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Some Results on Reciprocal Subtangent
in the Context ofWeightedModels
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Cochin, Kerala, India

Recently, reciprocal subtangent has been used as a useful tool to describe the
behaviour of a density curve. Motivated by this, in the present article we extend
the concept to the weighted models. Characterization results are proved for models
viz. gamma, Rayleigh, equilibrium, residual lifetime, and proportional hazards. An
identity under weighted distribution is also obtained when the reciprocal subtangent
takes the form of a general class of distributions. Finally, an extension of reciprocal
subtangent for the weighted models in the bivariate and multivariate cases are
introduced and proved some useful results.

Keywords Characterization; Coordinate subtangent; Reliability measures;
Weighted model.

Mathematics Subject Classification 62E10; 62N05; 62H05.

1. Introduction

The concept of reciprocal coordinate subtangent (RCST) has been used in the
statistical literature as a useful tool to describe the behaviour of a density curve. It
is considered as a measure for strongly unimodal property (see Hajek and Sidak,
1967). Let X be an absolutely continuous random variable (rv) having a probability
density function (pdf) f�x� such that f ′�x� exists. Then RCST to a curve y = f�x�

of the rv X is given by

T�x� = −f ′�x�
f�x�

� (1.1)

RCST also plays very important role in reliability analysis, however, used it rather
unknowingly. For example, failure rate or hazard rate is the CST measured on
the curve y = �F�x�, where �F�x� is the survival function. Also, since many of the
failure rate functions have complex expressions, Glaser (1980) identified (1.1) (but
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1398 Sunoj and Sreejith

not called as “RCST”) as an easy statistical tool to determine the shape of the failure
rate function. T�x� can also be represent in terms of failure rate h�x� = −�F ′�x�

�F�x� by

T�x� = h�x�− h′�x�
h�x�

� (1.2)

provided h′�x� exist. However, Mukherjee and Roy (1989) identified RCST as a
measure to characterize various models by a unique determination of f�x� from
T�x� by

f�x� = k exp
[
−
∫ x

0
T�u�du

]
�

where k is a normalizing constant. Mukherjee and Roy (1989) also studied some
properties and applications of T�x� and proved characterization results to certain
important life distributions viz. exponential, Lomax, and finite range models. For a
comprehensive literature review about RCST T�x� and its applications, we refer to
Pearson (1901), Ibragimov (1956), Gupta (2001), Gupta and Warren (2001), Block
et al. (2002), Ghitany (2004), Mi (2004), and Lai and Xie (2006). Recently, Roy and
Roy (2010) further extended the concept of RCST in the multivariate setup and
proved some characterization theorems useful in reliability modeling.

In view of the importance and usefulness of RCST in various fields, in the
present article, we further explore it in the context of weighted models. The
article is organized as follows. In Sec. 2, we introduce RCST for weighted models.
In Sec. 3, we prove some univariate characterizations to distributions such as
gamma and Rayleigh, under the inversed length biased model. We also introduce
characterizations to equilibrium, residual lifetime (reversed residual lifetime), and
proportional hazard models in the context of weighted distributions. An identity
for weighted distribution is also obtained when the reciprocal subtangent takes the
form of a general class of distributions. Finally, in Secs. 4 and 5, we further extend
RCST for weighted distributions to bivariate and multivariate setup and examine
some characterization theorems arising out of it.

2. Weighted Models

The concept of weighted distributions was first formulated in a unified way by
Rao (1965) in connection with modeling statistical data and in situations where the
usual practice of employing standard distributions for the purpose was not found
appropriate. If f�x� is the pdf of a non negative rv X and w�x� is a non negative
weight function satisfying �w = E�w�X�� < �, then the pdf fw�x� of the weighted rv
Xw corresponding to X is given by

fw�x� =
w�x�f�x�

�w

�

Various weight functions are used in literature. For example, when the weight
is proportional to length (size) of unit of interest, we use the weight function w�x� =
x�w�x� = x�� � > 0� (see Gupta and Kirmani, 1990; Pakes et al., 2003; and references
therein), whereas when w�x� = 1

x
, it is called inversed length biased distribution
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Some Results on Reciprocal Subtangent 1399

(see Barmi and Simonoff, 2000). For more details of applications and recent works
of weighted distributions, we refer to Gupta and Kirmani (1990), Jones (1991),
Navarro et al. (2001), Sunoj and Maya (2006), Di Crescenzo and Longobardi (2006),
and Maya and Sunoj (2008).

Some of the known and important distributions in statistics and applied
probability may be expressed as weighted distributions. Equilibrium distributions,
distribution of order statistics, residual life distribution, and distribution in
proportional hazard models (see Bartoszewicz and Skolimowska, 2004; Gupta and
Kirmani, 1990) are some of the examples. Thus, the theory of weighted distributions
is appropriate whenever these distributions are applied.

The wide applicability of weighted distributions in the univariate case has
prompted many researchers to extend the concept to higher dimensions (see
Mahfoud and Patil, 1982). Let �X1� X2�

′ be a non negative bivariate random vector
with pdf f�x1� x2� and w�x1� x2� be a non negative weight function such that
E�w�X1� X2�� < �. Then the pdf of the bivariate weighted random vector �Xw

1 � X
w
2 �

′,
corresponding to �X1� X2�

′ is given by

fw�x1� x2� =
w�x1� x2�f�x1� x2�

E�w�X1� X2��
� (2.1)

Jain and Nanda (1995) extended the definition to the p-variate case. Let X =
�X1� X2� � � � � XP�

′ be a p-dimensional non negative random vector with pdf f�x� and
Xw = �Xw

1 � X
w
2 � � � � � X

w
p �

′ be the multivariate weighted version of X such that the
weight function w�x� [w � X → A ⊆ R+, where R+ denotes the positive real line]
is non negative with finite and non zero expectation. Then multivariate weighted
density corresponding to f�x� is given by

fw�x� =
w�x�f�x�
E�w�X��

� (2.2)

3. Univariate RCST for Weighted Models

By virtue of the definition of RCST in (1.1), the RCST function for the weighted rv
Xw is given by

Tw�x� = −f ′
w�x�

fw�x�
�

where f ′
w�x� is the derivative of fw�x�. Equivalently,

Tw�x� = T�x�− w′�x�
w�x�

� (3.1)

provided w′�x� exist.

Remark 3.1. If w�x� is monotonically increasing (decreasing) and T�x� is
monotonically increasing or decreasing, then Tw�x� ≤ �≥�T�x�.
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1400 Sunoj and Sreejith

Theorem 3.1. For a non negative rv X, the RCST function of Xw, Tw�x� uniquely
determines the pdf fw�x� by

fw�x� = C exp
[
−
∫ x

0
Tw�u�du

]
� (3.2)

where C is a constant to be determined from the identity
∫ �
0 fw�x�dx = 1.

Proof. Proof follows from Theorem 3.1 of Mukherjee and Roy (1989).

Corollary 3.1. For a non negative rv X, the RCST function of Xw, Tw�x� uniquely
determines the pdf f�x� by

f�x� = K

w�x�
exp

[
−
∫ x

0
Tw�u�du

]
� (3.3)

where K is a constant to be determined from the identity
∫ �
0 f�x�dx = 1.

Now we prove some characterization theorems to certain well-known univariate
models viz. gamma, Rayleigh, and some applied models such as equilibrium,
proportional hazard, and residual lifetime models using weighted RCST function.

Theorem 3.2. For a non negative rv X and weight function w�x� = 1
x
, then Tw�x� =

cx + d if and only if X follows a gamma distribution with pdf

f�x� = a2xe−ax� x > 0� a > 0 (3.4)

according as c = 0 and d > 0, and Rayleigh distribution with pdf

f�x� = 2axe−ax2� x > 0� a > 0 (3.5)

according as c > 0 and d = 0.

Proof. Suppose X follows a gamma distribution with pdf (3.4), then T�x� = ax−1
x

and hence Tw�x� = d, which is of the form Tw�x� = cx + d where c = 0 and d > 0.
On the other hand, when X follows a Rayleigh distribution with pdf (3.5), then
T�x� = 2ax2−1

x
and therefore Tw�x� = 2ax, which is of the form Tw�x� = cx + d with

c > 0 and d = 0.
Conversely, assume that Tw�x� = d, a constant, then from (3.3) we have f�x� =

Kxe−
∫ x
0 d du = Kxe−dx, where K is a constant. Now using the identity

∫ �
0 f�x�dx =

1, we get K = d2 and hence f�x� = d2xe−dx, x > 0, d > 0, the gamma model (3.4).
Similarly, if we assume that Tw�x� = cx, then from (3.3), we get f�x� = Kxe−

∫ x
0 cu du =

Kxe−
c
2 x

2
. Using the identity

∫ �
0 f�x�dx = 1, we have K = c and therefore f�x� =

cxe−
c
2 x

2
, x > 0, c > 0, which is the Rayleigh distribution (3.5).

Theorem 3.3. For a non negative rv X, Tw�x� = h�x� if and only if Xw follows an
equilibrium distribution.

Proof. Suppose Xw follows an equilibrium distribution, i.e., w�x� = 1
h�x�

(see Gupta

and Kirmani, 1990), then w′�x�
w�x�

= − h′�x�
h�x�

. Using (1.2) in (3.1), we get Tw�x� = h�x�.
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Some Results on Reciprocal Subtangent 1401

Conversely, suppose that Tw�x� = h�x�, then from (3.2) we get fw�x� =
Ce−

∫ x
0 h�u�du. Equivalently,

fw�x� = C�F�x�� (3.6)

Now using the identity
∫ �
0 fw�x�dx = 1, we have C = 1

E�X�
, where E�X� =∫ �

0
�F�x�dx and therefore (3.6) becomes fw�x� = �F�x�

E�X�
. i.e., Xw follows an equilibrium

distribution.

Theorem 3.4. For a non negative rv X, then Tw�x� = �h�x�− h′�x�
h�x�

, � > 0 if and only
if Xw follows proportional hazard model.

Proof. Suppose Xw follows proportional hazard model. i.e., w�x� = 	�F�x�
�−1� � > 0
(see Bartoszewicz and Skolimowska, 2004), then w′�x�

w�x�
= �1− ��h�x�. Using (1.2) in

(3.1) we get, Tw�x� = �h�x�− h′�x�
h�x�

.

Conversely, assume that Tw�x� = �h�x�− h′�x�
h�x�

holds, then from (3.2)

fw�x� = Ce
− ∫ x

0

[
�h�u�− h′�u�

h�u�

]
du
�

= Ce�
∫ x
0 	 d

du log�F�u�
du+
∫ x
0 	 d

du log h�u�
du�

= A
[�F�x�]� h�x��

fw�x� = A
[�F�x�]�−1

f�x�� (3.7)

Using the identity
∫ �
0 fw�x�dx = 1, we get A = � and therefore (3.7) becomes

fw�x� = �	�F�x�
�−1f�x�, i.e., Xw follows proportional hazard model.

Theorem 3.5. For a non negative rv X, Tw�x� = T�x + t� if and only if Xw follows a
residual life distribution.

Proof. Suppose Xw follows a residual life distribution, i.e., w�x� = f�x+t�

f�x�
(see Gupta

and Kirmani, 1990), then w′�x�
w�x�

= T�x�− T�x + t�. From (3.1), we have Tw�x� =
T�x + t�.

Conversely, suppose that Tw�x� = T�x + t� holds, then from (3.2)

fw�x� = Ce−
∫ x
0 T�u+t�du�

= Ce
∫ x
0

d
du log f�u+t�du�

fw�x� = A�t�f�x + t�� (3.8)

Using the identity
∫ �
0 fw�x�dx = 1, we get A�t� = 1

�F�t� and therefore (3.8) becomes

fw�x� = f�x+t�
�F�t� , which is the residual life distribution.

Corollary 3.2. Tw�x� = T�t − x� if and only if Xw follows a reversed residual life
distribution (where w�x� = f�t−x�

f�x�
�.
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1402 Sunoj and Sreejith

Theorem 3.6. Let Tw�x� be the RCST function of Xw and let T�x�, h�x�, and ��x� =
f�x�

F�x�
, respectively, be the RCST function, failure rate, and reversed failure rate of

X. Then Tw�x� = T�x�+ �1− j���x�+ �n− j�h�x�; j = 1� 2� � � � � n, if Xw follows the
distribution of a jth order statistic.

Proof. Let Xw follows the distribution of a jth order statistic, i.e., wj�x� =
	F�x�
j−1	�F�x�
n−j (see Bartoszewicz and Skolimowska, 2004), then

w′
j �x�

wj�x�
=

−	�1− j���x�+ �n− j�h�x�
. From (3.1), we have Tw�x� = T�x�+ �1− j���x�+
�n− j�h�x�; j = 1� 2� � � � � n.

Corollary 3.3. If Xw follows the distribution of a first order statistic, then Tw�x� =
T�x�+ �n− 1�h�x��

Corollary 3.4. If Xw follows the distribution of a nth order statistic, then Tw�x� =
T�x�+ �1− n���x��

In the next theorem, we consider a general class of distributions by defining a
rv X in the support of �a� b�, a subset of the real line, −� ≤ a < x < b ≤ � with
a = inf�x � F�x� > 0 and b = sup�x � F�x� < 1. We say X belongs to the general
class of distributions if the RCST T�x� is of the form

T�x� = −k− B�x�− g′�x�
g�x�

� (3.9)

where k is a constant, B�x� is a suitably chosen function of X, g�x� is a real function
defined on �a� b�, and the derivative of g�x� exist. The identity (3.9) is equivalent to

E 	B�X� �X > x
 = k+ g�x�h�x� (3.10)

and if limx→a	g�x�h�x�
 = 0, then (3.10) reduces to E	B�X� �X > x
 = � + g�x�h�x�,
where � = E	B�X�
 (see Nair and Sankaran, 2008).

Theorem 3.7. A rv X belongs to the general class of distributions (3.9) if and only if
it satisfies the weighted identity corresponding to (3.10) as

E 	B�X�w�X� �X > x
 = kE 	w�X� �X > x
+ w�x�g�x�h�x�+ E 	w′�X�g�X� �X > x

(3.11)

under the regularity condition limx→b	w�x�g�x�f�x�
 = 0.

Proof. When the rv X belongs to the general class of distributions (3.9), then from
(3.1), we have

Tw�x� = −k− B�x�− g′�x�
g�x�

− w′�x�
w�x�

�

Equivalently,

f ′
w�x�

fw�x�
− k− B�x�− g′�x�

g�x�
= w′�x�

w�x�
�

g�x�f ′
w�x�− kfw�x�+ B�x�fw�x�+ g′�x�fw�x� =

w′�x�
w�x�

g�x�fw�x��
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Some Results on Reciprocal Subtangent 1403

which gives

B�x�fw�x� = kfw�x�−
d

dx
	g�x�fw�x�
+

w′�x�
w�x�

g�x�fw�x��

or

B�x�w�x�f�x� = kw�x�f�x�− d

dx
	w�x�g�x�f�x�
+ w′�x�g�x�f�x�� (3.12)

Integrating (3.12) and applying regularity condition, we get

∫ b

x
B�t�w�t�f�t�dt = k

∫ b

x
w�t�f�t�dt + w�x�g�x�f�x�+

∫ b

x
w′�t�g�t�f�t�dt� (3.13)

Dividing (3.13) by �F�x�, we get (3.11).

The converse part can be proved by retracing the above steps.

Corollary 3.5. If B�x� = x and w�x� = x, (3.11) reduces to

E�X2 �X > x� = kE�X �X > x�+ xg�x�h�x�+ E�g�X� �X > x�� (3.14)

Using (3.10), (3.14) can be written as

E�X2 �X > x� = k2 + g�x�h�x�l�x�+ E�g�X� �X > x�� (3.15)

where l�x� is a linear function in x and if limx→a�g�x�h�x�l�x�� = 0, then k2 = E�X2�−
E�g�X��.

Corollary 3.6. If the random variable X follows Pearson family, i.e., g�x� = a0 +
a1x + a2x

2 and B�x� = x, w�x� = x, then

E�X2 �X > x� = l1�x�E�X �X > x�+ l2�x�� (3.16)

where l1�x� and l2�x� are linear functions in x, which is the same form as given in
Glänzel (1991). Using (3.10), (3.16) can also be expressed in terms of failure rate
h�x� as

E�X2 �X > x� = A+ �A0 + A1x + A2x
2�h�x�l3�x��

where A is a constant, Ai = ai
1−a2

, a2 	= 1, i = 0� 1� 2 and l3�x� is a linear function in x.
If limx→a�g�x�h�x�l3�x�� = 0, then A = E�X2�.

Examples

1. Exponential: k = 0, g�x� = ax+1
a2

� f�x� = ae−ax, x > 0, a > 0, then E�X� = 1
a
,

V�X� = 1
a2
. Therefore, (3.15) becomes

E�X2 �X > x� = V�X�+ h�x�q1�x��

where q1�x� is a quadratic function in x.
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1404 Sunoj and Sreejith

2. Gamma: k = �, g�x� = x
a
, f�x� = aa�

�a� xa�−1e−ax, x > 0, a > 0, � > 0, then E�X� =
�, V�X� = �

a
, E�X2� = �

a
+ �2. The identity (3.15) becomes

E�X2 �X > x� = E�X2�+ h�x�q2�x��

where q2�x� is a quadratic function in x.
3. Beta: k = �, g�x� = x�1−x�

a+b
, f�x� = 1

B�a�b�
xa−1�1− x�b−1, 0 < x < 1� a > 0� b > 0,

then E�X� = a
a+b

, V�X� = ab
�a+b�2�a+b+1� , E�X2� = a�1+a�

�a+b��a+b+1� . Therefore, (3.15)
becomes

E�X2 �X > x� = E�X2�+ h�x�c1�x��

where c1�x� is a cubic function in x.
4. Pareto: k = �, g�x� = x�x−a�

c−1 , c > 1, f�x� = c
a

(
x
a

)−c−1
, a < x < �� a > 0, then

E�X� = ac
c−1 , V�X� = a2c

�c−1�2�c−2� , E�X
2� = a2c3−2a2c2+a2c

�c−1�2�c−2� . The identity (3.15) becomes

E�X2 �X > x� = E�X2�+ h�x�c2�x��

where c2�x� is a cubic function in x.

5. Normal: k = �, g�x� = �2, f�x� = 1
�
√
2�
e−

1
2

(
x−�
�

)2
, −� < x < �, −� < � < �,

� > 0, then E�X� = �, V�X� = �2, E�X2� = �2 + �2. Therefore, (3.15) becomes

E�X2 �X > x� = E�X2�+ h�x�l4�x��

where l4�x� is a linear function in x.
6. Student – t: k = 0, g�x� = n+x2

n−1 , f�x� = 1√
nB

(
1
2 �

n
2

) 1(
1+ x2

n

) n+1
2
, −� < x < �, then

V�X� = n
n−2 , n > 2. Therefore, (3.15) becomes

E�X2 �X > x� = V�X�+ h�x�c3�x��

where c3�x� is a cubic function in x.

4. Bivariate RCST for Weighted Models

For a non negative vector variable X = �X1� X2�
′ with pdf f�x1� x2�, the vector

valued bivariate RCST (see Roy and Roy, 2010) is given by Ti�x1� x2� = − � log f�x1�x2�
�xi

,
i = 1� 2� Denoting Xw = �Xw

1 � X
w
2 �

′ be the bivariate weighted version of X , then the
vector valued bivariate RCST for Xw is defined as Tw

i �x1� x2� = − � log fw�x1�x2�
�xi

, i =
1� 2� Using (2.1), Tw

i �x1� x2� can be written as

Tw
i �x1� x2� = Ti�x1� x2�− wi�x1� x2�� (4.1)

where wi�x1� x2� = � logw�x1�x2�
�xi

.

Theorem 4.1. For a bivariate setup, if the ith RCST of Xw is Tw
i �x1� x2�� i = 1� 2 and

is continuous, then the weighted density curve can be uniquely determined in terms of
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Some Results on Reciprocal Subtangent 1405

the following two alternative forms:

fw�x1� x2� = C exp
[
−
∫ x1

0
Tw
1 �u� 0�du−

∫ x2

0
Tw
2 �x1� v�dv

]
(4.2)

fw�x1� x2� = C exp
[
−
∫ x2

0
Tw
2 �0� v�dv−

∫ x1

0
Tw
1 �u� x2�du

]
� (4.3)

Corollary 4.1. For a bivariate setup, if the ith RCST of Xw is Tw
i �x1� x2�, i = 1� 2 and

is continuous, then the density curve can be uniquely determined in terms of the following
two alternative forms:

f�x1� x2� =
K

w�x1� x2�
exp

[
−
∫ x1

0
Tw
1 �u� 0�du−

∫ x2

0
Tw
2 �x1� v�dv

]

f�x1� x2� =
K

w�x1� x2�
exp

[
−
∫ x2

0
Tw
2 �0� v�dv−

∫ x1

0
Tw
1 �u� x2�du

]
�

Theorem 4.2. Let h�x1� x2� = �h1�x1� x2�� h2�x1� x2�� be the vector valued bivariate
failure rate of a non negative random vector X = �X1� X2�

′. Then Tw
i �x1� x2� =

hi�x1� x2�, i = 1� 2, where hi�x1� x2� = − � log�F�x1�x2�
�xi

if and only if Xw follows a bivariate
equilibrium distribution.

Proof. If Xw follows a bivariate equilibrium distribution, then w�x1� x2� = 1
h�x1�x2�

(see Navarro et al., 2006), where h�x1� x2� = f�x1�x2��F�x1�x2� . It follows that wi�x1� x2� =
Ti�x1� x2�− hi�x1� x2�, i = 1� 2 and therefore (4.1) becomes Tw

i �x1� x2� = hi�x1� x2�,
i = 1� 2�

Conversely, assume that Tw
i �x1� x2� = hi�x1� x2�, i = 1� 2 holds. Now using (4.2)

and (4.3), we have

fw�x1� x2� = C exp
[
−
∫ x1

0
h1�u� 0�du−

∫ x2

0
h2�x1� v�dv

]
(4.4)

fw�x1� x2� = C exp
[
−
∫ x2

0
h2�0� v�dv−

∫ x1

0
h1�u� x2�du

]
� (4.5)

Equations (4.4) and (4.5) together implies

fw�x1� x2� = C�F�x1� x2�� (4.6)

Applying the condition of total probability, obtain C = 1
E�X1X2�

, therefore (4.6)

becomes fw�x1� x2� = �F�x1�x2�
E�X1X2�

, the bivariate equilibrium distribution.

Theorem 4.3. For a non negative random vector X = �X1� X2�
′, the relationship

Tw
i �x1� x2� = Ti�x1 + t1� x2 + t2�, i = 1� 2 satisfies if and only if Xw follows a bivariate

residual life distribution.

Proof. If Xw follows a bivariate residual life distribution, then w�x1� x2� =
f�x1+t1�x2+t2�

f�x1�x2�
, then wi�x1� x2� = Ti�x1� x2�− Ti�x1 + t1� x2 + t2�, i = 1� 2 and therefore,

Tw
i �x1� x2� = Ti�x1 + t1� x2 + t2�, i = 1� 2�
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1406 Sunoj and Sreejith

Conversely, assume that Tw
i �x1� x2� = Ti�x1 + t1� x2 + t2�, i = 1� 2 holds, then

using (4.2) and (4.3), we get

fw�x1� x2� = C exp
[
−
∫ x1

0
T1�u+ t1� t2�du−

∫ x2

0
T2�x1 + t1� v+ t2�dv

]
(4.7)

fw�x1� x2� = C exp
[
−
∫ x2

0
T2�t1� v+ t2�dv−

∫ x1

0
T1�u+ t1� x2 + t2�du

]
� (4.8)

Equations (4.7) and (4.8) can be rewritten as

fw�x1� x2� = C exp
[∫ x1

0

[
�

�u
log f�u+ t1� t2�

]
du+

∫ x2

0

[
�

�v
log f�x1 + t1� v+ t2�

]
dv

]

(4.9)

fw�x1� x2� = C exp
[∫ x2

0

[
�

�v
log f�t1� v+ t2�

]
dv+

∫ x1

0

[
�

�u
log f�u+ t1� x2 + t2�

]
du

]
�

(4.10)

Equations (4.9) and (4.10) together give

fw�x1� x2� = A�t1� t2�f�x1 + t1� x2 + t2�� (4.11)

Applying the condition of total probability, yield A�t1� t2� = 1
�F�t1�t2� and therefore

(4.11) becomes fw�x1� x2� = f�x1+t1�x2+t2��F�t1�t2� , proves the result.

Corollary 4.2. Tw
i �x1� x2� = Ti�t1 − x1� t2 − x2�, i = 1� 2 if and only if Xw follows a

reversed residual life distribution. (where w�x1� x2� = f�t1−x1�t2−x2�

f�x1�x2�
�.

Theorem 4.4. Let X1 and X2 be independent and identically distributed non negative
rv’s and let ��x1� be the reversed failure rate of X1, h�x2� be the failure rate of X2

and r1�x1� x2�, r2�x1� x2� be the generalized failure rates, where ri�x1� x2� = f�xi�

F�x2�−F�x1�
,

i = 1� 2, then the identities

Tw
1 �x1� x2� = T1�x1� x2�+ �1− j� ��x1�+ �k− j − 1� r1�x1� x2�

and

Tw
2 �x1� x2� = T2�x1� x2�+ �n− k� h�x2�− �k− j − 1� r2�x1� x2�

holds if Xw follows the joint pdf of jth and kth order statistics, 1 ≤ j < k ≤ n.

Proof. Let Xw follows the joint pdf of jth and kth order statistics. i.e., wjk�x1� x2� =
	F�x1�


j−1	F�x2�− F�x1�

k−j−1	�F�x2�
n−k, then

w1�x1� x2� =
�

�x1
logwjk�x1� x2� = − 	�1− j� ��x1�+ �k− j − 1� r1�x1� x2�


and

w2�x1� x2� =
�

�x2
logwjk�x1� x2� = − 	�n− k� h�x2�− �k− j − 1� r2�x1� x2�
 �
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Some Results on Reciprocal Subtangent 1407

Clearly, (4.1) becomes

Tw
1 �x1� x2� = T1�x1� x2�+ �1− j� ��x1�+ �k− j − 1� r1�x1� x2�

and

Tw
2 �x1� x2� = T2�x1� x2�+ �n− k� h�x2�− �k− j − 1� r2�x1� x2�� 1 ≤ j < k ≤ n�

Corollary 4.3. If Xw follows the joint pdf of jth and �j + 1�th order statistics then
Tw
1 �x1� x2� = T1�x1� x2�+ �1− j���x1� and T

w
2 �x1� x2� = T2�x1� x2�+ �n− j − 1�h�x2�.

Corollary 4.4. If Xw follows the joint pdf of first and second order statistics then
Tw
1 �x1� x2� = T1�x1� x2� and Tw

2 �x1� x2� = T2�x1� x2�+ �n− 2�h�x2�.

Corollary 4.5. If Xw follows the joint pdf of �n− 1�th and nth order statistics then
Tw
1 �x1� x2� = T1�x1� x2�− �n− 2���x1� and Tw

2 �x1� x2� = T2�x1� x2�.

Corollary 4.6. IfXw follows the joint pdf of first andnth order statistics thenTw
1 �x1� x2� =

T1�x1� x2�+ �n− 2�r1�x1� x2� and T
w
2 �x1� x2� = T2�x1� x2�− �n− 2�r2�x1� x2�.

Examples

1. Exponential: f�x� = be−bx, 0 < x < �, b > 0 and f�x1� x2� = b2e−b�x1+x2�, then

Tw
1 �x1� x2� = b + �1− j�b

1
ebx1 − 1

+ �k− j − 1�b
1

1− eb�x1−x2�

and

Tw
2 �x1� x2� = b + �n− k�b + �k− j − 1�b

1
1− eb�x2−x1�

�

2. Power: f�x� = c xc−1, 0 ≤ x ≤ 1, c > 0 and f�x1� x2� = c2xc−1
1 xc−1

2 , then

Tw
1 �x1� x2� = �1− j�

1
x1

+ �k− j − 1�
cxc−1

1

xc2 − xc1

and

Tw
2 �x1� x2� =

1− c

x2
+ �n− k�

cxc−1
2

1− xc2
− �k− j − 1�

cxc−1
2

xc2 − xc1
�

3. Pareto: f�x� = c
a

(
x
a

)−c−1
, a ≤ x < �, a > 0, c > 0 and

f�x1� x2� =
( c
a

)2 (x1
a

)−c−1 (x2
a

)−c−1
�

then

Tw
1 �x1� x2� =

c + 1
x1

+ �1− j�
cac

x1�x
c
1 − ac�

+ �k− j − 1�
cxc2

x1�x
c
2 − xc1�
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1408 Sunoj and Sreejith

and

Tw
2 �x1� x2� =

1
x2

+ �n− k+ 1�
c

x2
− �k− j − 1�

cxc1
x2�x

c
2 − xc1�

�

5. Multivariate RCST for Weighted Models

The vector valued multivariate RCST of X is given by T�x� = �T1�x��
T2�x�� � � � � Tp�x��

′, where Ti�x� = − � log f�x�
�xi

; i = 1� 2� � � � � p. The corresponding
vector valued multivariate RCST of Xw is given by

Tw�x� = (
Tw
1 �x�� T

w
2 �x�� � � � � T

w
p �x�

)′
�

where Tw
i �x� = − � log fw�x�

�xi
; i = 1� 2� � � � � p. Using (2.2), Tw

i �x� can be written as

Tw
i �x� = Ti�x�− wi�x��

where wi�x� = � logw�x�
�xi

.

Remark 5.1. For p = 1 and p = 2 the above definition reduces to the
corresponding univariate and bivariate RCST of weighted distribution, respectively.

Remark 5.2. If w�x� is monotonically increasing (decreasing) and Ti�x� is
monotonically increasing or decreasing, then Tw

i �x� ≤ �≥�Ti�x�, i = 1� 2� � � � � p.

Theorem 5.1. For a multivariate setup if the ith RCST of Xw is Tw
i �x1� x2� � � � � xp�,

i = 1� 2� � � � � p and is continuous, then the weighted density curve can be uniquely
determined as

fw�x� = C exp
[
−
∫
�
Tw�u�du

]
�

where the integration is a line integration with respect to u = �u1� u2� � � � � up� over a
piecewise smooth curve � , joining the points �0� 0� � � � � 0� and x = �x1� x2� � � � � xp� and
where C is the normalizing constant such that the total probability is one (see Roy and
Roy, 2010).

Corollary 5.1. For a multivariate setup if the ith RCST of Xw is Tw
i �x1� x2� � � � � xp�,

i = 1� 2� � � � � p and is continuous, then the density curve can be uniquely determined as

f�x� = K

w�x�
exp

[
−
∫
�
Tw�u�du

]
�

where K is the normalizing constant such that the total probability is one.

Similar to Roy and Roy (2010), we have the following theorem for weighted
random variables.

Theorem 5.2. If Xw
1 � X

w
2 � � � � � X

w
p are independent rv’s then

Tw�x� = (
Tw
1 �x1�� T

w
2 �x2�� � � � � T

w
p �xp�

)′
�

where Tw
i �xi� = Ti�xi�− wi�xi� is the univariate RCST of Xw

i , i = 1� 2� � � � � p.
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Some Results on Reciprocal Subtangent 1409

We can define strictly constant vector valued multivariate RCST of Xw as
Tw�x� = �a1� a2� � � � � ap�

′, where a = �a1� a2� � � � � ap�
′ is an absolute constant with

respect to all the variables.

Theorem 5.3. If w�x� = ∏p
i=1

1
xi

then the vector valued multivariate RCST of Xw is
an absolute constant if and only if the underlying distribution is a joint collection of
independent univariate gamma distribution with pdf

f�x� = a2xe−ax� x > 0� a > 0� (5.1)

Proof. Suppose Xi’s are follows independent univariate gamma distributions with
pdf given by (5.1), under the weight function w�x� = ∏p

i=1
1
xi
, Xw

i ’s are independent
(see Arnold and Nagaraja, 1991) for the given pdf (5.1) with wi�xi� = − 1

xi
, i =

1� 2� � � � � p we have Tw�x� = �a1� a2� � � � � ap�
′.

Conversely, suppose Tw�x� is constant, i.e., Tw
i �xi� = ai, i = 1� 2� � � � � p, or

� log fw�x�
�xi

= −ai. Equivalently, � log f�x�
�xi

+ � logw�x�
�xi

= −ai. Integrating both sides with
respect to xi, we get

f�x�w�x� = exp�−aixi�gi�x1� x2� � � � � xi−1� xi+1� � � � � xp�� i = 1� 2� � � � � p

or

f�x� = 1
w�x�

exp�−aixi�gi�x1� x2� � � � � xi−1� xi+1� � � � � xp�� i = 1� 2� � � � � p�

Combining f�x�, i = 1� 2� � � � � p, we have f�x� ∝ [∏p
i=1 xi

][
exp

(−∑p
i=1 aixi

)]
.

Applying the condition of total probability, we obtain f�x� = ∏p
i=1 a

2
i xi exp	−aixi
,

which proves the result.
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