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a b s t r a c t

A profile on a graph G is any nonempty multiset whose elements are vertices from G.
The corresponding remoteness function associates to each vertex x ∈ V (G) the sum of
distances from x to the vertices in the profile. Starting from some nice and useful properties
of the remoteness function in hypercubes, the remoteness function is studied in arbitrary
median graphs with respect to their isometric embeddings in hypercubes. In particular, a
relation between the vertices in amedian graph Gwhose remoteness function ismaximum
(antimedian set of G) with the antimedian set of the host hypercube is found.While for odd
profiles the antimedian set is an independent set that lies in the strict boundary of amedian
graph, there existmedian graphs inwhich special even profiles yield a constant remoteness
function.We characterize suchmedian graphs in twoways: as the graphswhose periphery
transversal number is 2, and as the graphs with the geodetic number equal to 2. Finally, we
present an algorithm that, given a graph G on n vertices andm edges, decides in O(m log n)
time whether G is a median graph with geodetic number 2.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A profile π = (x1, . . . , xk) on a graph G is a finite sequence of vertices of G, and k = |π | is called the size of the profile π .
Note that in a profile a vertexmay be repeated. Given a profileπ on G and a vertex u of G, the remoteness D(u, π) (see [16]) is

D(u, π) =
∑
x∈π

d(u, x),

where d stands for the usual (shortest paths) distance in G.
In the location theory one quests for the location of (un)desirable facilities, so the following definitions are significant.

The vertex u is called a median (antimedian) vertex for π if D(u, π) is minimum (maximum), and the median (antimedian)
set M(π,G) (AM(π,G)) of π in G is the set of all median (antimedian) vertices for π . The problem of locating median sets
for profiles on graphs was considered by many authors; see, for example, [1,3,4,17,18]. On the other hand, not much work

I Work supported by theMinistry of Science of Slovenia and by theMinistry of Science and Technology of India under the bilateral India–Slovenia grants
BI-IN/06-07-002 and DST/INT/SLOV-P-03/05, respectively.
∗ Corresponding author.
E-mail addresses: bkannan@cusat.ac.in (K. Balakrishnan), bostjan.bresar@uni-mb.si (B. Brešar), mchangat@gmail.com (M. Changat),

imrich@unileoben.ac.at (W. Imrich), sandi.klavzar@fmf.uni-lj.si (S. Klavžar), matjaz.kovse@gmail.com (M. Kovše), ajithars@gmail.com (A.R. Subhamathi).

0166-218X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2009.07.007

http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:bkannan@cusat.ac.in
mailto:bostjan.bresar@uni-mb.si
mailto:mchangat@gmail.com
mailto:imrich@unileoben.ac.at
mailto:sandi.klavzar@fmf.uni-lj.si
mailto:matjaz.kovse@gmail.com
mailto:ajithars@gmail.com
http://dx.doi.org/10.1016/j.dam.2009.07.007


3680 K. Balakrishnan et al. / Discrete Applied Mathematics 157 (2009) 3679–3688

has been done so far on the antimedian problem for profiles on graphs, and though the two problems look similar, there are
important differences. For instance, while it is clear that any vertex can be in the median set of a graph for some profile, this
is not always true for the antimedian set.
In this paper we give a closer look at the remoteness function in median graphs with the aim to shed more light on

the antimedian problem in this class. Median graphs form a closely investigated and well understood class of graphs, and
are probably the most important class of graphs in metric graph theory (we refer to a comprehensive survey on median
graphs [15]). Hence it is not surprising that they were investigated also in location theory [3,17,22]. For instance, it is known
that in median graphs median sets are always intervals between two vertices [3], and in particular, for odd profiles they
consist of exactly one vertex [17]. On the other hand, there are no results on the antimedian set in median graphs, and
only a few observations about their remoteness function as such. In this paper we are trying to clear up this grey area in
the location theory, and also believe that the problem is of similar applicability as its median set counterpart. First let us
introduce some important notions used throughout this paper.
We consider only finite, undirected, simple and connected graphs. A shortest path between vertices u and v in a graph

G will be called a u, v-geodesic, and the number of edges on such a path is the distance d(u, v) between u and v (denoted
also dG(u, v) if the graph G is not understood from the context). The set of vertices on all u, v-geodesics is called the interval
between u and v, denoted I(u, v). For a graph G and subsets of vertices X, Y ⊆ V (G) we will write d(X, Y ) = min{d(x, y) |
x ∈ X, y ∈ Y }. In particular, for a vertex u of G and a set of vertices X we have d(u, X) = min{d(u, x) | x ∈ X}. A set S of
vertices in a graph G is called the geodetic set of G if for every vertex x ∈ V (G) there exist u, v ∈ S such that x ∈ I(u, v). The
geodetic number g(G) of a graph G is the least size of a set of vertices S such that any vertex from G lies on a u, v-geodesic,
where u, v ∈ S. We refer to [5,8] for surveys on geodetic sets in graphs.
A (connected) graph G is a median graph if for any three vertices x, y, z there exists a unique vertex that lies in

I(x, y) ∩ I(x, z) ∩ I(y, z). Two of the most important classes of median graphs are trees and hypercubes. For a graph G and
an edge xy of Gwe denoteWxy = {w ∈ V (G) | d(x, w) < d(y, w)}. Note that if G is a bipartite graph then V (G) = Wab∪Wba
holds for any edge ab. Next, for an edge xy of G let Uxy denote the set of vertices u that are inWxy and have a neighbor inWyx.
Sets in a graph that are Uxy for some edge xywill be called U-sets. Similarly we defineW -sets. If for some edge xy,Wxy = Uxy,
we call the set Uxy peripheral set or periphery. A subset S of vertices in a graph G is convex in G if I(u, v) ⊆ S for any u, v ∈ S.
It is clear that peripheries in median graphs are convex.
In Section 2 we start with the core example of median graphs—hypercubes. We show that the antimedian set of profiles

on a hypercube is precisely the set of antipodal vertices of the median set. In addition, we extend this result to Hamming
graphs. In Section 3 we deal with the remoteness function in arbitrary median graphs. A connection between antimedian
sets on a median graph G and antimedian sets on the hypercube, into which G is embedded isometrically, is established. In
Section 4,we obtain some additional properties of antimedian sets inmedian graphs, in particular for the case of odd profiles.
It turns out that only in the case when the profile is even, it is possible that the (anti)median set is the whole vertex set of a
median graph. Graphs in which this can happen (for some very special even profiles) are precisely the median graphs with
geodetic number 2. They were studied previously in [6], where several characterizations of these graphs were obtained. In
Section 5 we prove two more characterizations, one of which is used in the algorithm for the recognition of median graphs
with geodetic number 2.
Section 6 is concernedwith the algorithm.Median graphs are a subclass of the class of isometric subgraphs of hypercubes.

The complexity of recognizing whether a given graph Gwith n vertices andm edges is such a graph is O(mn) in general. For
median graphs this essentially reduces to O(m

√
n); see [11]. There is little hope to reduce it further in general, since it

is closely related to that of recognizing triangle-free graphs (see [14]). However, in special cases the complexity is much
lower. For example, it is O(m) for planar median graphs. Here we show that median graphs with geodetic number 2 can be
recognized in O(m log n) time.

2. Remoteness in hypercubes

In this section we study the remoteness function in hypercubes which form the fundamental example of median graphs.
The hypercube or n-cube Qn, n ≥ 1, is the graph with vertex set {0, 1}n, two vertices being adjacent if the corresponding
tuples differ in precisely one position. A vertex u of Qn will be written in its coordinate’s form as u = u(1) . . . u(n). A natural
generalization of hypercubes areHamming graphs, whose vertices arem-tuples u = u(1) . . . u(m), such that 0 ≤ u(i) ≤ mi−1,
where mi ≥ 2 for each i, and adjacency is defined in the same way (that is, two vertices are adjacent precisely when they
differ in exactly one coordinate). Note that the distance between vertices in Hamming graphs coincides with the Hamming
distance (that is, the number of coordinates in which them-tuples differ).
For a vertex x of Qn let x be its antipodal vertex, that is, the vertex that is obtained from x by reversing the roles of zeros

and ones. Let X ⊆ V (Qn). Then
X = {x | x ∈ X}

is called the antipodal set of X . Since x 6= y for x 6= y it follows that X = X .
Let π = (x1, . . . , xk) be a profile on Qd. For i = 1, . . . , k let n

(i)
0 and n

(i)
1 be the number of vertices from π with the ith

coordinate equal 0 and 1, respectively. More formally,

n(i)0 (π) = |{x ∈ π | x
(i)
= 0}|
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and

n(i)1 (π) = |{x ∈ π | x
(i)
= 1}|.

Define Majority(π) as the set of vertices u = u(1) . . . u(d) of Qd, where

u(i)


= 0; n(i)0 (π) > n

(i)
1 (π),

= 1; n(i)0 (π) < n
(i)
1 (π),

∈ {0, 1}; n(i)0 (π) = n
(i)
1 (π).

We say that vertices u ∈ Majority(π) are obtained by themajority rule. Minority(π) and theminority rule are defined anal-
ogously. It is easy to verify (using that the distance between vertices in hypercubes coincides with their Hamming distance)
thatM(π,Qn) = Majority(π), and similarly AM(π,Qn) = Minority(π). We now infer:

Lemma 2.1. Let π be a profile on Qn. Then M(π,Qn) induces a subcube of Qn. Moreover, AM(π,Qn) = M(π,Qn).

Let Q and Q ′ be two subcubes of Qn. Then we say that Q and Q ′ are parallel if they are of the same dimension, say r , and
if vertices vi of Q and v′i of Q

′ can be ordered such that d(vi, v′i) = s for some integer s and for any i = 1, 2, 3, . . . , 2
r , where

the mapping vi 7→ v′i is an isomorphism Q → Q ′.

Proposition 2.2. Let π be a profile on Qn and let Q be a subcube parallel to the subcube induced by M(π,Qn). Then the function
D(·, π) is constant on Q .

Proof. If |M(π,Qn)| = 1 there is nothing to be proved. Assume in the rest that |M(π,Qn)| > 1, hence |π |must be even. By
Lemma 2.1,M(π,Qn) induces a subcube Q ′ and let x′y′ be an edge of Q ′. Partition the profile π into subprofiles π1 and π2,
where vertices of π1 lie inWx′y′ and vertices of π2 inWy′x′ . Since x′, y′ ∈ M(π,Qn), we have D(x′, π) = D(y′, π). Therefore,
the following reasoning

D(x′, π) = D(x′, π1)+ D(x′, π2)
= D(y′, π1)− |π1| + D(y′, π2)+ |π2|
= D(y′, π)− |π1| + |π2|

implies that |π1| = |π2|.
Let d(Q ,Q ′) = s and let xy be the edge of Q with d(x, x′) = d(y, y′) = s. Then, it can be easily verified that d(x, y′) =

d(x′, y) = s + 1, and consequently Wxy = Wx′y′ and Wyx = Wy′x′ . From the definition of Wxy and because |π1| = |π2| it
follows that D(x, π) = D(y, π). By the connectivity of Q we conclude that Dmust be a constant function on Q . �

We can generalize the concept of antipodes from hypercubes to Hamming graphs, noting that an antipode of a vertex
x is any vertex that is farthest from x. In the case of hypercubes this vertex is unique, but not in general Hamming graphs.
Hence for a vertex x of a Hamming graph H its antipodal vertex is any vertex y such that y(i) 6= x(i) for all i = 1, . . . ,m. For
X ⊆ V (H), let the antipodal set X of X be the set of all antipodal vertices over all vertices of X .

Theorem 2.3. A Hamming graph H is a hypercube if and only if for any profile π

AM(π,H) = M(π,H).

Proof. Suppose H is a hypercube. Then AM(π,H) = (M(π,H)) for any profile π by Lemma 2.1.
For the converse suppose that a Hamming graph H is not a hypercube and let j be the index (coordinate) with mj ≥ 3.

Consider the following profile π = (x, y) of size 2 such that x(i) = y(i) = 0 for all i 6= j and let x(j) = 0, y(j) = 1. Then
M(π,H) = {x, y}, andM(π,H) consists of vertices z with z(i) > 0 for i 6= j. On the other hand AM(π,H) consists of vertices
z with z(i) > 0 for i 6= j and z(j) > 1. Hence AM(π,H) ⊂ M(π,H) and the inclusion is strict, by which the theorem is
proved. �

3. Remoteness in median graphs embedded into hypercubes

In this sectionwe obtain some properties of the remoteness function in arbitrarymedian graphs, by using their isometric
embedding into hypercubes. Since the properties of median sets have already been studied in several papers, we restrict
mainly to the properties of antimedian sets in median graphs.
A subgraph H of a (connected) graph G is an isometric subgraph if dH(u, v) = dG(u, v) holds for any vertices u, v ∈ H . Let

G be an isometric subgraph of some hypercube. An important structural result due to Mulder [19] asserts that every median
graph G can be isometrically embedded in a hypercube such that the median of every profile π of cardinality three in G on
the hypercube coincides with the median of π in G.
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A vertex v of G is called a local minimum of a function D(x, π) if D(v, π) ≤ D(u, π) for any neighbor u of v. It was proved
by Bandelt and Chepoi [4] that in a graph G the set M(π,G) is connected for any profile π on G if and only if for any π the
function D(x, π) has the property that every local minimum is a global minimum. Since median graphs have the property
thatM(π,G) is connected for every π , we derive that in median graphs every local minimum is a global minimum.
For antimedian vertices, that is, vertices achieving global maximum of D(x, π), the analogous result is not true inmedian

graphs. Consider for example the 3 × 4 grid, and one of the two vertices of degree 4 as the only vertex of the profile π (all
four vertices of degree 2 achieve a local maximum, but only two of them are also global). Thus there are local maximawhich
are not global maxima and, moreover, antimedians need not be connected.
Restricting to hypercubes the fact that local minima are global minima can be strengthened as follows. First recall

that by Lemma 2.1, the median of π is a subcube in Qn, and the antimedian is its antipodal (hence parallel) subcube. By
Proposition 2.2, D(x, π) is constant on every subcube parallel to them. Hence on any two shortest paths from M(π,Qn) to
AM(π,Qn), the two corresponding sequences of values of the remoteness function are the same. (Note also that any two
distinct intervals from vertices inM(π,Qn) to their (unique) closest vertices in AM(π,Qn) are disjoint, and every vertex of
G lies on some shortest path fromM(π,Qn) to AM(π,Qn).)

Lemma 3.1. Let π be a profile on Qn and let xx′ be an edge of Qn such that d(x′, AM(π,Qn)) < d(x, AM(π,Qn)). Then D(x, π)
< D(x′, π).

Proof. Let k = |π | and letmj = min{n
(j)
0 (π), n

(j)
1 (π)} andMj = max{n

(j)
0 (π), n

(j)
1 (π)}. Since AM(π,Qn) can be obtained by

the minority rule, for all a ∈ AM(π,Qn), we have

D(a, π) =
n∑
j=1

Mj.

Let d(x′, AM(π,Qn)) = d(x′, ax′) = l, where ax′ is the unique closest vertex to x′ from AM(π,Qn). Then

D(x′, π) = D(ax′ , π)−
l∑
p=1

Mip +
l∑
p=1

mip

= D(ax′ , π)−
l∑
p=1

(Mip −mip)

where x′ and ax′ differ at coordinates ip, p = 1, . . . , l. Since x, x′ are adjacent and d(x, ax′) = d(x′, ax′) + 1 there exists a
coordinate pl+1, distinct from all coordinates ip, 1 ≤ p ≤ l, such that

D(x, π) = D(ax′ , π)−
l+1∑
p=1

(Mip −mip)

and D(x, π) < D(x′, π). �

Theorem 3.2. Let G be a median graph embedded isometrically into Qn, and let π be a profile on G. Let a ∈ AM(π,G) and let a′
be the closest vertex to a in AM(π,Qn). Then

I(a, a′) ∩ V (G) = {a}.

Proof. Let b be the closest vertex to a′ inM(π,Qn). From Lemma2.1we find that b is unique (as subcubes of a cube are gated;
see [15], if necessary). In addition, Lemma 3.1 implies that D(x, π) is strictly increasing on any shortest path from b to a′.
Since I(a, a′) ⊆ I(b, a′), it follows thatD(x, π) is strictly increasing on any shortest path from a to a′. Thus c ∈ I(a, a′)∩V (G),
c 6= a, would imply that D(c, π) > D(a, π), a contradiction with a ∈ AM(π,G). Hence I(a, a′) ∩ V (G) = {a}. �

In Fig. 1 we give an illustration of the above theorem. Vertices of a median graph G are darkened, and G is isometrically
embedded into the 3-cube. Let the profile π consist of all five vertices of G. Then AM(π,Q3) consists of the vertex w,
where D(w, π) = 10. Vertices u and v are the only vertices from G that enjoy the condition from the theorem, that is
I(a, w) ∩ V (G) = {a} . Hence u and v are the only candidates to be antimedian vertices with respect to G, and both achieve
the local maximum of D(·, π) with respect to G. Since D(u, π) = 8 and D(v, π) = 7, we infer that AM(π,G) = {u}. Note
that even though v is closer to AM(π,Qn) (that is, tow) than u, it is not an antimedian vertex.
We proved in [2] thatM(π,Qn)∩V (G) 6= ∅ holds for any profile π which is used in an efficient algorithm for computing

median sets in median graphs. In the events when AM(π,Qn) ∩ V (G) 6= ∅ we have AM(π,G) = AM(π,Qn) ∩ V (G), and
then the antimedian set is also connected and it induces isometric subgraph of G. Unfortunately AM(π,Qn) ∩ V (G) 6= ∅ is
not true in general, as can be seen in the example from Fig. 1. Nevertheless, Theorem 3.2 could occasionally be helpful in
finding the antimedian set for profiles on median graphs, since it can considerably reduce the number of candidates for the
antimedian set to the vertices that achieve the condition from the theorem.
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Fig. 1. Example on antimedians.

4. Antimedian sets of some particular profiles in median graphs

In this section we study the remoteness function in median graphs for two types of profiles: profiles whose size is odd,
and profiles that consist of all vertices of a graphwith no repetitions. These cases indicate that the antimedian set is in many
cases restricted to a rather small subset of the vertex set—the strict boundary of a graph. A vertex v of a graph G is a strict
boundary vertex (with respect to v′) of G if there exists a vertex v′ such that for any neighbor u of v, d(v′, v) > d(v′, u). (In
other words, the neighborhood of v is contained in I(v, v′).) The strict boundary ∂G of a graph G is the set of strict boundary
vertices in G.
Every vertex can clearly be in some median set of a graph (e.g., by taking this vertex as the unique vertex in the profile).

The antimedian case is different, as one can readily verify on trees which are not paths (i.e. in any such tree, only leaves can
be in the antimedian set for any profile). We will consider in Section 5 the case of median graphs with geodetic number 2
which are somewhat special, in the same sense as paths are special trees. Note that by taking as the profile both leaves of a
path, the resulting remoteness function is constant, hence all vertices of the path are (anti)median.
We suspect that the following question has affirmative answer.

Question 4.1. Let G be a median graph and g(G) > 2. Is it true that there exists a vertex in G that is not in AM(π,G) for all
profiles π on G?

We present two partial results that confirm this.
For an edge uv in a median graph G and a profile π , we let πuv = Wuv ∩ π . As usually, |πuv| denotes the size of the

profile π in Wuv . Note that |πuv| > |πvu| implies that the median set of π on G lies in Wuv which in turn implies that if u
and v are both in a median set then |πuv| = |πvu|. These observations are a basis for several strategies to find median sets
in median-like graphs, see [1,18].

Lemma 4.2. Let π be an odd profile in a median graph G, then every vertex in AM(π,G) is a strict boundary vertex.

Proof. Let v ∈ AM(π,G) and |π | be odd. Since for every neighbor ui of v, |πuiv| > |πvui |we infer that

|πuiv| >
|π |

2
.

Henceπuiv andπujv intersect for any neighbors ui,uj of v, where i 6= j. Sinceπuiv ⊆ Wuiv , the setsWuiv also pairwise intersect
for all neighbors ui of v. SinceW -sets are convex, by the Helly property for convex sets in median graphs (that is, any family
of pairwise intersecting convex sets has a common intersection), there exists a vertex

v′ ∈
⋂
ui∈N(v)

Wuiv.

Hence ui is strictly closer to v′ than v for any i, and so v is a strict boundary vertex (with respect to v′). �

From the proof of the lemma above we also see that no neighbor of v ∈ AM(π,G) achieves D(v, π), hence we derive the
following result.

Proposition 4.3. Let π be an odd profile in a median graph G. Then AM(π,G) is an independent set in G and AM(π,G) ⊆ ∂G.

Note that in the case of even profiles the antimedian vertices need not be in a strict boundary, even if g(G) > 2.
For instance, let G be obtained from the 3 × 3 grid (that is the Cartesian product P3�P3) so that to the central vertex
another vertex a is attached, and let the profile π consist of two vertices u, v of degree two such that d(u, v) = 2. Then
AM(π,G) = {x, y, z, a}, where x and y are another two vertices of degree two (different from u and v), and z is their common
neighbor. Note that z is not a strict boundary vertex in G, even though all the antimedian vertices are peripheral. For an
additional example consider the graph on Fig. 2. For the profile (a, b) the antimedian vertices are darkened. In particular, x
is an antimedian vertex that is neither in the boundary nor in the periphery of the graph.
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Fig. 2. Vertex x is an antimedian vertex for the profile (a, b).

Now, we consider the remoteness function when the profile is the whole vertex set, each vertex appearing exactly once.
This problem is known in the literature as the obnoxious center problem, and has been quite well studied, cf. [7,21,23,25].
We prove a result similar to Proposition 4.3.

Proposition 4.4. Let G be a median graph, and let π be the profile, consisting of vertices of V (G) (with no repetitions). If v ∈
AM(π,G) then v is a strict boundary vertex.

Proof. Let v ∈ AM(π,G). We infer that for every neighbor ui of v, |Wuiv| ≥ |Wvui |, hence

|Wuiv| ≥
|V (G)|
2

.

Let u1, . . . , ut be the neighbors of v. If t = 1, that is, v has only one neighbor, then v is clearly a strict boundary vertex with
respect to any other vertex. Suppose that ui, uj are neighbors of v and i 6= j. Then by the above

|Wuiv| + |Wujv| ≥ |V (G)|.

Since v 6∈ Wuiv , for any i, we find thatWuiv andWujv intersect. SinceW -sets are convex, we infer by the Helly property for
convex sets that there exists a vertex

v′ ∈

t⋂
i=1

Wuiv.

Hence v is a strict boundary vertex with respect to v′ which completes the proof of the proposition. �

5. Median graphs with geodetic number two

As mentioned in the previous section, median graphs with geodetic number two are somehow a special case which is
excluded in Question 4.1. Before we present characterizations of these graphs, one of which also considers the remoteness
function of some even profiles, we need to introduce a fewmore natural concepts on median graphs. The first one concerns
peripheries in median graphs.
Let G be a median graph. We say that a set S is a periphery transversal if every peripheral subgraph of G contains a

vertex of S. It was proved in [6] that every geodetic set is a periphery transversal. Let pt(G) denote the size of a minimum
periphery transversal in a median graph G. Then, clearly, pt(G) ≤ g(G) for any median graph G. On the other hand, it
may happen that any minimum geodetic set of a median graph G must contain some vertices that are not in a peripheral
subgraph. For instance, in the graph G obtained from the 3-cube by attaching a leaf to 3 independent vertices we have
pt(G) = 3 < 4 = g(G).
The next concept is a generalization of the partition of the edge set into parallel classes in hypercubes to more general

graphs. Edges e = xy and f = uv of a graph G are in the Djoković–Winkler relation 2 [10,24] if dG(x, u) + dG(y, v) 6=
dG(x, v) + dG(y, u). Relation 2 is reflexive and symmetric. If G is bipartite, then 2 can be defined as follows: e = xy and
f = uv are in relation 2 if d(x, u) = d(y, v) and d(x, v) = d(y, u). It is well known that the relation 2 is transitive in
isometric subgraphs of hypercubes [24], and so it is an equivalence relation on the edge set of every median graph. Note
that peripheral sets are precisely the U-sets that induce a connected component of G− F for some2-class F .
The following result from [6] will be used in the main theorem of this section.

Theorem 5.1. Let G be a median graph. Then g(G) = 2 if and only if there exist vertices a, b ∈ V (G) and an a, b-geodesic that
contains edges from all2-classes of G.

We also need the following easy facts, see [13].

Lemma 5.2. Let G be a median graph, C a cycle, P a geodesic, and F a2-class of G. Then
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(i) F ∩ C 6= ∅ ⇒ |F ∩ C | ≥ 2;
(ii) F ∩ P 6= ∅ ⇒ |F ∩ P| = 1.

Combining Lemma 5.2 with Theorem 5.1 we infer that if a and b are as in the theorem, then on any geodesic from a to b
all2-classes appear. Conversely, g(G) > 2 implies that for any two vertices a and b in G there exists a2-class whose edges
are outside I(a, b).

Theorem 5.3. For a median graph G the following statements are equivalent.

(i) g(G) = 2,
(ii) pt(G) = 2,
(iii) D(x, π) is constant on G for some profile π .

Proof. (i)⇒ (ii): Let G be a median graph with g(G) = 2. As everyW -set in a median graph contains a periphery, we infer
that pt(G) ≥ 2. We have already observed that in general pt(G) ≤ g(G), hence pt(G) = 2.
(ii)⇒ (i): Let G be a median graph with pt(G) = 2, and assume to the contrary that g(G) > 2. Then for any two vertices

a, b ∈ V (G), I(a, b) 6= V (G), and by Theorem 5.1 we infer that there exists a 2-class F that lies outside I(a, b). Then there
also exists a W -set Wxy that has an empty intersection with I(a, b). In addition, Wxy contains a periphery that does not
contain a and b. Thus {a, b} is not a periphery transversal, and since a and bwere chosen arbitrarily we infer that pt(G) > 2,
a contradiction.
(i) ⇒ (iii): Let a and b be vertices in G such that I(a, b) = V (G). Set π = (a, b). Since for any x ∈ V (G) we have

d(a, x)+ d(x, b) = d(a, b) = diam(G)we get D(x, π) = diam(G).
(iii)⇒ (i): For this directionwe recall a result by Bandelt and Barthélemy [3, Proposition 6]which says that for any profile

π on a median graph G, the median set M(π,G) coincides with the interval I(α(π), β(π)) (where α(π) and β(π) are two
vertices in G obtained by a formula in the associated median semilattice). Hence, if D(x, π) is constant on G for a profile π ,
then V (G) = M(π,G) = I(α(π), β(π)), which in turn implies g(G) = 2. �

6. Recognition of median graphs with geodetic number two

As alreadymentioned,median graphs are isometric subgraphs of hypercubes (partial cubes for short), and the recognition
complexity for such graphs is O(mn). In other words, there exists an algorithm that recognizes whether any given graph G
with n vertices and m edges is a partial cube in O(mn) time. The algorithm also provides an embedding of G. In the rest of
this section n andmwill denote the number of vertices and edges of a given graph.
However, if it is known that a graph G is a median graph, then G can be embedded isometrically into a hypercube

in O(m log n) time. This discrepancy between the embedding complexity and the recognition complexity was a strong
motivation to find better recognition algorithms for median graphs. The algorithm of Hagauer, Imrich and Klavžar [11]
with complexity O(m

√
n)was the first of this kind. Later Imrich [13, Theorem 7.27] derived the asymptotically better result

O((m log n)1.41). Here the exponent 1.41 actually is 2ω/(ω + 1), where ω is the exponent of matrix multiplication with its
current value 2.376. By a result of Imrich, Klavžar and Mulder [14] this recognition complexity is closely related with the
recognition complexity of triangle-free graphs. Hence improvements of the recognition complexity of median graphs seem
to be very difficult.
Nonetheless, some classes of median graphs can be recognized much faster. This includes planar median graphs [14],

which can be recognized in linear time and acyclic cubical complexes [12], which can be recognized in O(m log n) time. Here
we show thatmedian graphswith geodetic number two can also be recognized inO(m log n) time. This is possible because of
a bound on the maximum degree of a median graph with geodetic number two and the fact that every peripheral subgraph
meets geodetic set, see Brešar and Tepeh Horvat [6].
We begin with the bound on the maximum degree∆(G) of a median graph Gwith g(G) = 2.

Lemma 6.1. Let G be a median graph with g(G) = 2. Then∆(G) ≤ 2 log2 n.

Proof. Suppose G = IG(v,w) and let L0, L1, . . . , Lr be the levels of the BFS-ordering of the vertices of G with respect to a
root v; see e.g. [13, p. 41]. Let x ∈ Li and xy ∈ E(G). Since G is bipartite y 6∈ Li. If y ∈ Li−1 we call the edge xy a down-edge and
otherwise an up-edge. Clearly y is closer to v than x if xy is a down-edge, and closer tow if xy is an up-edge. In other words,
the up-edges with respect to v are the down-edges with respect to w. By [13, Lemma 3.35] the number of down-edges of
every vertex x in a median graph is bounded by log2 n. Clearly the number of up-edges satisfies the same bound, hence
d(v) ≤ 2 log2 n for all v ∈ V (G). �

Next we show how to check efficiently whether a given induced subgraph of a graph G is also a convex subgraph. For a
subgraph H of a graph G let ∂H be the set of edges with one endvertex in H and the other in G \ H .

Lemma 6.2. Let H be an induced connected subgraph of a partial cube for which the 2-classes are already known. Then the
complexity of recognizing whether H is a convex subgraph of G is O(|E(H)| + |∂H|).
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Proof. By the convexity lemma [13, Lemma 2.7] it suffices to show that no edge of ∂H is in the relation 2 with an edge of
H . In other words, we have to show that the list of2-classes that meet E(H) is disjoint from the list of2-classes that meet
∂H .
Let E1, . . . , Ek, where k < n, be the2-classes of G and vH the 0, 1-vector of length kwith vH(i) = 0 if Ei ∩ E(H) = ∅ and

vH(i) = 1 otherwise. Since the2-classes are known, we can assume that there exists a function c : E(G)→ {1, . . . , k} that
computes the index i for which e ∈ Ei in constant time. With a well-known trick, see [9, Exercise 12.1-4], the vector vH can
be determined in O(|E(H)|) time, even if |E(H)| is much less than k, by scanning all edges of H (with the trick we avoid the
initialization and the scan of the entire vector vH which could be more costly). Moreover we scan all edges of ∂H . If e ∈ Ei
and vH(i) = 1, then H is not convex. We thus have to check whether vH(c(e)) = 0 for all e ∈ ∂H . Clearly this can be done
in O(|∂H|) time. �

Next we show how to efficiently check the convexity of U-sets.

Corollary 6.3. Let H be a partial cube for which the 2-classes are already known, and ∆ the maximum degree of vertices in G.
Then one can check in O(m∆+m log n) time whether all U-sets are convex.

Proof. First note that the total size of U-sets (i.e. the sum of the orders of all U-sets) in G is 2m. Indeed, every vertex from
a U-set corresponds uniquely to an edge, and each such edge appears exactly twice when checking vertices of all U-sets.
Furthermore |E(Uab)| < |Uab| log2 |Uab| by Graham’s density lemma [13, Proposition 1.24]. Hence, for the total number of
edges in the U-sets we have the following inequality(∑

|Uab|
)
max(log2 |Uab|) ≤ 2m log2 n.

Let vUab be defined as in Lemma 6.2. Then it is clear that the set of vectors vUab can be determined in O(m log n) time. Since
the total size of the sets ∂U over all U-sets is bounded bym∆ the corollary follows. �

Proposition 6.4. Let G be a graph with ∆(G) ≤ 2 log2 n. Then one can check in O(m log n) time whether G is a median graph,
determine all2-classes and all U-sets.

Proof. By [13, Lemma 7.15] one can check in O(m log n) time whether G is a partial cube, determine all 2-classes and all
U-sets. By [13, Corollary 2.27] a partial cube is amedian graph if and only if allU-sets are convex. Now the proof is completed
by the observation that the convexity of the U-sets of a given partial cube can be checked in O(m log n) by Corollary 6.3. �

Next we describe a procedure which can be used to construct all median graphs. For a connected graph H and its convex
subgraph P the peripheral expansion of H along P is the graph G obtained as follows. Let P ′ be an isomorphic copy of P and
α a corresponding isomorphism. Take the disjoint union H + P ′ and join each vertex v ∈ P by an edge with α(v) ∈ P ′. We
call the new graph a peripheral expansion of H along P and denote it by G = pe(H; P). Mulder [20] proved that a graph is a
median graph if and only if it can be obtained from K1 by a sequence of peripheral expansions.
We still have to find a geodetic set consisting of two elements. In order to accomplish this, we will use this sequence of

peripheral expansions to determine all geodetic sets. We begin with a relationship between the geodetic sets of a median
graph H and the graph G = pe(H, P).

Lemma 6.5. Let G = pe(H; P) be a median graph and {x, y} a geodetic set of H, where y ∈ P. Then the set {x, z}, where z is the
neighbor of y in G \ H is a geodetic set in G. Moreover, all minimum geodetic sets of G are of this form.

Proof. We have to show that every vertex w of G is on a shortest xz-path. Suppose first w ∈ H . Then, clearly w is on a
xy-geodesic, since {x, y} is a geodetic set in H . Thus w is also on xz-geodesic going through y. Suppose next w ∈ G \ H and
let w′ be a neighbor of w, where w′ ∈ H . Then w′ lies on xy-geodesic. Let L1 denote the yw′-geodesic and let L2 denote
the w′x-geodesic. Since P is a convex subgraph of H (and therefore also of G) L1 is completely contained in P . Recall that in
median graph for any edge ab we have Uab ∼= Uba and that the isomorphism is induced by the edges between Uab and Uba.
Let L′1 be the projection of L1 into P

′ by this isomorphism. Then L′1 ∪ww
′
∪ L2 is a zx-geodesic in G containingw. Conversely

if {x, z} is a geodetic set in G = pe(H; P) then by [6, Lemma 2] x or z must be in P ′. Suppose z is in P ′. Then we can use the
same arguments as above to see that {x, y} is a geodetic set in H , where y is a neighbor of z in H . �

If {x, y} is a geodetic set in G then this is the only minimum geodetic set containing x, since by Lemma 6.5 x is uniquely
determined by y and vice versa.

Corollary 6.6. Let G = pe(H; P) be a median graph with g(G) = 2. Then all minimum geodetic sets of G can be obtained from
the minimum geodetic sets of H in O(|P|) time.

Proof. Let P ′ = Uab, where a ∈ G \ H . To find the geodetic sets of G we scan all vertices z of Uab. If the neighbor y of z in
Uba is in the geodetic set {y, x} of H , then by Lemma 6.5 {z, x} is a geodetic set of G. Clearly the complexity of this task is
O(|Uab|). �
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Corollary 6.7. Let G be a median graph with g(G) = 2. If the representation of G as a series of peripheral expansions, starting
from K1, is known, then all minimum geodetic sets of G can be obtained in O(n) time.

Proof. At every expansion step |Uab| vertices are added at a total cost of O(|Uab|). The observation that n − 1 vertices are
added altogether completes the proof. �

We are thus left with the task of representing G by a series of peripheral expansions.

Theorem 6.8. Let G be a median graph with ∆(G) ≤ 2 log2 n. Then a representation of G by a series of peripheral expansions
can be found in O(m log n) time.

Proof. By [13, Lemma 7.15] and Proposition 6.4 we know that one can recognize G as a median graph, partition its edge
set into 2-classes, and determine all U-sets in O(m log n) time. We show now that we can determine all peripheral U-sets
within the same time complexity. We first observe that the peripheral U-sets are characterized by the fact that ∂U consist
of |U| independent edges that meet every vertex of a U-set. In other words Uab is peripheral if

deg
G
(v) = deg

Uab
(v)+ 1,

for every v ∈ Uab. Clearly degUab(v)+ 1 ≤ degG(v) for v ∈ G. Thus, setting

exUab(v) = deg
G
(v)− deg

Uab
(v)− 1

it is clear that Uab is peripheral if and only if

ex(Uab) =
∑
v∈Uab

exUab(v) = 0.

Intuitively, ex(v) is the excess of the degree of v above its minimum.
We thus need the degrees of every vertex in its U-sets and in G. The degrees of all vertices from a given U-set Uxy can be

determined in |E(Uxy)| time and the degrees of all vertices in G in O(m) time. Since the total number of edges in the U-sets
is O(m log n) (see the proof of Corollary 6.3) we can thus determine all degrees in O(m log n) time.
In a second run, scanning all vertices in the U-sets, we determine excesses of all vertices of G and calculate the sum of

all corresponding excesses of vertices from some U-set. Since the total number of vertices in the U-sets is O(m), this can be
done in the required time too.
In this process we keep a record of all these numbers and consider the first peripheral set we find, say Uab.
We now show that we can remove Uab from G and determine for H = G \ Uab the same data structure we had for G. In

other words, we can determine the adjacency list of all new U-sets in the graph H , all degrees and the new values of the
excess numbers for all vertices in H and all the new U-sets in O(|Uab| log n) time.
We first find the new adjacency list of the new U-sets of H . We first recall that the removal of a vertex v and all incident

edges from a graph is of complexity O(deg(v)) if the graph is represented by an extended adjacency list or the adjacency
matrix; see pp. 37 in [13]. In G every vertex v is also a vertex of everyUvw , wherew is a neighbor of v in G. Thus every v ∈ Uab
is in at most O(log n) sets Uvw . The degree of the vertex v in such a Uvw is degG(v)− 1 = degUab(v). The cost of removing v
from all Uvw is thus O(degUab(v) log n). For all v ∈ Uab this amounts to a total of O(|E(Uab)| log n).
We also have to determine all new degrees and the new excess numbers. This concerns all vertices of Uab. Every such

vertex is contained in atmost 2 log n graphsUHxy. Hence all these numbers can be computed inO(log n|Uab|) time if all vertices
of Uab are removed. In other words, the data structure of H = G \ Uab can be determined from that of G in O(log n|Uab|)
time, including all degrees, excess numbers etc. (In the course of the action we take note of the first peripheral U-sets we
encounter.)
We now repeat this process by removing peripheral U-sets until we reach K1. The total complexity is then

O(log n
∑
|Uab|) = O(m log n). �

Now all prerequisites are ready for the following algorithm that recognizes whether a given graph G is a median graph
with g(G) = 2. (Note that the isometric dimension idim(G) of a partial cube G coincides with the number of its2-classes.)

Algorithm 1.

Input: The adjacency list of a graph G.
Output: YES and a list of all geodetic pairs if G is a median graph with g(G) = 2.

NO otherwise.
Step 0: If∆(G) > 2 log2 n, reject.

If G is not a median graph, reject.
Otherwise determine all2-classes and the adjacency lists of all U-sets.
Set i = k, where k = idim(G), and Gk = G.

Step 1: Compute the excess for all vertices in the U-sets and of all U-sets.
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Step 2: Find a peripheral Uab as in Theorem 6.8.
Step 3: Remove Uab to obtain Gi−1.
Step 4: Repeat Steps 2 and 3 (sequence of contractions) until G0 = K1.
Step 5: For i = 0 to k− 1 do:

Find all geodetic pairs of Gi and determine those of Gi+1 with the aid of Corollary 6.7.
Step 6: If there are no such sets, return NO.

Otherwise return YES and the list of all geodetic pairs.

Theorem 6.9. Let G be a graph G. Then Algorithm 1 correctly recognizes whether G is a median graph with g(G) = 2. It can be
implemented to run in O(m log n) time.

Proof. Combining Lemma 6.1 and Proposition 6.4 we infer that Step 0 can be implemented in O(m log n) time. Steps 1–4
are an algorithmic interpretation of the proof of Theorem 6.8. As stated in Theorem 6.8, one can perform these steps in
O(m log n) time. From Corollary 6.7 we find that Step 5 can also be performed in the desired time. �
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