
Modeling of ALFA Programs Using PVS Theorem Prover

Shimmi Asokan, G. Santhosh Kumar
Department of Computer Science

 Cochin University of Science and Technology
 Kochi-22, Kerala, India

shimmideepak@gmail.com, san@cusat.ac.in

N. Jaya Lal
Human Spaceflight Programme
Vikram Sarabhai Space Center

Trivandrum, Kerala, India
n_jayalal@vssc.gov.in

Abstract— In Safety critical software failure can have a
high price. Such software should be free of errors before it is
put into operation. Application of formal methods in the
Software Development Life Cycle helps to ensure that the
software for safety critical missions are ultra reliable. PVS
theorem prover, a formal method tool, can be used for the
formal verification of software in ADA Language for Flight
Software Application (ALFA.). This paper describes the
modeling of ALFA programs for PVS theorem prover. An
ALFA2PVS translator is developed which automatically
converts the software in ALFA to PVS specification. By this
approach the software can be verified formally with respect
to underflow/overflow errors and divide by zero conditions
without the actual execution of the code.

Keywords- ALFA; Formal Modeling; Formal Verification;
Prototype Verification System; Type Correctness Conditions

I. INTRODUCTION
Ada Language for Flight Software Application

(ALFA) [1] is a safe subset of SPARK Ada designed for
the development of mission critical software. Such
software belongs to the class of human-rated software.
Safety critical software such as the onboard software used
in Human Spaceflight Programme (HSP) should be highly
reliable. The errors in such software should be uncovered
in the early stages of development life cycle itself. Use of
formal methods causes more defects to be detected than
would otherwise be the case and in some circumstances it
also guarantees the absence of certain defects [2].
Prototype Verification System (PVS) [3] is an efficient
theorem prover used for this purpose. To conduct formal
verification of software developed in ALFA using the PVS
theorem prover, it should be modeled and converted to the
formal specification supported by PVS. This paper
describes the modeling of the onboard software
implemented in ALFA for the PVS theorem prover. An
ALFA2PVS translator tool is also developed to
automatically convert the software in ALFA to PVS
specification according to the modeling rules. The PVS
specification generated by this tool can be typechecked in
the PVS theorem prover for formal verification.
Typechecking the specification generates Type
Correctness Conditions (TCCs) for all the type
inconsistencies and these TCCs have to be proved to
ensure that the software is typesafe [5]. Using the
modeling described here, overflows/underflows errors and

divide by zero errors can be detected as part of proving the
correctness of the software.

The rest of this paper is organized as follows. Section
II gives the background. Formal modeling of ALFA
programs is described in section III. Section IV describes
ALFA2PVS translator for converting the software coded
in ALFA to PVS specification. Section V describes the
process of formal verification of ALFA programs and a
brief conclusion is given in section VI.

II. BACKGROUND
 Literature provides works on modeling a programming
language for a specification language. A work on
detecting runtime errors in MISRA C programs using
PVS [5] explains the modeling of MISRA C programs in
PVS. A C2PVS translator is developed for automatic
conversion of MISRA C programs to PVS specification.
 An Assertion Checking Environment (ACE) for unit
level formal verification of sequential C programs using
static assertion checking technique [6] describes the
conversion of MISRA C programs to semantically
equivalent program in Simple Programming Language
(SPL) for the STeP theorem prover [9]. A c2spl translator
automates this conversion.

An adatospl translator was developed as part of the
work, system for object code validation (OCV). It
describes a methodology and a system for the validation of
translation of a safe subset of Ada to assembly language
programs [7]. STeP is used for performing proof of
refinements. The modules coded in a safe subset of
SPARK Ada were translated to SPL using the translator.
This translator is also used for formal specification and
verification of a launch vehicle onboard software
component namely Fault Detection and Isolation Logic
(FDIL) [8].

III. FORMAL MODELING OF ALFA PROGRAMS
 A procedure in ALFA is encoded as a theory in PVS. A
theory consists of a list of states. A state is represented as
a tuple of n+1components where n is the number of
variables in the program. The first component in the tuple
is a flag variable. A state s1 is represented as s1: state =
(s1`1, s1`2,……, s1`i,……., s1`n+1) where s1`1 is the
component that corresponds to the flag variable and
s1`2,……, s1`i,……., s1`n+1 represents the values of the
variables in the program. An instruction in ALFA
represents a state transition in PVS which modifies the
program variables participating in that instruction.

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.134

373

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.134

373

2009 International Conference on Advances in Recent Technologies in Communication and Computing

978-0-7695-3845-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ARTCom.2009.134

373

Authorized licensed use limited to: COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on June 19,2010 at 17:32:57 UTC from IEEE Xplore. Restrictions apply.

Conversion of the ALFA code to PVS specification
involves modeling the type definitions, the statements and
the control constructs of ALFA in PVS.

A. Modeling the Datatypes
 In ALFA the range of values for the datatypes,
short_integer, unsigned types and float types are confined
between a maximum and minimum value. But in PVS the
values of the variables of type integer and real ranges
from -∞ to +∞ and that of natural ranges from 0 to +∞ [3].
The data types in ALFA are defined as subtypes of the
integer, natural and real types in PVS.
 The short_integer of ALFA is represented as a subtype
of the integer type in PVS, confined between the
maximum and minimum permitted short_integer values,
-32768 to +32767 in ALFA.

conf_short_int: TYPE = {a: int| a<=sint_max AND
a>=sint_min AND sint_max>=sint_min}

sint_max and sint_min are +32767 and -32768
respectively.
 The arithmetic and relational operators on short_integer
are represented as functions in PVS which takes
arguments of type conf_short_int and returns value of
PVS int type. The division operation on short_integer is
represented as

div_conf_short_int(a: conf_short_int, b:
conf_nzshort_int): int= round_to_int(a/b)

An operation a-b should be converted in PVS as
div_conf_short_int (1, exp_conf_short_int (a, b))
 The unsigned types in ALFA are modeled as subtypes
of the natural datatype of PVS.
conf_unsigned16: TYPE = {a: nat| a<=usint_max AND

a>=usint_min AND usint_max>= usint_min}
 The bit_AND operation on unsigned_16 in ALFA is
modeled as follows.
bitAND_conf_unsigned16 (a: conf_unsigned16, b:
conf_unsigned16): bvec= AND(a,b)
 The float datatypes are modeled as subtypes of the real
type in PVS.

conf_float32: TYPE = {a: real| ((a <= float32_MAX
AND a >= float32_MIN) OR (a <= -1*float32_MIN AND
a >= -1*float32_MAX) OR (a = 0)) AND (float32_MAX

>= float32_MIN)}
 The datatypes of ALFA and the operations on them are
encoded as theories in PVS. Whenever a datatype is
referred the corresponding theory is imported to the
specification file and the operations on them can be
replaced with the corresponding functions.

B. Modeling the Assignment Statements
 Assignment statement in ALFA is modeled in PVS as a
new state, with the value of the component that
corresponds to the variable being replaced with the value
of the expression. An assignment statement of the form,
st1: vi: = expression1; is modeled as
s2: state = (s1`1, s1`2,......, expression1, s1`i+1,......., s1`n)

C. Modeling the Selection Constructs
 A nested if construct is modeled in PVS as follows.
s2: state = IF boolexpn1(s1) = TRUE THEN s1 ELSE
unreachable ENDIF
.........
s4: state = IF boolexpn2(s3) = TRUE THEN s3 ELSE
unreachable ENDIF
s5: state transition for the last statement in the inner if part
s6: if reachable(s5) then s5 else s3 endif
s7: state transition for the last statement in outer if part
.........
s13: state transition for the last statement in elsif part
s14: state = if reachable(s13) then s13 elsif reachable(s7)
then s7 else s1 endif
 The state unreachable is defined as a state where the
flag variable is false and reachable is defined as a function
which checks the flag variable and returns true if the flag
variable is true.
reachable: [state -> bool] = LAMBDA (s: state): (s`1 =
TRUE)

D. Modeling the Iterative Constructs
 Statements inside the iterative constructs in ALFA are
encoded as a separate theory in PVS. This theory is
typechecked separately to ensure that there are no type
inconsistencies in the statements inside the loops. The
state after the iterative construct is modeled as a state
where the loop condition is not satisfied and the loop
invariant conditions are satisfied [5].

IV. ALFA2PVS TRANSLATOR
 An ALFA2PVS translator tool automates the generation
of PVS specification from the ALFA program. Fig 1
shows the steps involved in the development of
ALFA2PVS translator. The annotated ALFA procedure is
the input to the translator. The source program is parsed
based on the grammar of ALFA. The comments in the
source file are extracted before parsing.

Figure 1. ALFA2PVS Translator

374374374

Authorized licensed use limited to: COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on June 19,2010 at 17:32:57 UTC from IEEE Xplore. Restrictions apply.

 These comments are then redistributed in the parse tree
after parsing the file. PVS code generation is done by
performing parse tree walking and translating the ALFA
statements to their corresponding form in PVS, according
to the modeling rules described in the previous section.
The annotations in the source file are converted to axioms
of the form given below by the translator.

axiom_n: AXIOM s1`3>=1 AND s1`3<=100
 For iterative constructs, the translator generates a
separate PVS file containing the translations for the
statements inside the loop.

V. FORMAL VERIFICATION OF ALFA PROGRAMS
 The process involved in the formal verification of
ALFA programs using the PVS theorem prover is shown
in fig 2. The first step in formal verification is to annotate
the ALFA source code. Annotations are derived manually
from the data range of the input variables. These
annotations are then inserted as comments in the source
code by the user. The preconditions should begin with the
word “precond”, post conditions with the word
“postcond” and the loop invariants should begin with the
word “loopinvariant”.
-- precond DAPCPrev >= -10 AND DAPCPrev <= 10
 The PVS theorem prover accepts input which is
encoded in its own specification language. So the
program in ALFA should be first converted to this form.
The ALFA programs are modeled in PVS and ALFA2PVS
translator tool automates the generation of PVS
specification from the ALFA code. The PVS specification
which is the output of the translator is loaded to the PVS
theorem prover and typechecked. Since PVS specification
language is strongly typed, the type inconsistencies in the
specification generate TCCs. These TCCs are to be
proved to prove that the specification is typesafe. The
prover commands [4], the axioms in the specification and
the theories in the prelude library can be used to discharge
the TCCs. Any unproved TCC can be traced as a possible
runtime error in the ALFA program. The subtraction
operation on unsigned types, z = x - y, generates subtype
TCC in PVS to ensure that the operation does not
underflow.

Figure 2. Formal Verification of ALFA Program

 All the variables are declared as type conf_unsigned16.
The operation sub_conf_unsigned16() returns a result of
type nat. Assigning this value to the variable z of type
conf_ unsigned16 results in type inconsistency.
Typechecking this in PVS generates the following TCC to
ensure that the result does not underflow.
sub_conf_unsigned16(s1`2, s1`3) <= usint_max AND
sub_conf_unsigned16(s1`2, s1`3) >= usint_min AND
usint_max >= usint_min
 Also this operation on the unsigned_16 variables x and
y, generates the TCC to ensure that x-y >=0.
sub_conf_unsigned16_TCC1: OBLIGATION FORALL (x,
y: conf_unsigned16): x - y >= 0;

VI. CONCLUSION
For safety critical systems, verification is the most

important phase. For such systems formal methods
improves defect detection early in the life cycle and thus
guarantee that the software is reliable. This paper details
the modeling of ALFA programs in PVS and the
development of an ALFA2PVS translator that automates
the conversion of ALFA procedures to PVS specification
according to the modeling rules. Typechecking the PVS
specification generated by the translator generates TCCs
which are to be discharged using prover commands.
Unproved TCCs indicates possible errors in the program.
Proving the TCCs is now done interactively. This
technique enables formal verification of ALFA programs
and helps to detect overflow/underflow errors and divide
by zero errors without the actual execution of the code.

REFERENCES
[1] ADA Language for Flight Software Application, Reference
Manual, VSSC, May 2006.
[2] NASA: Formal Methods Specification and Verification Guidebook
for Software and Computer Systems, Volume I-Planning and
Technology Insertion [NASA/TP-98-208193], December 1998.
[3] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert,
PVS Language Reference, Computer Science Laboratory, SRI
International, Version 2.4, November 2001.
[4] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert,
PVS Prover Guide, Computer Science Laboratory, SRI International,
Version 2.4, November 2001.
[5] Ajith K.J., Babita Sharma, A.K. Bhattacharjee, S.D. Dhodapkar, S.
Ramesh: Detection of Runtime Errors in MISRA C Programs: A
Deductive Approach, LNCS 4680, Springer Berlin / Heidelberg, pages
491-504, September 2007.
[6] Babita Sharma, S.D. Dhodapkar, S. Ramesh: Assertion checking
environment (ACE) for formal verification of C programs, Reliability
Engineering and System Safety 81 (2003).
[7] A. K. Bhattacharjee, Gopa Sen, S. D. Dhodapkar, K. Karunakar,
Basant Rajan and R. K. Shyamsundar: A System for Object Code
Validation, LNCS 1926, Springer/Verlag, pages 152–169, 2000.
[8] Krishna Sankara Narayanan, Sampada Sonalkar, Formal
Specification and Verification of Fault Detection and Isolation Logic,
CFDVS, IIT Bombay, January 2004.
[9] Bjorner N, Browne A, Colon M, Finkbeiner B, Manna Z, Pichora
M, Sipma H, Uribe T, The Stanford Temporal Prover user’s manual,
Stanford University, July 1998.
[10] Paul S. Miner: Defining the IEEE-854 Floating Point Standard in
PVS, Technical Report: NASA-95-tm110167, June 1995.

375375375

Authorized licensed use limited to: COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on June 19,2010 at 17:32:57 UTC from IEEE Xplore. Restrictions apply.

