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Murcia, Spain
2Cochin University of Science and Technology, Cochin, Kerala, India

In this article, we study some relevant information divergence measures viz. Renyi
divergence and Kerridge’s inaccuracy measures. These measures are extended to con-
ditionally specified models and they are used to characterize some bivariate distributions
using the concepts of weighted and proportional hazard rate models. Moreover, some
bounds are obtained for these measures using the likelihood ratio order.

Keywords Renyi divergence measure; Kerridge’s inaccuracy measure; Conditionally
specified model; Weighted model; Proportional hazard rate; Likelihood ratio order.

Mathematics Subject Classification 62N05; 62B10.

1. Introduction

Measures of divergence are used as a way to evaluate the distance (divergence) between
two populations or functions. They have a very long history initiated by the pioneer works
of Pearson, Mahalanobis, Levy, and Kolmogorov. There are many discrimination measures
available in the literature. Renyi’s information divergence of order α is one of the most
popular discrimination measures available in the literature (see, for example, Renyi, 1961;
Asadi et al., 2005a, b; Abbasnejad and Arghami, 2010; and the references therein) and
plays an important role in information theory, reliability and other related fields.

Let X and Y be two absolutely continuous, non negative random variables with common
support (l,∞) for l ≥ 0 that describe the lifetimes of two items. Denote by f , F, and F

the probability density function (pdf), cumulative distribution function (cdf), and survival
(or reliability) function (SF) of X, respectively, and by g, G, and G, the corresponding
functions of Y . Then Renyi’s information divergence of order α between X and Y is defined
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1940 Navarro et al.

(see Renyi, 1961) by

IX,Y = 1

1 − α
ln

∫ ∞

l

f α(x)g1−α(x)dx

for α such that 0 < α �= 1.
However, in many applied problems viz., reliability, survival analysis, economics,

business, actuary, etc., one might have information about the current age of the systems,
and thus the available information is dynamic. In particular, consider an item under study
with lifetime X, then information about the residual (or past) lifetime (X − t |X > t) (resp.
(t − X|X < t)) is an important task in many applied problems. Then the discrimination
information function between two residual lifetime distributions based on Renyi’s infor-
mation divergence of order α (see Asadi et al., 2005a) is given by

IX,Y (t) = 1

1 − α
ln

∫ ∞

t

f α(x)

F
α
(t)

g1−α(x)

F
1−α

(t)
dx

for 0 < α �= 1. Note that IX,Y (t) = IXt ,Yt
, where Xt = (X−t |X > t) and Yt = (Y−t |Y > t)

are the residual lifetimes associated with X and Y . A similar function obtained in terms of
the inactivity times (t − X|X < t) and (t − Y |Y < t) is available in Asadi et al. (2005b)
(see also Maya and Sunoj, 2008).

Recently, the inaccuracy measure due to Kerridge (1961) is also widely used as a useful
tool to measure the inaccuracy between two random variables X and Y . It is given by

KX,Y = −
∫ ∞

l

f (x) ln g(x)dx.

It can be expressed as

KX,Y = H (X, Y ) + H (X),

where H (X, Y ) = ∫ ∞
l

f (x) ln(f (x)/g(x))dx is the Kullback-Leibler divergence between
X and Y and H (X) = − ∫ ∞

l
f (x) ln f (x)dx is the measure of entropy of X.

Taneja et al. (2009) introduced a dynamic version of Kerridge’s measure, given by

KX,Y (t) = −
∫ ∞

t

f (x)

F (t)
ln

g(x)

G(t)
dx.

Note that KX,Y (t) = KXt ,Yt
. Clearly, when X = Y , KX,X(t) becomes the popular dynamic

measure of uncertainty (residual entropy) due to Ebrahimi (1996). Some characterization
results based on KX,X(t) were given in Belzunce et al. (2004). A similar expression for the
inactivity times is available in Kumar et al. (2011).

Cox’s Proportional Hazards Rate (PHR) model is the most widely used semi-parametric
model in survival studies. Two random variables X and Y and with common support (l,∞)
satisfy the PHR model when

hY (t) = θhX(t)

for all t ≥ l, where θ > 0 and hY = g/G and hX = f/F are the respective failure (or

hazard) rate functions. Equivalently, X and Y satisfy the PHR model when G(t) = F
θ
(t)

for all t ≥ l (see Cox, 1959).
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Characterizations from Information Measures 1941

The concept of weighted distributions was introduced by Rao (1965) in connection
with modeling statistical data in situations where the usual practice of employing standard
distributions was not found appropriate. Associated to a random variable X with pdf f and
to a nonnegative real function w, the pdf of the weighted random variable Xw can be defined
as

f w(x) = w(x)f (x)

E(w(X))

whenever 0 < E(w(X)) < ∞. For recent works in this area we refer to Navarro et al.
(2006), Blazej (2008), Bartoszewicz (2009), Maya and Sunoj (2008), Navarro and Sarabia
(2010), Sunoj and Sreejith (2012) and the references therein.

Specification of the joint distribution through conditional densities has been an im-
portant problem considered by many researchers. This approach of identifying a bivariate
density using the conditionals is called the conditional specification of joint distribution
(see Arnold et al., 1999). These models are often useful in two component reliability sys-
tems where the operational status of one component is known. For more recent works on
conditionally specified models, we refer to Sunoj and Sankaran (2005), Kotz et al. (2007),
Navarro and Sarabia (2010), Sunoj and Linu (2012), and the references therein.

In Navarro et al. (2011), some characterizations of bivariate models using extensions of
the dynamic Kullback-Leibler discrimination measures to conditionally specified models
are obtained. In the present article, Renyi divergence and Kerridge’s inaccuracy measure
for residual (past) lifetimes are extended to conditionally specified models and they are
used to characterize some bivariate distributions. The concept of proportional hazard rate
models and weighted distributions are also used to characterize some bivariate distributions.
Moreover bounds for these measures are obtained by using the likelihood ratio order. The
results for Renyi divergence are given in Sec. 2 and that for Kerridge’s inaccuracy measure
in Sec. 3.

2. Characterizations Using Renyi Divergence Measure

Let (X1, X2) and (Y1, Y2) be two bivariate random vectors with common support
(l,∞) × (l,∞) for l ≥ 0. The joint pdf and sf of (X1, X2) are denoted by f and F and
that of (Y1, Y2) by g and G, respectively. Consider the conditionally specified random vari-
ables (Xi |Xj = t) and (Yi |Yj = t) for i, j = 1, 2, i �= j . Their pdf and sf are denoted by
fi(s|t), F i(s|t), gi(s|t),Gi(s|t), respectively, for i = 1, 2. Then we define the conditional
Renyi’s discrimination information (CRDI) functions as

IXi,Yi
(s|t) = 1

1 − α
ln

∫ ∞

s

f α
i (x|t)

F
α

i (s|t)
g1−α

i (x|t)
G

1−α

i (s|t)
dx (1)

for i = 1, 2 and s, t ≥ l. Note that IXi,Yi
(s|t) = I(Xi |X3−i=t),(Yi |Y3−i=t)(s) for i = 1, 2. Hence,

(1) provides dynamic information on the distance between the conditionally specified
random variables.

The PHR model is extended to conditional models as follows. The random vectors
(X1, X2) and (Y1, Y2) satisfy the conditional proportional hazard rate (CPHR) model (see
Sankaran and Sreeja, 2007) when the corresponding conditional hazard rate functions of
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1942 Navarro et al.

(Xi |X3−i = t) and (Yi |Y3−i = t) satisfy

h(Yi |Y3−i=t)(s|t) = θi(t)h(Xi |X3−i=t)(s|t) (2)

for i = 1, 2 and s, t ≥ l, where θ1(t) and θ2(t) are positive functions of t. Then we have the
following result.

Theorem 2.1. For i = 1, 2 and 0 < α �= 1, the function IXi,Yi
(s|t) only depends on t if,

and only if, (Xi |X3−i = t) and (Yi |Y3−i = t) satisfy (2).

Proof. For i = 1, let us suppose that (X1|X2 = t) and (Y1|Y2 = t) satisfy (2). Then their

survival functions satisfy G1(s|t) = F
θ1(t)
1 (s|t). Hence, from (1), we get

IX1,Y1 (s|t) = 1

1 − α
ln

θ1−α
1 (t)

(1 − α)θ1(t) + α

whenever (1 − α)θ1(t) + α > 0. Then IX1,Y1 (s|t) only depends on t. The proof for i = 2 is
similar.

Conversely, if i = 1, let us suppose that IX1,Y1 (s|t) only depends on t for some 0 <

α �= 1. Then,

1

1 − α
ln

∫ ∞

s

f α
1 (x|t)

F
α

1 (s|t)
g1−α

1 (x|t)
G

1−α

1 (s|t)
dx = A1(t),

say or, equivalently,∫ ∞

s

f α
1 (x|t)g1−α

1 (x|t)dx = B1(t)F
α

1 (s|t)G1−α

1 (s|t),

where B1(t) = exp((1 − α)A1(t)). Differentiating with respect to s we get

1

B1(t)
= αφα−1

1 (s|t) + (1 − α)φα
1 (s|t),

where φ1(s, t) = h(Y1|Y2=t)(s|t)/h(X1|X2=t)(s|t). Differentiating again with respect to s we
get

0 = α(α − 1)φα−2
1 (s, t)(1 − φ1(s, t))

∂

∂s
φ1(s, t).

As α(α − 1) �= 0, we have ∂
∂s

φ1(s, t) = 0 and hence φ1(s, t) = θ1(t). Therefore, (2) holds
for i = 1. The proof for the case i = 2 is similar. �

Now we consider a random vector (Xw
1 , Xw

2 ) which has a bivariate weighted distribution
associated with (X1, X2) and to two nonnegative real functions w1 and w2, that is, its joint
pdf is given by

f w(x1, x2) = w1(x1)w2(x2)f (x1, x2)

E(w1(X1)w2(X2))
,

where f is the joint pdf of (X1, X2) and 0 < E(w1(X1)w2(X2)) < ∞. With this definition it
is easy to see that the marginal random variable Xw

i has the (univariate) weighted distribution
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Characterizations from Information Measures 1943

associated with Xi and

w∗
i (xi) = wi(xi)E(w3−i(X3−i)|Xi = xi)

for i = 1, 2 (note in passing that there is a typo in this comment in Navarro et al., 2011).
Analogously, it is easy to prove that (Xw

i |Xw
3−i = t) has the (univariate) weighted distribu-

tion associated with (Xi |X3−i = t) and wi(xi) for i = 1, 2. Particularly, when w1(x1) = x1

and w2(x2) = x2, the random vector (Xw
1 , Xw

2 ) is called the length biased random vector.
The details and other ways of defining the bivariate weighted distributions can be found in
Navarro et al. (2006).

Now we can state the main result of this section.

Theorem 2.2. Let (X1, X2) be an absolutely continuous random vector with support
(l,∞) × (l,∞) for l ≥ 0. Let (Xw

1 , Xw
2 ) be a random vector which has the bivariate

weighted distribution associated with (X1, X2) and to two non negative, monotone, and
differentiable functions w1 and w2 in (l,∞). Then the following conditions are equivalent:

(a) (Xw
1 , Xw

2 ) and (X1, X2) satisfy the CPHR model (2) for i = 1, 2;
(b) IXi,X

w
i

(s|t) only depends on t for i = 1, 2 and 0 < α �= 1.
(c) the conditional survival functions of (X1, X2) satisfy

ln F i(s|t) = ln(wi(s)/wi(l))

θi(t) − 1

for i = 1, 2;
(d) (X1, X2) has the following joint PDF

f (x1, x2) = ca1a2w
′
1(x1)w′

2(x2)

w
a1+1
1 (x1)wa2+1

2 (x2)
exp

(
−φa1a2

(
ln

w1(x1)

w1(l)

)(
ln

w2(x2)

w2(l)

))

for x1, x2 ≥ l, where c > 0, φ ≥ 0 and ai > 1 or ai < 0 for i = 1, 2.

Proof. The equivalence of (a) and (b) is a direct consequence of Theorem 2.1.
The equivalences of (a), (c), and (d) were proved in Navarro et al. (2011). �

The comments given after Theorem 3 in Navarro et al. (2011) also hold for the
present theorem. In particular, note that the model given in (d) is a truncated version of
the conditional proportional hazard rate model considered by Arnold and Strauss (1988)
and that Arnold and Strauss’ model is obtained when l = 0. The reliability properties of
this semiparametric model can be seen in Navarro and Sarabia (2013). Some particular
parametric models can be obtained from the general model given in (d). For example, if
l = 1 and wi(t) = t for i = 1, 2, then we get a bivariate Pareto model (see Navarro et al.,
2011).

We end this section obtaining bounds for the CRDI functions by using the likelihood
ratio (LR) order. The results are similar to that given in Di Crescenzo and Longobardi
(2004) for the Kullback-Leibler divergence. First we give the definition of the LR order.

If X and Y have pdf f and g, respectively, then X is said to be less than Y in the likelihood
ratio order (denoted by X ≤LR Y ) if g/f is increasing in the union of their supports.

Then we have the following results.
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1944 Navarro et al.

Theorem 2.3. For i = 1, 2, if (Xi |X3−i = t) ≤LR (Yi |Y3−i = t) (≥LR), then

IXi,Yi
(s|t) ≥ ln

h(Yi |Y3−i=t)(s|t)
h(Xi |X3−i=t)(s|t) (≤).

Proof. From the definition, we have

IXi,Yi
(s|t) = 1

1 − α
ln

∫ ∞

s

fi(x|t)
F i(s|t)

g1−α
i (x|t)

f 1−α
i (x|t)

F
1−α

i (s|t)
G

1−α

i (s|t)
dx.

Now as (Xi |X3−i = t) ≤LR (Yi |Y3−i = t), then gi(x|t)/fi(x|t) increases and we get

IXi,Yi
(s|t) ≥ 1

1 − α
ln

(
g1−α

i (s|t)
f 1−α

i (s|t)
F

1−α

i (s|t)
G

1−α

i (s|t)

)

and hence the stated result holds. The proof of the other case is similar. �

Theorem 2.4. For i = 1, 2 and 0 < α �= 1, if wi is increasing (decreasing), then

IXi,X
w
i

(s|t) ≥ ln
wi(s)

E(wi(Xi)|Xi > s,X3−i = t)
(≤).

Proof. The proof is immediate from the preceding theorem since if wi is increasing
(decreasing), then (Xi |X3−i = t) ≤LR (Xw

i |Xw
3−i = t) (≥LR) holds. �

Theorem 2.5 For i = 1, 2 and 0 < α �= 1, if (Yi |Y3−i = t) ≤LR (Zi |Z3−i = t) (≥LR), then

IXi,Yi
(s|t) ≤ IXi,Zi

(s|t) + ln
h(Yi |Y3−i=t)(s|t)
h(Zi |Z3−i=t)(s|t) (≥).

Proof. From the definition, we have

IXi,Yi
(s|t) = 1

1 − α
ln

∫ ∞

s

f α
i (x|t)

F
α

i (s|t)
k1−α
i (x|t)

K
1−α

i (s|t)
g1−α

i (x|t)
k1−α
i (x|t)

K
1−α

i (s|t)
G

1−α

i (s|t)
dx,

where ki and Ki are the pdf and sf of (Zi |Z3−i = t).
Now as (Yi |Y3−i = t) ≤LR (Zi |Z3−i = t), then gi(x|t)/ki(x|t) decreases and we get

IXi,Yi
(s|t) ≤ IXi,Zi

(s|t) + 1

1 − α
ln

(
g1−α

i (s|t)
k1−α
i (s|t)

K
1−α

i (s|t)
G

1−α

i (s|t)

)

and hence the stated result holds. The proof of the other case is similar. �

3. Characterizations Using Kerridge’s Inaccuracy Measure

In this section we obtain properties similar to that given in Section 2 for the Kerridge’s
inaccuracy measures. The conditional Kerridge’s inaccuracy measures (CKIM) of (X1, X2)
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Characterizations from Information Measures 1945

and (Y1, Y2) are defined by

KXi,Yi
(s|t) = −

∫ ∞

s

fi(x|t)
F i(s|t)

ln
gi(x|t)
Gi(s|t)

dx (3)

for i = 1, 2 and s, t ≥ l. Note that KXi,Yi
(s|t) = K(Xi |X3−i=t),(Yi |Y3−i=t)(s) for i = 1, 2.

Then we have the following characterization result for the Arnold and Strauss’s bivari-
ate exponential distribution obtained in Arnold and Strauss (1988).

Theorem 3.1. Let (X1, X2) and (Y1, Y2) be two random vectors which common support
(0,∞) × (0,∞) and that satisfy the CPHR model given in (2) for i = 1, 2. Then the
following conditions are equivalent:

(a) KXi,Yi
(s|t) only depends on t for i = 1, 2;

(b) (X1, X2) has the following joint pdf

f (x1, x2) = c exp (−λ1x1 − λ2x2 − θx1x2)

for x1, x2 ≥ 0, where c > 0, θ ≥ 0 and λi > 0 for i = 1, 2.

Proof. If (X1, X2) and (Y1, Y2) satisfy the CPHR model given in (2), then

Gi(s|t) = F
θi (t)
i (s|t)

for i = 1, 2.
To prove that (a) implies (b), let us assume that KXi,Yi

(s|t) only depends on t for
i = 1, 2. Then for i = 1 we have

−
∫ ∞

s

f1(x|t) ln
(
θ1(t)F

θ1(t)−1
1 (x|t)f1(x|t))dx

= C1(t)F 1(s|t) − θ1(t)F 1(s|t) ln F 1(s|t).
Differentiating with respect to s we get

f1(s|t) ln
(
θ1(t)F

θ1(t)−1
1 (s|t)f1(s|t))

= −C1(t)f1(s|t) + θ1(t)f1(s|t)(1 + ln F 1(s|t)).
Hence,

ln
(
θ1(t)F

θ1(t)−1
1 (s|t)f1(s|t)) = −C1(t) + θ1(t) + ln F

θ1(t)
1 (s|t)

and

ln (θ1(t)h1(s|t)) = θ1(t) − C1(t),

where h1(s|t) = f1(s|t)/F 1(s|t). Therefore h1(s|t) only depends on t. Analogously, it can be
proved that h2(s|t) only depends on t. Hence, both conditional distributions are exponential
and, from Arnold and Strauss (1988), we obtain the pdf given in (b).

The converse proof is straightforward. �

Finally, we obtain bounds for the CKIM functions by using the LR order.
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1946 Navarro et al.

Theorem 3.2. For i = 1, 2, if gi(x|t) is decreasing in x, then

KXi,Yi
(s|t) ≥ − ln h(Yi |Y3−i=t)(s|t).

Proof. From the definition, we have

KXi,Yi
(s|t) = −

∫ ∞

s

fi(x|t)
F i(s|t)

ln
gi(x|t)
Gi(s|t)

dx

≥ − ln
gi(s|t)
Gi(s|t)

∫ ∞

s

fi(x|t)
F i(s|t)

dx

= − ln
gi(s|t)
Gi(s|t)

where the inequality is obtained by using that gi(x|t) is decreasing. �

Theorem 3.3. For i = 1, 2, if (Xi |X3−i = t) ≤LR (Yi |Y3−i = t) (≥LR), then

KXi,Yi
(s|t) ≤ H(Xi |X3−i=t)(s|t) + ln

h(Xi |X3−i=t)(s|t)
h(Yi |Y3−i=t)(s|t) (≥),

where

H(Xi |X3−i=t)(s|t) = −
∫ ∞

s

fi(x|t)
F i(s|t)

ln
fi(x|t)
F i(s|t)

dx

is the residual entropy of (Xi |X3−i = t).

Proof. From the definition, we have

KXi,Yi
(s|t) = −

∫ ∞

s

fi(x|t)
F i(s|t)

ln

(
fi(x|t)
F i(s|t)

gi(x|t)
fi(x|t)

F i(s|t)
Gi(s|t)

)
dx

= H(Xi |X3−i=t)(s|t) −
∫ ∞

s

fi(x|t)
F i(s|t)

ln

(
gi(x|t)
fi(x|t)

F i(s|t)
Gi(s|t)

)
dx

≤ H(Xi |X3−i=t)(s|t) −
∫ ∞

s

fi(x|t)
F i(s|t)

ln

(
gi(s|t)
fi(s|t)

F i(s|t)
Gi(s|t)

)
dx

= H(Xi |X3−i=t)(s|t) − ln
gi(s|t)/Gi(s|t)
fi(s|t)/F i(s|t)

,

where the inequality is obtained by using that gi(x|t)/fi(x|t) is increasing. �

Theorem 3.4. For i = 1, 2, if wi is increasing (decreasing), then

KXi,X
w
i

(s|t) ≥ H(Xi |X3−i=t)(s|t) + ln
E(wi(Xi)|Xi > s,X3−i = t)

wi(s)
(≤),

where H(Xi |X3−i=t)(s|t) is the residual entropy of (Xi |X3−i = t) (see Theorem 3.3).
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Proof. The proof is immediate from the preceding theorem by using that if wi is increasing
(decreasing), then (Xi |X3−i = t) ≤LR (Xw

i |Xw
3−i = t) (≥). �

Theorem 3.5. For i = 1, 2, if (Yi |Y3−i = t) ≤LR (Zi |Z3−i = t) (≥LR), then

KXi,Yi
(s|t) ≥ KXi,Zi

(s|t) + ln
h(Zi |Z3−i=t)(s|t)
h(Yi |Y3−i=t)(s|t) (≤).

Proof. From the definition, we have

KXi,Yi
(s|t) = −

∫ ∞

s

fi(x|t)
F i(s|t)

ln

(
ki(x|t)
Ki(s|t)

gi(x|t)
ki(x|t)

Ki(s|t)
Gi(s|t)

)
dx

= KXi,Zi
(s|t) −

∫ ∞

s

fi(x|t)
F i(s|t)

ln

(
gi(x|t)
ki(x|t)

Ki(s|t)
Gi(s|t)

)
dx,

where ki(s|t) and Ki(s|t) are the pdf and sf of (Zi |Z3−i = t). Now using that gi(x|t)/ki(x|t)
is decreasing, we have

KXi,Yi
(s|t) ≥ KXi,Zi

(s|t) −
∫ ∞

s

fi(x|t)
F i(s|t)

ln

(
gi(s|t)
ki(s|t)

Ki(s|t)
Gi(s|t)

)
dx

= KXi,Zi
(s|t) − ln

(
gi(s|t)
ki(s|t)

Ki(s|t)
Gi(s|t)

)
dx

and hence the stated result holds. The proof of the other case is similar. �
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under grants MTM2009-08311 and 08627/PI/08. JN thanks the support of the Government
of Kerala, India, under the ERUDITE scheme during his visit to Cochin University of
Science and Technology.

References

Abbasnejad, M., Arghami, N. R. (2010). Renyi entropy properties of order statistics. Commun. Statist.
Theory Meth. 40:40–52.

Arnold, B. C., Castillo, E., Sarabia, J. M. (1999). Conditional Specification of Statistical Models.
New York: Springer Verlag.

Arnold, B. C., Strauss, D. (1988). Bivariate distributions with conditionals in prescribed exponential
families. J. Royal Statist. Soc. Ser. B 53:365–375.

Asadi, M., Ebrahimi, N., Hamedani, G. H., Soofi, E. (2005a). Minimum dynamic discrimination
information models. J. Appl. Probab. 42:643–660.

Asadi, M., Ebrahimi, N., Soofi, E. (2005b). Dynamic generalized information measures. Statist.
Probab. Lett. 71:89–98.

Balakrishnan, N., Castillo, E., Sarabia, J. M. (2010). Bivariate continuous distributions with specified
conditional hazard functions. Commun. Statist. Theory Meth. 39:2473–2484.

Bartoszewicz, J. (2009). On a representation of weighted distributions. Statist. Probab. Lett.
79:1690–1694.

D
ow

nl
oa

de
d 

by
 [

C
oc

hi
n 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
&

 T
ec

hn
ol

og
 y

] 
at

 2
2:

18
 2

4 
Ju

ly
 2

01
4 



1948 Navarro et al.

Belzunce, F., Navarro, J., Ruiz, J. M., del Aguila, Y. (2004). Some results on residual entropy function.
Metrika 59:147–161.

Blazej, P. (2008). Preservation of classes of life distributions under weighting with a general weight
function. Statist. Probab. Lett. 78:3056–3061.

Cox, D. R. (1959). The analysis of exponentially distributed lifetimes with two types of failure. J.
Royal Statist. Soc. Ser. B 21:411–421.

Di Crescenzo, A., Longobardi, M. (2004). A measure of discrimination between past lifetime distri-
butions. Statist. Probab. Lett. 67:173–182.

Ebrahimi, N. (1996). How to measure uncertainty about residual life time. Sankhyā A 58:48–57.
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