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Characterizations of some continuous
distributions using partial moments

Summary - In this paper, we define partial moments for a univariate continuous random
variable. A recurrence relationship for the Pearson curve using the partial moments is
established. The interrelationship between the partial moments and other reliability
measures such as failure rate, mean residual life function are proved. We also prove
some characterization theorems using the partial moments in the context of length
biased models and equilibrium distributions.
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1. Introduction

Let (�, I, P) be a probability space and X : � → H be a random variable,
where H = (a, b) is a subset of the real line with −∞ ≤ a < b ≤ ∞, the
interval of support of X . When the distribution function F(x) of X is absolutely
continuous with probability density function f (x), if E(|X |r ) < ∞, the r th
partial moment about a point t is defined as

pr (t) = E[(X − t)+]r , r = 1, 2, . . . ; t ≥ 0 (1.1)

where

(X − t)+ =
{

(X − t), X ≥ t

0, X < t .

The random variable (X − t)+ is interpreted as residual life in the context
of life length studies (see for example Lin (2003)) and the moments (1.1) are
extensively used in actuarial sciences in the analysis of risks (see Denuit (2002)).
When X represents the income of an individual and t is the tax exemption level,
(X − t)+ represents the taxable income, therefore it is quite meaningful in the
assessment of income tax.
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Earlier, Chong (1977) has established a characterization of the exponential
and geometric laws based on the property of partial moments. Later, Gupta
and Gupta (1983) have proved that the r th partial moment of a continuous
random variable determines the underlying distribution uniquely for any positive
real r (see also Hurlimann (2000)). When r is a positive integer, there exists
a recurrence relation between two consecutive partial moments, which then de-
termines all the remaining partial moments and the distribution itself. Recently,
Nair et al. (2000) derived the general properties of descending factorial mo-
ment and characterizations based on them. They investigated the applications
of partial moments in characterizing discrete probability distributions and in
reliability modeling. A similar investigation using ascending factorial moment
is available in Priya et al. (2000). For other properties and applications of
partial moments to reliability analysis we refer to Hitha (1991) and Priya et
al. (2000).

In the present paper, we focus attention on the partial moments in the con-
tinuous set up. We present recurrence relations satisfying the partial moments
for the Pearson distributions and exponential family of distributions. Finally,
we characterize some life distributions in the context of length biased models
and equilibrium distributions using partial moments.

2. Properties of partial moments

By virtue of the relationship (1.1), we have

pr (t) =
∫ b

t
(x − t)r f (x)dx . (2.1)

Let X be a non negative random variable and R(x) = P(X > x) be the survival
function of X with E(Xr ) < ∞, (2.1) is equivalent to

pr (t) = r
∫ b

t
(x − t)r−1 R(x)dx . (2.2)

Directly from the definition it follows that

p′
1(t) = −R(t) ⇒ f (t) = p′′

1(t) .

Further
p1(t) = r(t)R(t) (2.3)

where r(x) = E(X − x |X > x) is the mean residual life function (MRLF).
From (2.3), we obtain

r(t) = − p1(t)

p′
1(t)

(2.4)
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and

h(t) = − p′′
1(t)

p′
1(t)

. (2.5)

Theorem 2.1. For any positive integer r , pr (t) determines the distribution uniquely.

Proof. For proof we refer to Gupta and Gupta (1983). The survival function
can be obtained using the relationship

dr pr (t)

dtr
= (−1)rr !R(t)

or

R(t) =
dr pr (t)

dtr

(−1)rr !
(2.6)

(see also Hurlimann (2000)). For a more general result we refer to Lin (2003).
A list of various distributions with its pdf and the corresponding forms of

pr (t) are given in Table 2.1.

Table 2.1.

Distribution f (x) pr (t)

Exponential ae−ax ; x > 0 f (t)
�(r + 1)

ar+1

Pareto II ac(1 + ax)−c−1; x > 0, a, c > 0 f (t)
r(1 + at)r+1

car+1 B(c − r, r)

Finite range ac(1 − ax)c; 0 < x <
1

a
, c > 0 f (t)

r(1 − at)r+1

car+1 B(c + 1, r)

Translated Pareto
(a

c

)c
; x > a > 0, c > 0 f (t)r tr B(c − r, r)

Uniform
1

b − a
; a < x < b f (t)

(b − t)r+1

(r + 1)

Gamma
an

�(n)
xn+1e−ax ; x > 0 f (t)

n−1∑
k=0

(
n − 1

n − k − 1

)
�(r + k + 1)

ar+k+1tk

provided n is integer

Power function nxn−1; 0 ≤ x ≤ 1 f (t)
n−1∑
k=0

(
n − 1

n − k − 1

)
(1 − t)r+k+1

(r + k + 1)tk

provided n is integer

Beta
xm−1(1 − x)n−1

B(m, n)
; f (t)

m−1∑
k=0

(
m − 1

m − k − 1

)
(1 − t)r+k

tk B(r + k + 1, n)

0 < x < 1 provided m is integer
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3. Partial moments of pearson and exponential family

For every member of Pearson family the probability density function sat-
isfies a differential equation of the form

1

f (x)

d f (x)

dx
= −(x + a)

c0 + c1x + c2x2
. (3.1)

The shape of the distribution depends on the values of the parameters a, c0, c1

and c2.

Theorem 3.1. If X is a random variable in the support of R with E(|X |r ) < ∞,
has the distribution belonging to the Pearson family, then it satisfies the recurrence
relationship

−r(c0 + c1t + c2t2)pr−1(t) + [−(r + 1)(c1 + 2c2t) + t + a]pr (t)

+ [−(r + 2)c2 + 1]pr+1(t) = 0 .
(3.2)

Proof. When the distribution belongs to Pearson family

(c0 + c1x + c2x2)
d f (x)

dx
= −(x + a) f (x) .

Multiplying both sides by (x − t)r and using

x2 = (x − t)2 + 2t (x − t) + t2

and integrating from t to b, we have the required result.

Theorem 3.2. The distribution of X belongs to the exponential family with pdf

f (x) = exp[θx + c(x) + D(θ)] (3.3)

if and only if the partial moments satisfy the recurrence relationship

pr+1(t) = dpr (t)

dθ
− (t + D′(θ))pr (t) . (3.4)

Proof. Suppose that (3.4) holds. Then we get∫ b

t
(x − t)r+1 f (x)dx + (t + D′(θ)

∫ b

t
(x − t)r f (x)dx =

∫ b

t
(x − t)r d f

dθ
dx

which is equivalent to∫ b

t
(x − t)r

[
(x + D′(θ)) f (x) − d f

dθ

]
dx = 0 .
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This is true for every t > 0 only when

(x + D′(θ)) f (x) = d f

dθ
d log f

dθ
= x + D′(θ) .

(3.5)

Differentiating (3.5) with respect to θ , we obtain

log f = θx + D(θ) + k(x)

which proves the result. The ‘only if’ part is straightforward.

4. Lenght biased models

The statistical interpretation of the length biased distribution was originally
identified by Cox (1962) in the context to renewal theory. Assume that the
population of failure times is distributed according to f (x), the probability of
selection of any individual in the population proportional to its life length x ,
then the density function of the life length for the sampled component of
random variable Y has the form

g(x) = x f (x)

µ
, x > 0 (4.1)

where µ = E(X) < ∞, which is the length biased form (see also Blumen-
thal (1967), Scheaffer (1972)). A detailed survey of literature on applications
of length biased models we refer to Rao (1965), Patil and Rao (1977), Gupta
and Kirmani (1990) and Sunoj (2000).

In the present section, we examine the structural relationships between the
random variables of X and Y in the context of partial moments. Let pL

r (t)
denotes the partial moment of the random variable Y , which is defined as

pL
r (t) = E[(Y − t)+]r ; r = 1, 2, . . . (4.2)

where

(Y − t)+ =
{

Y − t, Y ≥ t

0, Y < t .

Then

pL
r (t) =

∫ b

t
(u − t)r g(u)du

=
∫ b

t
(u − t)r u f (u)

µ
du

= 1

µ

∫ b

t
(u − t)r (u − t + t) f (u)du
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which yields

pL
r (t) = pr+1(t) + tpr (t)

µ
. (4.3)

Remark. It can be easily shown that differentiating (4.3) with respect to t
successively (r + 1) times, it remains the pdf of the length biased models of
form (4.1).

5. Equilibrium distribution

The equilibrium distribution arises naturally in renewal theory (see e.g.,
Cox (1962), Blumenthal (1967), Despande et al. (1986), Singh (1989) or Nair
and Hitha (1990), for a discussion). It is the distribution of the backward
or forward recurrence time in the limiting case. A formal definition of the
equilibrium distribution is as follows. Let X be a random variable admitting
absolutely continuous distribution function F(x) with respect to Lebesgue mea-
sure in the support of the set of non-negative real numbers. Associated with X
a random variable Y can be defined with probability density function

g(x) = R(x)

µ
, x > 0 (5.1)

with F(0) = 0 and µ = E(X) < ∞.
The partial moment of the random variable Y obtained from (5.1) is denoted

by pE
r (t) and is given by

pE
r (t) = pr+1(t)

(r + 1)µ
. (5.2)

For a recent discussion of equilibrium distributions and partial moments we
refer to Hesselager et al. (1998) and Willmese and Koppelaar (2000).

Remark. It can be easily shown that differentiating (5.2) with respect to t
successively (r+1) times, it remains the pdf of the equilibrium distribution (5.1).

Table 5.1 gives the pdf’s of different distributions and its corresponding
length biased and equilibrium models.
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Table 5.1

Distribution R(x) pr (t) pL
r (t) pE

r (t)

Exponential e−ax , x > 0
r !e−at

ar (1 + r + at)pr (t) pr (t)

Pareto II (1 + ax)−c,
r(1 + at)r−c

ar

(c − 1)

(c − r − 1)

(c − 1)

(c − r − 1)
x > 0, a > 0, c > 1 B(c − r, r) (1 + r + cat)pr (t) (1 + at)pr (t)

Power (1 − ax)c,
r(1 − at)r+c

ar

(c + 1)

(c + r + 1)

(c + 1)

(c + r + 1)

0 < x <
1

a
, c > 0 B(c + 1, r) (1 + r + cat)pr (t) (1 − at)pr (t)

Translated Pareto
(a

x

)c
, ractr−c B(c − r, r)

ct

(c − r − 1)µ
pr (t)

t

(c − r − 1)µ
pr (t)

x > a > 0

Uniform
b − x

b − a

(b − t)r+1

(r + 1)(b − a)

(t + (r + 1)b)

(r + 2)µ
pr (t)

(b − t)

(r + 2)µ
pr (t)

6. Characterizations of distributions using lenght biased and equilib-
rium distributions

In this section, we prove some characterization theorems for uniform, expo-
nential, Pareto II, beta and translated Pareto distributions using partial moments
in the context of length biased and equilibrium distributions.

Theorem 6.1. The partial moments of length biased models and original models
satisfy the relationship

pL
r (t)

pr (t)
= (A + Bt)

µ
(6.1)

if and only if X has Pareto II with pdf

f (x) = (1 + ax)−c, x > 0, a > 0, c > 1 (6.2)

for B > 1, the exponential distribution with pdf

f (x) = ae−ax , x > 0 (6.3)

for B = 1, Power distribution with pdf

f (x) = (1 − ax)c, 0 < x <
1

a
, c > 0 (6.4)

for 0 < B < 1 and Translated Pareto distribution with pdf

f (x) = c

x

(
a

x

)
, x > a > 0 (6.5)

for A = 0 and B > 1.
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Proof. For Pareto II distribution (6.2), we obtain

pr (t) = r(1 + at)r−c

ac
B(c − r, r) (6.6)

and using (4.3), we get

pL
r (t) = (c − 1)

(c − r − 1)
(1 + r + cat)pr (t)

which is of the form (6.1) with A = (r+1)

a(c−r−1)
, B = c

c−r−1 > 1 and µ = 1
a(c−1)

.
For exponential distribution (6.3), we have

pr (t) = r !e−at

ar
, (6.7)

then
pL

r (t) = (1 + r + at)pr (t) (6.8)

with A = (r+1)

a , B = 1 and µ = 1
a . For Power distribution (6.4), we get

pr (t) = r(1 − at)r+c

ac
B(c + 1, r) (6.9)

and accordingly

pL
r (t) = (c + 1)

(c + r + 1)
(1 + r + cat)pr (t) (6.10)

which is of the form (6.1) with A = (r+1)

a(c+r+1)
, B = c

c+r+1 < 1 and µ = 1
a(c+1)

.
Finally, for Translated Pareto distribution (6.5), we’ve

pL
r (t) = (c − 1)t

(c − r − 1)a
pr (t) (6.11)

which is also the form of (6.1) with A = 0 and B = c
c−r−1 > 1 and µ = ac

(c−1)
.

Conversely, if (6.3) holds and comparing with (4.3), we obtain

pr+1(t) + tpr (t)

µpr (t)
= (A + Bt)

µ
(6.12)

which is equivalent to

pr+1(t) = Apr (t) + (B − 1)tpr (t)
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or
pr+1(t) = Apr (t) + Ctpr (t) (6.13)

where C = B − 1. Differentiating (6.13) with respect to t successively (r + 1)

times and using Theorem 2.1 we obtain the required result.

Remark. The ratio (6.1) takes the form

pL
r (t)

pr (t)
= t + (r + 1)b

(r + 2)µ
(6.14)

if and only if X has Uniform distribution with pdf

f (x) = 1

b − a
, a < x < b . (6.15)

We next prove some similar characterization theorems for the equilibrium dis-
tribution.

Theorem 6.2. The partial moments satisfy the relationship

pE
r (t)

pr (t)
= (A + Bt)

µ
(6.16)

if and only if X has Pareto II distribution (6.2) for B > 0, exponential distribu-
tion (6.3) for B = 0, Power distribution (6.4) for B < 0 and Translated Pareto
distribution (6.5) for A = 0, B > 0.

Proof. The proof is similar to Theorem 6.1.

Corollary. The relationship

pL
r (t) = cpE

r (t) (6.17)

if and only if X has translated Pareto distribution (6.5).

Remark. The ratio (6.16) takes the form

pE
r (t)

pr (t)
= b − t

(r + 2)µ
(6.18)

if and only if X has a Uniform distribution (6.15).
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