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ABSTRACT 
 

The aim of this study is to show the importance of two classification techniques, viz. decision tree and 

clustering, in prediction of learning disabilities (LD) of school-age children. LDs affect about 10 percent of 

all children enrolled in schools. The problems of children with specific learning disabilities have been a 

cause of concern to parents and teachers for some time. Decision trees and clustering are powerful and 

popular tools used for classification and prediction in Data mining. Different rules extracted from the 

decision tree are used for prediction of learning disabilities. Clustering is the assignment of a set of 

observations into subsets, called clusters, which are useful in finding the different signs and symptoms 

(attributes) present in the LD affected child. In this paper, J48 algorithm is used for constructing the 

decision tree and K-means algorithm is used for creating the clusters. By applying these classification 

techniques, LD in any child can be identified.  
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1. INTRODUCTION 
 

Data mining is a collection of techniques for efficient automated discovery of previously 

unknown, valid, novel, useful and understandable patterns in large databases. Conventionally, the 

information that is mined is denoted as a model of the semantic structure of the datasets. The 

model might be utilized for prediction and categorization of new data [1]. In recent years the sizes 

of databases has increased rapidly. This has lead to a growing interest in the development of tools 

capable in the automatic extraction of knowledge from data. The term Data Mining or Knowledge 

Discovery in databases has been adopted for a field of research dealing with the automatic 

discovery of implicit information or knowledge within databases [16]. Diverse fields such as 

marketing, customer relationship management, engineering, medicine, crime analysis, expert 

prediction, web mining and mobile computing besides others utilize data mining [7]. 
 

Databases are rich with hidden information, which can be used for intelligent decision making. 

Classification and prediction are two forms of data analysis that can be used to extract models 

describing important data classes or to predict future data trends [8]. Classification is a data 

mining (machine learning) technique used to predict group membership for data instances. 

Machine learning refers to a system that has the capability to automatically learn knowledge from 

experience and other ways [4]. Classification predicts categorical labels whereas prediction 

models continuous valued functions. Classification is the task of generalizing known structure to 



 

 

 

apply to new data while clustering is the task of discovering groups and structures in the data that 

are in some way or another similar, without using known structures in the data. 
 

Decision trees are supervised algorithms which recursively partition the data based on its 

attributes, until some stopping condition is reached [8]. This recursive partitioning, gives rise to a 

tree-like structure. Decision trees are white boxes as the classification rules learned by them can 

be easily obtained by tracing the path from the root node to each leaf node in the tree. Decision 

trees are very efficient even with the large volumes data. This is due to the partitioning nature of 

the algorithm, each time working on smaller and smaller pieces of the dataset and the fact that they 

usually only work with simple attribute-value data which is easy to manipulate. The Decision 

Tree Classifier (DTC) is one of the possible approaches to multistage decision-making. The most 

important feature of DTCs is their capability to break down a complex decision making process 

into a collection of simpler decisions, thus providing a solution, which is often easier to interpret 

[17].  
 

Clustering is the one of the major data mining tasks and aims at grouping the data objects into 

meaningful classes or clusters such that the similarity of objects within clusters is maximized and 

the similarity of objects from different clusters is minimized [10]. Clustering separates data into 

groups whose members belong together. Each object is assigned to the group it is most similar to. 

Cluster analysis is a good way for quick review of data, especially if the objects are classified into 

many groups. Clustering does not require a prior knowledge of the groups that are formed and the 

members who must belong to it. Clustering is an unsupervised algorithm [6]. Clustering is often 

confused with classification, but there is some difference between the two. In classification the 

objects are assigned to pre defined classes, whereas in clustering the classes are also to be defined 

[11]. 

 

2. LEARNING DISABILITY 
 

LD is a neurological condition that affects a child's brain and impairs his ability to carry out one or 

many specific tasks. These like children are neither slow nor mentally retarded. An affected child 

can have normal or above average intelligence. This is why a child with a learning disability is 

often wrongly labeled as being smart but lazy. LDs affect about 10 percent of all children enrolled 

in schools. The problems of children with specific learning disabilities have been a cause of 

concern to parents and teachers for some time. Pediatricians are often called on to diagnose 

specific learning disabilities in school- age children. Learning disabilities affect children both 

academically and socially. These may be detected only after a child begins school and faces 

difficulties in acquiring basic academic skills [11]. Learning disability is a general term that 

describes specific kinds of learning problems. 
 

Specific learning disabilities have been recognized in some countries for much of the 20th  

century, in other countries only in the latter half of the century, and yet not at all in other places 

[11]. A learning disability can cause a person to have trouble learning and using certain skills. The 

skills most often affected are: reading, writing, listening, speaking, reasoning, and doing math. If 

a child has unexpected problems or struggling to do any one of these skills, then teachers and 

parents may want to investigate more. The child may need to be evaluated to see if he or she has a 

learning disability. 
 

Learning disabilities are formally defined in many ways in many countries. However, they usually 

contain three essential elements: a discrepancy clause, an exclusion clause and an etiologic clause. 

The discrepancy clause states there is a significant disparity between aspects of specific 

functioning and general ability; the exclusion clause states the disparity is not primarily due to 

intellectual, physical, emotional, or environmental problems; and the etiologic clause speaks to 

causation involving genetic, biochemical, or neurological factors. The most frequent clause used 

in determining whether a child has a learning disability is the difference between areas of 



 

 

 

functioning. When a child shows a great disparity between those areas of functioning in which she 

or he does well and those in which considerable difficulty is experienced, this child is described as 

having a learning disability [12]. Learning disabilities vary from child to child. One child with LD 

may not have the same kind of learning problems as another child with LD. There is no "cure" for 

learning disabilities [14]. They are life-long. However, children with LD can be high achievers 

and can be taught ways to get around the learning disability. With the right help, children with LD 

can and do learn successfully. There is no one sign that shows a child has a learning disability. 

Experts look for a noticeable difference between how well a child does in school and how well he 

or she could do, given his or her intelligence or ability. There are also certain clues, most relate to 

elementary school tasks, because learning disabilities tend to be identified in elementary school, 

which may mean a child has a learning disability. A child probably won't show all of these signs, 

or even most of them 
 

When a LD is suspected based on parent and/or teacher observations, a formal evaluation of the 

child is necessary. A parent can request this evaluation, or the school might advise it. Parental 

consent is needed before a child can be tested [12]. Many types of assessment tests are available. 

Child's age and the type of problem determines the tests that child needs. Just as there are many 

different types of LDs, there are a variety of tests that may be done to pinpoint the problem. A 

complete evaluation often begins with a physical examination and testing to rule out any visual or 

hearing impairment [3]. Many other professionals can be involved in the testing process.  
 

The purpose of any evaluation for LDs is to determine child's strengths and weaknesses and to 

understand how he or she best learns and where they have difficulty [12]. The information gained 

from an evaluation is crucial for finding out how the parents and the school authorities can 

provide the best possible learning environment for child. 

  

3. PROPOSED APPROACH 
 

This study consists of two parts. In the former part, LD prediction is classified by using decision 

tree and in the latter part by clustering. J48 algorithm is used in constructing the decision tree and 

K-means algorithm is used in creating the clusters of LD.  
 

A decision is a flow chart like structure, where each internal node denotes a test on an attribute, 

each branch of the tree represents an outcome of the test and each leaf node holds a class label [8]. 

The topmost node in a tree is the root node. Decision tree is a classifier in the form of a tree 

structure where each node is either a leaf node-indicates the value of the target attribute of 

examples or a decision node –specifies some test to be carried out on a single attribute-with one 

branch and sub tree for each possible outcome of the test[9]. Decision tree can handle high 

dimensional data. The learning and classification step of decision tree are simple and fast. A 

decision tree can be used to classify an example by starting at the root of the tree and moving 

through it until a leaf node, which provides the classification of the instance [17]. In this work we 

are using the well known and frequently used algorithm J48 for the classification of LD. To 

classify an unknown instance, it is routed down the tree according to the values of the attributes 

tested in successive nodes and when a leaf is reached, the instance is classified according to the 

class assigned to the leaf [17]. 
 

Clustering is a tool for data analysis, which solves classification problem. Its object is to distribute 

cases into groups, so that the degree of association to be strong between members of same clusters 

and weak between members of different clusters. This way each cluster describes in terms of data 

collected, the class to which its members belong. Clustering is a discovery tool. It may reveal 

associations and structure in data which though not previously evident .The results of cluster 

analysis may contribute to the definition of a formal classification scheme. Clustering helps us to 

find natural groups of components based on some similarity. Clustering is the assignment of a set 

of observations into subsets so that observations in the same cluster are similar in some sense. 



 

 

 

Clustering is a method of unsupervised learning, and a common technique for statistical data 

analysis used in many fields, including machine learning, data mining, pattern recognition, image 

analysis and bioinformatics. 

 

3.1 Classification by Decision Tree 
 

Data mining techniques are useful for predicting and understanding the frequent signs and 

symptoms of behavior of LD. There are different types of learning disabilities. If we study the 

signs and symptoms (attributes) of LD we can easily predict which attribute is from the data sets 

more related to learning disability. The first task to handle learning disability is to construct a 

database consisting of the signs, characteristics and level of difficulties faced by those children.  

Data mining can be used as a tool for analyzing complex decision tables associated with the 

learning disabilities.  Our goal is to provide concise and accurate set of diagnostic attributes, 

which can be implemented in a user friendly and automated fashion.  After identifying the 

dependencies between these diagnostic attributes, rules are generated and these rules are then be 

used to predict learning disability.   In this paper, we are using a checklist containing the same 16 

most frequent signs & symptoms (attributes) generally used for the assessment of LD [13] to 

investigate the presence of learning disability. This checklist is a series of questions that are 

general indicators of learning disabilities.  It is not a screening activity or an assessment, but a 

checklist to focus our understanding of learning disability.  The list of 16 attributes used by us in 

LD prediction is shown in Table 1 below. 

 
Table 1.  List of Attributes 

 

Sl. 

No. 

Attribute 

 

Signs & Symptoms of LD 

1  DR Difficulty with Reading 

2  DS Difficulty with Spelling 

3  DH Difficulty with Handwriting 

4  DWE Difficulty with Written Expression 

5  DBA Difficulty with Basic Arithmetic skills 

6  DHA Difficulty with Higher Arithmetic skills 

7  DA Difficulty with Attention 

8  ED Easily Distracted 

9  DM Difficulty with Memory 

10  LM Lack of Motivation 

11  DSS Difficulty with Study Skills 

12  DNS Does Not like School 

13  DLL Difficulty Learning a Language 

14  DLS Difficulty Learning a Subject 

15  STL Slow To Learn 

16  RG Repeated a Grade 

 
Based on the information obtained from the checklist, a data set is generated. This is set is in the 

form of an information system containing cases, attributes and class.  A complete information 

system expresses all the knowledge available about objects being studied.  Decision tree induction 

is the learning of decisions from class labeled training tuples. Given a data set D = {t1, t2,…...…., 

tn} where ti = <ti1,….., tih>. In our study, each tuple is represented by 16 attributes and the class is 

LD. Then, Decision or Classification Tree is a tree associated with D such that each internal node 

is labeled with attributes DR, DS, DH, DWE, etc.  Each arc is labeled with predicate, which can be 

applied to the attribute at the parent node. Each leaf node is labeled with a class LD. The basic 

steps in the decision tree are building the tree by using the training data sets and applying the tree 



 

 

 

to the new data sets. Decision tree induction is the process of learning about the classification 

using the inductive approach [8]. During this process we create a new decision tree from the 

training data. This decision tree can be used for making classifications. Here we are using the J48 

algorithm, which is a greedy approach in which decision trees are constructed in a top-down 

recursive divide and conquer manner. Most algorithms for decision tree approach are following 

such a top down approach. It starts with a training set of tuples and their associated class labels. 

The training set is recursively partitioned into smaller subsets as a tree is being built. This 

algorithm consists of three parameters – attribute list, attribute selection method and 

classification. The attribute list is a list of attributes describing the tuples. Attribute selection 

method specifies a heuristic procedure for selecting the attribute that best discriminate the given 

tuples according to the class. The procedure employs an attribute selection measure such as 

information gain that allows a multi-way splits. Attribute selection method determines the 

splitting criteria. The splitting criteria tells as which attribute to test at a node by determining the 

best way to separate or partition the tuples into individual classes. Here we are using the data 

mining tool weka for attribute selection and classification. Classification is a data mining 

(Machine Learning) technique, used to predict group membership from data instances [15].  

 
3.1.1 Methodology used  
 

J48 algorithm is used for classifying the Learning Disability. The procedure consists of three steps 

viz. (i) data partition based on cross validation test, (ii) attribute list and (iii) attribute selection 

method based on information gain. Cross validation approach is used for the sub sampling of 

datasets. In this approach, each record is used the same number of times for training and exactly 

once for testing. To illustrate this method, first we partition the datasets into two subsets and 

choose one of the subsets for training and other for testing. Then swap the roles of the subsets so 

that the previous training set becomes the test set and vice versa.  The Information Gain Ratio 

for a test is defined as follows. IGR (Ex, a) = IG / IV, where IG is the Information Gain and IV is 

the Gain Ratio [13].  Information gain ratio biases the decision tree against considering attributes 

with a large number of distinct values. So it solves the drawback of information gain. The 

classification results are as shown under: 

Correctly Classified Instances          97 Nos.  77.6 %                                                      

Incorrectly Classified Instances        28 Nos.   22.4 % 

The accuracy of the decision tree is given in Table 2 below. 

 
Table 2. Accuracy of Decision Tree 

 

TP Rate FP Rate Precision Recall F-Measure ROC 

Area 

Class 

0.840 0.419 0.859 0.840 0.849 0.719 N 

0.581 0.160 0.545 0.581 0.563 0.719 Y 
 

The first two columns in the table denote TP Rate (True Positive Rate) and the FP Rate (False 

Positive Rate). TP Rate is the ratio of low weight cases predicted correctly cases to the total of 

positive cases.  A decision tree formed based on the methodology adopted in this paper is shown 

in Figure 1 below.  
 

It is easy to read a set of rules directly off a decision tree. One rule is generated for each leaf. The 

antecedent of the rule includes a condition for every node on the path from the root to that leaf and 

the consequent of the rule is the class assigned by the leaf [17]. This procedure produces rules that 

are unambiguous in that the order in which they are executed is irrelevant. However in general, 

rules that are read directly off a decision tree are far more complex than necessary and rules 

derived from trees are usually pruned to remove redundant tests. The rules are so popular because 

each rule represents an independent knowledge. New rule can added to an existing rule sets 



 

 

 

without disturbing them, whereas to add to a tree structure may require reshaping the whole tree. 

In this section we present a method for generating a rule set from a decision tree. In principle, 

every path from the root node to the leaf node of a decision tree can be expressed as a 

classification rule. The test conditions encountered along the path form the conjuncts of the rule 

antecedent, while the class label at the leaf node is assigned to the rule consequent. The 

expressiveness of a rule set is almost equivalent to that of a decision tree because a decision tree 

can be expressed by a set of mutually exclusive and exhaustive rules. 
 

 
 

Figure 1.  Decision tree 

 

3.2 Classification by Clustering 
 

We are using the data mining tool weka for clustering. The clustering algorithm K-means is used 

for classifying LD. In clustering algorithm, K initial pointers are chosen to represent initial cluster 

centers, all data points are assigned to the nearest one, the mean value of the points in each cluster 

is computed to form its new cluster centre and iteration continues until there are no changes in the 

clusters. The K-means algorithms iterates over the whole dataset until convergence is reached. 

  
3.2.1 Methodology used  
 

The K-means algorithm is a most well-known and commonly used partitioning method. It takes 

the input parameter, K, and partitions a set of N objects into K clusters so that the resulting 

intra-cluster similarity is high but the inter cluster similarity is low. Cluster similarity is measured 

in regard to the mean value of the objects in a cluster [8]. The working of algorithm is like it 

randomly selects the K objects, each of which initially represents cluster mean or center. For each 

of the remaining objects, an object is assigned to the cluster to which it is the most similar, based 

on the distance between the objects and the cluster mean. It then computes the new mean for each 

cluster. This process iterates until the criterion function converges. 

An important step in most clustering is to select a distance measure, which will determine how the 

similarity of the two elements is calculated. This will influenced the shape of the clusters, as some 

elements may be close to one another according to one distance and farther away according to one 

another. Another important distinction is whether the clustering uses symmetric or asymmetric 

distances [8]. Many of the distance function have the property that distances are symmetric. Here, 

we are using the binary variables. A binary variable has two states 0 or 1, where 0 means that 

variable is absent and 1 means that is present. In this study, we use the partitioning method K- 

means algorithm, where each cluster is represented by the mean value of the objects in the cluster. 

In this partitioning method, the database has N objects or data tuples, it constructs K partitions of 



 

 

 

the data, where each partition represents a cluster and it classifies the data into K groups. Each 

group contains at least one object and each object must belong to exactly one group. The 

clustering results obtained by us are shown under: 

Clustered Instances         LD = 0 (No)   -  94 Nos. - 75.20 %                                                      

Clustered Instances         LD = 1 (Yes)  -  31 Nos. - 24.80 %       

The clustering history and the cluster visulizer, indicating LD = Y and LD = N are as shown in 

Table 3 and in Figure 2 respectively below. 

 
Table 3. Clustering history 

 

Sl. No Attributes Full Data (125) LD = 0 (No) LD = 1 (Yes) 

1  DR 50.224 48.787 54.581 

2  DS 6.408 6.383 6.484 

3  DH 30.744 30.596 31.194 

4  DWE 85.552 86.351 83.129 

5  DBA 85.008 86.511 80.452 

6  DHA 79.712 81.011 75.774 

7  DA 67.312 67.734 66.032 

8  ED 83.960 85.319 79.839 

9  DM 85.240 86.245 82.194 

10  LM 82.176 80.766 86.452 

11  DSS 84.632 81.436 94.323 

12  DNS 81.344 78.787 89.097 

13  DLL 83.400 81.457 89.290 

14  DLS 86.200 82.521 97.355 

15  STL 83.632 83.117 85.194 

16  RG 85.248 84.692 86.936 

                 No. of iterations 2 

                 Within cluster sum of squared errors   86.105 

                 Missing values globally replaced with mean/mode 
 

 

Figure 2. Cluster visulizer 

4. RESULT ANALYSIS  
 

In this study, we are used 125 real data sets with 16 attributes most of which takes binary values 

for the LD classifications. J48 algorithms are found very suitable for handling missing values and 

the key symptoms of LD can easily be predicted. The decision tree is very user friendly 

architecture compared to other classification methods. J48 decision tree is better in terms of 

efficiency and complexity. From this study, we have obtained that; decision tree correctly 



 

 

 

classified 77.6 % of instances. The key symptoms of LD are determined by using the attribute 

selection method in decision tree. By using decision tree, simple and very effective rules can be 

formed for LD prediction. It is also found that in case of inconsistent data, decision tree provides 

no solution. The accuracy of decision making can also be improved by applying the rules 

formulated from the tree.  On comparing with our other recent studies focused on RST, SVM & 

MLP, Decision tree is found best in terms of efficiency and complexity,  
 

From the study, it is also found that clustering, as one of the first step in data mining analysis, 

identifies groups of related records that can be used as a starting points for exploring further 

relationship. This technique supports the development of classification models of LD such as 

LD-Yes or LD-No and also formed the attribute clusters present in LD-Yes and LD-No. From the 

results obtained from clustering classification, we found the importance of attributes in predicting 

LD. In clustering also we have used the same 125 real data sets with 16 attributes.  

 

5.  COMPARISON OF RESULTS 
 

In this study, we are used the algorithms J48 and K-means for prediction of LD in children. The 

results obtained from this study are compared with the output of a similar study conducted by us 

using Rough Set Theory (RST) with LEM1 algorithm. From these, we have seen that, the rules 

generated based on decision tree is more powerful than those of rough set theory. From the 

comparison of results, we have also noticed that, decision tree algorithm, J48, has a number of 

advantages over RST with LEM1 algorithm for solving the similar nature of problems. For large 

data sets, there may be chances of some incomplete data or attributes. In data mining concept, it is 

difficult to mine rules from these incomplete data sets. In decision tree, the rules formulated will 

never influenced by any such incomplete datasets or attributes. Hence, LD can easily be predicted 

by using the methods adopted by us. The other benefit of decision tree concept is that it leads to 

significant advantages in many areas including knowledge discovery, machine learning and 

expert system. Also it may act as a knowledge discovery tool in uncovering rules for the diagnosis 

of LD affected children. The importance of this study is that, using a decision tree we can easily 

predict the key attributes (signs and symptoms) of LD and can predict whether a child has LD or 

not. For very large data set, the number of clusters can easily be identified using clustering 

method.  
     

Obviously, as the school class strength is 40 or so, the manpower and time needed for the 

assessment of LD in children is very high. But using the techniques adopted by us, we can easily 

predict the learning disability of any child. Decision tree approach shows, its capability in 

discovering knowledge behind the LD identification procedure. The main contribution of this 

study is the selection of the best attributes that has the capability to predict LD.  In best of our 

knowledge, none of the rules discovered in this type of study, so far, have minimum number of 

attributes, as we obtained, for prediction of LD. The discovered rules also prove its potential in 

correct identification of children with learning disabilities.   

 

 

 

 

6. CONCLUSION AND FUTURE RESEARCH 
   

In this paper, we consider an approach to handle learning disability database to predict frequent 

signs and symptoms of the learning disability in school age children. This study mainly focuses on 

two classification techniques, decision tree and clustering, because accuracy of decision-making 

can be improved by applying these methods. This study has been carried out on 125 real data sets 

with most of the attributes takes binary values and more work need to be carried out on 

quantitative data as that is an important part of any data set. In future, more research is required to 



 

 

 

apply the same approach for large data set consisting of all relevant attributes.  This study is a true 

comparison of the proposed approach by applying it to large datasets and analyzing the 

completeness and effectiveness of the generated rules. 
  

J48 decision tree application on discrete data and twofold test shows that it is better than RST in 

terms of efficiency and complexity. J48 decision tree has to be applied on continuous or 

categorical data. Noise effects and their elimination have to be studied. The results from the 

experiments on these small datasets suggests that J48 decision tree can serve as a model for 

classification as it generates simpler rules and remove irrelevant attributes at a stage prior to tree 

induction. By using clustering method, the number of clusters can easily be identified in case of 

very large data sets.  
 

In this paper, we are considering an approach to handle learning disability database and predicting 

the learning disability in school age children. Our future research work focuses on, fuzzy sets, to 

predict the percentage of LD, in each child, thus to explore the possibilities of getting more 

accurate and effective results in prediction of LD.  
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