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Abstract—The paper summarizes the design and implementa-
tion of a quadratic edge detection filter, based on Volterra series,
for enhancing calcifications in mammograms. The proposed
filter can account for much of the polynomial nonlinearities
inherent in the input mammogram image and can replace the
conventional edge detectors like Laplacian, gaussian etc. The
filter gives rise to improved visualization and early detection of
microcalcifications, which if left undetected, can lead to breast
cancer. The performance of the filter is analyzed and found
superior to conventional spatial edge detectors.

Index Terms—Breast cancer, microcalcifications, Mammo-
gram, quadratic filter, singular value decomposition, Volterra
series.

I. INTRODUCTION

Breast cancer is the second leading cause of cancer deaths

in women. Though cure at an advanced stage is difficult, early

detection and treatment can cure breast cancer completely.

The screening and diagnosis are based on noninvasive imaging

of breast that can help visualizing the microcalcifications

leading to breast carcinoma. The primary imaging technique

for visualizing pathological disorders in breast is digital

mammography. Often mammograms tend to be of low

contrast and noisy and miss around 10% of cancerous lesions

which can lead to mortality at a later stage. In young women,

the breast tissue is dense and even digital mammography

can miss cancerous lesions [1]. It is imperative that contrast

enhancement is a critical step before radiological analysis.

Conventional edge detection filters like Laplace, Sobel, [2]

Laplacian of Gaussian(LoG) filter [3] are employed to detect

lesions. Wavelet based multiresolution analysis is used as a

tool for detection of microcalcifications [4]. Histogram method

for local contrast enhancement [5] has been reported for

the detection of calcifications. Multilevel thresholding based

segmentation is used for detecting masses in mammograms

[6]. Various image enhancement techniques for the detection of

calcifications [7] is also reported. These methods often suffer

from poor edge resolution especially in presence of noise.

Under such conditions, polynomial filters [8] are observed to

perform better in detecting edges with high enough resolution.

By nature, images are formed by nonlinear processes and

human vision is inherently nonlinear. So image processing and

analysis by polynomial methods become a natural alternative.

It has been observed that much of the nonlinearities can be

modeled by the quadratic term alone. Although the idea of

modeling nonlinearities by power series was proposed a cen-

tury back by Vito Volterra, [9] the practical applications were

hampered by the large computational complexity. Recently,

with increase in computational resources, interest is renewed

in Volterra systems for signal and image processing. The pro-

posed work is in implementing a quadratic Volterra filter [10]

for enhancing calcifications present in noisy mammograms

which remains invisible in conventional image enhancement

schemes. [11]

II. DISCRETE VOLTERRA SERIES

Although the theory of linear systems is very advanced and

useful, most of the real life and practical systems are nonlinear.

Mild polynomial nonlinearities can be modeled by Volterra

power series. An N tℎ order Volterra filter [9], [10] with input

vector x[n] and output vector y[n] is realized by

y[n] = ℎ0 +
∞
∑

r=1

N
∑

n1=1

N
∑

n2=1

⋅ ⋅ ⋅
N
∑

nr=1

ℎr[n1, n2, . . . nr].

x[n− n1]x[n− n2] ⋅ ⋅ ⋅x[n− nr] (1)

where r indicates the order of nonlinearity, with r = 1
implying a linear system, r = 2 implying a quadratic system

and so forth. ℎr[n1, n2, . . . nr] is the rth order Volterra kernel,

identification [12], [13] of which is one of the key issues in

polynomial signal processing. ℎ0 is the constant offset at the

output when no input is present. The complexity of the kernel

can be considerably reduced by assuming homogeneity. Also

the output y[n] is linear [14] with respect to the Volterra filter

weights. Often, in practical systems, much of the nonlinearity

is comprised of the quadratic components. It is thus proposed

that a two dimensional quadratic filter can model and process

inherent nonlinearites in medical images.
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III. TWO DIMENSIONAL DISCRETE QUADRATIC

VOLTERRA SYSTEM

The two dimensional quadratic system with input x[n1, n2]
and output y[n1, n2] is governed by the equation

y[n1, n2] =

N1−1
∑

m11=0

N2−1
∑

m12=0

N1−1
∑

m21=0

N2−1
∑

m22=0

ℎ1[m11,m12,m21,m22]

×x[n1 −m11, n2 −m12]x[n1 −m21, n2 −m22]
(2)

Equation (2) can be represented in the matrix form as

y[n1, n2] = X
T [n1, n2]H2X[n1, n2] (3)

The quadratic kernel H2 has N1N2×N1N2 elements and each

element consists of N2
2 submatrices H(i, j) with N1 × N2

elements given as

⎡

⎢

⎢

⎢

⎣

H(0, 0) H(0, 1) ⋅ ⋅ ⋅ H(0, N2 − 1)
H(1, 0) H(1, 1) ⋅ ⋅ ⋅ H(1, N2 − 1)

...
...

. . .
...

H(N2 − 1, 0) H(N2 − 1, 1) ⋅ ⋅ ⋅ H(N2 − 1, N2 − 1)

⎤

⎥

⎥

⎥

⎦

where each submatrix H(i, j) is given by

H(i, j) =

⎡

⎢

⎢

⎢

⎣

ℎ(0, i, 0, j) ⋅ ⋅ ⋅ ℎ(0, i, N1 − 1, j)
ℎ(1, i, 0, j) ⋅ ⋅ ⋅ ℎ(1, i, N1 − 1, j)

...
...

...

ℎ(N1 − 1, i, 0, j) ⋅ ⋅ ⋅ ℎ(N1 − 1, i, N1 − 1, j)

⎤

⎥

⎥

⎥

⎦

(4)

The principal issues in Volterra systems are the identification

of the kernel H2 [12], [13], [14] and its computationally

efficient implementation. Unlike in linear filtering there are

no general design methods for finding H2. Design of two

dimensional kernels for specific applications can be done using

methods like optimization, bi-impulse response method [15]

etc. The current work uses optimization of mean square error

using Powell method. The second step is in realizing the

kernel with minimum computational complexity [16], [17].

The equation (3) can be viewed as a filtering operation on the

kronecker product of X[n1, n2] with itself by the filter kernel

H2 . A feasible implementation can be done with appropriate

decomposition of H2 like LU or SVD decomposition.

IV. METHODOLOGY

The scheme of work is as depicted in Fig. 1. In the first

phase of work, the quadratic kernel H2 required is designed

using optimization method. As the direct implementation of

H2 is not computationally feasible, an approximate realzation

using singular value decomposition is performed in the second

phase. These steps are outlined in Sec. V. The filter with the

structure shown in Fig. 3 is tested with known images. Once

the performance is found satisfactory, the filter is applied to

mammogram images. The results are summarized in Sec. VII

Design of

H2

SVD 
Implement-
ion of H2
as H2

~

Testing

of H2
~

Application 

to mammo-

grams

Fig. 1: Scheme of work
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1

n2

2

2

2

1

1

Fig. 2: Wireframe plot of the quadratic kernel

V. DESIGN AND IMPLEMENTATION OF QUADRATIC

MAMMOGRAM ENHANCEMENT FILTER

It is proposed that a quadratic filter can enhance the

edges better than Laplacian or LoG filter. The principal

issue in employing a quadratic filter is the identification

of its kernel H2. Powell optimization [18] is used for ob-

taining H2 as this algorithm has a fast rate of conver-

gence. A blunt synthetic edge added with noise denoted as

xtest[n1, n2] of 9 × 9 dimension is simulated. A desired

sharp synthetic edge xref [n1, n2] of identical dimension is

also simulated. Assume that the output of the quadratic filter

ytest[n1, n2] = X
T
test[n1, n2]H2Xtest[n1, n2]. The output

of the filter for the input xref [n1, n2] is yref [n1, n2] =
X

T
ref [n1, n2]H2Xref [n1, n2]. Then the sharpness of the edges

at the output of the filter with respect to the reference image

at the output is mathematically modeled as below.

A. Crispness of Edges

The sharpness of edges in the filtered outputs ytest[n1, n2]
and yref [n1, n2] is decided by a numerical figure of merit [19]

of the filter is given as

� =
1

N1N2

∑

n1

∑

n2

∣�2
l[n1,n2]test

− �2
l[n1,n2]ref

∣

�2
l[n1,n2]ref

�l[n1,n2]ref

(5)

�2
l[n1,n2]test

is the localized variance (here a 3×3 pixel window

is used to match the size of the filter mask) of the test image

and �2
l[n1,n2]ref

is that of the reference image. The localized

mean of the reference image is �l[n1,n2]ref . The parameter �

should be zero when the edges at the output are unaffected and

it increases monotonically as degradation of edges increases.

A low value of this parameter is a direct indicator of the

sharpness of the periphery of the calcification. Now � is

minimized using Powell method and the solution for H2 for
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λ1

λ2

λρ

 

x[n1,n2] y[n1 ,n2]FIR1

(3 × 3)

FIR2

(3 × 3)

(3 × 3)
FIRρ

Fig. 3: Realization of H2 by singular value decomposition

TABLE I: Table of singular values and singular vectors of H2

�i S1 S2 S3 S4

3.2783 -0.3333 -0.3333 -0.3333 -0.3333
2.9284 -0.0570 0.4337 -0.3768 -0.0570
2.9284 0.4680 -0.1846 -0.2833 0.4680
2.8494 -0.0388 0.2723 0.4559 0.4262
2.8494 -0.4698 -0.3848 -0.1199 0.2013
2.8467 0.09977 -0.2513 0.3726 -0.4489
2.8467 -0.4607 0.3988 -0.2888 0.1440
2.7422 0.4690 0.0344 -0.4570 -0.1931
2.7422 -0.0478 -0.4702 -0.1155 0.4300

S5 S6 S7 S8 S9

-0.3333 -0.3333 -0.3333 -0.3333 -0.3333
0.4337 -0.3768 -0.0570 0.4337 -0.3768
-0.1846 -0.2833 0.4680 -0.1846 -0.2833
0.1971 -0.1243 -0.3875 -0.4694 -0.3317
0.4282 0.4547 0.2685 -0.0434 -0.3350
0.4711 -0.4364 0.3491 -0.2197 0.0638
0.0182 -0.1783 0.3168 -0.4171 0.4671
0.3900 0.3286 -0.2759 -0.4244 0.1285
0.2649 -0.3381 -0.38225 0.2053 0.4536

minimum � is ascertained. The kernel H2 is plotted as in

Fig. 2 and is indicative of edge detection characteristics. A

direct implementation as in (3) is computationally complex.

Instead SVD decomposition [20] is performed on H2 to yield

an approximation H̃2 as

H̃2 =

�
∑

i=1

�iSiS
T
i (6)

where �i are the singular values and each Si is a 9× 1 eigen

vector. The singular values and singular vectors of H2 are

tabulated in Table I. The value of � is selected in such a manner

that the Frobenius norm ∣∣H2 − H̃2∣∣ is minimum. Each Si

can be resized as a 3× 3 FIR image filter that is equivalent to

H(i, j) in equation (4). The outputs of FIR filters are squared

and a weighted sum with �i values yields the filter output.

The structure of the filter is as in Fig. 3.

VI. EXPERIMENT

The filter kernel H̃2 designed in the last section is simu-

lated in Python with the help of scipy and pylab modules.

The noisy mammograms are imported into Python using the

image processing toolbox and subjected to filtering by H̃2.

The filtered images are compared with those processed by

spatial edge detectors like Laplacian, Canny, Laplacian of

gaussian(LoG) and Prewitt filters in terms of visual quality

and edge crispness and improvement in SNR and PSNR. The

results of the experiments are in Sec. VII.

VII. RESULTS AND DISCUSSION

The quadratic filter implemented as in Fig. 3 is tested with

mammogram inputs. The results are as in Fig. 4. The input

mammogram in Fig. 4a contains the noise contributed by

the soft breast tissue that obscures the whiter hard regions

of calcification. The enhancement of calcifications by Gabor

filter as shown in Fig. 4b is but marginal. The breast tissue still

remains visible and the exact edges of calcifications remain

obscure. Gabor filter suffers from poor noise invulnerability.

Laplacian of Gaussian (LoG) filter yields the output as shown

in Fig. 4e. Although LoG is more invulnerable to additive

noise it still cannot obscure the background tissue. The

Prewitt filter whose output is as in Fig. 4d does not enhance

the image at all. A Canny edge detector with a thresold of 50
yields the output as in Fig. 4c. Here the calcifications are not

discernible. Fig. 4f shows the output of the quadratic filter.

Here it is seen that the background tissue is not very visible.

Besides, the calcifications are enhanced with clearly defined

peripheries. A zoomed view shown in Fig. 6 indicates the

sharp edges of calcifications.

A. Improvement in signal to noise ratio and peak signal to

noise ratio

The improvement in signal to noise ratio and peak signal

to noise ratio are computed as per the experimental setup in

Fig. 5. Identical mammogram images are filtered by quadratic,

LoG, Prewitt and Laplacian filters. The input image is taken

as the reference image. The SNR is expressed as

SNR = 10 log10

[

∑

n1

∑

n2

r2[n1,n2]

∑

n1

∑

n2

[r2[n1,n2]
− t2[n1,n2]

]

]

(7)

The peak value of the SNR is expressed as

PSNR = 10 log10

[

max (r2[n1,n2]
)

1
N1N2

∑

n1

∑

n2

[r2[n1,n2]
− t2[n1,n2]

]

]

(8)

where r denotes the reference image and t denotes the test

image. N1N2 is the size of the image. The SNR and PSNR

values for various filters are tabulated in Table II. It can be

seen that the quadratic filter offers ≈ 10 db improvement

over the LoG filter. Laplacian, Prewitt and Canny do offer

much improvement in SNR.
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(a) Input mammogram (b) Output of Gabor filter

(c) Output of Canny edge detection filter (d) Output of Prewitt filter

(e) Output of LoG filter (f) Output of quadratic filter

Fig. 4: Outputs of various filters for the given input mammogram
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Input

mammogram

Edge 

Detection

Filter

of SNR and

PSNR

Comparison

Reference
Image

Quadratic/
Laplacian /
Prewitt/

LoG kernels

Fig. 5: Experimental set up for measuring SNR and PSNR

Fig. 6: Zoomed image of calcifications rendered by the

quadratic filter

Table III shows the time taken for performing the compu-

tation on 1024×1024 size mammogram image. It is observed

that Gaussian filter has the least computational complexity

but it does not enhance the calcifications as a quadratic

filter does. Similar is the case with a Gabor filter. Laplacian

filter has the largest time of computation. Quadratic filter

has a computation time of 2.4 second with calcifications

enhanced.The approximate realization based on singular value

decomposition reduces the complexity of implementation.

VIII. CONCLUSION

A quadratic filter based on Volterra power series is designed

based on the optimization of the edge crispness function.

The filter kernel so developed is implemented by singular

value decomposition. The filter is tested for its edge enhance-

ment characteristics with mammograms and is observed to

enhance the calcifications, obscuring the background noise

TABLE II: Comparison of SNR and PSNR for various filters

Filter SNR(db) PSNR(db)

Quadratic 19.14 25.4

LoG 10.63 16.9

Laplacian 0.76 2.02

Prewitt 0.11 3.67

TABLE III: Time of computation in seconds for various image

filters

Image Laplacian LoG Gabor Quadratic
Size (SVD)

(Pixels)

1024× 1024 5.38 0.09 0.24 2.40

due to the breast tissue. The periphery of calcifications is

more pronounced than that rendered by conventional edge

detection filters. Also, the quadratic filter is observed to have

an optimum computational complexity.
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