
Implementation and Evaluation of an Improved
Header Compression for 6LoWPAN

Sreejesh V. K.
Department of Computer Science

Cochin University of Science and Technology
Kochi, Kerala 682 022

Email: vksreejesh.nair@gmail.com

G. Santhosh Kumar
Department of Computer Science

Cochin University of Science and Technology
Kochi, Kerala 682 022
Email: san@cusat.ac.in

Abstract—Extending IPv6 to IEEE 802.15.4-based Low power
Wireless Personal Area Networks requires efficient header
compression mechanisms to adapt to their limited bandwidth,
memory and energy constraints. This paper presents an
experimental evaluation of an improved header compression
scheme which provides better compression of IPv6 multicast
addresses and UDP port numbers compared to existing
mechanisms. This scheme outperforms the existing compression
mechanism in terms of data throughput of the network
and energy consumption of nodes. It enhances throughput by
up to 8% and reduces transmission energy of nodes by about 5%.

Keywords-6LoWPAN; Header Compression; IPv6; Multicast Ad-
dress; UDP

I. INTRODUCTION

IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN)[1] defines a protocol for transmission of IPv6
packets over 802.15.4 radio links. The 802.15.4 standard[2]
specifies protocols for interconnection of low-power devices
like wireless sensors to form low-power WPANs. Such net-
works are characterized by low throughput (250 kbps at 2.4
GHz), short link layer frames (127 bytes long), nodes with
limited processing power and memory, short communication
range (10 to 100 meters), and communication over multiple
hops.

Supporting IPv6 to these heavily constrained devices and
their networks pose several challenges. The minimum MTU
(Maximum Transmission Unit) requirement in IPv6 is 1280
bytes whereas an 802.15.4 link layer frame is only 127
bytes long. Hence a link-layer fragmentation and reassembly
mechanism is necessary for efficient transportation of IPv6
datagrams over LoWPAN links. In each frame as shown in
Fig. 1 the header and FCS (Frame Check Sequence) together
consume 25 bytes and the optional link-layer security header
is 21 bytes long. This leaves only 81 bytes to carry link-layer
data[1]. When a UDP packet is carried over such a frame,
it can contain only 33 bytes of upper layer data, since the
IPv6 (40 bytes) and UDP (8 bytes) headers together consume
another 48 bytes. This means the transmission efficiency for
upper layer data is as low as 26%. Header compression should
be employed to improve this value by reducing the header
overhead and providing more space to carry upper layer data.

Fig. 1. IEEE 802.15.4 Frame

To address these challenges and to standardize the use
of IPv6 over 802.15.4 radios, the Internet Engineering Task
Force (IETF) chartered the 6LoWPAN Working Group[3]
in 2005. The Working Group proposed the 6LoWPAN
protocol stack architecture (Fig. 2) in which an adaptation
layer is introduced between the network and link layers of
the IP stack to reduce IP overhead. The adaptation layer
performs fragmentation and reassembly, header compression
and decompression, and support for layer-two forwarding to
deliver an IPv6 datagram over multiple radio hops[4].

Fig. 2. 6LoWPAN Protocol Stack

The fragmentation mechanism encodes a datagram using
multiple link frames. It does not include end-to-end recovery
of lost fragments, assuming that link-layer acknowledgments
will provide sufficient delivery success rates[5]. The fragmen-
tation header is 4 or 5 bytes long and contains datagram size
(indicates size of the original datagram), datagram tag (identi-
fies all fragments of a particular datagram) and datagram offset
(indicates the location of the fragment within the datagram).

Traditional flow-based header compression techniques do

978-1-4673-2272-0/12/$31.00 ©2012 IEEE 439

not perform well with LoWPANs because in many LoWPAN
applications, traffic is driven by infrequent readings or no-
tifications rather than long lived flows. Therefore, the WG
developed a new stateless compression format that compresses
the headers by removing redundant information across the link,
network and transport layers and by using compact forms for
commonly used header field values. The header compression
format also allows stateful compression of arbitrary IPv6
address prefixes. To accomplish this, each node maintains a
context table containing IPv6 prefixes and their corresponding
context values[5].

This paper presents the performance evaluation of an im-
proved header compression mechanism proposed in [6] to
compress IP and UDP headers in LoWPANs. The improved
scheme is compared with the currently implemented header
compression scheme in Contiki in terms of two metrics,
namely, the throughput and transmission energy.

This paper is organized as follows. Section 2 presents an
overview of related works. The improved header compression
scheme is described in Section 3. Section 4 explains the
experimental setup and evaluation procedure. The results are
discussed in section 5, and we draw our conclusions in section
6.

II. RELATED WORKS

A. LOWPAN HC1 and LOWPAN HC2

The first header compression mechanisms, LOWPAN HC1
and LOWPAN HC2 were proposed in RFC 4944[4]. LOW-
PAN HC1 defines a compression format for IP header. It
assumes default values for IP version (v6), Traffic class and
Flow label (both are zero). The payload length can be inferred
from either the link layer header or the fragmentation header.
The source and destination IPv6 addresses are link local; and
their interface identifiers can be inferred from the link layer
addresses. Next Header field is compressed to 2 bits and
indicate UDP, ICMP or TCP. Hop Limit is not compressed
and the full hop limit value is carried in line.

LOWPAN HC2 defines a compression format for UDP
header. It allows compression of source port, destination port
and length fields. UDP length can be inferred from the IPv6
header. The commonly used port numbers in the range F0B0
- F0BF can be compressed down to 4 bits. UDP checksum is
not compressed and is therefore carried in full.

The above scheme can compress the IPv6/UDP header down
to 7 octets in the best case. It is very effective for link-local
unicast communication. However, since it does not compress
global and multicast addresses, it is insufficient for most prac-
tical uses of IPv6 in LoWPANs. With link-local multicast and
global unicast communication, the compressed header sizes
are 23 and 31 bytes respectively[7]. Furthermore, HC1/HC2
requires that the compressed headers must be contiguous. This
constraint prevents the compression of a UDP header when an
IPv6 extension header is present.

B. LOWPAN HC1g

The LOWPAN HC1g[8] is an extension of LOWPAN HC1
with the capability to compress global unicast addresses. This
is accomplished by assuming that a PAN is assigned a single
compressible 64-bit global IP prefix. The prefix can be elided
when either the source or destination address matches the
compressible global IP prefix. With this scheme, the global
address can be compressed down to 64 bits or 16 bits or can
be elided completely.

Since HC1g can compress only a single shared global IP
prefix, it is not useful when devices communicate with external
LoWPAN or the Internet. In this case, the full 128-bit address
must be carried in line. Again, the compression of multicast
addresses is not supported in HC1g.

C. LOWPAN IPHC and LOWPAN NHC

The latest standards for compressing IPv6 and UDP headers,
LOWPAN IPHC and LOWPAN NHC, are specified in RFC
6282[9]. LOWPAN IPHC can efficiently compress multicast
and global addresses in addition to link-local and unicast
addresses. It also compresses the Hop Limit field by defining
compact forms of commonly used IPv6 hop limit values.
Moreover, compression of IPv6 extension headers is supported
and a chain of arbitrary next headers can be encoded effi-
ciently.

LOWPAN IPHC employs stateless compression to com-
press link-local IPv6 addresses. Global IPv6 address compres-
sion uses shared contexts for arbitrary prefixes. The encoding
contains an additional Context Identifier Extension (CID) byte
when communicating with global address. The leftmost 4 bits
of CID specify the context used for compressing the source
address and the rightmost 4 bits specify the destination context.
Context based compression allows us to compress up to 16
network prefixes and save 60 bits of payload when communi-
cating with external networks[10]. The LOWPAN IPHC base
encoding is 2 bytes long and is shown in Fig. 3.

Fig. 3. LOWPAN IPHC Base Encoding

The first three bits in the encoding format indicate the
use of IPHC compression. The 2-bit HLIM field compresses
commonly used hop limit values. TF field indicates whether
the Traffic class and/or Flow label are compressed. NH=1
indicates that the next header is compressed using LOW-
PAN NHC. If CID=1, a Context Identifier Extension byte
immediately follows the DAM field. The mode of compression
of source/destination address is given by SAC/DAC fields (1
indicates context based compression and 0 indicates stateless
compression). The destination address is multicast if M=1.
The SAM/DAM fields indicate the number of bits of the
source/destination address carried in line. LOWPAN IPHC
can compress source address and unicast destination address

440

down to 64, 16 or 0 bits and multicast destination address
down to 48, 32 or 8 bits in various scenarios.

LOWPAN NHC uses variable length identifier to specify
the next header and it can compress any arbitrary next header.
The standard [9] describes UDP and IPv6 extension header
encodings only. When compressing UDP headers, it is possible
to elide the checksum, provided that additional upper-layer
security mechanisms like Message Integrity Check (MIC) are
used. Besides compressing port numbers based on F0B0 down
to 4 bits as in [4], LOWPAN NHC compresses port numbers
in the range F000 – F0FF down to 8-bits. The format for UDP
header encoding is shown in Fig. 4.

Fig. 4. LOWPAN NHC Encoding for UDP Header

The first five bits identify this as a UDP header. If C=1, the
checksum is compressed. The last two bits in the encoding
format indicate the number of bits of the source and destination
ports carried in line. The options are:
00 - All 16 bits of both ports carried in line
01 - All 16 bits of source port and 8 bits of destination port
10 - 8 bits of source port and all 16 bits of destination port
11 - 4 bits of both ports carried in line

LOWPAN IPHC can compress the IPv6 header down to
2 octets with link-local communication. When routing over
multiple hops, the header can be compressed down to 7 octets.
With IPHC and NHC, the compressed header lengths are 6,
7 and 10 bytes respectively with link local unicast, link local
multicast and global unicast communications[7].

III. IMPROVED COMPRESSION SCHEME

In [6], a compression scheme is proposed which extends
the capability of LOWPAN IPHC and LOWPAN NHC by
providing better compression of IPv6 multicast addresses and
UDP port numbers. It utilizes the unused bit combinations
in LOWPAN IPHC so that more compression options are
available for multicast addresses. It extends LOWPAN NHC
by making the source port and destination port compressions
independent of each other. It also proposes a scheme to
compress ICMP headers and routing headers in 6LoWPAN
networks. The LOWPAN IPHC-IMP encoding is shown in
Fig. 5.

Fig. 5. LOWPAN IPHC-IMP Base Encoding

The 2-bit CID field indicates whether the Source Context
Identifier and/or Destination Context Identifier are present.
The compression mode and the number of bits of source
and destination addresses carried in line are given by the 3-
bit Source Address/Destination Address fields. The remaining

fields are interpreted in the same way as they are in IPHC
encoding.

The UDP header compression in NHC-IMP is improved
by separating the source port and destination port encodings
so that they can be compressed independently of each other.
As shown in Fig. 6 the length of UDP identifier is reduced to
3 bits and the source port and destination port numbers are
encoded using 2 bits each. The port compression options in
NHC-IMP are:
00 - All 16 bits of the port carried in line
01 - First 8 bits of the port is 0xF0 and elided. The remaining
8 bits are carried in line
10 - First 12 bits of the port is 0xF0B and elided. The
remaining 4 bits are carried in line
01 - First 8 bits of the port is 0x00 and elided. The remaining
8 bits are carried in line

Fig. 6. LOWPAN NHC-IMP Encoding for UDP Header

When both port numbers are in the range F000-F0FF, NHC-
IMP will compress both of them to 8 bits each whereas NHC
will compress only one of them. Well known port numbers in
the range 0-255 are compressed to 8 bits by NHC-IMP but in
NHC the full 16 bits of these port numbers must be carried
in line.

IPHC-IMP can compress multicast addresses down to 48,
32, 8 and 0 bits in different scenarios. The all-nodes and all-
routers multicast addresses can be completely elided in IPHC-
IMP but in IPHC, the lowermost 8 bits of these addresses must
be carried in line. Furthermore, the solicited node multicast
address can be compressed to 24 bits in IPHC-IMP compared
to 48 bits in IPHC.

IV. EXPERIMENTAL EVALUATION

An experimental evaluation of the two protocols, namely
LOWPAN IPHC/NHC and LOWPAN IPHC/NHC-IMP is
presented in this section. The following subsections describe
the hardware and software platforms used.

A. Hardware Platform

The experiments are performed using Crossbow’s TelosB
motes[11]. TelosB uses Texas Instruments MSP 430 micro-
controller featuring a 16-bit, 8 MHz processor with 10 KB of
RAM and 48 KB program flash memory. It is equipped with
CC2420 radio[12] which operates in 2.4 GHz ISM (Industrial,
Scientific and Medical) band and offers a data rate of 250
Kbps. Other features include USB programming capability and
an optional sensor suite with integrated light, temperature and
humidity sensors.

441

B. Software Setup
The operating system used is Contiki[13] version 2.5. It

is an open source operating system for networked embedded
devices and wireless sensor networks. It includes uIPv6, a
lightweight IPv6 stack designed for constrained devices. Con-
tiki supports 6LoWPAN header compression, IETF RPL IPv6
routing[14], and the IETF CoAP application layer protocol[15]
among many other protocols and mechanisms. Moreover, stan-
dard Operating System features like threads, timers, random
number generator, clocks, file system and command line shell
are also provided in Contiki[16].

The 6LoWPAN implementation in Contiki 2.5 conforms to
[4] and [18]. It implements 6LoWPAN header compression,
fragmentation and layer three forwarding. The features of
6LoWPAN implementation[17] in Contiki 2.5 are:

• Supports HC1 and IPHC header compressions
• Currently supports 802.15.4 64-bit addresses only
• Next header is compressed only if it is UDP
• UDP checksum compression is not implemented
• Compression of IPv6 Extension Headers not supported
The existing 6LoWPAN implementation in Contiki 2.5 is

extended by incorporating the new compression technique
so that it now supports IPHC as well as IPHC-IMP. An
application can choose the desired compression scheme by
appropriately setting the compilation option in the project
Makefile.

C. Experimental Setup
The experimental setup (Fig. 7) consisted of two TelosB

motes, a source which sends UDP packets and a sink which
receive them. The UDP payload length is varied from 4 bytes
to 144 bytes. For each payload value, 10 measurements have
been taken and the final result is the mean value of these
measurements.

Fig. 7. Experimental Setup

D. Energy Consumption
The software based power profiler in Contiki shows the time

spent by a mote in transmit and listen states. Using these and
the standard values provided in the TelosB and CC2420 data
sheets, the energy consumed by a mote can be determined.
For example, the energy ETransmit consumed by a mote due
to transmitting is given by

ETransmit = TTransmit × V oltage× ITransmit

where TTransmit is the time spent by the mote in transmitting
state and ITransmit is the transmit current. According to the
data sheets, the mote operating voltage is 3V when attached
to the USB port of a host computer and the transmit current
is 17.4 mA.

V. RESULTS AND DISCUSSIONS

The performance of IPHC and the proposed IPHC-IMP are
compared in terms of data throughput and transmit energy per
bit of the source.

Fig. 8 shows the average throughput obtained for the two
compression schemes. IPHC-IMP outperforms IPHC because
the number of bytes of MAC payload available to carry data is
greater in IPHC-IMP compared to IPHC. When data payload
length is 94 bytes, IPHC suffers from fragmentation and there
is a decline in throughput. But IPHC-IMP is able to send the
data unfragmented because of a lower header overhead. The
improvement in throughput with IPHC-IMP at this point is
77.6%. In both schemes, throughput is found to decrease once
fragmentation occurs. The average improvement in throughput
with IPHC-IMP is 7.92%.

Fig. 8. Throughput

The average transmit energy per bit for the two schemes
is shown in Fig. 9. We can notice that IPHC-IMP reduces
the energy consumption of the source node. This is because
IPHC-IMP results in the transmission of fewer number of bits
compared to IPHC for any given data payload length. A sharp
increase in energy consumption is noticed once the payload
length exceeds the fragmentation boundary. Transmit energy
is reduced by 4.84% on average with IPHC-IMP.

In light of the above discussions, it is confirmed that IPHC-
IMP is a better scheme for 6LoWPAN header compression and
offers higher throughput and consumes lesser energy compared
to IPHC.

VI. CONCLUSION

This paper has presented an experimental evaluation of
an improved header compression mechanism for 6LoWPAN
networks using Contiki OS and TelosB motes. The perfor-
mance of the proposed scheme is compared with the existing
compression mechanism. Experimental results show that the
proposed scheme increases throughput and reduces the energy
consumption of nodes in the network.

442

Fig. 9. Transmit Energy per Bit

A majority of the energy consumed by a sensor node is in
communication while CPU consumes only a minor portion
of the power consumption[19]. In this point of view, the
improved compression scheme saves node energy and extends
the average lifetime of the entire network.

REFERENCES

[1] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals”, RFC 4919, IETF, Aug. 2007.

[2] IEEE Standards 802.15.4, “Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs)”, IEEE Computer Society, Oct. 2003.

[3] IPv6 over Low power WPAN, http://datatracker.ietf.org/wg/6lowpan/charter/
[4] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission

of IPv6 Packets over IEEE 802.15.4 Networks”, RFC 4944, IETF, Sept.
2007.

[5] J. Ko, A. Terzis, S. Dawson-Haggerty, D. E. Culler, J. W. Hui, and P.
Levis, “Connecting Low-Power and Lossy Networks to the Internet”,
IEEE Communications Magazine, pp. 96-101, Apr. 2011.

[6] W. Huiqin, and D. Yongqiang, “An Improved Header Compression
Scheme for 6LoWPAN Networks”, Ninth International Conference on Grid
and Cloud Computing, Nov. 2010.

[7] J. Hui, D. Culler, S. Chakrabarti, “6LoWPAN: Incorporating IEEE
802.15.4 into the IP architecture”, IPSO Alliance, Jan. 2009.

[8] J. Hui, and D. Culler, “Stateless IPv6 Header Compression for Globally
Routable Packets in 6LoWPAN Subnetworks”, Expired Internet-Draft,
Jun. 2007. http://tools.ietf.org/html/draft-hui-6lowpan-hc1g-00

[9] J. Hui , and P. Thubert, “Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks”, RFC 6282, IETF, Sept. 2011.

[10] A. Ludovici, A. Calveras, M. Catalan, C. Gomez, and J. Paradells,
“Implementation and Evaluation of the Enhanced Header Compres-
sion(IPHC) for 6LoWPAN”, The Internet of the Future, Lecture Notes in
Computer Science, Springer Berlin Heidelberg, Volume 5733, pp. 168-
177, 2009.

[11] TelosB Data Sheet, http://www.willow.co.uk/TelosB Datasheet.pdf
[12] Chipcon CC2420 Data Sheet, http://www.ti.com/lit/ds/symlink/cc2420.pdf
[13] Contiki - Connecting the Next Billion Devices, www.sics.se/contiki/
[14] P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, JP.

Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol for Low-Power
and Lossy Networks”, IETF, Mar. 2012, http://tools.ietf.org/html/rfc6550

[15] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained Appli-
cation Protocol (CoAP)”, Internet Draft (Work in Progress), Mar. 2012.
http://tools.ietf.org/html/draft-ietf-core-coap-09

[16] The Contiki OS, http://www.contiki-os.org/p/about-contiki.html
[17] The Contiki Operating System Documentation,

http://www.sics.se/ adam/contiki/docs/

[18] J. Hui, P. Thubert, “Compression Format for IPv6 Datagrams
in 6LoWPAN Networks”, Expired Internet Draft, IETF, Oct. 2009.
http://tools.ietf.org/html/draft-ietf-6lowpan-hc-06

[19] D. Estrin, “Sensor Network Protocols”, Eighth International Conference
on Mobile Computing and Networking, Sep. 2002.

443

