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Abstract-Modeling nonlinear systems using Volterra series is 
a century old method but practical realizations were hampered by 
inadequate hardware to handle the increased computational com­
plexity stemming from its use. But interest is renewed recently, 
in designing and implementing filters which can model much 
of the polynomial nonlinearities inherent in practical systems. 
The key advantage in resorting to Volterra power series for this 
purpose is that nonlinear filters so designed can be made to 
work in parallel with the existing LTI systems, yielding improved 
performance. This paper describes the inclusion of a quadratic 
predictor (with nonlinearity order 2) with a linear predictor 
in an analog source coding system. Analog coding schemes 
generally ignore the source generation mechanisms but focuses 
on high fidelity reconstruction at the receiver. The widely used 
method of differential pnlse code modulation (DPCM) for speech 
transmission uses a linear predictor to estimate the next possible 
value of the input speech signal. But this linear system do not 
account for the inherent nonlinearities in speech signals arising 
out of multiple reflections in the vocal tract. So a quadratic 
predictor is designed and implemented in parallel with the linear 
predictor to yield improved mean square error performance. The 
augmented speech coder is tested on speech signals transmitted 
over an additive white gaussian noise (AWGN) channel. 

Index Terms-DPCM, predictor, prediction error, quadratic 
filter, singular value decomposition, Volterra series. 

I. INTRODUCTION 

Prediction is an important signal processing operation that 
involves predicting the next value of a random variable or 
random process from the past N samples. Often, linear FIR 
filters that are modeled based on the knowledge of the second 
order statistics of the input signal is employed for this purpose. 
Although linear filters are simple in design and structure, they 
fail to account for the nonlinearities in the signal, forcing 
the need for nonlinear processing of signals. Though hard 
nonlinearities like saturation cannot be modeled, mild poly­
nomial nonlinearities in system input - output relations can be 
modeled by Volterra series. Although proposed a century back 
by Vito Volterra, it was not in use for a long time due to the in­
creased computational complexity and the lack of appropriate 
hardware to handle it. Recently, with greater computing power, 
there is renewed interest in polynomial signal processing based 
on Volterra series. It is a power series with a constant as 

the first term. The second term models the linear relationship 
between input and output. This is equivalent to the LTI system. 
The third term in the series models the quadratic nonlinearity; 
the fourth term models the cubic nonlinearity and so on. So 
this series has the added advantage that existing LTI systems 
can be augmented by adding parallel polynomial filters to yield 
improved performance. It is widely observed that much of the 
nonlinear behavior can be modeled with the quadratic term 
alone. This idea is extended to the design and implementation 
of a quadratic predictor that works in conjunction with a 
linear predictor for predicting speech samples in a differential 
pulse code modulation (DPCM) system. Differential pulse 
code modulation (DPCM) is a speech coding method[l] that 
relies on quantizing and encoding of the difference between 
the present sample and its predicted value. The conventional 
linear predictor employed for this purpose cannot account for 
the polynomial product terms in the speech signal arising from 
multiple reflections in the vocal tract. The quadratic filter that 
acts in parallel with the linear predictor gives improved mean 
square error (MSE) between the actual signal and the predicted 
value. 

II. DISCRETE VOLTERRA SERIES 

Although the theory of linear systems is very advanced and 
useful, most of the real life and practical systems are nonlinear. 
Mild polynomial nonlinearities can be modeled by Volterra 
power series. An Nth order Volterra filter [2], [3] with input 
vector x[n] and output vector y[n] is realized by 

00 N N N 

y[n] = ho + L L L ... L hr[nbn2, ... nr]. 

where r indicates the order of nonlinearity, with r = 1 

implying a linear system, r = 2 implying a quadratic system 
and so forth. hr[nb n2, ... nr] is the rth order Volterra kernel, 
identification [4], [5] of which is one of the key issues in 
polynomial signal processing. ho is the constant offset at the 
output when no input is present. The complexity of the kernel 
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can be considerably reduced by assuming homogeneity. Also 
the output y[n] is linear [6] with respect to the Volterra filter 
weights. Often, in practical systems, much of the nonlinearity 
is comprised of the quadratic components. So a quadratic filter 
together with a linear filter can account for the product terms 
due to multiple reflections encountered by voice signals. 

III. QUADRATIC VOLTERRA FILTER 

Efficient realization of polynomial filters is possible with 

r = 2, resulting in quadratic filters. For quadratic systems, (1) 
becomes 

N 
y[n] = ho + L hl [nl]x[n -nl] 

nl=l 
N N 

+ L L h2[nl,n2]x[n -nl]x[n -n2] 
nl=l n2=l 

or equivalently by the matrix equation, 

Y[n] = ho + XT[n]Hl + XT[n]H2X[n] 

where 

X[n] = [x(n) x(n -1) x(n-N + l)f 
Hl = [hl(O) h1(1) hl(N -l)f 

and 

h2(0,0) h2(0,1) h2(0,N -1) 
h2(1,0) h2(1,1) h2(1, N -1) 

H2= h2(2,0) h2(2,1) h2(2,N -1) 

(2) 

(3) 

(4) 

(5) 

h2(N -1,0) h2(N -1,1) ... h2(N -1,N -1) 
0) 

The third term in (2) can be understood as the output of a two 
dimensional linear filter H2[nl,n2] acting on X2[n] which is 
obtained by taking the kronecker product of X[n] with itself. 
The kronecker product results in a well-defined ordering of 
elements in X2[n]. The quadratic kernel coefficients h2[nb n2] 
are arranged in the matrix H 2 in such a manner that the 
location of h2 [nl, n2] is identical with the location of the input 
signal product x[n -nl]x[n -n2] in the matrix X2[n]. The 
total number of coefficients in X2[n] and H2[nl,n2] is N2. 
Hanlmerstein and wiener models are possible for its realiza­
tion. But this direct realization of the N x N Volterra kernel 
matrix H 2 is not feasible due to enormous computational 
complexity. However it can be made symmetric [2] and then be 
decomposed for efficient realizations. The symmetry condition 
reduces the number of independent coefficients to (Ntl). A 
few largest singular values of H 2 can be used to approximately 
represent it as H2 by singular value decomposition(SV D) 
[7]. Further reduction in complexity can be achieved by LU 

decomposition on H 2 to realize it as R number of FIR filters, 
followed by squarers, where R is the rank of H 2 which can be 
considerably less than N. Also, realizations which distribute 
multiplications and additions at the bit level are possible for 
quadratic filters [8], [9]. 

IV. LINEAR AND QUADRATIC PREDICTORS 

A linear predictor is essentially an FIR filter described by 

N-l 
y[n] = L hl [nl]x[n -nl] (7) 

n=O 

The coefficients hl [i] are obtained by solving the normal 
equations 

p 

L hf(l)Rx(l-k) = 0; l = 1,2"" ,p (8) 
k=O 

Here Rx is the autocorrelation matrix of x. A quadratic filter 
based on the minimum mean square error(MMSE) criterion is 
included in parallel with the linear predictor to yield improved 
performance. For the quadratic Volterra filter in (2), let s[n] be 
the desired response(in this case, it is the predicted value of 
the input speech signal m(t)) and let h2(nb n2) = h2(n2, nl). 
The latter condition can be easily achieved by adjusting the 
elements of H2• The mean square error (MSE) e between the 
zero mean gaussian stationary signals s[n] and y[n] 

e = E[ls[n] -y[nW] (9) 

The fact that for an unbiased output E[y[nlJ = 0, leads to 

N-l N-l 
ho = - L L h2[nl,n2]rx[nl -n2] (10) 

nl=On2=O 

where r x is the autocorrelation function of x. Combining (2) 
and (10) 

N-l N-l N-l 
y[n] = L hl[nl]x[n -nl] + L L h2[nbn2] 

x (x[n -nl]x[n -n2]-rx[nl -n2]) (11) 

Equation (11) can be rewritten as 

y[n] = H[X[n] + tr(H2{X[n]XT[n]-Rx}) (12) 

The linear and quadratic coefficient matrices can be solved [6] 
based on minimum mean square error criterion as 

Hl = R;lRsx 
1 H2 = 'iR;lTsxR;l 

(13) 

(14) 

Where Rsx is the cross correlation matrix between s( n) and 
x ( n) and Tsx is the N x N cross bicorrelation matrix whose 
[nl, n2]th element tsx given as 

tsx [nb n2] = E{ s[n]x[n -nl]x[n -n2]} (15) 

Singular value decomposition can be done on H2 for the ease 
of implementaion as 

(16) 

{di; i = 1,2··· K} are the largest K eigen values and Si 
is the ith singular value of H2• The value of K is selected 
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Fig. I. Implementation of quadratic kernel fh using singular value 
decomposition 

such that the Frobenius norm II H 2 -H 211 is minimized. As K 
can be significantly less than rank R there is great reduction 
in computational complexity and memory requirements. The 
approximation in (16) is realized as K FIR filters followed 
by squaring stages, the ouptputs which are combined linearly. 
The implementation is as depicted in Fig. 1. 

V. DPCM SY STEM WITH NONLINEAR PREDICTOR 

Temporal waveform coding methods are used for reproduc­
ing a source waveform output at the destination with as little 
distortion as possible. It is the usual practice to ignore the 
mechanism that generates the waveform and focus on its repro­
duction with high fidelity at the receiver. In differential pulse 
code modulation(DPCM) transmitter, the difference between 
the Nth speech sample and the sample value predicted from the 
past p samples, is quantized and encoded. This system requires 
fewer bits per sample and needs a logarithmic quantizer as the 
differences to be quantized are far smaller than the samples 
themselves. The system invariably uses a linear predictor, the 
performance of which in presence of polynomial components, 
can be improved by the inclusion of a Volterra quadratic 
predictor as shown in Fig. 2. It can be implemented as a lattice 
structure [10], as a direct form realization or an approximation 
of the latter. 

The symbols are transmitted over an additive white gaussian 
(AWGN) channel of different noise variances. The receiver in 
Fig. 3 incorporates an identical nonlinear predictor as in the 
transmitter. 

as 
The optimum mean square prediction errror(eopt) is given 

1 
eopt = rs(O) -R;xR;l Rsx -2tr[R;lTsxR;lTsxl (17) 

The first two terms in (17) are equal to the MSE of the 
optimum linear filter and the third term is the improvement in 
MSE in using the quadratic predictor. The modified predictor 
is implemented with LabVIEW-8.6 and tested with speech 
samples. The mean square error is compared with that of linear 
predictor. This is as depicted in Fig. 4. The dotted curve shows 

Input signal 
mit) 

t----�----:-l+ + 

Fig. 2. DPCM transmitter incorporating quadratic predictor 

n(l) 

Received 
Speech Output 

Fig. 3. AWGN channel and DPCM receiver incorporating quadratic predictor 

the MSE with a quadratic predictor. The lower prediction error 
with a quadratic predictor leads to better speech reception at 
the DPCM receiver. 

V I. EXPERIMENT 

A quadratic Volterra predictor, with kernel H2, based on 
minimum mean square error criterion is designed for use in 
conjunction with a linear predictor for estimating a speech 
sample from its previous samples in a DPCM system. The 
Volterra kernel H2 is subjected to singular value decompo­
sition to yield an approximate kernel H2. Initial simulations 

- Nonlinear Predictor 
- - Linear Predictor 
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the MSE with a linear predictor and the solid curve indicates Fig. 4. Comparison of prediction error for linear and quadratic predictors 
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Fig. 5. Output of DPCM receiver for noise variance CTJ.r = 2 

BOOi==========:=r==;====;=:::I]1 
Input speech 

Fig. 6. Output of DPCM receiver for noise variance CTJ.r = 5 

with random signals are done using Python with scipy, numpy 
and pylab modules imported. With favorable results, the imple­
mentation of DPCM system with Volterra predictor is done on 
LabVIEW-8.6. Testing is done with six thousand samples of 
speech. It is observed from Fig. 4 that the quadratic predictor 
models the nonlinearities in speech signal better than the 
linear counterpart. It is also observed that the DPCM system 
modified by the inclusion of quadratic predictor has a better 
prediction error performance. An A WGN channel is realized 
in Lab VIEW and the coded speech samples are transmitted 
over it for different noise variances. Fig. 5 shows the output 
of the modified DPCM receiver along with the original speech 
sample with channel noise variance (JJv = 2.The impairment 
to speech reception increases as the channel noise variance 
increases. Figs. 6 and 7 show the degradation in signal 
reception as the channel noise variance rises to (JJv = 5 and 
(JJv = 10 respectively. This leads to poor reception at large 
noise variances. 

V II. CONCLUSION 

The quadratic Volterra predictor is designed and tested with 
random signals of uniform and gaussian statistics and with 
speech samples. Typical normalized mean square prediction 
error values are in Table I. It indicates a reduced mean square 

Fig. 7. Output of DPCM receiver for noise variance CTJ.r = 10 

TABLE I 
COMPARISON OF MEAN SQUARE PREDICTION ERROR FOR LINEAR AND 

QUADRATIC PREDICTORS 

Input signal MSE MSE 

(Linear) (Quadratic) 
Uniform random 0.32 0.26 

Gaussian random 0.44 0.39 

Speech signal 0.71 0.65 

prediction error with a quadratic system especially for speech 
signals. 

An approximate predictor kernel is implemented using 
singular value decomposition and is used in parallel with 
the linear predictor in a DPCM system. The new speech 
coder is observed to have a lower mean square error than the 
conventional DPCM, leading to better quality audio output at 
the receiver. 

REFERENCES 

[I] John. G. Proakis, Digital Communication, Mc Graw Hill, New Delhi, 
1998,pp. 15-64. 

[2] V. John Mathews and Giovanni L. Sicuranza, Polynomial Signal Pro­
cessing, John Wiley and Sons Inc., New York, 2000. 

[3] P. Alper, " A consideration of discrete Volterra series," IEEE Trans. on 
Automat. Contr., vol. 10, pp. 322-327, July 1965. 

[4] S. Y. Fakhouri, "Identification of the Volterra kernels of nonlinear 
systems", lEE PROC., vol. 127, No. 6, pp. 296-304, Nov. 1980. 

[5] Robert D. Nowak and Barry D. Van Veen, "Random and pseudorandom 
inputs for Volterra filter identification", IEEE Trans. Signal Processing, 
vol.42, No. 8, pp-2124-2135, Aug. 1994. 

[6] Taiho Koh and Edward 1. Powers, "Second order Volterra filtering and 
its application to nonlinear system identification", IEEE Trans.Acoust., 
Speech, Signal Processing. vol. ASSP-33, No. 6,pp-1445-1455, Dec. 
1985. 

[7] F. R. Gantmacher, T he Theory of Matrices, Chelsea, New York, 1960. 
[8] A. Peled and B. Liu, "A new hardware realization of digital filters", 

IEEE Trans.Acoust .. Speech. Signal Processing. vol. ASSP-22, pp-456-
462, Dec. 1974. 

[9] Hsing-Hsing Chiang, Chrysostomos L. Nikias, and Anastasios N. Venet­
sanopoulos, "Efficient implementations of quadratic digital filters", IEEE 
Trans.Acoust., Speech. Signal Processing, vol. ASSP-34, No. 6, pp-151l-
1528, Dec. 1986. 

[10] Hari V. S. , Jagathy Raj V. P. and Gopikakumari R., "Volterra seies based 
quadratic predictor for speech signals", PROC. International Con! on 
Contr.,Communication and Computing. pp-300-303, Feb. 2010. 

569 


