
International Journal of Theoretical Physics, Vol. 39, No. 2, 2000

Squeezed Coherent State Representation of Scalar
Field and Particle Production in the Early
Universe
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The quantum field theory of a scalar field in curved space-time is studied using
the squeezed coherent state representation. In this representation the expectation
values of the stress-energy tensor of the scalar field is calculated. The present
calculation can account for the production of particles in the early universe.

1. INTRODUCTION

Particle production is a quantum phenomenon which results from vac-
uum fluctuations in a strong gravitational field [1–3]. The angular variations
in cosmological microwave background radiation observed recently in COBE
experiments have been conjectured as a consequence of cosmological pertur-
bations of the vacuum. Progress made in the grand unified theory make us
believe that it may be possible to correlate observational data to quantum
processes in the early universe. This has caused increasing interest in the
study of quantum field theory in curved space-time. Recently Grishchuck
and Sidorov [4] introduced the language of squeezed states in the realm of
cosmology to explain the cosmological particle creation. Prokopec [5] used
the formalism of two-mode squeezed states and the theory of gauge-invarient
cosmological perturbations to calculate two-point correlation functions and
the entropy of density perturbations. Using the language of squeezed states
Hu et al. [6] addressed the dependence of particle creation on the initial state
and the relation of spontaneous and stimulated particle creation and their
dependence on the initial state.

1 Department of Physics, Cochin University of Science and Technology, Cochin 682 022, India.
* e-mail: vck@cusat.ac.in.

351
0020-7748/00/0200-0351$18.00/0 q 2000 Plenum Publishing Corporation



352 Kumar and Kuriakose

The present work is an attempt to explain particle production in the
early univese. We argue that nonzero values of the stress-energy tensor
evaluated in squeezed vacuum state can be due to particle production and
this supports the concept of particle production from zero-point quantum
fluctuations. In the present calculation we use the squeezed coherent state
introduced by Fan and Xiao [7]. The vacuum expectation values of stress-
energy tensor defined prior to any dynamics in the background gravitational
field give all information about particle production. Squeezing of the vacuum
is achieved by means of the background gravitational field, which plays the
role of a parametric amplifier [8]. The present calculation shows that the
vacuum expectation value of the energy density and pressure contain terms
in addition to the classical zero-point energy terms. The calculation of the
particle production probability shows that the probability increases as the
squeezing parameter increases, reaches a maximum value, and then decreases.

2. SCALAR FIELD AND STRESS-ENERGY TENSOR

The study of quantum field theory in curved space-time is important,
as it is an essential key to understanding the scenario in the early universe.
Many authors [9–11] have shown that quantum effects may play a significant
role in the history of the early universe. The behavior of the classical scalar
field near the initial singularity is best approximated quantum mechanically
by constructing a complete set of coherent states for each mode of the scalar
field. The quantum state of the scalar field near the initial singularity is
inaccessible to an observer at the present time; Hawking [12] proposed that
this inaccessible nature can be expressed by taking a random superposition
of all allowed states in the inaccessible region. Berger [13] realized this by
superposing coherent states in a random manner. Christenson [14] showed
that the vacuum expectation values of the stress-energy tensor defined prior
to any dynamics in the background gravitational field give all information
about particle production. Parker [2] studied the particle creation in an
expanding universe, with gravitational metric treated as an unquantized exter-
nal field.

Here we consider a scalar field and calculate the expectation values of
different components of the stress-energy tensor by assuming that the field
is in a special type of squeezed coherent state. In this calculation a general
form of a background cosmological metric which is spatially homogeneous,
possibly anisotropic, and topologically a three-torus is taken (here " 5 c 5 1):

ds2 5 2dt2 1 o
3

i51
a2

i (t)(dxi)2

In this background, a minimally coupled scalar field of mass m satisfies
the equation
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(gmn ¹m¹y 2 m2) f(x) 5 0

The scalar field is expanded as

f(x) 5 (2p)23/2 o
k

[qk(t) cos k.x 1 q2k(t) sin k.x]

where (k represents a sum over both odd and even discrete modes. The
stress-energy tensor for a scalar field is given by

Tmn 5 mf nf 2 1–2 gmn(gds df sf 1 m2f2)

Thus, we can write

T00 5
1
2g 1f

t2
2

1 g1o
3

i51

1
a2

i
(if)2 1 m2f22

Tii 5 (if)2 1
a2

i

2g 1f
t2

2

2
a2

i

2 1o
3

j51

1
a2

j
(jf)2 1 m2f22

The spatially averaged components are

T00 5
1

32p3g o
k 11qk

t 2
2

1 v2
k(t)q2

k2 (1)

Tii 5
a2

i

32p3g o
k 11qk

t 2
2

1 12k2
i g

a2
i

2 v2
k(t)2q2

k2 (2)

The scalar field can be quantized mode by mode by defining

pk 5
dqk

dt

and imposing the usual commutation relations. The number operator is
defined as

Nk 5 a†
kak

Defining

ak 5 2i
dg
dt

qk 1 igpk

a†
k 5 i

dg*
dt

qk 2 ig*pk

where g(t) is a solution to the equation
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d 2qk

dt2 1 v2
k(t)q2

k 5 0

such that

g*
dg
dt

2 g
dg*
dt

5 i

From the above equations we get

qk 5 g*ak 1 ga†
k (3)

pk 5
dqk

dt
5

dg*
dt

ak 1
dg
dt

a†
k (4)

3. SQUEEZED COHERENT STATE REPRESENTATION

Formally, squeezed states are generated from coherent states by appro-
priate squeezing operators. Fan and Xiao [7] introduced an entirely new
approach to calculate the normally ordered form of single- and two-mode
squeezed operators by a method called integration within ordered product
(IWOP). This newly defined squeezed coherent state is adopted here and the
expectation values of the stress-energy tensor of a scalar field are calculated.
These expectation values are shown to be split into a classical term and an
(infinite) vacuum fluctuation term.

The squeezed coherent state is defined as

.Z &g 5 exp 121
2

.Z.2 1 ( fZ 1 gZ*) â † 2 fgâ †22.0& (5)

In this squeezed coherent state Z is the displacement parameter. The eigen-
value equation is

(â 1 2fgâ†).Z &g 5 ( fZ 1 gZ*).Z &g (6)

a and a† are the usual annihilation and creation operators; f and g are complex
numbers satisfying the condition

. f |2 1 .g.2 5 1

Define

b̂ 5
â 1 2fg

!1 2 4. fg.2
5 â cosh s 1 â†eiu sinh s (7)

b̂ 5 mâ 1 nâ†; b̂ † 5 mâ † 1 n*â (8)

where
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m 5 cosh s 5
1

!1 2 4. fg.2
;

n 5 (sinh s) eiu 5
2fg

!1 2 4. fg.2
; (9)

eiu 5
fg

. fg.

The operators â and b̂ are connected by a unitary transformation,

b̂ 5 UaU 21; b̂ † 5 Ua†U 21

Coherent states are defined to be eigenstates of the formal annihilation
operator,

â.Z, g& 5 k(g.Z, g&

Here

k(g) 5
fZ 1 gZ*

!1 2 4. fg.2

Now, to calculate the expectation values we can work with

g^Z. f(a, a†).Z &g 5 ^Z, g.U 21f (a, a†)U.Z, g& (10)

Let us define

b̂ 5 mâ 1 nâ †; b̂ † 5 mâ † 1 n*â

b̂ 5 UaU 21; b̂ † 5 Ua†U 21

and

U 21aU 5 mâ 2 nâ †

Using the above equations, we can obtain the following relations:

g^Z.â .Z &g 5 mk 2 nk* (11)

g^Z.â †.Z &g 5 mk 2 n*k (12)

g^Z.â 2.Z &g 5 m2k2 2 mn(1 1 2.k.2) 1 n2k*2 (13)

g^Z.â †2.Z &g 5 m2k*2 2 mn*(1 1 2.k.2) 1 n*2k2 (14)

g^Z.ââ †.Z &g 5 m2(1 1 .k.2) 2 mn*k2 2 mnk*2 1 .n.2.k.2 (15)

g^Z.N.Z &g 5 g^Z.â †â |Z &g

5 m2.k.2 2 mn*k2 2 mnk*2 1 .n.2(1 1 .k.2) (16)

Expectation values of q, q2, p, and p2 in the squeezed coherent state are
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g^Z.q.Z &g 5 m?2 Re(gk*) 2 2 Re(gn*k) (17)

g^Z.p.Z &g 5 m?2 Re1dg
dt

k*2 2 2 Re1dg
dt

n*k2 (18)

g^Z.q2.Z &g 5 m2?2 Re(g2k*2) 2 2 Re(g2n*2m)(1 1 2.k.2)

1 2 Re(g2n2k2) 1 .g.2(m2 1 .n.2 2 4m Re(n*k2)

1 2m2.k.2 1 2 .n.2.k.2) (19)

g^Z.p2.Z &g 5 m2 2 Re11dg
dt2

2

k*22 2 2 Re11dg
dt2

2

n*2m2(1 1 2 .k.2)

1 2 Re11dg
dt2

2

n2k22 1 Zdg
dtZ

2

(m2 1 .n.2 2 4m Re(n*k2)

1 2m2.k.2 1 2.n.2.k.2) (20)

g^Z.(Dq)2.Z &g 5 g^Z.q2.Z &g 2 g^Z.q.Z &2
g

5 .g.2[.n.2 1 m2] 2 m[g*2n 1 g2n*] (21)

g^Z.(Dp)2.Z &g 5 g^Z.p2.Z &g 2 g^Z.p.Z &2
g

5 Zdg
dtZ

2

[.n.2 1 m2] 2 mF1dg*
dt 2

2

n 1 1dg
dt2

2

n*G (22)

4. STRESS-ENERGY TENSOR EXPECTATION VALUES IN
SQUEEZED COHERENT STATE

The stress-energy tensor expectation values in the squeezed coherent
state can be calculated using Eqs. (1), (2), (19), and (20); we obtain

32p3 gg^Z.T00.Z &g

5 o
k
H2 ReF(m2k*2 2 mn*(1 1 2 .k.2) 1 n*2k2)11dg

dt2
2

1 v2
kg22G

1 1Zdg
dtZ

2

1 v2
k.g.22[1 1 2(.n.2 1 m2(1 1 .k.2)

2 mn*k2 2 mnk*2 1 .n.2.k.2)]J (23)

The expectation value of T00 is seen to split into two terms:
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32p3gg^Z.T00.Z &g 5 r 5 r0 1 rsq (24)

where r0 is the classical term:

r0 5
1

32p3g o
k 1Zdg

dtZ
2

1 v2
k.g.22 (25)

and rsq is due to squeezing:

rsq 5
1

16p3g o
k
HReF(m2k*2 2 mn*(1 1 2.k.2) 1 n*2k2)11dg

dt2
2

1 v2
kg22G

1 1Zdg
dtZ

2

1 v2
k.g.22[2(.n.2 1 m2(1 1 .k.2)

2 mn*k2 2 mnk*2 1 .n.2.k.2)]J (26)

r0 is the classical energy density and rsq is the contribution to energy density
due to squeezing. Similarly, we find

32p3gg^Z.Tii.Z&g

5 o
k
H2 ReF(m2k*2 2 mn*(1 1 2.k.2) 1 n*2k2)11dg

dt2
2

1 12k2
i g

a2
i

2 v2
k2g22G

1 1Zdg
dtZ

2

1 v2
k.g.22[1 1 2(.n.2 1 m2(1 1 .k.2)

2 mn*k2 2 mnk*2 1 .n.2.k.2)]J (27)

g^Z.Tii. Z &g 5 P 5 Pi0 1 Psq (28)

where Pi0 is the anisotropic pressure

Pi0 5
1

32p3g o
k 1Zdg

dtZ
2

1 12k2
i g

a2
i

2 v2
k2.g.22 (29)

and Psq is the contribution due to squeezing

Psq 5
1

16p3g o
k
HReF(m2k*2 2 mn*(1 1 2 .k.2) 1 n*2k2)11dg

dt2
2

1 12k2
i g

a2
i

2 v2
k2g22G 1 1Zdg

dtZ
2

1 12k2
i g

a2
i

2 v2
k2.g.22
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3 [2(.n.2 1 m2(1 1 .k.2) 2 mn*k2 2 mnk*2 1 .n.2.k.2)]J (30)

5. SQUEEZED VACUUM STATE EXPECTATION VALUES

We are now interested in squeezed vacuum state expectation values.
Using Eqs. (17)–(20) and setting Z 5 0, we get

g^0.q.0&g 5 0 (31)

g^0.p.0&g 5 0 (32)

g^0.q2.0&g 5 .g.2(m2.n.2) 2 g*2mn 2 g2mn*2 (33)

g^0.p2.0&g 5 Zdg
dtZ

2

(m2.n.2) 2 1dg*
dt 2

2

mn 2 1dg
dt2

2

mn*2 (34)

g^0.N.0&g 5 .n.2 (35)

Equation (35) shows that squeezing results in .n.2 particles on the average.
Expectation values of the stress-energy tensor can be found in the

squeezed vacuum. Using Eqs. (23), (27), (33), and (34) we find

32p3gg^0.T00.0&g

5 o
k
H(m2 1 .n.2)1Zdg

dtZ
2

1 v2
k.g.22

2 mn11dg*
dt 2

2

1 v2
kg2)2 2 mn*11dg

dt2
2

1 v2
kg2)2J

32p3gg^0.Tii.0&g (36)

5 o
k
H(m2 1 .n.2)1Zdg

dtZ
2

1 12k2
i g

a2
i

2 v2
k2.g.22

2 mn11dg*
dt 2

2

1 12k2
i g

a2
i

2 v2
k2g*22 1 mn*11dg

dt2
2

1 12k2
i g

a2
i

2 v2
k2g22J

(37)

6. PARTICLE PRODUCTION IN THE SQUEEZED VACUUM

In cosmological space-times the inequivalance of vacua appears at differ-
ent times of evolution. If we consider initially a vacuum state .0& at t0, such
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that ak.0& 5 0, at a later time t1 a new vacuum state .0&& can be defined such
that bj.0&& 5 0. Here the annihilation operators ak (at t0) and bj (at t1) are not
equal, but they are related by a set of Bogoliubov transformations

bj(t1) 5 o
k

(ajk(t)ak 1 b*jk(t)a†
k)

If the Bogoliubov coefficients ajk and bjk are nonzero, there is a nonzero
probability of particle creation as the field evolves from the in-region to the
out-region.

Parker [2] has shown that the probability of observing particles at time
t is

Pr 5
.b.2

1 1 .b.2 5
.b.2

.a.2 (38)

where a and b are Bogoliubov transformation coefficients. In our calculation
these coefficients are identified as

.a.2 5 .m.2

and

.b.2 5 .n.2

and they satisfy the condition

.a.2 2 .b.2 5 1

Therefore the probability of observing particles in the squeezed vacuum is
given by

Pr 5
.n.2

.m.2 (39)

Using Eq. (9), we can write

Pr 5 4. f .2.g.2 (40)

A plot of Pr versus squeezing parameters ( f, g) is shown in Fig. 1. From
this we can infer that the particle production probability becomes unity when
. f . 5 .g. 5 1/!2.

The probability of observing nk pairs at time t in the state .0& where one
particle is in the mode k and other in the mode 2k for some set of occupied
modes {k} is

.t{2nk}.0&.2 5 &
k
FHZbaZ2Jnk 1

.a.2G (41)

Therefore the probability of observing the nk pairs in the squeezed vacuum is
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Fig. 1. Pr versus squeezing parameters.

.t{2nk}.0&sq.2 5 &
k
F1ZnmZ22

nk 1
.m.2G 5 &

k
F1Z sinhs

cosh sZ22
nk 1

.cosh s.2G (42)

7. CONCLUSIONS

We have constructed a single-mode squeezed coherent state representa-
tion of the scalar field which is valid near a singularity. The newly introduced
squeezed coherent state is much simpler than the squeezed states defined by
standard means. The squeezing parameters are not independent, so different
degrees of squeezing are possible by adjusting the complex parameters (g, f ).

The problem of particle creation near a cosmological initial singularity
was reexamined by means of the squeezed coherent state. The particle produc-
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tion probability was found to be fully dependent upon the squeezing parame-
ters. A plot of Pr versus the squeezing parameters was drawn, and we found
that the particle creation probability becomes unity when .f | 5 .g. 5 1/!2.

The squeezed vacuum gives rise to fluctuations of the energy density
and the anisotropic pressure. The particles are produced from the excitation of
vacuum fluctuations (parametric amplification) by the changing background
gravitational field. The squeeze parameter .n.2 measures the number of parti-
cles created.

Thus we can conclude that cosmological particle creation amounts to
squeezing the vacuum by the background gravitational field.
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