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1. Introduction

Let (�,F, P) be a probability space and X : � → H be a random
variable, where H = (a, b) is a subset of the real line with a > 0 and
b > a can be finite or infinite. When the distribution function F(x)

of X is absolutely continuous with density function f (x) and w(x),
a non-negative function satisfying Ew(X) = µ < ∞, the random
variable Y with density

g(x) = w(x) f (x)

µ
, x > a (1.1)

is said to have weighted distribution corresponding to X . Introduced
by Rao (1965), the concept of weighted distributions has been em-
ployed in various practical problems in analysis of family size, study
of albinism, human heredity, aerial survey and visibility bias, line tran-
scend sampling, renewal theory, cell cycle analysis and pulse labelling,
efficacy of early screening for disease, etiological studies, statistical
ecology and reliability modelling. An exhaustive work of research
in this area is available in Patil and Rao (1977) and Gupta and Kir-
mani (1990).
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The bivariate extension of weighted distribution is discussed in
Patil et al. (1987). For a non-negative random vector (X1, X2) with
density f (x1, x2) and weight function w(x1, x2), the weighted distri-
bution is specified by the density

g(x1, x2) = w(x1, x2) f (x1, x2)

Ew(X1, X2)
(1.2)

provided the expectation in (1.2) is finite. For properties of (1.2)
we refer to the above paper, Mahfoud and Patil (1982) and Arnold
and Nagaraja (1991). For most choices of w(x1, x2), it is difficult to
obtain the length biased forms for the marginal distributions if we use
equation (1.2) and therefore modelling with prior knowledge about the
individual distributions of Xi becomes impracticable. Accordingly in
the present paper, we focus attention on bivariate models that have as
their marginals weighted distributions of the form (1.1). Obviously, the
discussions concerning bivariate laws with specified marginals (see for
example, Johnson and Kotz (1972)) can lead to such cases. However,
we prefer to give a different model which is a direct extension of the
univariate case that can be useful in reliability studies.

2. The model

Let (X1, X2) be a non-negative random vector admitting absolutely
continuous survival function

S(x1, x2) = P(X1 > x1, X2 > x2) . (2.1)

in the support of {(x1, x2)|xi > ai , i = 1, 2; ai > 0}.
We require a random vector (Y1, Y2) whose marginal distributions

have densities

gi(xi) = wi(xi) fi(xi)

Ewi(Xi)
, i = 1, 2 . (2.2)

where fi(xi) is the density of Xi .
In this paper we consider a joint survival function for the random

variable (Y1, Y2) defined by

R1(x1, x2) = m2(x1, x2)m1(x1, a2)

m2(x1, a2)m1(a1, a2)
S(x1, x2), xi > ai ≥ 0 . (2.3)
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where

mi(x1, x2) = E[wi(Xi)|X j > xj , j = 1, 2], i = 1, 2 .

It is easy to see that the marginals of (2.3) are gi(xi). By symmetry,
one can also define a joint distribution with marginals (2.2) by using
the joint survival function

R2(x1, x2) = m1(x1, x2)m2(a1, x2)

m1(a1, x2)m2(a1, a2)
S(x1, x2) . (2.4)

In general, this does not produce the same distribution as (2.3). One
set of conditions under which (2.3) and (2.4) are identical is stated
below.

THEOREM 2.1. A necessary and sufficient condition for the
survival functions R1(x1, x2) and R2(x1, x2) to be identical is that

m1(x1, x2)

m2(x1, x2)
= A(x1)B(x2) (2.5)

for all xi ≥ ai > 0 and some functions A(·) and B(·).

Proof: On equating the expressions in (2.3) and (2.4),

m1(x1, x2)

m2(x1, x2)
= m1(a1, x2)

m2(a1, x2)

m2(a1, a2)

m1(a1, a2)

m1(x1, a2)

m2(x1, a2)
(2.6)

which is of the form (2.5). Conversely, if (2.5) is true it is easy to
see that (2.6) holds and hence

R1(x1, x2) = R2(x1, x2) .

Example. Bivariate Pareto distribution given in equation (4.6).
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3. Length biased models

The length biased models result when wi(xi)= xi in equation (2.2).
In this case

m1(x1, a2) = E[X1|X1 > x1]

is the vitality function of X1. For a detailed discussion of vitality
functions and their use in clarifying the distinction between increasing
failure rate and decreasing mean residual life we refer to Kupka and
Loo (1989). By analogy, in the two dimensional case

m(x1, x2) = E(X2|X1 > x1, X2 > x2)

is a component of the bivariate vitality function

V (x1, x2) = (m1(x1, x2), m2(x1, x2)) .

In a two-component system, m2(x1, x2) measures the expected age at
failure of the second component at age x2, as the sum of the present
age x2 and residual life conditioned on X1 > x1. We now give some
examples of bivariate distributions possessing length biased marginals

Examples
1. In the Gumbel’s bivariate exponential distribution

S(x1, x2) = exp[−λ1x1−λ2x2−θx1x2], λ1, λ2, x1, x2 >0, 0≤θ <λ1λ2

R1(x1, x2) = (1 + λ2 x2 + θx1x2)(1 + λ1x1)S(x1, x2) .

2. For the bivariate Pareto II with

S(x1, x2) = (1 + a1x1 + a2x2 + bx1x2)
−c,

x1, x2, a1, a2, c > 0, 0 ≤ b ≤ (c + 1)a1a2,

R1(x1, x2) = [1 + cx2(a2 + bx1)(1 + a1x1)
−1][1 + ca1x1]S(x1, x2) .

3. If (X1, X2) has bivariate beta distribution with

S(x1, x2) =(1− p1x1− p2x2+qx1x2)
d, p1, p2, d >0, 1 − d <

q

p1 p2
≤1,

0 < x1 < 1/p1, 0 < x2 <
(1 − p1x1)

(p2 − qx1)

then

R1(x1, x2) = [1 + dx2(p2 − qx1)(1 − p1x1)
−1][1 + dp1x1]S(x1, x2) .
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4. Structural relationships

In this section we prove certain relationships that are useful in the
context of reliability modelling and form extensions of some of the
results in the univariate case established in Gupta and Kirmani (1990).

4.1. Failure rates

The vector failure rate (see for example Johnson and Kotz (1975))
of the random vector (X1, X2) is

(h1(x1, x2), h2(x1, x2))

where

hi(x1, x2) = −∂ log S(x1, x2)

∂xi
, i = 1, 2 .

Similarly, defining (k1(x1, x2), k2(x1, x2)) as the failure rate of (Y1, Y2)
we have from (2.3),

k2(x1, x2) = h2(x1, x2) − ∂ log m2(x1, x2)

∂x2
. (4.1)

Using
∂m2

∂x2
= h2(x1, x2)[m2(x1, x2) − x2] ,

the identity
k2(x1, x2) = x2h2(x1, x2)/m2(x1, x2) (4.2)

results. Further

k1(x1, x2) = h1(x1, x2) − ∂

∂x1
log

[
m2(x1, x2)m1(x1, a2)

m2(x1, a2)

]
. (4.3)

Equations (4.2) and (4.3) provide tools for mutual characterizations
of the distributions of (X1, X2) and (Y1, Y2) as the failure rates
uniquely determine the corresponding distributions. When R1(x1, x2) ≡
R2(x1, x2), equation (4.1) and (4.2) reduces to

ki(x1, x2) = xi hi(x1, x2)/mi(x1, x2), i = 1, 2 . (4.4)
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Since m1(x1, x2) is increasing in x1 and m2(x1, x2) is increasing in x2

we see that
ki(x1, x2) ≤ hi(x1, x2), i = 1, 2 .

Further R(x1, x2) ≥ S(x1, x2) and R(x1, x2)/S(x1, x2) is non-decreasing
in x1 and x2.

We now present theorems that enable identification of the failure
time distribution, through the relationships between the failure rates of
(X1, X2) and (Y1, Y2).

THEOREM 4.1. The failure rates of (X1, X2) and (Y1, Y2) of the
distribution with survival function R1(x1, x2) in the length biased case,
satisfy the relationship

ki(x1, x2) = Ci hi(x1, x2) (4.5)

for all xi > ai , i = 1, 2, where Ci is less than unity and independent of
xi if and only if (X1, X2) has bivariate Pareto distribution specified by

S(x1, x2)=
(

x1

a1

)−α1
(

x2

a2

)−α2
(

x1

a1

)−θ log(
x2
a2

)

, xi > ai , θ < α1α2 (4.6)

provided

log
(

xi

ai

)
> max

(
0,

1 − αj

θ

)
, i �= j, αj > 0, i, j = 1, 2 .

Proof: When (X1, X2) is distributed as (4.6)

hi(x1, x2) =
(

αi + θ log

(
xj

aj

))
x−1

i

mi(x1, x2)=
(
αi +θ log

(
xj

aj

))
xi

/(
αi +θ log

(
xj

aj

)
−1

)
i �= j, i, j =1, 2.

so that (4.5) holds with

Ci(xj ) =
(

αi + θ log

(
xj

aj

)
− 1

) / (
αi + θ log

(
xj

aj

))
< 1

which is independent of xi .
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Conversely, for i = 2, (4.2) and (4.5) imply

m2(x1, x2) = x2/C2(x1) (4.7)

which gives

S(x1, x2) = K1(x1)

(
x2

a2

)−[1−C2(x1)]−1

(4.8)

Substituting (4.7) into (4.3)

k1(x1, x2) = h1(x1, x2) − ∂ log m1(x1, a2)

∂x1
(4.9)

Using (4.5) with i = 1 and taking the limit as x2 tends to a2,

m1(x1, a2) = x1/C1, C1 = C1(a2) (4.10)

Now from (4.9),

h1(x1, x2) = ∂ log S

∂x1
= [{1 − C1(x2)}x1]−1

and

S(x1, x2) = K2(x2)

(
x1

a1

)−[1−C1(x2)]−1

(4.11)

From m(x1, a2) in equation (4.10)

S(x1, a2) =
(

a1

x1

)(1−C1)−1

, x1 > a1 .

Similarly

S(a1, x2) =
(

a2

x2

)(1−C2)−1

, x2 > a2

where C2 = C2(a1).
Now from (4.8) as x2 tends to a2

K1(x1) = S(x1, a2)

and from (4.11) as x1 tend to a1,

K2(x2) = S(a1, x2) .
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Inserting the expression for S(x1, a2) and S(a1, x2) in the place of
K1(x1) and K2(x2) in (4.8) and (4.11) and equating

(
a1

x1

)(1−C1)−1 (
a2

x2

)(1−C2(x1))−1

=
(

a1

x1

)(1−C1(x2))−1 (
a2

x2

)(1−C2)−1

, xi > ai .

This means that

(
log

(
xi

ai

))−1

[(1 − Cj (xi))
−1 − (1 − Cj )

−1] = θ ,

a constant. Hence

1 − Cj (xi) =
(

αj + θ log
(

xi

ai

))−1

(4.12)

with aj = (1 − Cj )
−1. Using (4.12) in (4.8) we get (4.6). This

completes the proof.

Remarks

1. When Ci is independent of xj as well, bivariate Pareto with in-
dependent marginals is characterized.

2. The Gumbel’s (1960) bivariate exponential distribution is charac-
terized by the property

hi(x1, x2) − ki(x1, x2) = Cj

when the weight functions are wi(xi) = exp{−ai xi }.
THEOREM 4.2. Let (X1, X2) be a random vector admitting

absolutely continuous survival function S(x1, x2) in the support of
{(x1, x2)|xi > ai , ai > 0}. Then the following statements are equivalent

(i) (X1,X2) has bivariate Pareto distribution with survival function (4.6)
(ii) R1(x1, x2) = x1x2

a1a2
S(x1, x2) = R2(x1, x2)

(iii) hi(x1, x2) − ki(x1, x2) = x−1
i , i = 1, 2.
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Proof: Assume that (i) is true, then from the expressions for
hi(x1, x2) and mi(x1, x2) given earlier (ii) follows. By logarithmic
differentiation of (ii) with respect to xi we get (iii). It remain to es-
tablish the reverse implications. Suppose (iii) holds. Taking i = 1 and
integrating with respect to x1,

R1(x1, x2) = S(x1, x2)p1(x2)x1

Similarly for i = 2,

R2(x1, x2) = S(x1, x2)p2(x1)x2 .

From the last two equations pj (xi) = Cxi . Usimg the boundary con-
ditions S(a1, a2) = 1 = R(a1, a2), statement (ii) is obtained. Lastly,
when (ii) holds,

mi(x1, x2) = xi/Ci(xj )

and hence (i) follows if we proceed as in the proof of Theorem 4.1.
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Bivariate distributions with weighted marginals and reliablity modelling

Summary

In this paper, a family of bivariate distributions whose marginals are weighted
distributions in the original variables is studied. The relationship between the failure rates
of the derived and original models are obtained. These relationships are used to provide
some characterizations of specific bivariate models.

Distribuzioni bivariate con marginali pesate e modelli di affidabilità

Riassunto

Nel presente articolo, viene studiata una famiglia di distribuzioni bivariate le cui
marginali sono distribuzioni pesate nelle variabili originarie. Si ottengono le relazioni tra i
tempi di avaria dei modelli originari e quelli dei modelli derivati. Tali relazioni sono usate
per fornire alcune caratterizzazioni di determinati modelli bivariati.

Key words

Weighted distributions; Bivariate models; Reliability; Failure rate; Caracteriza-
tion.
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