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A profile is a finite sequence of vertices of a graph. The set of all vertices of the graph which
minimises the sum of the distances to the vertices of the profile is the median of the profile. Any
subset of the vertex set such that it is the median of some profile is called a median set. The number
of median sets of a graph is defined to be the median number of the graph. In this paper, we identify
the median sets of various classes of graphs such asKp − e,Kp,q for P > 2, and wheel graph and so
forth. The median numbers of these graphs and hypercubes are found out, and an upper bound for
the median number of even cycles is established. We also express the median number of a product
graph in terms of the median number of their factors.

1. Introduction

We consider only nonempty finite simple undirected connected graphs. For the graph G,
V (G), and E(G) denote its vertex set and edge set, respectively. When the underlying graph
is obvious, we will use V and E for V (G) and E(G), respectively. A finite sequence of vertices
π = (v1, . . . , vk) ∈ V k is called a profile. For the profile π = (v1, . . . vk) and x ∈ V , the remoteness
D(x, π) is

∑
1≤i≤n d(x, vi) [1]. The set of all vertices x for which D(x, π) is minimum is the

median of π in G and is denoted by M(π). A set S such that S = M(π) for some profile π
is called a Median set of G. The Interval I(u, v) between vertices u and v of G consists of all
vertices which lie in some shortest path between u and v. The number of intervals of a graph
G is denoted by in (G). The Hypercube Qn is the graph with vertex set {0, 1}n, two vertices
being adjacent if they differ exactly in one coordinate. A Subcube of the hypercube Qn is an
induced subgraph ofQn, isomorphic toQm for somem ≤ n. A graphG is aMedian graph if, for
every (x, y, z) ∈ V 3, I(x, y) ∩ I(y, z) ∩ I(x, z) contains a unique vertex, see Avann [2]. Trees,
hypercubes, and grid graphs are all median graphs. For further references concerningmedian
graphs, see Mulder and Schrijver [3], Mulder [4], and Bandelt and Hedlı́ková [5]. The graph
on p vertices formed by joining all the vertices of a (p − 1)-cycle to a vertex is a wheel graph
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and is denoted by Wp. The vertex which is joined to all the vertices of the (p − 1)-cycle is the
universal vertex. The Cartesian product G�H of two graphs G and H has vertex set V (G) ×
V (H), two vertices (u, v) and (x, y) being adjacent if either u = x and vy ∈ E(H) or ux ∈ E(G)
and v = y. The eccentricity e(u) of a vertex u is maxv∈V (G)d(u, v). A vertex v is an eccentric
vertex of u if e(u) = d(u, v). Graph products form a well-studied area in graph theory, see
[6, 7]. The problem of finding the median of a profile is very much significant in location
theory, particularly in efficiency-oriented model [8], as it corresponds to finding the most
desirable service point for a group of customers when the minimisation of the total cost is a
primary objective. Here we use profiles of vertices instead of a set of vertices which gives us
the liberty to repeat a vertex any number of times. This makes the problem more relevant in
location theory as it enables us to assign different weights to different customers. The problem
of finding the median of a profile has been thoroughly investigated by many authors; see [9–
14]. The objective of this paper is to identify median sets of some classes of graphs and to
enumerate them.

2. Median Number

On the set of all profiles on V , V ∗ =
⋃

k∈Z V k, we define a relation M by π1Mπ2 if M(π1) =
M(π2). This is an equivalence relation. This equivalence relation gives a partition of thewhole
set of profiles. The number of equivalence classes in this partition is defined as the Median
number of graph G and is denoted by mn(G). That is, it is the number of distinct median sets
in G.

Proposition 2.1. For any graph G = (V, E) on p vertices, in(G) ≤ mn(G) ≤ 2p − 1.

Proof. The upper bound is obvious as it is the number of nonempty subsets of the vertex set.
For every v ∈ V , v is a median set of the profile (v). For every u, v ∈ V , the set I(u, v) is the
median set of the profile (u, v). Therefore in(G) ≤ mn(G) ≤ 2p − 1.

Proposition 2.2. mn(Kp) = 2p − 1, where Kp is the complete graph on p vertices.

Proof. In Kp, each nonempty subset of the vertex set is a median set, namely, of the profile
formed by taking all the elements of the set exactly once. Therefore the number of distinct
median sets is the number of nonempty subsets of V which is 2p − 1.

Proposition 2.3. If e is an edge of Kp, p ≥ 3,mn(Kp − e) = 2p − 2p−2.

Proof. Let e = (u, v) ∈ E. For every vertex set S such that {u, v}/⊆S, there exists a profile which
has S as its median set, namely, the profile formed by taking the vertices of S exactly once.
Let π be a profile which does not simultaneously contain u and v. Then M(π) is a subset of
the set of vertices corresponding to the profile π and hence does not contain u and v. Now,
let π be profile which contains both u and v. Then if u or v is repeated more than the other in
the profile, then D(u, π)/=D(v, π) and so they cannot appear together in the M(π). Assume
that π contains both u and v where both are repeated the same number of times. Let the
profile be (x1, . . . , xk, u, . . . , u︸ ︷︷ ︸

m times

, v, . . . , v
︸ ︷︷ ︸
m times

), m ≥ 1. For xi, 1 ≤ i ≤ k, D(xi, π) ≤ k − 1 + 2m. Also,

D(u, π) = k+2m andD(v, π) = k+2m. ThereforeM(π) does not contains both u and v. Now
the profile (u, v) has V as its median set. Hence V is the only median set which contains both
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u and v. Therefore the class of all median sets of the graph consists of V and all subsets of V
which do not simultaneously contain u and v. Hence,

mn
(
Kp − e

)
=
(
p
1

)

+
(
p
2

)

−
(
p − 2
0

)

+
(
p
3

)

−
(
p − 2
1

)

+ · · · +
(

p
p − 1

)

−
(
p − 2
p − 3

)

+
(
p
p

)

= 2p − 1 −
(
2p−2 − 1

)

= 2p − 2p−2.

(2.1)

Proposition 2.4 (Bandelt and Barthélémy [10]). LetG = (V, E) be a median graph. For any profile
π in G the median set is an interval I(u, v) in G.

Proposition 2.5. The median number of a tree T on p vertices is
( p
2

)
+ p.

Proof. Since T is a median graph, by the above proposition all median sets are intervals. As
observed in the proof of Proposition 2.1, all intervals are median sets. Therefore, class of
median sets of T is precisely the class of intervals of T which is the class of all paths in T .
Hence the median number is the number of distinct paths in T which is

( p
2

)
+ p.

Proposition 2.6 (Imrich and Klavžar [6]). Let Qr be a hypercube. Then, for any pair of vertices
u, v ∈ Qr the subgraph induced by the interval I(u, v) is a hypercube of dimension d(u, v).

Theorem 2.7. For the hypercube Qr ,mn(Qr) = 3r

Proof. Since Qr is a median graph, by Propositions 2.4 and 2.6, every median set of Qr is a
subcube. Also in any graphG, I(u, v) is themedian set of the profile (u, v), where u, v ∈ V (G).
Thus in a hypercube every subcube is a median set. Therefore, the median sets of Qr are
precisely the induced subcubes. So the Median number of Qr is the number of subcubes of
Qr . Every vertex of Qr contains r coordinates where each coordinate is either 0 or 1. Keeping
k co-ordinates fixed and varying 0 and 1 over the other r − k positions, we get a subcube of
dimension r − k. By varying 0’s and 1’s over these k positions we get 2k such subcubes. The k
positions, to be fixed can be chosen in ( r

k )ways. So the total number of subcubes of dimension
r − k is 2k × ( r

k ). Therefore the total number of subcubes of Qr is
∑

0≤k≤r(
r
k ) × 2k = 3r .

Theorem 2.8. For the wheel graph Wp, p ≥ 6, mn(Wp) = (p2 + 3p − 2)/2.

Proof. Let {v1, v2, . . . , vp−1, vp} be the vertex set of Wp with vp as the universal vertex, and let
Cp−1 be the cycle v1, v2, . . . , vp−1, v1. Each singleton set {vi}, 1 ≤ i ≤ p − 1, is a median set. The
sets {vi, vj}, where vi and vj are adjacent, are also median sets. The profile (vi, vi+(p−1)1, vp),
1 ≤ i ≤ p − 1 (+p−1 means addition modulo p − 1) has {vi, vi+(p−1)1, vp} as median set. The set
{vi, vi+(p−1)1, vi+p−12, vp} is the median set of the profile (vi, vi+(p−1)2). Let π = (x1, x2, . . . , xk) be
a profile of Wp which contains the universal vertex vp. Then since π contains the vertex vp,
D(vp, π) ≤ k − 1. If some vi, 1 ≤ i ≤ p − 1, belongs to M(π), then D(vi, π) ≤ k − 1 and this
implies xj = vi at least for some j. Also, the number of xj ’s with d(vi, xj) = 2 is less than the
number of repetitions of vi in π . Let vk be such that d(vk, vi) = 2. Then vk belongs to M(π)
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that implies number of repetitions of vk is greater than the number of repetitions of vi in the
profile π . But these two statements are contradictory. Thus for a profile which contains the
universal vertex the median set cannot contain two vertices which are at distance 2. Hence
the only possible median sets for such a profile are

(i) sets of type {vi, vi+(p−1)1},
(ii) sets of type {vi, vp},
(iii) sets of type {vi, vi+(p−1)1, vp}.
Now, let π = (x1, . . . , xk) be a profile which does not contain vp. Then D(vp, π) = k.

If some vi, 1 ≤ i ≤ p − 1, belongs to M(π), then D(vi, π) ≤ k. Let vj be such that
vj ∈ M(π) and d(vi, vj) = 2. Then D(vj , π) ≤ k. since D(vi, π) ≤ k, the number of zeroes
in {d(vi, x1), . . . , d(vi, xk} ≥ number of twos in {d(vi, x1), . . . , d(vi, xk}. Similarly, number of
zeroes in {d(vj , x1), . . . , d(vj , xk} ≥ number of twos in {d(vj , x1), . . . , d(vj , xk}.

Thus, number of repetitions of vi in π = number of repetitions of vj in π .
Now, let dCp−1(vi, vj) = 2. Without loss of generality, we may assume that j = i+(p−1)2. If

some vertex other than vi, vi+(p−1)1, vi+(p−1)2 belongs to π , then D(vi, π) = D(vj , π) > D(vp, π).
If vi+(p−1)1 ∈ π , then D(vi+(p−1)1, π) < D(vi, π). Therefore π can only be (vi, . . . , vi, vj , . . . , vj),
where vi and vj are repeated the same number of times. Since j = i+(p−1)2, we haveD(vi, π) =
D(vj , π) = D(vp, π) = D(vi+(p−1)1, π) and for all other x ∈ V , D(x, π) > k. Hence M(π) =
{vi, vi+(p−1)1, vi+(p−1)2, vp}. If dCp−1(vi, vj)/= 2 then some vertex other than vi and vj that belong
to π will contradict the fact that vi and vj belong to M(π). Therefore, in this case also π =
(vi, . . . , vi, vj , . . . , vj), where vi and vj are repeated the same number of times. HereD(vi, π) =
k, D(vj , π) = k, D(vp, π) = k and for all other x ∈ V , D(x, π) > k. In other words, M(π) =
{vi, vj , vp}.

Hence the only median sets are

(1) {vi}, 1 ≤ i ≤ p,

(2) {vi, vi+(p−1)1}, 1 ≤ i ≤ p − 1,

(3) {vi, vp}, 1 ≤ i ≤ p − 1,

(4) {vi, vp, vi+(p−1)1}, 1 ≤ i ≤ p − 1,

(5) {vi, vj , vp}1 ≤ i, j ≤ p − 1, (i − j) mod (p − 1) ≥ 3 (since p ≥ 6, such vertices do exist),

(6) {vi, vi+(p−1)1, vi+(p−1)2, vp}, 1 ≤ i ≤ p − 1.

Thus,mn(Wp) = p + p − 1+ p − 1+ p − 1+ ((p− 1)(p − 6))/2+ p − 1 = (p2 + 3p − 2)/2.

Theorem 2.9. mn(Kp,q) = 2p+q − 1, where Kp,q is the complete bipartite graph with p ≤ q, p > 2.

Proof. Let (X,Y ) be a bipartition of Kp,q with |X| = p and |Y | = q. Let X = {x1, . . . , xp} and
Y = {y1, . . . , yq}. Let A be a k-element subset of X with k ≤ p. Without loss of generality, we
may assume that A = {x1, . . . , xk}.

If k < q, take π = (x1, . . . , xk, y1, . . . , yq). For each xi, 1 ≤ i ≤ k, D(xi, π) = 2(k − 1) + q.
For each xi, k + 1 ≤ i ≤ p, D(xi, π) = 2k + q. For each yi, 1 ≤ i ≤ q, D(yi, π) = 2(q − 1) + k.
Therefore, A = {x1, . . . , xk} = M(π).

If k = q, then π = (y1, . . . , yq) has median set A = {x1, . . . , xk}. Therefore, every subset
of X is a median set.

Now, let B ⊆ Y with B = {y1, . . . , yk}.
If k < p then as in the previous case π = (x1, . . . , xp, y1, . . . , yk) has median set B.
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Now, let k ≥ p and let π be the profile (x1, . . . x1, . . . , xp, . . . xp, y1, . . . , yk), where each
xi is repeated the same number of times, (say) r.

For each yi, 1 ≤ i ≤ k,D(yi, π) = 2(k−1)+pr, for each yi, k+1 ≤ i ≤ q,D(yi, π) = 2k+pr,
and for each xi, 1 ≤ i ≤ q, D(xi, π) = 2r(p − 1) + k. Moreover, 2(k − 1) + pr < 2r(p − 1) + k ⇔
k − 2 < (p − 2)r ⇔ r > ((k − 2)/(p − 2)) (p > 2). That is, if each xi is repeated r times where
r > (k − 2)/(p − 2), then M(π) = B.

Now, let C = {x1, . . . , xk, y1, . . . , yr}, 1 ≤ k ≤ p, 1 ≤ r ≤ q.
Take π = (x1, . . . , x1, . . . , xk, . . . , xk, y1, . . . , y1, . . . , yr , . . . , yr), where each xi is repeated

sx times and yi is repeated sy times.
For each xi, 1 ≤ i ≤ k, D(xi, π) = 2(k − 1)sx + rsy, for each yi, 1 ≤ i ≤ r, D(yi, π) =

2(r − 1)sy + ksx, for each xi, k + 1 ≤ i ≤ p, D(xi, π) = 2ksx + rsy, and for each yi, r + 1 ≤ i ≤ q,
D(yi, π) = 2rsy + ksx. Any xi, k + 1 ≤ i ≤ p or yi, r + 1 ≤ i ≤ q cannot be inM(π).

Now 2(k − 1)sx + rsy = 2(r − 1)sy + ksx ⇔ (k − 2)sx = (r − 2)sy. Hence for any sx and
sy such that (k − 2)sx = (r − 2)sy, the profile (x1, . . . x1, . . . , xk, . . . , xk, y1, . . . , y1, . . . , yr , . . . , yr),
where each xi is repeated sx times and yi is repeated sy times, has C as its median. Therefore,
every nonempty subset of X ∪ Y is a median set. Hence, mn(Kp,q) = 2p+q − 1.

Lemma 2.10. Let π1 and π2 be profiles in the graphs G1 and G2, respectively. If M(π1) = M1 and
M(π2) = M2, then π1 × π2 is a profile in the graph G1�G2 withM(π1 × π2) = M1 ×M2.

Proof. Let π1 = (u1, u2, . . . , um), π2 = (v1, v2, . . . , vn), and M = M(π1 × π2).
Consider π1 × π2 = ((u1, v1), . . . , (u1, vn), . . . , (um, v1), . . . , (um, vn)).
If (x1, y1), (x2, y2)∈V (G1�G2), then dG1�G2((x1, y1), (x2, y2)) = dG1(x1, y1)+dG2(x2, y2),

see [9]. For any (x, y) ∈ V (G1�G2),D((x, y), π1 × π2) = n
∑

1≤i≤m d(x, ui) +m
∑

1≤i≤n d(y, vi).
Let (a, b) ∈ M1 ×M2, that is, a ∈ M1 and b ∈ M2. Then,

∑

1≤i≤m
d(a, ui) ≤

∑

1≤i≤m
d(x, ui), ∀x ∈ V (G1),

∑

1≤i≤n
d(b, vi) ≤

∑

1≤i≤n
d
(
y, vi

)
, ∀y ∈ V (G2).

(2.2)

Therefore,

n
∑

1≤i≤m
d(a, ui) +m

∑

21≤i≤n
d(b, vi) ≤ n

∑

1≤i≤m
d(x, ui) +m

∑

1≤i≤n
d
(
y, vi

)
, ∀(x, y) ∈ V (G1�G2).

(2.3)

Hence, D((a, b), π1 × π2) ≤ D((x, y), π1 × π2), for all (x, y) ∈ V (G1�G2).
Thus, (a, b) ∈ M1 ×M2 ⇒ (a, b) ∈ M or M1 ×M2 ⊆ M.
Now, let (a, b) ∈ M

D((a, b), π1 × π2) = n
∑

1≤i≤m
d(a, ui) +m

∑

1≤i≤n
d(b, vi)

≤ n
∑

1≤i≤m
d(x, ui) +m

∑

1≤i≤n
d
(
y, vi

)
, ∀(x, y) ∈ V (G1 ×G2).

(2.4)
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If for some x′ ∈ V (G1),

∑

1≤i≤m
d
(
x′, ui

)
<

∑

1≤i≤m
d(a, ui), then

n
∑

1≤i≤m
d
(
x′, ui

)
+m

∑

1≤i≤n
d(b, vi) < n

∑

1≤i≤m
d(a, ui) +m

∑

1≤i≤n
d(b, vi).

(2.5)

This contradicts (a, b) ∈ M = M(π1 × π2).
Therefore

∑

1≤i≤m
d(a, ui) ≤

∑

1≤i≤m
d(x, ui), ∀x ∈ V (G1),

∑

1≤i≤m
d(b, vi) ≤

∑

1≤i≤m
d
(
y, ui

)
, ∀y ∈ V (G2).

(2.6)

Hence, a ∈ M1 and b ∈ M2 or (a, b) ∈ M1 ×M2. That is,M = M1 ×M2.

Theorem 2.11. mn(G1�G2) = mn(G1) ×mn(G2).

Proof. By the above lemma the product of median sets of G1 and G2 is again a median
set of G1� G2. Now, let M be a median set of G1�G2, with M = M(π), where π =
((u1, v1), . . . , (uk, vk)). Let π1 = (u1, . . . , uk), π2 = (v1, . . . , vk),M1 = M(π1), andM2 = M(π2).
Let (a, b) ∈ M.

We have

∑

1≤i≤k
d(a, ui) +

∑

1≤i≤k
d(b, vi) ≤

∑

1≤i≤k
d(x, ui) +

∑

1≤i≤k
d
(
y, vi

)
, ∀x ∈ V (G1), ∀y ∈ V (G2),

∴ k
∑

1≤i≤k
d(a, ui) + k

∑

1≤i≤m
d(b, vi) ≤ k

∑

1≤i≤k
d(x, ui) + k

∑

1≤i≤m
d
(
y, vi

)
, ∀(x, y) ∈ V (G1�G2).

(2.7)

In other words, D((a, b), π1 × π2) ≤ D((x, y), π1 × π2), for all (x, y) ∈ V (G1�G2).
∴ (a, b) ∈ M(π1 × π2) or M ⊆ M(π1 × π2).
Let (a, b) ∈ M(π1 × π2). ThenD((a, b), π1 × π2) ≤ D((x, y), π1 × π2), for all x ∈ V (G1) ,

for all y ∈ V (G2).
That is

k
∑

1≤i≤k
d(a, ui) + k

∑

1≤i≤k
d(b, vi) ≤ k

∑

1≤i≤k
d(x, ui) + k

∑

1≤i≤k
d
(
y, vi

)
,

∀x ∈ V (G1), ∀y ∈ V (G2),
∑

1≤i≤k
d(a, ui) +

∑

1≤i≤k
d(b, vi) ≤

∑

1≤i≤k
d(x, ui) +

∑

1≤i≤k
d
(
y, vi

)
,

∀x ∈ V (G1), ∀y ∈ V (G2),

∴
∑

1≤i≤k
d((a, b), (ui, vi)) ≤

∑

1≤i≤k
d
((
x, y

)
, (ui, vi)

)
, ∀(x, y) ∈ V (G1�G2).

(2.8)
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Therefore, (a, b) ∈ M which impliesM(π1 × π2) ⊆ M orM = M(π1 × π2) = M(π1) ×M(π2).
Thus, the class of all median sets of G1�G2 is the same as the class of all Cartesian products
of median sets of G1 and G2.

Hence, mn(G1�G2) = mn(G1) ×mn(G2).

The above theorem can be used to find themedian number of various classes of graphs.
The first of the following corollaries gives another technique to find out the Median number
of a hypercube.

Corollary 2.12. If G1, . . . , Gk are k graphs, thenmn(G1� · · ·�Gk) = mn(G1) × · · · ×mn(Gk).

Corollary 2.13. For the hypercube Qr , mn(Qr) = 3r .

Proof. Since Qr = K2� · · ·�K2︸ ︷︷ ︸
r times

, mn(Qr) = mn(K2) × · · · ×mn(K2)
︸ ︷︷ ︸

r times

= 3 × · · · × 3︸ ︷︷ ︸
r times

= 3r .

Corollary 2.14. If G is the Grid graph Pr�Ps,mn(G) = (( r
2 ) + r) × (( s

2 ) + s).

Corollary 2.15. If G is the Hamming graph Kp1�Kp2� · · ·�Kpr , mn(G) = (2p1 − 1) × (2p2 − 1) ×
· · · × (2pr − 1).

Lemma 2.16. The only median set of the cycle C2r which contains a vertex and its eccentric vertex is
V .

Proof. Let a and b be two eccentric vertices of the cycle C2r which belongs to M(π) where
π = (x1, . . . , xk). Let D(a, π) = D(b, π) = s. Then

D(a, π) +D(b, π) = d(a, x1) + · · · + d(a, xk) + d(b, x1) + · · · + d(b, xk)

= d(a, x1) + d(b, x1) + · · · + d(a, xk) + d(b, xk)

= d(a, b) + · · · + d(a, b)
︸ ︷︷ ︸

k times

= kr.

(2.9)

Hence 2s = kr. Now, suppose M(π)/=V . Then there exists an x ∈ V such that D(x, π) > s.
That is, d(x, v1)+· · ·+d(x, vk) > s. Let y be the eccentric vertex of x. d(y, v1)+· · ·+d(y, vk) ≥ s.
Therefore, d(x, v1)+ · · ·+d(x, vk)+d(y, v1)+ · · ·+d(y, vk) > 2s. That is, d(x, y)+ · · ·+d(x, y) (k
times) > 2s or kr > 2s, a contradiction. Therefore, any set distinct from V which is a median
set cannot contain two eccentric vertices. Also, M((a, b)) = V , since a and b are diametrical
and I(a, b) = V . Hence the only median set of C2r which contains a vertex and its eccentric
vertex is V .

Theorem 2.17. For the even cycle C2r ,mn(C2r) ≤ 3r .

Proof. Let V be the vertex set of C2r with V = {v1, . . . , v2r}. Let A= {S : S ⊆ V and S does
not contain any pair of eccentric vertices}. By the above lemma, the set of all median sets is
a subset of A ∪ {V }. Hence mn(C2r) ≤ |A| + 1. Let Bi = {vi, vi+r}, 1 ≤ i ≤ r. Now A consists
of all subsets of V which does not simultaneously contain both the elements from the same
Bi, 1 ≤ i ≤ r. The number of ways of choosing a k-element subset of V so that it belongs
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to A is the product of the number of ways of choosing kBi’s from the rBi’s and the number
of ways of choosing one element from each of these chosen Bi’s. That is, ( r

k ) × 2k. Therefore
|A| = ∑r

k=1(
r
k ) × 2k. Hence mn(C2r) ≤ (

∑
1≤k≤r (

r
k ) × 2k) + 1 =

∑
0≤k≤r (

r
k ) × 2k = 3r .

3. Conclusion

In this paper, we could identify the median set of certain classes of graphs and evaluate their
median numbers. Identifying the median sets of more classes of graphs and finding their
median numbers will be interesting and challenging. Another possibility is the realisation
problem; given a number of finding a graph whose median number is that number.
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