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Abstract— In Safety critical software failure can have a 
high price. Such software should be free of errors before it is 
put into operation. Application of formal methods in the 
Software Development Life Cycle helps to ensure that the 
software for safety critical missions are ultra reliable. PVS 
theorem prover, a formal method tool, can be used for the 
formal verification of software in ADA Language for Flight 
Software Application (ALFA.). This paper describes the 
modeling of ALFA programs for PVS theorem prover. An 
ALFA2PVS translator is developed which automatically 
converts the software in ALFA to PVS specification. By this 
approach the software can be verified formally with respect 
to underflow/overflow errors and divide by zero conditions 
without the actual execution of the code. 

Keywords- ALFA; Formal Modeling; Formal Verification; 
Prototype Verification System; Type Correctness Conditions  

I.  INTRODUCTION  
Ada Language for Flight Software Application 

(ALFA) [1] is a safe subset of SPARK Ada designed for 
the development of mission critical software. Such 
software belongs to the class of human-rated software. 
Safety critical software such as the onboard software used 
in Human Spaceflight Programme (HSP) should be highly 
reliable. The errors in such software should be uncovered 
in the early stages of development life cycle itself. Use of 
formal methods causes more defects to be detected than 
would otherwise be the case and in some circumstances it 
also guarantees the absence of certain defects [2].  
Prototype Verification System (PVS) [3] is an efficient 
theorem prover used for this purpose. To conduct formal 
verification of software developed in ALFA using the PVS 
theorem prover, it should be modeled and converted to the 
formal specification supported by PVS. This paper 
describes the modeling of the onboard software 
implemented in ALFA for the PVS theorem prover. An 
ALFA2PVS translator tool is also developed to 
automatically convert the software in ALFA to PVS 
specification according to the modeling rules. The PVS 
specification generated by this tool can be typechecked in 
the PVS theorem prover for formal verification. 
Typechecking the specification generates Type 
Correctness Conditions (TCCs) for all the type 
inconsistencies and these TCCs have to be proved to 
ensure that the software is typesafe [5]. Using the 
modeling described here, overflows/underflows errors and 

divide by zero errors can be detected as part of proving the 
correctness of the software. 

The rest of this paper is organized as follows. Section 
II gives the background. Formal modeling of ALFA 
programs is described in section III. Section IV describes 
ALFA2PVS translator for converting the software coded 
in ALFA to PVS specification. Section V describes the 
process of formal verification of ALFA programs and a 
brief conclusion is given in section VI. 

II. BACKGROUND 
 Literature provides works on modeling a programming 
language for a specification language. A work on 
detecting runtime errors in MISRA C programs using 
PVS [5] explains the modeling of MISRA C programs in 
PVS. A C2PVS translator is developed for automatic 
conversion of MISRA C programs to PVS specification.  
 An Assertion Checking Environment (ACE) for unit 
level formal verification of sequential C programs using 
static assertion checking technique [6] describes the 
conversion of MISRA C programs to semantically 
equivalent program in Simple Programming Language 
(SPL) for the STeP theorem prover [9]. A c2spl translator 
automates this conversion.  

An adatospl translator was developed as part of the 
work, system for object code validation (OCV). It 
describes a methodology and a system for the validation of 
translation of a safe subset of Ada to assembly language 
programs [7]. STeP is used for performing proof of 
refinements. The modules coded in a safe subset of 
SPARK Ada were translated to SPL using the translator. 
This translator is also used for formal specification and 
verification of a launch vehicle onboard software 
component namely Fault Detection and Isolation Logic 
(FDIL) [8].  

III. FORMAL MODELING OF ALFA PROGRAMS  
 A procedure in ALFA is encoded as a theory in PVS. A 
theory consists of a list of states. A state is represented as 
a tuple of n+1components where n is the number of 
variables in the program. The first component in the tuple 
is a flag variable. A state s1 is represented as s1: state = 
(s1`1, s1`2,……, s1`i,……., s1`n+1) where s1`1 is the 
component that corresponds to the flag variable and 
s1`2,……, s1`i,……., s1`n+1 represents the values of the 
variables in the program. An instruction in ALFA 
represents a state transition in PVS which modifies the 
program variables participating in that instruction.  
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Conversion of the ALFA code to PVS specification 
involves modeling the type definitions, the statements and 
the control constructs of ALFA in PVS.  

A. Modeling the Datatypes 
 In ALFA the range of values for the datatypes, 
short_integer, unsigned types and float types are confined 
between a maximum and minimum value. But in PVS the 
values of the variables of type integer and real ranges 
from -∞ to +∞ and that of natural ranges from 0 to +∞ [3]. 
The data types in ALFA are defined as subtypes of the 
integer, natural and real types in PVS.  
 The short_integer of ALFA is represented as a subtype 
of the integer type in PVS, confined between the 
maximum and minimum permitted short_integer values,   
-32768 to +32767 in ALFA.   

conf_short_int: TYPE = {a: int| a<=sint_max AND 
a>=sint_min AND sint_max>=sint_min} 

sint_max and sint_min are +32767 and -32768 
respectively. 
 The arithmetic and relational operators on short_integer 
are represented as functions in PVS which takes 
arguments of type conf_short_int and returns value of 
PVS int type. The division operation on short_integer is 
represented as  

div_conf_short_int(a: conf_short_int, b: 
conf_nzshort_int): int= round_to_int(a/b) 

An operation a-b should be converted in PVS as  
div_conf_short_int (1, exp_conf_short_int (a, b)) 
 The unsigned types in ALFA are modeled as subtypes 
of the natural datatype of PVS.  
conf_unsigned16: TYPE = {a: nat| a<=usint_max AND 

a>=usint_min AND usint_max>= usint_min} 
 The bit_AND operation on unsigned_16 in ALFA is 
modeled as follows.  
bitAND_conf_unsigned16 (a: conf_unsigned16, b: 
conf_unsigned16): bvec= AND(a,b) 
 The float datatypes are modeled as subtypes of the real 
type in PVS.  

conf_float32: TYPE = {a: real| ((a <= float32_MAX 
AND a >= float32_MIN) OR (a <= -1*float32_MIN AND 
a >= -1*float32_MAX) OR (a = 0)) AND (float32_MAX 

>= float32_MIN)} 
 The datatypes of ALFA and the operations on them are 
encoded as theories in PVS. Whenever a datatype is 
referred the corresponding theory is imported to the 
specification file and the operations on them can be 
replaced with the corresponding functions.  

B. Modeling the Assignment Statements 
 Assignment statement in ALFA is modeled in PVS as a 
new state, with the value of the component that 
corresponds to the variable being replaced with the value 
of the expression.  An assignment statement of the form, 
st1: vi: = expression1; is modeled as 
s2: state = (s1`1, s1`2,......, expression1, s1`i+1,......., s1`n)  

C. Modeling the Selection Constructs 
 A nested if construct is modeled in PVS as follows. 
s2: state = IF boolexpn1(s1) = TRUE THEN s1 ELSE 
unreachable ENDIF 
......... 
s4: state = IF boolexpn2(s3) = TRUE THEN s3 ELSE 
unreachable ENDIF 
s5: state transition for the last statement in the inner if part 
s6: if reachable(s5) then s5 else s3 endif 
s7: state transition for the last statement in outer if part 
......... 
s13: state transition for the last statement in elsif part 
s14: state = if reachable(s13) then s13 elsif reachable(s7) 
then s7 else s1 endif 
 The state unreachable is defined as a state where the 
flag variable is false and reachable is defined as a function 
which checks the flag variable and returns true if the flag 
variable is true. 
reachable: [state -> bool] = LAMBDA (s: state): (s`1 = 
TRUE) 

D. Modeling the Iterative Constructs  
 Statements inside the iterative constructs in ALFA are 
encoded as a separate theory in PVS. This theory is 
typechecked separately to ensure that there are no type 
inconsistencies in the statements inside the loops. The 
state after the iterative construct is modeled as a state 
where the loop condition is not satisfied and the loop 
invariant conditions are satisfied [5].  

IV. ALFA2PVS TRANSLATOR 
 An ALFA2PVS translator tool automates the generation 
of PVS specification from the ALFA program. Fig 1 
shows the steps involved in the development of 
ALFA2PVS translator. The annotated ALFA procedure is 
the input to the translator. The source program is parsed 
based on the grammar of ALFA. The comments in the 
source file are extracted before parsing. 

  

Figure 1. ALFA2PVS Translator 
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 These comments are then redistributed in the parse tree 
after parsing the file. PVS code generation is done by 
performing parse tree walking and translating the ALFA 
statements to their corresponding form in PVS, according 
to the modeling rules described in the previous section.  
The annotations in the source file are converted to axioms 
of the form given below by the translator.  

axiom_n: AXIOM s1`3>=1 AND s1`3<=100 
 For iterative constructs, the translator generates a 
separate PVS file containing the translations for the 
statements inside the loop. 

V. FORMAL VERIFICATION OF ALFA PROGRAMS  
 The process involved in the formal verification of 
ALFA programs using the PVS theorem prover is shown 
in fig 2. The first step in formal verification is to annotate 
the ALFA source code. Annotations are derived manually 
from the data range of the input variables. These 
annotations are then inserted as comments in the source 
code by the user. The preconditions should begin with the 
word “precond”, post conditions with the word 
“postcond” and the loop invariants should begin with the 
word “loopinvariant”.  
-- precond DAPCPrev >= -10 AND DAPCPrev <= 10 
 The PVS theorem prover accepts input which is 
encoded in its own specification language. So the 
program in ALFA should be first converted to this form. 
The ALFA programs are modeled in PVS and ALFA2PVS 
translator tool automates the generation of PVS 
specification from the ALFA code. The PVS specification 
which is the output of the translator is loaded to the PVS 
theorem prover and typechecked. Since PVS specification 
language is strongly typed, the type inconsistencies in the 
specification generate TCCs. These TCCs are to be 
proved to prove that the specification is typesafe. The 
prover commands [4], the axioms in the specification and 
the theories in the prelude library can be used to discharge 
the TCCs. Any unproved TCC can be traced as a possible 
runtime error in the ALFA program. The subtraction 
operation on unsigned types, z = x - y, generates subtype 
TCC in PVS to ensure that the operation does not 
underflow.

 
Figure 2. Formal Verification of ALFA Program 

 All the variables are declared as type conf_unsigned16. 
The operation sub_conf_unsigned16() returns a result of 
type nat. Assigning this value to the variable z of type 
conf_ unsigned16 results in type inconsistency. 
Typechecking this in PVS generates the following TCC to 
ensure that the result does not underflow.  
sub_conf_unsigned16(s1`2, s1`3) <= usint_max AND 
sub_conf_unsigned16(s1`2, s1`3) >= usint_min AND 
usint_max >= usint_min  
 Also this operation on the unsigned_16 variables x and 
y, generates the TCC to ensure that x-y >=0.  
sub_conf_unsigned16_TCC1: OBLIGATION FORALL (x, 
y: conf_unsigned16): x - y >= 0; 

VI. CONCLUSION 
For safety critical systems, verification is the most 

important phase. For such systems formal methods 
improves defect detection early in the life cycle and thus 
guarantee that the software is reliable. This paper details 
the modeling of ALFA programs in PVS and the 
development of an ALFA2PVS translator that automates 
the conversion of ALFA procedures to PVS specification 
according to the modeling rules. Typechecking the PVS 
specification generated by the translator generates TCCs 
which are to be discharged using prover commands. 
Unproved TCCs indicates possible errors in the program. 
Proving the TCCs is now done interactively. This 
technique enables formal verification of ALFA programs 
and helps to detect overflow/underflow errors and divide 
by zero errors without the actual execution of the code.    
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