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Some Properties ofWeighted Distributions in the
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Cochin, Kerala, India

In this article we introduce some structural relationships between weighted and
original variables in the context of maintainability function and reversed repair rate.
Furthermore, we prove some characterization theorems for specific models such as
power, exponential, Pareto II, beta, and Pearson system of distributions using the
relationships between the original and weighted random variables.

Keywords Maintainability function; Reversed hazard rate; Weighted
distributions.

Mathematics Subject Classification 62E10; 62N05.

1. Introduction

The concept of weighted distributions was introduced by Rao (1965) in connection
with modeling statistical data, in situations where the usual practice of employing
standard distributions for the purpose was not found appropriate. A formal
definition of a weighted distribution is obtained by considering a probability space
(���� P� and a random variable (rv) X � � → H , where H = �a� b� is an interval of
the real line. In the continuous case, if f�x� is the probability density function (pdf)
of X and w�·� a non negative function satisfying �w = E�w�X�� < �, then the rv Y
with pdf

fw�x� =
w�x�f�x�

�w

� a < x < b (1.1)

is said to have weighted distribution, corresponding to the distribution of X. The
definition in the discrete case is analogs. The concept of weighted distribution has
been employed in various practical problems such as analysis of family size, study of
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224 Sunoj and Maya

albinism, human heredity, aerial survey and visibility bias, line transcend sampling,
renewal theory, cell cycle analysis and pulse labeling, efficacy of early screening for
disease, etiological studies, statistical ecology, and reliability modeling. For detailed
investigation of research in this area, we refer to Patil and Rao (1977), Gupta and
Kirmani (1990), Navarro et al. (2001), Nair and Sunoj (2003), and Pakes et al.
(2003).

Motivated by the applicability of weighted distributions in various fields, Gupta
and Keating (1986) found it worthwhile to investigate the structural relationships
between the distributions of X and Y in the context of reliability. Later, Gupta and
Kirmani (1990) gave a detailed account of the survey of literature and extended the
study of weighted distributions in the context of reliability and life testing. They
considered the reliability measures useful in modeling life length studies such as
reliability function, failure rate, and mean residual life function (MRLF) of the rv
Y for comparison. The major relationships established by them are

Sw�x� =
E�w�X� �X > x�

�w

S�x� (1.2)

hw�x� =
w�x�

E�w�X� �X > x�
h�x� (1.3)

rw�x� =
r�x�

w�x�+ A�x�

∫ b

x

w�t�+ A�t�

r�t�
exp

(
−
∫ t

x

du

r�u�

)
dt (1.4)

where S�x�, h�x�, and r�x� are survival function, failure rate, and MRLF of X,
respectively, defined by S�x� = P�X > x�, h�x� = f�x�

S�x�
, and r�x� = E�X − x �X > x� =

1
S�x�

∫ �
x
S�t�dt, and Sw�x�, hw�x�, and rw�x� are the corresponding functions for Y

with A�x� = E�w�X�− w�x� �X > x�, the mean residual weight. When w�x� = x and
a > 0, the weighted distribution (1.1) then termed as the length biased distribution
denoted by f ∗�x�.

Even if an extensive work has been carried out on weighted distributions using
various reliability measures such as failure rate, MRLF, and vitality function in
univariate and multivariate set up, very little has been explored in the context of
repair time models. Accordingly, in the present article, we obtain some structural
relationships between the original and weighted random variables and prove
characterization theorems arising out of it for models such as power, exponential,
Pareto II, beta, and Pearson system of distributions.

2. Maintainability and Reversed Repair Rate

Maintainability of a system provides a measure of the repairability of the system,
when it fails or it is the probability of repairing a failed component/system in
a specified period of time (see Rao, 1992). Various probability distributions may
be used to present an item’s repair time data. Once the repair time distributions
are identified, the corresponding maintainability function may be obtained. The
maintainability functions are used to predict the probability that a repair, beginning
at time x = 0, will be accomplished in a time x. Therefore the maintainability
function, F�x�, for any distribution is given by F�x� = P�X ≤ x�, where X is the
repair time. When X represents the repair time, the usual distribution function
is termed as the maintainability function as it gives the probability that required
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Properties of Weighted Distributions 225

maintenance will be successfully completed in a given time period. Then the reversed
repair rate is defined as

��x� = f�x�

F�x�
(2.1)

where f�x� is the pdf of the repair time and F�x� is the maintainability function,
which is absolutely continuous. The interval of support of F being �a� b� with
a = inf�x � F�x� > 0	 and b = sup�x � F�x� < 1	. When X represents the repair time
of a component/system, the probability that it is repaired during the time �x − 
� x�
(
 is a small positive number) is approximately equal to 
��x�, whereas when X
represents the lifetime, ��x� then termed as reversed hazard rate (RHR) (see for
example, Block et al., 1998; Shaked and Santhikumar, 1994). In survival analysis,
RHR has been found to be important for the estimation of survival function in
the presence of left censored observations (see Anderson et al., 1993; Kalbfleish and
Lawless, 1989). Let

m�x� = E�w�X� �X ≤ x� = 1
F�x�

∫ x

a
w�t�f�t�dt� (2.2)

It is well known that ��x� and m�x� uniquely determine F�x� by

F�x� = exp
(
−
∫ b

x
��t�dt

)
= exp

(
−
∫ b

x

dm�t�

w�t�−m�t�

)
� (2.3)

See expression (1.2) in Navarro and Ruiz (1996) and Remark 2.2 in Navarro et al.
(1998), respectively.

Recently, Nair et al. (2005) proved some characterization theorems using a
relationship between RHR and conditional expectation (2.3). Further, Nair and
Asha (2004) gave a review of the literature on RHR and developed certain identities
connecting the distribution function, density function, and survival function in terms
of RHR and the hazard rate.

We now study the structure of the weighted random variable Y in comparison
to the original variable X.

Fw�x� = P�Y ≤ x� =
∫ x

a
fw�t�dt =

m�x�

�w

F�x� (2.4)

where �w = Ew�X� < �. The corresponding reversed repair rate becomes

�w�x� =
fw�x�

Fw�x�
= w�x�

m�x�
��x�� (2.5)

3. Characterizations

In this section we prove some theorems useful to compare the original and
weighted rv and also prove characterization theorems for specific models such as
power, exponential, Pareto II, beta, and Pearson system of distributions using the
relationships between the original and weighted rv.
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226 Sunoj and Maya

Theorem 3.1. (a) X≤
lr
Y�≥� if, and only if, w is non decreasing (non increasing).

(b) X ≤
rfr

Y�≥� if, and only if, m is non decreasing (non increasing).

(c) X≤
st
Y�≥� if, and only if, �w ≤ m�x��≥�.

Here ≤
lr
, ≤
rfr
, and ≤

st
denotes the likelihood ratio, the reversed failure rate, and the

stochastic orders. It is well known (see p. 402 in Navarro et al., 1997) that

X≤
lr
Y ⇒ X ≤

rfr
Y ⇒ X≤

st
Y�

Results (a) and (c) were given by Gupta and Kirmani (1990). Result (b) can be
obtained immediately from (2.4) and the definition of the reversed hazard rate order.

Theorem 3.2. If ��x� = Fw�x�

F�x�
and �w = Ew�X�, then

F�x� = exp

(
−
∫ b

x

�′�t�
w�t�

�w
− ��t�

dt

)
� (3.1)

Theorem 3.3. If �x� = ��x�

�w�x�
, then

F�x� = exp
(
−
∫ b

x

′�t�w�t�+ �t�w′�t�
�1− �t��w�t�

dt

)
� (3.2)

The proofs of Theorems 3.2 and 3.3 are similar to that of Theorems 1 and 2 in
Navarro et al. (2001).

Theorem 3.4. Let A∗�x� = E�x − X �X ≤ x�. If X is increasing reversed repair rate
and A∗�x�

x
is non decreasing, then Y is also increasing reversed repair rate.

Proof. X is increasing reversed repair rate implies

��x1� ≤ ��x2� for all x1 ≤ x2�

i.e.,
(
x1−A∗�x1�

x1

)
�∗�x1� ≤

(
x2−A∗�x2�

x2

)
�∗�x2� for all x1 ≤ x2

⇒ �∗�x1� ≤
(
1− A∗�x2�

x2

)
(
1− A∗�x1�

x1

)�∗�x2�
⇒ �∗�x1� ≤ �∗�x2� for all x1 ≤ x2� �

Theorem 3.5. The ratio of the relationship

Fw�x�

F�x�
= 1− x�1+ Cx���x� (3.3)

if and only if X has Pareto II distribution with

F�x� = 1− �1+ ax�−c� x > 0� a� c > 0 (3.4)
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Properties of Weighted Distributions 227

for C > 0, exponential distribution with

F�x� = 1− e−ax� x > 0� a > 0 (3.5)

for C = 0, or beta distribution with

F�x� = 1− �1− ax�c� 0 < x <
1
a
� c > 0 (3.6)

for C < 0.

The proof can be obtained from Theorem 3 in Ruiz and Navarro (1994).
Further, Table 1 provides some characterization theorems for power and beta

distributions based on their functional forms of ��x� and �x�.
We now prove a characterization theorem that provide the relationships

between reversed repair rate and right truncated moments of the original and
weighted rv for the Pearson system of distributions.

Let X be an absolutely continuous rv with pdf f�x�, the distribution of X is said
to be a member of the Pearson System of distributions if f�x� satisfies the differential
equation

f ′�x�
f�x�

= −�x + a�

b0 + b1x + b2x
2

(3.7)

where a, b0, b1, and b2 are real valued. The shape of the distribution depends on the
values of the parameters a, b0, b1, and b2.

In a study on Pearson system of distributions, Sankaran and Nair (1993)
derived the conditions under which Pearson and Ord families are form-invariant
with respect to the length-biased sampling. According to them, the members of the
Pearson system satisfying the differential equation (3.7) with b2 
= 1, have the same
type of distributions for Y if and only if b0 = 0. Later, Asadi (1998) extended this
result to size-biased sampling of order � (i.e., w�x� = x�).

Theorem 3.6. Let X be a non negative, non degenerate rv with density function f�x�
and suppose that w�x� = x�. Then X is a member of Pearson system of distributions of
the form (3.7) with b0 = 0 and limx→a�b1x + b2x

2�f�x� = 0 if and only if

�w�x�

��x�
= K

��� −m��x��

��∗ −m∗�x��
(3.8)

where K = 1−��+2�b2
1−2b2

, 1− 2b2 
= 0, �� = E�X��, and m��x� = E�X� �X ≤ x�.

Table 1
Different functional forms of ��x� and �x�

w�x� = x F�x� ��x� �x�

power
(
x
p

)d
Cx C

beta �px − q�d A+ Bx Ax+B
x
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228 Sunoj and Maya

The proof of Theorem 3.6 is similar to the analogous reversed result given
in Asadi (1998).
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