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SOME DYNAMIC GENERALIZED INFORMATION MEASURES 
IN THE CONTEXT OF WEIGHTED MODELS 

S.S. Maya, S.M. Sunoj 

1. INTRODUCTION 

Length of time during a study period has been considered as prime variable of 
interest in many fields such as reliability, survival analysis, economics, business 
etc. In particular, consider an item under study, then information about the re-
maining (past) lifetime is also an important component in many applications. 
Kullback and Leibler information and entropy of order α  developed by Renyi 
(1961) are some of the important dynamic measures that have been applied by 
several authors to study the effect of age (time) in these situations. For more de-
tails and recent works, we refer to Ebrahimi and Kirmani (1996a, 1996b), Di 
Crescenzo and Longobardi (2002, 2004), Asadi et al. (2004, 2005a, 2005b) and the 
references therein. 

Let X and Y be two absolutely continuous non negative random variables that 
describe the lifetimes of two items. Denote ( )f t , ( )F t  and ( ) 1 ( )F t F t= −  the 
probability density function (pdf), distribution function (df) and survival function 
(sf) of X respectively and ( )g t , ( )G t  and ( ) 1 ( )G t G t= −  be the corresponding 

functions of Y. Moreover, let ( )( )
( )X

f tt
F t

λ =  and ( )( )
( )Y

g tt
G t

λ =  be the reversed 

hazard rates of X and Y respectively. Kullback and Leibler (1951) introduced a 
directed divergence (also known as information divergence, information gain, or 
relative entropy), a distance measure of the difference between two probability 
distributions: from a “true” probability distribution ( )f t  to an arbitrary (refer-
ence) probability distribution ( )g t  is given by 

0

( )( , ) ( ) log
( )

f xI X Y f x dx
g x

∞

= ∫ . (1) 

Clearly, equation (1) is a ruler to measure the similarity (closeness) between two 
distributions ( )f t  and ( )g t . In view of the wide applicability of (1), Ebrahimi 
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and Kirmani (1996b) proposed a measure of discrimination between two residual 
life distributions based on (1) given by 

,
( ) ( )( )( ) log

( ) ( ) ( )X Y
t

f x F tf xI t dx
F t g x G t

∞ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ ;     0t > . (2) 

, ( )X YI t  measures the relative entropy of ( )X t X t− >  and ( )Y t Y t− > . It is 
useful to compare the residual life times of two items, which have both survived 
up to time t  (for more details see Ebrahimi (1998, 2001), Asadi et al. (2005a, 
2005b)). Along the similar lines of the measure (2), Di Crescenzo and Longobar- 
di (2004) defined a information distance between the past lives ( )X X t≤  and 

( )Y Y t≤  as 

,
0

( ) ( )( )( ) log
( ) ( ) ( )

t

X Y
f x F tf xI t dx

F t g x G t
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫ ;     0t > . (3) 

Given that at time t , two items have been found to be failing, , ( )X YI t  measures 
the discrepancy between their past lives. 

Similar to the discrimination information measure (2), closeness between two 
residual distributions is also measured by the Renyi information divergence of or-
der α  (see Asadi et al. (2005a, 2005b)), given by 

(1 )

, (1 )
( ) ( )1( , ) log

( 1) ( ) ( )X Y
t

f x g xI t dx
F t G t

α α

α α
α

α

∞ −

−=
− ∫ . (4) 

Also, Asadi et al. (2005a) defined Renyi discrimination implied by F  and G  as 

(1 )

, (1 )
0

( ) ( )1( , ) log
( 1) ( ) ( )

t

X Y
f x g xI t dx
F t G t

α α

α α
α

α

−

−=
− ∫ . (5) 

Although a wide variety of research has been carried out for studying these dy-
namic information measures (2) to (5), however, in the present paper we further 
examine it by measuring a distance (similarity) between a true distribution and an 
observed (weighted) distribution and obtain relationships between these distribu-
tions. Further, some bounds and inequalities related to these measures are also 
proved. Finally, the relationship between weighted models and their unweighted 
counter part using the dynamic generalized information measures for residual life-
time models are also examined and proved certain characterization results arising 
out of it. 
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2. WEIGHTED DISTRIBUTIONS 

The weighted distributions arise naturally as a result of observations generated 
from a stochastic process and recorded with some weight function. The concept 
of weighted distributions was introduced by Rao (1965) in connection with mod-
eling statistical data and in situations where the usual practice of employing stan-
dard distributions for the purpose was not found appropriate. Various fields of 
applications of weighted distributions include analysis of family size, study of al-
binism, human heredity, aerial survey and visibility bias, line transcend sampling, 
renewal theory, cell cycle analysis and pulse labeling, efficacy of early screening 
for disease, etiological studies, statistical ecology and reliability modeling. A sur-
vey of research in this area is available in Patil and Rao (1977), Jones (1990), 
Gupta and Kirmani (1990), Navarro et al. (2001), Nair and Sunoj (2003), Di Cres-
cenzo and Longobardi (2006) and Oluyede and Terbeche (2007). 

Let X  be a random variable (rv) having an absolutely continuous df 
( ) ( )F t P X t= ≤  with support ( , )a b , a subset of the real line where 

inf{ : ( ) 0}a t F t= >  and sup{ : ( ) 1}b t F t= < . In a weighted distribution prob-
lem, a realization t  of X  enters into an investigators record with probability 
proportional to ( )w t . Obviously the recorded t  is not an observation on X  but 
rather an observation on a weighted rv wX . If the pdf of X is ( )f t , reversed 
hazard rate of X is ( )tλ  and (.)w  a non-negative function satisfying 

( ( ))E w Xµ = < ∞ , then the rv wX  with pdf ( )wf t , df ( )wF t  and reversed haz-
ard rate ( )w tλ  corresponding to the weighted rv are given by 

( ) ( )( )w
w

w t f tf t
µ

=  (6) 

( ( ) )
( ) ( )w

w

E w X X t
F t F t

µ

≤
=  (7) 

and 

( )( ) ( )
( ( ) )w

w tt t
E w X X t

λ λ=
≤

, (8) 

where ( ( ))w E w Xµ = , is a normalizing constant. For more results and properties, 

we refer to Sunoj and Maya (2006). When ( )w t t β= , the corresponding distribu-
tion is a size-biased model and its pdf is given by 

( )( )s
t f tf t
β

µβ

=  (9) 
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where 
0

0 ( ) ( )t x f x dxβ
βµ

∞

< = ∫ . The size-biased df and reversed hazard rate are 

given by 

( ) ( )
( )s

m t F t
F t β

βµ
=  (10) 

and 

( ) ( )
( )s

tt t
m t

β

β

λ λ=  (11) 

where ( ) ( )m t E X X tβ
β = ≤  is the conditional moment function. 

 
Remark 1. When 1β = , the size-biased model reduces to length biased one and 
the pdf, df and reversed hazard rate are obtained by putting 1β =  in the equa-
tions (9), (10) and (11). 

Now we define a generalized information measure of discrimination between 
the past lives ( )X X t≤  and ( )w wX X t≤  corresponding to (3) as 

,
0

( ) ( )( )( ) log
( ) ( ) ( )w

t

X X
w w

f x F tf xI t dx
F t f x F t

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ . (12) 

Equation (12) is directly related to the past entropy ( )H t  (see Di Crescenzo and 
Longobardi (2002)) as 

,
0

( )( )( ) log ( )
( ) ( )w

t
w

X X
w

f xf xI t dx H t
F t F t

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∫  (13) 

where 
0

( ) ( )( ) log
( ) ( )

t f x f xH t dx
F t F t

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ . Equation (13) measures the discrepancy 

between the past lives of original rv X  and weighted rv wX . More importantly, 

, ( )
wX XI t  may be a useful qualitative tool for measuring how far the true density 

is away from a weighted density. On the other hand, when the original and 
weighted density functions are equal then , ( ) 0

wX XI t =  . .a e   
 
Remark 2. Equation (12) may be useful in the determination of a weight function 
and therefore for the selection of a suitable weight function in an observed 
mechanism, we can choose a weight function for which the distance measure in 
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(12) is small. Moreover, the generalized information measures are all asymmetric 
in ( )f t  and ( )wf t , therefore, for reversing the roles of ( )f t  and ( )wf t  in (12), 
say , ( )

WX XI t  and equate with (12) for a symmetric measure implies the weight 

function is unity, i.e., ( ) ( )wf t f t≡ .  
Now, substituting (6) and (7) in (12), we get 

, ( ) log[ ( ( ) )] (log ( ) )
wX XI t E w X X t E w X X t= ≤ − ≤ . (14) 

For the size biased model, (14) becomes 

, ( ) log ( ) (log ( ))
sX XI t m t G tβ β= −  (15) 

where log ( ) (log )G t E X X t= ≤  is the geometric vitality function for the right 
truncated distribution. When 1β = , equation (15) reduces to the discrimination 
measure between the original and a length-biased model. 
 
Theorem 1. , ( )

wX XI t  is independent of t  if and only if the weight function takes 

the form 1( ) ( ( ))w t F t θ −= ; 0θ > . 
 
Proof. Suppose that , ( )

wX XI t  is independent of t , that is 

, ( )
wX XI t k= . (16) 

Comparing (14) and (16) and differentiating with respect to t , we get 

log[ ( ( ) )] (log ( ) ) 0d dE w X X t E w X X t
dt dt

≤ − ≤ = . (17) 

Now using the relationship 

( ( ) )E w X X t≤ =
0

1 ( ) ( )
( )

t

w x f x dx
F t ∫  (18) 

Differentiating (18) with respect to t  and using (8), we have 

log[ ( ( ) )] ( ) ( )w
d E w X X t t t
dt

λ λ≤ = − . (19) 

Again from the definition of 

(log ( ) ) ( )E w X X t F t≤ =
0

log ( ) ( )
t

w x f x dx∫ , (20) 
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and differentiating (20) with respect to t , we obtain 

(log ( ) ) (log ( ) (log ( ) )) ( )d E w X X t w t E w X X t t
dt

λ≤ = − ≤ . (21) 

Taking logarithm of equation (8), we have 

( )log ( ) log
( )

w tw t
t

λ
λ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
log[ ( ( ) )]E w X X t≤  (22) 

Substituting (22) in (21) and using (16), we get 

( )(log ( ) ) log ( )
( )

w td E w X X t k t
dt t

λ
λ

λ

⎛ ⎞⎛ ⎞
≤ = −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (23) 

Now substituting (19) and (23) in equation (17) and simplifying, we obtain  

( )( )log 1 0
( ) ( )

w

w

tt k
t t

λλ
λ λ

⎡ ⎤
− − + =⎢ ⎥

⎣ ⎦
. (24) 

Putting ( )( )
( )w

tu t
t

λ
λ

=  and on differentiating (24) we get 

' ( ) 11 0
( ) ( )

u t
u t u t

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
 

which implies that either ' ( ) 0u t =  or ( ) 1u t = . But as X  and wX  are not equal 

( ) 1u t ≠ . So , ( ) 0u t = . Hence we have , ( ) 0u t = , which implies that there exists a 

non-negative constant θ  such that ( ) ( )w t tλ θλ= . Now using (8) and (9) we get 
1( ) ( ( ))w t F t θ −= ; 0θ > .  

Conversely assuming 1( ) ( ( ))w t F t θ −=  and using (7), we obtain 

( ) ( ( ))wF t F t θ= . (25) 

From (25) and (12) we get that for 0t > , , ( ) 1 logwX XI t θ θ= − − , which is inde-
pendent of t . 
 
Remark 3. From equation (25) and (12), it is clear that for 0t > , 

, ( ) 1 logwX XI t θ θ= − − , a constant, is true for any df ( )F t . Thus the distance be-

tween a true probability distribution ( )f t  and a weighted distribution ( )wf t  is 
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always a constant if and only if the weight function is of the form 
1( ) ( ( ))w t F t θ −= ; 0θ > . 

 
Corollary 1. , ( )

wX XI t  is independent of t  if and only if the distribution functions 

of X  and wX  satisfy the proportional reversed hazard model (see Di Crescenzo 
(2000) and Di Crescenzo and Longobardi (2002)). 
 
Corollary 2. When wX  is a length biased model (i.e., when ( )w t t= ), then 

, ( )
wX XI t k=  characterizes power distribution with df 

( )
ctF t

b
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 0 t b< < , , 0b c > . (26) 

 
Proof. It can be proved easily from the relationship 

( )F t = ( '( ) ( ) ( ) '( ))exp
(1 ( )) ( )

b

t

x w x x w x dx
x w x

β β
β

⎛ ⎞+
−⎜ ⎟⎜ ⎟−⎝ ⎠
∫ , (27) 

where ( )( )
( )w

xx
x

λ
β

λ
=  (see (Sunoj and Maya, 2006)). Now from Theorem 1 

( ) 1
( )w

x
x

λ
λ θ

= , and using (27), the form of the model (26) is direct. 

We next consider the Renyi discrimination function between two distributions 
for the past lifetime ( )X X t≤  and ( )w wX X t≤  implied by ( )F t  and ( )wF t . 
Using equation (4), it is given by 

(1 )

, (1 )
0

( ) ( )1( , ) log
( 1) ( ) ( )w

t
w

X X
w

f x f xI t dx
F t F t

α α

α αα
α

−

−=
− ∫ . (28) 

Equation (28) using (6) and (7), becomes 

(1 )
,

1( , ) log[ ( ( ) )] log[ ( ( ) )]
( 1)wX XI t E w X X t E w X X tαα
α

−= ≤ + ≤
−

. (29) 

For the size-biased model is 

, (1 )
1( , ) log ( ) log ( )

( 1)sX XI t m t m tβ β αα
α −= +
−

. 
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Remark 4. When 0α = , then (28) reduces to (12). 
 
Theorem 2. The Renyi divergence measure for the past life , ( , )

wX XI tα  is inde-

pendent of t  if and only if the weight function is 1( ) ( ( ))w t F t θ −= ; 0θ > . 
 
Proof. The proof is similar to that of Theorem 1. 
 
Corollary 3. When ( )w t t= , then Theorem 2 characterizes power distribution with 
df (19). 

3. INEQUALITIES FOR DYNAMIC GENERALIZED INFORMATION MEASURES 

In this section, we present some results including inequalities and comparisons 
of dynamic generalized information measures for weighted and parent (un-
weighted) distributions. Under some mild constraints, bounds for these measures 
are also presented. 
 
Theorem 3. If the weight function ( )w t  is increasing (decreasing) in 0t > , then 

(a) ,
( )( ) ( ) log
( )wX X

w

tI t
t

λ
λ

⎛ ⎞
≥ ≤ ⎜ ⎟

⎝ ⎠
 

(b) ,
( )( , ) ( ) log

( 1) ( )wX X
w

tI t
t

λα
α

α λ

⎛ ⎞
≥ ≤ ⎜ ⎟− ⎝ ⎠

, 1α ≠ . 

 

Proof. Suppose ( )w t  is increasing, from (6) we get ( )
( )w

f t
f t

 is decreasing, implies 

that 

( ) ( )
( ) ( )w w

f t f x
f t f x

≤ . 

Now from the definition (12) we have 

,
0 0

( ) ( ) ( ) ( )( ) ( )( ) log log
( ) ( ) ( ) ( ) ( ) ( )w

t t

X X
w w w w

f x F t f t F tf x f xI t dx dx
F t f x F t F t f t F t

⎛ ⎞ ⎛ ⎞
= ≥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫  

              ( )log
( )w

t
t

λ
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 for all x t≤ . 

When ( )w t  is decreasing then the inequality is reversed. 
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Proof. of (b) is similar to that of (a). 
 

Example 1. Suppose X  follows a power distribution with df (26) and assume that 
( ) , 0w t t t= > , an increasing function of t , then a straightforward computation 

yield ,
1( ) log

1wX X
cI t

c c
⎛ ⎞= +⎜ ⎟+⎝ ⎠

 and ( )log log
( ) 1w

t c
t c

λ
λ

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠
, which proves re-

sult (a) of Theorem 3. In a similar calculation using the same df (26) and weight 

function, we get , ( , )
wX XI tα =  1log log

1 ( 1) 1
c c

c cα α
⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠

 and find that 

it also satisfies the result (b) of Theorem 3. 
 
Theorem 4. When (i) ( )w t  is non-decreasing (non-increasing) and (ii) 

RHR RHR

wX X⎛ ⎞≤ ≥⎜ ⎟
⎝ ⎠

, then , ( )
wX XI t  is non-decreasing (non-increasing) for all 0t > . 

 

Proof. From the definition (12) 

,
0

( ) ( ) ( )( ) log log
( ) ( ) ( )w

t
w

X X
w

f t f x f xI t dx
F t F t f x

⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ . (30) 

The first term of (30) is increasing using (ii) (see Sunoj and Maya (2006)) and  

0 0

( ) ( ) 1log log ( ) log ( )
( ) ( ) ( )

t t

w
w

f x f x dx f x w x dx
F t f x F t

µ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∫ ∫ . (31) 

Now the second term of (31) is given by 

0 0

'( )1 1( ) log ( ) log( ( )) ( )
( ) ( ) ( )

t t w xf x w x dx w t F x dx
F t F t w x

− = − +∫ ∫  (32) 

Differentiating (32) with respect to t  and on simplification we get 

'

0 0

( ) log ( ) ( ) ( ) ( ) 0
( ) ( ) ( )

t tf x w x t w xd dx F x dx
dt F t F t w x

λ⎛ ⎞
− = − ≥⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫ . 

and when ( )w t  is increasing, then (30) is the sum of two increasing functions. It 
implies that , ( )

wX XI t  is also increasing. Using the similar steps as above, the ine-
quality in the reverse direction can be proved. 
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Example 2. Let X  be a nonnegative rv having df 

2

2

; 0 1
2

( 2)( ) ; 1 2
6
1 ; 2

t t

tF t t

t

⎧
≤ <⎪

⎪
⎪ +

= ≤ <⎨
⎪

≥⎪
⎪
⎩

 

When ( ) , 0w t t t= > , an increasing function of t  then 

 
2

3

3 ; 0 1

3( ) ; 1 2
( 1)

0 ; 2

W

t
t
tt t

t
t

λ

⎧ ≤ <⎪
⎪
⎪= ≤ <⎨

−⎪
⎪ ≥
⎪
⎩

 

proves the condition (2). Now using equation (14), we get 

3 2 2

, 2 2

2 1log ; 0 1
3 2

2( 1) [2 log ( 1)]( ) log ; 1 2
3( 2) 2( 2)

0 ; 2

wX X

t

t t t tI t t
t t

t

⎧ ⎛ ⎞ − ≤ <⎜ ⎟⎪ ⎝ ⎠⎪
⎪ ⎡ ⎤− − −⎪= − ≤ <⎨ ⎢ ⎥+ +⎣ ⎦⎪
⎪ ≥
⎪
⎪⎩

 

is an non-decreasing function in t , which can be easily checked. 
 

Theorem 5. When ( )w t  is increasing (decreasing) and 
( ( ) )

( )
E w X X t

w t
≤

 is increas-

ing (decreasing), then , ( )
wX XI t  is increasing (decreasing) for all 0t > . 

 

Proof. When ( )w t  is increasing, from Theorem 4, 

,
( )( ) log
( )wX X w
tI t
t

λ
λ

⎛ ⎞
≥ ⎜ ⎟

⎝ ⎠
. 
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Now using (14) and the condition given in theorem, we get ( )log
( )w
t
t

λ
λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 in-

creases, which imply the required result. Similarly one can prove the inequality in 
the reverse direction. 

4. DYNAMIC GENERALIZED INFORMATION MEASURES FOR RESIDUAL LIFETIME MODELS 

In this section, we study the comparison of weighted models and their un-
weighted counter part using the dynamic generalized information measures  
for residual lifetime models. For weighted distributions (6), the measures de-
scribed by Ebrahimi and Kirmani (1996b) in (2) and Asadi et al., 2005) in (4) are 
given by 

,
( ) ( )( )( ) log

( ) ( ) ( )wX X
w wt

f x F tf xI t dx
F t f x F t

∞ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫  (33) 

and 

(1 )

, (1 )
( ) ( )1( , ) log

( 1) ( ) ( )w

w
X X

wt

f x f xI t dx
F t F t

α α

α α
α

α

∞ −

−=
− ∫  (34) 

where 
( ( ) ) ( )

( )w
w

E w X X t F t
F t

µ

>
= . Now using the definitions of weighted dis-

tribution, we can write (33) and (34) as 

, ( ) log[ ( ( ) )] (log ( ) )
wX XI t E w X X t E w X X t= > − >  

and 

(1 )
,

1( , ) log[ ( ( ) )] log[ ( ( ) )]
( 1)wX XI t E w X X t E w X X tαα
α

−= > + >
−

. 

For the size-biased model, these measures can be written in terms of vitality and 
geometric vitality functions and are given by 

, ( ) log ( ) (log ( ))
sX XI t m t G tβ β= −  

, (1 )
1( , ) log ( ) log ( )

( 1)sX XI t m t m tβ αβα
α −= +
−

, 

where ( ) ( )m t E X X t= >  and log ( ) (log )G t E X X t= > . 
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Theorem 6. For the size-biased model, , ( )
sX XI t k=  characterizes Pareto distribu-

tion with 

( )
caF t

t
⎛ ⎞= ⎜ ⎟
⎝ ⎠

; , , 0t a a c> > . (35) 

 
Remark 5. When the weight function is 1( ) ( ( ))w x F x θ −= , then the model becomes 
a proportional hazards model and in that case , ( )

wX XI t  is independent of t . 
 
Theorem 7. The relationship 

, ( , )
sX XI t kα =  (36) 

where k  is constant is satisfied if and only if X  follows Pareto I distribution 
(35). 
 
Proof. Assume that X  follows Pareto I distribution (35), then by direct calcula-

tion, we get (36) with 
1(1 )ck

c

α αβ
βα β

−−
=

+ −
, independent of t . Conversely assume 

(36) then by using the definition we obtain 

(1 )

(1 )
0

( ) ( )1 log
( 1) ( ) ( )

t
w

w

f x f x dx k
F t F t

α α

α αα

−

− =
− ∫ . (37) 

Differentiating with respect to t , (37) implies 

(1 ) 1 (1 )( ) ( ) ( ( ) ( ) ( ) (1 ) ( ) ( ) ( ))w w w wf t f t k f t F t F t f t F t F tα α α α α αα α− − −= + − . (38) 

Dividing each term by (1 )( ( ) ( ))wf t f tα α−  and rearranging the terms, (38) becomes 

11 ( ) (1 ) ( )t t
k

α ααψ α ψ−= + −  (39) 

where ( )( )
( )

wh tt
h t

ψ = . Differentiating (39) and on simplification we get *( )t kψ = , 

which on further simplification yields the required result. 
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SUMMARY 

Some dynamic generalized information measures in the context of weighted models 

In this paper, we study some dynamic generalized information measures between a 
true distribution and an observed (weighted) distribution, useful in life length studies. Fur-
ther, some bounds and inequalities related to these measures are also studied. 


