They are usually more than 1
mm in diameter and may have lucent center, if calcium surrounds rather than

fills an enlarged duct. These kinds of calcilications are found in
secreatory disease, plasma cell mastitis, and duct ectasia.

Round Calci/ications: They are smooth, dense and round calcifications with size

less than 1 mm.

Spherical or lucent centered calci/ications: These are benign calcifications that

range from under 1 mm to over a centimeter. These deposits have smooth surfaces,

are round or oval and tend to have a lucent center. They arise from areas of fat

necrosis, calcified duct debris and occasional fibro acienoma of a duct involved

irregularly by breast cancer.

3.5.1.1 Calcification Distribution Modifiers

Breast cancer frequently spreads locally in characteristic patterns. These patterns are

used as modifiers of the basic morphologic description and describe the arrangement of

the calcifications. The significance of groups of calcifications is influenced by the

pattern of distribution. Multiple similar groups may be indicated when there is more

than one group that show similar morphology and distribution.

Grouped or Clustererl: The term is used when multiple small calcifications

occupy a small volume oftissue (less than two cubic centimeters).

Linear: Calcilications arrayed in a line that may have branch points.
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Segmental: These are worrisome in that their distribution suggests deposits in a

duct and its branches raising the possibility of multi-focal breast cancer in a lobe

or segment of the breast. Although benign causes of segmental calcifications

exist such as sccreatory di.rea.s'e, this distribution is of greater concern when the

morphology of the calcifications is not specifically benign.

Regional: These are calcifications scattered in a large volume of breast tissue

not necessarily confomiing to a duct distribution that are likely benign, but are

not everywhere in the breast and do not fit the other more suspicious categories.

Diffuse/Scattererl: These are calcifications that are distributed randomly

throughout the breast.

Multiple groups: Multiple groups may be indicated when there is more than one

group of calciftcations that are similar in morphology and distribution.

3.5.2 Cireumscribed Masses

The presence of a localized collection of tissue represents a mass. By ACR-BIRAD

definition, a mass is a space-occupying lesion seen in 2 different projections (X-ray

points of view). When an apparent collection is seen in only one view, it is referred to as

a mammographic "density". Although the density may be a mass, perhaps obscured by

overlying glandular tissue on other views, it may be nothing more than several

overlapping normal areas. When a density is seen on only one view, additional views

must be done to confirm or exclude the presence of a mass.

Cireumscribed Masses have a distinct border and are typically circular in shape.

High-density radio opaque and random oriented masses are most likely to be malignant

whereas radio lucent and radio lucent / radio opaque combined masses are almost

always benign [1], [31]. Examples of benign and malignant circumscribed masses are

shown in Figure 3.8. Halo and capsules are characteristics of benign masses with rare

exceptions (see fig.3.9). A halo is a narrow radiolucent ring or a segment of a ring

around the periphery ofa tumor. A capsule is a thin, curved, radiopaque line that is seen
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(21) ch)
Figure 3.8: Snippets of mammograms with circumscribed masses

a‘) Benign mass b) Malignant mass

only when it surrounds tumors containing fat. A cyst with smooth borders and orienting

in the direction of the nipple following the trabecular structure of the breast also

indicates a benign lesion. Figure 3.10 shows some typical examples ofdifferent types of

malignant masses. Contour, density, shape. orientation and size of the mass are

important factors to be considered when analyzing a visible mass.

(3)

(b)

Figure 3.9:Benign masses.
a)halo b)cyst c) capsule
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Figure 3.l0: I\/Ialignant masses.
(:1) High density radiopaque. (b) Solid tL1mor with random orientation.

General shape of a mass is relatively non-specific since both benign and

malignant processes tend to arise from one spot and grow circumferentially. Round and

oval shapes are associated with benign processes in part because they imply a well­

circumscribed margin, a benign sign considered in the margins section.

Round, oval. and lobular shape: Masses in these categories imply a well­

defined smooth edge and is often benign. If their margin is not smooth. their

shape alone does not tend to exclude malignancy.

(3) (b)
Fig.3.l l: Snippets ofmammograms with ill-defined inasses

a) Benign mass b) Malignant mass
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Irregular shape: Irregular shapes are more concerning. in part because they

imply indistinct margins and are more often malignant (tumor infiltrating edges).

Figure 3.1 1 shows typical benign and malignant ill-dclined masses.

3.5.2.1 Architectural Distortion

In this class. the nonnal outline of tissues is distorted. sometimes with no dclinablc

mass. It includes spiculations (lines radiating from a center) and retraction (puckcring)

of normal connective tissue lines. It is important because cancer infiltration often occurs

along normal tissue planes where it causes abnormal stiffness or contraction. which can

sometimes be seen before an actual mass.

Architectural distortion occurs with healing after injury including previous

biopsy and so it is critical to determine if the area has been injured. Benign causes oi‘

architectural distortion such as scarring tend to remain unchanged or improxre. So in

cases where previous mammograms have been perlormcd. it is most important to

compare to observe if changes have really occurred. Figure 3.12 shows typical cxarnplcs

of benign and malignant architectural distortions.

(ail) (ii)
Figure 3.13: Snippets ta!‘in;unmogram>; with :ircliitectt1rt«.l distortion

:1} Benign distortion bl \lz=,li;_:iiait‘¢_ cti.~;:\ii'tioi’i
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3.5.2.2 Asymmetric Breast Tissue

Breast tissue is usually very similar from one side to the other. When a greater volume

or density of tissue is present on one side. concern arises even if no mass is seen.

Although asymmetry does occur as an occasional normal finding. it is important to

obtain detailed views. usually with small "focal compression" devices to spread tissues

out and exclude a mass. Even if no mass is identified. accelerated follow-up

mammogram in 6 months time is usual. lfthe area can be palpated (felt). biopsy must be

considered. Once asymmetry is identified. it tends to remain constant over years and

comparison with previous mammograms can be reassuring in such cases. Figure 3.13

shows typical examples of benign and malignant as_vmmetrical densities.

Focal Asymmetric Density: This is an area of breast density (tissue) with similar shape

on two views, but completely lacking borders and conspicuity ofa true mass. It must be

carefully evaluated with special views to exclude findings of a true mass or architectural

distortion.

3.5.3 Spiculated Lesions

Spiculated lesions appear star shaped with blurred borders (see figure 3.14). They are

almost all malignant. Generally the lesion has a distinct central tumor mass with dense

(:1) (b)
Figure 3.13: Snippets ofinammograms having as}mme1ric breast lliw\‘UL‘.

:1) Benign b) Malignzmt
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spicules radiating in all directions. The spicule length usually increases with tumor size.

Occasionally, translucent, oval or circular center or translucent areas within a loose

structure and low-density spicules characterize benign spiculated lesions.

(.8) (b)
Figure 3.14: Snippets of mammograms with spiculalcd 1!lzi\\C.\

in Benign mass h) Malignant inu.<.<
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Chapter 4

Review of Basic Theory

4.1 The Wavelets

The concept of wavelet analysis has been developed in the late 1980's. However, its

idea can be traced back to the Littlewood-Paley technique and Calderon-Zygmund

theory [162] in harmonic analysis. Wavelet analysis is a powerful tool for time­

frequency analysis. In many applied areas like Digital Signal Processing (DSP), time­

frequency analysis is critical [l63]. To perform a WT we need a wavelet, which is a

localized wave that satisfies certain mathematical criteria [I64]. These are:

l. A wavelet must have finite energy:
0,, 2

E = fly/(r)l d: < oo (4.la)
2. It should have zero mean, i.e. it should have no zero frequency components

J‘://(t)dr = 0 or 99(0) = 0 (4.1b)
where 1/}(f) is the Fourier Transform of I//(I).
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3. The following condition known as admissibility condition must hold good. 1o< lfldfmo (4.lc).. lfl

An additional criterion that must hold for complex wavelets is that the Fourier

I7

transform must both be real and vanish for negative frequencies.

In 1985, Yves Meyer discovered that one could obtain orthonormal bases for

L2(R) and the expression for decomposing a function into these orthonormal wavelets

converged in many function spaces. An orthonormal wavelet system satisfy the

following orthogonal relationships [I65]:

[¢_,_k (:)¢J_k_. (r)d1 = 5”. (4.2a)
[WM (:)¢J_k,. (oar = 0 (4.2b)
Jw,_.<r>w,_..-<r>dr =6,_,.6.,.. (me)

where ¢,_/ (I) and 1,11”. (1) are the scaling and wavelet functions at the ill‘ scale and j"‘ shift

respectively.

A particular example of an orthonormal wavelet system was introduced by

Alfred Haar [19]. However, the Haar wavelets are discontinuous and therefore poorly

localized in frequency.

The conditions of orthogonality are quite stringent. When using the WT these

conditions are not necessarily needed. For many of the image processing applications,

all that is needed is a reversible transform and the inverse transform should be simple

enough. One way of relaxing the orthogonality, while keeping the invertible property is

to impose biorthogonality.

Let ¢(t)and $0) be two scaling functions that satisfy the following relations:

¢(!) = 2Zg(")¢(2! - '1) (4-33)
43(1) = 22 §(n)¢7(2: — H) (4.319)
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_[¢“ (1);;/_k. mm = 5, (4.3c)

Also let y/(!) and y7(I) be two functions that integrates to zero with the additional

properties that

[mm (!)y7“_. mm = 5, (4.4a)
jg/_,_k (z)$J_k. (om = 0 (4.41))
jtvu. (z)¢J_k (r)dr = 0 (4.4c)
W) = 2;h(n)¢(2t — n) (4.4d)
y7(:) = 2; /7(n)$(2: - n) (4.4e)

These 4 functions ¢(r), 5(1), V/(I) and t/7(1) form a biorthogonal wavelet

system [164].

There are in fact a large number of wavelets to choose from for analyzing our

data. The best one for a particular application depends on both the nature of the signal

and what physical phenomena or process we are looking to interrogate or how we are

manipulating the signal.

4.2 The CWT

The CWT of any square integrable function f(() is given by equation 1.1. It is a

reversible transfonn and j(t) can be recovered from it using the relation:1 to _2
[(1) = — I I a WVf(a,b)t//(——)dadb (4.5)CW 0 i a

where 1//(t)is the mother wavelet function, WWf(a,b) are the CWT coefficients for

dilation a and translation b and
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y‘/(w)l’dw < 00 (4.6)
3

CV = 2/1' flwl
-as

if/(w) is the Fourier transform of 1,11 and  is the complex conjugate of if/.

CWT o[Ters time and frequency selectivity. The segment off(!) that influences

the value of WVf(a,b) for any (a,b) is that stretch off(!) that coincides with the

interval over which V/a_,, has the bulk of its energy. This windowing effect results in the

time selectivity oftlie CWT.

The Quality factor is invariant with respect to wavelet dilation because the

Fourier Transfomi F [4//(L)] =|a if/(aw). The center frequency and the 3 dB bandwidtha. 1 . .
of the dilated wavelet are“ times that of the corresponding values of the mothera

wavelet, yielding the same value for the quality factor. Thus the continnum of filters to

which we alluded is a set of constant Q band pass filters. It is this band pass nature that

gives the frequency selectivity of the CWT.

4.3 The DWT

CWT provides a redundant representation of the signal, in the sense that the entire

support of WV (f)(a,b) need not be used to recoverf(!). The following relation gives a

non-redundant wavelet representation:

[(1): E: id(k,1)2'5w(2'*:—1) (4.7)
=—co I=—o:i

Here, the dilation and translation take values of the form a = 2/" and b = 2/‘ I ; k, I being

integers. This is called dyadic sampling because consecutive values of the discrete

scales as well as the corresponding sampling intervals differ by a factor of2.

d(k,l) = WVf(a,b) (4.8)
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at a=2‘ and b=2k I. d(k,I) the DWT. is still the transform ofa continuous time signal.

The discretization is only in the dilation and translation variables. The time scale

parameters being discrete it has been recognized as a natural WT for discrete time

signals [I66], [I67].

The DWT of a discrete time signal x(n) 512(2) with respect to a set of analysis

wavelets (r,‘,,',,,) is delined as the set ofcoeflicientsn-|_2_ . ;m/t int ('_L{t'f

= Zx<k>:,,_..'(k> (4.9)
It

§n_m(k) is obtained by translating cf"'0(k) by a scale dependent amount that

monotonically increases with m at each fixed scale.

6",»:  = 611,0  — 2" "0  I
The signal can be recovered using the following expansion,

we = ZZX._..v/.,..(k) (4.11)
if one can determine a dual set of synthesis wavelet sequences (91/M) onn=l,2,. ,'_mA inlegc-r 3

the same time-scale grid, that satisfy the completeness relationship

22:...‘ ts)-,u.,., (p) = 6., (4.12)
I1 IN

where 6”, is the Kronecker delta defined as 6”, = 1 ; s =p

= 0 otherwise.

For band-limited signals, a finite-level expansion will be quite sufficient. Hence

such signals can be defined by the following finite sum.

x<k> = ii/Vac) + 7N (Io <4.13a>

where mic) = Z/3~,..¢~_..(k) (4.13b>
and p,,_,,, = Z x(k)2.,,_,,‘ (k) (4.l3c)

k
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Here, the sequence y,,, (k) represents the residue of the expansion over the finite wavelet

set that converges in nomt to zero for any arbitrary finite energy signal as N—><r.

2.~_m(k) is the analysis scaling sequence at the N"' level and ¢~_,_(k)is the

corresponding synthesis dual.

4.4 Wavelets and Timc- Frequency Representation -Concept
of MRA

Multi Resolution Analysis (MRA), formulated in 1986 by Mallat and Meyer, provided

the frame work for understanding the logic behind the wavelet basis and, subsequently,

became the tool for constructing new ones. The concept of MRA is based on the

analysis of a function at various levels of resolution. The wavelet decomposition

obtained using an MRA is a successive approximation method, which adds more and

more projections into detail spaces spanned by the wavelets and their shifts at different

scales.

To achieve an MRA of a function x (t), we must have a finite energy function

¢(t) e L2 (R) , called a scaling function, that generates a nested sequence { Aj }, namely

{0} <—K c A_, c A0 c A, CK ——> L2 and satisfies a dilation equation

¢(t) = Zgo(k)¢(at —k) for some a>O and coefficients {go[k] e 12}. The space A0 is
k

generated by {¢(. —k) : k e Z} and in genera1A,, by {¢,m. :k,s e Z}. Consequently we

have the following results.

x(t) e A1 C3» x(2t) e A”, (4. 14a)
x(t) e A_\_ <3 x(t + 2"‘) e A‘ (4.14b)

These dilation equations are unique to MRA.
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For each 5‘, since A, is a proper subspace of/1,. ,, there is some space left in A_.. ;.

called W,. which when combined with A, gives /1,.,. This space {W_.} is called the

wavelet sub-space and is complementary to A, in/1,. ;, meaning that

A31 IV, ={0} , .s'eZ (4.l5a)
A‘ (-13 W‘ = A“, (4.l5b)

Subspace { W, } are generated by y/(!) e L2(R) , called the wavelet, in the same

way as A, is generated by ¢((). i.e. for any x_,(l) e A,

x. (r) = Eat-,.r¢(2.‘l( — k), (4.16)
It

and any function yI(t) e W‘ can be written as

y_‘ (1) = Zwmy/(2'i( —k) (4.17)
for same coefficients a,,',,ur,‘__‘ e12.

Since we have

A”, = W_, 63 A,

= W‘ 63 W_,_, EB AH

=W_,€l3W_,_,63W5_2€l3K, (4.18)
we have

A, =  W, (4.19)
I=—aa

Observe that the {A5 } are nested while the {W, } are mutually orthogonal.

Consequently, we have

A,I A," = A,, m>l (4.20a)
W,I W,” = {0} , /= m (4,201))
A,I W," = {0} , /S m (4.20c)
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W2LW,J_lV(,LA0 A3 D/12 D/113/40

Figure 4.1: Schematic of MRA decomposition

The hierarchical nature of A, and W, can be shown by the schematic

representation in figure 4.1. In the case of an orthogonal decomposition, in addition to

the wavelet space W, being complementary to A,, they are mutually orthogonal also,

such that W_‘_ L A.

Similar to MRA in L2(R), a Discrete Multi Resolution Analysis (DMRA) for

l2(Z) has been developed [l68], [169], [170], [I71]. Accordingly any discrete time

sequence j(n) of finite energy can be expressed in terms of the discrete time basis

functions 91/J-_k(n) as:

f(n) = Zdj.(k)t//(2"n—k) (4.21)
If the expansion basis functions form a tight frame, the expansion coefficients form an

inner product by

d]. (k) = < f(n),t//(2’i n — k)> = Zf(n).,/(21 n — k) (4.22)
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4.5 DWT Computation

Stéphane Mallat made a decisive step in the theory of wavelets when he proposed a fast

algorithm for the computation of wavelet coefficients [21], [I72]. He developed the

pyramidal scheme, relating the wavelet functions to a set of Quadrature Mirror

Filterbanks (QMF)[2l], [I68], [173] that decompose signals into subbands. This

involves successive filtering and multirate operations.

4.5.1 Basic Multirate Operations

The basic operations involved in sampling rate conversion of digital signals is

decimation, which reduces the sampling rate by an integer M and interpolation, which

increases the sampling rate by an integer factor L.

4.5.1.1 Decimation

Decimation or downsampling a sequence x(n) by a factor of M is achieved simply by

selecting every M“ sample of x(n).

Y D (n)=x(Mn) (4.23)
The downsampling operation results in a time-variant system. In general, it may

not be possible to recover x(n) from YD(n),as it is an aliased version of x(n) with a

folding frequency of Fs/ 2M,where F3 is the sampling frequency of x(n).The Aliasing

can be avoided ifx(n) is band limited to Fg/ 2M. Hence before decimation, usually, a

low pass filtering is performed, which is characterized by a response HD(w) , where

HD(w)=l |w| STE/M

= 0 otherwise. (4.124)
The frequency domain characteristics of Y/)(n) is found to be
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RI-I

)',,(c»-') = AL’ Z,\’(e""~2~«)/M) (4.25)I-0

4.5.1.2 Interpolation

Interpolation or upsampling by a factor of L can be accomplished by inserting L-l

zeroes between successive samples of the signal followed by a stage of filtering to

remove the image frequencies. The upsampled sequence can be expressed as

YU (n) = x(n/L) n=0, :l:L, :2L,.  (4.26)
= 0 otherwise

In frequency domain it can be expressed as

Yu (d"') = X(e"‘" L) (4.27)
whose spectrum is an L-fold periodic repetition of the input signal spectrum. The new

sampling rate will be LF5. Since only the frequency components of x (n) in the range

05 w, =22rF5 S 7:/L JIC unique, the images ofX(w) in XU(w) beyond this range should

be rejected by passing the sequence xu (n)through a filter with frequency response

HU(w) = C |w| S It‘/L

= 0 otherwise (4.28)
where C is a scale factor required to normalize the output sequence.

4.5.1.3 Sampling rate conversion by a rational factor L/M

Sampling rate conversion by a factor of L/M can be achieved by first performing

interpolation by a factor of L followed by decimation by a factor M. This is shown as a

cascaded operation in fig 4.2(a) that can be combined to single filter as in figure 4.2(b).

The single filter will be having an ideal frequency response

H(w) = L |w| S min(7r/D,2r/L)

= 0 otherwise (4.29)
‘T’ and ‘Iv’ indicates upsampling and downsampling operations respectively.

In the time domain, the output of the upsampler is the sequence
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v (k) = x(k/I.) k=0. tI.. i2]...  (4.30)

= 0 ullicrwixc
and the output ofthc linear time-invariant filter is

w(1) = E/1(I — k)v(k)
k--no

= Z-i:h(I — k[.)x(k) (4.31)
Ir--co

Finally, the output of the sampling rate converter is the sequence {).(m)},which is

obtained by downsampling the sequence {w(I)} by a factor M. Thus

y(m) = i h(mM — kL)x(k) (4.32)

ill") ——A TL —fi hu > hp 4+ ~lM >y(m)

Interpolator Dccimator
(3)

W6) WU)x<n> _> TL yon)
(b)

Figure 4.2: Fractional sampling rate conversion by multirate technique
(a) Cascaded interpolation and decimation (b) Combined filtering
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4.5.2 The pyramidal algorithm

An attractive feature of the wavelet series expansion is that the underlying

multiresolution structure leads to an efficient discrete-time algorithm based on a filter

bank implementation. This is shown in figure 4.3 for a 2-level DWT computation using

the pyramidal tree structure for a discrete-time sequence x (n). The filters h, g, 17 and E

characterize the wavelet system.

The transfonn coefficients at the 1"‘ level are computed from the sealing output

of the previous stage of the analysis structure as

X, (k) = (fl,-. tr) * h<r» ¢ 2 (ma)

h ’_> l2 M X:
x(n)

h H $2 _,X2
g __,l $2

/31 E —> $2 —>p2

(3)

X1 5. T2 T1"
('1)

X2 T2 _> /7
T2 _g g

'32 —> T2 —> § .51
(b)

Figure 4.3: Pyramid structure for 2-level DWT computation
(a) Decomposition (b) Reconstruction
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/3, (k) = (,0,.. (r) * .r:(r)) i 2 (4.3%)

where /30 (k) = x(/<), /r(k)= y/010(k), g(k) = mg (k). Similarly, employing the scaling and

wavelet sequences ofthe upper levels, the scaling coefficients at each ofthe immediate

lower levels are computed using the multirate filtering operations.

The first stage of the two banks in figure 4.3(a) divides the spectrum ofthe input

signal into a low pass and high pass band, resulting in the scaling coefficients and

wavelet coeflicients at a lower scale. The second stage then divides the low pass band

into another lower low pass band and a band pass band. The first stage divides the

spectrum into two equal parts. The second stage divides the lower band into quarters

and so on. This results in a logarithmic set of bandwidths as illustrated in figure 4.4.

Correspondingly the time-frequency tiling will appear as in figure 4.5. Each horizontal

strip in the tiling corresponds to each channel, which in turn corresponds to a scale j.

The span covered by each of the translations is marked on the horizontal axis. The

residue of the finite scale representation is a low pass signal that reproduces the trend of

the input signal. The remaining terms in the expansion represent the fluctuations of the

signal over this trend at various scales.

|H(w)l ,

V] W} “/2 W]

1“ h l i 50 Tt/8 1r/4 1:/2 TE
Figure 4.4: Frequency bands for the analysis tree ofthe pyramid
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I

Figure 4.5: Time-frequency tiling

4.6 Computation of 2-D DWT

4.6.1 2-D Wavelets

Wavelets are basis functions in a vector space comprising of a scaling function ¢ with

its associated wavelet function 1,1/and their dual functions 5 and v7. The basis functions

at scale j and translation or shift k in the case of 1-D may be denoted by {¢,-,;,} and

{y/,,k},j,k e Z, where

¢j_k (x) = 2"”¢(2"x—k) (4.340)
and WM (x) = 2"” y/(2'! x — k) (4.34b)
The dual functions are defined in a similar way. In order to apply wavelet

decomposition to images, 2-D extension of wavelets are required. This can be achieved

by the use of separable or non-separable wavelets. Here, only separable wavelets are

considered.
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From the 1-D basis, one can construct a 2-D separable wavelet basis with four

basis functions; one scaling function ¢f.,_,(x,y) and three wavelet functions y//",_,(x.y),

re {l,2,3} given by

¢j’_._, (x.y> = 45,, <x)¢,,, (y) (we)
w}_._, (x.y) = ¢,_. (x)w,-_, (y) (4351:)
wit, <x.y> = V//_k (x)¢,, (y) (me)
u/,’_.,, <x.y) = w,_. <x)w,_, (y) (4.3sd)

These basis functions span the four j-level linear vector spaces rather than just two as in

the 1-D case. An analogous definition holds for the dual scaling function J /1, (x, y) and

wavelet function I/7j'_,,_, (x, y).

4.6.2 2-D Wavelet Transform

The M-level wavelet representation of a 2-D function f is given by

f(xo)’) = Ec2fI¢:1_k,I(x2y) + fiZZdI.{_'lr'//;r‘,k,I(x9y) (4-36)
j=l rer l:_I

The approximation and the detail coefficients in the above expression are

eff, = < f , $A3_,,_,) and d ,{_‘,’ = < f , 1}/”j’._,‘_,) respectively, where  denotes the inner product

in the 12(Z2) space.

For fast DWT computation using the Mallat’s pyramid algorithm, a sub band

filtering scheme is used, where ¢ and W are represented by the corresponding discrete

filters g(n) and h(n), ne Z, respectively, called the decomposition or analysis filters.

Furthermore, there exist the reconstruction or synthesis filters as the dual filters if (n)

and I7 (21).

The 2-D basis given by equation (4.35) may be represented by the four possible

tensor products gg, gh, hg and hh of the 1-D filters g and /1. Let C] and d “denote the
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2-D sequences cf, and d,{_','; k,I el and r={ 1,2,3}. The scaling and wavelet transform

coefficients at a courscr level j+l are computed from (J by convolution followed by

downsampling as follows

c”' = (N 2)(gg *c’) (4.370)
a""" = (N 2)(gh *c’) (4.37b)
d""’ = (u 2)(hg -C1) (4.37c)
df“-3 = (ti 2)(hh -cf) (4.37d)

for j = 0,1 ,..,M-1. Here * denotes 2-D convolution and (~lrl«2) denotes downsampling by

a factor of 2 in both x and y directions. The given image is treated as co.

To perform the 2-D DWT computation as above, instead of using the 2-D filters,

one can employ a separable extension of the 1-D decomposition algorithm [I74]. The

rows of the data are convolved with the first 1-D filter and every other column is

retained. The resulting data is then convolved column-wise using the other 1-D filter.

Further stages of 2-D decomposition are obtained by recursively applying the procedure

to the low-pass filtered output of the previous stage.

Following the common tenninology found in the literature, the coefficients

given by equation (4.37) may be denoted as LL, LH, HL and HH partials respectively as

shown in the layout of figure 4.6.

The wavelet reconstruction is performed recursively, starting at level M by

upsampling (denoted by TT2) followed by convolution using the dual filters. The signal

reconstructed at the 1"‘ level from coefficients at the j+1‘h level may be expressed as:

c" = gg - ((TT 2)c”') + g}? =« «T? 2)d’*"')+ fig ~ ((TT 2)d’*"’)+ 1717 =« «T? 2)d’*"’)
(4.38)

Figure 4.7 shows the block diagram for a 2-level decomposition and

reconstruction of an image using the pyramidal algorithm.
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LL3 LH3

LH2
HL3 HH3

LH1

HL2 HH2

HL1 HHI

Figure 4.6: Coefficient layout of a 3-level DWT of an image

4.7 The MWT

The concept of MWT was first proposed by Evangelista [25], as a class of transfonns

for the representation of pseudo periodic signals with constant period. This transform

simplifies the analysis of the pseudo periodic signals by decomposing them into a

regular asymptotically periodic signal and a number of fluctuations over this signal.

The MWT of a signal x(n), of period M , is defined as the set of coefficients

X,“ =Zx<n>c,,k_.,<n) (4.39)
H

where j = l,2...; k is an integer; q=0,1,2...M-l. gm” ()1) is the multiplexed wavelets,

defined as

g,,k,,<n> = 2 mi <s>6<n — sM — q) (4.40)
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given a complete and orthonormal set of ordinary wavelets wj_,(n) .Thc Inverse MWT

(IMWT) is given by

00? 6HL2

002

M-I

x<n> =ZZZX,_.,.,g,,._.,<n> (4.41)
_[ I: q-0

_, h _,®_>HHlbe
_;S _p®+HLl

f
_,h L2 LHI h _,®_,HH2

h +@£3 —>®4 " g _,®_,HL2#—>8’ LLI
h LH2(a) 8' LL2

HHI ;
HLi->®—> E] :

E

1 ]®s

Figure 4.7: Pyramidal Structure for 2-level 2-D DWT computation.
(a) Decomposition. (b) Reconstruction. (Shaded blocks represent row
wise operation, the rest being column-wise)
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In this work, images are treated as oscillatory signals, although they are not

periodic in a strict mathematical sense. Taking the periods along the horizontal and

vertical directions to be the width and length of the image segment respectively, any

pixel in an image of size LxW can be represented as V.,(r) or V,(q) where r =1,2...L-1

and q =l,2...W-l.

Considering its periodicity along the vertical direction alone, the ./-level MWT

of the image may be expressed as

V“,,._., = Z V.,(r)v/,_. (r); <4.42a>

and 6,” = Z Vq(r)¢M(r) (4.42b)
where j = l,2...J ;k e Z and gt” , the scaling function associated with the wavelet

A

function y/M . VJ.” are the MWT coefficients of the signal V,,(r) at 1*“ scale and k"‘ shift

and 0”,” are the multiplexed scaling transform coefficients of the same section of the

signal at .f'‘ scale and k"‘ shift (residue after J-levels of MWT decomposition). Similar

expressions are obtained by considering the image as a 1-D signal along the horizontal

direction also.

From equation (4.42) we can see that in the MWT the WT is taken over samples

that are spaced one period apart. Hence, the inter-period fluctuations of the signal are

better sieved out in the wavelet partials, whereas the residue holds the asymptotically

periodic information. It is quite different for the DWT, where the oscillatory part as well

as the fluctuations gets filtered into different wavelet and scaling partials altogether,

depending on the frequency content of the signal. As the edges correspond to inter­

period fluctuations, accurate reconstruction of the edges can be achieved from the MWT

partials. Hence, MWT is more suited to edge detection applications than DWT.
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4.8 Edge detection

An edge in an image is a contour across which the brightness of the image changes

abruptly. It is often interpreted in image processing as one class of singularities. In a

function, singularities can be characterized easily as discontinuities where the gradient

approaches infinity. However, image data is discrete and edges in an image often are

defined as the local maxima of the gradient.

Edge detection is an important tool in pattern recognition, image segmentation,

and scene analysis. An edge detector is basically a highpass filter that can be applied to

extract the edge points in an image. Many classical edge detectors have been developed,

based on the principle of matching local image segments with specific edge patterns.

The popular operators belonging to this class are Roberts, Sobel, Prewitt, FreiChen and

Laplacian operators [175], [176], [177], [I78]. They are realized by convolving the

image with a set of directional derivative masks defined on a 3 by 3 pattern grid [I75].

Hence, they are efficient and easy to apply.

However, classical edge detectors usually fail to handle images with strong

noise. To reduce the influence of noise, two techniques were developed from 1979 to

1984; filtering the images with the Gaussian before edge detection [I79], [I80], [181]

and approximating the image with a smooth function [178], [182]. The weakness of the

above approaches is that the optimal result may not be obtained by using a fixed

operator. A computational approach to edge detection was developed in 1991, in which

an optimal detector was approximated by the first derivative of a Gaussian [1 83].

4.8.1 Edge detector using wavelets

Edges in images can be mathematically defined as local singularities. Until recently, the

Fourier transforms was the main mathematical tool for analyzing singularities.

However, the Fourier transform is global and not well adapted to local singularities.

Wavelet analysis is a local analysis and is especially suitable for time-frequency
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analysis [I84], which is essential for singularity detection. With the growth of wavelet

theory, the WT has been found to be a remarkable mathematical tool to analyze the

singularities including the edges, and further, to detect them effectively. This idea is

similar to that of approximating an optimal detector by the first derivative ofa Gaussian

[183]. It has been proved that [35], [185] the maxima of the WT modulus can detect

the location of the irregular structures. Further, a numerical procedure to calculate their

Lipschitz exponents has been provided. 1-D and 2-D signals can be reconstructed, with

a good approximation, from the local maxima of their WT modulus.

The WT characterizes the local regularity of signals by decomposing signals into

elementary building blocks that are well localized both in space and frequency. This not

only explains the underlying mechanism of classical edge detectors, but also indicates a

way of constructing optimal edge detectors under specific working conditions.

Most multiscale edge detectors smooth the signal at various scales and detect

sharp variation points from their first or second derivatives. The extrema of the first

derivative corresponds to the zero-crossings of the second derivative and to the inflation

points of the smoothed signal. It is proved that if a wavelet is the second derivative of a

smoothing function, the zero crossings of the WT indicate the location of the sharper

signal variations [35].

Any function 6(x) whose integral is equal to 1 and that converges to 0 at infinity

can be considered as a smoothing function. An example is a Gaussian function. Let 6(x)

dt9(x) d2t9(x)
dx dxl

.Bybe a function twice differentiable and let y/"(x) = and ti/h (x) =

definition gt/"(x) and w"(x) can be considered to be wavelets because their integral is

equal to zero. The WT of a function _/(x) at scale s and position x computed with respect

to 1,1/"(x) and 1//"’(x) is defined by:

W.."f(x) = f *t//..." (X) ; (4-433)
and WI”f(x) = f »= V/_{_’ (x) ; (4.43b)
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W. f(x) = SE(f‘0.)(X): (4.439)

and W.”f(x) = s’ -i—:</ * 0.><x>; (me)
The local extrema of W," thus correspond to the zero crossings of W," and to the

inflation points of f *0, (x). In the particular case 6(x) is a gaussian, the zero-crossing

detection is equivalent to a Marr-I-Iildreth (M-H) edge detection [186] and extrema

detection corresponds to a Canny edge detection [I83].

This can be easily extended to the 2-D case. Here, a 2-D smoothing function

0 (x,y) whose integral over x and y equal to 1 and converges to O at infinity is used.

Edges are defined as points (xoyo) where the modulus of the gradient vector is the

maximum in the direction towards which the gradient vector points in the image

plane f -0- 0, (x, y). Relating this to a 2-D WT, one can locate the edge points from the

two components W,“ f (x, y) and W,” f (x, y) , as discussed in the 1-D case.

In addition to the WT techniques, another major area linked with the present

work is the ANNs. The basic theory of the relevant ANNS is briefed in the next section.

4.9 Artificial Neural Networks Technology

Artificial Neural Networks are relatively crude electronic models based on the neural

structure of the brain. An ANN structure is composed of a number of interconnected

units called artificial neurons. Each of these units has an Input / Output (U0)

characteristics and implements a local computation or function. The output of any unit

is detennined by its [/0 characteristics, its interconnection to other units, and possibly

external units. And the network develops an overall functionality through one or more

f0ITI1S oftraining [I87].

The biologically inspired methods of computing are thought to be the next major

advancement in the computing industry. The brain modeling promises a less technical
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way to develop machine solutions and provides a more graceful degradation during

system overload than its traditional counterparts. Now, advances in biological research

promises an initial understanding of the natural thinking mechanism and shows that the

brain store information as patterns. Some of these patterns are very complicated and

allow us to recognize individual faces from many different angles. This process of

storing infomiation as patterns and utilizing those patterns for solving problems

encompasses a new field in computing. This field, as mentioned before, does not utilize

traditional programming but involves the creation of massively parallel networks and

the training of them to solve specific problems. This field also utilizes words much
itdifferent from traditional computing like behave, react, self-organize, learn,

generalize, and forget”.

The exact workings of the human brain are still a mystery. Yet, some aspects of

this amazing processor are known. In particular, the most basic element of the human

brain is a specific type of cell, which unlike the rest of the body, does not appear to

degenerate. These cells, known as neurons, are the only part of the body that is not

slowly replaced. Hence, it is assumed that they provide us with our abilities to

remember, think, and apply previous experiences to our every action. Each of these

neurons can connect up to 200,000 other neurons, although 1,000 to 10,000 connections

are typical. The power of the human mind comes from the sheer numbers of these basic

components and the multiple connections between them. It also comes from genetic

programming and learning.

The individual neurons are complicated. They have a myriad of parts, sub­

systems, and control mechanisms. They convey information via a host of

electrochemical pathways. There are over one hundred different classes of neurons,

depending on the classification method used. Together these neurons and their

connections form a process, which is not binary, stable and synchronous. In short, it is

nothing like the currently available electronic computers or even ANNS. ANNs try to

replicate only the most basic elements of this complicated, versatile and powerful

organism. They do it in a primitive way. But for the software engineer who is trying to
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solve problems, neural computing was never about replicating human brains. It is about

machines and a new way to solve problems.

4.9.1 Artificial Neurons

The fundamental processing element of a neural network is a neuron. Within humans

there are many variations on this basic type of neuron, which further complicates man's

attempts at electrically replicating the process of thinking. Yet, all natural neurons have

the same four basic components as shown in figure 4.8. These components are known

by their biological names - dendrites, soma, axon, and synapses. Dendrites are hair-like

extensions of the soma, which act like input channels. These input channels receive

their input through the synapses of other neurons. The soma then processes these

incoming signals over time and turns the processed value into an output, which is sent

out to other neurons through the axon and the synapses.

The basic unit of neural networks, the artificial neurons, simulates the four basic

functions of natural neurons. Figure 4.9 shows a fundamental representation of an

artificial neuron. Each of the various inputs to the network x(n) is multiplied by a

connection weight represented by w(n). In the simplest case, these products are

summed, fed through a transfer function to generate a result and then output.

Some applications like the recognition of text, the identification of speech, and

‘_j Dendrites: Accept inputs

»’

Soma: Process the inputs

Synapses : The electromechanical
4? contact between neurons

Axon: Turns the processed
inputs into outputs

Figure 4.8: A simple neuron
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Figure 4.9: A Basic Artificial Neuron.

the image deciphering of scenes require binary answers. Because of this limitation of

output options, these applications do not always utilize networks composed of neurons

that simply sum up and thereby smooth inputs. These networks may utilize the binary

properties of ORing and ANDing of inputs. These functions, and many others, can be

built into the summation and transfer functions of a network. Other applications might

simply sum and compare to a threshold producing one of two possible outputs, a zero or

a one or scale the outputs to match the application. Some functions even integrate the

input data over time, creating time-dependent networks.

The output of the summing function is then sent to a transfer function, which

turns this number into a real output via some algorithm. The transfer functions that are

commonly supported are sigmoid, sine, hyperbolic tangent, etc. Transfer functions can

also scale the output or control its value via thresholds. The result of the transfer

function is usually the direct output of the processing element. Figure 4.10 shows a

sigmoid transfer function.
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Figure 4.10: Sigmoid Transfer function.

Basically, all ANNS have a similar structure or topology as shown in Figure

4.11. Here, some of the neurons interface to the real world to receive its inputs and

some others provide the real world with the network's outputs. All the rest of the

neurons are hidden from view. Although there are useful networks, which contain only

one layer or even one element, most applications require networks that contain at least

three normal types of layers - input, hidden, and output. The layer of input neurons

receives the data either from input files or directly from electronic sensors in real-time

applications. The output layer sends information directly to the outside world, to a

INPUT

LAYER

HIDDEN

LAYER

(there mag be several
hiddenlauers)

OUTPUT
LAYER

Figure 4.11: A Simple Neural Network Diagram.
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secondary computer process, or to other devices such as a mechanical control system.

Between these two layers there can be many hidden layers. These internal layers contain

many of the neurons in various interconnected structures. The inputs and outputs of

each of these hidden neurons go to other neurons.

In most networks each neuron in a hidden layer receives the signals from all of

the neurons in a layer above it, typically an input layer. After a neuron performs its

function it passes its output to all of the neurons in the layer below it, providing a feed

forward path to the output. Some networks want a neuron to inhibit the other neurons in

the same layer. This is called lateral inhibition. The most common use of this is in the

output layer. For example in text recognition if the probability of a character being a "P"

is 0.85 and the probability of the character being an "F" is 0.65, the network needs to

choose the highest probability and inhibit all the others. It can do that with lateral

inhibition. This concept is also called competition. Another type of connection is

feedback, where the output of one-layer routes back to a previous layer. An example of

competition and feedback is shown in Figure 4.12.

Feedback/
av» :——+

..,,.... O/V
+0

Outputs

Competition
(orinhwifion)

K
Feedback

Figure 4.12: Simple Network with Feedback and Competition.
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4.9.2 Teaching an ANN

4.9.2.1 Supervised Learning

The vast majority of ANN solutions have been trained with supervision. In this mode,

the actual output of a neural network is compared to the desired output. The network

then adjusts weights, which are usually randomly set to begin with, so that the next

iteration will produce a closer match between the desired and the actual.output. The

learning method tries to minimize the current errors of all processing elements. This

global error reduction is created over time by continuously modifying the input weights

until acceptable network accuracy is reached.

With supervised learning, the ANN must be trained before it becomes useful.

Training consists of presenting input and output data, which is ofien referred to as the

training set, to the network. The training phase can consume a lot of time. Training is

considered complete when the neural network reaches a user defined performance level.

This level signifies that the network has achieved the desired statistical accuracy as it

produces the required outputs for a given sequence of inputs. When no further leaming

is necessary, the weights are typically frozen for the application. Some network types

allow continual training, at a much slower rate, while in operation. This helps a network

to adapt to gradually changing conditions.

Training sets need to be fairly large to contain all the needed information for the

network to learn the features and relationships that are important. In addition, the

training sessions must include a wide variety of data. If the network is trained just one

example at a time, all the weights set so meticulously for one fact could be drastically

altered in learning the next fact. The previous facts could be forgotten in learning

something new. As a result, the system has to learn everything together, finding the best

weight settings for the total set of facts.

How the input and output data is represented or encoded is important in

successfully instructing a network. Artificial networks only deal with numeric input

data. Therefore, the raw data must often be converted from the external environment.
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Additionally, it is usually necessary to scale the data or nomialize it to the network's

paradigm.

After a supervised network perfomis well on the training data. it is important to

see what it can do with data it has not seen before. If a system does not give reasonable

outputs for this test set, the training period is not over. Indeed, this testing is critical to

ensure that the network has not simply memorized a given set of data but has lcamcd

the general patterns involved within an application.

4.9.2.2 Unsupervised Learning

Unsupervised learning is a great promise for the future. It shouts that computers can

someday learn on their own in a true robotic sense. Currently, this learning is limited to

networks known as self-organizing maps [I88]. It has been proven to be more effective

than many algorithmic techniques for numerical aerodynamic flow calculations.

This promising field of unsupervised learning is sometimes called self­

supervised learning. These networks intemally monitor their performance. They look

for regularities or trends in the input signals and make adaptations according to the

function of the network. Even without being taught whether it is right or wrong, the

network still must have some infonnation about how to organize itself. This information

is built into the network topology and leaming rules.

An unsupervised learning algorithm might emphasize cooperation among

clusters of processing elements. If some external input activated any node in the cluster,

its activity as a whole could be increased. Likewise, if external input to nodes in the

cluster is decreased, that could have an inhibitory effect on the entire cluster.

Competition between processing elements could also form a basis for learning.

Training of competitive clusters could amplify the responses of specific groups to

specific stimuli. Nonnally, when competition for leaming is in effect, only the weights

belonging to the winning processing element will be updated.
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4.9.2.3 Learning Rates

The rate at which ANNS learn depends upon several controllable factors. Obviously, a

slower rate means a lot more time is spent in accomplishing the off-line learning to

produce an adequately trained system. With the faster leaming rates, however, the

network may not be able to make the fine discriminations possible with a system that

learns more slowly.

Generally, several factors such as network complexity, size, paradigm selection,

architecture, type of learning rules employed and desired accuracy, besides time have to

be considered when discussing the off-line training task. Changing any one of these

factors may either extend the training time to an unreasonable length or even result in an

unacceptable accuracy.

Most leaming functions have some provision for a learning rate or leaming

constant. Usually this term is positive and the value is between zero and one. If the

learning rate is greater than one, it is easy for the learning algorithm to overshoot in

correcting the weights, and the network will oscillate. Small values for the learning rate

will not correct the current error quickly, but if small steps are taken in correcting

errors, there is a good chance of arriving at the best minimum convergence.

4.9.2.4 Learning Laws

Many learning laws are in common use. Most of these laws are some sorts of variation

of the best-known and oldest learning law, Hebb's Rule. A few of the major laws are

presented below as examples.

Hebb's Rule: The first, and undoubtedly the best known, leaming rule was introduced

by Donald Hebb. His basic rule is that if a neuron receives an input from another neuron

and if both are highly active (mathematically have the same sign), the weight between

the neurons should be strengthened.

Hopfield Law: It is similar to Hebb's rule with the exception that it specifies the

magnitude of the strengthening or weakening. It states that if the desired output and the
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input are both active or inactive, increment the connection weight by the learning rate,

otherwise decrement the weight by the learning rate.

The Delta Rule: This is one ofthc most commonly used rules. It is based on the simple

idea of continuously modifying the strengths of the input connections to reduce the

difference (the delta) between the desired output value and the actual output of a

processing element. This rule changes the synaptic weights in the way that minimizes

the mean squared error of the network. This rule is also referred to as the Widrow-Hoff

Learning Rule and the Least Mean Square (LMS) Learning Rule.

When the Delta Rule is implemented the delta error in the output layer is

transfomied by the derivative of the transfer function and is then used in the previous

neural layer to adjust input connection weights. In other words, this error is back

propagated into previous layers, one layer at a time, until the first layer is reached.

When using the delta rule, it is important to ensure that the input data set is well

randomized. Well-ordered or structured presentation of the training set can lead to a

network, which cannot converge to the desired accuracy. When that happens, the

network is incapable of learning the problem.

The Gradient Descent Rule: This rule is similar to the Delta Rule in that the derivative

of the transfer function is still used to modify the delta error before it is applied to the

connection weights. Here, however, an additional proportional constant tied to the

learning rate is appended to the final modifying factor acting upon the weight. This rule

is commonly used even though it converges to a point of stability very slowly.

Kohonen's Learning Law: This procedure, developed by T. Kohonen, was inspired by

learning in biological systems [138]. Here, the processing elements compete for the

opportunity to learn or update their weights. The processing element with the largest

output is declared the winner and has the capability of inhibiting its competitors as well

as exciting its neighbors. Only the winner is permitted an output and only the winner

and its neighbors are allowed to adjust their connection weights.

Further, the size of the neighborhood can vary during the training period. The

usual paradigm is to start with a larger definition of the neighborhood and narrow in as
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the training process proceeds. Because the winning element is defined as the one that

has the closest match to the input pattern, Kohonen networks model the distribution of

the inputs. This is good for statistical or topological modeling of the data and is

sometimes referred to as self-organizing maps or self-organizing topologies.

4.10 Feature Extraction for classification

Neural networks are frequently employed to classify pattems based on leaming from

examples. While different neural network paradigms employ different learning rules,

all these paradigms determine pattern statistics from a set of training samples and then

classify new patterns on the basis of these statistics.

The texture is found to be the main descriptor for all kinds of mammograms. In

this work, weaconcentrate on statistical descriptors that include averages, standard

deviations and higher-order statistics of intensity values and also on the SGLD Matrix

for texture description.

4.10.1 Statistical descriptors

The four gray level sensitive histogram moments, mean (,u), variance (02), skewness

(/13) and kurtosis (,u4) are described in this section.

Mean: It represents the (probability-weighted) average value for the random variable.

Mean of a distribution can be thought as being analogous to a center of mass.
N,u = Zfknk /n (4.44)

lr=|

where N denotes the number of gray levels in the mammogram, f k is the k "‘ gray level

nk is the number of pixels with fl, gray-level and n is the total number of pixels in the

region considered.
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Variance: Variance is a parameter that measures how dispersed a random variable‘s

probability distribution is. The positive square foot of variance is called standard
deviation.

2 N 20' = Z(f, -;1) n, /n (4.45)hi

Skcwness: Skewness is a measure of the asymmetry of the data around the sample

mean. If skewness is negative, the data are spread out more to the left of the mean than

to the right. If skewness is positive, the data are spread out more to the right. The

skewness of the nonnal distribution or any perfectly symmetric distribution is zero.

I ” 3
/11 = 720. - II) n. /n (4.46)k-I

Kurtosis: Kurtosis is the degree of peakedness of a distribution, defined as a
normalized fomi of the fourth central moment of a distribution. It is based on the size of

a distribution's tails. Kurtosis is the classical measure of nongaussianity. It can be

positive or negative. Distributions with relatively large tails have a negative kurtosis

and are called subgaussian or "leptokurtic". Those with small tails and positive kurtosis

are called supergaussian or "platykurtic." A distribution with the same kurtosis as the

normal distribution is called "mesokurtic." The kurtosis of a normal distribution is 0.

1 N 4
1u4=ZZ(fk -u) n. /n—3 (4.47)It-I

The two distributions shown in figure 4.13 have the same variance;

approximately the same skew, but differ markedly in kurtosis.

Kurtosis, or rather its absolute value, has been widely used as a measure of

Kurtosis = 1.25 Kurtosis = -1.23 I

“H ' Leptokurtic “ M1 ‘ Platgkurtic

Figure 4.13: Two distributions having same variance and skew, but different
kurtosis a) Leptokurtic distribution b) Platykurtic distribution
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nongaussianity in ICA and related fields. The main reason is its computational and

theoretical simplicity. However, kurtosis has also some drawbacks in practice when its

value has to be estimated from a measured sample. The main problem is that kurtosis

can be very sensitive to outliers [I89]. Its value may depend on only a few observations

in the tails of the distribution, which may be erroneous or irrelevant. In other words,

kurtosis is not a robust measure of nongaussianity.

4.10.2 Textural features

Texture feature extraction has long been recognized to be a fundamental task in image

analysis, segmentation and classification. In particular, the employment of texture

features in medical imaging has proved to be valuable. Two basic methods for texture

description exist: statistical and structural [I90]. Statistical methods employ features

extracted from the image, which measure coarseness, contrast, directionality and other

textural characteristics whereas structural methods describe texture by means of

primitive descriptions and primitive placement rules.

4.10.2.1 SGLD Matrix

The SGLD method is very powerful for statistical texture description. According to

[I91], all known visually distinct texture pairs can be discriminated using_ the above

method. In medical imaging, its performance has been shown to be one of the best,

especially in Ultrasonic, MR and CT image analysis [I92], [193]. SGLD method is

based on second order statistics (the spatial relationships of pairs of gray levels).

Texture is described by extracting a number of textural features from the image. The

texture feature extraction method introduced by I-laralick [194] has been proven to be

one of the best in overall performance [I93].

The SGLD method is based on the estimation of the second order joint

conditional probability density functions,
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f(i,j | d,0),0 = 0°,45°,90°,l 35°,l 80°,22S°,270°,3 1 5°.

Each f(i,j|d,0)is the probability of going from gray level i to gray level j. It is

constructed by counting the number of occurrences of pixel pairs at a given

displacement d for a given direction 0.

The co-occurence matrix or SGLD matrix [190] , [194] is used as the underlying

structure for storing the textural content of an image that is employed by the SGLD

method for the computation of the features characterizing the texture of the image. The

co-occurrence matrix is computed by specifying a distance between the pixels in each

pair (displacement vector) and whether the direction of the vector is important or not. In

particular, to compute the SGLD matrix for an image I (i,;'), a displacement vector

d = (x,y) is defined. The (i,/')"' element of the SGLD matrix:

N(i, j [ d,6l)

Z” N(i, j | (1,9)

N(i,j | (1,6) is the number of occurrences of grey levels i and} at a distance d in 1 (ij).

s(i, j | d,t9) = (4.43)

The matrix is then normalized so that it can be treated as a probability density function.

If a texture is coarse and d is small compared to the sizes of the texture elements,

the pairs of points at the intersample distance should usually have similar gray levels.

This means that the probability distribution in the matrix is concentrated on or near its

diagonal. On the other hand, for a fine texture, the gray levels of the points separated by

the distance should be quite different so that the probability distribution is distributed

away from its diagonal.

The most significant disadvantage of the co-occurence matrix is its dependency

on the number of gray levels in the entire image [I93], [I95], [196]. Since texture is

usually measured in a small region, a large number of entries are zero contributing

nothing to the texture description of the region. The computational time for the texture

feature extraction operations include the time for processing these also. The above

problems become more serious when the examined images are composed of a large

number of gray levels.
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In texture classification, individual elements of the SGLD matrix are rarely used.

instead, features are derived from the matrix. A large number of textural features have

been proposed starting with the original thirteen features described by Haralick [194]

namely energy, entropy, correlation, local homogeneity, inertia, sum average, sum

variance, sum entropy, difference average, difference variance, difference entropy,

infonnation measure of correlation 1, and information measure of correlation 2.

However, only some of these are in wide use.

Wezka er aI[197] used four of Haralick‘s fourteen features, Conners and

Harlow [198] used 5 features and Conners er al [199] introduced two new features

which address a deficiency in the Conners and Harlow set.

In this work, ten texture features are evaluated from the SGLD matrix for fixed d

and 6. They are:

1.Angular second moment or Energy : Z, js(i, j)’ (4.49)

2.Entropy : - ZI_J_s(i, j) log s(i, j) (4.50)

3.Corre1ation   (4.51)‘'1 o',o'y

4.Local Homogenity :  _———1—s(i,j) (4.52)
1 + (i — 1')’

5.Contrast : 2:2 2:50’, j) (4.53)
n i,j:n=[i-j|

6.Sum of squares variance : Z0‘ — ,u)2s(i, j) (4.54)
U

2/v,7.Sum average Zis“y(i) (4.55)
I=2

2N, 2N,
8.Sum variance : Z1" + Z s,,,( ;) 1og(s,,y( j)) (4.56)

I=2 /=2

ZAR

9.Sum entropy Zsw (i) l0g(s“y(i)) (4.57)
i=2
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HXl’«-HXYIlO.lnformation measure of correlation: ——————
max{HX, HY}

(4.58)

where '11,, ,u,, , cr,_ 0;, are the means and the standard deviations of s,(i), s,,(/') , and s,+,, is

the mean of the density function s(i./').

s,(:') = Z‘ s(i,k) (4.59a)
sy(j) = Z‘ s(k, j) (4.5%)
s,,,(i) = ZM;M_Is(j,k) (4.59c)

HX and H Y are the entropies of s, and s, and

HXY1 = -2 s(i, j) log 5, (i)sy (j) (4.59d)
1.}

4.11 Networks for classification

4.11.1 Back Propagation Neural Networks (BPNN)

BPNN are multilayer feed-forward networks with differentiable transfer functions,

which can perform function approximation, pattern association and pattern

classification. The term back propagation refers to the process by which derivatives of

network error with respect to network weights and biases are computed. This process

can be used with a number of different optimization strategies. The architecture of a

multilayer network is not completely constrained by the problem to be solved. The
number of inputs to the network is constrained by the problem and the number of

neurons in the output layer is constrained by the number of outputs required by the

problem. However, the number of layers between network inputs and the output layer

and the sizes of the layers are up to the designer to decide.

A general multilayer feed-forward network is illustrated in figure 4.14. This is a

feed-forward fully connected hierarchical network consisting of an input layer, one or

more hidden layers and an output layer. Real-valued rz-dimensional input feature vectors
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lnputs Output
0,5»

41:5‘; v,‘3“v’
Vs*g~'§,".€';,-'A-«\. I

Figure 4.14: A general multilayer feed—forward network

x are presented to each of the first hidden layer units through weights w,-,-. Hidden layer

unitj receives input 1' through the synoptic weight w,-,, i = l,2,....,n andj =1,2,.....,h . It

computes a function of the input signal x and the weight vectors w,, and passes its output

forward to all of the units in the next successive layer. The second hidden layer also

compute a function of their inputs and weight vectors and pass their output to the next

layer. This process is repeated until the final computation is produced by the output

layer.

There are several different back propagation training algorithms. They have a

variety of different computation and storage requirements and no one algorithm is best

suited for all purposes. The drawbacks of this method are the local minima, the long

training time and the stability of the learned patterns. This algorithm tries to adjust the

weights to yield a minimum error with the desired outputs. But the network can get

trapped in a local minimum when there is a much deeper minimum nearby, which yields

a less accurate solution. This algorithm also requires lots of supervised training and

there is no guarantee that the system will converge.
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4.11.2 Competitive networks

A competitive network learns to categorize the input vectors presented to it. If a neural

network only needs to learn to categorize its input vectors, then a competitive network

is the best choice. Competitive networks also learn the distribution of inputs by

dedicating more neurons to classifying parts of the input space with higher densities of

input. The basic element of a competitive learning algorithm is a mechanism that allows

Figure 4. 15: General competitive network architecture
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units to competitively respond to a given stimulus. Usually for a specific input, only one

unit or group of neurons is denoted as the winner. These are treated specially during the

training phase. A basis for competitive behavior in biological systems may be the

orientation- and location — sensitive arrangements of neural cells in the receptive fields.

A three-layer competitive network is shown in figure 4.15.

4.11.3 Radial Basis Function Networks (RBFN)

In the nervous system of biological organisms there is evidence, for the presence of

neurons whose response characteristics are tuned to some region of the input space. An

example is the orientation-sensitive cells of the visual cortex. The RBF emulates the

behavior of such biological networks. RBF is a feed forward structure with a modified

hidden layer and training algorithm. RBF networks may require more neurons than

standard feed-forward back-propagation networks, but oflen they can be designed in a

fraction of the time it takes to train standard feed-forward networks. They work best

when many training vectors are available.

Figure 4.16 shows the RBFN structure. This consists of two layers, a locally

NetworkNetwork outputs
inputs

Figure 4.16: RBF Network
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tuned or locally sensitive hidden layer and an output layer consisting of linear units. In

hidden layer units, the response is localized and decreases as a function of the distance

of inputs from the unit's receptive field center.

Methods described above often use heuristic approaches to discover underlying

class statistics [200]. These approaches usually involve many incremental modifications

to networks parameters in order to improve system perfomiance gradually. They require

long computation times for training. Furthermore, the incremental adaptation

approaches can be susceptible to converging to local minima of an error function.

Statistical classifiers like Bayesian classifiers can be used to eliminate the disadvantages

of heuristic approaches. The PNN is an example of a Bayesian classifier.

4.11.4 PNN

The PNN was developed by Donald Specht [20]], [202]. This network provides a

general solution to pattern classification problems by following an approach developed

in statistics called Bayesian classifiers. Bayes theory, introduced in the 1950's, takes

into account the relative likelihood of events and uses apriori information to improve

prediction. The network paradigm also uses Parzen Estimators, which were developed

to construct the probability density functions required by Bayes theory.

The PNN uses a supervised training set to develop distribution functions within

a pattern layer. These functions, in the recall mode, are used to estimate the likelihood

of an input feature vector being part of a learned category or class. The learned patterns

can also be combined or weighted with the apriori probability, also called the relative

frequency, of each category to determine the most likely class for a given input vector.

If the relative frequency of the categories is unknown, then all categories can be

assumed to be equally likely and the determination of category is solely based on the

closeness ofthe input feature vector to the distribution function ofa class.
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18
Pattern

Figure 4.17: A Probablistic Neural Network

An example of a PNN is shown in Figure 4.17. This network has three layers; an

input layer, a pattern layer and an output or summation layer. Input layer has as many

elements as there are separable parameters needed to describe the objects to be

classified. Pattem layer organizes the training set such that each input vector is

represented by an individual processing element. The summation layer has as many

processing elements as there are classes to be recognized. Each element in this layer

combines via processing elements within the pattern layer, which relate to the same

class and prepares that category for output. Sometimes a fourth layer is added to

normalize the input vector, if the inputs are not already nonnalized before they enter the

network. As with the counter-propagation network, the input vector must be normalized

to provide proper object separation in the pattern layer.

As mentioned earlier, the pattern layer represents a neural implementation of a

version of a Bayes classifier where the class dependent probability density functions are

approximated using a Parzen estimator. This approach provides an optimum pattern

classifier that minimizes the expected risk of wrongly classifying an object. With the

estimator, the approach gets closer to the true underlying class density functions as the
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number of training samples increases, so long as the training set is an adequate

representation of the class distinctions.

In the pattern layer, there is a processing element for each input vector in the

training set. Normally, there are equal amounts of processing elements for each output

class. Otherwise, one or more classes may be skewed incorrectly and the network will

generate poor results. Each processing element in the pattern layer is trained once. An

element is trained to generate a high output value when an input vector matches the

training vector. The training function may include a global smoothing factor to better

generalize classification results. In any case, the training vectors do not have to be in

any special order in the training set since the category of a particular vector is specified

by the desired output of the input. The learning function simply selects the first

untrained processing element in the correct output class and modifies its weights to

match the training vector.

The pattern layer operates competitively where only the highest match to an

input vector wins and generates an output. In this way, only one classification category

is generated for any given input vector. If the input does not relate well to any patterns

programmed into the pattern layer, no output is generated.

The Parzen estimation can be added to the pattern layer to fine tune the

classification of objects. This is done by adding the frequency of occurrence for each

training pattern built into a processing element. Basically, the probability distribution of

occurrence for each example in a class is multiplied into its respective training node. In

this way, a more accurate expectation of an object is added to the features that make it

recognizable as a class member.

Training of the PNN is much simpler than that of back-propagation. However,

the pattern layer can be quite huge if the distinction between categories is varied and at

the same time quite similar in special areas. The network structure of PNN is similar to

back-propagation; the primary difference is that the sigmoid activation function is

replaced by one ofa class of functions, which includes the exponential in particular.
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Key advantages of PNN are that training requires only a single pass and that the

decision surfaces are guaranteed to approach the Bayes optimal decision boundaries as

the number of training samples grows. Furthennore the shape of decision curve can be

made as complex as necessary or as simple as desired, by choosing the appropriate

value for the smoothing parameter.

The key disadvantage of PNN is that all training samples must be stored and

used in classifying new patterns. However, because memory is inexpensive and dense,

storage will not be a problem. For many classification problems, the speed of a software

simulation running on a microprocessor is entirely satisfactory. This type of simulation

is several magnitudes faster than back propagation [202], [203]. Furthermore, special­

purpose processors and custom chips will allow the PNN paradigm to achieve even

higher speeds through the use of parallel hardware.



Chapter 5

Development of
Block DWT Computation Algorithm

The advances in technology in the last few decades have made the use of digital images

very common in everyday life. While the usefulness of digital images in communication

is unquestionable, the overheads associated with storing, processing and transmitting

images is very large.

Recently, a great deal of attention has been dedicated to the design of

multidimensional filter banks not only for image compression [204], [205], [206] but

also for tasks including directional decomposition, image interpolation, linear feature

detection and enhancement [207], [208], [209]. Memory is an important constraint in

many image processing applications especially for mass-market consumer products

such as printers and digital camera where it is highly imperative to maintain low costs.

Even if sufficient memory is available, inefficient memory utilization may limit

scalability and hinder overall performance. Processing of digitized pathology images is

an example. These images have very high resolution making it difficult to display in
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their entirety on the computer screen and inefficient to transmit over the network for

educational purposes. For the computation of DWT of such images the processing

memory required is prohibitively high. While wavelet or sub band coding has been

proved to be superior to more traditional transforms, the important issue of low memory

implementation of the WT has not been given due consideration. Existing DCT is very

efficient in its memory utilization because, if needed, it can operate on individual image

blocks and the memory requirement is low indeed.

Many of the state-of-the-art algorithms for image processing assume that the

WT for the whole image has been computed so that all the corresponding coefficients

are available [148], [149]. Global image information, i.e., information that can be

obtained only after the whole image has been transformed, is used for classification,

selection of specific decomposition levels etc [2lO]. Algorithms that provide

progressive transmission also require the complete set of WT coefficients [148]. All

these algorithms typically require buffering the whole image so that the memory usage

increases proportional to the image size necessitating prohibitively large on chip

memory for filtering operations.

Many algorithms are available for efficient computation of DWT, the most popular

one being the Mallat algorithm based on the filter bank tree structure [21]. In real-time

applications with memory and delay constraints, this standard algorithm has the

following disadvantages:

(1) The requirement of a buffer having the same size as the input to store

intermediate results for recursive filtering.

(2) Large latency since all the outputs of one sub band are to be generated before the

output of the next sub band.

For efficient multilevel decompositions where memory and delay constraints have to

be strictly adhered to, the most direct approach of transform computation is to divide the

data into non-overlapping blocks and process each block separately, either sequentially

or in parallel. Compressionl decompression applications using DSP/ ASIC chips, space

borne instruments etc. require a sequential architecture, because of the availability of a
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limited amount of memory for transfonn computation. The parallel architecture will

split the input among several processors to speed up the computation. This is used for

applications like videoconferencing, digital broadcasting etc., where real time

encoding/decoding is involved. However, in both the above cases, due to the non­

availability of pixels beyond block boundaries, edge artifacts will be produced near the

boundaries in the reconstructed images.

To enable parallel processing without interprocessor data exchange and to

reduce memory requirements, a novel algorithm that performs block partitioning on the

original data is presented in this chapter. The overlap region between the blocks is used

to make the sub band decomposition of each block the same as the corresponding spatial

blocks of the full size decomposition. The computational overhead due to overlapping

can be reduced to an acceptable level by carefully selecting the block size. During

reconstruction, non-overlapping blocks are processed to reduce memory requirements.

By combining block convolution techniques with Mallat algorithm, the proposed

scheme converts DWT into a block transform. Parallel processing capability and low

memory requirement are the salient features of the algorithm presented here.

5.1 Block —wise Computation of 1-D DWT

The wavelet and scaling transform coefficients  and  of a signal x(n) at any level j

(see fig.4.3) are given by [24]:

X I [n] = 2 ,3J_, [k]h[n — 2k] (5.la)

and .3,-[nl = Z /J',-l lklgln - 2k] (5- lb)
where,j = 1,2...J ; n ,k E Z , flo [n]=x[n], the input signal and h[n] and g[n] are the

analysis high pass and low pass filters respectively. The synthesis equation is:

;/J.[n]=7/+,[n/2]"'§In]+Xj+,[n/2]*/7[n] for j<J (5.2)
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where, }',[n] = ,5 J [n] and yo[n] = y[n], the reconstructed signal which is the same as

the input signal x[n]. 17 [n] and 3,7 [n] are the synthesis high pass and low pass filters

respectively. From the above equations, it can be seen that the DWT and IDWT are

recursive-filtering processes. This recursiveness poses extra challenges in the

implementation of DWT, as it is not a block transfomi.

Generally, the sequences involved in real time implementations are quasi­

infinite. While theoretically we can store the entire data and compute the DWT as a

single block for a large number of points, it is too large to compute practically. Also, no

processed samples can be obtained until all the input points have been collected. To

avoid such delays, the data to be processed must be segmented into smaller blocks or

frames.

Consider for example, the above system implemented using two processors with

each one allocated with half the input data. For correct computation near the data

boundaries each processor would need to access data allocated to the other processor. In

this case, either each processor should exchange data before each level of computation

or each should be given sufficient overlap of data. The first approach demands frequent

data exchange between processors, which will affect the system performance,

particularly in the case of slow communication links. The overlap needed in the second

approach can be very large due to the recursiveness of the algorithm as the number of

levels of decomposition increases.

Direct computation of BDWT using the standard filter bank algorithm results in

a sequence longer than the original input sequence. Since the approximation/details at

any level are obtained by convolution between the input and filter coefficients, the

length of these at thej "‘ level is I, /2’ + (1-2 ") (1,, -1) where I, is the length of input

sequence and [W is the length of filter. The total length of transfonn coefficients at level

J is given by:

:{l, /2’ +(l,, —l)(1—2")}+l, /2’ +(I, —1)(l—2’“)
1=|
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which gets simplified to I,,+./(I...-l). This clearly indicates that in-place computation is

not possible and a separate memory block considerably larger than the input block is

necessary for the storage of transfomi coefficients. For example, consider a speech

signal sampled at 8KHz, to be decomposed by a wavelet system having a length of 8, to

a depth of 6 levels. If we take blocks of lOms duration, each of the processed blocks

will have a length of 122 samples and lsec. ofprocesscd data will need 12200 locations

of storage, whereas the input size is only 8000.

A method for finding the DWT of large sequences on a block-by-block basis is

described below. The method is intrinsically similar to the popular block convolution

technique of FFT computation [144] except for the problems created by the

recursiveness of DWT computation. To meet the challenges made by this, the proposed

algorithm is divided into three parts: decomposition using a technique similar to the

overlap save method of block convolution followed by truncation to achieve storage of

transform coefficients in the same place as the original image and reconstruction using a

technique similar to the overlap add method.

5.1.1 Truncation of transform coefficients

For storing the transform coefficients in the same place as the original image, the size of

the transform coefficients is to be truncated to the original size after each level of

processing. In order to understand how the truncation affects the coefficients, a detailed

analysis of the DWT/IDWT pair for 1-D data was performed.

Truncation can be done either symmetrically with respect to the centre point or

from one end. During reconstruction also this is needed to maintain the length of the

signal. Truncation introduces error in a few samples of the reconstructed signal. If the

coefficients are cut symmetrically with respect to the central sample after each level of

decomposition and reconstruction, erroneous samples are found at both the ends

symmetrically spaced with respect to the central sample. Unsymmetrical truncation can

be carried out in two ways:
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(1) By removing the additional coefficients from the tail/front end after each level

of decomposition and from the front/tail end after each level of reconstruction.

In doing so, erroneous tenns appear at the tail/front end only. The number of

erroneous terms is a function of the length of wavelet 1.. and level of

decomposition J, given by the relation

M= (/..,-2)(2-’—1) (5.3)
for any data length, 1,.

(2) By removing the additional coefficients from the tail/front end after each level of

decomposition and reconstruction. Number of erroneous terms is more in this

case and they appear at both ends.

In the discussions to follow, the methodology adopted is to truncate the WT

coefficients from the tail end during decomposition and from the front end during

reconstruction, which makes the last M points of the reconstructed signal erroneous

[21 1]. A schematic representation of the above, for a two level DWT computation is

shown in figure 5.1.

5.1.2 BDWT by Overlap Save Method

To perform the block-wise decomposition, the principle of overlap save method is

incorporated into DWT computation, so as to form an overall transform coefficients

sequence, which is identical to that obtained when the signal is processed via

conventional DWT. The input data is segmented into blocks of length N > M. Each data

block overlaps the preceding block by M data points. A J level decomposition of each

data block consists of J sets of details of length N/2 I where j=l,2,...J, and one

approximation component of length N/ZJ. M/2 j points of the details at the jm level and

M/2J points of the approximation of each transformed block, will be in error due to

aliasing, and must be discarded. On removing these erroneous temis, N-M correct

transform coefficients are obtained from each input block, except for the first block

where there is no aliasing and hence no erroneous terms. This is illustrated in Figure
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F igure.5. 1: Schematic of truncation for the computation of 2-level DWT
d1, d2, a2 - details at level 1& 2 and approximation at level 2
respectively after truncation. (‘X‘indicates truncated portions of
transfonn coefficients and hatched region indicate erroneous portions in
the synthesized signal).

5.2. (The approach can be generalized by adding M zeroes at the beginning of the input

sequence and removing M terms corresponding to this from the transform coefficients).

The forward WT is implemented without using extra memory for storage of

intermediate results. When the transfomi is complete, the resultant coefficients are the

same as those obtained using the pyramidal algorithm, but the coefficients of different

sub bands appear in an interleaved manner. The segmentation of the input data stream

into smaller blocks and the fitting ofthe decomposed blocks together to form the overall

transform coefficients are graphically illustrated in figure 5.3.
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pl

d It d2t a2tl4 N-M Tl
Figure. 5.2 :One block of WT coefficients in 2-level BDWT.
a) Showing erroneous tenns due to aliasing as shaded regions b) After
removing the erroneous terms dlt, d2t, a2t - details at level 1 & 2 and
approximation at level 2 respectively excluding erroneous tenns.

n"‘ block (n+1)"‘ block1;[a] K /\ K \ \—> M —h M <­
‘_ N

[b] n“‘ block (n+1)‘“ block
Figure. 5.3: BDWT by overlap save method

a) Input data segmented into overlapping blocks
b) In-place storage of transform coefficients .

5.1.3 Block IDWT (BIDWT) by Overlap Add Method

The reconstruction is also done block-wise. In order to avoid the use of extra buffer

memory a method resembling the overlap add method of block convolution is used.

Hence, input block for reconstruction is non-overlapping, having a length N ‘=N-M

consisting ofJ sets of details of length N’/2 " , where j=l,2...J and one approximation

component of length N’/2" . On reconstruction, blocks of size N with each synthesized

block overlapping its succeeding block by M tenns are obtained. These overlapping
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[21] n‘" Block rm-n‘“ Block

[bl 5 A
[C]

Figure.5.4: BIDWT by overlap add method a) BDWT coeflieients.
b) Block-wise reconstructed signal c) Final reconstructed signal
obtained by adding the overlapping portions of contiguous blocks

tenns are added to get a perfect reconstruction of the original signal as shown in figure

5.4.

5.2 Block —wise Computation of 2-D DWT

Since the 2-D DWT is separable, it can be computed by cascaded l-D DWTS i.e. by

computing 1-D DWT on rows followed by columns. For computing the DWT of very

large images, the images are segmented into smaller frames as in the ease of 1-D

signals.

As the DWT computation is a convolution operation, the size of the processed

blocks will be considerably larger than the size of the input data block. Consider for

example, the decomposition ofa 256 x 256 pixel image into 4 uniform sub bands using

a separable, uniform, two-band filter-bank with 16—tap filters. The overall number of

samples in the processed data will increase roughly by 15%[204]. This effect is more

pronounced for small data sizes.

One approach to eliminate data expansion is to use circular instead of linear

convolution for the implementation of analysis and synthesis filters. However, since

circular convolution is equivalent to first periodically extending the finite length

sequence and then filtering, artificial high frequency artifacts will be introduced at the
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block boundaries, making perfect reconstruction impossible [2l2]. This problem can be

corrected using symmetric extension of the signal at the boundaries as long as the filter

kernel is symmetric. But for symmetric extension biorthogonal filters rather than

orthogonal ones are to be used. The only orthogonal filter that is also symmetric is the

Haar filter [173]. By extending the 1-D BDWT technique mentioned above, to the 2-D

domain, a new 2-D BDWT algorithm has been developed here which can be applied

efficiently with both orthogonal and biorthogonal filters.

Extending the results obtained in the previous section to the 2-D case, it can be

seen that, if the transform coefficients are truncated to store them at the same location as

the original image, the last M elements of each row and column will be in error in the

reconstructed image. This is shown in figure 5.5 for a typical image, which is

decomposed into 3 levels using a 16-tap wavelet and then reconstructed after removing

the additional coefficients due to convolution.

(8) T (b)
Figure.5.5 : Effect oftruncation in DWT computation on the
image ‘coin’.a) Original image. b) Reconstructed image after
removing the additional coefficients due to convolution
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5.2.1 2-D BDWT by overlap save method

The input data is segmented into overlapping blocks of size N x N, where N > M. Each

block overlaps with the top neighboring block by M rows and the left neighboring block

by M columns. See fig. 5.6 for details. (By adding M rows of zeroes at the top and M

columns of zeroes to the left of the image, this approach can be generalized).

A J-level decomposition of each data block consists of J sets of horizontal,

vertical and diagonal details each of size N/2 I x N/2 j, where j=1,2,...J , and one

approximation component ofsize N/2’ x N/2". The first M/2’ rows and columns ofthe

details at the j"‘ level of each transfomied block will be in error due to aliasing.

Similarly the first M/2J rows and columns ofthe approximation will also be in error and

all these erroneous terms must be discarded. On removing the above-mentioned

erroneous terms, (N-M) x (N-M) correct transform coefficients are obtained from each

input block. This can be stored in the same place as the input data, thus making the

buffer requirement a minimum. This method of DWT computation resembles the
F ' - ' ' ' ' ' ' ' ' ' ' ' - ' ‘ ' ‘ ‘ ' ' ' ‘ ' ‘ ' - ' ' ' ‘ ' ' ' " ' ' ' ‘ ' ' ' ' ' ' " T '

M rows of zeroes

Blockl

Block7 Block8 Block9
U=('D0"“ON"hOf/3'-‘OO§­

_¢AL“_N<d
Figure 5.6: Partitioning of an image into 9 overlapping
blocks. (The overlap is marked for block 5 only).
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overlap save method of block convolution. The distribution of erroneous coefficients for

a 2-level decomposition of one data block is illustrated in figure 5.7. The transfomi

coefficients are obviously the same as those obtained for conventional DWT, but the

coefficients corresponding to various sub bands appear in an interleaved manner in

different blocks.

Figure 5.8 shows the interleaved transform coefficients corresponding to the 2­

level block decomposition of a data segmented into 4 blocks. The different levels of

detail and approximation coefficients corresponding to the conventional DWT of taking

the data as a single block is obtained by concatenating the respective interleaved

M/4 N/4-M/4 M/4

'14 l<— ->l l<—

LL2 LH2
i-:'-Z-.-=:.-.­ ::m:'fi:::-..-;-.10

iii‘?-Eiil!'5.~;~;l"li‘:l‘i3r;lJ'iI'l«;'l LL2 LH23R .1­

LHIHL2 HH2 LHI
;'.:. :l-.“.'§-L-.'=:- 3.

HL2 HH2

‘ . '

HLl HHI

—> 1% —>l |<-— l<—N/2-M/2 —ele—/v/2-M/2 ——>
/2 N/2-M/2 N M/2.(3) (b)

Figure. 5.7: 2- level 2-D BDWT coefficients ofa single block of data.
a) Showing erroneous terms due to aliasing as shaded regions.
b) Resultant block of size (N-M) x (N-M) after removing the erroneous terms.
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LLQII LH2” LL21) LH2];
LH1 .1 Lil I .2

HL2ll HH2” HI-4212

I-{L111 HHIH HI.li; HHII2

LL221 LH22i LL22; LH222
LH121 LH122

HL22; HH221 HL222 HH222

HLl21 HH121 HL122 HHI22

F igure5.8: Distribution of interleaved transform coefficients of BDWT

BDWT coefficients. The second level approximation coefficients LL2of the

conventional DWT is obtained by concatenating LL2.;_ LL212, LL221, 1.13.‘): =72

LL2 = { LL2” LL2” ; LL22; LL222}.Similarly, The second level detail coefficients

Ll-I2, HL2, HI-l2 and the first level detail coefficients LH1, HLI, I-ll-ll ii. 1 t(.

conventional DWT can be obtained from the BDWT coefficients as

LH2 ={LH2H LH2” ; LH221 LH222}and so on.
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5.2.2 2-D BIDWT by overlap add method

To obtain perfect reconstruction of the original image from the transfonn coefficients, a

technique similar to the overlap add method of block convolution is carried out.

Processing is done on non-overlapping blocks of transform coefficients of size N’ x N’,

where N '=N-M. Each input block for IDWT consists of J sets of horizontal, vertical and

diagonal details, each of size N’/2 1 x N’/2 J , j = l,2,...J and one approximation

component of size N ‘/2’ x N '/2’. Each synthesized block is of size N x N. The last M

rows and columns of each synthesized blocks overlaps with the first M rows of its

bottom neighboring block and the first M columns of its right neighboring block as

shown in figure 5.9(a). All these overlapping tcnns are added to get a pc.::::c;

reconstruction of the original input image. Figure 5.9(b) shows the overlap add.

operation for one reconstructed block.

block j+l k bl k0C jk+1

__-___-.._-..__..

ii) iii)(a) (b)
Figure.5.9: Overlap add reconstruction of BDWT coefficients.
a. i)A reconstructed block, block j R. ii) Its bottom neighboring block, block j+l k
with top M rows overlapping with block ,- k . iii) Its right neighboring block,
block 1- H. with left M columns overlapping with block ,- R
b) Resultant image after addition of overlapping terms in the above blocks.
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5.3 Computational Complexity

in this section, the computational complexity of the BDWT algorithm is compared with

that ofthe conventional 1-D and 2-D algorithms. The number ofreal multiplications and

additions has been considered as a measure of the computational complexity.

5.3.1 Estimation of computational burden for standard algorithm

ForJ level decomposition ofa signal of length I, using a wavelet oflength [W , the total

computational burden for the pyramidal algorithm is N,,,,,/, multiplications and N04,;

additions where [213] ,

N,,,,,,, =!,,[4(1-2")(I,-I,,+1) +2 J(I,,-1)] (5.4a)

N,,,,,, =2(l,,-1)[J(1.,-2)+2(l-2")(t,-l,,+1)] (5.41))

It is shown [24] that for IDWT, the number of arithmetic operations required is exactly

the same as that of DWT.

For 2-D DWT computation employing separable filters, each level of

computation involves two sets of convolutions as evident from Figure 4.7, one being

row-wise on all rows and the other column-wise along all columns. The length of input

sequence to each level gets successively modified due to increase in length resulting

from convolution at the previous level, decrease in length resulting from downsampling

operation and row-column transposition between each horizontal/ vertical convolution.

Consider an image of size X x Y, decomposed to J levels using a wavelet of

length lw. At the j”‘ level of decomposition, the input to each block in which convolution

is carried out row-wise, will be of size X1?" x Yj"’", where,

X7" = [X +(21" —1)(1, -1)]/2*‘ (5.53)
17'" = [Y + (21" — 1)(l,, — 1)]/21", (5.5b)

forj =l,2,3,...J. Similarly, for column-wise convolution the input data size at the jm

level is X7" x Y 1"" ,where ,
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X7’ = X + (2"' — 1)(1, - 1)/21" (5.621)
}’f'’’ = Y + (2! —1)(t,, -1)/2/" (56b)

The decomposition ofeach level consists oftwo row-wise convolutions and four

column-wise convolutions. Considering all these, the computational burden for a J-level

2-D DWT computation is found to be N,,,,,/;}[) multiplications and Naddgp additions

where,

J

= Z(2Xr,"" + 4X;'“ Yr“ )1. (W?
/-|
J

and NmU2I) = Z(2X,"'"(Y,'"" —1)+4(X;"’ —1)r;‘“><I. -1) <5-7b)
1-1

5.3.2 Estimation of computational burden for BDWT algorithm

Here, since an in-place computation is performed, after each stage of convolution and

down sampling, the length of the resulting sequence is adjusted to exactly half the

length of the input signal to that stage. Hence, for J-level l-D BDWT computation using

a wavelet of length 1., , N,,..,;, and N044 given by equations (5.4a) & (S.4b) gets modified

to Iw(4L(1-2'J)-J(I.,-1))multiplications and 4L(l.,-l)(1-2*’)-J(3 1,4) additions, :?o:_- an

input block of length L.

Considering the entire data, the total computational burden will be the product of

that for a single block and the number of blocks to be computed. Since overlappirig

blocks are taken during decomposition, the number of blocks is equal to 1,/(L-M), where

M is the block overlap length. The minimum value required for M is given by eq~sa;.;=:r.

(5.3). The overall computational burden is N [,;,,c;,.,,,..;, multiplications and N b,v,,,~;,,,,_+,v

additions, where

N block-mutt: [w[4 L (1-2'1)-J( [w'1)] 1; /(L-M) (5-3a)

N m.,..i.i = [4 L([w'1) (1-2")-Jo It-4)} I, /(L-M) <5.8b>

For BIDWT the expressions of computational complexity for a block of length L

are the same as that of the conventional DWT as we are adopting the overlap add
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method for reconstruction. This is slightly greater than that for decomposition for a

single block of same length. But since the block length for reconstruction is only I.-M,

the computational complexity for a single block is the same for both decomposition and

reconstruction. Reconstruction requires an additional number of additions proportional

to the overlap length and number of blocks as the overlapping portions of the

succeeding reconstructed blocks of the signal are to be added. This makes its total

computational complexity slightly greater than that for decomposition.

For 2-D BDWT computation also, after each stage of convolution and down

sampling, the size ofthe resulting 2-D sequence is adjusted to halfthe size ofthe input

sequence at that stage. Hence, considering a block ofinitial size P x Q _ at thefl‘ level,

the input for row-wise convolution will be of size pj""” x Qj""", where,

1>,."'" = P/2"‘ (5.9a)
and Qj""” = Q/2”’ (5.9b)
j=1,2,...J.Similarly, for column-wise convolution, the data size is P/“” x Qj‘."', where,

Pf” = P/2"‘ (5.10a)
Qjf” = Q/ 2! (5.10b)

Hence, the total number of multiplications required for a J-level 2-D BDWT

decomposition will be N ,,;Ock_,,,,,/,2D where,
J

NhIm:lr—mulI2l) = z(2(I)jmwQ/mw _ lw (IV —  + 4([)ymI Q7), _ lw([w —   la)
J'=l

Proceeding in a similar way number of additions required is estimated to be Nb/ac/,_a,;d2D_

where,
J

= Z0. -1)(2P,’””(Q,"’" — 1) + 4Q}"”(P,-"” - 1» — <1. — 2)<I.. — 3><P,'"“' + 2Q,"’“')
/=|

(5.1 lb)

The computational burden for the entire data is obtained by multiplying that of a single

block with the number of blocks.
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For 2-D BIDWT, the expression for the number of multiplications required for a

block of size I’ x Q is the same as that for decomposition. Since the overlapping

portions of the succeeding blocks are to be added, the number ofadditions required for

reconstruction is increased by a factor proportional to the overlap length and number of

blocks.

5.4 Results and Discussion

The BDWT algorithm has been verified for real-time processing of 1-D and 2-D signals.

Figure 5.10 shows the illustration of the above algorithm using a segment of a music

note. The signal is decomposed to 2 levels using ‘db5‘ wavelet. The frame length for

processing depends on the processing delay tolerable for the particular application and

the block overlap length, M. Here, a frame length of 256 samples was selected. Figure

5.l0(a) shows the input signal under consideration, segmented into three overlapping

blocks. Since the signal under consideration contains only 500 samples, the last block is

appended with zeroes to make its length 256.The block overlap length as given by

equation (5.3) is 24 samples.

The transform coefficients of each of the three blocks are shown in figures

5.l0(b), 5.10(e) and 5.10(d). (The coefficients are drawn with level 1 details coming

first, followed by level 2 details and level 2 approximation). The shaded regions

indicate the erroneous terms due to aliasing in each of the details and approximation.

After removing the erroneous terms the length of the transform coefficients is 232

(except for the first block, which is 256 itself as there is no aliasing) and hence they can

be stored in the same place as the input.

The overlap add reconstruction of the signal from the BDWT coefficients is

shown in figures 5.10(e)-(h). Figure 5.l0(e) shows the segmentation of the transform

coefficients into non-overlapping blocks, for reconstruction. The 24 samples at the tail

end of each of the reconstructed block, overlap with the succeeding block as shown in
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<éBIockI ———¢l_ Block H _11—,—I3IocknIj>‘ I I I I I I
' ,J\,fV»\/\,--4,»*V/\ \,--/\,~\,J\/\,-“Xx/3 J‘\,—.j
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Figure 5.10: 2- level decomposition and reconstruction of a music sample using
BDWT technique.(a) Segmentation of input signal (500 samples of a musical note
‘D4’in the natural scale by a female voice sampled at 8 kHz, 8-bit resolution.
(b),(c),(d) Transform coefficients of individual blocks. (c) Entire transform
coefficients obtained by overlap save BDWT. (f),(g),(l1) Reconstructed signals from
individual blocks. (i) Final reconstructed signal obtained by overlap add BIDWT
(‘X’ indicate additional samples to be removed)
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figures S.l0(0-(h). The final reconstructed signal is obtained by adding all these

individual blocks, which is shown in fig.5.1O (1).

Figure 5.1 1 shows a comparison between the transform coefficients of a speech

signal segment computed using the block-wise approach and conventional approach.

The signal under consideration is 500 samples taken from a speech signal sampled at 8

kHz with 8-bit resolution (shown in 5.1 1(a)). A 2-level decomposition is performed on

this using ‘db2‘ wavelet for block lengths of 256. It is seen that the BDWT coefficients

in Figure 5.11(b) is the same as the conventional DWT coefficients (shown in figure

5.l1(d)) with data interleaving as already mentioned. Also, perfect reconstruction is

achieved from the BDWT coefficient as shown in 5.11(c).

(a) 0 WM ­_1 1 1 1 1 ¥
10 100 200 3m 4130 500 500I !I : I I7 r:
-1 I il 5 I I IS
10 100 200 31]] 400 5m 51]]

c( ) U wflVM_1 1 1 1 1 1
10 100 200 3U] 4E1] 500 500I I I I I Ig(d) ' '0 %M_1 I {I I i I I:U 100 2013 3m 4130 500 500

Figure 5.11: Comparison of transform coefficients (2-level decomposition). (a)
Original speech signal of 500 samples. (b) Interleaved transform coefficients
obtained by BDWT. (c) Reconstructed signal from BDWT coefficients.
(d). Transform coefficients obtained by conventional metliod.(— lines indicate the
end of first level details, - —second level details and ----- «- approximations)
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The algorithm has also been verified using various orthogonal and biorthogonal

wavelets, for different levels of decomposition. Figures 5.12 and 5.13 illustrate the

verification of BDWT algorithm using an ECG segment and a guitar note .The ECG

segment shown in fig 5.l2(a) consists of 2000 samples taken from an ECG signal

having a sampling rate of 256 Hz with 8-bit resolution. This is decomposed to 4 levels

using a biorthogonal wavelet ‘bior 4.4’. A comparatively larger block size of 512 is

selected for processing .The interleaved transfonn coeflicients obtained are shown in

fig. 5.12(b) and reconstructed signal in fig.5.l2(c).

The guitar note shown in fig 5.13(a) contains 600 samples, sampled at 22 kHz.

A 3 level decomposition is performed on this using ‘db2‘ wavelet, selecting small

blocks of length 40. Figures 5.l3(b) and (c) shows the interleaved BDWT coefficients

1

0: 114111.»11111111110111 .-0.5 200 400 600 1000 1200 1400 1600 1800 2000
0.5(b) 0 “[14-0.5 ­

-1

1­

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1

;1«Jt1Jqtl«.lJtth11Jt4~JtM1l«.11«.1l11l540.5 ‘ ‘0 200 400 600 1000 1200 1400 1600 1800 2000

Figure 5.12: Verification of BDWT algorithm using an ECG signal.
a) ECG segment of 2000 samples. (Sampling rate 256Hz).
b) Interleaved BDWT coefficients, block size = 512, 4 levels of
decomposition wavelet- ‘bior 4.4’. (c) Reconstructed signal
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Figure 5.13: Verification of BDWT algorithm using a guitar note.
a) Segment of guitar note sampled at 22 kHz. b) Interleaved BDWT
coefficients, block size = 40, wavelet- ‘db2’ 3 levels of decomposition.
(c) Reconstructed signal

and the signal reconstructed from these coefficients.

Irrespective of the wavelet, level of decomposition, type and size of the signal

and block length used, perfect reconstruction of the original signal from the BDWT

coefficients has been achieved. The only constraint is that the block length selected

should be greater than or equal to the minimum overlap length M.

The 2-D BDWT algorithm has been verified using various monochrome still

images. Figure 5.14 illustrates this technique on the standard image ‘camera man’

having 256 x 256 pixels (Fig. 5.14 (a)). Here, for simplicity of illustration, a block size

of l40 x 140 is selected, resulting in 4 overlapping blocks with each block overlapping

its predecessor on the top and left by 8 rows and 8 columns respectively. On 2-level

decomposition employing the ‘db2‘ wavelet and removal of erroneous terms as
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(a) . I (b)

c(i) V c(ii

c(iii) c(iv)
Figure 5.14: 2-level BDWT decomposition and reconstruction of the image
‘camera man’using db2. a) Original image. b) Interleaved BDWT coefficients
of 4 blocks with each block containing 2"‘! level approximation of size 32 x 32
& details of size 3 x 32 x32 and 15‘ level details of size 3 x 64 x 64.
c) (i)-(iv) Block-wise Reconstruction .
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described in section 3.3, each of these 4 overlapping blocks produced second level

approximation of size 33 x 33. second level details of size 3 x 33 x 33 and first level

details of size 3 x 66 x 66.These are stored in an interleaved manner (see fig. 5.14 (b))

in the same place as the original image. The block size for processing depends on the

delay tolerable for the particular application. available processing memory and the

blockoverlap length M. At present. a block of size, which is an integral multiple of 2‘,

only has been considered.

The overlap add reconstruction of the image from the block DWT coefficients is

shown in Figures 5.14 (c (i)-(iv)). Each block of transform coeflicients gets

reconstructed into an image segment of size 140 x 140. with each segment overlapping

with its successor on the right and bottom by 8 columns and 8 rows respectively. By

adding these overlapping terms the final reconstructed image is obtained (Figure 5.14

(civ)). which is an exact replica of the original image shown in figure 5.14-(a). Figures

clearly show that the reconstructed blocks can be stored in the same place as the

transform coefficients. reducing the buffer requirement to a minimum.

Figure 5.15 illustrates the comparison of BDWT and pyramidal algorithms for

DWT computation of images. The image under consideration is a biomedical image.

The BDWT coefficients shown in 4.15(b) are fomied by segmenting the image into 4

blocks. Hence the different subbands appear in an interleaved manner in these 4 blocks.

4.I5(c) shows the WT coefficients obtained using the pyramidal algorithm. Figures 4.15

(d) and (e) clearly indicate that perfect reconstruction is obtained using both BDWT and

pyramidal algorithms.

Table 5.1 gives the relationship between the ratio of computational complexity

of the BDWT algorithm to that of the conventional algorithm for various values of

wavelet length. level of decomposition, block size and data size. based on the number of

real multiplications. Similar results have been obtained for addition operation also. For

reconstruction. the trend remains the same as for decomposition even though the

numerical values change slightly for addition operation. From the table it can be noted
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(b) (C)

(d) (6)
Figure 5.15: Comparison of pyramidal and BDWT algorithm for 2-D
DWT computation. a) Original image b) BDWT coefficients
c) DWT coefficients obtained using pyramidal algorithm cl) Image
reconstructed from (b) e) Image reconstructed from (c)

that the ratio remains more or less the same for different data sizes. It increases with

wavelet length and level of decomposition and decreases with increase in block size.

The processing memory requirement of the BDWT algorithm is to the extent of the

block size only, whereas the conventional algorithm needs a processing memory of the

data size itself. Hence this algorithm is well suited for data —intensive applications with

limited processing memory.
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Data Length Level ofsize of Decom- Block size
Wawlel p°5"l°" 500 750 1000 5000

2 1.007 1.005 1.003 ­4 4 1.05 1.03 1.02 ­5 1.13 1.08 1.06 —2 1.036 1.025 1.017 —10 4 1.23 1.18 1.12 _3000 -> 5 1.925 1.45 1.32 1.06 1.04 1.03 —16 4 1.65 1.34 1.24 —5 7.2 2.3 1.7 —2 1.007 1.005 1.004 14 4 1.05 1.03 1.02 15 1.13 1.03 1.06 1.012 1.03 1.025 1.013 110000 10 4 1.29 1.13 1.12 1.025 1.93 1.45 1.31 1.052 1.06 1.04 1.03 11 I6 4 1.66 1.36 1.24 1.04J 5 7.3 2.3 1.73 1.03
Table 5.1: Ratio of computational complexity (in terms of real multiplications)

of the BDWT to that of conventional method.

Figure 5.16 shows the effect of frame size change on computational burden for a

data size of 512 x 512 subjected to 3-level decomposition using an 8-tap wavelet. The

computational burden is expressed as the ratio of the total number of multiplications

involved in processing the data block-wise to that of the entire data as a single block.

From the figure we note that, the increase in computational burden is quite negligible

for frames of size greater than 32 x 32.

Figure 5.17 shows the reduction in processing delay (normalized with respect to

a single processor) that can be achieved in a parallel processing environment. The figure

shows that the processing delay for a 3 level decomposition of a 512 x 512 image can be

reduced by a factor of 0.1 1 using 4 processors. The improvement in speed is more as the

data size increases.
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Computational Burden

O0 mo in so in 55::
Processing Frame Size (f)

Figure 5.16 : Effect of change in processing frame size (square Frames
of size f x f assumed) on Computational Burden (nonnalized with
respect to maximum frame size)
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Figure 5.17: Nonnalized processing delay for multiprocessor computation of
BDWT for various data sizes (1) 256x256. (2) 5l2x512(3) 1024x1024 (3-level
decomposition using 8-tap wavelet is carried out).
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5.5 Conclusion

Novel efficient algorithms, suitable for real time in-place computation of DWT/IDWT

pair of 1-D and 2-D signals, employing the principle of block convolution have been

presented. Edge artifacts were removed using the overlap save method for DWT

computation. Application of overlap save method for DWT and overlap add method for

IDWT computation, reduced the buffer requirement to the order of the size of a block

from the size of image required for the present-day algorithms. The minimum block size

and hence the buffer requirement is determined by the length of the wavelet and the

level of decomposition needed. For any application, appropriate frame sizes can be

selected, depending on the available processing memory and tolerable processing delay

thereby optimizing the computational burden as well as the processing memory.

The need for interprocessor communication is eliminated since the overlap is

taken only once at the input. Hence, this algorithm is apt for both sequential and parallel

implementation of real time systems. Since the algorithm is a modification of the

popular pyramidal filter bank algorithm, the techniques used for improving the

efficiency of computation of the filter bank structure like the lattice structures, FFT

techniques for large filters, Running FIR technique for short filters, etc. can be applied

here also.

Because of the low memory requirement this algorithm is particularly suitable

for processing of images of very large size like digitized pathology images. Hence, this

is used in the following sections for WT computation of digitized mammograms.



Chapter 6

Neural Network Based Classification of
Mammograms

A great deal of effort has been devoted to CAD in digital mammography to increase

diagnostic accuracy as well as the reproducibility of mammographic interpretation.

Majority of the work done in this area aims at detecting one or more of the three

abnonnal structures in mammograms [10]: microcalcifications [32], [77], [90], [95],

[99] circumscribed masses [57], [59], [69] and spiculated lesions [73], [76] which often

characterize early breast cancer. Others have explored classifying breast lesions as

benign or malignant [I10], [1 12]. There has also been work on distinguishing norrn/al
regions from regions containing calcifications or masses. However, little work has been

done on specifically characterizing nonnal mammograms [l20].

Treatment of cancer is most effective when it is detected early. The ability to

reduce the proportion of “1nisses" in the cancer detection task enhances the chances of

survival. Prescreening mammograms to identify the relatively large number of normal

mammograms as well as areas of normal tissue in potentially abnormal mammograms

will substantially reduce the workload of radiologists and increase the accuracy of their

diagnosis in subtle cases.



123 Chapter 6. Neural Network based Classification of Mammograms

In this chapter a neural network based classifier is developed for separating

nonnal regions from potentially abnonnal regions in mammograms. Removing nomial

background structures and normal linear markings from the mammograms under

consideration, enhances the abnormal features. Statistical as well as structural features

are extracted from these and the mammographic regions are classified into nonnal /

abnormal classes with the help of a PNN classifier.

6.1 Normal Mammogram Characterization

The problem of detecting normal mammograms is different from the detection of

lesions and is not simply “l - the detection of abnormal mammograms." Let P(cancer)

be the probability of presence of cancer; P(normaI) be the probability of absence of

cancer; P(image) be the probability of obtaining a specific mammogram;

P(cancer/image) be the probability of cancer detection given a specific mammogram;

P(image/cancer) be the probability of obtaining a specific mammogram given there is

cancer and P(image/normal) be the probability of obtaining a specific mammogram

given there is no cancer. In the context of a decision model using Bayes'.s rule in

probability theory we have

P(image / cancer)P(cancer)P(cancer / image) = _ (6.1)
P(image)

where

P(image) = P(image/ cancer)P(cancer) + P(image/ normal )P(normal) (6.2)

mcancer /image) = P(image/ cancer)P(cancer) (6.3)
P(image / cancer)P(cancer) + P(image / normal )P(n0rmaI )

Detection is based on the posterior probability P (cancer/image), but the

decision maybe highly sub-optimal if P (image/normal) is not known. For example,

even if P (image/cancer) is small, the posterior probability can be large if

P(image/normal) is close to zero. This means that misses can be avoided more easily, if
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the detection algorithms work synergistieally with algorithms for characterizing nonnal

mammograms.

Our approach to the nonnal mammogram recognition problem is based on

normal tissue identification and removal, which is independent of the type of

abnormalities that may exist in the mammogram. This approach also facilitates the

classification of abnomialities, since suppressing normal background structures

enhances the contrast and obviousness of abnormal structures. In addition, the r1-,~~.':='::1.=

tissue characterization problem is fundamentally simpler and easier for computers to

solve than the tumor detection problem, because the properties of images of nomial

tissue are much simpler than the properties of images ofabnonnalities of various types,

sizes, and stages of development. The classification is achieved by presenting the

features from the residual image to a neural network classifier.

6.2 Features of Normal Mammograms

Breast tissue composition varies with age and hormone levels in a woman. Generally, a

young woman has denser or fibro-glandular breasts, which appear very white or

"cloudy” in a mammogram (Figure 3.2). Middle-aged women have a mixture of fibrous

and glandular tissues (Figure 3.3). Their mammograms look black and white. In a

mature breast, most of the fibrous tissue is replaced with fatty tissue. The mammograms

tend to look black or gray (Figure 3.4).

Completely normal mammograms may have entirely different appearances and

hence a clear definition of normal mammograms is not easy [1], [2]. As there are no

spikes corresponding to microcalcifications and no large bright areas corresponding to

masses they have a lower overall density than abnormal ones. Normal regions have

linear markings, which are shadows of ducts and connective tissue elements. These are

distinct from spiculated or stellate lesions, in which linear markings radiate locally in all

directions [120], [75](see fig 3.14). Normal linear markings in mammograms can be

considered as straight-line segments of dimensions 1 to 2 mm or greater in length and
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0.1 to lmm in width. Removal ofthe nomtal background and linear markings enhances

the contrast and obviousncss of abnomtal structures making their detection easier.

6.3 Residual Image Generation

Normal mammogram characterization is achieved by identifying and removing normal

tissue structures. The mammograms obtained after removing the normal structures are

called residual images. Accordingly, the residual image of a nonnal mammogram would

be unifonnly dark and featureless whereas the residual image of an abnormal

mammogram would show microcalcifrcations or masses against a featureless

background.

In this work two types of residual images are generated; one by removing the

normal background structures and the other by removing the normal linear markings

present in mammograms.

6.3.1 Removal of normal background

Removal of normal background region helps in enhancing any abnormalities present in

the ROI under consideration. Here, a WT based average subtraction technique is

employed for background removal, as the WT is capable of separating small objects

such as microcalcifications from large objects such as large background structures. It

was found [214] that the resolution level 1 of the WT showed mainly the high frequency

noise included in the mammogram, whereas levels 2 and 3 enhanced microcalcifications

effectively. Levels greater than 3 showed a large correlation with the non-unifonn

background.

To enhance the abnormalities properly, the coarser background should be

suppressed, without suppressing the finer abnormal features. This can be done using a

smooth mother wavelet. As the wavelet becomes smoother, higher degree of

background non-uniformity can be corrected but at the cost of localization property of



6.3. Residual Image Generation l3l
the wavelet [26]. In this study. we have selected a mother wavelet. which has

intermediate length and a high degree of smoothness, to extract subtle and small

abnormalities and to suppress background structures effectively.

Figures 6.1 to 6.7 show residual images generated by background-subtraction

corresponding to a normal mammogram, and mammograms containing various types of

abnonnalities like microcalcification. masses, asymmetry and architectural distortion.

The images are decomposed to 4 levels using ‘bior 6.5 ’ wavelets and reconstructed after

discarding the fourth level approximations. This helps to remove the normal background

structures and projects abnormalities, if any.

la) (b)
Figure 6.1: Residual image generation (background removed)

(21) Original normal mammogram b“) Residual image

la) (b)
Figure 6.2: Residual image generation (background removed)

(a) Original image containing microcalcifications b) Residual image
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(3) (b)
Yigtirc 6.3: Residual image generation (background rcmo\'cd)

(:1) (if)riginal image containing 21 circumscribed mass bl Residual image

(at) (b)
Figure 6.4: Residual ima

(fa; ()riginal image contain}
eneration (background rcinmedlge 3

ng a spiculatcd mass b) Residual image

6.3.2 Detection and removal of linear markings

Linear structure detection is a very basic, yet important problem in image processing

and computer vision. It is also often the preprocessing step in other applications such as

feature extraction, pattern recognition, and image enhancement. Since 1960s. the Hough

transform [1]]. [215], [216] has been widely used for detecting lines in binary images.

The Hough transform is fairly robust to noisy or missing data [216]. [217] and it can be
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(ill (b)
Figure 6.5: Residual image generation (background rcnim ed)

ta) Original image containing an asymmetr_V b) Residual imagc

li-‘igure 6.6: Residual image generation (bacl\'groL1nd re-inmed)
ta) Original image containing an architectural distortion b) Residual image

easily extended to detect shapes other than straight lines, such as ellipse [218]. [219]

and circular objects [220]. However, this requires increased storage and computational

complexity [22]]. Another drawback of the Hough transfonn is that it is not suitable for

direct use in grayscale images. It requires some preprocessing steps, such as edge

detection and thresholding. to make an input grayscale image a binary pattern. In

addition, the Hough transform does not provide the actual position of the line in the

(x,y) plane [222]. but only the angle ofthe line Band its distance from the origin p. This

is not sufficient for many applications.
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m) (b)
‘figure 6.7: Resitlua‘; image generation (background rc1no\'ctl>

(Ll? %Ii‘rz“T~_;inal iinage containing an ill—delined mass b) Residual iinugc

Lines are commonly viewed as extended or contiguous edges. Consequently.

many line detection algorithms extract local edges first and then group them into more

globally defined lines based on certain criteria [223], [224], [225], [226], [227], [228].

[229]. However. local edge operators usually enhance the noise and tend to generate

dense edge maps due to their small spatial extent, which makes subsequent processing

difficult [230].

Normal linear markings in digitized mammograms vary from 0.1 to 1mm in

width. Hence, it is assumed that the basic characteristic of a line in a mammogram.

regardless of its thickness, is that pixels on it have similar gray levels. To detect such

lines. line detector should be capable of extracting lines with very different and irregular
width, as well as curves. Hence the line detector proposed by Liu et al [i'i" l] is adopted

in this work. which is described in Appendix A. Removal of nonnal linear markings

reduces the possibility of wrong classification of nonnal mammograms into abnormal

class. Residual images generated by removing normal linear markings using the above

algorithm for different mammograms are shown in figures 6.8 to 6.1 1.
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la) (b)
Figure 6.8: Residual image generation (normal linear markings removed)

(a) Original normal mammogram b) Residual image

(a) (bl
Figure 6.9: Residual image generation (normal linear markings removed)

(a) Original image containing a microcalcification cluster b) Residual image

6.4 Neural Network Training and Testing Methodology

Before a neural network model can be used as a pattern classifier, its structure has to be

designed and trained. In this section the selection of training and testing data sets and

training techniques are discussed.



136 Chapter 6. Neural Network based Classification 0fMamm0gram.s'

(a) (b)
Figure 6.10: Residual image generation (normal linear markings removed)

(a) Original image containing a circumscribed mass b) Residual image

(a) (b)
Figure 6.1 1: Residual image generation (nonnal linear markings removed)

(a) Original image containing a speculated lesion b) Residual image

6.4.] Training and Testing Data Sets

The datasets used were the digitized mammographic data obtained from the freely

available database provided by the MIAS [232]. The images in the database are

digitized at 50-micron pixel edge, which are then reduced to 200-micron pixel edge and

clipped or padded so that every image is having 1024 x 1024 pixels with the image
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portion centered in the matrix. The origin of the coordinate system is the bottom-left

comer. The accompanied ‘Ground Truth‘ contains details regarding the character of the

background tissue, class and severity of the abnormality and x, y coordinate of its center

and radii. The database contains 207 normal mammograms and IIS mammograms

containing various abnonnalities such as calcification, circumscribed masses, spiculated

masses, other ill-defined masses, architectural distortion and asymmetry. A detailed

description ofthe data set is given in table 6.1.

Type Total number Approximate range ofradius (in pixels) ofa
circle enclosing the abnormality.Normal 207 ­Calcification 25 3 to 87Circumscribed masses 23 18 to l97

Spieulated masses 19 I7 to I74lll-defined masses l4 20 to I23
Architectural distortion I9 23 to 117AsymmetrL 15 23 to l3lTotal 322 ­

Table 6.1: Training and testing data sets.

The mammograms in this database are arranged in pairs of films, where each

pair represents the lefi (even filename numbers) and right mammograms (odd filename

numbers) of a single patient. When calcifications are present, centre locations and radii

apply to clusters rather than individual calcifications. In some cases calcifications are

widely distributed throughout the image rather than concentrated at a single site. In

these cases centre locations and radii are inappropriate and have been omitted.

6.4.2 Detection criteria

The results of classification are expressed in tenns of three parameters, True Positive

(TP), False Positive (FF) and False Negative (FN). A TP is obtained when a

normal/abnormal R01 is correctly classified into normal/abnormal class. When a normal

R01 is incorrectly classified as abnormal, it is defined as a FP. A FN is obtained when

an abnormal R01 is incorrectly classified into normal class.
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6.4.3 n-fold Cross Validation

For the purpose of generalization, the cross-validation (CV) tcclmique [233], [234] is

used. The cross validation method is a leave-one-out algorithm. For large data sets, this

algorithm makes very heavy demands on computing resources. For instance, a Sun Ultra

1 workstation running a PNN simulator required three weeks continual processing to

complete a cross validation exercise for the size/structure classification based on a

database of around 5000 examples [233]. This is clearly impractical. A compromise

solution is to use an n-fold cross validation.

The database is divided, with random selection of examples, into n partitions

(known sometimes as folds) of varying sizes. The literature on n-fold cross validatic:

shows little discussion on the selection of n, with many researchers using values

between 5 and 20 and the majority use n=l0 [233]. In this study, the partition sizes are

varied from 25:75 training/validation to 50:50 training/validation with n=l0.

6.5 Normal/abnormal classification based on statistical
features

6.5.1 Selection of Neural Network structure for classification

The performance of four types of network architectures available in MATLAB, which

are popular for classification applications, is compared here. The architectures selected

for this study were the BPNN, the RBFN, the PNN and the Competitive network. The

four statistical features described in section‘/4.1 l.1 viz. mean (,u), variance (02),
skewness (#3) and kurtosis (#4 ) were fed to the input of the networks and the results

are tabulated in table 6.2.
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Type of No.of Original image Residual image with Residual image with
network R015 background rcmovcd normal lines removedTP FP FN TP FP FN Tl’ FP FNBPNN Nonnal 17 148 - 45 I20 - 91 74 ­

165Abnonnal 41 - 28 37 - 32 10 - 59
69

Total 58 148 28 82 120 32 I01 74 S9
234RBFN Nonnal 49 116 - 66 99 - 68 97 ­
I65Abnonnal 23 - 46 33 - 36 40 - 29
69Total 72 1 16 46 99 99 36 108 97 29

234PNN Nonnal 87 78 - 95 70 - 86 79 ­
165Abnormal 38 - 31 S2 - 17 52 - 17
69

Total 125 78 31 147 70 17 138 79 17
234

Compet- Nonnal 2 I63 - 66 99 - 1 13 52 ­
itive layer 165Abnonnal 45 - 24 12 - 57 I4 - 55

69Total 47 163 24 78 99 57 127 52 55
234

Table 6.2:Comparison of performance of different network architectures on
nonnal/abnormal classification of mammographic data using statistical features.

From the MIAS database 345 ROIs of size 256 x 256 were selected for this

study. The selected ROIs include 221 normal ROIs and 124 R015 containing various

abnonnalities. 111 R015 (55 abnormal ones and 56 normal ones) from the above are

used for training the networks and the performance of the networks are tested using the

remaining 234 ROIs (165 nonnal and 69 abnormal). The table clearly shows that best

results are obtained for the PNN architecture. 1-lence, PNN is selected for the

classification ofthe mammograms into normal and abnormal groups.
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6.5.2 Feature selection

A good feature must be sufficiently discriminating. However, in order to keep the

classification problem tractable, the total number of features selected must be limited.

Neural network technology offers techniques for selecting, developing, clustering and

compressing features into a useful set.

In this thesis, the problem of feature selection is attacked using a “feature

wrapper" approach. The guiding principle of this approach is that the features that can

best be used for classification should be chosen. A consequence of this principle is that

one must know exactly how the samples will be classified before feature selection can

be done. A major advantage of the feature wrapper approach is accuracy, because the

feature selection is “tuned” for the classification method. Another advantage is that the

approach provides some protection against over fitting because of the internal cross

validation employed by the jackknife approach. One drawback of feature wrapper

method is that the method can be computationally intensive.

The process of feature selection is described below [235]:

(1) A candidate set of features is considered.

a. The mammograms are divided into training and test sets.

i. The classifier is trained on the training set of samples.

ii. The classifier is used on the test set of samples.

b. Step 1(a) is repeated with alternative divisions into training and test

sets.

c. The candidate feature set is evaluated using all classifications from

1(a) (i)-(ii).

(2) Step 1 is repeated with another candidate feature set.

The result of the feature wrapper approach for the statistical features ,u, 02, #3

and ,u4 derived from the original ROIS using PNN is tabulated in table 6.3. The PNN is

trained and tested using the training and test data described in section 6.5.1. The table

shows that very low FP values are obtained for the feature kurtosis alone, but at the cost
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of a FN rate of 100%. This classification is intended as a pre-processing step for

automated detection of breast cancer. Even though a slightly larger Fl’ rate can be

tolerated, the F N rate should be as small as possible. Hence, best results are obtained for

feature sets mean and variance, mean, skewness and kurtosis and all 4 together. But the

classification result obtained here is far from the requirement. So the procedure is

repeated on residual images obtained by subtracting the background and removing the

nonnal linear markings. The results are tabulated in table 6.4 and 6.5.

Selected feature

1: 1: R. °~ll 02 ll: #4 /11 ll»&&&&&&o’ CL}: 1: E R12

0’ .11.: /u /1; MM & & & & ,u;&
[11 /14 #4 /14 ;1;

FP 95 76 I02 2 I06 78 95 l20 2 103 93 95 78 I03 78
FN 38 68 49 69 36 3! 36 30 69 30 30 36 31 30 31

Table 6.3: Sensitivity for different features derived from the original image

Selected feature

it 0’ #1 #4 .u& xx in 0’ 0’ #3 M A /1. 0" A
02 & & & & & 0’ 0’ /1, ,u; 0’

xx; /14 ix; #4 .114 & & & & p,&
/11 #4 #4 /14 #4

FP l2l 74 60 4 I53 69 123 ll3 2 64 106 92 71 62 70
FN 45 42 63 69 I7 36 28 25 69 35 ll 28 17 35 17
Table 6.4: Sensitivity for different features derived from the residual image (background

removed)

For residual images generated by background subtraction, lowest FN rate is

produced by feature set mean, variance and skewness. But the FP rate of this feature set

is unacceptably high. The feature sets mean, skewness and kurtosis and all 4 together

provide acceptable Fl’ and FN rates. Since lesser number of features make the
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computation easier, it is better to select the features mean, skewness and kurtosis for

classification purpose, even though its FP rate is slightly higher compared to the result

obtained by using all 4 features. The results obtained here are better than those obtained

on features extracted from the original image. This is because of the enhancement

occurred to the abnormalities due to the removal of normal background tissue from the

images. Residual images formed by removing nonnal linear markings provide best

results when the parameters mean and skewness are used (see table 6.5). Based on these

observations three features mean, skewness and kurtosis are selected for classification

of mammograms into normal and abnonnal classes.

Selected feature

it 0’ I1: #4 t1 l1 #& 0’ 0’ #1 I4 /4 I4 0’ #­
& & ,2, & & & o’ o’ p,& ,u; o’,
0} ll: /11 #4 /14 & &;t, ,u, &;t, ,u,&#1 ,u4

FP so 66 92 1 as 79 so 99 1 92 84 so 79 92 79
FN 26 68 47 69 25 17 25 32 69 32 17 25 17 32 17

Table 6.5: Sensitivity for different features derived from the residual image
(normal lines removed)

6.5.3 Classification results

3 sets of the feature vectors containing three elements each, the mean, skewness and

kurtosis are extracted from each snippet of mammogram of size 256 x 256 and

presented to 3 PNNS. The first set of feature vectors is extracted from the original

mammograms, second from residual images obtained after the removal of normal

background and third from residual images obtained after detection and removal of

normal linear markings. The input layer of the PNN handles the features extracted from

each ROI. As mentioned earlier, two output units denote the presence or absence of an

abnormal tissue.
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The results for the three sets of features are tabulated in table 6.6. 100%

detection accuracy was obtained for the training set. Using the features from the original

image a sensitivity of 52.7% for normal mammograms and 55% for abnonnal

mammograms were obtained for the test data. A sensitivity of 57% for normal

mammograms was obtained for the background-removed ease and 52% for residual

images with linear markings removed. Both types of residual images produced a

sensitivity of 75.4 % for the abnormal case. But none of these is sufficient for the first

stage of an automated breast cancer detection system. Hence a two-step classification,

as detailed below, was developed for increasing the sensitivity and specificity of
detection.

No.of Original image Residual image with Residual image

ROls background removed with nonnal lines
removed

TP FP FN TP FP FN TP FP FN
Nonnal I65 87 78 - 94 71 - 86 79 —
Abnonnal 69 38 - 31 52 - 17 52 - I7
Total 234 125 78 3| I46 71 17 13! 86 17

Table 6.6: Classification results for the 3 sets of feature vectors

Step1: Classify the given mammogram into normal or abnormal groups using the

features derived from the original mammograms.

Step2: If the ROI is found to be normal, project any abnormality that can be present in

it by removing the background and again classify.

Else if it is abnormal, remove the normal linear markings that may be

misunderstood as abnormalities and again classify.

The result of this two-step classification is given in table 6.7. The detection

sensitivity of the abnormal cases is 91% and that for the normal cases is only 58%. The
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low sensitivity for the nonnal cases will not be much ofa problem as this is intended as

a pre-processing stage only. A detailed classification result on the MIAS database is

given in table 6.8.

No.01‘ TP F P FN %Dctcction
ROlsNomial I67 97 70 - 58.08Abnonnal 69 63 - 6 91.3Total 236 160 70 6 67.8

Table 6.7. Results of Statistical feature based classification

No.of TP FP FN %DetectiROls on
Training set 56 S6 - - [00

Normal Test set 167 97 70 - 58.08
Calcification 14 I 4 - - I 00

circumscribed masses l2 l2 - - I00
Training Spiculated masses I3 13 - - I00

56! ill-defined masses l0 l0 - - I00
Architectural distortion 3 3 - - 100

Abnomlai Asymmetry 4 4 - - 100
Calcification 20 20 - - I00

circumscribed masses 1 l 10 l 90.l
Spiculated masses 6 6 - - 100

T¢St 53! ill-defined masses 4 3 - l 75
Architectural distortion 16 I4 - 2 87.5

Asymmetry l l 9 - 2 3| .8Total 345 269 70 6 78
Table 6.8. Detailed Results of Statistical feature based classification
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6.6 Normal/abnormal classification based on textural
features

6.6.1 Selection of Neural Network structure for classification

The perfomiancc of the same four types of networks as in section 6.5.1 is estimated here

to select the best network for classification based on textural features. Various texture

features described in section 4.11.2 were used for the evaluation and the !'f'SL'11° are

tabulated in table 6.9. From the MIAS database, 332 R015 of size 256 x 256 11'lC1LJ.('l1'1g

222 normal ones and 110 R015 containing various abnormalities iike
microcalcifications, masses and architectural distortions are selected for this study.

Type of No.01" Original image Residual image with Residual image
network R015 background removed with nonnal lines

removed
TP FP FN TP Fl’ FN TP FP FN

BPNN Normal 19 149 - 47 121 - 94 74 ­
168Abnormal 7 - 48 13 - 42 9 - 46
55

Total 26 149 48 60 121 42 103 74 46
223RBFN Normal 49 119 - 66 102 - 71 97 ­
168Abnormal 9 - 46 19 - 36 26 - 29
55Total 58 119 46 85 102 36 97 97 29223 g _PNN Normal 151 17 - 92 76 - 100 68 ­
168Abnormal 6 - 49 25 - 30 52 - 3
55Total 157 17 49 117 76 30 152 68 3223 __Compet- Normal 110 58 - 87 31 - 129 39 ­itive 168layer Abnormal 35 - 20 10 - 45 12 - 43
55Total 145 58 20 97 81 45 141 39 43

223

Table 6.9: Comparison of performance of different network architectures on
normal/abnormal classification ofmammographic data using textural features.
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109 (55 abnonnal ones and the rest normal) ROls from these were used to train the

networks. Mammograms containing the abnormality, asymmetry is not included in this

study.

6.6.2 Feature selection

Ideally, the feature wrapper approach requires all possible candidate feature sets to be

considered. But this is difficult even for modest number of candidate features. Hence,

clever strategies are required to search through the space of feature sets. Xiong et al.

evaluated two relatively simple search procedures, Sequential Forward Search (SFS)

and Sequential Forward Floating Search (SFFS) [236]. The sequential forward search

procedure is adopted here. Different steps involved in this are:

(1) Choose the single best feature

(2) Choose the best feature set of size two that includes the feature from (1)

(3) Choose the best feature set of size three that includes the feature set from (2)

(4) And so on.

The textural features used for classification purpose are the Haralick’s texture

features described in section 4.11.2. The results of various steps of SFS for feature

selection on the test data set of 168 normal mammograms and 55 abnormal ones

described in the previous section are tabulated below. Using this approach a feature set

of 4 elements, which can best be used for classification is selected from the 10 features.

The selected features are angular second moment or energy, entropy, correlation, and

contrast.

Table 6.10 shows that the best single feature for classification is correlation. The

features that were not able to classify even the elements of the training set into their

correct group were eliminated at this stage. The best result for a feature set size of 2 is

obtained for the features correlation and entropy. Hence these two were selected as the

best feature set of size 2 (see table 6.1 1). From table 6.12 the best feature set of size 3 is

obtained by adding energy to that obtained in step 2. Following this procedure it can be
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seen that the best set of features of size 4 is correlation, entropy. energy and contrast

(see table 6. l 3) and that for a 5 vector feature set includes local homogeneity in addition

to the above 4. But when the 5-vector feature set is used, there is no improvement in

performance over the 4-feature set. Hence, it is better to use the 4- feature set to reduce

computational burden.

l47

energy entropy correlation contrast Sum of Local
squares Homogenit
variance yFP FN FP FN FP FN FP FN FP FN FP FN

Original 87 40 78 39 61 40 0 55 8 55 56 55
Back-ground 87 48 I06 31 94 43 0 S5 4 55 44 55
subtracted
Nonnal lines 165 I9 ll3 34 88 33 0 55 105 35 45 55
removed

Table 6.10 Selection ofthe single best feature using SFS

correlation correlation Correlation Correlation & Correlation
& energy & entropy & contrast Local & Sum of

Homogenity squares varianceFP FN FP FN FP FN FP FN FP FN
Original 28 55 34 52 6| 40 I02 31 66 38
Background 90 40 77 34 106 27 125 23 107 27
subtracted
Nomtal lines 85 32 72 24 88 27 107 30 [39 ll
removed

Table 6.1 1 Selection of the best feature set of size two using SFS

correlation correlation correlation Correlation Tl
entropy entropy & entropy & Local Entropy 8; Sum
&energy contrast Homogenity of squares

varianceFP FN FP FN FP FN Fl’ FNOriginal 17 52 34 50 39 42 36 56
Background 75 38 97 34 lol 27 80 38
subtractedNonnal lines 69 6 92 7 95 7 134 10
removed

Table 6.12.Selection ofthe best feature set of size three using SFS
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correlation entropy correlation entropy correlation entropy
energy & energy & Local energy & Sum of
contrast Homogenity squares varianceFP FN FP F N F P F NOriginal I7 49 68 50 I9 55

Background 76 30 99 31 78 38
subtractedNonnal lines 68 3 93 4 I30 7
removed

Table 6.13: Selection ofthe best feature set of size 4 using SFS

correlation entropy energy correlation entropy energy
contrast & Local Homogenity contrast & Sum of squares varianceF P FN FP FNOriginal I7 49 I7 49

Background 76 30 76 30
subtractedNonnal lines 68 3 68 3
removed

Table 6. l4: Selection of the best feature set of size 5 using SFS

6.6.3 Classification results

Since the image matrix is discrete, the displacement vector used in the feature

calculation was chosen to have the following phase and displacement values: (O°,1),

(45°, 1), (9o°,1), (135° ,1). The input layer of the PNN handles the four features
extracted from each ROI.

The three sets of features extracted from each ROI corresponding "'1 the

original as well as the two residual images were tested using the PNN and the results are

tabulated in table 6.15. Though the false positive rate using the features from the

original mammograms is less than 10%, the false negative rate is very high (94%),

which cannot be tolerated. Best detection accuracy is got with the features obtained after

removing normal lines. A recognition accuracy of 60% was obtained for the normal
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mammograms and 94.2% for the abnomtal cases. For the entire data set an overall TP

recognition score of 68.2% was obtained. The recognition score with features from the

background-subtracted images is less. This is due to the fact that the texture infonnation

is lost when the nomtal background is subtracted from the images.

No of Original With background With nonnal linesmammo- subtracted removed
grams TP FP FN TP FP FN TP F P FNNonnal I68 l5l I7 - 92 76 - l00 68 ­

Abnonnal 55 6 - 49 25 - 30 52 - 3
Total 223 I57 17 49 H7 76 30 I52 68 3

Table 6.15 Classification result using textural features

Table 6.16 compares the perfonnance of the algorithm on the features obtained

after removal of normal lines from the ROIs for different orientations. Best performance

is attained for an orientation of 0°. A detailed classification result is provided in table

6.17.

No of 0=o° o=45° o=9o° o=135° "“
mamm

ogram TP rp FN rp FP FN TP FP FN T? F? FN
Nonnal I68 I00 68 - 92 76 — 9o 73 - 91 77 ­
Abnormal 55 52 - 3 42 13 45 - no 43 - 12

Total 223 152 68 3 134 76 13 I35 73 no 134 77 ‘L; .I

Table 6.16 Classification result using textural features for different orientations
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No.of TP FP FN °/°D¢l°C!iROls °"
Training set 54 54 - - 100

Normal Test sct I68 I00 68 - 59.5
Calcification 23 23 - - I00

circumscribed masses 9 9 - - I00
Training Spiculatcd masses 9 9 - - 100
58! ill-defined masses 6 6 - - I00

Architectural distortion 8 3 - - 100 J
Abnormal Calcification 12 I2 - - I00

circumscribed masses I4 14 - - 100
Spiculatcd masses 10 8 - 2 80

TCSI 56! ill-defined masses 8 — - - 100
Architectural distortion l I I0 - 1 90.9Total 332 26! 68 3 78.6

Table 6.17:Detailed result of Classification for an orientation of 00

6.7 Normal/abnormal classification based on both statistical
and textural features

The classification task is repeated using a combined feature set from the above sections.

Residual images are formed by removing the normal linear markings. The 3 statistical

features viz. mean, skewness and kurtosis and the four texture features viz. correlation

entropy, energy and contrast described in previous two sections, are derived from the

residual image and fed to the PNN for classification. 111 ROIs (55 abnormal ones and

56 110111131 ones) from the MIAS database are used for training the PNN and its

performance is tested using 236 ROIs (167 normal and 69 abnormal). The results are

tabulated below in tables 6.18 and 6.19.
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No.of TI’ Fl’ FN %D¢l¢Cti0n
ROls

Norma] 167 lol 66 - 60.5
Abnormal 69 62 - 7 89.86Total 236 I63 66 7 69.07

Table 6.18 Classification result using combined set of features.

No.0!‘ TP FP FN %DetectiROls on
Training set 56 56 - - 100

Nonnal Test set 167 I0 I 66 - 60.5
Calcification 14 I4 - - I00

circumscribed masses 1 l l l - - I00
Training Spiculated masses l3 l3 - - 100

563 ill-defined masses l0 I0 - - I00
Architectural distortion 3 3 - - I00

Abnormal Asymmetry 4 4 - - 100
Calcification 20 I9 - I 95 E

circumscribed masses 12 12 - 100
Spiculated masses 6 6 - - 100

T65! 56! ill-defined masses 4 2 - 2 50
Architectural distortion 16 I4 - 2 87.5

Asymmetry I 1 9 - 2 81.8
Total 345 272 66 7 73.34" ’ !

Table 6.19 Detailed results of Classification using combined set of features

6.8 Conclusion

PNN classifier for nomial/abnormal classification of digitized mammogram has been

implemented based on statistical features, textural features and a combination of these.



152 Chapter 6. Neural Network based Classification of Mammograms

A Tl’ identification rate of 58%, 59.5% and 60.5% were produced for the nonnal cases

and 91.3%, 94.5% and 89.86% for the abnonnal cases respectively. The texture-based

classifier was unable to classify mammograms having the abnonnality, asymmetry. The

high TP rate of 94.5% for abnormal case using texture-based classifier is obtained

excluding the mammograms containing asymmetry. As this is intended as the pre­

processing stage of an automatic detection system, the major aim of this stage is to

reduce the FN rate as far as possible. Hence, for further applications, the classifier based

on statistical features is selected, even though it has slightly lower 'I";':‘ E‘"'.‘, :iv:':' ‘.43

the other two.



Chapter 7

Multiplexed Wavelet Transform
Technique for
Detection of Microcalcification

Today, breast cancer is one of the most frequent forms of cancer in women and also the

leading cause of mortality. There is clear evidence, which reveals that early diagnosis

and treatment can significantly increase the chance of survival [237], [238]. Among the

different diagnostic methods currently available for detection of breast cancer,

mammography is widely recognized as the chief modality for early detection in

asymptomatic women [23 8].

One of the early symptoms of breast cancer is the appearance of
microcalcification clusters, which have a higher X-ray attenuation than the normal

breast tissue and appear as a group of small, localized, granular bright spots in

mammograms. Popular methods for computer-aided detection of clustered

microcalcifications include the difference image [44], multiscale processing based o\n/
fuzzy pyramidal linking [239], and spatial filtering techniques [8].

An efficient method for the detection of mierocalcification must be capable of

detecting objects with very small but varying sizes. Recently discovered

multiorientation and multiresolution properties ofthe human visual system [240] has led

to the idea of wavelet based multiresolution analysis for detection of mierocalcification.
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This approach has been used for detection and segmentation of microcalcifications and

contrast enhancement [32], [24l], [242].

7.1 Detection of Microcalcification - An Edge Detection

Operation

Microcalcifications, small concentrations of calcium in the breast, is an early sign of

possible cancerous growth. Individual calcifications are not worrisome; but when they

appear in groups a potential tumor can be suspected. Five or more caicifications,

measuring less than one millimeter, in a volume of one cubic centimeter define a

‘cluster’. The possibility of malignancy increases as the size of the individual

calcification decreases and also when the total number of calcifications per limit area

increases. The risk increases when they are heterogeneous in size and shape.

Microcalcifications located in parenchymal structures show detectable edge

features. The major constraint in their detection is the low contrast between normal and

malignant tissues, especially in younger women. Their small size also contributes to a

lower subject contrast. The assumptions made with regard to the nature of the
microcalcifications are as follows:

1) V They are of higher frequency than the surrounding breast tissue. Hence, they

appear brighter.

2) They are usually 0.1-lmm in size.

3) The average calcification is roughly circular, and can be treated as a circular­

symmetric Gaussian function.

7.2 Edge detection using MWT

Image sequences are found to be pseudo-periodic in both horizontal and vertical

directions when treated as 1-D signals, with period same as the size of the image.

Utilizing this pseudo-periodic nature, the MWT separates the periodic information andJ
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the inter-period fluctuations present in the sequence effectively into the scaling partials

and wavelet partials respectively. ln the case of the DWT, the asymptotically periodic

part of the signal as well as the fluctuations gets filtered into different wavelet and

scaling partials altogether. Hence MWT is found to be better for edge detection

operations than DWT. A comparison between the MWT and 2-D DWT techniques for

edge detection on a simple synthetic image using ‘bior 6.8’, a biorthogonal wavelet

basis, is shown in Figure 7.1. The figures clearly illustrate that the edge information

gets precisely filtered into the wavelet partials of the MWT (see ftg.7.l (b), (c), (d))

leaving its scaling partials with only the edges blurred, whereas additional infonnation

is lost from the scaling partials of DWT (fig. 7.1(e)). Hence, accurate reconstruction of

the edges can be achieved from the MWT wavelet partials.

In this work, we represent the microcalcification detection in mammograms as

an edge detection operation, utilizing the pseudo-periodic nature of image sequences

when treated as l-D signals. Taking the MWT, i.e. DWT over samples that are spaced

one period apart [25], pushes the edge information into the detail spaces more

efficiently. Also, the edge detection methods using 2-D operators smear the edge

information as a smoothing operation always precedes the edge detection operator. But

smoothing is very important, as the differential operators are very much sensitive to

noise [12], [243]. Since a 1-D processing technique is used here, the gray level

transitions of an edge in the orthogonal direction will not get disturbed [244]. Moreover,

the processing memory requirement is reduced to a size equal to the length / breadth of

an image from that of the whole image in the 2-D DWT methods.

7.3 MWT based Microcalcification Detection

This section describes the novel WT based l-D processing techniques developed for

detecting and segmenting microcalciftcations in digitized mammograms. The edge

features formed by microcalciftcations located in parenchymal structures are detected

using the zero-crossings / local extrema ofthe MWT coefficients. The use of zero­
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(a)

(b)

Figure 7.1: Image reconstruction using MWT (left) and ZDDWT (right) 21) original
image b) reconstructed from 3'” level WT coefficients alone. c) from 2"“ level WT
coefficients alone d) from 1“ level WT coefficients alone. e) from 3”’ level scaling
transform coefficients alone
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crossings results in a M-H edge detector [179] and local extrema results in a Canny

edge detector [183]. Here, the Biorthogonal wavelet ‘bior 1.3‘ ofsupport 6 is selected

for edge detection. The level of processing required depends upon the resolution of

image data. It was experimentally determined that a 3 level decomposition is sufficient

for detecting the microealcifications from the images in the databases used in this work.

The interperiod fluctuations corresponding to the intensity changes along the

horizontal direction are determined by computing the MWT of the image up to the

desired level, taking the image sequence to be periodic along the vertical direction.

Similarly, considering the periodicity along the other direction, the MWT is computed

to give the edge information along the vertical direction. Singular points are determined

from the zero-crossings / local extrema of the MWT coefficients along both directions.

The isolated single pixel intensity changes i.e. noise, are eliminated by retaining only

those zero-crossings that hold a parent child relationship [148] from the coarsest to the

finest levels of details. In this way the sensitivity of the differential operators to noise is

taken care of without smearing the edges.

The retained points are boosted so as to enhance the edge features. The IMWT is

applied on these to get the horizontal and vertical edge maps, which are then combined

and scaled to get the complete microcalcification information. Global gray level

thresholding based on image statistics is applied on the combined edge map to segment

possible microcalcifications, with the rest of the pixel intensities being reduced to zero.

The threshold T is selected to be proportional to the mean of the reconstructed edge map

‘M’. i.e. T=kM ; k was experimentally determined to be a real number such that

l<k<2. The implementation consists of the following steps:

Step I :MWT computation -Computation of the MWT coefficients up to the desired

level for a row/ column of the image.

Step II: Removal of noise -Discarding all zero-crossings/ local extrema that does not

hold a parent-child relationship from coarser to finer levels.

Step III: Inverse transform- Scalar multiplication of the retained coefficients to boost

them and taking inverse transform.
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Steps I to lll produces the edge map for a single row/column. These steps are

repeated for all rows/ colunms to get the complete horizontal/ vertical edge maps.

Step IV: Thresholding- Global gray level thresholding on the combined edge map to

segment possible microcalciftcations.

Figure 7.2 shows a summary of various operations involved in the detection and

segmentation of microcalcifications employing the technique. The MWT based

approach can enhance even subtle microcalcifications effectively, but it is also sensitive

to mammographic noise such as quantum mottle and film graininess [245], [246]. It is

difficult to suppress mammographic noise, while enhancing microcalcifications,

because this noise is quite similar in size to that of microcalcifications. To reduce false

alarms, a local thresholding depending on the power spectral density of the regions

containing detected calcifications is carried out on the segmented calcifications as

follows:

1. Determine the power spectral density from the original mammograms

corresponding to all of the segmented regions obtained by the application of

the algorithm in figure 7.2.

2. Determine the maximum value of power spectral density for a particular

mammogram.

3. If the power spectral density is less than the minimum threshold set

experimentally, discard those regions as false alarms.

Else check whether the value is less than 0.6 times the maximum power

spectral density.

If so, discard it.

Else consider it as a TP detection.

Incorporating the pre-processing stage developed in the previous chapter, the

false alarm rate can be reduced further.
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Read (i+l)"‘ Row of the image

it
Compute MWT

+
Obtain zero-crossing/local extrema map

Boost the zero-crossings/local extrema that hold
parent-child relationship between levels

l
Inverse MWT using boosted coefficients only

i
NO

Last Row
Reached?

Repeat the above steps for columns

l
Combine the horizontal & vertical edge maps

l
Thresholding

Segmented microcalcifications

Figure 7.2: Steps for detection and segmentation of
microcalcifications
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7.3.1. Microcalcification Detection after Classification

The detection accuracy can be funher increased by prescrecning mammograms to

identify the relatively large number of clearly normal mammograms, as well as large

areas of clearly normal tissue in potentially abnonnal mammograms. This will reduce

unnecessary computations and will substantially increase the accuracy of diagnosis in

subtle cases. The normal / abnomial classification algorithm based on statistical

features, developed in the previous chapter is employed here as the prc-processing

stage. This method has got high TP detection rate for the abnormal cases, and it 1125

produced 100% detection rate for mammograms containing microcalcification, even

though the detection sensitivity for the normal case is only 58%. The computation!

burden is also less for this method as only 3 features are to be extracted.

The distinct steps involved in the MWT based microcalcification detection

system after PNN based normal / abnormal classification are listed below:

Step 1 Segmentation of image data: Overlapping blocks of image sections are used for

processing in order to eliminate the possibility of misses near the block boundaries. The

overlap depends on the length of wavelet used and level of decomposition. Since 3

levels of decomposition is performed using a wavelet of support 6 for microcalcification

detection, the minimum overlap required is found to be 28. The block size selected is

256 x 256.

Step 2 Normal/abnormal classification: The features, mean, skewness and kurtosis are

derived from the grey-level histogram and fed to the trained PNN to determine whether

the given snippet is nonnal or abnonnal.

Step 3 Microclcification detection: Ifa snippet of mammogram is found to be abnormal,

the MWT based microcalcification detection algorithm is perfonned on that to see

whether it contained any microcalcifications.

The abnormality need not be microcalcification alone. For detecting other

abnormalities algorithms are to be developed.
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7.4 Data and Detection Criteria

The algorithm has been validated on an ensemble of 40 mammograms, taken from the

freely distributed digitized mammograms of the MIAS database of the University of

Essex, England [232]. It has also been validated using a local database consisting of 30

mammograms. These were collected from restricted mammographic centers and

scanned using UMAX Powerlook Ill scanner at a resolution of 2000 pixels/square inch.

Abnormal regions in these mammograms were identified by an expert iv...-1:; ‘6.-V.-.

Some of these were containing more than one type of abnormality. The details of

mammograms used for evaluation purpose is given in table 7.1.

Database No. of mammograms considered No. of clusters

Normal Containing Total
calcifications

MIAS 16 21 40 25
3 Distributed

Local 1 l l 8 30 19
1 Distributed

Table 7. 1: Details of mammograms used for validation of the algorithm

Two closely related issues involved in any diagnostic investigation are

sensitivity or ‘true positive’ and specificity or ‘false positive’. Hence it is more

appropriate to express the results in terms of these two. The detection criteria selected is

that proposed by Karssemeijer [8], as there are no universally accepted detection

criteria. Accordingly, for counting TP’s a cluster is considered detected if two or more

microcalcifications are found in the region of film identified by an expert radiologist. A

FF is counted if two or more erroneous detections are made within an empty closed

region of 0.5cm width.



152 Chapter 7. M WT Technique for Detection of Microcalcification

7.5 Results and Discussion

As the detection of microcalciftcation in digitized mammograms is represented as an

edge detection problem in this work, the detection capability of some of the popular

edge detection techniques has been validated and the results are tabulated in table 7.2.

The 24 mammograms containing microcalcifications from the MIAS database as

detailed in table 7.1 are used for this study. The edge detection techniques selected for

comparison are the conventional 2-D DWT based edge detection method and those

available in MATLAB, Viz. the Sobel, Roberts, Prewitts, LOG, zero cross and Canny

methods. The F P rate produced by the Canny detector is very high as it detects both

strong and weak edges. Hence, it is found to be unsuitable for microcalcification

detection and is not included in the table. The table shows the number of TPS, FPS and

FNs for optimal threshold values experimentally selected for each of the algorithms

mentioned above.

Method TP F P FNSobel IO 5 l 18Roberts I2 56 16Prewitts 9 59 19LOG 9 49 I9
Zero-cross 9 42 19
2-D DWT 2 l 39 7

Table7. 2:Comparison of detection capability of various edge detection algorithms on
microcalcification detection

The detection capability of the Canny and M-I-I methods of microcalcification

detection on the MIAS database are tabulated in table 7.3 for different thresholds. The

table shows the number of TPs, FPs and FNs for different values of k. It can be seen

from the table that as the threshold is increased the FPS decrease, but the sensitivity also

gets decreased. For screening mammography applications, where a high rate of FF is
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not tolerable, a high threshold is preferred. In diagnostic purposes, sensitivity is the

important factor and hence smaller thresholds are to be used.

MIAS database 40 mammograms with 16 normal and 24 with 25
microcalcification clusters and 3 with distributed calcificationsk Canny M-H

TP FP FN TP FP FN
1.3 1 1 16 17 13 20 15
1.2 21 25 7 22 28 6
1.15 24 30 4 26 32 2‘ (

Table 7.3: Comparison of sensitivity and specificity of microcalcification detection
using Canny and M-H detectors for different values of k.

It is seen that the application of our algorithm on the MIAS database resulted in

a TP identification rate of 93% against 0.8 FP clusters per image for the M-H edge

detector. (Rate of FP is computed considering all 40 images). With the locally obtained

mammograms, a TP identification rate of 85% at the rate of 0.83 F P clusters per image

was obtained. The Canny method produced 85.7% TP detection rate at the cost of a

slightly lower FP rate per image, 0.75 for the MIAS database and 0.8 for the local

database. Table 7.4 tabulates the detection sensitivity obtained for the two databases.

Database Method TP FP F N
MIAS database 40 mammograms-16 M-H 26 26 2
normal +21 mammograms with 25

microcalcification clusters and 3 with Canny 24 22 4
distributed calcifications

Local 30 mammograms — ll nonnal M-H 17 25 3
+18 mammograms with 20
microcalcification clusters and 1 with Canny 17 24 3

distributed calcifications
Table 7.4: Detection Sensitivity for the two databases.
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Typical examples of microcalcification detection using the two methods are

illustrated in Figures 7.3 and 7.4. Figure 7.3 shows the detection of microcalcifications

from three mammograms from the MIAS database, one containing a well defined

cluster, second one having a hard to find cluster and the third, having distributed

Figure 7.3: Comparison of detection of microcalcifications from various
mammograms using Canny and M-H detectors on MIAS database (a)Sections of
original mammograms containing a well-defined microcalcification cluster (left)
hard to find cluster (middle) widely distributed calcifications (right). (b)& c)
microcalcifications detected by Canny and M-H detectors respectively from the
above mammograms.
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(b)

(C)

Figure 7.4: Comparison of detection of microcalcifications from various
mammograms using M-H and Canny detectors on the local database (a) Sections of
original mammograms containing a well-defined microcalcification cluster (left) and
widely distributed calcifications (right). (b)& c) microcalcifications detected by M-H
and Canny detectors respectively from the above mammograms.
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calcifications. The detection of microcalcifications from two mammograms from the

local database, having a well defined cluster and widely distributed calcifications are

illustrated in fig 7.4. Figures clearly indicate that the shape of the cluster is preserved in

the M-H method compared to Canny method. This is due to the symmetric nature and

the ability to form closed contours of the M-H operator. The M-H edge detector

provides better detection sensitivity for mammograms containing widely distributed

calcifications.

Detection can be achieved using any of the biorthogonal wavelets. We have

selected ‘bi0r1.3’, being one of the smaller biorthogonal wavelets. It is found that the

shape of the cluster is captured more accurately by the larger biorthogonal wavelets

such as ‘bior-4.4’, ‘bior 5.5’ and ‘bi0r6.8’. This is probably due to the fact that these

filters approximate the response of the human visual system, in the sense that they are

similar in form to the Laplacian of Gaussian described by Marr [17].

7.6 Conclusions

Microcalcification detection using two wavelet based edge detectors were performed

and their performance was evaluated on two databases. A detection accuracy of 95%

has been obtained for the MIAS database. It has been found that the M-H edge detector

retains the shape information of the clusters, which is essential for classification. Also it

detects distributed microcalcifications more efficiently. Both methods are found to be

suitable for detecting subtle microcalcifications that could not be detected by other

methods. The absence of edge smearing along the orthogonal direction due to the 1-D

processing technique employed has helped in providing better detection efficiency.

Moreover, the processing memory requirement is reduced to the size of one row or

column, from that of the whole image, for a 2-D operator.
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Summary And Conclusions

8.1 Summary of the work and important conclusions

The work presented in this thesis describes the application of computer based image

analysis techniques on digitized mammographic images, to classify them into nonnal /

abnonnal classes and detect clustered microcalcifications. The image analysis

techniques are implemented using two image processing tools, viz. neural networks and

WT. A BDWT technique without edge artifacts is also developed to process image

blocks independently with reduced memory usage, thereby eliminating the need for the

very large buffer requirement of DWT computation of digitized pathology images.

The first topic presented in this thesis is about the development of the BDWT

computation algorithm. Employing the principle of block convolution, efficient

algorithms having very low memory requirement and suitable for real time in-place

computation of DWT/IDWT pair of 1-D and 2-D signals have been developed.

Application of the overlap save method for DWT and the overlap add method for IDWT

computation eliminates edge artifacts and reduces the buffer requirement to the order of
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the size of a block from that of the size of an image for the present-day algorithms.

Also, the need for intcrproccssor communication is eliminated since the overlap is taken

only once at the input.

The developed algorithms have been validated for various 1-D signals and

monochrome images. The transform coefficients obtained using these methods were

exactly the same as those obtained if the entire data is taken as a single block. But the

coefficients corresponding to various sub bands appear in an interleaved manner in

different blocks. Perfect reconstruction was achieved irrespective of the type and size of

input signals, length of wavelet and level of decomposition. Both orthogonal and

biorthogonal wavelets were employed in the study.

The block transform technique may result in a computation overhead, but this

can be optimized for the available processing memory and tolerable processing delay by

careful selection of frame sizes, wavelet filters and decomposition levels. The parallel

processing ability and low-memory requirement help to speed up the algorithm.

Application of image analysis techniques for computerized detection of

mammographic abnormalities is depicted in two parts. The first part deals with the

classification of ROIs in mammograms into two groups; nomial and abnormal,

irrespective of the type, size and severity of the abnormalities. Large number of normal

mammograms and large part of clearly normal tissue regions from potentially abnormal

ones were separated out to ease the detection procedure. This also helps to increase the

accuracy of interpretation. The second part is concerned with the development of MWT

based algorithms for the detection of microcalcification clusters, which is the most

important and sometimes the only sign of presence of cancer.

A PNN based approach was adopted for normal /abnonnal classification of

mammograms. Residual images were generated by removing nomial background

structures and normal linear markings from the ROls. WT based background subtraction

technique was used for removing the normal background regions. Lines were detected

and removed using a line detector algorithm proposed by S.Liu. Statistical and textural

features were derived from these ROIs using histogram and SGLD matrix approaches
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and fed to a PNN based classifier. The results have been validated using mammograms

from the MIAS database.

The major aim of this stage is to segment all or most ofthe abnormalities present

in a mammogram. A TP identification rate of58%, for the nomial cases and 91% for the

abnormal cases has been achieved on the MIAS database.

The abnormal ROls obtained from the above stage were checked for the

presence of microcalcifications, using a 1-D processing technique based on DWT. The

1-D processing technique employed here reduces the processing memory requircizim.

to a size equal to the length/ breadth of an image from its size of length x breadth in the

2-D DWT methods. This technique has the added advantage of not disturbing the gray

level infomiation along the orthogonal direction, as smoothing is performed in one

direction only.

Depending on the zero-crossings/ local extrema of the MWT coefficients, two

wavelet based edge detectors viz. the M-H and Canny detectors were developed for

detection of microcalcifications. Their performances were evaluated on two databases,

the MIAS database and a locally obtained database. It has been found that the M-H edge

detector retains the shape information of the clusters, which is essential for

classification. Also it detected distributed microcalcifications more efficiently. Both

methods were found to be suitable for detecting subtle microcalcifications that could not

be detected by other methods.

8.2 Scope for further investigations

Mammographic abnormalities can be broadly classified into two groups:

microcalcifications and masses. Any system for automated detection of breast cancer

will be incomplete if it does not take into consideration the detection of these two types

of abnormalities. In this thesis, only the detection of microcalcification is taken care of.

Efficient mass detection schemes are to be developed in order to make this a useful tool
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for the radiologists. Additionally, techniques are to be developed for considering

multiple types ofabnormalities in the same mammogram.

Classification of the detected abnormalities into benign and malignant groups is

another important function required from an automated system for detection of breast

cancer. Studies have shown that prior knowledge about the breast tissue type has

increased the sensitivity of detection of lesions. Hence, classification of mammographic

images based on the underlying texture contained within the breast tissue can also be

attempted.

The generation of a database containing ample number of mammograms

depicting various types of abnormalities as well as nonnal mammograms at various

resolutions can be done as an extension to this work.



Appendix A

Line Detection Algorithm ‘

A.1 Introduction - ‘
Linear structure detection is often a very important preprocessing step in image

processing and computer vision, for applications such as feature extraction, pattern

recognition, and image enhancement. Many line detection algorithms extract local

edges first and then fonn lines based on various grouping criteria. However, they do not

distinguish between edges resulting from lines and object boundaries [247]. Hough

transfonn, the most widely used technique for detecting lines in binary images do not

provide locations of lines and are not suitable for grayscale images. Hence a line

detection algorithm based on a new line model is considered here for detection of

normal linear markings in mammograms.

Normal linear markings in mammograms are the shadows of ducts and

connective tissue elements that tend to radiate from the nipple toward the chest wall.

They usually appear slightly curved, but over short segments, can be considered as

straight line segments of dimensions 1 to 2 mm or greater and having varying width of

0.1 to 1mm. They may have very low contrast.
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For detecting lines with varying width and low contrast, it is assumed that the

most basic characteristic of a line, regardless of its thickness, is that pixels on it have

similar gray levels. In other words, ifa pixel belongs to a line, then there exists a string

of pixels along the direction ofthe line with similar gray levels. A line can be perceived

if its surrounding region has different gray levels from those of the pixels on the line.

Also, it is assumed that the length of a line is always greater than its width.

A.2 Detection Algorithm

As described above, the basic characteristic of a line is that pixels on it have similar

gray levels. A good measure of gray level similarity among pixels is the standard

deviation. Let (i, j) be the spatial location in the image at row i and column j, f (i, j) be

the pixel gray level at (i,j), L (6, I) be a string ofpixels in direction Band oflength I and

NLW) be the number of pixels within L(t9, I). Then the standard deviation of pixel gray

levels in L(0, I) is

a<9,I)=\/N; Zt/<m.n>—f,.w_,,)2 Au)L(9_/) -1 m,neL(0,I)

where (m, n) .9 L(t9, 1) means that the string L(0, 1) passes through the pixel (m, n) and

f,_(,,_,)) is the average gray level of L(t9, I)

4 Zf(m.n> A<2>
N[,(0_/) m_nel.(0,l)

]1.(0_/) =

Let Li,j (t9, 1) = L(t9, 1) such that cr,_j. (6,1) = min(,J)e,W) a(t9,l). If pixel (i,j) belongs to

a line in the direction 6‘ and oflength greater than I, then 0” (0. ,1) is small. In the case

of an ideal line where all pixels on it have the same gray levels, 0” (0',l) = 0 does not

lead to the conclusion that (i,j) belongs to a line. It may lie in a uniform region instead.
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However, if(i,j) is in a unifonn region, then o',J(0',l) is small for all 0. lfwe take the

standard deviation of cr,_J.(0',l) with regard to Oand denote

2:

a’,i._,,(1)= j{a,_,(0,1)—E,_,(1))’}%d0 A(3)
0

Zn’

where E“ (1) = j{a,_, (0,1)2i}d9 A(4)0 If
Then a2au.n(1) is small for the case that (1,1) lies in a unifonn region. Based on the

above analysis, this line detector is capable of detecting lines of very different width

from single pixel wide up to I and lines of any length greater than 1. Detection of lines

with varying width is possible if the changes are slower than I and that of curves if they

can be approximated as lines of length greater than I over short segments.

In the actual implementation for any given 6 and I, there are NL(o_;) number of

strings passing through each pixel. Taking advantage of the fact that many L(t9, I) are

the same for neighboring pixels, we only need to consider one of the L(t9, [)5 for each

pixel (i, j). The steps to obtain o',_j (t9' ,1 ) can be implemented as follows:

1. Initiate cr,._/. (6l',l) to a large value for every pixel (i,j) in the image.

2. For each pixel (i, J), obtain 009, I) for the string L(6, I) that starts at (i , j).

3. Compare this o(6l, I) to every o',,.‘,,( 6, I) for every (m, n) z-:L(t9, I).

4. Replace a,,,_,,(0, I) with o(t9, I) if the latter is smaller.

Due to the spatial redundancy in images, we can obtain a good estiu.:n«:,i «rt

o'2a(;_,;(I) using a number of equally spaced 6 5. To make a binary decision as to

whether or not a pixel (i, j) belongs to a line, we need to threshold O'0(,J ,(l) and or,-J (I) .

Figure A.1 illustrates the different steps involved in the implementation of the detection

algorithm.
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lnput the image and
minimum length of lines!

i
For each pixel (ij) in the image draw all possible strings 0

length LL ((9, I) that passes through a certain direction 0

V

For each ,L (0, I) find the
standard deviation 0' (19, I)

l
Take 0,}, (0, I)=min{o(t9, I)}for all ((9, l).Smaller 0,-J (6, 1)
indicates larger probability that pixel (i,/') on a line in the

direction Band oflength 21

Take o',_,- (l)=min{a,-J-(6, [)}for all 0. Find the standard deviation 0'0,-J
Denote the corresponding €as ([)of 0,-B,-(0, I) for all 6

6,(L1’)

J
Large a,,~J-( I) and small m_,~(I) indicate the probability
that pixel (i,j) belonging to a line and 6(i,/') indicates the
direction ofthe line

Figure A. 1: Block diagram ofthe line detector
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