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a b s t r a c t

Di Crescenzo and Longobardi (2002) introduced a measure of uncertainty in past lifetime
distributions and studied its relationship with residual entropy function. In the present
paper, we introduce a quantile version of the entropy function in past lifetime and study
its properties. Unlike the measure of uncertainty given in Di Crescenzo and Longobardi
(2002) the proposedmeasure uniquely determines the underlying probability distribution.
The measure is used to study two nonparametric classes of distributions. We prove
characterizations theorems for some well known quantile lifetime distributions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let X be an absolutely continuous random variable (rv) representing the lifetime of a component with cumulative
distribution function (CDF) F(t) = P(X ≤ t) and survival function (SF) F(t) = P(X > t) = 1 − F(t). The measure of
uncertainty (Shannon, 1948) is defined by

ξ(X) = ξ(f ) = −


∞

0
(log f (x))f (x)dx = −E(log f (X)), (1)

where f (t) is the probability density function (PDF) of X . Eq. (1) gives the expected uncertainty contained in f (t) about the
predictability of an outcome of X , which is known as the Shannon information measure. The length of time during a study
period has been considered as a prime variable of interest in many fields such as reliability, survival analysis, economics,
business, etc. In such cases, the information measures are functions of time and thus they are dynamic. Based on this idea,
Ebrahimi (1996) defined the residual Shannon entropy of X at time t by

ξ(X; t) = ξ(f ; t) = −


∞

t


f (x)

F(t)


log


f (x)

F(t)


dx. (2)
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Note that ξ(X; t) = ξ(Xt), where Xt = (X − t | X > t) is the residual time associated to X (see also Ebrahimi and
Pellerey, 1995).

However, in many realistic situations, uncertainty is related to the past lifetime rather than the residual lifetime. For
example, if we consider a systemwhich had already failed at time t , then its uncertainty is related to the past, i.e., on which
instant (0, t) it has failed. Motivated by this, Di Crescenzo and Longobardi (2002) introduced the past entropy as

ξ(X; t) = ξ(f ; t) = −

 t

0


f (x)
F(t)


log


f (x)
F(t)


dx,

= log F(t)−
1

F(t)

 t

0
(log f (x)) f (x)dx, (3)

where ξ(X; t) = ξ(X t) and X t
= (t−X | X ≤ t) is the past lifetime associated to X . Denoting a(x) = f (x)/F(x) the reversed

hazard rate (see Block et al., 1998), Eq. (3) can be rewritten as

ξ(X; t) = 1 −
1

F(t)

 t

0
log(a(x))f (x)dx. (4)

Given that at time t , a unit is found to be down, ξ(X; t) measures the uncertainty about its past lifetime. Interesting
extensions and multivariate forms of measures of uncertainty are also available in literature. For recent works on entropy
in past lifetime we refer to Di Crescenzo and Longobardi (2002, 2006), Nanda and Paul (2006) and Kundu et al. (2010).

All these theoretical results and applications thereof are based on the distribution function. A probability distribution
can be specified either in terms of the distribution function or by the quantile functions (QF). Recently, it has been shown
by many authors that quantile functions

Q (u) = F−1(u) = inf{t | F(t) ≥ u}, 0 ≤ u ≤ 1 (5)

are efficient and equivalent alternatives to the distribution function inmodeling and analysis of statistical data (see Gilchrist,
2000; Nair and Sankaran, 2009). Inmany cases, QF’s aremore convenient as they are less influenced by extreme observations
and thus provide a straightforward analysis with a limited amount of information. For detailed and recent studies on QF,
its properties and usefulness in the identification of models we refer to Nair et al. (2008, 2011), Nair and Sankaran (2009),
Sankaran and Nair (2009), Sankaran et al. (2010) and the references therein.

Many of the quantile functions used in applied work like various forms of lambda distributions (Ramberg and Schmeiser,
1974; Freimer et al., 1988; van Staden and Loots, 2009; Gilchrist, 2000), the power-Pareto distribution (Gilchrist, 2000,
Hankin and Lee, 2006), Govindarajulu distribution (Nair et al., 2011) etc. do not have tractable distributions. This makes
the analytical study of the properties of ξ(X) of these distributions by means of (1) difficult. Thus a formulation of the
definition and properties of entropy function in terms of quantile functions is called for. Such a discussion has several
advantages. Analytical properties of the entropy function obtained in this approach can be used as alternative tools in
modeling data. Sometimes, the quantile-based approach is better in terms of tractability. Newmodels and characterizations
that are unresolvable in the distribution function approach can be resolvedwith the aid of QF’s. In viewof these, the objective
of the present work is to initiate a discussion of entropy function in terms of QF’s. The present paper introduces the Shannon
entropy function for past lifetime using the QF’s and proved some useful characterization theorems arising out of it. Unlike
the entropy function in past lifetime due to Di Crescenzo and Longobardi (2002), an explicit expression is obtained for
quantile based entropy function in past lifetime.

The rest of the paper is organized as follows. In Section 2, we consider some useful reliability measures in terms of
quantile function and introduce the quantile based Shannon entropy in past lifetime. Various properties of the measure are
discussed. Finally, Section 3 proves some characterization results based on the measures considered in Section 2.

2. Quantile based entropy in past lifetime

When F is continuous, we have from (5), FQ (u) = u, where FQ (u) represents the composite function F(Q (u)). Defining
the density quantile function by fQ (u) = f (Q (u)) (see Parzen, 1979) and quantile density function by q(u) = Q ′(u), where
the prime denotes the differentiation, we have

q(u)fQ (u) = 1. (6)

The reversed hazard rate function a(x) can be expressed in terms of the quantile function, is given by

A(u) = aQ (u) = a(Q (u)) = u−1fQ (u) = [uq(u)]−1.

The function A(u) is referred to as reversed hazard quantile function. Following Nair and Sankaran (2009), A(u) explains
the conditional probability of failure in the past small interval of time given that the failure occurred prior to the 100u%
point of distribution. Like a(x) that determines the CDF or SF uniquely, A(u) also uniquely determines the QF by the identity

Q (u) =

 u

0

dt
tA(t)

.
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Using the QF defined in (5) and (6), the Shannon entropy in (1) can be written as

ξ = ξ(X) = −

 1

0
(log fQ (p))fQ (p)dQ (p),

=

 1

0
(log q(p))dp. (7)

Clearly, by knowing eitherQ (u) or q(u), the expression for ξ(X) is quite simple to compute. Recently, Sunoj and Sankaran
(2012) obtained a quantile version of the residual entropy ξ(X; t), given by

ψ(u) = ξ(X;Q (u)) = log(1 − u)+ (1 − u)−1
 1

u
log q(p)dp.

Unlike the measure (2), ψ(u) determine the QF uniquely. For more properties of ψ(u), one may refer to Sunoj and
Sankaran (2012). The entropy function in past lifetime (3) in terms of QF is defined by

ψ(u) = ξ(X;Q (u)) = log u + u−1
 u

0
(log q(p))dp. (8)

The measure (8) gives the expected uncertainty contained in the conditional density about the predictability of an
outcome of X until 100u% point of distribution. From (4), we can write (8) as

ψ(u) = 1 − u−1
 u

0
log A(p)dp. (9)

Differentiating Eq. (8) with respect to u, we get

ψ
′
(u) =

1
u

−
1
u2

 u

0
log q(p)dp +

1
u
log q(u),

equivalently,

uψ
′
(u) = 1 − [ψ(u)− log u] + log q(u).

Thus,

q(u) = exp{uψ
′
(u)+ ψ(u)− log u − 1}. (10)

The Eq. (10) provides a simple relationship that determines the quantile density function uniquely fromψ(u). However,
the past entropy ξ(X; t) in (3) or (4) does not provide explicit relationship between ξ(X; t) and f (t) and hence does
not determine the PDF uniquely. The relationship (10) enables us to characterize probability distributions which will be
discussed in Section 3.

Following Di Crescenzo and Longobardi (2002), we can easily show that (7) can be expressed in terms ofψ(u) andψ(u)
as given below.

Proposition 1. For all u > 0

ξ(X) = ψ[u, 1 − u] + uψ(u)+ (1 − u)ψ(u) (11)

where ψ[p, 1 − p] = −p log p − (1 − p) log(1 − p) is the entropy of a Bernoulli distribution.

The identity (11) can be explained in the following manner (see Di Crescenzo and Longobardi, 2002). The quantile based
uncertainty about the failure time of an item can be decomposed into three parts: (i) the uncertainty of whether the item has
failed until or after 100u% point of distribution, (ii) the uncertainty until 100u% point of distribution, and (iii) the uncertainty
after 100u% point of distribution.

Now on the basis of past quantile entropy (PQE), we define the following nonparametric classes of life distributions.

Definition 1. X is said to have decreasing (increasing) quantile entropy in past lifetime (DPQE (IPQE)) ifψ(u) is decreasing
(increasing) in u ≥ 0.

It is easy to show from the relationship (8) that if X is DPQE (IPQE), then ψ(u) ≥ (≤)1 + log(uq(u)) = 1 − log A(u).
For the exponential distribution in the support of (−∞, 0) with F(t) = exp (λt) , λ > 0 (see Block et al., 1998) we

have Q (u) =
1
λ
log u, q(u) =

1
λu and A(u) = λ so that ψ(u) = 1 + log(uq(u)) = 1 − log A(u) = 1 − log λ. Thus

exponential distribution with negative support is the boundary of IPQE and DPQE classes. Table 1 provides the QF’s, ψ(u)
and its monotone nature of it for certain families of distributions.
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Table 1
QF , ψ(u) and monotone behavior of lifetime distributions.

Distribution Quantile function ψ(u) Monotone nature

Exponential λ−1(− log(1 − u)) 1 − log λ+ log u +
 1−u

u


log(1 − u) IPQE

Uniform a + (b − a)u log u + log(b − a) IPQE

Pareto II α[(1 − u)−
1
c − 1] ln


α
c


+

 c+1
c


+ log u +

 c+1
c

  1−u
u


log(1 − u) IPQE

Rescaled beta R[1 − (1 − u)
1
c ] log

 R
c


+

 c−1
c


+ log u +

 c−1
c

  1−u
u


log(1 − u) IPQE for c > 1

Half logistic σ log
 1+u
1−u


2 + log (2σ)+ log u −

 1+u
u


log(1 + u)+

 1−u
u


log(1 − u) IPQE

Power function αu
1
β log


α
β


+


β−1
β


+

1
β
log u IPQE

Pareto I σ(1 − u)−
1
α log


σ
α


+


α+1
α


+ log u +


α+1
α

  1−u
u


log(1 − u) IPQE

Generalized Pareto b
a [(1 − u)−

a
(a+1) − 1] log

 b
a+1


+

 2a+1
a+1


+ log u +

 2a+1
a+1

  1−u
u


log(1 − u) IPQE for a > 0

Log logistic α−1
 u
1−u

 1
β 2 − log(αβ)+

1
β
log u +


β+1
β

  1−u
u


log(1 − u) IPQE

Exponential geometric 1
λ
log

 1−pu
1−u


2 + log

 1−p
λ


+ log u +

 1−u
u


log(1 − u)+


1−pu
pu


log(1 − pu) IPQE

Inverted exponential −
λ

log u 1 −
1
u

 u
0 log(log p)2dp + log λ DPQE

Linear hazard rate (a + b)−1 log


a+bu
a(1+u)


2 + log

 b−a
a+b


+ log u −

 1+u
u


log(1 + u)+

a
bu log a −

 a+bu
bu


log(a + bu)

Davies Cuλ1 (1 − u)−λ2 log C + λ2 − λ1 + 1 + λ1 log u + (λ2 + 1)
 1−u

u


log(1 − u)+

(λ1(1−u)+λ2u)
(λ2−λ1)u

log (λ1(1 − u)+ λ2u)−
λ1 log λ1
(λ2−λ1)u

Proposition 2. If A(u) is decreasing for all u ≥ 0, then ψ(u) is increasing for all u ≥ 0.

The proof follows from the identity (10).

Theorem 1. (a) If X is IPQE and if φ is nonnegative, increasing and convex, then φ(X) is also IPQE. (b) If X is DPQE and if φ is
nonnegative, increasing and concave, then φ(X) is also DPQE.

Proof. If g(y) is the pdf of Y = φ(X), then g(y) =
f (φ−1(y))
φ′(φ−1(y))

; hence, g(QY (u)) =
1

qY (u)
=

fQ (u)
φ′Q (u) =

1
qX (u)φ′Q (u) . We have

ψY (u) = log u + u−1
 u

0
(log qY (p))dp,

= log u + u−1
 u

0
log(qX (p)φ′Q (p)t)dp,

= log u + u−1
 u

0
log qX (p)dp + u−1

 u

0
logφ′Q (p)dp

= ψX (u)+ u−1
 u

0
logφ′Q (p)dp, (12)

where ψX (u) and ψY (u) are the PQE’s of X and Y respectively. Now differentiating (12) with respect to u, we get

ψ
′

Y (u) = ψ
′

X (u)−
1
u2

 u

0
logφ′Q (p)dp +

1
u
logφ′Q (u),

= ψ
′

X (u)+
1
u2


u logφ′Q (u)−

 u

0
logφ′Q (p)dp


.

But since the QF Q (u) is a nondecreasing function and if φ is nonnegative, increasing and convex, we have logφ′Q (u) >
logφ′Q (p), 0 < p < u and on integration between the limits 0 to u, we get u logφ′Q (u) >

 u
0 logφ′Q (p)dp,thus the second

term in the expression of ψ
′

Y (u) is positive. Now if X is IPQE, ψ
′

X (u) is positive so that Y = φ(X) is also IPQE. The proof of
(b) is similar. �

Example 1. Let X have the inverted exponential distribution with CDF F(t) = e−λ/t
; t > 0 and QF Q (u) = −

λ
log u . When

Y = Xα, α > 0, the distribution of Y is an inverted Weibull distribution with F(t) = e−λ/tα
; t > 0. For the inverted

exponential, we have q(u) =
λ

u(log u)2
and A(u) =

(log u)2

λ
. Then from (9) we can get

uψ(u) = u −

 u

0
log A(p)dp. (13)
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Differentiating (13) with respect to u and substituting A(u) =
(log u)2

λ
, we obtain

uψ
′
(u)+ ψ(u) = 1 − log(log u)2 + log λ. (14)

For the inverted exponential, (9) provides

ψ(u) = 1 −
1
u

 u

0
log(log p)2dp + log λ,

and (14) becomes

ψ
′
(u) =

1
u


1
u

 u

0
log(log p)2dp − log(log u)


.

When u > p, we have log u > log p or log(log u)2 > log(log p)2. Integrating both sides over (0, u), we get

u(log(log u)2) >
1
u

 u

0
log(log p)2dp.

Therefore ψ
′
(u) < 0, and thus X is DPQE. The nonnegative function φ(x) = xα, x > 0, is concave if 0 < α < 1. Hence due

to Theorem 1, the inverted Weibull is DPQE for 0 < α < 1.
The concept of weighted distributions is usually considered in connectionwithmodeling statistical data, where the usual

practice of employing standard distributions is not found appropriate in some cases (see Rao, 1965). In recent years, this
concept has been applied in many areas of statistics, such as analysis of family size, human heredity, wildlife population
study, renewal theory, biomedical, statistical ecology, reliability modeling, etc. Associated to a random variable X with
PDF f (t) and to a nonnegative real function w(t), we can define the weighted random variable Xw with density function
fw(t) =

w(t)f (t)
Ew(X) , where we assume 0 < Ew(X) < ∞. When w(t) = t, Xw is called length (size) biased rv. For recent works

on weighted distributions, we refer the reader to Navarro et al. (2006); Bartoszewicz (2009); Navarro et al. (2011) and the
references therein. Using fw(t), the corresponding density quantile function is given by

fw(Q (u)) = w(Q (u))f (Q (u))/µ,

where µ =
 1
0 w(Q (p))f (Q (p))d(Q (p)) =

 1
0 w(Q (p))dp. An equivalent version in the quantile density form is given by

1
qw(u)

=
w(Q (u))
µq(u) . Therefore, the PQE of Xw denoted by ψw(u) is of the form

ψw(u) = ψX (u)+ logµ− u−1
 u

0
logw(Q (p))dp.

Then the following preservation theorem is immediate.

Theorem 2. (a) If X is IPQE and if w(X) is nonnegative, increasing and concave, then Xw is also IPQE. (b) If X is DPQE and if
w(X) is nonnegative, increasing and convex, then Xw is also DPQE.

The proof is similar to Theorem 1.

Definition 2. X is said to have less PQE than Y if ψX (u) ≤ ψY (u) for all u ≥ 0. We write X ≤LPQE Y .

It is interesting to note that if X and Y are two uniform U(0, b1) and U(0, b2) rv’s, and if b1 ≤ b2, then X ≤LPQE Y . Let qZ (u)
the quantile density function of the variable Z = aX + b, where a > 0 and b ≥ 0. Then, using (8) we get

ψZ (u) = ψX (u)+ log a, (15)

for allu ≥ 0. Now we have the following theorem.

Theorem 3. Let Z1 = a1X + b1 and Z2 = a2Y + b2, a1, a2 > 0 and b1, b2 ≥ 0. If X ≤LPQE Y and a1 ≤ a2, then Z1 ≤LPQE Z2.

The proof follows directly from (15).

Definition 3. X is said to be larger than Y in quantile reversed failure rate ordering (X ≥QRFR Y ) if AX (u) ≤ AY (u) for all
u ≥ 0.

Theorem 4. If X ≤QRFR Y , then X ≤LPQE Y .

The proof follows from (9).

Theorem 5. If X ≤QRFR Y , and if φ is nonnegative, increasing and convex, then φ(X)≤LPQE φ(Y ).
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Proof. Let qX (u), q∗

X (u), qY (u) and q∗

Y (u) denote the quantile density function of X, φ(X), Y and φ(Y ) respectively. Then by
Eq. (12), for all u ≥ 0,

ψφ(X)(u)− ψφ(Y )(u) = ψX (u)− ψY (u)+ u−1
 u

0
logφ′

XQ (p)dp − u−1
 u

0
logφ′

YQ (p)dp.

Now, when X ≤QRFR Y using Theorem 4 we have X ≤LPQE Y , and since φ is nonnegative, increasing and convex, we obtain
φ(X)≤LPQE φ(Y ). �

Remark 1. For equilibrium distribution with density function

fE(t) = F(t)/µ, (16)

we have 1
qE (u)

=
(1−u)
µ

, or log qE(u) = logµ − log(1 − u), then using (8) the PQE is given by ψE(u) = 1 + logµ + log u +

(1−u)
u log(1 − u) = ψE(u)+ log u +

(1−u)
u log(1 − u). It is interesting to note that ψE(u) for equilibrium model is a constant

(see Sunoj and Sankaran, 2012) while ψE(u) is not.

Theorem 6. If X ≤LPQE Y and X ≥QRFR Y , then ψX (u)− ψY (u) is nondecreasing in u.

Proof. Using (8), we have

ψ
′

X (u) =
1
u
[1 − ψX (u)− log AX (u)] ≥

1
u
[1 − ψY (u)− log AY (u)] = ψ

′

Y (u),

where the inequality holds from ψX (u) ≤ ψY (u) and AX (u) ≤ AY (u). �

3. Characterizations

In this section, we prove some useful characterizations of important families of distributions which are commonly used
in lifetime data analysis.

Theorem 7. The rv X is distributed as generalized Pareto with

Q (u) =
b
a


(1 − u)−

a
(a+1) − 1


, a > −1, b > 0 (17)

if and only if for a real constant c,

ψ(u) = c − log A(u)+
c
u
log(1 − u). (18)

Proof. Suppose that Eq. (18) holds. Then, using Eq. (9), we have

1 −
1
u

 u

0
log A(p)dp = c − log A(u)+

c
u
log(1 − u).

Equivalently,

u −

 u

0
log A(p)dp = cu − u log A(u)+ c log(1 − u). (19)

Differentiating both sides of (19) with respect to u, we get.

1 − log A(u) = c − log A(u)− u
d
du

log A(u)−
c

(1 − u)
,

simplifying, we have

d
du

log A(u) =
(c − 1)

u
−

c
u

−
c

(1 − u)
.

Integrating both sides we get the A(u) of the generalized Pareto with c =
 2a+1

a+1


and thus the model (17). The converse part

follows directly from Table 1. �

Remark 2. When c = 1, we have the exponential distribution and c > 1(0 < c < 1) provides the Pareto II (rescaled beta)
distributions, respectively. When c = 0, (18) becomes a characterization for uniform distribution U(a, b).
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The following theorem characterizes power function distribution and half logistic distributions using ψ(u). The proofs
of the results are direct.

Theorem 8. The rv X is distributed as power function with Q (u) = αu1/β
;α, β > 0, holds for all u if and only if it satisfies the

relationship ψ(u) = C − log A(u) where 0 < C < 1.

Theorem 9. The relationshipψ(u) = 2− log A(u)− 1
u log

 1+u
1−u


, holds for all u if and only if X follows a half-logistic distribution

with Q (u) = σ log (1+u)
(1−u) , σ > 0.

Theorem 10. The relationship ψE(u) = 1 − log AE(u)+
1
u log(1 − u) holds for u if and only if X follows equilibrium distribu-

tions (16).

Next we consider a family of distributions that has nonmonotone hazard quantile function.

Theorem 11. The relationship

ψ(u) = A − log A(u)+
(A + α)

u
log(1 − u)

for all u if and only if

q(u) = Kuα(1 − u)−(A+α), (20)

where α and A are real constants.

Remark 3. The family of distributions (20) contains several well-known distributions which include the exponential (α =

0, A = 1), Pareto (α = 0, A < 1), rescaled beta (α = 0, A > 1), the loglogistic distribution (α = λ− 1, A = 2) and the life
distribution proposed by Govindarajulu (1977) (α = β− 1, A = −β), with QF Q (u) = θ +σ((β+ 1)uβ −βuβ+1). In terms
of distribution functions (20) has the form

f (x) = K [F(x)]−α[1 − F(x)]A+α,

belongs to the class of distributions defined by the relationship between their density and distribution functions of Jones
(2007) (for more details, see Nair et al., 2011).
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Sankaran, P.G., Nair, N.U., 2009. Nonparametric estimation of the hazard quantile function. J. Nonparametr. Stat. 21, 757–767.
Sankaran, P.G., Nair, N.U., Sreedevi, E.P., 2010. A quantile based test for comparing cumulative incidence functions of competing risksmodels. Statist. Probab.

Lett. 80, 886–891.
Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423.
Sunoj, S.M., Sankaran, P.G., 2012. Quantile based entropy function. Statist. Probab. Lett. 82, 1049–1053.
van Staden, P.J., Loots,M.T., 2009. L-moment estimation for the generalized lambda distribution. In: Third Annual ASEARC Conference, NewCastle, Australia.


	Quantile based entropy function in past lifetime
	Introduction
	Quantile based entropy in past lifetime
	Characterizations
	Acknowledgments
	References


