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Recently, cumulative residual entropy (CRE) has been found to be a new measure of information that
parallels Shannon’s entropy (see Rao et al. [Cumulative residual entropy: A new measure of information,
IEEE Trans. Inform. Theory. 50(6) (2004), pp. 1220–1228] and Asadi and Zohrevand [On the dynamic
cumulative residual entropy, J. Stat. Plann. Inference 137 (2007), pp. 1931–1941]). Motivated by this find-
ing, in this paper, we introduce a generalized measure of it, namely cumulative residual Renyi’s entropy,
and study its properties. We also examine it in relation to some applied problems such as weighted and equi-
librium models. Finally, we extend this measure into the bivariate set-up and prove certain characterizing
relationships to identify different bivariate lifetime models.

Keywords: cumulative residual entropy; Renyi’s entropy; weighted distributions; characterization

AMS Subject Classifications: 62N05; 90B25

1. Introduction

In recent years, there has been a great interest in the measurement of uncertainty of probability
distributions. It is well known that Shannon’s entropy plays an important role in this as a quanti-
tative measure of it and has been widely used in many areas of research. Let X be a non-negative
random variable (rv) having an absolutely continuous cumulative distribution function (cdf) F(x)

with probability density function (pdf) f (x). Then, Shannon’s entropy of the rv X is defined as

H(X) = H(f ) = −
∫ ∞

0
f (x) log f (x) dx. (1)

Suppose X represents the lifetime of a unit, then H(f ) can be useful for measuring the associated
uncertainty. However, if a unit has survived to an age t , then information about the remaining
lifetime is an important component in many fields such as reliability, survival analysis, economics,
business, etc., where H(f ) is not a useful tool for measuring the uncertainty about remaining
lifetime of the unit.Accordingly, Ebrahimi and Pellerey [1] proposed a new measure of uncertainty

*Corresponding author. Email: smsunoj@cusat.ac.in

ISSN 0233-1888 print/ISSN 1029-4910 online
© 2012 Taylor & Francis
http://dx.doi.org/10.1080/02331888.2010.494730
http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

C
oc

hi
n 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
&

 T
ec

hn
ol

og
 y

] 
at

 2
2:

15
 2

4 
Ju

ly
 2

01
4 



42 S.M. Sunoj and M.N. Linu

called residual entropy, given by

H(f ; t) = H(X; t) = −
∫ ∞

t

f (x)

F̄ (t)

(
log

f (x)

F̄ (t)

)
dx, (2)

where F̄ (t) = 1 − F(t) is the survival function (sf). After the unit has elapsed time t , H(f ; t)

measures the expected uncertainty contained in the conditional density of X − t given X > t

about the predictability of remaining lifetime of the unit. For a survey of the literature on residual
entropy and its applications, we refer toAsadi and Ebrahimi [2],Asadi et al. [3] and Sunoj et al. [4].

Even if Shannon’s entropy (1) finds applications in many areas of research, recently, Rao et al.
[5] identified some limitations of the use of Equation (1) in measuring the randomness of certain
systems (see also Rao [6]) and introduced an alternate measure of uncertainty called cumulative
residual entropy (CRE). This measure is based on the cdf F(x) and is defined in the univariate
case and for the non-negative rvs as follows:

ξ(X) = −
∫ ∞

0
F̄ (x) log F̄ (x) dx. (3)

Clearly, ξ(X) measures the uncertainty contained in the cdf of X. Motivated with the salient
features of Equation (3) proposed by Rao et al. [5], Asadi and Zohrevand [7] further studied it to
the residual set-up called a dynamic cumulative residual entropy (DCRE), given by

ξ(X; t) = −
∫ ∞

t

F̄ (x)

F̄ (t)
log

F̄ (x)

F̄ (t)
dx.

Like H(f ; t), ξ(X; t) measures the uncertainty or randomness contained in the conditional sf of
X − t given X > t about the predictability of remaining lifetime of the unit.

There are several generalizations on the information measures such as Shannon’s entropy (1).
Of these, an important one being Renyi’s entropy introduced by Renyi [8], which is also a measure
to quantify diversity, uncertainty or randomness of a system. If X is an absolutely continuous rv
with a pdf f (x), then Renyi’s entropy of order β is defined as

IR(β) = 1

1 − β
log

(∫
f β(x) dx

)
for

β �= 1
β > 0

and

IR(1) = lim
β→1

IR(β) = −
∫

f (x) log f (x) dx.

IR(β) plays a vital role in different areas such as physics, electronics, engineering, ecology and
statistics as a measure of uncertainty and diversity.

Similar to the definition of residual entropy (2), Abraham and Sankaran [9] recently extended
Renyi’s entropy of order β for the residual lifetime X − t |X > t as

IR(β; t) = 1

1 − β
log

∫ ∞

t

f β(x)

F̄ β(t)
dx for

β �= 1
β > 0

. (4)

When the system has the age t , for different values of β, IR(β; t) provides the spectrum of Renyi’s
information of the remaining life of the system. Obviously, IR(β; 0) = IR(β). For more properties
and applications and recent developments of Equation (4), we refer to Abraham and Sankaran
[9], Asadi et al. [3] and Maya and Sunoj [10].

Motivated with the usefulness of Renyi’s entropy of order β and CRE for measuring uncertainty,
in this paper, we introduce a new measure of uncertainty, namely cumulative Renyi’s entropy of
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Statistics 43

order β. We further extend it to the residual time and study its various properties useful in reliability
modelling. The rest of the paper is organized as follows. Section 2 includes the definition and
properties of dynamic cumulative residual Renyi’s entropy (DCRRE) and some characterization
theorems arising out of it. In Section 3, we examine DCRRE in the context of weighted and
equilibrium distributions and study its various relationships. Finally, Section 4 introduces DCRRE
in the bivariate case and proves certain characterizations based on it.

2. Dynamic cumulative residual Renyi’s entropy

Analogous to the definition of cumulative entropy (3) by Rao et al. [5], in present section, we
define the cumulative Renyi’s entropy and DCRRE.

Definition 2.1 For a non-negative rv X with an absolutely continuous sf F̄ (x), the cumulative
Renyi’s entropy of order β is defined as

γ (β) = 1

1 − β
log

(∫ ∞

0
F̄ β(x) dx

)
for

β �= 1
β > 0

. (5)

When β → 1, Equation (5) reduces to

γ (1) = lim
β→1

γ (β) = −
∫ ∞

0
F̄ (x) log F̄ (x) dx,

which is the cumulative entropy (3) and hence possess all the properties discussed in Rao et al. [5].
However, in many life-testing experiments, frequently, one has information about the current age
of the systems under consideration. Studying the effects of the age t of an individual or an item
under study on the information about the remaining lifetime is important in many applications.
In such situations, either Equation (5) or (3) is not suitable and therefore it should be modified
to take the current age into account. Information measures that include the age are functions of
t and hence called as dynamic. So, we define a DCRRE as follows.

Definition 2.2 For a non-negative rv X with an absolutely continuous sf F̄ (x), DCRRE of order
β denoted by γ (β; t) is defined as

γ (β; t) = 1

1 − β
log

(∫ ∞

t

F̄ β(x)

F̄ β(t)
dx

)
and

β �= 1
β > 0

, (6)

which can be written as

(1 − β)γ (β; t) = log

(∫ ∞

t

F̄ β(x) dx

)
− β log F̄ (t). (7)

Differentiating Equation (7) with respect to t, we have

(1 − β)γ ′(β; t) = βh(t) − e−(1−β)γ (β;t), (8)

where γ ′(β; t) denotes the derivative of γ (β; t) with respect to t and h(t) = f (t)/F̄ (t) is the
hazard rate of X. Obviously, when a system has completed t units of time, for different values of
β, γ (β; t) gives Renyi’s information for the remaining life of the system. Also, γ (β; 0) = γ (β).

Remark 2.1 The variation of DCRRE of order β can be obtained from the following example.
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44 S.M. Sunoj and M.N. Linu

Suppose that X follows exponential distribution with mean 1
2 . Then, γ (β; t) = (1/(β −

1)) log 2β. Clearly, for β > 1, γ (β; t) is positive, whereas for 0.5 < β < 1, γ (β; t) is negative.
When β = 1/2, γ (β; t) is zero.

Examples (a) If X is distributed uniformly on (0, a), then it can be easily shown that (1 −
β)γ (β; t) = log((a − t)/(β + 1)).

(b) When X follows Pareto I with sf F̄ (t) = (k/t)c,t > k, c, k > 0, then (1 − β)γ (β; t) =
log(t/(cβ − 1)).

(c) When X is distributed as Weibull distribution with sf F̄ (t) = e−tp ,t > 0, p > 0, then it can
be shown that (1 − β)γ (β; t) = log((β−1/p/pe−βtp )�((1/p), βtp)).

In the following theorem, we show that DCRRE determines F̄ (t) uniquely.

Theorem 2.1 Let X be a non-negative rv having an absolutely continuous sf F̄ (t) and hazard
rate h(t) with γ (β; t) < ∞; t ≥ 0; β > 0, β �= 1. Then for each β, γ (β; t) uniquely determines
F̄ (t).

Proof Let F̄1(t) and F̄2(t) be two sfs with DCRRE γ1(β; t) and γ2(β; t) and failure rates h1(t)

and h2(t), respectively. Now γ1(β; t) = γ2(β; t) implies that

γ ′
1(β; t) = γ ′

2(β; t),

which is equivalent to

(1 − β)γ ′
1(β; t) = (1 − β)γ ′

2(β; t) (9)

Using Equation (8), Equation (9) becomes

βh1(t) − e−(1−β)γ1(β;t) = βh2(t) − e−(1−β)γ2(β;t). (10)

But γ1(β; t) = γ2(β; t), Equation (10) then reduces to

βh1(t) = βh2(t),

which implies that h1(t) = h2(t), or equivalently F̄1(t) = F̄2(t). �

Theorem 2.2 For the rv X considered in Theorem 2.1, the relationship

(1 − β)γ ′(β; t) = Ch(t), (11)

where C is a constant, holds if and only if X is distributed as

(a) Pareto II distribution with sf

F̄ (t) = (1 + pt)−q; p > 0, q > 0, t > 0, (12)

(b) exponential distribution with sf

F̄ (t) = e−λt ; λ > 0, t > 0, (13)

(c) finite range distribution with sf

F̄ (t) = (1 − at)b; a > 0, b > 0, 0 < t <
1

a
, (14)

according as C � 0.

D
ow

nl
oa

de
d 

by
 [

C
oc

hi
n 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
&

 T
ec

hn
ol

og
 y

] 
at

 2
2:

15
 2

4 
Ju

ly
 2

01
4 



Statistics 45

Proof Assume that the relationship (11) holds. Using Equation (8), Equation (11) becomes

βh(t) − e−(1−β)γ (β;t) = Ch(t),

which is equivalent to

(β − C)h(t) = e−(1−β)γ (β;t). (15)

Using the expression of DCRRE in Equation (6), Equation (15) becomes

(β − C)f (t)

∫ ∞

t

F̄ β(x) dx = F̄ β+1(t). (16)

Differentiating Equation (16) with respect to t , we get

(β − C)f ′(t)
∫ ∞

t

F̄ β(x) dx − (β − C)f (t)F̄ β(t) = −(β + 1)F̄ β(t) f (t). (17)

Using Equation (16), Equation (17) becomes

f ′(t)
F̄ β+1(t)

f (t)
− (β − C) f (t) F̄ β(t) = −(β + 1)F̄ β(t) f (t). (18)

Dividing Equation (18) by f (t)F̄ β(t) and simplifying yield (d/dt) log f (t) = (C +
1)(d/dt) log F̄ (t), which implies

d

dt
log h(t) = C

d

dt
log F̄ (t). (19)

Integrating Equation (19) with respect to t , we get

log h(t) = C log F̄ (t) + K, (20)

where K is the constant of integration. Now differentiating Equation (20) with respect to t , we
obtain h′(t)/h(t) = −C(f (t)/F̄ (t)), or

d

dt

[
1

h(t)

]
= C. (21)

Integrating Equation (21) with respect to t , we obtain 1/h(t) = Ct + l, where l > 0 is the con-
stant of integration, or equivalently h(t) = 1/(Ct + l). Since the hazard rate uniquely determines

sf using the relationship F̄ (t) = exp
(
− ∫ t

0 h(x) dx
)

, the models (12)–(14) follows according

as C � 0.
To prove the converse part, first assume that X is distributed as Pareto II with sf (12), now using

Equation (7), we have

(1 − β)γ (β; t) = log

[
1 + pt

p(qβ − 1)

]
= log(1 + pt) + log

[
1

p(qβ − 1)

]
,

which on differentiation yields (1 − β)γ ′(β; t) = p/(1 + pt) = Ch(t) with h(t) = pq/(1 +
pt)and C = 1/q > 0, which follows Equation (11). When Xis distributed as exponential with sf
(13), we have (1 − β)γ (β; t) = log(1/λβ) from which Equation (11) follows with C = 0.When
X is distributed as finite range with sf (14), we get (1 − β)γ ′(β; t) = −a/(1 − at) = Ch(t), with
h(t) = ab/(1 − at) and C = −1/b < 0, which yield Equation (11). �
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46 S.M. Sunoj and M.N. Linu

Theorem 2.3 For a non-negative rv X with an absolutely continuous sf F̄ (t) and mean residual
life function r(t) = E(X − t |X > t), the relationship

(1 − β)γ (β; t) = log[Cr(t)], (22)

holds if and only if X is distributed as with sf (12), (13) or (14) according as (Cβ − 1)/(C(1 −
β)) � 0.

Proof Assume that the relationship (22) holds, then

(1 − β)γ (β; t) = log C + log r(t). (23)

Differentiating Equation (23) with respect to t , we get

(1 − β)γ ′(β; t) = r ′(t)
r(t)

. (24)

Using Equation (8), Equation (24) becomes

r ′(t)
r(t)

= βh(t) − e−(1−β)γ (β;t). (25)

Using Equation (22), Equation (25) becomes

r ′(t)
r(t)

= βh(t) − 1

Cr(t)
,

which is equivalently

Cr ′(t) = βCr(t)h(t) − 1.

Now using the relationship between h(t) and r(t), the above expression becomes Cr ′(t) =
βC(r ′(t) + 1) − 1. Equivalently, r ′(t) = (Cβ − 1)/(C(1 − β)) = P , a constant. This implies
that r(t) = P t + Q, where Q is the constant of integration, which is a characterization to the
models (12)–(14) according as P � 0. The converse part is quite straightforward. �

Definition 2.3 The sf F̄ (t) is increasing (decreasing) β-order dynamic cumulative residual
Renyi’s entropy IDCRRE (DDCRRE) if γ (β; t) is increasing (decreasing) in t; t > 0, i.e. F̄ (t)

have IDCRRE (DDCRRE) if γ ′(β; t) ≥ (≤)0.F̄ (t) is both ICRRE and DCRRE if γ ′(β; t) = 0.

Examples If X is distributed uniformly on (0, a), then F̄ (t) is IDCRRE for β > 1 and DDCRRE
for 0 < β < 1. When X is distributed as Pareto II with sf (12), then F̄ (t) is IDCRRE for 0 < β < 1
and DDCRRE for β > 1.

Theorem 2.4 F̄ (t) is both IDCRRE and DDCRRE if and only if X follows exponential
distribution.

Corollary 2.1 DCRRE is constant if and only if X is exponentially distributed.
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Statistics 47

3. Weighted dynamic cumulative residual Renyi’s entropy

The concept of weighted distributions is usually considered in connection with modelling statis-
tical data, where the usual practice of employing standard distributions is not found appropriate.
A survey of research in various fields of applications is available in Di Crescenzo and Longobardi
[11], Nair and Sunoj [12], Sunoj and Maya [13] and Maya and Sunoj [10]. If X is an absolutely
continuous non-negative rv with pdf f (t) and sf F̄ (t), then the pdf fw(t) and sf F̄w(t) for the
weighted rv Xw associated to X and to a positive real function w(·) are defined by

fw(t) = w(t)f (t)

E(w(X))
(26)

and

F̄w(t) = E(w(X) |X > t )

E(w(X))
F̄ (t), (27)

where Ew(X) < ∞. When the weight function is proportional to lengths of units of interest
(i.e. w(t) = t), then the model (26) is known as length-biased model with rv denoted by XL.
Analogous to the definition of DCRRE in Equation (6), the weighted cumulative residual Renyi’s
entropy denoted by γw(β; t) is defined as

γw(β; t) = 1

1 − β
log

(∫ ∞

t

F̄
β
w (x)

F̄
β
w (t)

dx

)
for

β �= 1
β > 0

, (28)

For the length-biased rv XL, DCRRE is then γL(β; t) = 1/(1 − β) log
(∫ ∞

t
F̄

β

L (x)/F̄
β

L (t) dx
)

,

where F̄L(t) = (m(t)/μ)F (t) with m(t) = E(X|X > t) denoting the vitality function.

Theorem 3.1 If E(w(X)|X > x) ≤ E(w(X)|X > t) for all x ≥ t , then γw(β; t) ≤ (≥)γ (β; t)

for 0 < β < 1(β > 1). If E(w(X)|X > x) ≥ E(w(X)|X > t) for all x ≥ t , then γw(β; t) ≥ (≤)

γ (β; t) for 0 < β < 1(β > 1).

Proof If E(w(X)|X > x) ≤ E(w(X)|X > t) for all x ≥ t , then using Equations (27) and (28)
we have

γw(β; t) = 1

1 − β
log

(∫ ∞

t

[E(w(X)
∣∣X > x)F̄ (x)]β

[E(w(X)
∣∣X > t)F̄ (t)]β dx

)

≤ (≥)
1

1 − β
log

(∫ ∞

t

F̄ β(x)

F̄ β(t)
dx

)
= γ (β; t) for 0 < β < 1(β > 1). �

Corollary 3.1 If m(x) ≤ m(t) for all x ≥ t , then γL(β; t) ≤ (≥)γ (β; t) for 0 < β < 1(β > 1).
If m(x) ≥ m(t) for all x ≥ t , then γL(β; t) ≥ (≤)γ (β; t) for 0 < β < 1(β > 1).

When the weight function w(t) = F̄ (t)/f (t) (also called Mill’s ratio), the corresponding
weighted distribution is called the equilibrium distribution. The equilibrium distribution arises nat-
urally in renewal theory and it is the distribution of the backward or forward recurrence time in the
limiting case. For a recent survey of research on various applications of equilibrium distribution,
we refer to Gupta and Sankaran [14], Gupta [15], Sunoj and Maya [16] and Nair and Preeth [17].
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48 S.M. Sunoj and M.N. Linu

Let XE be a rv corresponding to equilibrium distribution with pdf fE(t) = F̄ (t)/μ, t > 0, where
μ = E(X) < ∞, then DCRRE of XE is obtained as

γE(β; t) = 1

(1 − β)
log

(∫ ∞

t

F̄
β

E (x)

F̄
β

E (t)
dx

)
for

β �= 1
β > 0

, (29)

where F̄E(t) = (r(t)/μ)F̄ (t).

Theorem 3.2 If F̄ (t) is increasing mean residual life (IMRL), then γE(β; t) ≥ (≤)γ (β; t) for
0 < β < 1(β > 1). If F̄ (t) is decreasing mean residual life (DMRL), then γE(β; t) ≤ (≥)γ (β; t)

for 0 < β < 1(β > 1).

Proof Since F(t) is IMRL (DMRL), we have r(x) ≥ (≤)r(t) for all x ≥ t , the remaining part
is similar to the proof of Theorem 3.1. �

Theorem 3.3 The relationship

(1 − β)γE(β; t) = (1 − β)γL(β; t) = log(Ct) (30)

where C(> 0) is a constant, holds if and only if X follows Pareto I distribution with sf F̄ (t) =
(k/t)c,t > k, k > 0, c > 1.

Proof Assume that Equation (30) holds, now using Equation (29), we obtain

log

(∫ ∞

t

F̄
β

E (x)

F̄
β

E (t)
dx

)
= log(Ct),

equivalently, ∫ ∞

t

(
F̄

β

E (x)

F̄
β

E (t)

)
dx = Ct. (31)

Differentiating Equation (31) with respect to t , we get

βhE(t)

F̄
β

E (t)

∫ ∞

t

F̄
β

E (x) dx − 1 = C,

where hE(t) = fE(t)/F̄E(t) = 1/r(t) is the failure rate of XE. Now using Equation (31) and
simplifying, we get r(t) = (βC/(C + 1))t = P t , where P(> 0) is a constant, follows Pareto I.
The converse part is quite straightforward. �

4. Conditional dynamic cumulative residual Renyi’s Entropy

Specification of the joint distribution through its component densities, namely marginals and
conditionals has been a problem dealt with by many researchers in the past. It is well known that
in general, the marginal densities cannot determine the joint density uniquely unless the variables
are independent. Apart from the marginal distribution of Xi and the conditional distribution of Xj

givenXi = ti , i = 1, 2, i �= j , from which the joint distribution can always be found, the other
quantities that are of relevance to the problem are (a) marginal and conditional distributions of the
same component viz. X1 and the X1 given X2 = t2 or X2 and the X2 given X1 = t1 (b) the two
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Statistics 49

conditional distributions. Characterization of the bivariate density given the forms of the marginal
density of X1 (X2) and the conditional density of X1 given X2 = t2 (X2 givenX1 = t1) for certain
classes of distributions, have been considered by Seshadri and Patil [18], Nair and Nair [19] and
Hitha and Nair [20]. On the other hand, Gourieroux and Monfort [21] have developed conditions
under which the conditional densities determine the joint density f (t1, t2) uniquely. For more
recent works on conditional densities we refer to Sankaran and Nair [22], Sunoj and Sankaran
[23] and Kotz et al. [24]. Accordingly in following Sections 4.1 and 4.2, we consider conditional
dynamic residual Renyi’s entropies of Xi given Xj = tj and Xi given Xj > tj , i, j = 1, 2, i �= j

respectively and study some characteristics relationships in the context of reliability modelling.

4.1. Conditional dynamic cumulative residual Renyi’s entropy for Xi given Xj = tj

Let X = (X1, X2) be a bivariate random vector admitting an absolutely continuous pdf f (t1, t2)

and cdf F(t1, t2) with respect to Lesbegue measure in the positive octant R+
2 = {(t1, t2)|ti >

0, i = 1, 2} of the two-dimensional Euclidean space R2. Let F̄i(ti |tj ), i, j = 1, 2, i �= j denote
the sf of Xi given Xj = tj . Then, the conditional dynamic cumulative residual Renyi’s entropy
(CDCRRE) of Xi given Xj = tj is defined as

γi(β; t1, t2) = 1

(1 − β)
log

(∫ ∞

ti

F̄
β

i (xi |tj )
F̄

β

i (ti |tj )
dxi

)
, i, j = 1, 2, i �= j, (32)

which can be written as

(1 − β)γi(β; t1, t2) = log

(∫ ∞

ti

F̄
β

i (xi |tj ) dxi

)
− β log F̄i(ti |tj ). (33)

Differentiating Equation (33) with respect to ti , we have

(1 − β)
∂

∂ti
γi(β; t1, t2) = βhi(ti |tj ) − e−(1−β)γi (β;t1,t2), (34)

where hi(ti |tj ), i, j = 1, 2, i �= j , is the failure rate of Xi given Xj = tj .

Theorem 4.1 The relationship

(1 − β)γi(β; t1, t2) = log[Cri(ti |tj )], i, j = 1, 2, i �= j, (35)

holds for all ti and tj , where C is a constant independent of ti and tj , i �= j, i, j = 1, 2, and
ri(ti |tj ) = E(Xi − ti |Xi > ti, Xj = tj ) is the mean residual life function (MRLF) of Xi given
Xj = tj , if and only if X follows either bivariate distribution with Pareto conditionals given in
Arnold [25] with pdf

f (t1, t2) = K1(1 + a1t1 + a2t2 + bt1t2)
−c, K1, a1, a2, b > 0, c > 2, t1, t2 > 0, (36)

or bivariate distribution with exponential conditionals of Arnold and Strauss [26] with pdf

f (t1, t2) = K2 exp(−λ1t1 − λ2t2 − θt1t2), K2, λ1, λ2, θ > 0, t1, t2 > 0, (37)

or bivariate distribution with beta conditionals with pdf

f (t1, t2) = K3(1 − p1t1 − p2t2 + qt1t2)
d,

K3, p1, p2, q, d > 0, 0 < t1 <
1

p1
, 0 < t2 <

1 − p1t1

p2 − qt1
, (38)

according as P � 0, where P = ((Cβ − 1)/(C(1 − β))).
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50 S.M. Sunoj and M.N. Linu

Proof Suppose that Equation (35) holds, then for i = 1, we have

log[Cr1(t1|t2)] = (1 − β)γ1(β; t1, t2),

which is equivalent to

Cr1(t1|t2) =
∫ ∞

t1

F̄
β

1 (x1 |t2)
F̄

β

1 (t1 |t2)
dx1. (39)

Differentiating with respect to t1, Equation (39) becomes

C
∂

∂t1
r1(t1|t2) = βh1(t1|t2)

F̄
β

1 (t1|t2)
∫ ∞

t1

F̄
β

1 (x1|t2) dx1 − 1. (40)

Using Equation (39) and the relationship between failure rate and MRLF, Equation (40) reduces to

C
∂

∂t1
r1(t1|t2) = Cβ

[
∂

∂t1
r1(t1|t2) + 1

]
− 1,

which implies that (∂/∂t1)r1(t1|t2) = (Cβ − 1)/(C(1 − β)). Now integrating with respect to
t1, we have r1(t1|t2) = ((Cβ − 1)/(C(1 − β)))t1 + B1(t2) = At1 + B1(t2), where A = (Cβ −
1)/(C(1 − β)). Similarly, for i = 2, we have r2(t2|t1) = At2 + B2(t1). Hence, ri(ti |tj ) = Ati +
Bi(tj ), i �= j, i, j = 1, 2, where Bi(tj ) is a function of tj only. Now using Sankaran and Nair
[22], the proof of the theorem follows, according as A � 0.

Conversely, when X follows the model (36) and using Equation (32), we get

(1 − β)γi(β; t1, t2) = log

[
(c − 2)

(cβ − β − 1)

(1 + a1t1 + a2t2 + bt1t2)

(c − 2)(ai + btj )

]

= log[Cri(ti |tj )], i �= j, i, j = 1, 2

with C = (c − 2)/(cβ − β − 1) such that (Cβ − 1)/(C(1 − β)) > 0. When X follows the
model (37), we have (1 − β)γi(β; t1, t2) = log(1/β(λi + θtj )) = log[Cr(ti |tj )], i �= j, i, j =
1, 2 with C = 1/β, so that (Cβ − 1)/(C(1 − β)) = 0. Finally, when X follows the model (38),
results

(1 − β)γi(β; t1, t2) = log

[
(d + 2)

(dβ + β + 1)

(1 − p1t1 − p2t2 + qt1t2)

(d + 2)(pi − qtj )

]

= log[Cri(ti |tj )], i �= j, i, j = 1, 2

with C = (d + 2)/(dβ + β + 1) implies that (Cβ − 1)/(C(1 − β)) < 0 proves the theorem. �

Theorem 4.2 The relationship

(1 − β)
∂

∂ti
γi(β; t1, t2) = Chi(ti |tj ), (41)

for all ti and tj , where C is a constant independent of ti and tj , i �= j, i, j = 1, 2 holds if and only
if X is distributed as Equation (36) when C > 0, Equation (37) when C = 0 and Equation (38)

when −1 < C < 0.
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Statistics 51

Proof Suppose Equation (41) holds, now using Equation (34), we get

βhi(ti |tj ) − e−(1−β)γi (β;t1,t2) = Chi(ti |tj ), i �= j, i, j = 1, 2.

From the definition of CDCRRE (32), the above expression becomes

(β − C)hi(ti |tj ) = F̄
β

i (ti |tj )∫ ∞
ti

F̄
β

i (xi |tj ) dxi

.

Equivalently,

(β − C)

∫ ∞

ti

F̄
β

i (xi |tj ) dxi = F̄
β+1
i (ti |tj )
fi(ti |tj ) , (42)

(β − C)fi(ti |tj )
∫ ∞

ti

F̄
β

i (xi |tj )dxi = F̄
β+1
i (ti |tj ). (43)

Differentiating Equation (43) with respect to ti and using Equation (42), we have

∂

∂ti
fi(ti |tj ) F̄

β+1
i (ti |tj )
fi(ti |tj ) − (β − C)fi(ti |tj )F̄ β

i (ti |tj ) = −(β + 1)F̄
β

i (ti |tj )fi(ti |tj ). (44)

Dividing Equation (44) with F̄
β

i (ti |tj )fi(ti |tj ) and simplifying, we obtain

∂

∂ti
log fi(ti |tj ) = (C + 1)

∂

∂ti
log F̄i(ti |tj ),

Equivalently
∂

∂ti
log hi(ti |tj ) = C

∂

∂ti
log F̄i(ti |tj ). (45)

Integrating Equation (45) with respect to ti , we get

log hi(ti |tj ) = C log F̄i(ti |tj ) + Ki(tj ).

Differentiating the above equation with respect to ti and rearranging, the above equation becomes
∂/∂ti[1/hi(ti |tj )] = C, which on integration with respect to ti gives

1

hi(ti |tj ) = Cti + Di(tj ). (46)

From the definition of hi(ti |tj ) = (fi(ti |tj ))/(F̄i(ti |tj )) = −(f (t1, t2))/((∂/∂tj )F̄ (t1, t2)),
Equation (46) becomes −(∂/∂tj )F̄ (t1, t2) = f (t1, t2)[Cti + Di(tj )]. Differentiating with respect
to ti and simplifying, we get (∂/∂ti) log f (t1, t2) = −(C + 1)/[Cti + Di(tj )]. Now on integrating
with respect to ti , we have log f (t1, t2) = −((C + 1)/C) log[Cti + Di(tj )] + log mi(tj ).
Equivalently,

f (t1, t2) = mi(tj )[Cti + Di(tj )]−(C+1)/C, C �= 0, i �= j, i, j = 1, 2. (47)

Applying for i = 1, 2 and equating, we obtain

m1(t2)[Ct1 + D1(t2)]−(C+1)/C = m2(t1)[Ct2 + D2(t1)]−(C+1)/C. (48)
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52 S.M. Sunoj and M.N. Linu

As t1 → 0, Equation (48) becomes

m1(t2) = m2(0)[Ct2 + D2(0)]−(C+1)/C

[D1(t2)]−(C+1)/C
.

Similarly, as t2 → 0, Equation (48) becomes

m2(t1) = m1(0)[Ct1 + D1(0)]−(C+1)/C

[D2(t1)]−(C+1)/C
.

Substituting for m1(t2)and m2(t1), Equation (48) becomes

m2(0)[Ct2 + D2(0)]−(C+1)/C

[D1(t2)]−(C+1)/C
[Ct1 + D1(t2)]−(C+1)/C

= m1(0)[Ct1 + D1(0)]−(C+1)/C

[D2(t1)]−(C+1)/C
[Ct2 + D2(t1)]−(C+1)/C. (49)

For i = 1 in Equation (47) and as t1 → 0, we get

lim
t1→0

f (t1, t2) = m1(t2)[D1(t2)]−(C+1)/C. (50)

Similarly for i = 2 and as t1 → 0, we have

lim
t1→0

f (t1, t2) = m2(0)[Ct2 + D2(0)]−(C+1)/C. (51)

Equating Equations (50) and (51), we obtain

m1(t2)[D1(t2)]−(C+1)/C = m2(0)[Ct2 + D2(0)]−(C+1)/C. (52)

As t2 → 0, Equation (52) becomes

m1(0)

m2(0)
= [D2(0)]−(C+1)/C

[D1(0)]−(C+1)/C
.

Then, Equation (49) becomes

[Ct2 + D2(0)]−(C+1)/C[Ct1 + D1(t2)]−(C+1)/C

[D1(t2)]−(C+1)/C

= [D2(0)]−(C+1)/C

[D1(0)]−(C+1)/C

[Ct1 + D1(0)]−(C+1)/C [Ct2 + D2(t1)]
−(C+1)/C

[D2(t1)]−(C+1)/C
.

Equivalently, we get

1

t1D2(t1)
− 1

t1D2(0)
+ C

D2(t1)D1(0)
= 1

t2D1(t2)
− 1

t2D1(0)
+ C

D1(t2)D2(0)
. (53)

Since Equation (53) is true for all t1, t2 ≥ 0, we may take both sides of Equation (53) equal to n,
where n is a constant. Using the expression of m1(t2), the joint pdf f (t1, t2) in Equation (47) for
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Statistics 53

i = 1 becomes

f (t1, t2) = m2(0)[Ct2 + D2(0)]−(C+1)/C

[D1(t2)]−(C+1)/C
[Ct1 + D1(t2)]−(C+1)/C,

or

f (t1, t2) = m2(0)(D2(0))−(C+1)/C

(
1 + Ct2

D2(0)

)−(C+1)/C (
1 + Ct1

D1(t2)

)−(C+1)/C

. (54)

Now using Equation (53) and substituting for 1 + (Ct1/D1(t2)), the joint pdf f (t1, t2) in
Equation (54) becomes

f (t1, t2) = m2(0)[D2(0)]−(C+1)/C

[
1 + Ct1

D1(0)
+ Ct2

D2(0)
+ nCt1t2

]−(C+1)/C

, (55)

which is of the form Equation (36) with K1 = m2(0)[D2(0)]−(C+1)/C , a1 = C/D1(0), a2 =
C/D2(0), b = nC and c = (C + 1)/C. If C > 0, since Di(tj ) are non-negative functions of tj ,
we have K1, a1, a2, b > 0. Similarly, if −1 < C < 0, Equation (55) takes the form Equation
(38) with K3, p1, p2 > 0, d > 0, 0 < t1 < 1/p1 and 0 < t2 < (1 − p1t1)/(p2 − qt1). When
C = 0 from Equation (46), we get hi(ti |tj ) = 1/Di(tj ), following the similar steps, we obtain
− log f (t1, t2) = (ti/Di(tj )) + Qi(tj ), where Qi(tj ) is a function of tj only i �= j, i, j = 1, 2.
Equivalently, we have

f (t1, t2) = e−[(ti /Di(tj ))+Qi(tj )], i �= j, i, j = 1, 2. (56)

For i = 1, 2 and equating, Equation (56) becomes a functional equation (t1/D1(t2)) + Q1(t2) =
(t2/D2(t1)) + Q2(t1), which gives the solution as D1(t2) = 1/(λ1 + θt2) and D2(t1) = 1/(λ2 +
θt1). Then Q1(t2) = Q2 + λ2t2 and Q2(t1) = Q1 + λ1t1, where λ1, λ2, θ are non-negative con-
stants and Qi = Qi(0), i = 1, 2. Substituting these in Equation (56), we have Equation (37). The
converse part is straightforward. �

Theorem 4.3 γi(β; t1, t2), i = 1, 2, is locally constant (i.e., γi(β; t1, t2) function of tj only) if
and only if X follows bivariate distribution with exponential conditionals of Arnold and Strauss
[26] with pdf (37).

Proof Let γi(β; t1, t2), i = 1, 2, be locally constant, which implies that (∂/∂ti)γi(β; t1, t2) = 0,
or (1 − β)(∂/∂ti)γi(β; t1, t2) = 0. Now using Theorem 4.2, completes the proof. �

4.2. Conditional dynamic cumulative residual Renyi’s entropy for Xi given Xj > tj

Let X = (X1, X2) be a bivariate random vector admitting an absolutely continuous pdf f (t1, t2)

and cdf F(t1, t2) with respect to Lesbegue measure in the positive octant R+
2 = {(t1, t2)|ti > 0, i =

1, 2} of the two-dimensional Euclidean space R2. Let the sf of Xi given Xj > tj be F̄ ∗
i (ti |tj ),i, j =

1, 2, i �= j . Now using Equation (6), the CDRRE of the conditional distribution of Xi given
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54 S.M. Sunoj and M.N. Linu

Xj > tj turns out to be

γ ∗
i (β; t1, t2) = 1

1 − β
log

(∫ ∞

ti

F̄
∗β

i (xi |tj )
F̄

∗β

i (ti |tj )
dxi

)
, (57)

which can be written as

(1 − β)γ ∗
i (β; t1, t2) = log

(∫ ∞

ti

F̄
∗β

i (xi

∣∣tj ) dxi

)
− β log F̄ ∗

i (ti |tj ). (58)

Differentiating with respect to ti , Equation (58) becomes

(1 − β)
∂

∂ti
γ ∗

i (β; t1, t2) = βh∗
i
(ti |tj ) − e−(1−β)γ ∗

i (β;t1,t2),

where h∗
i (ti |tj ) = −(∂/∂ti) log F̄ ∗

i (ti |tj ) = −(∂/∂ti) log F̄ (t1, t2) = hi(t1, t2), i, j = 1, 2, i �= j ,
the vector-valued failure rate due to Johnson and Kotz [27].

Examples (a) If X is distributed as bivariate Pareto I with joint sf F̄ (t1, t2) =
t
−α1
1 t

−α2
2 t

−θ log t2
1 ; t1, t2 > 1, then (1 − β)γ ∗

i (β; t1, t2) = log ti − log(β(αi + θ log tj ) − 1),
i, j = 1, 2, i �= j .

(b) If X follows bivariate Weibull F̄ (t1, t2) = e−α1t
a
1 −α2t

a
2 −θta1 ta2 ; t1, t2 > 0, α1, α2, a > 0,

then (1 − β)γ ∗
i (β; t1, t2) = log((1/a)(β(αi + θtaj ))−1/a�((1/a), β(αi + θtaj )tai )) − β(αi +

θtaj )tai , i, j = 1, 2, i �= j .

Theorem 4.4 The relationship

(1 − β)γ ∗
i (β; t1, t2) = log[C∗r∗

i
(ti |tj )], (59)

holds for all ti and tj , where C∗ is a constant independent of ti and tj , i �= j, i, j = 1, 2, and
r∗
i (ti |tj ) = E(Xi − ti |Xi > ti, Xj > tj ) = ri(t1, t2) is the ith component of vector-valued MRLF

in the bivariate case, if and only if X follows either bivariate Pareto II with joint sf

F̄ (t1, t2) = (1 + a1t1 + a2t2 + bt1t2)
−c; a1, a2, c, t1, t2 > 0; 0 < b ≤ (c + 1)a1a2, (60)

or Gumbel’s bivariate exponential with joint sf

F̄ (t1, t2) = e−λ1t1−λ2t2−θt1t2; λ1, λ2, t1, t2 > 0; 0 < θ < λ1λ2, (61)

or bivariate finite range with joint sf

F̄ (t1, t2) = (1 − p1t1 − p2t2 + qt1t2)
d; p1, p2, d > 0; 0 < t1 <

1

p1
;

0 < t2 <
1 − p1t1

p2 − qt1
; 1 − d ≤ q

p1p2
≤ 1, (62)

according as P ∗ � 0, where P ∗ = (C∗β − 1)/(C∗(1 − β)).

Proof Assume that Equation (59) holds, then using Equation (57) and applying the similar steps
as in Theorem 4.1, we obtain r∗

i (ti |tj ) = ((C∗β − 1)/(C∗(1 − β)))ti + Bi(tj ) = Ati + Bi(tj ),
where A = (C∗β − 1)/(C∗(1 − β)) and Bi(tj )is a function of tj only, i �= j, i, j = 1, 2. Now
using a characterization theorem in Sankaran and Nair [28], X follows bivariate Pareto II with sf

D
ow

nl
oa

de
d 

by
 [

C
oc

hi
n 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
&

 T
ec

hn
ol

og
 y

] 
at

 2
2:

15
 2

4 
Ju

ly
 2

01
4 



Statistics 55

(60) when A > 0, Gumbel’s exponential with sf (61) when A = 0 and bivariate finite range with
sf (62) when A < 0.

Conversely, when Xfollows bivariate Pareto II with sf (60), using Equation (57) we have

(1 − β)γ ∗
i (β; t1, t2) = log

(∫ ∞

ti

(1 + aixi + aj tj + bxitj )
−cβ

(1 + a1t1 + a2t2 + bt1t2)−cβ
dxi

)

= log

[
(c − 1)

(cβ − 1)

(1 + a1t1 + a2t2 + bt1t2)

(c − 1)(ai + btj )

]
= log(C∗r∗

i (ti |tj )),

where C∗ = (c − 1)/(cβ − 1), so that P ∗ = (C∗β − 1)/(C∗(1 − β)) > 0. When X follows
Gumbel’s exponential with sf (61), then

(1 − β)γ ∗
i (β; t1, t2) = log

(∫ ∞

ti

(e−λixi−λj tj −θxi tj )β

(e−λ1t1−λ2t2−θt1t2)β
dxi

)
= log

(
1

β(λi + θtj )

)

= log(C∗r∗
i (ti |tj ))

where C∗ = 1/β, such that P ∗ = (C∗β − 1)/(C∗(1 − β)) = 0. Finally, when X follows bivariate
finite range with sf (62), we have

(1 − β)γ ∗
i (β; t1, t2) = log

(∫ (1−pj tj )/(pi−qtj )

ti

(1 − pixi − pj tj + qxitj )
dβ

(1 − p1t1 − p2t2 + qt1t2)dβ
dxi

)

= log

[
(d + 1)

(dβ + 1)

(1 − p1t1 − p2t2 + qt1t2)

(d + 1)(pi − qtj )

]
= log(C∗r∗

i (ti |tj )),

where C∗ = (d + 1)/(dβ + 1) such that P ∗ = (C∗β − 1)/(C∗(1 − β)) < 0, proves the theorem.
�

Theorem 4.5 The relationship

(1 − β)
∂

∂ti
γ ∗

i (β; t1, t2) = Ch∗
i (ti |tj ), (63)

for all ti and tj , where C is a constant independent of ti and tj , i �= j, i, j = 1, 2, holds if and
only if X is distributed as bivariate Pareto II with sf (60) when C > 0, Gumbel’s exponential with
sf (61) when C = 0 and bivariate finite range with sf (62) when C < 0.

Proof Assume that Equation (63) holds, then using Equation (57) and applying the similar steps
as in Theorem 4.2, we get h∗

i (ti |tj ) = 1/(Cti + Di(tj )), or hi(t1, t2) = 1/(Cti + Di(tj )). Now
characterization to Equations (60)–(62) follows from Roy [29]. The converse of the theorem can
be easily proved. �

Theorem 4.6 γ ∗
i (β; t1, t2) is locally constant if and only if X follows Gumbel’s bivariate

exponential with sf (61).

Proof Proof is similar to that of Theorem 4.3. �
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