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FORM-INVARIANT BIVARIATE WEIGHTED MODELS
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In this paper the class of continuous bivariate distributions that has form-invariant weighted distribution with weight
function w(x1, x2) ¼ xa1

1 xa2

2 is identified. It is shown that the class includes some well known bivariate models.
Bayesian inference on the parameters of the class is considered and it is shown that there exist natural conjugate
priors for the parameters.
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1 INTRODUCTION

The concept of weighted distributions has been introduced and formalized by Rao [13] by

identifying various practical problems that can be modeled by such distributions. These situa-

tions refer to instances where the recorded observations cannot be considered as a random

sample from the original distributions. This may be due to non-observability of some events

or damage caused to the original observation resulting in a reduced value, or adoption of a

sampling procedure that gives unequal chances to the units in the original population. A

detailed survey of literature on the application of weighted distributions in the analysis of

family data, the problem of family size and alcoholism, study of albinism, human heredity, aer-

ial survey and visibility bias, line transect sampling, renewal theory, cell cycle analysis and

pulse labeling, efficacy of early screening for disease, etiological studies, statistical ecology

and reliability modeling is available in Patil and Rao [9], Rao [14] and Gupta and Kirmani [4].

2 NOTATION AND TERMINOLOGY

Let (O, F , P) be a probability space and X : O ! H be a random variable, where H ¼ (a, b)

is a subset of the real line with a > 0 and b > a being finite or infinite. When

the distribution function F(x) of X is absolutely continuous with density function f (x) and
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w(x), a non-negative weight function satisfying E(w(X ) ¼ m) < 1, the random variable Y

with density

g(x) ¼
w(x) f (x)

m
, x > a (2:1)

is said to have weighted distribution corresponding to X.

The bivariate extension of weighted distribution is discussed in Patil et al. [11]. For a pair

of non-negative random variables (X1, X2) with joint density function f (x1, x2) and a non-

negative weight function w(x1, x2) such that Ew(X1, X2) < 1, the random vector (Y1, Y2)

with density function

g(x1, x2) ¼
w(x1, x2) f (x1, x2)

Ew(X1, X2)
(2:2)

is said to have weighted distribution corresponding to (X1, X2). For properties of (2.2) we

refer to the above paper, Mahfoud and Patil [6], Arnold and Nagaraja [2], Patil et al. [10]

and Jain and Nanda [5]. The multivariate aspects of the weighted distributions and some par-

tial ordering and positive and negative dependence results related to weighted distributions

are studied in Jain and Nanda [5]. For applications of bivariate weighted models in the con-

text of reliability, contingency table analysis etc., we refer to Patil et al. [11] and Sunoj and

Nair [16, 18].

3 FORM-INVARIANCE

If the distribution of the weighted random variable Y is of the same form as that of the ori-

ginal random variable X, we say that Y has form-invariant weighted distribution. Patil and

Rao [9] by direct calculation have given several examples where the original and weighted

distributions have identical form. This prompted Patil and Ord [8] to identify the general

form of distributions that possesses this interesting property. They established that a neces-

sary and sufficient condition for a distribution to be form-invariant under size biased sam-

pling of order a (i.e., w(x) ¼ xa) is that the probability density function must belong to the

log-exponential family specified by the density

f (x) ¼
xya(x)

m(y)
¼ exp{y log xþ A(x) � B(y)}: (3:1)

The model specification is an important component in any inference problem. The form-

invariance property is very useful in inference problems concerning the parameters of the

model, as the estimates of the parameters in the original model can also be used in the

weighted version, with slight modifications. Some results regarding form-invariance of

bivariate weighted distribution are discussed in Patil et al. [11]. Recently, Sunoj and Nair

[18] derived the necessary and sufficient conditions for each type of the bivariate Pearson

system under which the underlying system is form-invariant using the product weight func-

tion w(x1, x2) ¼ x1x2. They have identified the members of the family possessing such a

property by calculating the distributional form in each case. The interest in the concept of

form-invariance has generated in the univariate case motivates its generalization to higher

dimensions. However, the general form of bivariate densities that admits form-invariance
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under a more versatile weight function w(x1, x2) ¼ xa1

1 xa2

2 than considered in Sunoj and Nair

[17] has not yet been discussed in the literature. We explore this problem and present a solu-

tion in Section 4 of this paper.

Apart from providing an extension of the result of Patil and Ord [8] to the bivariate case,

Section 5 demonstrates its usefulness in inference problems. We also give an example where

form invariance becomes handy in the computation of bivariate Lorenz surfaces. It is often

encountered in agriculture to estimate the average yield produced in unit area. The weighted

model corresponding to a1 ¼ a2 ¼ 1 corresponds to the situation that the probability of

choosing a specified sample is proportional to its area. Form-invariance in such situations

implies that the model remains the same whether or not we choose random samples in

which the field areas are the same.

4 CLASS OF DISTRIBUTIONS ADMITTING FORM-INVARIANCE

Following Patil and Ord [8], the distribution of (Y1, Y2) will be of the same form as that of

(X1, X2) if there exist parametric functions Z1(y1) and Z2(y2) such that

g(x1, x2) ¼ f (x1, x2; Z1, Z2) ¼
xa1

1 xa2

2 f (x1, x2; y1, y2)

ma1,a2
(y1, y2)

(4:1)

provided ma1,a2
(y1, y2) ¼ E(X a1

1 X a2

2 ) is finite.

With this notion of form-invariance we prove

THEOREM 4.1 If a non-negative random vector (X1, X2) is such that

(a) E( logXi) is finite,

(b) limai!0 ((Zi � yi)=ai) and limZi!yi (ai=(Zi � yi)) are non-negative and finite and

(c)
Ð1

0
x
ai
i f (xi) dxi and

Ð1
0

(d=dai)[x
ai
i f (xi)]dxi converge uniformly in [0, 1),

then the distribution of (Y1, Y2) is of the same form as that of (X1, X2) if, and only if, the joint

density of (X1, X2) has the form

f (x1, x2) ¼ xy1

1 xy2

2 A(x1, x2)B1(y1)B2(y2)C(y1, y2): (4:2)

Proof Assume that the distribution is of the form (4.2). Then g(x1, x2) is of the same form

as (4.2) with

lim
ai!0

Zi � yi
ai

� �
¼ lim

Zi!yi

ai
Zi � yi

� �
¼ 1, i ¼ 1, 2

and

E(logXi) ¼ �
q
qyi

log(Bi(yi)C(y1, y2)) < 1, i ¼ 1, 2:
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To prove the ‘only if’ part, we note that

log f (x1, x2; Z1, Z2) � log f (x1, x2; y1, y2)

Z1 � y1

¼
a1

Z1 � y1

� �
log x1 þ

a2

Z1 � y1

� �
log x2

�
log ma1,a2

(y1, y2)

Z1 � y1

: (4:3)

When a2 ! 0, in (4.3)

log f (x1, x2; Z1, y2) � log f (x1, x2; y1, y2)

Z1 � y1

¼
a1

Z1 � y1

� �
log x1 �

log ma1
(y1, y2)

Z1 � y1

¼
a1

Z1 � y1

� �
log x1 �

a1

Z1 � y1

� �
log ma1

(y1, y2)

a1

:

(4:4)

Now as a2 ! 0, using L’Hospital’s rule

lim
a1!0

log ma1
(y1, y2)

a1

¼ lim
a1!0

d

da1

ð1
0

ð1
0

xa1

1 f (x1, x2; y1, y2) dx1dx2,

¼ lim
a1!0

ð1
0

d

da1

xa1

1 f (x1) dx1,

¼ lim
a1!0

ð1
0

log x1 � x
a1

1 f (x1) dx1,

¼

ð1
0

log x1 � f (x1) dx1 ¼ E( logX1) ¼ C1(y1, y2), say

so that (4.4) becomes

q log f

qy1

¼ g1(y1)log x1 � g1(y1)C1(y1, y2)

where

g1(y1) ¼ lim
Z1!y1

a1

Z1 � y1

:

Integrating with respect to y1 yield,

log f ¼ b1(y1)log x1 þ log q1(y1, y2) þ log p1(x1, x2; y2)

where

b1(y1) ¼

ð
g1(y1) dy1, log q1(y1, y2) ¼ �

ð
g1(y1)C1(y1, y2) dy1
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and p1(x1, x2; y2) is the constant of integration. Thus,

f (x1, x2; y1, y2) ¼ x
b1(y1)
1 p1(x1, x2; y2)q1(y1, y2): (4:5)

Similarly, working with Z2 ! y2,

f (x1, x2; y1, y2) ¼ x
b2(y2)
2 p2(x1, x2; y1)q2(y1, y2): (4:6)

From (4.5) and (4.6),

q2 log q1(y1, y2)

qy1qy2

¼
q2 log q2(y1, y2)

qy1qy2

which should mean that for some P1(y1) and Q1(y2),

q1(y1, y2) ¼ P1(y1)Q1(y2)C(y1, y2): (4:7)

Substituting (4.7) in (4.5) and (4.6) and equating the resulting expressions

x
b1(y1)
1 P1(y1)

P2(y1)P2(x1, x2; y1)
¼

x
b2(y2)
2 Q2(y2)

Q1(y2)P1(x1, x2; y2)
: (4:8)

In order that (4.8) holds for all y1, y2, either side must be of the form B(x1, x2), independent

of y1, y2 which gives

P2(x1, x2; y1) ¼
A(x1, x2)x

b1(y1)
1 P1(y1)

P2(y1)
(4:9)

where A(x1, x2) ¼ (B(x1, x2))�1.

Using (4.9) and (4.7) in (4.6), the joint density takes the form

f (x1, x2) ¼ x
b1(y1)
1 x

b2(y2)
2 A(x1, x2)B1(y1)B2(y2)C(y1, y2)

from which the required result follows.

COROLLARY 4.1 When the weight function is of the form w(x1, x2) ¼ xa1

1 , the distribution of

(Y1, Y2) is form-invariant if, and only if, the joint density is of the form

f (x1, x2) ¼ A(x1, x2)C(y1)xy1

1 : (4:10)

Some members of the family (4.2) are presented in Table I. For an application of the member

of the family (4.2) in engineering studies, we refer to Schneider and Holst [15]. Furthermore,

if X1 and X2 represent the warning time and failure rate respectively, then the joint distribu-

tion is bivariate Beta-Stacy density given in Table I (see Mihiram and Hultquist [7]). Figures

4.1 and 4.2 exhibit the shape of the Dirchlet density for the original and weighted random

variables, which shows how the concept of form-invariance proves in a graphical sense.
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5 AN EXAMPLE

In this section we point out some areas of applications where the concept of form-invariance

with respect to the simple product weight function w(x1, x2) ¼ x1x2 becomes useful.

The Lorenz surface of a bivariate continuous random variable (X1, X2), in the support of

the first octant in the two-dimensional space with joint density f (x1, x2) and marginal

densities f1(x1) and f2(x2), is defined by Arnold [1] as

L(u, v) ¼

ðx
0

ðy
0

x1x2 f (x1, x2) dx1dx2

E(X1X2)
(5:1)

where

u ¼

ðx
0

f1(x1) dx1 and v ¼

ðy
0

f2(x2) dx2: (5:2)

This is a direct extension of the Lorenz curve of a univariate continuous r.v. X in the support

of (0, 1) defined by

L( p) ¼
1

m

ðF�1( p)

0

x dF(x), 0 � p � 1: (5:3)

FIGURE 4.2 g(x1, x2) for Dirichlet density (for a1 ¼ 1, a2 ¼ 2, n1 ¼ n2 ¼ 1, n3 ¼ 2).

FIGURE 4.1 f (x1, x2) for Dirichlet density (for n1 ¼ n2 ¼ 1, n3 ¼ 2).
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Obviously, L(u, v) can be expressed in terms of the distribution function G(x1, x2) ¼ P(Y1 � x1,

Y2 � x2) of the weighted variables with x1 ¼ F�1
1 (u) and x2 ¼ F�1

2 (v). The corresponding

weighted Lorenz surface has the form

L�(u,v) ¼

ðx
0

ðy
0

x1x2g(x1, x2) dx1dx2

E(X1X2)
(5:4)

with the same u and v.

Consider the bivariate beta density

f (x1, x2) ¼
G(n1 þ n2 þ 1)

G(n1)G(n2)
xn1�1

1 xn2�1
2 ; n1, n2 > 0, x1, x2 > 0, x1 þ x2 � 1: (5:5)

Some simple calculations yield the Lorenz surface for the original variables as

L(u, v) ¼
G(n1 þ n2 þ 3)

G(n1 þ 2)G(n2 þ 2)
xn1þ1yn2þ1 (5:6)

where

u ¼
Bx(n1, n2 þ 1)

B(n1, n2 þ 1)
and v ¼

By(n2, n1 þ 1)

B(n2, n1 þ 1)
,

and Bx( p, q) is the incomplete beta function

Bx( p, q) ¼

ðx
0

t p�1(1 � t)q�1 dt:

The Lorenz surface of the weighted random variable is

L�(u, v) ¼
G(n1 þ n2 þ 5)

G(n1 þ 3)G(n2 þ 3)
xn1þ2yn2þ2 (5:7)

with the same u and v. From (5.6) and (5.7), the convenience in computing the Lorenz

surfaces and ease of interpretation of the income inequality for the original and weighted

variables is evident for form-invariance weighted distributions.

6 BAYESIAN INFERENCE

Apart from possessing the form-invariance property, the family of distributions presented in

Theorem 4.1 is important in its own right. It includes several bivariate distributions that are

well known for their applications. In addition, (4.2) provides some interesting features in the

context of Bayesian inference and decision.

Let (X 1i, X 2i), i ¼ 1, 2, . . . , n be a random sample of n observations taken from the joint

density (4.2). Then the likelihood function based on this sample can be written as

L(x1, x2 j y1, y2) ¼ (B1(y1))n(B2(y2))n(C(y1, y2))nP(x1, x2) exp(n(y1log g1 þ y2 log g2))

(6:1)
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where

x1 ¼ (x11, x12, . . . , x1n), x2 ¼ (x21, x22, . . . , x2n)

and

gi(xi) ¼
Yn
j¼1

xij

 !1=n

, i ¼ 1, 2

is the geometric mean of the observations in xi.

The kernel of the likelihood function given the sample values is

K(y1, y2 j x1, x2) ¼ (B1(y1))n(B2(y2))n(C(y1, y2))n exp(n(y1log g1 þ y2log g2)): (6:2)

Hence (g1, g2) or equivalently ( log g1, log g2) is a sufficient statistic for (y1, y2). Notice that

other parameters, if any, in the model are taken in P(x1, x2) and will be treated as nuisance

parameters or known. Thus the inference framework discussed here relates only to the vector

(y1, y2). Hence a prior distribution for (y1, y2) can be prescribed by normalizing the

kernel (6.2).

f 0(y1, y2) / (B1(y1))n
0

(B2(y2))n
0

(C(y1, y2))n
0

exp(n0(y1log a1 þ y2log a2)) (6:3)

with a1, a2, n0 as the hyper parameters in the prior with a1, a2, n0 > 0. Combining (6.2) and

(6.3), we arrive at the density of the posterior distribution of (y1, y2) as

f 00(y1, y2) / (B1(y1))n
00

(B2(y2))n
00

(C(y1, y2))n
00

exp(n00(y1log b1 þ y2log b2))

or

f 00(y1, y2) ¼ A(b1, b2; n00)(B1(y1))n
00

(B2(y2))n
00

(C(y1, y2))n
00

exp(n00(y1log b1 þ y2log b2))

(6:4)

which is of the same form as the prior. Thus (6.3) is a natural conjugate prior density in the

sense of Raiffa and Schlaifer [12]. With the aid of the posterior density, inference can be

made on (y1, y2) by employing the established techniques. In the form-invariant case, the ori-

ginal estimates of y1 and y2 can be used in inferring the characteristics of the weighted

model.

As an illustration we consider the inference problem relating to the parameters (y1, y2) in

the Dirichlet density specified by

f (x1, x2) ¼
G(y1 þ y2 þ y3 þ 3)

G(y1 þ 1)G(y2 þ 1)G(y3 þ 1)
xy1

1 xy2

2 (1 � x1 � x2)y3 (6:5)

x1, x2 > 0; x1 þ x2 � 1; y1, y2, y3 > �1

with y3 treated as known. Comparison with the bivariate family (4.2) shows that

B1(y1) ¼
1

G(y1 þ 1)
, B2(y2) ¼

1

G(y2 þ 1)
and C(y1, y2) ¼ G(y1 þ y2 þ y3 þ 3):
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Thus the posterior density of (y1, y2) is

f 00(y1, y2) ¼
A(b1, b2; n00)(G(y1 þ y2 þ y3 þ 3))n

00

(G(y1 þ 1))n
00

(G(y2 þ 1))n
00 bn

00y1

1 bn
00y2

2 (6:6)

where

[A(b1, b2; n00)]�1 ¼

ð
y1

ð
y2

(G(y1 þ y2 þ y3 þ 3))n
00

(G(y1 þ 1))n
00

(G(y2 þ 1))n
00 b

n00y1

1 bn
00y2

2 dy1dy2:

Since the density is continuous, the estimators of y1 and y2 can be prescribed as those values

of the parameters that render f 00(y1, y2) a maximum (see DeGroot [3], p. 236). Thus the esti-

mates of (y1, y2) are solutions of

q log f 00(y1, y1)

qyi
¼ 0, i ¼ 1, 2 (6:7)

and

q2 log f 00(y1, y2)

qy2
1

q2 log f 00(y1, y2)

qy2
2

�
q2 log f 00(y1, y2)

qy1qy2

� 	2

> 0: (6:8)

Equation (6.7) reduces to

n00
q
qy1

logG(y1 þ y2 þ y3 þ 3) � n00
q
qy1

logG(y1 þ 1) ¼ �n00 log b1 (6:9)

and

n00
q
qy2

logG(y1 þ y2 þ y3 þ 3) � n00
q
qy2

logG(y2 þ 1) ¼ �n00 log b2: (6:10)

Equations (6.9) and (6.10) involve digamma functions and therefore numerical methods are

required to solve them. One can use the Stirling’s approximation and write (6.9) as (6.10) as

1

2y1

þ log y1 ffi
1

2(y1 þ y2 þ y3 þ 2)
þ log(y1 þ y2 þ y3 þ 2) þ log b1 (6:11)

and

1

2y2

þ log y2 ffi
1

2(y1 þ y2 þ y3 þ 2)
þ log(y1 þ y2 þ y3 þ 2) þ log b2: (6:12)

From (6.11) and (6.12), approximate solutions for y1 and y2 can be obtained. These can be

substituted to verify the second order conditions. Values satisfying the two conditions can

be used as initial approximations to solve (6.9) and (6.10). In case more than one maxima

occurs, the (y1, y2) value for which the posterior density is the largest is the estimator.

268 N. UNNIKRISHNAN NAIR AND S. M. SUNOJ

D
ow

nl
oa

de
d 

by
 [

C
oc

hi
n 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
&

 T
ec

hn
ol

og
 y

] 
at

 2
2:

14
 2

4 
Ju

ly
 2

01
4 



Acknowledgement

The second author would like to acknowledge the financial assistance received from the

C.S.I.R, India for carrying out this research work.

References

[1] Arnold, B. C. (1983). Pareto Distributions. International Co-operative Publishing House, Maryland, USA.
[2] Arnold, B. C. and Nagaraja, H. N. (1991). On some properties of bivariate weighted distributions. Commun.

Statist. – Theor. & Meth., 20, 1853–1860.
[3] Degroot, M. H. (1970). Optimal Statistical Decisions. McGraw-Hill Inc., USA.
[4] Gupta, R. C. and Kirmani, S. N. U. A. (1990). The role of weighted distributions on stochastic modeling.

Commun. Statist. – Theor. & Meth., 19, 3147–3162.
[5] Jain, K. and Nanda, A. K. (1995). On multivariate weighted distributions. Commun. Statist. – Theor. & Meth.,

24(10), 2517–2539.
[6] Mahfoud, M. and Patil, G. P. (1982). On weighted distributions. In: Kallianpur, G., Krishnaiah, P. R. and

Ghosh, J. K. (Eds.), Statistics and Probability: Essays in Honor of C.R. Rao, North Holland Publishing
Company.

[7] Mihiram, G. A. and Hultquist, A. R. (1967). A bivariate warning-time=failure-time distribution. J. Amer. Statist.
Assoc., 62, 589–599.

[8] Patil, G. P. and Ord, J. K. (1976). On size biased sampling and related form-invariant weighted distributions.
Sankhya B, 38, 48–61.

[9] Patil, G. P. and Rao, C. R. (1977). The weighted distributions: A survey and their applications. In:
Krishnaiah, P. R. (Ed.), Applications of Statistics. North Holland Publishing Company, pp. 383–405.

[10] Patil, G. P., Rao, C. R. and Ratnaparkhi, M. V. (1986). On discrete weighted distributions and their use in model
choice for observed data. Commun. Statist. – Theor. & Meth., 3, 907–918.

[11] Patil, G. P., Rao, C. R. and Ratnaparkhi, M. V. (1987). Bivariate weighted distributions and related applications.
Technical Report, Centre for Statistical Ecology and Environmental Statistics.

[12] Raiffa, H. and Schlaifer, R. (1961). Applied Statistical Decision Theory. Division of Research, Graduate School
of Business Administration, Harvard University, Boston.

[13] Rao, C. R. (1965). In: Patil, G. P. (Ed.), On Discrete Distributions Arising out of Methods of Ascertainment:
Classical and Contagious Discrete Distributions. Statistical Publishing Society and Pergamon Press,
pp. 320–332.

[14] Rao, C. R. (1985). Weighted distributions arising out of methods of ascertainment: What population does a
sample represent? In: Atkinson, A. C. and Fienberg, S. E. (Eds.), A Celebration of Statistics, Chap. 24, ISI
Centenary Volume. Springer-Verlag, New York, pp. 543–569.

[15] Schneider, T. and Holst, E. (1983). Man-made mineral fibre size distributions utilizing unbiased and fibre length
biased counting methods and the bivariate log-normal distributions. J. Aerosol. sci., 14, 139–146.

[16] Sunoj, S. M. an Nair, N. U. (1998). Characterization of some bivariate life distributions by weighted models.
J. Appl. Statist. Sci., 7(4), 239–248.

[17] Sunoj, S. M. and Nair, N. U. (1999). Form-invariant bivariate weighted Pearson system. Far East J. Theor.
Statist., 2(2), 157–170.

[18] Sunoj, S. M. and Nair, N. U. (2000). Bivariate distributions with weighted marginals and reliability modeling.
Metron, 57(3–4), 117–126.

INVARIANT BIVARIATE WEIGHTED MODELS 269

D
ow

nl
oa

de
d 

by
 [

C
oc

hi
n 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
&

 T
ec

hn
ol

og
 y

] 
at

 2
2:

14
 2

4 
Ju

ly
 2

01
4 


