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In this paper, we examine the relationships between log odds rate and various reliability measures
such as hazard rate and reversed hazard rate in the context of repairable systems. We also prove
characterization theorems for some families of distributions viz. Burr, Pearson and log exponential
models. We discuss the properties and applications of log odds rate in weighted models. Further we
extend the concept to the bivariate set up and study its properties.
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1. Introduction

Let X be a random variable (rv) representing the lifetime of a component/system with
reliability (survival) function RX(x), then the hazard rate is given by

hX(x) = fX(x)

RX(x)
= − d

dx
ln RX(x) (1)

for x < b, where b = sup{x : RX(x) > 0} and fX(x) is the probability density function (pdf)
of the random variable X. The hazard rate is one of the fundamental concepts of reliability
analysis. In many practical situations it has been considered as a useful measure in modeling
statistical data to derive the appropriate model. Based on the physical properties of the compo-
nent, the monotone behaviour of the failure pattern is also an effective method to characterize
the underlying model.

Recently, with the need for high reliability of the components, non-monotone hazard rates
have also played an important role in the study of engineering reliability and biological survival
analysis. The important distributions such as lognormal, Burr, inverse Gaussian and truncated
normal are appropriate in such situations. It has been identified recently that the log odds
rate (LOR) is a useful measure to model statistical data that shows non-monotone hazard rate
(see [1]). A formal definition of the LOR is as follows. If FX(x) is the cumulative distribution
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444 S. M. Sunoj et al.

function (cdf) and RX(x) = 1 − FX(x) is the reliability function, the log odds function is

LOX(x) = ln
FX(x)

RX(x)
= ln FX(x) − ln RX(x)

which gives
FX(x)

RX(x)
= exp(LOX(x))

or

FX(x) = exp(LOX(x))

1 + exp(LOX(x))
.

Then, LOR

HX(x) = d

dx
LOX(x) = fX(x)

FX(x)RX(x)
(2)

or

fX(x) = HX(x) exp(LOX(x))

(1 + exp(LOX(x)))2
.

In the present paper, we give an interpretation for LOR in the context of repairable systems.
We also prove characterization theorems for some families of distributions viz. Burr, Pearson
and log exponential densities. We discuss the properties and applications of log odds ratio in
weighted models. We further extend the concept to the bivariate set up and study its properties.

2. Maintainability function and reliability function

Reliability and maintainability are important measures of the effectiveness of components.
The major difference between these two measures is that reliability is the probability that a
component has survived (or does not fail) in a particular time, whereas maintainability is the
probability that any required maintenance would be successfully completed in a given time
period.

Let Y denote the repair time of a component, then FY (x) = P(Y ≤ x) is known as the
maintainability function (distribution function). It is used to predict the probability that a
repair, beginning at time x = 0, will be accomplished in a time x. Then the reversed repair
rate is defined as

λY (x) = fY (x)

FY (x)
= d

dx
ln FY (x) (3)

for x > a, where a = inf{x : FY (x) > 0}. Equation (3) implies that the probability of its repair
completed during the time (x − ε, x) is approximately equal to ελY (x). When Y denotes the
failure time, λY (x) is then known as the reversed hazard rate (see [2]).

When X and Y are independent and identically distributed (i.i.d.) random variables, using
(1) and (3), the LOR (2) becomes

HX(x) = λX(x) + hX(x) for a < x < b. (4)

Therefore, HX(x) reduces to the sum of the reversed repair rate and failure rate. One important
property (4) posseses is that even if the survival data show a non-monotone hazard rate, the
LOR would be monotone. For various properties of distributions with monotone HX(x) and
examples, one could refer to [1].
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Characterizations of distributions using log odds rate 445

3. Characterizations

Consider a rv X with support (a, b) and an absolutely continuous cdf FX(x), the system of
distributions, introduced by Burr [3], given by

fX(x) = FX(x)(1 − FX(x))gX(x), (5)

where gX(x) is some convenient function, which must be non-negative over the domain (a, b).
Equations (2) and (5) together imply that

HX(x) = gX(x).

Hence, for Burr family of distributions, gX(x) directly gives the LOR and vice versa.
We now prove a characterization theorem for Pearson family of distributions.

THEOREM 1 Let X be a rv having an absolutely continuous cdf FX(x) with support
(a, b). Assume that E(X) < ∞, mX(x) = E(X|X > x) and nX(x) = E(X|X < x) denote
the conditional expectations of X. Then the relationship

mX(x) = nX(x) + (a0 + a1x + a2x
2)HX(x) (6)

holds for all x ∈ (a, b), if and only if the pdf of X satisfies the equation

d ln fX(x)

dx
= −(x + d)

b0 + b1x + b2x2
(7)

with ai = (bi/1 − 2b2); i = 0, 1, 2.

Proof The family of distributions (7) is characterized by the identity

mX(x) = μX + (a0 + a1x + a2x
2)hX(x), (8)

where μX = E(X) (see [4]). One can also establish that for the family (7), we have

nX(x) = μX − (a0 + a1x + a2x
2)λX(x) (9)

(see [5] and [6]).
From equations (8) and (9), we get

mX(x) = nX(x) + (a0 + a1x + a2x
2)(hX(x) + λX(x)),

which yields (6). Conversely, assume that (6) holds, multiplying (6) by RX(x) and FX(x) and
on simplification we get,

FX(x)

∫ b

x

tfX(t)dt = RX(x)

∫ x

a

tfX(t)dt + (a0 + a1x + a2x
2)fX(x). (10)

Differentiating equation (10) with respect to x, and simplifying we obtain the result (7). This
completes the proof. �

Examples Here we consider some of the important members of the Pearson family and their
respective forms (6).
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446 S. M. Sunoj et al.

1. Normal: fX(x) = 1√
2πσ

exp

{
−1

2

(
x − μ

σ

)2
}

,

then mX(x) = nX(x) + σ 2HX(x).
2. Beta: fX(x) = (1/B(m, n))xm−1(1 − x)n−1,

then mX(x) = nX(x) + (x(1 − x)/(m + n))HX(x).

3. Gamma: fX(x) = 1

�(α)βα
xα−1e

− x
β ,

then mX(x) = nX(x) + βxHX(x).

Next, we prove a characterization theorem using HX(x) for the one parameter log exponential
family. The one parameter log exponential is defined by

fX(x) = xθC(x)

A(θ)
, θ > 0, x ∈ (0, b), (11)

where 0 < b ≤ ∞. C(x) is a non-negative function of x, which is differentiable and A(θ) is
a non-negative function of θ satisfying A(θ) = ∫ b

0 xθC(x)dx.

THEOREM 2 Let

mX,C(x) = E

(
XC ′(X)

C(X)
|X > x

)
,

nX,C(x) = E

(
XC ′(X)

C(X)
|X < x

)
and E

(
XC ′(X)

C(X)

)
< ∞

and assume that limx→b C(x)xθ+1 = 0. Then the distribution of X belongs to the one
parameter log exponential family, if and only if

mX,C(x) = nX,C(x) − xHX(x). (12)

Proof For the model (11), we have

RX(x) = −C(x)xθ+1

A(θ)(θ + 1)
− 1

A(θ)(θ + 1)

∫ b

x

C ′(t)tθ+1dt

or

mX,C(x) = −xhX(x) − (θ + 1). (13)

Similarly, one can obtain

FX(x) = C(x)xθ+1

A(θ)(θ + 1)
− 1

A(θ)(θ + 1)

∫ b

x

C ′(t)tθ+1dt

or

nX,C(x) = xλX(x) − (θ + 1). (14)

Combining equations (13) and (14), we obtain the required form (12). The converse part is
straightforward. �
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Characterizations of distributions using log odds rate 447

4. Weighted models

The concept of weighted distributions was introduced by Rao [7], explaining how such dis-
tributions arise in practice. Motivated from this, several research works were carried out
in theoretical and practical setting. These include analyses of family data, the problem of
family size and alcoholism, study of albinism, human heredity, aerial survey and visibility
bias, line transect sampling, renewal theory, cell cycle analysis and pulse labeling, efficacy
of early screening for disease, etiological studies, statistical ecology and reliability modeling.
An exhaustive account of research in this area and the latest survey of literature we refer to
[8], [9], [10] and [11].

Let fX(x) be the pdf of a non-negative rv X denoting the life length of a component having
cdf FX(x) with FX(0) = 0. Then a rv Z with density

fZ(x) = w(x)

μw

fX(x) (15)

such that μw = E(w(X)) is said to have weighted distribution corresponding to X and w.
Denoting FZ(x) = P(Z ≤ x) and RZ(x) = P(Z > x), the cdf and survival function, respec-
tively of the rv Z, then the log odds function denoted by LOZ(x) is given by

LOZ(x) = ln

(
FZ(x)

RZ(x)

)
= ln FZ(x) − ln RZ(x). (16)

But it can be obtained directly, the quantities

FZ(x) = nw
X(x)

μw

FX(x) (17)

and

RZ(x) = mw
X(x)

μw

RX(x), (18)

where mw
X(x) = E(w(X)|X > x) and nw

X(x) = E(w(X)|X < x) are the conditional means
of X (see [12]). From expressions (16), (17) and (18) the log odds function becomes

LOZ(x) = LOX(x) + ln

(
nw

X(x)

mw
X(x)

)
.

Using equation (2), we obtain

HZ(x) = fZ(x)

FZ(x)RZ(x)
= w(x)μw

nw
X(x)mw

X(x)
HX(x).

From a direct computation with certain specified weight functions, it can be observed that
the weighted version often retains the same form as their parent distribution. This property is
usually termed as form-invariance. Initially Rao [7] identified this property in some discrete
models, but a comprehensive study of the topic was initiated by Patil and Ord [13]. They
proved that a necessary and sufficient condition for X to be a form-invariant under size-bias
of order α (i.e., when w(x) = xα , α > 0) is that its pdf is of the form (11). Motivated by
the relevance of form-invariance in characterizing families of distributions and usefulness of
the same in modeling random phenomena by employing various families of distributions,
Sankaran and Nair [14] derived the conditions under which the Pearson & Ord families are
form-invariant with respect to the length biased samplings (i.e., when w(x) = x). In view of
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448 S. M. Sunoj et al.

the form-invariant property for families (7) and (11), the analogous statements for Theorems 1
and 2 in the context of weighted models are immediate, which is stated as follows.

THEOREM 3 Let Z be the weighted rv associated to X and w(x) = xα, α > 0. Then X is a
member of the Pearson system of distributions equation (7) with b0 = 0 and limx→a(b1x +
b2x

2)fX(x) = 0, if and only if

mZ(x) = nZ(x) + (c1x + c2x
2)HZ(x)

where mZ(x) = E(Z|Z > x) and nZ(x) = E(Z|Z < x).

THEOREM 4 Let Z be the weighted rv associated to X and assume that limx→b c(x) xθ+1 = 0,

with w(x) = xα, α > 0 and g(x) = xC ′(x)/C(x), then the relationship

m
g

Z(x) = n
g

Z(x) − xHZ(x)

holds if and only if Z belongs to the one parameter exponential family (12), where m
g

Z(x) =
E(g(Z)|Z > x) and n

g

Z(x) = E(g(Z)|Z < x).

In the following, we present a characterization theorem for the one parameter exponential
family defined by

fX(x) = α(x)θx

b(θ)
; x ∈ (a, b), θ > 0, (19)

where α(x) is a non-negative function and b(θ) = ∫ b

a
α(x)θx dx.

THEOREM 5 Let Z be the weighted rv associated with X and w(x) = xα , α > 0, then the
relationship

HZ(x) = nd
Z(x) − md

Z(x) (20)

holds, if and only if X belongs to the one parameter exponential family (19) with α(x) =
(w(x)/d(x)) provided

d(b)θb − d(a)θa = 0, C(θ) =
∫ b

a

d(x)θx dx, nd
Z(x) = E

(
d ′(Z)

d(Z)
|Z < x

)
and

md
Z(x) = E

(
d ′(Z)

d(Z)
|Z > x

)
.

5. Bivariate Case

In this section, we extend the concept of log odds function and LOR to higher dimensions.
We confine our study to the bivariate setup. The extensions to higher dimensions are direct.
Let X = (X1, X2) be a bivariate random vector with an absolutely continuous distribution
function F(x1, x2) and survival function R(x1, x2) and pdf f (x1, x2). Let Fi(xi) and Ri(xi),
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Characterizations of distributions using log odds rate 449

i = 1, 2 denote the marginal distribution function and survival function of Xi . Let fi(xi) be
the density function of Xi . Then we propose the bivariate log odds function by

L = LOx1,x2(x1, x2) = ln
F(x1, x2)

R(x1, x2)
= ln F(x1, x2) − ln R(x1, x2), (21)

which gives

F(x1, x2)

R(x1, x2)
= exp(LOx1,x2(x1, x2)). (22)

The corresponding LOR is defined as a vector

H(x1, x2) = (H1(x1, x2), H2(x1, x2)), (23)

where

Hi(x1, x2) = ∂LOx1,x2(x1, x2)

∂xi

; i = 1, 2. (24)

Using the bivariate vector failure rate due to Johnson and Kotz [15] and bivariate reversed
hazard rate due to Roy [16], equation (24) becomes

Hi(x1, x2) = λi(x1, x2) + hi(x1, x2), (25)

where λi(x1, x2) = ∂/∂xi ln F(x1, x2) and hi(x1, x2) = −(∂/∂xi) ln R(x1, x2), i = 1, 2, are
the ith components of the reversed hazard rates and failure rates, respectively.
Here we consider some bivariate densities having simple vector valued LOR.

Example 1 Bivariate normal:

f (x1, x2) = 1

2πσ1σ2

√
1 − ρ2

exp

{ −1

2(1 − ρ2)

[
x2

1

σ 2
1

− 2ρx1x2

σ1σ2
+ x2

2

σ 2
2

]}
;

− ∞ < x1, x2 < ∞, σ1, σ2 > 0, |ρ| < 1. (26)

Taking logarithm on both sides of (26) and differentiating with respect to xi and then integrating
twice between the limits xi to bi and xj to bj , i = 1, 2 and j = 3 − i, we get

(1 − ρ2)σ 2
i σjhi(x1, x2) = σjmi(x1, x2) − ρσimj (x1, x2), (27)

where mi(x1, x2) = E(Xi |Xi > xi, Xj > xj ), i = 1, 2 and j = 3 − i (see [17] and [18]).
Similarly, integrating twice between the limits ai to xi and aj to xj , i = 1, 2 and j = 3 − i,
we obtain

(1 − ρ2)σ 2
i σjλi(x1, x2) = ρσinj (x1, x2) − σjni(x1, x2), i = 1, 2 and j = 3 − i,

(28)
where ni(x1, x2) = E(Xi |Xi < xi, Xj < xj ), i = 1, 2 and j = 3 − i. Now adding
(27) and (28), we get

(1 − ρ2)σ 2
i σjHi(x1, x2) = σj (mi(x1, x2) − ni(x1, x2)) − ρσi(nj (x1, x2) − mj(x1, x2)),

i = 1, 2 and j = 3 − i.
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450 S. M. Sunoj et al.

Example 2 Bivariate exponential:
The joint density function of the exponential conditional due to Arnold & Strauss [19] is

f (x1, x2) = C exp(−α1x1 − α2x2 − βx1x2), x1, x2, α1, α2 > 0, β ≥ 0, (29)

where

C = −β exp

[−α1α2

β

] (
Ei

(−α1α2

β

))−1

.

Now proceeding in the similar manner as above, the identity connecting the vector valued
LOR and the conditional moments for the density (29) becomes

Hi(x1, x2) = β(mj (x1, x2) − nj (x1, x2)), i = 1, 2 and j = 3 − i.

THEOREM 6 The relationship

LOX1,X2(x1, x2) = LOX1(x1) + LOX2(x2) (30)

holds for all x1, x2, if and only if X1 and X2 are independent.

Proof Suppose equation (30) holds, then

F(x1, x2)

R(x1, x2)
= F1(x1)

R1(x1)

F2(x2)

R2(x2)
,

which is equivalent to

F(x1, x2)(1 − F1(x1))(1 − F2(x2)) = F1(x1)F2(x2)(1 − F1(x1) − F2(x2) + F(x1, x2)).

On simplification, we obtain

F(x1, x2) = F1(x1)F2(x2),

which proves the result. The converse part is straightforward. �

Remark Theorem 6 can be useful to test the independence among the variables. This might
be helpful in reliability analysis to study the dependence structure between the components
of a system.
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