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AND A. R. SUBHAMATHI

Abstract. The distance DG(v) of a vertex v in an undirected graph G is the sum of the

distances between v and all other vertices of G. The set of vertices in G with maximum

(minimum) distance is the antimedian (median) set of a graph G. It is proved that for

arbitrary graphs G and J and a positive integer r ≥ 2, there exists a connected graph H

such that G is the antimedian and J the median subgraphs of H , respectively, and that

dH(G, J) = r. When both G and J are connected, G and J can in addition be made

convex subgraphs of H .
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1. Introduction

Location theory has grown into a vast area of research; see the collected references at [7]

and the survey paper on obnoxious facility location problems [4]. Here we just mention

algorithmic studies [2, 14], applications of location theory in biological networks [18], and

studies of Steiner centers and Steiner medians [13].

In the design of a network one often needs to take care of both desired facilities and

undesired facilities [5, 10, 17]. A natural model to distribute such facilities in a network

is to put them at medians and antimedians of the network, respectively. For the mutual

placement of desired and undesired facilities we can also have certain requirements that can

be modeled by respective graphs. For instance, imagine that in a certain region there is a
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real scarcity for land, energy, etc. Suppose that the local government decided to construct

a certain number of (nuclear) power plants and has identified some vacant lands. Then

the problem is to locate the waste disposal sites at “antimedians” and the township of

the plants at “medians”. Moreover, in the network we wish to have desired and undesired

facilities separated by a prescribed distance. We hence pose the following question: Given

arbitrary graphs J and G and a positive integer r, does there exist a connected graph H

such that J is the median of H, that G is the antimedian of H, and that the distance

between G and J is r?

Let us now formalize the above model. The distance dG(v, x) between vertices v and x

in a connected graph G is the length of a shortest v, x-path in G, that is, its number of

edges. For a vertex v of G, the sum

DG(v) =
∑

x∈V (G)

dG(v, x)

is called the distance of v. The distance between the subgraphs H1 and H2 of a connected

graph G is

dG(H1,H2) = min
u∈V (H1)
v∈V (H2)

dG(u, v) .

The vertex v is called a median vertex of G if DG(v) is minimum. The median set M(G)

of G is the set of all median vertices of G. The subgraph induced by M(G) is called the

median subgraph of G. If in these definitions we change minimum to maximum, we obtain

antimedian vertices, the antimedian set AM(G), and the antimedian subgraph. There are

many graphs in which the median and the antimedian subgraphs lie far apart. For example,

in trees the median always consists of either a single vertex or two adjacent vertices and

lies in “the middle” of the graph, whereas the antimedian will occur at peripheral vertices.

In general the structure of the median and antimedian subgraphs can be arbitrary. In

a certain way we establish this arbitrariness with the following affirmative answer to the

above question.

Theorem 1. For any graphs G and J and any integer r ≥ 2, there exists a connected

graph H such that AM(H) = V (G), M(H) = V (J), and dH(G,J) = r.
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This theorem relates and extends several previous results. The first such theorem is

due to Slater [15] who proved that for every graph G there exists a connected graph

H such that G is a subgraph of H with M(H) = V (G). Recently, Dankelmann and

Sabidussi [6] extended Slater’s result by obtaining the median as an isometric subgraph

of the host graph. Bielak and Sys lo [3] followed with an analogue of Slater’s theorem for

the antimedian case. (For related studies see also [12].) Hence Theorem 1 can be viewed

as a unification of their theorems.

We also mention the following related works. For a given graph G, Miller [11] and

Hendry [8, 9] studied the minimum order of a graph H such that M(H) = G. A result

parallel to our theorem is due to Smart and Slater [16]. They proved that the center, the

median, and the so-called centroid can be arbitrarily far apart in a connected graph in

the sense that given any three graphs H, J , K and a positive integer k ≥ 4, there exists

a connected graph G with the center, the median, and the centroid subgraphs isomorphic

to H, J , and K, respectively and the distance between any two of these subgraphs is at

least k.

Theorem 1 is proved in the next section. Then, in Section 3, we consider the special

case when G and/or J are connected and show that in these cases the corresponding

constructions lead to convex embeddings of G and/or J into H. In the concluding remarks

the order of the constructed host graph is discussed.

2. Proof of Theorem 1

Let H be a subgraph of a graph G. Then for a vertex v ∈ V (G) we will write

DG(v,H) =
∑

x∈V (H)

dG(v, x) .

Note that the previously introduced notation DG(v) is an abbreviation for DG(v,G).

In the first part of this section we construct the graph H. Let V (G) = {u1, . . . , un1}

and V (J) = {v1, . . . , vn2}. Let c1 and c2 be non-negative integers such that c1 + c2 = r−2

and let K,K ′ and K ′′ be copies of the complete graph KN , where the value of N will be

determined later.
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We first construct the graph H0 as follows. Start with the disjoint union of graphs G,

J , K, K ′, and K ′′. Consider disjoint paths with end vertices wi of length c1 from each

vertex ui in G and join each wi to a unique vertex of K, say x. In this way, there are n1

internally disjoint paths of length c1 + 1 between each vertex of G and the vertex x in K.

Note that it is possible that wi = ui for all i. Similarly connect each vertex vi of J by

disjoint paths of length c2 with end vertices xi and join each vertex xi to the vertex x in

K. Note again that it is possible that vi = xi for all i. Similar construction of paths is

effected from J to K ′ and K ′′ of length c2 +1 and let the corresponding end vertices of the

paths in K ′ and K ′′ respectively be x′ and x′′. The construction of H0 is schematically

shown in Figure 1.
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Figure 1. Graph H0 from the construction.
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Setting

ǫ(G) = min{DH0(u) | u ∈ V (G)} ,

ǫ(J) = min{DH0(u) | u ∈ V (J)} ,

ai = DH0(ui) − ǫ(G), 1 ≤ i ≤ n1 ,

bi = DH0(vi) − ǫ(J), 1 ≤ i ≤ n2 ,

the graph H is constructed from H0 by connecting wi, 1 ≤ i ≤ n1, to ai additional (not

necessarily distinct) neighbors in K, and by connecting xi, 1 ≤ i ≤ n2, to bi additional

(not necessarily distinct) neighbors in K. Hence, wi and xi are in H adjacent to ai + 1

and bi + 1 neighbors of K, respectively.

We next claim that all the vertices of G have the same distance in H and that also all

the vertices of J have the same distance in H. Note that DH(ui) and DH(vi) are reduced

by ai and bi compared to DH0(ui) and DH0(vi), respectively, because wi and xi have ai +1

and bi + 1 neighbors of K in H and a single neighbor in H0. Therefore

DH(ui) = DH0(ui) − ai

= DH0(ui) − (DH0(ui) − ǫ(G))

= ǫ(G)

holds for any vertex ui in G, i = 1, . . . , n1. Similarly DH(vi) = ǫ(J) holds for any vertex

vi in J , i = 1, . . . , n2, and the claim is proved.

Let U,W,W ′,W ′′ be the sets of all vertices of H that lie in the interior of the paths

between G and K, between J and K, between J and K ′, and between J and K ′′, re-

spectively. Note that by the construction itself it follows that the subsets V (J), V (G),

U , V (K), V (K ′), V (K ′′), W , W ′, and W ′′ are pairwise disjoint and hence determine a

partition of V (H). Note also that |U | = c1n1 and |W | = |W ′| = |W ′′| = c2n2. Then for

any vertex v,

DH(v) = DH(v,K ′) + DH(v,K ′′) + DH(v,W ′) + DH(v,W ′′) +(1)

DH(v, J) + DH(v,W ) + DH(v,K) + DH(v, U) + DH(v,G) .
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We next need to make N large enough in order to have enough neighbors in K for

the vertices wi and xi. Note that, DH0(ui,K
′), DH0(ui,K

′′), DH0(ui,W
′), DH0(ui,W

′′),

DH0(ui, J), DH0(ui,W ), and DH0(ui,K) are constant for any vertex ui ∈ G and that

max(dH(ui, x)−dH(uj , x)) ≤ 2c1+2 for any x in G∪U . Therefore, ai ≤ (2c1+2)(c1+1)n1,

since there are (c1 + 1)n1 vertices in G ∪ U . Similarly we get bi ≤ (2c2 + 2)(3c2 + 1)n2.

Thus N must satisfy the inequality

(2) N > max{(2c1 + 2)(c1 + 1)n1, (2c2 + 2)(3c2 + 1)n2} .

Lemma 2. For any vertex x ∈ V (H) \ V (J),

DH(x) > DH(vi), for all vi ∈ V (J) .

Proof. We distinguish two cases.

Case 1: x ∈ W ∪ V (K) ∪ U ∪ V (G).

Assume first that x is a vertex of W that is adjacent to a vertex vj in J . Then d(x, .) =

d(vj , .) + 1 for the vertices from K ′,K ′′,W ′, and W ′′, hence

(3) DH(x,K ′) = DH(vj ,K
′) + N, DH(x,K ′′) = DH(vj ,K

′′) + N ,

and

(4) DH(x,W ′) = DH(vj ,W
′) + c2n2, DH(x,W ′′) = DH(vj ,W

′′) + c2n2 .

On the other hand, for the vertices in K,U , and G, d(x, .) = d(vj , .) − 1, hence

(5) DH(x,K) = DH(vj ,K) − N, DH(x,U) = DH(vj , U) − c1n1 ,

and

(6) DH(x,G) = DH(vj , G) − n1 .

Finally, if a shortest path from vj to J or W contains vertices of K, then d(x, .) =

d(vj , .) − 1, otherwise d(vj , .) ≤ d(x, .) ≤ d(vj , .) + 1. Hence for the vertices from W and

J we have d(x, .) ≥ d(vj , .) − 1 and consequently

(7) DH(x,W ) ≥ DH(vj ,W ) − c2n2, DH(x, J) ≥ DH(vj , J) − n2 .
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Inserting (3)-(7) into (1) we get

DH(x) − DH(vj) ≥ N + (c2 − 1)n2 − (c1 + 1)n1 > 0 ,

where the last inequality clearly holds because we have assumed that N > max((2c1 +

2)(c1 + 1)n1, (2c2 + 2)(3c2 + 1)n2).

From the construction of H it follows that the distance increases when dH(x, J) > 1

and x ∈ W ∪ V (K) ∪ U ∪ V (G).

Case 2: x ∈ W ′ ∪ W ′′ ∪ V (K ′) ∪ V (K ′′).

By symmetry it suffices to consider only vertices in W ′ ∪ V (K ′). Moreover, by the con-

struction of H, it suffices to show that DH(x)−DH(vi) > 0, where x is a vertex of W ′ that

is adjacent to the vertex vi of J . Similar to the first case we infer the following relations:

DH(x,K) = DH(vi,K) + N, DH(x,K ′′) = DH(vi,K
′′) + N,

DH(x,U) = DH(vi, U) + c1n1, DH(x,G) = DH(vi, G) + n1,

DH(x, J) ≥ DH(vi, J) − n2, DH(x,K ′) = DH(vi,K
′) − N,

DH(x,W ) ≥ DH(vi,W ) + c2n2, DH(x,W ′′) = DH(vi,W
′′) + c2n2,

DH(x,W ′) ≥ DH(vi,W
′) − c2n2 .

Therefore, inserting these relations into (1) we get

DH(x) − DH(vi) ≥ N + (c1 + 1)n1 + (c2 − 1)n2 > 0 ,

where we again used the assumption N > max((2c1+2)(c1+1)n1, (2c2+2)(3c2+1)n2). �

By Lemma 2 and the fact that DH(vi) = ǫ(J) holds for any vi ∈ V (J), we conclude

that M(H) = V (J).

Lemma 3. Let N > (2c1 + 2)(c1 + 1)n1 + 2c2n1 + 2(c2 + 2)(3c2 + 1)n2. Then for any

vertex x ∈ V (H) \ V (G), DH(x) < DH(ui), for all ui ∈ V (G) .

Proof. From the proof of Lemma 2 we know that the distance of a vertex increases when

we move from a vertex in J to a vertex in K ′, K ′′ or G. Hence we only need to compare
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the distance of vertices in G with the vertices of K ′ and K ′′ and by symmetry we can

reduce the comparison to the vertices of K ′. Now, for any vertex ui in G,

DH(ui,K
′) = (c1 + 2c2 + 4)N − 1,

DH(ui,K
′′) = (c1 + 2c2 + 4)N − 1,

DH(ui,W
′) = (c2(c2 + 1)/2)n2 + (c1 + c2 + 2)c2n2,

DH(ui,W
′′) = (c2(c2 + 1)/2)n2 + (c1 + c2 + 2)c2n2,

DH(ui, J) = (c1 + c2 + 2)n2,

DH(ui,W ) = (c2(c2 + 1)/2)n2 + (c1 + 1)c2n2,

DH(ui,K) ≥ (c1 + 1)N,

DH(ui, U) ≥ (c1(c1 + 1)/2)n1,

DH(ui, G) ≥ n1 − 1.

and for any vertex x in K ′,

DH(x,K ′) = N − 1,

DH(x,K ′′) ≤ (2c2 + 4)N − 1,

DH(x,W ′) ≤ (c2(c2 + 1)/2)n2 + c2n2,

DH(x,W ′′) ≤ (c2(c2 + 1)/2)n2 + (c2 + 2)c2n2,

DH(x, J) ≤ (c2 + 2)n2,

DH(x,W ) ≤ (c2(c2 + 1)/2)n2 + (c2 + 2)c2n2,

DH(x,K) ≤ (2c2 + 4)N − 1,

DH(x,U) ≤ (c1(c1 + 1)/2)n1 + (2c2 + 4)c1n1,

DH(x,G) ≤ (2c2 + 4 + c1)n1.

Inserting the above relations into (1) we get

DH(ui) − DH(x) ≥ (3c1)N + 3c1c2n2 + c1n2 + n1

−((2c2 + 5)c1n1 + (2c2 + 4)n1).
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Since N > (2c1 + 2)(c1 + 1)n1 + 2c2n1 + 2(c2 + 2)(3c2 + 1)n2 we conclude that DH(ui) −

DH(x) > 0. �

By Lemma 3 and the fact that DH(ui) = ǫ(G) for any ui ∈ V (G), we conclude that

AM(H) = V (G).

By the assumption on N from Lemma 3 and from (2) we conclude that any

N ≥ (2c1 + 2)(c1 + 1)n1 + 2c2n1 + 2(c2 + 2)(3c2 + 1)n2

will do the job.

Finally, observe that dH(G,J) = c1 + c2 + 2 = r. This completes the proof of the

theorem.

3. Convex embeddings

Recall that a subgraph G of a graph H is convex if for any vertices u and v of G, every

shortest u, v-path from H lies completely in G. (Recall also that a convex subgraph is

isometric but the converse need not hold.)

If the graphs G and J from Theorem 1 are not connected then they clearly cannot be

embedded as convex subgraphs. However, for connected G and J we have:

Theorem 4. Let G and J be connected graphs with diameters d1 and d2, respectively.

Then for any r ≥ ⌊d1/2⌋ + ⌊d2/2⌋ + 2 there exists a connected graph H such that G and

J are convex subgraphs of H, AM(H) = V (G), M(H) = V (J), and dH(G,J) = r.

Proof. In the construction of the graph H from the proof of Theorem 1, set c1 ≥ ⌊d1/2⌋

and c2 ≥ ⌊d2/2⌋. Note that then any path P in H between two vertices of G which

contains a vertex not from G, is of length at least 2(c1 + 1) > d1. Therefore, G is a convex

subgraph of H. Similarly, any path in H between two vertices of J which contains a vertex

not from J , is of length at least 2(c2 + 1) > d2, so J is also a convex subgraph of H. �

If only one of the graphs G and J is connected, then by an analogous approach as in

Theorem 4 we can assure that the connected graph is embedded as a convex subgraph

(and that all the remaining conclusions hold).
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Suppose next that we want to embed only one graph, say G (so that J can be considered

as the empty graph). In this case, consider the subgraph of H induced by the vertex set

V (G) ∪ U ∪ V (K). Then by a similar approach as in the general case (for instance, set

c1 = r−2 and N > (2c1+2)(c1+1)n1), we obtain that G is the antimedian of H. Moreover,

if r ≥ ⌊d1/2⌋+ 2, then G is a convex subgraph of H. This construction is the construction

of [1]. Hence Theorem 1 generalizes this construction that in turn strengthens the result

of Bielak and Sys lo [3].

Assume next that we want to embed only J (so that G is considered as the empty

graph). In this case, consider the subgraph of H (from the main construction) induced

by the vertex set V (H) \ (U ∪ V (G)). Now we select N > (2(c2 + 2)(3c2 + 1)n2) and

using similar arguments as in the proof of Theorem 1, we get M(H) = V (J). Moreover,

if c2 ≥ ⌊d2/2⌋ + 2, then J is a convex subgraph. Thus we have the following result

strengthening the result of Dankelmann and Sabidussi [6].

Corollary 5. Let J be a connected graph. Then there exists a connected graph H such

that J is a convex subgraph of H and V (J) is the median set of H.

4. Concluding remarks

The order of the graph H from Theorem 1 is 3N + (3c2 + 1)n2 + (c1 + 1)n1, where

N = (2c1 + 2)(c1 + 1)n1 + 2c2n1 + 2(c2 + 2)(3c2 + 1)n2 which is O(n1c
2
1 + n2c

2
2). The

construction of Bielak and Sys lo [3] uses this construction for the special case when J is

the empty graph and c1 = c2 = 0. In the construction of Dankelmann and Sabidussi [6],

the number of vertices of the host graph is of the order O((2r)n), where n is the number

of vertices and r the diameter of the given graph. On the other hand, their host graphs

are vertex-transitive.

In the construction of the graph H that gave the main result of this paper, the vertices x,

x′, and x′′ could be of larger degree than might be desirable for applications. If this is the

case, the construction can be modified as follows. As before, start with the disjoint union

of graphs G, J , K, K ′, and K ′′. Consider a subset S ⊂ V (K), with |S| = max(n1, n2).

Take n1 vertices from S and connect each of these vertices to its own vertex of G with a
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path of length c1 +1 and select n2 vertices from S and connect each of these vertices to its

own vertex of J with a path of length c2 + 1 in the same way. Similarly select n2 vertices

of K ′ and connect them to J with paths of length c2 + 1 and select n2 vertices of K ′′ and

connect them to J in the same way. The rest of the construction then goes as before. This

modified construction gives the same conclusion as in Theorem 1. Note that the order N

of the complete graphs involved needs to be selected as N = (2c1 + 3)(c1 + c2 + 1)n1 +

2c2n1 + (2c2 + 3)(3c2 + 1)n2 + max(n1, n2), but still the order of the constructed graph in

this modified construction is O(n1c
2
1 + n2c

2
2).

G

J

K

K K

w

x

v

u

i

i

i

i

Figure 2. Graph H0 from the construction by connecting vertices of G
and J to distinct vertices.

We can also modify the construction by connecting the vertices of G to distinct vertices

of K and vertices of J to distinct vertices of K, K ′, and K ′′ as shown in Figure 2. In

addition, connect wi, 1 ≤ i ≤ n1, to ai additional private neighbors in K, and connect

xi, 1 ≤ i ≤ n2, to bi additional private neighbors in K. This modified construction

also gives the same conclusion as in Theorem 1. However, the order N of the complete

graphs involved needs to be selected as N = (2c1 + 3)(c1 + c2 + 1)n2
1 + (2c2 + 3)(3c2 +
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1)n2
2, and therefore the order of the constructed graph in this modified construction is

O((n1c1)2 +(n2c2)2) and the distance between the given graphs G and J in the host graph

H, d(G,J) = r ≥ 3, where as in the previous constructions d(G,J) = r ≥ 2.

As mentioned above, slight modifications are possible in the construction of H0 and H

without affecting the conclusion of the main Theorem 1, but such modifications change

the order N of the complete graphs K, K ′, and K ′′.
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