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Abstract 
 
 Cerebral glioma is the most prevalent primary brain tumor, which are 
classified broadly into low and high grades according to the degree of malignancy. 
High grade gliomas are highly malignant which possess a poor prognosis, and the 
patients survive less than eighteen months after diagnosis. Low grade gliomas are 
slow growing, least malignant and has better response to therapy. To date, 
histological grading is used as the standard technique for diagnosis, treatment 
planning and survival prediction. 
 The main objective of this thesis is to propose novel methods for automatic 
extraction of low and high grade glioma and other brain tissues, grade detection 
techniques for glioma using conventional magnetic resonance imaging (MRI) 
modalities and 3D modelling of glioma from segmented tumor slices in order to 
assess the growth rate of tumors. Two new methods are developed for extracting 
tumor regions, of which the second method, named as Adaptive Gray level 
Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and 
grey matter from T1 FLAIR an T2 weighted images. The methods were validated 
with manual Ground truth images, which showed promising results. The developed 
methods were compared with widely used Fuzzy c-means clustering technique and 
the robustness of the algorithm with respect to noise is also checked for different 
noise levels. Image texture can provide significant information on the 
(ab)normality of tissue, and this thesis expands this idea to tumour texture grading 
and detection. Based on the thresholds of discriminant first order and gray level co-
occurrence matrix based second order statistical features three feature sets were 
formulated and a decision system was developed for grade detection of glioma  
from conventional T2 weighted MRI modality.The quantitative performance 
analysis using ROC curve showed 99.03% accuracy for distinguishing between 
advanced (aggressive) and early stage (non-aggressive) malignant glioma. The 
developed brain texture analysis techniques can improve the physician’s ability to 
detect and analyse pathologies leading to a more reliable diagnosis and treatment of 
disease. The segmented tumors were also used for volumetric modelling of tumors 
which can provide an idea of the growth rate of tumor; this can be used for 
assessing response to therapy and patient prognosis.  
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 The great practical difference between the word, written or spoken, and the 
visual image is that we cannot read the former unless we have been initiated into 
the mystery of language, whereas visual images can be made intelligible to all men 
who have eyes..... 

 Human visual perception is a far more complex and selective process than 
that which a film records. However, unlike humans, who are limited to the visual 
band of electromagnetic (EM) spectrum, imaging machines cover almost the entire 
EM spectrum, ranging from gamma to radio waves. They can operate also on 
images generated by sources that humans are not accustomed to associating with 
images. These include ultrasound, electron microscopy, parametric imaging and 
computer-generated images. Thus, digital image processing encompasses a wide 
and varied field of applications 

 Digital image processing is the technology of applying computer algorithms 
to process digital images. The outcome of this process can be either images or set 
of representative characteristics or properties of original images. Digital image 
processing directly deals with an image, which is composed of many image points, 
are also namely pixels as spatial coordinates that indicate the position of points in 
the image, and intensity (gray level) values. A colorful image accompanies higher 
dimensional information than a gray image. Red, green and blue values are 
typically used in combinations to produce color images in real world [1].  

  In this chapter, we outline how a theoretical base and state-of the-art 
method can be integrated into prototyping environment whose objective is to 
provide novel methods for segmentation, grade detection and 3D modeling of 
glioma. This chapter starts with a brief introduction about glioma, magnetic 
Resonance imaging, and computer aided diagnostic systems. In addition, a general 
overview of the thesis is provided including the description of its structure. 

1.1 Biomedical Image Processing 
The commonly used term “biomedical image processing” means the 

provision of digital image processing for biomedical sciences. By the increasing 
use of the direct digital imaging systems for medical diagnostics, digital image 
processing becomes more and more important in health care. Based on digital 
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imaging techniques, the entire spectrum of digital image processing is now 
applicable in medicine. In general, digital image processing covers four major 
areas - Image formation or Image acquisition, Image visualization or Image 
enhancement, Image analysis and Image management. 

1.1.1 Image formation or Image Acquisition 
 Image formation or Image acquisition includes all the steps from capturing 
the image to forming a digital image matrix. Numerous electromagnetic and some 
ultrasonic sensing devices are frequently arranged in the form of a 2-D array. The 
response of each sensor is proportional to the light energy falling onto the surface 
of the sensor. Generally image acquisition stage involves preprocessing like  
scaling [1].   

 Nowadays, medical images have become a major component of diagnostics, 
treatment planning and procedures, and follow-up studies. Furthermore, medical 
images are used for education, documentation, and research describing, 
morphology as well as physical and biological functions in 1D, 2D, 3D, and even 
4D image data. Today, a large variety of imaging modalities have been established, 
such as X-ray, Computed Tomography(CT), Magnetic Resonance Imaging (MRI), 
Fluoroscopy, Ultrasound etc. which are based on transmission, reflection or 
refraction of light, radiation, temperature, sound, or spin. Obviously, an algorithm 
for delineation of an individual that works with one imaging modality will not be 
applicable directly to another modality. 

1.1.2 Image Visualization or Image Enhancement 
 Image visualization or Image enhancement refers to all types of 
manipulation of the image matrix, resulting in an optimized output image. The goal 
is to process the image so that the result is more suitable than the original image for 
a specific application. The word specific is important because the methods for 
enhancing one kind of image may not be suitable for another kind, e.g. X-ray 
images and space craft images. Image visualization or image enhancement is low-
level processing which denotes manual or automatic techniques, which can be 
realized without a priori knowledge on the specific content of images.  These 
methods operate on the raw data as well as on pixel, edge, or texture levels, and 
thus are at a minimal level of abstraction. The Low-level methods of image 
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processing, i.e., procedures and algorithms, are mostly applied for pre- or post-
processing of medical images [2]. 

1.1.3  Image analysis 
 Image analysis includes processing used for quantitative measurements as 
well as abstract interpretations of biomedical images. These steps require a priori 
knowledge of the nature and content of the images, which must be integrated into 
the algorithms at a higher level of abstraction. Thus, the process of image analysis 
is very specific, and developed algorithms can be transferred directly into other 
application domains. High-level image processing include methods at the texture, 
region, object, and scene levels. The required abstraction can be achieved by 
increased modelling of a priori knowledge. Image analysis techniques require 
extraction of certain features that aid in the identification of the object. Image 
Analysis mainly involves segmentation, feature extraction and selection, 
representation and description, classification or detection or recognition [2, 3].   

• Segmentation techniques are used to isolate the desired object from the scene 
so that measurements can be made on it subsequently. Segmentation partitions 
the image into its constituent connected regions or objects. The level to which 
the subdivision is carried depends on the problem being solved. In medical 
image processing, the definition accentuates the various diagnostically or 
therapeutically relevant image areas, namely, the discrimination between 
healthy anatomical structures and pathological tissue. By definition, the result 
of segmentation is always at the regional level of abstraction.  Depending on 
the level of feature extraction required after segmentation, we can 
methodically classify the procedures into pixel, edge, and texture or region-
oriented procedures. In addition, there are hybrid approaches, which result 
from combination of single procedures [1-3]. 

• Representation and description almost follow the output of a segmentation 
stage, which is usually raw pixel data, constituting the boundary of the region, 
i.e. a set of pixels separating one region from another or all the points in it. In 
either case, converting data to a suitable form for computer processing is 
necessary. Therefore, the task of feature extraction is to emphasize image 
information at the particular level, where subsequent algorithms operate. 
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Consequently, information provided on other levels must be suppressed. Thus, 
a data reduction to obtain the characteristic properties is executed. Feature 
extraction techniques according to the different levels of abstraction, that is, 
data level, pixel level, edge level, texture level and region level (external 
representation) [1-3] were used. 

• Description is also called feature selection. It deals with extracting the 
attributes that result in some quantitative information of interest or is basic for 
differentiating one class of object from another [1].  

• Recognition is a process that assigns a label to an object, based on its 
descriptors. This is usually achieved through classification or detection of 
objects or regions in an image. According to the general processing chain, the 
task of the classification/detection is to assign all connected regions which are 
obtained from the segmentation, to particularly specified classes of objects. 
Usually, region-based features that sufficiently abstract the characteristics of 
the objects are used to guide the classification process. These extracted 
features must be sufficiently discriminative and suitably adopted to the 
application, since they fundamentally impact the resulting quality of the 
classifier/detector. The classification itself reverts mostly to known numerical 
(statistical) and non-numerical (syntactic) procedures as well as the newer 
approaches of Computational Intelligence (CI), such as neural networks, 
evolutionary algorithms, and fuzzy logic. In general, the individual features, 
which are determined by different procedures, are summarized either to 
numerical feature vectors (also referred to as signature) or abstract strings of 
symbols. Statistical classification regards object identification as a problem of 
the statistical decision theory. A syntactic classifier can be understood as a 
knowledge-based classification system (expert system), because the 
classification is based on a formal heuristic, symbolic representation of expert 
knowledge, which is transferred into image processing systems by means of 
facts and rules. 

1.1.4  Image management 
 Image management sums up all the techniques that provide efficient storage, 
communication, transmission, archiving, and access (retrieval) of image data. Thus, 
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the methods of telemedicine are also a part of the image management. Image 
restoration attempts to reconstruct or recover an image that has been degraded by 
using an a priori knowledge of degradation phenomenon and is based on 
mathematical and probabilistic models of image degradation. This includes 
deblurring of images degraded by the limitations of a sensor or its environment, 
noise filtering, and correction of geometric distortion or nonlinearities due to 
sensors [2]. 

1.1.5  Major Challenges in Biomedical Image Processing 
 Using medical images, it is difficult to formulate a priori knowledge such 
that it can be integrated directly and easily into automatic algorithms of image 
processing. This is referred to as the semantic gap, which means the discrepancy 
between the cognitive interpretation of a diagnostic image by the physician (high 
level) and the simple structure of discrete pixels, which is used in computer 
programs to represent an image (low level). In the medical domain, there are three 
main aspects hindering bridging this gap [3] 

• Heterogeneity of images: Medical images display living tissue, organs, or 
body parts. Even if captured with the same modality and following a 
standardized acquisition protocol, shape, size, and internal structures of these 
objects may vary remarkably not only from patient to patient (inter-subject 
variation), but also among different views of the same patient and similar 
views of the same patients at different times (intra-subject variation). In other 
words, biological structures are subject to both inter- and intra-individual 
alterability. Thus, universal formulation of a priori knowledge is  
impossible [3] 

• Unknown delineation of objects: Frequently, biological structures cannot be 
separated from the background because the diagnostically or therapeutically 
relevant object is represented by the entire image. Even if definable objects are 
observed in biomedical images, their segmentation is problematic because the 
shape or borderline itself is represented fuzzily or only partly. Hence, 
medically related items often can be abstracted most at the texture level [3]. 

• Robustness of algorithms: In addition to these inherent properties of medical 
images, which complicate their high-level processing, special requirements of 
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reliability and robustness of medical procedures, when applied in routine, 
image processing algorithms are also demanded in the medical area. As a rule, 
automatic analysis of images in medicine should not provide wrong 
measurements. This means that, images which cannot be processed correctly, 
must be automatically, rejected and withdrawn from further processing. 
Consequently, all images that have not been rejected must be evaluated 
correctly [3].  

1.2 Glioma - Background 
 Gliomas are the most frequent primary brain tumors that originate in glial 
cells. Glial cells are the building-block cells of the connective, or supportive tissue 
in the central nervous system (CNS) [4, 5]. Glial cells provide the structural 
backbone of the brain and support the function of the neurons (nerve cells), which 
are responsible for thought, sensation, muscle control, and coordination. According 
to World Health Organization (WHO), gliomas are classified into four grades that 
reflect the degree of malignancy. Grades I and II are considered as low-grade and 
grades III and IV are considered as high-grade. Grades I and II are the slowest-
growing and least malignant. Grade I tumors are well circumscribed and often 
surgically curable, whereas grade II tumors diffuse, infiltrating lesions with a 
marked potential, over the time, for progression towards high grade malignant 
tumor [6]. Grade III tumors are considered malignant and grow at a moderate rate, 
and show chemo sensitivity and better prognosis. Grade IV tumors, such as 
glioblastoma multiforme, are fast growing and are the most malignant of primary 
brain tumors [4, 6]. It is also the most resistant to current standard treatment – 
i.e.surgery, followed by radiation and chemotherapy. Most common subtype of 
glioma is Astrocytoma [7]. Grade IV Astrocytoma is called Glioblastoma. 
Classification of glioma tumors is important for clinical understanding of tumor 
biology, clinical response and for assessing overall prognosis with brain tumor. 

 Imaging is an essential part of the decision making process for therapy and 
later for planning of surgical or radio therapeutic interventions. In the case of 
neurosurgery, neuroimaging can precisely define the location and accurately 
delineate the lesion and its relationship to grey and white matter structures, before 
intervention. In radiation therapy, imaging can define and demarcate margins for 
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therapy planning. Imaging is mandatory after therapeutic intervention for 
monitoring disease and possible side effects. 

 MR imaging is the standard technique for diagnosis, treatment planning, and 
monitoring of CNS lesions, with superior sensitivity compared to alternative 
modalities [8]. MR Imaging is classified broadly into two types according to the 
techniques and applications, i.e, conventional and advanced MR imaging. 
Components of a standardized protocol for conventional MR imaging include T1-
weighted pre-contrast, T2-weighted, FLAIR, Diffusion Weighted Imaging (DWI), 
and T1-weighted contrast imaging [8]. Conventional MR imaging of the brain 
provides excellent soft tissue contrast and is routinely used for the noninvasive 
assessment of brain tumors, but its ability to define the tumor type and grade of 
gliomas is limited [9]. Based on the patient's conventional MRI, a radiologist 
cannot differentiate whether it is a low grade glioma or a high grade glioma, 
because both of these are almost visually similar [10]. A biopsy is usually required 
to establish the diagnosis and subtype of a brain tumor and to plan appropriate 
treatment after conventional MR imaging.   

 Advanced MR imaging modalities such as proton MR spectroscopic imaging 
(MRSI), perfusion-weighted imaging (PWI), and diffusion-weighted imaging 
(DWI) have been proposed as alternate methods for differential diagnosis of 
tumors and non tumor lesions, primary versus metastatic lesions and tumor grading 
[9-11]. MRSI provides metabolic signature of brain tumors and PWI measures 
relative cerebral blood volume (rCBV). These factors reflect variation in micro 
vessel density and apparent diffusion coefficient (ADC) derived from DWI and 
reflects changes in tissue structure [9, 10]. There are many studies in literature, for 
differentiating primary gliomas and metastates and glioma grading by combining 
conventional MRIs with PWI, MRSI and DWI [11]. PWI, MRSI and DWI are also 
used for Multi parametric characterization of grade 2 glioma subtypes [9]. 
Advanced MR imaging offers new insights into the patho physiology of brain 
tumors, mainly gliomas. These techniques, including MR Spectroscopy, Perfusion 
Weighted Imaging, and Diffusion Tensor Imaging, are increasingly incorporated 
into imaging protocols and complement the morphologic detail of conventional 
MR imaging studies, with a range of applications including assessment of 
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treatment response. But, advanced MR imaging facilities are not common because 
of high equipment and acquisition cost. 

 The most common conventional MRI modalities used to assess gliomas are 
Fluid Attenuated Inversion Recovery (FLAIR), T1 and T2-weighted modalities. 
T1-weighted modalities highlight fat tissues in the brain whereas T2-weighted 
modalities highlight tissues with higher concentration of water.  FLAIR images are 
T2 or T1-weighted with the cerebrospinal fluid (CSF) signal suppressed. In 
general, edema, border definition and tumor heterogeneity are best observed on 
FLAIR and T2-weighted images [7]. 

1.3 Significance of the Thesis 
 The accurate segmentation of Glioma tumors, its boundary, Grey matter and 
White matter are essential for further analysis, treatment planning, and response to 
therapy and for determining prognosis. But the extraction and analysis of 
anatomical structures from brain MRIs are quite difficult and time consuming 
because of its complex structure. Usually MR images are affected by the presence 
of noise, intensity in-homogeneities and partial volume effect which cause accurate 
segmentation and boundary determination of tumor a difficult task. Most of the 
widely used brain tumor segmentation methods developed, such as thresholding 
[12], edge and region based [13] techniques. Atlas-guided methods [14], Clustering 
approaches [15], Region growing techniques [16], k-means clustering [17], fuzzy c 
means clustering techniques [18], neural network approaches, level set method 
[18,19], GVF snake [20] and Markov random fields have limitations, as they 
require too much computation time, suffer from under segmentation, over-
segmentation, variation in intensity levels etc. Hence, a robust and accurate 
segmentation method with less complexity has to be developed for extracting the 
entire tumor area and other brain tissues, retaining original gray level values.  

 Grade detection of glioma tumors is very important for taking clinical 
decisions regarding the treatment and for finding survival rates without doing 
biopsy. The major challenges are, tumor characterization is difficult, because the 
neoplastic tissue is often heterogeneous with conventional MR imaging profile. 
The second thing is that, the external representation of tumor, which is shape, 
cannot be taken as a discriminant feature for detection/ classification of grade/type 
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of tumor because, the shape of each tumor is not consistent throughout all slices of 
MR image and may change quickly where the inter-slice distance is large. But, 
tumors are expected to have consistent textures for all slices. Texture analysis is 
very important in the brain tumor detection, as it is difficult to differentiate 
between various types of tumor tissues using shape. Several approaches are present 
in the literature for classification and grade detection of glioma tumors. 
Classification of glioma from metastatic, and grading of glioma from conventional 
MRI and perfusion MRI, using support vector machines (SVM) [11, 21] and 
artificial neural networks is cited in literature. The features used for their study 
were tumor shape, intensity characteristics, rotation invariant Gabor texture 
features, age, gender, Texture analysis using statistical quantification etc.  The 
imaging profile used for grade detection of glioma tumors in literature are multi-
parametric Images. Methods are there in literature for classification of brain tumor 
type and grade using advanced MRI texture and support vector machines (SVM) 
[22], in recent years. However, from a practical point of view perhaps the most 
serious problem with SVMs is the high algorithmic complexity and extensive 
memory required for quadratic programming in large-scale tasks and therefore 
binary SVMs are computationally expensive and thus run slow [23]. 

 The diagnosis and detection of glioma currently rely on the histopathologic  
examination  of biopsy specimens, but variations in tissue sampling for these 
heterogeneous tumors and restrictions on surgical accessibility make it difficult to 
be sure that the samples obtained are representative of the entire tumor. Hence we 
have to consider entire tumor texture for analysis.  Usually, most of the texture 
analysis methods make use of only a portion of the tumor region and this may 
affect the accuracy of detection/classification. Hence texture based computer 
assisted methods have to be devised for grade detection of glioma tumors.  

 Volumetric change in glioma tumors over time is a critical factor in 
treatment decisions. Typically, the tumor volume is computed on a slice-by-slice 
basis using MRI scans obtained at regular intervals. The appearance of high grade 
MR images varies greatly, due to tissue variation inside the tumor area and the 
diffused growth of the tumor. Moreover, the segmented tumors should be 
visualized to get an opinion about the tumor’s shape and location in the brain. For 
clinical follow-up also, the evaluation of the pre-operative tumor volume is 
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essential. Most of the 3D modeling techniques in literature is time consuming and 
much user intervention is required. Hence a method has to be devised for 
volumetric modeling of glioma tumors from automatically segmented tumor slices.   

1.4  Objective of the Thesis 
 From the above described background information, it is clear that  
development of novel and robust techniques for accurate segmentation of low and 
high grade glioma, its boundary, White matter and Grey matter, which overcomes 
the limitations of the existing methods up to a greater extent, is a topic of 
relevance. The research work presented in this thesis focuses on (1) accurate 
segmentation of pathological tissues and other brain structures (2) texture based 
techniques for grade detection of glioma tumors and (3) 3D modeling of tumor 
region for assessing the growth rate.  

Texture based feature extraction and feature set formulation are the topics of 
interest in this work. This research focuses on statistical texture analysis using First 
order statistical features and also Gray level co- occurrence matrices, for feature 
extraction.  Texture is a measure of variation of intensity of a surface, quantifying 
properties such as smoothness, coarseness, and regularity. Hence a novel technique 
is devised for grade detection of glioma tumors from conventional brain MRIs 
using statistical texture quantification methods. This also emphasizes on the 
development of techniques which are more accurate, less time consuming and with 
much less human intervention, for the 3D modeling of glioma tumors for growth 
rate assessment, response to therapy, treatment planning etc. 

The objectives of the thesis can be summarized as follows 

The research work done can be classified into three phases. 

1. Development of a novel automatic technique for extracting/ segmenting  
low and high grade glioma tumor and other brain components without any 
loss of tumor tissue regions, from conventional MR Image slices, for pre-
operative planning and treatment. 

2. To devise a concrete method to detect the grade of glioma tumors from the 
segmented MR images, before deciding on doing biopsy. This can be used 
as a second opinion to radiologists in helping glioma grade detection. 
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3. Devise a technique for volumetric modeling of Glioma tumors from the 
segmented tumor slices, in order get a better understanding of Glioma 
tumors, in terms of its growth rate. 

1.5 Contributions of the Thesis 
The contributions of the thesis are given below 

1.5.1 Development of Novel Techniques for Automatic 
Extraction of Tumor,  Tumor boundary, White matter 
and Grey matter. 

 Two methods are developed for extraction of pathological subjects and other 
brain components. First method extracts low and high grade glioma tumor from T2 
weighted MRI. The methods involved are mathematical morphological filtering 
techniques such as complementation, dilation, subtraction, closing and opening, 
correlation filtering and thresholding. The robustness of the algorithm with respect 
to Gaussian noise and speckle noise is also evaluated. The second method named 
as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA), makes 
use of joint intensities of T1FLAIR and T2 weighted images to extract low and 
high grade Tumor, tumor boundary, White matter and Grey matter. The method is 
validated with respect to the manual ground truth of the images. The methods are 
compared with respect to the existing methods, in terms of computation time and 
accuracy. 

1.5.2 Development of Technique for Automatic Grade 
detection of Glioma tumors from segmented MR 
images using statistical methods. 

 A novel method is proposed here for the grade detection of glioma using a 
rule based decision system.  Three different feature sets are formulated from 
selected descriptors extracted by statistical quantification of tumor textures. This 
frame work consists of pre-processing and segmentation of region of interest 
(ROI), analysis of segmented tumor texture based on first order statistics and Gray 
Level Co occurrence Matrix based second order statistics for feature extraction, 
feature selection using box plots, feature set formulation, development of decision 
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system based on thresholds fixed by the features in the feature sets, and finally 
training and performance evaluation of results using receiver operating 
characteristic curve (ROC). GLCM is an effective tool for statistical quantification 
of textures. GLCM based statistical texture analysis of segmented tumors using 
conventional T2 weighted MRI has not been used before for  grade detection of 
glioma. 

1.5.3 3D Modeling of Glioma Tumors from Segmented 2D 
slices 
 Volumetric modeling of glioma tumors is devised by stacking automatically 
segmented 2D glioma tumor slices in the patient’s image dataset by3D surface 
rendering method. The size and accuracy of the tumor depends upon the accuracy 
of segmented 2D slices. The Growth rate assessment for a tumor for different days 
is evaluated using this method.   This method is useful for volumetric analysis and 
shape determination of tumors and successive assessment by doctors. 

1.6  Outline of the Thesis 
The Thesis is organized as follows 

Chapter 1: Introduction  

 This chapter describes the background, challenges, basic digital image 
processing techniques involved, and objectives of this research. Contributions of 
this research work are also summarized 

Chapter 2: Introduction to Brain anatomy, Glioma Tumors and Magnetic 
Resonance Imaging   Techniques 

 This Chapter gives a brief introduction of brain Anatomy and 
characterisation of Glioma tumors.  Magnetic Resonance imaging techniques are 
explained. Factors that affect the quality of MR images are also discussed.  

Chapter 3: Biomedical Image Segmentation and Statistical Texture 
Classification Techniques – An Overview  

 A review on the biomedical image segmentation techniques used so far is 
presented.   The state of art classification/ detection methods based on statistical 
texture quantification techniques are also detailed in this chapter  
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Chapter 4: Basic Theory of Image Segmentation and Texture Quantification 
Techniques  

 This Chapter provides a summary of the fundamental tools used in the thesis. 
A description about morphological filtering techniques, texture, feature extraction, 
feature set formulation, validation techniques and performance evaluation using 
Receiver Operating Characteristics curves are also explained.  

Chapter 5: Automatic extraction of Glioma Tumors and other pathological 
brain Tissues.  

 This chapter provides, a novel and robust method for automatically 
extracting low and high grade tumors from axial slices of T2 weighted images and 
also a novel method for extracting Grey matter, White matter, tumor and its 
boundary from joint intensities of T1-FLAIR and T2-weighted MRI using spatial 
domain techniques. Theory and Implementation of the techniques are also 
provided. Robustness of the method with respect to Guassian noise and Speckle 
noise is also discussed. Validation of the segmentation techniques is also provided. 
A comparative study of the two methods with the existing methods is also 
discussed in this chapter. 

Chapter 6: Technique for grade Detection of Glioma Tumors from 
Conventional MRI using Statistical Methods  

 This chapter discusses the development of a novel technique for grade 
detection of Glioma Tumors from Conventional MRI, using first order statistics 
and GLCM based second order statistics. It also explains feature extraction, feature 
selection and feature set formulation for the development of a rule based decision 
system, based on thresholds fixed by the feature sets.  The performance of the 
detection system using ROC curves is also discussed  

Chapter 7:  Volumetric modeling of   Glioma Tumors from  Segmented2D 
Slices.  

 This Chapter includes development and implementation of a fully automatic 
volumetric modelling of Glioma tumors from segmented 2D slices. It also explains 
volume measurements and assessment of growth rate, from the 3D modelled 
Glioma tumor. 
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Chapter 8:’AGV glioma’ A Software System for the Visualization and Grade 
Detection of Glioma This Chapter provides system design and Graphical user 
interface and its implementation for the entire method. 

Chapter 9: Conclusion and future work  

 A brief summary of the research work done and the important conclusions 
are highlighted in this chapter. Suggestions for future research are also provided.  
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Chapter 2 

Introduction to Brain Anatomy, Glioma 
and Magnetic Resonance imaging 

Techniques 
 
 

The purpose of this chapter is to introduce some basic idea about brain 
anatomy, different types of tumor present in the brain and different imaging 
techniques adopted to visualize the complex brain structures. It also discusses the 
different grades of glioma tumors, its causes and symptoms. It introduces types of 
magnetic resonance imaging techniques adopted for visualizing complex brain 
structures, to find out various brain disorders and for diagnosing brain tumors. 
Additional topic discussed in this chapter gives a brief idea about advanced 
magnetic resonance imaging techniques. Glioma tumors, different types of noise, 
partial volume effect and intensity in-homogeneities present in Magnetic 
Resonance Images are also presented. 
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2.1 Anatomy of the brain 
Human brain is the most valuable, interesting and amazing part of our 

body. The brain acts as the control centre of the central nervous system and gives 
us the ability to learn and understand. The brain controls and coordinates most 
sensory systems, movement, behaviour, and homeostatic body functions such as 
heart rate, blood pressure, fluid balance, and body temperature. The brain is the 
source of cognition, emotion, memory, and motor, and other forms of learning. 
Much behaviour such as simple reflexes and basic locomotion, can be executed 
under spinal cord control alone. 

The human brain is made up of four main parts: the cerebral cortex, the 
cerebellum, the brain stem, and the meninges as shown in Fig.2.1 

The cerebral cortex is the largest part of the brain, is associated with 
conscious thought, movement and sensation. It contains two cerebral hemispheres 
each controlling the opposite side of the body. The two halves are connected by the 
corpus callosum, a bridge of wide, flat neural fibers that act as communication 
relays between the two sides and is divided into four lobes such as : the frontal, 
temporal, parietal, and occipital lobes. The main functions of the four lobes are as 
follows: 

Frontal Lobe is one of the four lobes of the cerebral hemisphere which 
extending from behind the forehead back to the parietal lobe, is the brain region 
that separates humans from our primate cousins. It controls attention, behavior, 
abstract thinking, problem solving, creative thought, emotion, intellect, initiative, 
judgment, coordinated movements, muscle movements, smell, physical reactions, 
and personality. Parietal Lobe houses the sensory cortex and motor cortex which 
plays an important role in controlling tactile sensation, response to internal stimuli, 
sensory comprehension, language reading, and some visual functions. Sensory 
cortex is located in the front part of the parietal lobe, or in other words, the middle 
area of the brain. The sensory cortex receives information from the spinal cord 
about the sense of touch, pressure, pain, and the perception of the position of body 
parts and their movements. Motor cortex is the area located in the middle, top part 
of the brain that helps control movement in various parts of the body. 
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Fig.2.1 Brain Anatomy [1]
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Occipital Lobe   located at the back of the brain, is the seat of the primary 
visual cortex, the brain region responsible for processing and interpreting visual 
information. Broca's Area is located in the opercular and triangular sections of the 
inferior frontal gyrus. The function of this area is the understanding of language, 
speech, and the control of facial neurons. 

Temporal lobe reaching from the temple back towards the occipital lobe, 
the temporal lobe is a major processing center for language and memory. It 
controls auditory and visual memories, language, some hearing and speech, 
language, plus some behavior. Wernicke's area is part of the temporal lobe that 
surrounds the auditory cortex and is thought to be essential for understanding and 
formulating speech. Damage in Wernicke's area causes deficits in understanding 
spoken language. 

Cerebellum is located at the lower back of the head and is connected to the 
brain stem. It is the second largest structure of the brain. The cerebellum controls 
complex motor functions such as walking, balance, posture, and general motor 
coordination. 

The brain stem The brain stem is involved with autonomic control of 
processes like breathing and heart rate as well as conduction of information to and 
from the peripheral nervous system, the nerves and ganglia found outside the brain 
and spinal cord which includes the Medulla oblongata, Pons, and Midbrain.  This is 
located at the bottom of the brain and connects the cerebrum to the spinal cord. The 
brain stem controls many vitally important functions including motor and sensory 
pathways, cardiac and respiratory functions, and reflexes. 

The meninges. These are the membranes that surround and protect the 
brain and spinal cord. There are three meningeal layers, called the dura mater, 
arachnoid, and pia mater. The cerebrospinal fluid (CSF) is produced near the center 
of the brain, in the lateral ventricles, and circulates around the brain and spinal cord 
between the arachnoid and pia layers. 

Cerebrospinal Fluid, also called CSF, is a clear substance that circulates 
through the brain and spinal cord. It provides nutrients and serves to cushion the 
brain and therefore protect it from injury. As this fluid gets absorbed, more is 
produced from the choroid plexus, a structure located in the ventricles. A brain 
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tumor can cause a build-up or blockage of CSF. Ventricles of the brain are 
connected cavities within the brain, where cerebrospinal fluid is produced. 

Hypothalamus is a region of the brain in partnership with the pituitary 
gland that controls the hormonal processes of the body as well as temperature, 
mood, hunger, and thirst. Optic Chiasm is located beneath the hypothalamus and is 
where the optic nerve crosses over to the opposite side of the brain. Pineal 
Gland controls the response to light and dark. The exact role of the pineal gland is 
not certain. 

  Pituitary Gland is a small, bean-sized organ that is located at the base of 
the brain and is connected to the hypothalamus by a stalk. The pituitary gland 
secretes many essential hormones for growth and sexual maturation. Thalamus is 
located near the center of the brain and controls input and output to and from the 
brain, as well as the sensation of pain and attention. [1-3] 

Neurons, or brain cells, are made up of cell bodies, axons, and dendrites. 
The cells mainly connect to one another through synapses (small junctions between 
brain cells where neurotransmitters and other neuro-chemicals are 
passed). Synapses are often found between the axons and dendrites, which allows 
the cells to signal to one another. Current estimates suggest the brain has 
approximately 86 billion neurons [3]. The brain is made up of two types of matter: 
gray and white. Gray matter consists of the cell bodies and dendrites of the 
neurons, as well as supporting cells called astroglia and oligodendrocytes. White 
matter, however, is made up of mostly of axons sheathed in myelin, an insulating-
type material that helps cells propagate signals more quickly. It’s the myelin that 
gives the white matter its lighter color. For many years; neuroscientists believed 
white matter was simply a support resource for gray matter. However, recent 
studies show that white matter architecture is important in processes like learning 
and memory [4]  

2.2 Types of brain tumors 
When most normal cells grow old or get damaged, they die, and new cells 

take their place. Sometimes, this process goes wrong. New cells form when the 
body doesn't need them, and old or damaged cells don't die as they should. The 
buildup of extra cells often forms a mass of tissue called a growth or tumor. Brain 
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tumors are composed of cells that exhibit unrestrained growth in the brain. They 
can be benign (noncancerous, meaning that they do not spread elsewhere or invade 
surrounding tissue) or malignant (cancerous).The brain and spinal column make up 
the central nervous system (CNS), where all vital functions, including thought, 
speech, and strength of the body are controlled. When a tumor arises in the CNS, it 
is especially problematic because of the potential effect on a person's thought 
processes and movements [3].  

The brain tumors are broadly classified into primary and secondary 
(metastatic) tumors. The terms primary and metastatic describe where the tumor 
has originated and brain tumors are generally classified as one or the other. Primary 
brain tumors arise from the brain or spinal cord while metastatic brain tumors arise 
from other tissue and have spread to the brain. This is the most basic form of 
classifying brain tumors, but yields great insight into the characteristics of these 
complex growths and how they might be treated. 

The following section describes about primary and secondary brain tumors. 

2.2.1 Secondary (Metastatic) Malignant Brain Tumors 
A secondary brain tumor is a cancerous tumor that started in another part 

of the body (such as the breast, lung, or colon) and then spread to the brain. 
Secondary tumors are about three times more common than primary tumors of the 
brain [7,8]. Many types of cancer can spread (metastasize) to the brain, but 
melanoma, breast, lung, and kidney cancer are among the most common. Cancer 
cells are spread by blood or lymphatic vessels. Metastatic brain tumors are more 
common than primary brain tumors. It is believed that the commonality is not 
because cancer types are becoming more aggressive, it is just that people are living 
longer from their cancer types, and this time allows for metastasis to occur.  
Usually, multiple tumors develop. Solitary metastatized brain cancers may occur 
but are less common. Metastatic or secondary tumors of the brain will occur in 
20% to 40% of patients with cancer.  

 2.2.2 Primary Brain Tumors 
There are more than 100 types of primary brain tumors. Primary tumors 

start in the brain, whereas secondary tumors spread to the brain from another site 
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such as the breast or lung. There are many types and subtypes of primary brain 
tumors. They include gliomas (which in turn include astrocytomas, 
oligodendrogliomas, and ependydomas), meningomas, medullablastomas, pituitary 
adenomas, and central nervous system lymphomas [9]. 

Benign Brain Tumors. Benign tumors represent half of all primary brain 
tumors. Their cells look relatively normal, grow slowly, and do not spread 
(metastasize) to other sites in the body or invade brain tissue. Benign tumors can 
still be serious and even life-threatening if they are in vital areas of the brain where 
they exert pressure on sensitive nerve tissue or if they increase pressure within the 
brain. While some benign brain tumors may pose a health risk, including risk of 
disability and death, most are usually successfully treated with techniques such as 
surgery [4]. 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 

Malignant Brain Tumors. A primary malignant brain tumor is one that 
originates in the brain itself. Although primary malignant brain tumors often shed 
cancerous cells to other sites in the central nervous system (the brain or spine), they 
rarely spread to other parts of the body. Brain tumors are generally named and 
classified according to the type of brain cells from which they originate and the 

Fig  2.2.  Primary Brain tumor 
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location in which the cancer develops. Malignant brain tumors are further classified 
using a grade: low, intermediate, or high. More information can be found in 
Staging/Grading  [4-6].The biologic diversity of these tumors, however, makes 
classification difficult. 

2.2.3 Glioma 
As a group, a glioma is considered the most common type of brain tumor. 

About 80% of malignant primary brain tumors are collectively known as gliomas. 
Glioma is not a specific type of cancer but is a term used to describe tumors that 
originate in glial cells. Glial cells are the building-block cells of the connective, or 
supportive, tissue in the central nervous system. There is two types of supportive 
cells: astrocytes and oligodendrocytes. A glioma is given a grade (a measure of 
how much the tumor appears like normal brain tissue) from I to IV based on the 
degree of aggressiveness. 

  
 
 
 
 
 
 
 
 
 

 
 
 
A grade I glioma is a benign tumor, while grades II through IV are tumors with 

an increasing degree of aggressiveness and are therefore considered increasingly 
cancerous in potential [10, 11] 
  

Fig. 2.3   A Brain image slice showing glioma tumor [1] 
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Grades I and II are considered low-grade and grades III and IV are 
considered high-grade. Grades I and II are the slowest-growing and least 
malignant; grade II tumors are generally considered borderline between benign and 
malignant. Grade III tumors are considered malignant and grow at a moderate rate. 
Grade IV tumors, such as glioblastoma multiforme, are the fastest-growing and 
most malignant primary brain tumor [12].High-grade gliomas are highly-
vascular and have a tendency to infiltrate. Often tumor growth causes a breakdown 
of the blood–brain barrier in the vicinity of the tumor. As a rule, high-grade 
gliomas almost always grow back even after complete surgical excision, and so are 
commonly called recurrent cancer of the brain. 

On the other hand, low-grade gliomas grow slowly, often over many years, 
and can be followed without treatment unless they grow and cause symptoms. 
Several acquired (not inherited) genetic mutations have been found in gliomas. 
There are several glial cell types from which gliomas form. Most  common subtype 
of gliomas are called either astrocytoma or oligodendroglioma, or a mixture of 
both.  

Astrocytomas are primary brain tumors derived from astrocytes, which are 
star-shaped glial cells. Astrocytomas account for about 60% of all malignant 

Fig. 2.4 An MRI of a patient with two separate types of brain tumor, a low grade glioma in 
the right frontal lobe (which is very difficult to see) and a high grade glioma 
(Glioblastoma) in the right parietal lobe which shows more (gray white appearance)  
contrast enhancement [1] 
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primary brain tumors. It is the most common type of glioma and begins in cells 
called astrocytes in the cerebrum or cerebellum. There are four grades of 
astrocytoma[12]. Astrocytomas are the most common of the primary brain tumors. 
The pathologist, using a microscope, grades these tumors on a scale of I to IV 
based on how quickly the cells are reproducing, as well as their potential to invade 
nearby tissue [12]. 

 Astrocytoma tumor types by grade include: 

• Grade I. Pilocytic astrocytoma is one of the most common types of glioma 
in children.It is a slow-growing tumor that is most often benign and rarely 
spreads into nearby tissue. It accounts for about 2% of all brain tumors. 

• Grade II. Diffuse astrocytoma (also called low-grade astrocytoma) is a 
slow-growing tumor that can often spread into nearby tissue and can 
become a higher grade. It accounts for about 11% of all brain tumors, 
typically occurring in men and women of ages 20 – 60. Grades I and II 
astrocytomas are the slowest growing tumors, and are also called low-
grade astrocytomas. 

• Grade III. Anaplastic astrocytoma is a malignant tumor that can quickly 
grow and spread to nearby tissues. It accounts for about 3% of all brain 
tumors. It typically occurs in adults of ages 30 - 60 and is more common 
among men than women.  

• Grade IV. Glioblastoma multiforme (GBM), also called glioblastoma, 
accounts for about 50% of all astrocytomas  and about 20% of all brain 
tumors.It is one of the deadliest types of brain tumors. These highly 
malignant, aggressive and complex tumors grow rapidly. They are most 
common in older adults (50s - 70s), particularly men. Only about 10% of 
childhood brain tumors are glioblastomas. It also is the most resistant to 
current standard treatment – surgery, followed by radiation and 
chemotherapy [3]. 
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2.2.3.1 Statistics 

It is estimated that about 52,000 people are diagnosed with a primary brain 
tumor (benign or malignant) each year. In 2012, an estimated 22,070 adults (12,010 
men and 10,060 women) in the United States were diagnosed with primary 
malignant tumors of the brain and spinal cord. It is estimated that 12,920 deaths 
(7,330 men and 5,590 women) from this disease will occur this year. Brain tumors 
are the tenth most common cause of cancer death in women [13]. Primary 
malignant brain tumors account for about 2% of all cancers. However, brain and 
spinal cord tumors are the second most common type of cancer in children (after 
leukemia).  

Survival statistics should be interpreted with caution. Estimates are based 
on data from thousands of cases of glioma tumors in the United States each year, 
but the actual risk for a particular individual may differ. It is not possible to tell a 
person how long he or she will live with a glioma tumor. Because the survival 
statistics are measured in five-year (or sometimes one-year) intervals, they may not 
represent advances made in the treatment or diagnosis of this cancer. In general, 
brain tumors are slightly more likely to occur in men than in women. Some specific 
types of brain tumors, such as meningiomas, are more common in women. Most 
brain tumors in adults occur between the ages of 65 - 79. Brain tumors also tend to 
occur in children younger than the ages of 8. In children, glioblastomas are the 
leading cause of death from solid tumors. 

2.2.3.2 Prognosis and Survival rates 

Recent advances in surgical and radiation treatments have significantly 
extended average survival rates and can also reduce the size and progression of 
malignant glioma [15]. 

The survival rates in people with brain tumors depend on many different variables: 

• Type of tumor (such as astrocytoma, oligodendroglioma, or ependymoma) 
• Location and size of tumor (these factors affect whether or not the tumor 

can be surgically removed) 
• Tumor grade 
• Patient's age 
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• Patient's ability to function 
• How far the tumor has spread 

Survival rates tend to be highest for younger patients and decrease with 
age. Five-year survival rates range from 66% for children ages 0 - 19 years, to 5% 
for adults of age of 75 years and older. Glioblastoma multiforme has the worst 
prognosis with 5-year survival rates of only 13% for people of ages 20 - 44, and 
1% for patients age 55 – 64 [17, 18]. 

2.2.3.3 Diagnosis 

Diagnosis of brain tumors involves a neurological examination and various 
types of imaging tests. Imaging techniques include magnetic resonance imaging 
(MRI), computed tomography (CT), and positron emission tomography (PET) 
scan. Biopsies may be performed as part of surgery to remove a tumor, or as a 
separate diagnostic procedure. 

2.2.3.4 Treatment 

The standard approach for treating brain tumors is to reduce the tumor as 
much as possible using surgery, radiation treatment, or chemotherapy. Such 
treatments are typically used in combination with each other [19]. 

2.3 Imaging Techniques 
Among the modern medical imaging technologies, Positron Emission 

Tomography (PET) and Magnetic Resonance Imaging (MRI) are considered to be 
the most powerful diagnostic inventions. In the 1940s, modern medical imaging 
technology began with advancements in nuclear medicine. Advanced imaging 
techniques have dramatically improved the diagnosis of brain tumors.  

Magnetic Resonance Imaging. Magnetic resonance imaging (MRI) is the 
standard crucial step for diagnosing a brain tumor. It provides pictures from 
various angles that can help doctors to construct a three-dimensional image of the 
tumor. It gives a clear picture of tumors near bones, smaller tumors, brain stem 
tumors, and low-grade tumors. MRI is also useful during surgery to show tumor 
bulk, for accurately mapping the brain, and for detecting response to therapy. Its 
details are given in next section 2.3.1 
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Computed Tomography. In the early 1970s, by combining the diagnostic 
properties of X-rays with computer technology, scientists were able to construct 3D 
images of the human body in vivo for the first time, prompting the birth of the 
Computed Tomography (CT). The emergence of CT was an important event that 
motivated scientists to invent PET and MRI [20 ].Computed tomography (CT) uses 
a sophisticated X-ray machine and a computer to create a detailed picture of the 
body's tissues and structures. It is not as sensitive as an MRI in detecting small 
tumors, brain stem tumors, and low-grade tumors. But it is useful for finding bone 
disorders. Often, doctors will inject the patient with a contrast material to make it 
easier to see abnormal tissues. A CT scan helps locate the tumor and can 
sometimes help determine its type. It can also help detect swelling, bleeding, and 
associated conditions. In addition, computed tomography is used to evaluate the 
effectiveness of treatments and watch for tumor recurrence [20]. 

Positron Emission Tomography. Positron emission tomography (PET) 
provides a picture of the brain's activity rather than its structure by tracking sugar 
that has been labeled, with a radioactive tracer. It is sometimes able to distinguish 
between recurrent tumor cells and dead cells or scar tissue caused by radiation 
therapy.  PET is not routinely used for diagnosis, but it may supplement MRIs to 
help determine tumor grade after a diagnosis. Data from PET may also help 
improve the accuracy of newer radiosurgery techniques. PET scans are often done 
along with a CT scan. 

Other Imaging Techniques. Numerous other advanced or investigational 
imaging techniques  available include: 

• Single photon emission tomography (SPECT) is similar to PET but is not 
as effective in distinguishing tumor cells from destroyed tissue after 
treatments. It may be used after CT or MRI to help distinguish between 
low-grade and high-grade tumors [21]. 

• Magnetoencephalography (MEG) scans measure the magnetic fields 
created by nerve cells as they produce electrical currents. It is used to 
evaluate functioning of various parts of the brain. However, this procedure 
is not widely available [21]. 
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• MRI angiography evaluates blood flow. MRI angiography is usually 
limited to planning surgical removal of a tumor suspected of having a large 
blood supply. 

Lumbar Puncture (Spinal Tap): A lumbar puncture is used to obtain a 
sample of cerebrospinal fluid, which is examined for the presence of tumor cells. 
Spinal fluid may also be examined for the presence of certain tumor markers 
(substances that indicate the presence of a tumor). However, most primary brain 
tumors do not currently have identified tumor markers. A computed tomography 
(CT) scan or magnetic resonance imaging (MRI) should generally be performed 
before a lumbar procedure to make sure that the procedure can be performed 
safely. 

Biopsy: A biopsy is a surgical procedure in which a small sample of tissue 
is taken from the suspected tumor and examined under a microscope for 
malignancy. The results of the biopsy also provide information on the cancer cell 
type. Biopsies may be performed as part of surgery to remove a tumor, or as a 
separate diagnostic procedure. With some very slow-growing cancers, such as 
those that occur in the midbrain or optic nerve pathway, patients may be closely 
observed and not treated until the tumor shows signs of growth. The diagnosis and 
detection of glioma currently rely on the histopathologic  examination  of biopsy 
specimens, but variations in tissue sampling for these heterogeneous tumors and 
restrictions on surgical accessibility make it difficult to be sure that the samples 
obtained are representative of the entire tumor. 

2.3.1 Magnetic Resonance Imaging 
Basic Principles. 

Magnetic resonance imaging (MRI) is a medical imaging technique used in 
radiology to visualize detailed internal structures. MRI makes use of the property 
of nuclear magnetic resonance (NMR) to image nuclei of atoms inside the body. 
MRI imaging techniques are broadly classified into two types : Conventional and 
advanced  magnetic resonance imaging techniques. MR imaging is the preferred 
technique for the diagnosis, treatment planning, and monitoring of patients with 
neoplastic Central Nervous System lesions. Conventional MR imaging, with 
gadolinium-based contrast enhancement, is increasingly combined with advanced, 
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functional MR imaging techniques to offer morphologic, metabolic, and 
physiologic information [22 ]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
An MRI creates a three dimensional picture of the brain, which allows 

doctors to more precisely locate problems such as tumors. An MRI machine 
(Fig.2.5) uses a powerful magnetic field to align the magnetization of protons in 
the hydrogen atom present in the body, and radio frequency fields to systematically 
alter the alignment of this magnetization. This causes the protons to produce a 
rotating magnetic field of larger frequency detectable by the scanner and this 
information is recorded to construct an image of the scanned area of the body [23]. 
Strong magnetic field gradients cause hydrogen nuclei at different locations to 
rotate at different speeds. 3-D spatial information can be obtained by providing 
gradients in each direction. 

 
Fig. 2.5 An MRI (Magnetic resonance imaging)  of the brain [3] 
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MRI provides good contrast between the different soft tissues of the body, 
which makes it especially useful in imaging the brain, muscles, the heart, and 
cancers compared with other medical imaging techniques such as computed 
tomography (CT) or X-rays. Unlike CT scans or traditional X-rays, MRI uses no 
ionizing radiation. 

2.3.1.1 Conventional MRIs 

An MRI sequence is an ordered combination of radiofrequency (RF) and 
gradient pulses designed to acquire the data to form the image. The data to create 
an MR image is obtained in a series of steps. First the tissue magnetization is 
excited using an RF pulse in the presence of a slice select gradient. The other two 
essential elements of the sequence are phase encoding and frequency encoding 
(read out), which are required to spatially localize the protons in the other two 
dimensions. Finally, after the data has been collected, the process is repeated for a 
series of phase encoding steps. The MRI sequence parameters are chosen to best 
suit the particular clinical application. 

The gradient echo (GE) sequence is the simplest type of MRI sequence. It 
consists of a series of excitation pulses, each separated by a repetition time TR. 
Data is acquired at some characteristic time after the application of the excitation 
pulses and this is defined as the echo time TE. The contrast in the image will vary 
with changes to both TR and TE. Advantages of this sequence are fast imaging, 
low Flip Angle and less RF power, where as the disadvantages are difficulty to 
generate good T2 contrast, sensitivity to in-homogeneities and sensitivity to 
susceptibility effects. 

The spin echo (SE) sequence is similar to the GE sequence with the 
exception that there is an additional 180° refocusing pulse present. Inversion 
recovery (IR) sequence is usually a variant of a SE sequence in that it begins with a 
180º inverting pulse. This inverts the longitudinal magnetization vector through 
180º. When the inverting pulse is removed, the magnetization vector begins to 
relax back to 90º, and excitation pulse is then applied after a time from the 180º 
inverting pulse known as TI (time to inversion). 
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• The contrast of the resultant image depends primarily on the duration of the 
TI as well as TR and TE. The contrast in the image primarily depends on the 
magnitude of the longitudinal magnetization (as in spin echo) following the 
chosen delay time TI. Contrast is therefore based on T1 recovery curves 
following the 180º inversion pulse. Inversion recovery is used to produce 
heavily T1 weighted images to demonstrate anatomy. The 180º inverting 
pulse can produce a large contrast difference between fat and water because 
full saturation of the fat or water vectors can be achieved by utilizing the 
appropriate TI. In clinical practice, TE is always shorter than TR, A short TR 
value approximately equal to the average T1 value which is usually lower 
than 500 ms. A long TR is 3 times the short TR, which is normally  greater 
than 1500 ms.  A short TE is usually lower than 30 ms and a  long TE = 3 
times the short TE is greater than 90 ms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

  

Fig.2.6 Conventional MR image slices(.a)T1–weighted (b) 
T2 – weighted (c) PD weighted (d) FLAIR [4] 
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a. Soft Tissue Contrast in MRI 

Contrast is the means by which it is possible to distinguish among soft 
tissue types, based on the differences observed in the MRI signal 
intensities. For example, in musculoskeletal imaging, there is difference in 
intensities among cartilage, bone, and synovial fluid. In neuroimaging, 
there are differences between white and grey matter. The fundamental 
parameters that affect tissue contrast are the T1 and T2 values, proton 
density, tissue susceptibility and dynamics. Tissue pathology will also 
affect contrast, as will the static field strength, the type of sequences used, 
contrast media and the sequence parameters (TR, TE, TI, FA, SNR etc…) 

b. T1 Weighting 

To demonstrate T1, proton density and T2 contrast, specific values of TR 
and TE are selected for a given pulse sequence. The selection of 
appropriate TR and TE weights an image so that one contrast mechanism 
predominates over the other two. A T1 weighted image(Fig.2.6a) is one 
where the contrast depends predominantly on the differences in the T1 
times between tissues e.g. fat and water. T1 is the longitudinal relaxation 
time. It indicates the time required for a substance to become magnetized 
after first being placed in a magnetic field or, alternatively, the time 
required for regaining longitudinal magnetization following an RF pulse. 
T1 is determined by thermal interactions between the resonating protons 
and other protons and other magnetic nuclei in the magnetic environment 
or "lattice". These interactions allow the energy absorbed by the protons 
during resonance to be dispersed to other nuclei in the lattice. 

All molecules have natural motions due to vibration, rotation, and 
translation. Smaller molecules like water generally move more rapidly, 
thus they have higher natural frequencies. Larger molecules like proteins 
move more slowly. When water is held in hydration layers around a 
protein by hydrophilic side groups, its rapid motion slows considerably.  

c. T2 -Weighting 

T2 weighted image (Fig.2.6b) is one where the contrast predominantly 
depends on the differences in the T2 times between tissues e.g. fat and 
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water. T2 is the "transverse" relaxation time. It is a measure of how long 
transverse magnetization would last in a perfectly uniform external 
magnetic field. Alternatively, it is a measure of how long the resonating 
protons remain coherent or precess (rotate) "in phase" following a 90° RF 
pulse. T2 decay is due to magnetic interactions that occur between 
spinning protons. Unlike T1 interactions, T2 interactions do not involve a 
transfer of energy but only a change in phase, which leads to a loss of 
coherence. 

T2 relaxation depends on the presence of static internal fields in the 
substance. These are generally due to protons on larger molecules. These 
stationary or slowly fluctuating magnetic fields create local regions of 
increased or decreased magnetic fields, depending on whether the protons 
align with or against the main magnetic field. Local field non-uniformities 
cause the protons to precess (rotate) at slightly different frequencies. Thus 
following the 90° pulse, the protons lose coherence and transverse 
magnetization is lost. This results in both T2* and T2 relaxation. The TE 
controls the amount of T2 decay that is allowed to occur before the signal 
is received. To achieve T2 weighting, the TE must be long enough to give 
both fat and water time to decay. If the TE is too short, neither fat nor 
water has had time to decay and therefore the differences in their T2 times 
are not demonstrated in the image. 

d. Proton Density (PD) Weighting 

A proton density image (Fig.2.6c) is one where the difference in the 
numbers of protons per unit volume in the patient is the main determining 
factor in forming image contrast. Proton density weighting is always 
present to some extent. In order to achieve proton density weighting, the 
effects of T1 and T2 contrast must be diminished, so that proton density 
weighting can dominate. A long TR allows tissues e.g. fat and water to 
fully recover their longitudinal magnetization and therefore diminishes T1 
weighting. A short TE does not give fat or water time to decay and 
therefore diminishes T2 weighting. Figure 2-5 below shows a comparison 
of T1, T2, and PD weighting. 
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e. FLAIR (Fluid Attenuate Invesion Recovery)  

It is another variation of the inversion recovery sequence. In FLAIR 
(Fig.2.6d), the signal from fluid (e.g. cerebrospinal fluid (CSF)) is nulled 
by selecting a TI corresponding to the time of recovery of CSF from 180º 
inversion to the transverse plane.The signal from CSF is nullified and 
FLAIR is used to suppress the high CSF signal in T2 and proton density 
weighted images so that pathology adjacent to the CSF is seen more 
clearly. A TI of approximately 2000 ms achieves CSF suppression at 3.0T. 

f. Contrast agents (Gadolinium) 

Although MRI is a very powerful imaging technique not all pathologies are 
clearly contrasted using only proton density or relaxation times weighting. 
For example, some meningiomas and small metastatic lesions do not show 
on normal imaging. And considering that some of these intra-cranial 
lesions have an abnormal vascular bed or a breakdown of the blood-brain 
barrier, a magnetic contrast agent that distributes throughout the 
extracellular space became an obvious choice to improve image contrast. 

• All the common contrast agents used in MRI are Gadolinium chelates, which 
are not directly imaged but produce an effect, which is imaged. Gadolinium is 
the element of choice because of its high number of seven unpaired electrons. 
Each unpaired electron has a magnetic moment 657 times bigger than that of a 
proton, so seven unpaired electrons can induce relaxation a million times 
better than an isolated proton. This implies that both T1 and T2 are reduced, 
although the enhancement caused by the shortening of T1 is stronger than the 
signal loss caused by the shortening of T2; and that is why with Gadolinium 
contrast the images obtained are normally T1 weighted. The actual amount of 
T1shortening is dependent on the concentration of Gadolinium injected and 
the signal enhancement depends also on TE and TR.  

2.3.1.2 Applications of MR Imaging in Neoplastic CNS Lesions 

Conventional MR imaging is the technique of choice for differential 
diagnosis, tumor grading, and treatment planning of neoplastic CNS lesions. 
Alternative imaging modalities (CT, PET) under specific circumstances, are used 
as a complement to MR imaging. MR imaging represents the technique of choice 
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for visualizing and grading brain tumors. However, CT, with a lower resolution 
than MR imaging, does have applications in the emergency situations. The 
differential diagnosis of tumoral and pseudotumoral (mainly of inflammatory 
origin) lesions represents a pivotal step in patient assessment that directs 
subsequent management decisions. Identifying a tumoral lesion at imaging is 
followed typically by stereotactic biopsy or surgical resection for histologic 
confirmation. These represent a diagnostic challenge that may require biopsy for 
definitive diagnosis, which carries significant morbidity and may itself be non-
diagnostic [25]. 

Conventional MR imaging, including T1-weighted, T2- weighted, and 
contrast-enhanced T1-weighted imaging, frequently provides imaging features that 
permit an accurate differential diagnosis between tumoral and pseudotumoral 
lesions in 50% of cases. It provides important information regarding contrast 
material enhancement,  enhancement edema, distant tumor foci, hemorrhage, 
necrosis, mass effect, and so on, which are all helpful in characterizing tumor 
aggressiveness and hence tumor grade. It also readily provides evidence of contrast 
material enhancement, signifying blood-brain barrier breakdown, which is often 
associated with higher tumor grade. However, contrast material enhancement alone 
is not always accurate in predicting tumor [26].  

Based on the patient's conventional MRI, a radiologist cannot differentiate 
whether it is a low grade glioma or a high grade glioma, because both of these are 
almost visually similar [26]. A biopsy is usually required to establish the diagnosis 
and subtype of a brain tumor and to plan appropriate treatment after conventional 
MR imaging. The most common conventional MRI modalities used to assess 
gliomas are Fluid Attenuated Inversion Recovery (FLAIR), T1 and T2-weighted 
modalities. T1-weighted modalities highlight fat tissues in the brain whereas T2-
weighted modalities highlight tissues with higher concentration of water.   FLAIR 
images are T2 or T1-weighted with the cerebrospinal fluid (CSF) signal 
suppressed. In general, edema, border definition and tumor heterogeneity are best 
observed on FLAIR and T2-weighted images [34]. 

Grade detection of glioma tumors is very important for taking clinical 
decisions regarding the treatment and for finding survival rates without doing 
biopsy. The major challenges are, tumor characterization is difficult, because the 
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neoplastic tissue is often heterogeneous with conventional MR imaging profile. 
The second thing is that, the external representation of tumor, which is shape, could 
not be taken as a discriminant feature for detection/ classification of grade/type of 
tumor because, the shape of each tumor is not consistent throughout all slices of 
MR image and may change quickly where the inter-slice distance is large. 
Advanced MR imaging modalities such as proton MR spectroscopic imaging 
(MRSI), perfusion-weighted imaging (PWI), and diffusion-weighted imaging 
(DWI) have been proposed as alternate methods for differential diagnosis of 
tumors and non tumor lesions, primary versus metastatic lesions and tumor grading 
[26-28]. 

2.3.1.3 Clinical Practice of Brain Tumor Imaging 

The clinical practice of imaging patients with a suspected brain tumor is a 
standardized MRI protocol. MRI images are commonly viewed in three planes: 
axial, coronal, and sagittal as shown Fig. 2.7. Seven different MR sequences are 
performed to provide a complete MRI data set for one patient. The different 
sequence properties are shown in Table 2-1.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

     

(a)                                              (b)                                               (c) 

Fig.2.7 shows MRI views in three planes a) Axial (b) Sagittal (c) Coronal 
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Table 2-1: MRI scan protocol for brain tumor patients [35] 

Anatomical plane  Weighting  Contrast 
Slice thickness / 
Spacing between 

slices 

Sagittal ‐  T1‐weighted  Nil  5 mm / 6 mm 

Axial  T1‐weighted  Nil  4 mm / 4 mm 

Axial  T2‐weighted  Nil  5 mm / 6 mm 

Axial‐ 
T2‐weighted 

FLAIR 
Nil  5 mm / 6 mm 

Axial  T1‐weighted  Gadolinium  4 mm / 4 mm 

Coronal  T1‐weighted  Gadolinium  4 mm / 4 mm 

Sagittal  T1‐weighted  Gadolinium  5 mm / 6 mm 
 

Twenty slices were acquired for each anatomical plane with TR/TE 
2000/45 ms, matrix size 128×128, pixel spacing 1.5×1.5 mm, slice thickness 
5.0mm. T1-weighted images are first taken without and then with contrast agent 
(gadolinium). These images show hyperintense and irregular tumor margins. 
Surrounding low-signal components  correspond to the surrounding brain tissue 
that is often diffusely infiltrated by tumor cells. Hyperintense tissue that appears in 
both image types is related to recent bleeding and the tissue that appears 
hyperintense in T1-weighted contrast enhanced images only, is considered to be 
malignant tumor [3, 21]. 

On T2-weighted images the solid part shows hyper intense characteristics 
[20, 21]. Edema around the tumor shows less hyper-intense signal than the solid 
tumor part but more intense signal than healthy brain tissue. Both T2-weighted 
with and without FLAIR can be used to identify edema.  

To separate CSF from edema, T2-weighted FLAIR sequences are preferred   
since the CSF shows no signal. Tumor necrosis is often located in the tumor center. 
On T2- and T1-weighted images necrosis appears hyper-intense and hyper-iso or 
hypo-intense, respectively [22-24]. 
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Fig. 2.8 shows a glioblastoma in the left temporal lobe acquired in a 1.5 T 
MRI scanner. A solid mass lesion with edema around the tumor is distinguishable. 
Fig. 2.8(a) and (b) are T1-weighted and T2-weighted, respectively. A large tumor 
area consists of necrosis (hypo- and hyper-intense regions on T1- and T2-weighted 
images, respectively). The edema around the tumor can be identified on the T2-
weighted or T2-weighted FLAIR (2.8(c)) images, where it appears hypointense in 
relation to the bright necrosis. In comparison to the T2-weighted, the CSF on the 
T2-weighted FLAIR has no hyperintense characteristics. Fig. 2.8d shows the tumor 
after gadolinium contrast medium application. The tumor borders are well 
enhanced and the necrosis inside the bright borders is noticeable [23]. 

Fig.2.9 shows the MR images of low grade glioma. Fig.2.9 (a)  shows T1 
pre-contrast image and  contrast enhanced low grade glioma is shown in Fig.2.9(c). 
From the pre and post contrast images, it can be observed that there is no 
significant  intensity variations for tumor necrosis. Usually low grade gliomas are 
non-enhancing tumors and high grade gliomas are enhancing type. But some low 
grade more edema will be enhanced by applying contrast agent. Hence this factor 
alone cannot be taken as a factor for grade detection. Although these images are 
considered 'typical', numerous studies have questioned the reliability and accuracy 
of these imaging characteristics for the diagnosis of low-grade glioma. 

 

  

 

 Fig. 2.8 MR images of a glioblastoma: (a) T1-weighted  (b) T2-weighted (c) T2-weighted 
FLAIR  (d) and T1-weighted contrast enhanced [35] 
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2.3.1.4 MR Image Representation 

MR images are grids of pixels with M rows and N columns. Every pixel of 
an MR image corresponds to a voxel, a volume element, whose values represents 
v(x,y,z). The volume of a voxel depends on MR scan parameters, i.e. slice 
thickness and pixel spacing. MR images are usually delivered in DICOM (Digital 
Imaging and Communications in Medicine) format. Besides the MR image, 
DICOM-files contain information about the MR scan and patient. Normally an MR 
scan acquires more than one slice, which leads to an image sequence MxNxK with 
K slices as shown in Fig. 2.10. The size of the shown image sequence is 512 x 512 
x 9. The spacing between slices is 5.5 mm [34]. 

  

 

Fig. 2.9 Typical MRI scan of a low-grade glioma [4] 
(a) T1 sequence demonstrating T1 shortening in the right frontal lobe. (b) T2 sequence 
demonstrating T2 prolongation (hyper intensity) at the site of the glioma. (c) Contrast-
enhanced imaging of the glioma showing no marked contrast enhancement.  
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2.3.2Advanced MRI scans 

Advanced MR imaging techniques provide s new methods for the 
assessment of brain tumors. Various advanced imaging techniques are summarised 
below. 
2.3.2.1 Magnetic resonance spectroscopy 

Magnetic resonance spectroscopy (MRS), also known as MRSI (MRS 
Imaging) and Volume Selective Nuclear Magnetic Resonance (NMR) 
Spectroscopy, is a technique which combines the spatially-addressable nature of 
MRI with the spectroscopically-rich information obtainable from nuclear magnetic 
resonance (NMR). That is to say, MRI allows one to study a particular region 
within an organism or sample, but gives relatively little information about the 
chemical or physical nature of that region--its chief value is in being able to 
distinguish the properties of that region relative to those of surrounding regions. 

 

Fig. 2.10 An MR image sequence with 5.5 mm spacing between slices [4] 
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MR spectroscopy, however, provides a wealth of chemical information about that 
region, as would an NMR spectrum of that region [25,26]. 

2.3.2.2 Functional MRI 

Functional MRI (fMRI) measures signal changes in the brain that are due 
to changing neural activity. The brain is scanned at low resolution but at a rapid 
rate (typically once every 2-3 seconds). Increase in neural activity cause changes in 
the MR signal via a mechanism called the BOLD (blood oxygen level-dependent) 
effect. Increased neural activity causes an increased demand for oxygen, and 
the vascular system actually overcompensates for this, increasing the amount of 
oxygenated hemoglobin ("haemoglobin" in British English) relative to 
deoxygenated hemoglobin. Because deoxygenated hemoglobin reduces MR signal, 
the vascular response leads to a signal growth that is related to the neural activity. 
The precise nature of the relationship between neural activity and the BOLD signal 
is a subject of current research. The BOLD effect also allows for the generation of 
high resolution 3D maps of the venous vasculature within neural tissue. Likewise, 
MRI can—within minutes— noninvasively acquire functional images in any plane 
or volume at comparatively high resolution. Functional MRI (fMRI) can image the 
hemodynamic and metabolic changes that are associated with human brain 
functions, such as vision, motor skills, language, memory, and mental processes. 
These techniques have also revolutionized detection of a wide variety of disease 
states, such as stroke, multiple sclerosis, and tumors [27]. 

2.3.2.3 Diffusion MRI 

Diffusion MRI measures the diffusion of water molecules in biological 
tissues. Following an ischemic stroke, brain cells die, trapping water molecules 
inside them (cellular pumps are no longer functioning). The resultant areas 
of restricted diffusion are detectable by diffusion weighted imaging (DWI). This 
finding is identifiable much earlier after a stroke than findings on CT or on 
conventional MRI, making DWI one of the most sensitive methods for the 
detection of early stroke [28]. 

Diffusion MRI (Fig.2.11) is also a tool to study connections in the 
brain. In an isotropic medium (inside a glass of water for example) water 
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molecules naturally move according to Brownian motion. In biological 
tissues however the diffusion is very often anisotropic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

For example a molecule inside the axon of a neuron has a low probability 
to cross a myelin membrane. Therefore the molecule will move principally along 
the axis of the neural fiber. Conversely, if we know that molecules locally diffuse 
principally in one direction we can make the assumption that this corresponds to a 
set of fibers. Diffusion MRI for this application is still at the research stage. 
Identifying fibers on diffusion MRI is called tractography [29].  

DWI is sensitive to motion on the order of tens of micrometers, even 
locations not commonly noted for motion, such as the brain, move orders of 
magnitude more than the diffusive motion under investigation, and such motions 
can corrupt image quality. This effect can mimic increased diffusivity and yield 
diffusion coefficients that are higher than the true underlying values [30]. 

2.3.2.4 Diffusion-Tensor Imaging 

Diffusion-tensor MR imaging (Fig.2.12) is a technique that has been 
developed more recently than isotropic (trace-weighted) DW imaging. Typical 
diffusion-tensor imaging techniques sample water motion in at least six non-

    

Fig. 2.11 Diffusion weighted Imaging (DWI) slices [23]



Chapter 2 

48 

collinear directions (rather than in the three directions used in isotropic DW 
imaging), which provide information about both the rate and the direction of water 
motion. Diffusion-tensor imaging has shown applicability for a number of disease 
states owing to the fact that normal-brain white matter is highly structured, and 
fiber tracts impart a strong orientational bias toward microscopic water diffusion. 
The tendency for water molecules to diffuse in some directions rather than equally 
in all directions is termed “anisotropy.” Highly compact white matter fiber tracts 
exhibit a high degree of anisotropy, and less compact white matter pathways 
exhibit lesser degrees of anisotropy. All types of white matter typically show 
greater degrees of anisotropy than are seen in gray matter structures, which have a 
low degree of anisotropy. Thus, diffusion-tensor imaging provides a sensitive 
means to detect alterations in the integrity of white matter structures. In fact, in 
many settings,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

white matter abnormalities can be seen on diffusion- tensor images that are not 
evident on routine MR images [28] Diffusion- tensor imaging also provides a  
means of depicting white matter pathways (tractography), which may be useful for 
providing guidance in neurosurgical procedures by preoperatively depicting 
important white matter tracts. It also helps to determine infiltration of white matter 
tracts by tumor, and provides evidence of degeneration of white matter tracts 
proximal to tumor sites (ie, wallerian degeneration) [31 ].  

Fig.2.12 Diffusion  Tensor Imaging (DTI) slices [31] 
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2.3.2.5 Perfusion-weighted MRI  

Perfusion-weighted MRI (PWI) is an evolving MRI technology for studying 
cerebral hemodynamics and blood flow (Fig.2.13). Hemodynamic maps of cerebral 
blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) can 
be created using PWI. These maps are based on mathematical analysis of the 
evolution of the intensity of the T2-weighted gradient or spin echo images after a 
gadolinium bolus administration or by using “labeled” water protons as 
endogenous, freely diffusible tracers. The advantages of these PWI techniques are 
their high resolution and non invasive nature compared with PET or CT based 
methods. PWI can be combined with other MRI techniques such as magnetic 
resonance angiography (MRA) to assess vessel patency and with DWI to assess 
ischemic injury. Several problems remain, however, regarding the use of PWI to 
non invasively quantify CBF and MTT in pathological states. The problems relate 
to the difficulty of measuring brain density and plasma hematocrit in pathological 
states and obtaining a value for the relaxivity of gadolinium contrast agent across a 
range of blood vessel sizes. Other pitfalls include the difficulty of measuring the 
arterial input function close to the voxel of interest, delay and dispersion of the 
contrast bolus [32]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2.13 Perfusion weighted Imaging (PWI) [32]
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These advanced MRIs are providing insights into tumor behavior that are 
not available from conventional MR imaging and will likely be more important for 
assessment of tumor response to therapy than for diagnosis. DWI may allow the 
cellularity of tumors to be graded noninvasively; because cells constitute a relative 
barrier to water diffusion, compared with extra cerebral space, tumors that are more 
cellular would be expected to show less of an increase in ADC than tumors that are 
less cellular. Studies of patients with brain tumors have shown that increases in 
water diffusion generally indicate positive response to therapy. 

2.3.3 Noise in MR Imaging 
Many image acquisition procedures (MRI, PET, SPECT, etc.) suffer from 

image degradation by noise. For Magnetic Resonance Imaging the primary source 
of random noise is thermal noise which forms a statistically independent random 
source entering the MR data in the time domain. Thermal noise is white and can be 
characterized by a Gaussian random field with zero mean and constant variance 
[33]. Hence the noise is not correlated with the signal or with itself. Apart from 
thermal noise, structured noise usually degrades the image quality as well due to 
MR system characteristics, physiological pulsations or object motion. The 
characteristics of noise depend on its source, as does the operator which reduces its 
effects. Noise, inhomogeneous pixel intensity distribution and blunt boundaries in 
the medical MR images caused by MR data acquisition process are the main 
problems that will affect the quality of MRI segmentation [33]. One principal 
source of noise is the ambient electromagnetic field picked up by the 
radiofrequency (RF) detectors acquiring the MR signal, and another is the object or 
body being imaged 

In MRIs, raw data is intrinsically complex valued and corrupted with zero 
mean Gaussian distributed noise with equal variance. After inverse Fourier 
transformation, the real and imaginary images are still Gaussian distributed, given 
the orthogonality and linearity of the Fourier transform. MR magnitude images are 
formed by simply taking the square-root of the sum of the square of the two 
independent Gaussian random variables (real and imaginary images) pixel by pixel. 
After this nonlinear transformation, MR magnitude data can be shown to be Rician 
distributed.  
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In MRI, there is a trade off between signal-to-noise ratio (SNR), 
acquisition time and spatial resolution. The SNR is relatively high in most MRI 
applications, and this is accomplished implicitly and explicitly by averaging. The 
MRI data acquisition process can be affected by two averaging techniques: (1) 
Spatial volume averaging is required due to the discrete nature of the acquisition 
process and (2) In the case of some applications, the signal for the same k-space 
location is acquired several times and averaged in order to reduce noise. 

The two averaging methods are interconnected. When a higher sampling 
rate of the frequency domain is used, higher resolution images are obtained. 
However, in order to receive a desired SNR at high spatial resolution a longer 
acquisition time is required, as additional time necessary for averaging. 
Conversely, the acquisition time, with the subsequent SNR and the imaging 
resolution, are practically limited by the patient comfort and the system throughput. 
Consequently, high SNR MRI images can be acquired at the expense of 
constrained temporal for spatial resolution. Also, high resolution MRI imaging is 
achievable at a cost of lower SNR for longer acquisition times.  

Another important source of noise in MRI imaging is thermal noise in the 
human body. Common MRI imaging involves sampling in the frequency domain 
(also called "k-space"), and taking Inverse Discrete Fourier Transform. Signal 
measurements have components in both real and imaginary channels and each 
channel is affected by additive white Gaussian noise. Thus, the complex 
reconstructed signal includes a complex white additive Gaussian noise. Due to 
phase errors, usually the magnitude of the MRI signal is used for the MRI image 
reconstruction. The magnitude of the MRI signal is real-valued and is used for the 
image processing tasks, as well for visual inspection [34,35 ]. 

The way the magnitude MRI image is reconstructed results in a Rician 
distribution of noise. Since the Rician noise is signal-dependent, separating the 
signal from the noise is a very difficult task. In high intensity areas of the 
magnitude image, Rician distribution can be approximated to a Gaussian 
distribution, and in low intensity regions it can be estimated as a Rayleigh 
distribution. A practical effect is, a reduced contrast of the MRI image, as the noise 
increases the mean intensity values of the pixels in low intensity regions also 
increases. As explained, it is a fact that Rician noise degrades the MRI images in 
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both qualitative and quantitative senses, making image processing, interpretation 
and segmentation more difficult. Consequently, it is important to develop an 
algorithm to remove this type of noise.  

2.3.3.1 Different Noise Models  

Noise modeling in images is affected by capturing instrument, data 
transmission media, image quantization and discrete source of radiation.  

a. Gaussian Noise  

Gaussian noise is statistical noise that has a probability density function 
(abbreviated pdf) of the normal distribution (also known as Gaussian distribution). 
In other words, the values that the noise can take on are Gaussian-distributed. It is 
most commonly used as additive white noise to yield additive white Gaussian noise 
(AWGN).  Gaussian noise is properly defined as the noise with a Gaussian 
amplitude distribution. This says nothing of the correlation of the noise in time or 
of the spectral density of the noise. Labeling Gaussian noise as 'white' describes the 
correlation of the noise. It is necessary to use the term "white Gaussian noise" to be 
correct. In Magnetic Resonance Images, raw data is intrinsically complex valued 
and corrupted with zero mean Gaussian distributed noise with equal variance. After 
inverse Fourier transformation, the real and imaginary images are still Gaussian 
distributed given the orthogonality and linearity of the Fourier transform. MR 
magnitude images are formed by simply taking the square-root of the sum of the 
square of the two independent Gaussian random variables pixel by pixel. 

MR images are corrupted by Rician noise, which arises from complex 
Gaussian noise in the original frequency domain measurements [36]. The Rician 
probability density function for the corrupted image intensity x is given by 
Eqn.4.19 
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where A is the underlying true intensity, σ is the standard deviation of the noise, 
and I0 is the modified zeroth order Bessel function of the first kind.  
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b.Speckle noise  

A different type of noise in the coherent imaging of objects is called 
speckle noise. This noise is, in fact, caused by errors in data transmission [36]. This 
kind of noise affects the ultrasound images [33]. Speckle noise follows a gamma 
distribution and is given as Eqn.4.20 
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where, a2  is the variance, ן is the shape parameter of gamma distribution and g is 
the gray level. Speckle noise is a granular noise that inherently exists in and usually 
degrades the quality of the active radar and synthetic aperture radar (SAR) images 
and can also be present in MR images..  

2.3.4 Partial volume effect 
The partial volume effect (PVE) is the consequence of the limited 

resolution of the scanning hardware and the discretization procedures. It occurs in 
non-homogeneous areas, where several anatomic entities contribute to the gray 
level intensity of a single pixel/voxel. It results in blurred intensities across edges, 
making difficult the task of accurately deciding on the borders of two connected 
objects. An example of this type of artifact is the fat/water cancelling and emerging 
in regions containing both fat and water. Due to their opposing magnetization 
fields, the corresponding regions will appear dark [34]. 

Segmentations that allow regions or classes to overlap are called soft 
segmentations. Soft segmentations are important in medical imaging because of 
partial volume effects, where multiple tissues contribute to a single pixel or voxel 
resulting in a blurring of intensity across boundaries. Fig.2.14 illustrates how the 
sampling process can result in partial volume effects, leading to ambiguities in 
structural definitions. In Fig.2.14, it is difficult to precisely determine the 
boundaries of the two objects. 
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A hard segmentation forces a decision of whether a pixel is inside or 
outside the object. Soft segmentations on the other hand, retain more information 
from the original image by allowing uncertainty in the location of object 
boundaries. Note that the point spread function of an imaging device can be larger 
than the spatial extent of a single pixel or voxel. Thus, partial volume effects can 
cause boundaries to be blurred across significant portions of an image. 

2.3.5 Intensity in-homogeneities 
Another difficulty which has to be handled by segmentation techniques 

using MR images is the intensity in-homogeneities shortcoming. The intensity in-
homogeneities can be caused by the imperfections in the RF coil that produces the 
magnetic field, or by various defects in the signal acquisition procedures. Also, the 
magnetic field can have a non-uniform distribution due to the local magnetic 
properties of the biological structure or because of a movement of the patient 
during the acquisition process. This effect can be identified as a shading artifact in 
the image data and can have a major consequence on the performances of the 
intensity based segmentation algorithms, considering that a certain tissue has a 
constant intensity distribution in the dataset [35].  

 

 

Fig. 2.14 A common example of Partial volume effect [7] 
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Conclusions 
The materials included in this chapter give primary information for the 

subsequent discussions of brain anatomy, Glioma, grades, MRI sequences giving 
basic idea about brain anatomy, tumor and the imaging techniques. This chapter 
also provides a basic idea about the extent to which the conventional MR imaging 
techniques are useful for grade detection and visualization of glioma tumors. The 
different imaging modalities and the different factors which affect the quality of 
MR image are also presented. 
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Chapter  3 
 

Biomedical Image Segmentation and 
Statistical Texture Classification 

Techniques – An Overview 
 

Automatic Segmentation or extraction of tumor, tumor boundary, grey 
matter and white matter are the first stage of the proposed computer aided system 
for grade detection and 3D modeling of glioma. Texture based grade detection of 
glioma from segmented 2D slices using statistical features is the second stage of 
this system. In this chapter, we discuss the state of art   approaches used in medical 
image segmentation including brain images and texture classification/detection of 
different pathological structures. The chapter gives a qualitative comparison, by 
pointing out the advantages and the disadvantages of these approaches.  A review 
of validation techniques for various segmentation approaches are also discussed 
here. 
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3.1 Introduction 
Accurate Segmentation of pathological structures is a crucial step in 

computer assisted grading and detection of glioma tumors. This chapter provides 
an overview of different approaches for segmentation of anatomical structures in 
brain MR images, and other modalities. With the increasing size and number of 
medical images, the use of computers in facilitating their processing and analysis 
has become necessary. In particular, computer algorithms for the delineation of 
anatomical structures and other regions of interest are a key component in assisting 
and automating specific radiological tasks. These algorithms, called image 
segmentation algorithms, play a vital role in numerous biomedical imaging 
applications such as the quantification of tissue volumes [1], diagnosis [2], 
localization of pathology [3], study of anatomical structures [1], treatment planning 
[4], partial volume correction of functional imaging data [5], and computer 
integrated surgery [6,7]. Methods for performing segmentations vary widely 
depending on the specific application, imaging modality, and other factors. For 
example, the segmentation of brain tissue has different requirements from the 
segmentation of the liver. General imaging artifacts such as noise, partial volume 
effects, and motion can also have significant consequences on the performance of 
segmentation algorithms.  

As discussed in chapter 2, shape of pathological structures cannot be used 
as a feature for classification/detection process because of inconsistencies in 
shapes. Hence texture base classification/ detection are preferred in medical image 
analysis. Section 3.6 details a brief overview of various texture based classification 
techniques available in literature. 

3.2 Image enhancement and Segmentation 
The principal objective of image enhancement is to process an image so 

that the result is more suitable than the original image for a specific application. 
That means, the enhancing methods are different for different application; for 
example the approach used for enhancing X-ray image may not necessarily be the 
method used for MR image or satellite image. Usually enhancing an image is 
related to its visual evaluation of image quality. Image enhancement approaches 
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fall into two broad categories viz. spatial domain methods and frequency domain 
methods. Spatial domain refers to image plain itself, i.e., direct manipulation of 
pixels in an image. Frequency domain processing techniques are based on 
modifying Fourier transform of an image.  

 Low level methods of image processing, i.e., procedures and algorithms that 
are performed without prior knowledge about the specific content of an image, are 
mostly applied to pre- or post-processing of medical images. Traditionally, the 
purpose of segmentation is to partition the image into non-overlapping, constituent 
regions (or called classes, clusters, subsets or sub-regions) that are homogeneous 
with respect to intensity and texture [8].  

3.3 Literature Review of Segmentation Methods 
  This review describes several common approaches that have appeared in 
the recent literature on medical image segmentation. We define each method, 
provide an overview of how the method is implemented, and discuss its advantages 
and disadvantages. Although each technique is described separately, multiple 
techniques are often used in conjunction with one another for solving different 
segmentation problems. The segmentation methods are divided into nine 
categories: (1) Intensity thresholding algorithms, (2) Region growing and split and 
Merge algorithms, (3) clustering approaches,(4) artificial neural networks (5) 
Markov random field models, (6)deformable models, (7) atlas guided approaches, 
(8)Watershed Methods, and (9) Level set methods. Other notable methods that do 
not belong to any of these categories are described in section 3.3.10.  

3.3.1 Intensity thresholding algorithms 
 Thresholding is one of the oldest and easiest segmentation technique for 
scalar images and volumes [8]. Mainly, it takes into account only the intensity 
value of the pixels or voxels and creates a binary partition of the dataset. Single-
threshold algorithms use only one intensity value, called threshold, which separates 
the dataset into two classes as follows: intensities higher than the threshold are 
clustered in one class and the rest of the pixels (voxels) are clustered in the other 
class.  
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 When the analyzed dataset contains more than 2 classes, a multi-
thresholding algorithm [8] has to be applied. It assumes that images are composed 
of regions with different gray level ranges, the histogram of which can be separated 
into a number of peaks (modes), each corresponding to one region and there exists 
a threshold value corresponding to the valley between the two adjacent peaks. A 
thresholding procedure determines an intensity value, called the threshold, which 
separates the desired classes. In case the dataset (image or volume) has to be 
clustered into n different classes, n - 1 thresholds have to be applied.  

 The difficult task is to determine the threshold values which best 
differentiate the regions of interest. A simple case is the one in which the structures 
to be clustered have contrasting intensity values (or other features). Practically, the 
resulting segmentation is very sensitive to the used thresholds, which may be 
affected by the noise and intensity in-homogeneities (present in MRI images). 
Another important drawback of the approach is that it does not take into 
consideration the spatial distribution of the intensities. However, this method can 
be implemented in real-time and it is often used as an initialization step and can be 
combined with other segmentation techniques [9, 10]. It has been used in digital 
mammography, in which two classes of tissue are typically present healthy and 
tumorous [11, 12]. When the interested structures have distinctive quantifiable 
features, threshold-based algorithms are effective. Threshold-based algorithms do 
not need complex operations and are computationally efficient. Due to the noise 
influence and partial volume effect, the edges of organs or structures in medical 
images are usually not clearly defined and therefore algorithms based on threshold 
are seldom used alone [13] 

 Adaptive thresholding is an approach which aims to improve the 
performance of the algorithm in images corrupted by noise and intensity in-
homogeneities (MRI images). Also called local or dynamic thresholding methods 
[14], they compute a distinct threshold for each pixel or voxel based on the local 
image properties. Kittler et al. [15] used the image statistics based on the gradient 
magnitude for the selection of an automatic threshold, while Kom et.al [16] applied 
adaptive threshold in order to segment dense masses in mammograms. Other 
medical image segmentation applications include extracting edges and maintain 
only the ones which respect some predefined similarity criteria [17] for segmenting 
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blood vessels [18], extracting anatomical structures in MR images [19] and 
endoscopic images [20] or 3D bone segmentation in CT scans [21]. Adaptive liver 
segmentation from CT using supervised thresholding and k-means clustering [22], 
anatomical region segmentation  using supervised pixel level segmentation [23] are 
also discussed in literature. A survey on thresholding techniques is provided by 
R.B. Dubey, et.al and Z.Ma,et.al [24, 25]. 

3.3.2 Region growing and Split and Merge algorithms 
 The region growing method is a well-developed technique for image 
segmentation. It is a technique for extracting an image region that is connected, 
based on some predefined criteria. These criteria can be based on intensity 
information or edges in the image [26]. Compared to the thresholding techniques, it 
includes information related to the neighborhood configuration and it is designed to 
extract homogeneous regions which have higher probability to correspond to 
anatomical structures. It requires at least one seed point for each object to be 
segmented, which is used to select all the belonging pixels or voxels based on the 
homogeneity criteria. Therefore, the main disadvantage is that it requires manual 
intervention and is very sensitive to initialization. Results of region growing 
algorithms are highly influenced by noise and partial volume effects (specific for 
MRI images). Zhang et. al [27] used region growing as a post-processing step for 
the 3D adaptive thresholding of the CT images. Also, CT angiographic image 
segmentation has been realized using gradient based region growing [28]. Region 
growing has been improved by including topological information for 3D MRI 
cortex segmentation [29] or by adapting the algorithm to the fuzzy sets theory [30].  

 Split and merge algorithms are similar to region growing, but they overcome 
the need of seed points [31]. Similarly based on a predefined criterion, it 
successively splits the regions into  a certain number of sub regions, and merges 
only the ones which satisfy the required conditions. The main drawback of this 
algorithm is that it requires a pyramidal grid structure of the dataset, which makes 
it very computationally expensive and undesirable for the huge array of data 
nowadays. Region growing is seldom used alone but usually within a set of image 
processing operations, particularly for the delineation of small, simple structures 
such as tumors and lesions [32, 33]. Segmentation of low grade glioma tumors by 
eliminating partial volume effect in brain using advanced gradient magnitude 
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region growing technique is proposed by S.Madhu kumar, et.al [34].  Its main 
limitations is that it requires manual interaction to obtain the seed point. Thus, for 
each region that needs to be extracted, a seed must be planted. Region growing can 
also be sensitive to noise, causing extracted regions to have holes or even become 
disconnected. These problems can be removed using a homotopic region-growing 
algorithm [35- 37].  

3.3.3 Clustering 
 A cluster is a set of nodes. Clustering allows us to run applications on 
several parallel servers (cluster nodes). The load is distributed across different 
servers and even if any of the servers fails, the application is still accessible via 
other cluster nodes. Clustering is crucial for scalable enterprise applications, 
because we can improve performance by simply adding more nodes to the cluster. 
In general,  clustering is the process of organizing objects into groups whose 
members are similar in some way. Clustering algorithms normally perform the 
same function as classifiers without the use of training data. That is why they are 
termed unsupervised methods. To compensate for the lack of training data, 
clustering methods iteratively alternate between segmenting the image and 
characterizing the properties of each class. In a sense, clustering methods train 
themselves using the available data.  

 Three commonly used clustering algorithms are the k-means algorithm, the 
fuzzy c-means algorithm, and the expectation-maximization algorithm [38–49]. 
The k-means algorithm computes the mean of the feature space for each class and 
then allocates every pixel or voxel to the class with the closest feature vector. The 
algorithm minimizes the dissimilarity of each class by iteratively reassigning the 
pixels or voxels to the iteratively computed classes. The fuzzy c-means algorithm 
generalizes the k-means algorithm, allowing for soft segmentations based on fuzzy 
set theory [49].  

 The expectation-maximization (EM) algorithm applies the same clustering 
principles with the assumption that the data follow a Gaussian mixture model [51]. 
Although clustering algorithms do not require training data, they do require an 
initial segmentation [52-56].The expectation-maximization (EM) technique 
assumes that the data can be modeled as a mixture of Gaussians and applies the 
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same clustering procedure. It iteratively estimates the mean, covariance, mixing 
coefficients and computes the posterior probabilities. Similar to classification 
techniques, no spatial distribution of the data is taken into account in the clustering 
process, and thus their outcomes can be easily corrupted by noise and intensity in-
homogeneities. As they require initial parameters, sensitivity to initialization has 
been shown in the literature [56]. It also has been proved that EM has higher 
initialization sensitivity in comparison with K-means and fuzzy c-means clustering 
[57]. Nevertheless, improved robustness to noise and intensity in-homogeneities is 
obtained when these methods are combined with other techniques like Markov 
random fields and Bayesian approaches [58] and improved fuzzy clustering 
techniques [59] for MRI brain image segmentation. For the clustering algorithms, 
the number of clusters, the position of the initial points and the parameters should 
be properly selected. Lack of incorporating spatial characteristics is also an 
obstacle. Due to the large shape variations in medical images, the applications of 
these algorithms are constrained [60]. In order to overcome the noise and in-
homogeneity sensitivity, the performance of the clustering methods has been 
improved using spatial information in the minimization function [61, 62].One of its 
most common applications is the brain tissue segmentation in MR images [63].  

3.3.4 Artificial Neural Networks 
 A Neural Network is a powerful data modeling tool that is able to capture 
and represent complex input/output relationships. The motivation for the 
development of neural network technology stemmed from the desire to develop an 
artificial system that could perform intelligent tasks similar to those performed by 
the human brain. Neural Networks resemble the human brain in two ways: they 
acquire knowledge through learning and the knowledge is stored within inter-
neuron connection strengths known as synaptic weights. The true power and 
advantage of neural networks lies in their ability to represent both linear and 
nonlinear relationships and in their ability to learn these relationships directly from 
the data being modeled. Traditional linear models are simply inadequate when it 
comes to modeling data that contains nonlinear characteristics. Artificial Neural 
Networks (ANNs) are parallel networks of processing elements or nodes that 
simulate biological learning. Each node in an ANN is capable of performing 
elementary computations. Learning is achieved through the adaptation of weights 
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assigned to the connections between nodes. A thorough abstraction on Neural 
Networks is given I.Khalifa et.al and J.W.Clark et.al [64, 65]. It is most widely 
used in medical imaging as a classifier [66, 67] in which the weights are 
determined by using training data and the ANN is then used to segment new data. 
ANNs can also be used in an unsupervised fashion as a clustering method [68, 69], 
as well as for deformable models [70-72]. Because of the many interconnections 
used in a Neural Network, spatial information can be easily incorporated into its 
classification procedures. 

Classification techniques are known as supervised methods as they have to 
be first trained with pre-segmented data and then tested on new datasets for the 
automatic segmentation task [73]. The most used classifiers in the literature are: k-
nearest neighbor [74, 75] (kNN) (each pixel or voxel is labeled as the same class in 
the training data set which is the closest in the feature space) and modified fuzzy c-
means clustering [76, 77]. These are non-parametric classifiers, since in their 
clustering techniques implementation, no assumption is made with respect to the 
statistical structure of the data set [78]. Compared with threshold-based algorithms, 
the ones based on pattern recognition techniques can better utilize structural 
information and therefore can achieve good results. When the structures in medical 
images are regular and not much influenced by noises, applying pattern recognition 
techniques is effective. However, like the threshold-based models, pattern 
recognition models are also sensitive to noise. The results of these algorithms may 
depend on their initialization step. For the classifier-based algorithms, the 
segmentation results depend on the size of the training samples and the correctness 
of the manual segmentations [79]. 

 Maximum likelihood or Bayes classifier is common parametric classifiers. It 
is assumed that the studied feature space is formed of independent samples which 
form a mixture of probability distributions [80]. Usually the distributions are 
Gaussian and the mixture is called finite mixture model. When it is trained, the 
Bayes classifier estimates the k-means, covariance and the mixing coefficients, in 
the case of Gaussian mixtures. In the segmentation process, each pixel or voxel 
receives the label with the highest posterior probability [81]. As mentioned, it is 
very important for the classifiers to work with distinct quantifiable features. 
Practically, it is very difficult to find feature spaces which easily distinguish 
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between the classes to be labeled. Another drawback of these techniques is that 
they do not perform spatial modeling, their results being vulnerable to noise 
corruption [82]. Also, manual interaction and gathering of the training data are very 
time consuming and laborious. However, as they are non-iterative, they are 
reasonably computationally effective and several feature spaces can be combined 
in the classification process. Maximum likelihood segmentation has been applied 
on ultrasound images and mammograms [83, 84] where the density probability 
distribution and the smoothness constraints of the gray level values are used to 
define the energy functional. Vrooman et. al [85] implemented the conventional 
kNN in combination with manual or atlas-based training, for the brain tissue 
classification in multispectral MR images. 

3.3.5 Markov Random Field Models 
 Markov Random Field (MRF) Modeling is not a segmentation technique, but 
a statistical scheme which is often used with other segmentation techniques for 
results improvement. The main aim of the MRFs is to include the spatial 
information in the segmentation process by modeling the relationships between 
neighboring pixels or voxels [64]. MRFs model spatial interactions between 
neighboring or nearby pixels. These local correlations provide a mechanism for 
modeling a variety of image properties [85]. For example, in medical image 
processing, this method sets constraints on the inter connectivity between pixels or 
voxels representing the same organ. In this case it is considered that most of the 
pixels or voxels can be classified to be the same as their neighbors, because of the 
very low probability of existing organs represented by a very low number of 
pixels/voxels. MRFs are often incorporated into clustering segmentation algorithms 
such as the k - means algorithm under a Bayesian prior model [86- 89]. The 
segmentation is then obtained by maximizing a posteriori probability of the 
segmentation given the image data, using iterative methods such as iterated 
conditional modes [90] or simulated annealing [91]. A difficulty associated with 
MRF models is the proper selection of the parameters controlling the strength of 
spatial interactions [86].  The main disadvantages of this approach are the 
computational cost and the tuning of the parameters managing the strength of the 
spatial relationships between pixels/voxels [64]. Selecting too high parameters 
would result in an extremely smoothed segmentation, loosing important details of 
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the structures to be segmented. Nevertheless, these algorithms are widely used in 
medical image processing, due to their ability to model intensity in-homogeneities 
which are widely present in MR images [65]. 

3.3.6 Deformable Models 
 Deformable model is a powerful tool in the segmentation of biomedical 
images. Medical images and volumes usually contain complex and irregular 
structures; hence, segmentation and representation of these shapes with local 
descriptors are difficult. Deformable models are model-based techniques for 
delineating region boundaries by using closed parametric curves or surfaces that 
deform under the influence of internal and external forces. To delineate an object 
boundary in an image, a closed curve or surface must first be placed near the 
desired boundary and then allowed to undergo an iterative relaxation process. 
Internal forces are computed within the curve or surface, to keep it smooth 
throughout the deformation. They are routinely used in the reconstruction of the 
cerebral cortex from MRIs [92-104]. Deformable models are also used in the 
segmentation of cardiac images [95], of bone in computed tomography (CT) 
images [96] and ultrasound images [97].The main advantages of deformable 
models are their ability to directly generate closed parametric curves or surfaces 
from images and their incorporation of a smoothness constraint that provides 
robustness to noise and spurious edges. Standard deformable models can also 
exhibit poor convergence to concave boundaries. This difficulty can be alleviated 
somewhat through the use of pressure forces [97] and other modified external force 
models [99]. Another important extension of deformable model is the adaptive 
model topology by using an implicit representation rather than an explicit 
parameterization [98,100]. A survey on deformable models in medical image 
analysis is presented in automatic brain structure segmentation from brain MRI 
[102]. Due to the advantages of being able to handle structures with complex 
topology, easy to incorporate with other techniques, sub-pixel accuracy, noise 
insensitive and intuitive interaction mechanisms, etc. the deformable models are 
intensively investigated in the last few decades [103]. Parametric deformable 
models have high computational efficiency and are easy to incorporate with other 
techniques; Geometric deformable models have the advantage of naturally 
handling the topological changes. For the medical image segmentation, use of   



Chapter -3 

70 

parametric model or geometric model depends on the applications. In general, 
when structures have large shape variety or complicated topology, geometric 
deformable models are preferred; when the interested structures have open 
boundaries or the structures are thin or the algorithms need real-time operations, 
parametric models are preferred. However, deformable models usually contain 
number of parameters. To select proper parameters is critical to the final 
segmentation results while this is usually a time-consuming task. 

 Automatic segmentation of thalamus and corpus collasum by combining clustering 
and deformable models [104], 3-D deformable model-based approach for accurate, 
robust, and automated tissue segmentation of brain MRI data [105], hybrid 
segmentation technique incorporating a statistical as well as a geometric model in a 
unified segmentation scheme for brain tissue segmentation of magnetic resonance 
imaging (MRI) scans [106] are also presented in literature. A method for detecting 
and locating the brain structures of interest that can be used for fully automatic 3D 
functional segmentation of rodent brain MR images  based on active shape model 
(ASM), Meta morph models and variational techniques [107],  Automatic method 
for initialization of a segmentation method based on a combination of a deformable 
model and spatial relations, leading to a precise segmentation of the brain tumors in 
3D MRI [108, 109],  are also discussed in literature. 

3.3.7 Atlas-guided Approaches 
Atlas guided techniques are widely used in medical image analysis when 

templates or atlases are accessible. An atlas is created using the anatomical 
information of the structure to be segmented. Once the atlas is generated, it is used 
as a reference for the segmentation algorithm, translating the process to a 
registration problem [110]. An initial step is to determine a transformation which 
maps a pre-segmented atlas structure to a configuration in the analyzed image. This 
procedure is called atlas warping and is usually achieved using linear 
transformations [111]. Occasionally, the algorithm adapts to the anatomical 
variability of the studied structure by applying a sequence of linear and nonlinear 
transformations [112-114]. MR brain imaging is one of the most common 
application of the Atlas guided approaches. The great advantage is that during the 
segmentation process, the labels are also transferred to the studied data set. On the 
other hand, these techniques have proved deficit in segmenting very complex 
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structures. Also the results provided by these algorithms are affected by the 
variability of the anatomical structures between subjects. This is the reason for 
which their usage is recommended for structures which are stable over the studied 
population. An improvement has been proposed by Thompson and Toga [114] 
using probabilistic atlases, but this approach is more computationally expensive 
and requires manual interaction. Even with nonlinear registration methods, 
however, finding accurate segmentations of complex structures is difficult because 
of anatomical variability. 

Automated approach guided by digital anatomical atlas, which segments 
white matter, grey matter and cerebrospinal-fluid [115], Atlas guided identification 
of brain structures by combining 3D segmentation and SVM classification[116], 
Automatic  atlas guided method for the segmentation of the first transverse 
temporal gyrus of Heschl (HG), the morphological marker for the primary auditory 
cortex in humans from brain MRs [117] ,3D brain image segmentation algorithm 
by fusing an adaptive atlas (generative) and informative features (discriminative) 
[118] are also discussed in literature. 

3.3.8 Watershed Methods 
Watershed segmentation is a well known edge-based segmentation 

algorithm. In geography, watershed line is defined as the line separating two 
catchment basins. The rain that falls on either side of the watershed line will flow 
into the same lake water. This idea can be used in digital images. The image 
gradient can be viewed as a terrain. The homogeneous regions in the image usually 
have low gradient values. Thus they represent valleys, whereas edges represent 
peaks that have high gradient values. The watershed algorithm uses concepts from 
edge detection and mathematical morphology to partition images into 
homogeneous regions. The main problem of watershed transform is its sensitivity 
to intensity variations and shading effect present, resulting in over- segmentation, 
which occurs when the image is segmented into an unnecessarily large number of 
regions. This can be avoided using markers placed in the region of interest which is 
brain as well as in the background [119-123]. The over segmentation is also 
reduced by watershed algorithm followed by fuzzy c-means clustering algorithm 
[124]. Three-dimensional (3-D) MRI images are segmented using an automatic 
algorithm composed of watershed, fuzzy clustering (Fuzzy C-Means) and re-
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segmentation [125] and combining watershed algorithm with GVF snake model 
can also reduce the computational complexity, to improve the insensitiveness to 
noise, and capture range [127]. Segmentation of brain structures by watershed 
transform on tonsorial morphological gradient of diffusion tensor imaging (DTI), 
and then using the hierarchical watershed transform, can efficiently segment brain 
structures, such as the corpus callosum, the ventricles and the cortico-spinal tracts, 
and use the results for subsequent quantitative analysis of DTI parameters [126]. 

3.3.9 Level Set Methods 
A level set method which is able to deal with intensity in-homogeneities in 

the segmentation that simultaneously segment the image and estimate the bias 
field, and this  estimated bias field is  used for intensity in-homogeneity correction 
as discussed in automatic segmentation of brain structures by integrating atlas 
based labeling and level set method [128].  By combining basic level set method to 
catch the accurate boundaries of the tumor area and applying the inverse 
thresholding for segmenting binary mask, the exact tumor region was extracted 
from the different MRI brain scans. [129]. L. Zhukov, et.al [130] used a level set 
approach to remove noise from the DT-MRI data of a human subject and to 
produce smooth, geometric models of the isotropic and strongly anisotropic regions 
of the brain. For obtaining boundaries of the contour, atlas-based segmentation 
method and level set function [131] are combined and used for segmentation.  

Level set methods offer a powerful approach for the medical image 
segmentation because it can handle all concavities by convolution, splitting, or 
merging. However, this method requires specifying initial curves and can only 
provide good results if these curves are placed symmetrically with respect to the 
object boundary. Although level sets have demonstrated a great potential for 3D 
medical image segmentation, their usefulness has been limited by two problems. 
First, 3D level sets are relatively slow to compute [132]. Second, their formulation 
usually entails several free parameters, which can be very difficult to correctly tune 
for specific applications. The second problem is compounded by the first [133]. 
Thus, level set segmentation is not sufficient for the segmentation of complex 
medical images and they must be combined with powerful initialization techniques 
to produce successful segmentation. A new variational level set algorithm without 
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re- initialization to segment the MRI image and to implement a competent medical 
diagnosis system is also developed in literature [133]. 

 3.3.10 Other Methods 
Methods for segmentation of brain MRI using wavelet and Gabor 

transform[134] are also there. A fully automatic method for segmenting MR 
images showing tumor, both mass-effect and infiltrating structures using un-
decimated wavelet transform and Gabor wavelets were proposed [135]. Symmetry 
axis based segmentation was used for extraction of stem cells [136]. Segmentation 
method using balloon inflation forces and  a directed and weighted graph and 
performing a min-cut for optimal segmentation results  for Grade IV glioblastoma, 
relies on detection of high intensity tumor boundaries [137] . 

3.4 Validation Methods for the segmentation 
algorithm used in medical images- An overview 

This Section discusses validation of different segmentation techniques. In 
medical image segmentation, the accuracy of extracted pathological structures is 
very important. Hence validation of segmented region of interest is needed. 

While several systems for segmentation of medical data are currently in 
use in various research laboratories and hospitals, the issue of correct validation is 
often ignored. A validation method can be thought of as a combination of two 
components. One component is the notion of a ‘ground truth’ against which the 
results of an algorithm are to be judged. The second component is a measure for 
establishing the deviation of the results from this ground truth. In this section, we 
briefly summarize the methods that have been typically used for validation for 
different segmentation algorithms, their strengths and weaknesses.  

   A lot of methods are available in literature in order to evaluate the accuracy, 
and performance of segmentation algorithm in terms of its ground truth images. 
Segmentation of brain tissue by combining expectation maximization, binary 
mathematical morphology and active contour models from MRIs [138] were 
evaluated by number of pixels misclassified with respect to manual GT by 
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quantitative technique and also performed qualitative evaluation in terms of 
segmentation time with respect to GT. 

The validation of automatic segmentation algorithm described in [139] was 
done by VALMET validation software, which finds overlapped segmented portions 
of the segmented region with respect to the manual ground truth, and also inter 
observer variability. The accuracy and performance of segmentation method [140] 
were evaluated in brain MRI using Dice Similarity Coefficient (DSC), which 
measures coincidence between two segmentations. In this technique, manual 
segmentation by an expert is considered as reference image and automatic 
segmentation was one using confidence connected segmentation algorithm (CCS) 
in ITK library. Automatic segmentation of non enhancing tumors in brain MRI 
[141] was validated by finding the correspondence ratio. This allows to discuss the 
way in which the segmented tumors corresponds in size and location to the ground 
truth tumor while weighing the importance of false positive (FP) and false negative 
(FN). 

Performance of atlas based segmentation using expectation maximization 
technique was validated, i.e. with binary EM model and multiclass EM model 
using decision fusion method [142] with respect to manual gold standard. The 
computation time and memory requirement were also evaluated. The validation of 
automatic brain structure segmentation based on mean shift algorithm [143] was 
done by evaluating sensitivity, dice similarity coefficient and Tanimoto Index of 
the segmented brain structures with a reference atlas which consists of T1, T2 and 
PD weighted as well as pre-labeled map of tissues of interest. The validation of 
adaptive template moderate brain tumor segmentation [143] and automatic 
segmentation of low grade glioma and meningioma using brain MRI [144] were 
done by comparing the segmentation techniques with the manual segmentation 
carried out by 4 independent medical experts by considering inter-observer 
variability.  Automatic Segmentation of liver tumor was done based on image 
partitioning into homogeneous primitives regions by applying a pseudo-watershed 
algorithm and image gradient magnitude. The algorithm was evaluated on 
Computed Tomography (CT) and Magnetic Resonance (MR) data using the dice 
similarity coefficient (DSC) as a statistical validation metric [145]. Automatic 
pancreas segmentation in contrast enhanced CT data using learned spatial anatomy 
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and texture descriptors [148] were evaluated in terms of positive prediction value 
which is a measure of TP and FP for measured overlapping pixels with respect to 
ground truth. 

The evaluation of the quality of segmentation of an image, and the 
assessment of intra and interexpert variability in segmentation performance, has 
long been recognized as a difficult task. For a segmentation validation task, it may 
be effective to compare the results of an automatic segmentation algorithm to 
multiple expert segmentations. Recently an expectation-maximization (EM) 
algorithm for simultaneous truth and performance level estimation (STAPLE) was 
developed to this end to compute both an estimate of the reference standard 
segmentation and performance parameters from a set of segmentations of an image 
[146]. A statistical label fusion algorithm to estimate quality of segmentation, i.e., 
Consensus Level Labeler Accuracy and Truth Estimation (COLLATE), which is 
based on the simple idea that some regions of an image are difficult to label (e.g., 
confusion regions: boundaries or low contrast areas) while other regions are 
intrinsically obvious (e.g., consensus regions: centers of large regions or high 
contrast edges). Unlike its predecessors, COLLATE estimates the consensus level 
of each voxel and estimates differing models of observer behavior in each region 
[147].  

  A semi-automatic segmentation method for volume assessment of intestinal-
type adenocarcinoma (ITAC) using Gaussian hidden Markov random field 
(GHMRF) model [148] that represents an advanced version of a finite Gaussian 
mixture (FGM) model was validated by computing Tanimoto index, percentage 
match, positive prediction value which are the TP, FP, and FN, with respect to 
manually segmented GT image, by an expert radiologist. 

 A semi-automatic image analysis system was developed using supervised 
artificial neural network classifier augmented with dedicated pre- and post 
processing algorithms, including anisotropic noise filtering and a surface-fitting 
method focused on the quantification of white matter lesions in the human brain 
[149] which was validated by using three different ways, i.e. 1) Average total tissue 
area over all slices; 2) Correlation coefficients of total tissue area between all 
measurement pairs on all slices; and 3) An index of similarity calculated between 
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each measurement pair with  respect to manual GT. These are the currently 
available methods for validation of segmentation techniques in medical imaging. 

3.5 An Overview of Texture based Classification/ 
Detection of Pathological subjects in Medical imaging  

Texture based image classification techniques are widely used in 
classification/ detection procedure in   medical image analysis. This section gives a 
brief overview of classification techniques used in literature for identification of 
pathological subjects using statistical/spectral texture analysis. 

Computer aided discrimination between primary and secondary brain 
tumors on MRI using texture analysis was carried out by Georgiadis et.al [150]. 
Texture analysis and feature extraction were done using Halarick and Gray level 
run length matrix on T1 post contrast MRI series. Curvelet based multi resolution 
texture analysis for classifications of tissues in medical images on CT scan is also 
there in the literature [151]. Curvelet transform extracts contrast of pixel pairs in 
radial vedges. The results of this indicate that curvelet based texture descriptors 
significantly improves the wavelet based ridgelet based classification algorithm. 
Gray level cooccurence (GLCM) based texture descriptors and grey level run 
length model were used to quantify the difference between fine and course textures 
of normal tissues in computed tomography images [152]. Liver segmentation from 
multi slice CT scan was also done using GLCM features [153]. 

Medical image classification using cluster co-occurrence matrices of local 
relation features is a more robust method because the features extracted were 
implicitly invariant to additive illumination changes and other kinds of monotonic 
illumination changes. The author says that it is more flexible than other methods; 
here dimensionality of the feature vector is very large [154]. Pixel based 
classification algorithm was designed for localization of brain blood vessel in CT 
angiography [155].  

In the classification approach for segmentation of normal tissue, chest and 
abdomen, from CT images by M. Kalinin [156], GLCM based features were 
extracted for pixel level classification using decision tree .Texture information as 
well as textual information of ROI using Halarick texture descriptors and run 
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length encoding descriptors were used for annotating internal organs by D.S. 
Raicu,et.al [157], from CT images. 

The classification of tumors from abdominal CT images using probabilistic 
Neural Network (PNN) using selected feature sets is described by A. Depeursinge, 
et.al [158]. The features were extracted from segmented ROIs using bi-orthogonal 
wavelet transform to get the vertical, horizontal and diagonal details of images. 
From these details spatial grey level dependence matrix and second order statistical 
features were computed. The high resolution computed Tomography images 
(HRCT) of the chest were used for classification of lung tissues using different 
classifiers. The features were extracted using improved quincunx wavelet frames 
[159]. 

Supervised texture segmentation using Gabor filter [160] was carried out 
by S. S Sreejamole, et.al and S. Poonguzhali, et.al [162], since Gabor filters 
provide means for better spatial localization. However their usefulness is limited in 
practice because there is usually no single filter resolution at which one can 
localize a spatial structure in natural texture. In supervised classification of textures 
based on GLCM approach, local binary patterns were computed over a region 
[163]. An automatic detection system was developed for identification of cyst and 
malignant tumors from ultrasound liver images using combined features extracted 
using GLCM, GLRLM, spectral texture features, and Gabor wavelet based features 
[164]. Texture classification using logical operators were also thee in literature 
[165]. 

Statistical features can be calculated based on the grey level co- occurrence 
probabilities (GLCP) [166]. A feature extraction method using linear wavelets for 
the classification of textures using GMRF model is presented in classification using 
wavelet packet an Gaussian mixture model [167]. Texture features derived from six 
grid sizes of independent and different Gabor filter banks were incorporated into 
the CBIR system by additionally incorporating texture, shape and spatial 
information [168]. Texture classification of digital images based on the co-
occurrence features obtained from the two-level wavelet packet decomposition is 
proposed in [169]. In the feature selection process of pattern classification for 
mammographic micro calcifications, GLCM and spatial information such as shape 
features were extracted [170]. 
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Thus GLCM and GLRLM and other first order statistical moments are 
widely used for texture analysis and feature extraction tool for classification of 
pathological subjects in medical imaging. 

Conclusions 
A brief overview of various segmentation techniques used in literature for different 
modalities of medical images and the merits and demerits of each segmentation 
technique are discussed. Different validation techniques in literature used for 
analyzing the accuracy of segmentation techniques are also summarized. A 
summary of texture analysis methods used in medical imaging for classification/ 
detection of pathological subjects is also presented. 
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Chapter 4 
Basic Theory of Image Segmentation and 

Texture Quantification Techniques  
The basic image processing techniques involved in this research are explained in 
this chapter. The main techniques used are based on segmentation, representation 
and description. The theoretical back ground of segmentation includes binary and 
gray level mathematical morphological operations, different thresholding 
techniques and correlation filtering techniques. Validation methods used for 
segmentation of medical images are also discussed in this chapter. As a part of 
external representation, boundary extraction and as internal representation, 
texture analysis is also presented.  Statistical texture feature extraction methods 
using first order statistics and gray level co-occurrence matrices are also 
explained. The chapter includes uses of box plot in feature selection procedures 
and an overview of decision tree and its applications in detection/ classification 
methods. A theoretical explanation of performance evaluation using Receiver 
operating characteristic curve is also presented in this chapter.   
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The initial step of any image processing application (after image 
enhancement) is segmentation of the object of interest. The various operations used 
for segmentation in this work are morphological operations, spatial domain 
filtering and thresholding. 

4.1 Mathematical Morphology 
This section gives an introduction to the theory and implementation details 

of morphological filtering techniques. Mathematical morphology is an algebraic 
method based on set theory that probes an image by a structuring element (SE) to 
filter or quantify an image  according to the manner in which the SE fits (or does 
not fit) within the image [2]. The structuring information of the morphologically 
processed image depends on the size and shape of the SE. The basic morphological 
operations are dilation, erosion, opening and closing, applied to both binary and 
grayscale images. 

Structuring elements are available in different shapes and types which are 
useful for segmentation, reconstruction and noise removal from images.  Some of 
them are box, disk and line. 

4.1.1 Binary Morphology 
4.1.1.1 Erosion and Dilation 

The basic fitting operation of mathematical morphology is erosion of an 
image by a structuring element. The erosion is computed by scanning the image 
with the structuring element. When the structuring element fits completely inside 
the image, the scanning position is marked. The erosion consists, boundary of all 
scanning locations where the structuring element fits inside the image. The erosion 
of set A by  B is denoted by ܣ ٓ  and defined by Eqn. (4.1) ܤ
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ܣ ٓ ܤ ൌ ሼݔ: ௫ܤ ٌ  ሽ        (4.1)ܣ

where, A is the input image and B is the structuring element , ٌ denotes the subset 
relation and Bx = ሼb+x : b א Bሽ is the translation of set B by a point ‘x’. Thus the 
shaded region in Fig.4.1 constitutes erosion of A by B. The boundary of the shaded 
region shows the limit beyond which further displacement of the origin of B, 
causes B to go outside the image boundary (beyond which B is fully contained in 
A). 

One of the simplest uses of erosion is for eliminating irrelevant details 
from a binary image. A binary image is formed by the foreground and background 
pixels. In mathematical morphology, for every operator that changes the 
foreground, there is a dual operator that changes the background. The dual operator 
for erosion is dilation. Since dilation involves a fitting into the complement of an 
image, it represents a filtering on outside, where as erosion represents a filtering on 
the inside.  

  

(a)                                      (b)                                     (c)

Fig.4.1 The erosion process. (a) Image A (b) Structuring element B with radius d/2 with 
origin at dotted point (c) Eroded image  

A  AٓB 
B
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Formally, the dilation of set A by B, denoted by A ْ B, is defined by Eqn.(4.2) 
 
ْ ܣ ൌ ܤ   ሺAୡ ٓ B෱)C       (4.2) 
 
where Aୡ denotes the set-theoretic complement of A and B෱=ሼെܾ: א ܾ  ሽ is theܤ
reflection of B, i.e., a 1800 rotation of B about the origin. Foreground is generally 
associated with white color while background is associated to black color. But note 
that in compression works, the inverse convention is sometimes used. Even though 
dilation process is based on set operations, the basic process of flipping the 
structuring element B, about its origin and successively displacing it so that it 
slides over set (image) A is analogous to the convolution process. 

Dilation has the expected expanding effect as shown in Fig.4.2, filling in 
small intrusions into the image and erosion has a shrinking effect, eliminating 
small extrusions. As dilation by a disk expands an image and erosion by a disk 
shrinks an image, both can be used for finding boundaries of binary images. The 
three possibilities are: 

1. External boundary: dilation minus the image. 
2. Internal boundary: the image minus the erosion. 
3. Combined boundary: dilation minus erosion. 

Fig 4.2 The dilation process. Figures from left to right- A is the image, B is the 
structuring element with radius d/2. Dilated image AْB 

A  B

d/

AْB 
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The latter straddles the actual Euclidean boundary and is known as the 
morphological gradient, which is often used as a practical way of displaying the 
boundary of the segmented objects [2, 3]. 

4.1.1.2 Opening and Closing 

Besides the two primary operations of erosion and dilation, there are two 
important operations that play key roles in morphological image processing, they 
being opening and its dual, closing. The opening of an image A by a structuring 
element B, denoted by ܣоܤ, is the union of all structuring elements that fit inside 
the image (Fig. 4.3) 

ܤоܣ ൌ :௫ܤሼڂ ௫ܤ ك  .ሼ•ሽ denotes the union of all sets inside the bracesڂ ሽ  whereܣ

or 

ൌ ܤоܣ  ሺܣ ٓ ሻܤ ْ  (4.3)        ܤ 

Thus the opening of set A by B is defined as an erosion of A by B followed 
by a dilation by B. Opening generally smoothes the contour of an object, breaks 
narrow isthumuses and thin protrusions [2]. The opening operation has a simple 
geometric interpretation as shown in Fig 4.3, the boundary of ܣоܤ  is established 
by the points in B that geometrically fits with boundary of A. The opening of A by 
B by taking the union of all translates of B that fit into A.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a
Figure 4.3 Morphological opening. a) Structuring element B rolling along inner 
boundary of A ,b) the heavy line is the outer boundary of the opening. c) 
Completed opening (shaded)  

B
A 

b c
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Dual version of opening, called ‘closing’ (Fig. 4.5, right), which is defined by  
 
• ܣ ൌ ܤ   ሺܣ௖о ܤ෰ሻ஼    or 
• ܣ ൌ ܤ   ሺܣ ْ ሻܤ   ٓ  (4.4)      ܤ 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Closing has same geometric interpretation as opening, except that 

structuring element B is rolling on outside the boundary. Geometrically, a point w 
is an element of  ܣ • ௫ܤ ,if and only if ,ܤ ת ܣ ് ௫ܤ  for any ,׎  that contains w. 
Fig.4.4 illustrates the basic geometrical properties closing. Closing of A by B is 
simply the dilation of A by B, followed by the erosion of the result by B. From 
Fig.4.4, it can be noted that the inward pointing corners were rounded, whereas 
outward pointing corners remain unchanged, when a circular shaped structuring 
element is used. 

Closing tends to smooth sections of contours, narrow breaks and long thin 
gulfs, eliminates small holes, fills gap in the contour. These operations can be used 
to construct filters similar to other types of spatial filters. It can reduce noise with 
light element on a dark background and as dark elements on the light background. 
A morphological filter consisting of opening followed by closing can be used to 
accomplish this objective. The back ground noise can be completely eliminated in 
the erosion stage of opening, if the structuring element selected is physically larger 

Figure 4.4 Morphological closing operation a) Structuring 
element B rolling outer boundary of set A, b) Set A after closing.  

A 

B

a  b
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than the noise component. The net effect   of opening is to eliminate all noise 
components in both background and image. The opening followed by closing clean 
of noise specks, but has the disadvantage that images containing print ridges are 
not fully repaired [3]. 

As a filter, opening can clean the boundary of an object by eliminating 
small extrusions; however, it does this in a much finer manner than erosion, the net 
effect being that the opened image is a much better replica of the original than the 
eroded image. Analogous remarks apply to the closing, the difference being the 
filling of small intrusions.  

When there is both union noise and subtractive noise, one strategy is to 
open to eliminate union noise in the background and then close to filling 
subtractive noise in the foreground. The open-close strategy fails when large noise 
components need to be eliminated but a direct attempt to do so will destroy too 
much of the original image. In this case, one strategy is to employ an Alternating 
Sequential Filter (ASF). Open-close (or close-open) filters are performed 
iteratively, beginning with a very small structuring element and then proceeding 
with ever-increasing structuring elements. 

Note that whereas the position of the origin relative to the structuring 
element has a role in both erosion and dilation, it plays no role in opening and 
closing. However, opening and closing have two important properties [4]: 

1. Once an image has been opened (closed), successive openings (closings) 
using the same structuring element produce no further effects. 

2. An opened image is contained in the original image which, in turn, is 
contained in the closed image (Fig. 4.3 & 4.4). 

As a consequence of this property, we could consider the subtraction of the 
opening from the input image, called opening top-hat, and the subtraction of the 
image from its closing called closing top-hat, respectively defined by Eqn. (4.5) 
and (4.6) 

ܤ оො ܣ ൌ ܣ െ ሺܣо ܤሻ       (4.5) 
ܣ •ො ܤ  ൌ ሺܣ • ሻܤ െ  (4.6)       ܣ
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4.1.2 Gray –Scale Morphology 
In this section we extend to gray scale images the basic operations of  

dilation, erosion, opening and closing. Here, we deal with digital image functions 
of the form f(x, y) and b(x, y), where f(x, y) is the input image and b(x ,y) is the 
structuring element, itself a sub image function.. 

Mathematically, dilation and erosion of an image is represented as per Eqn. 
(4.7) & (4.8) using a SE ’b ‘to obtain I1 and I2 respectively. 

  { }1 ( ', ') ( ', ') ( ', ') bI =(f b)=max f x x y y b x y x y D⊕ − − + ∈             (4.7)     

ଶ ൌܫ ሺ݂ ٓ ܾሻ ൌ ݉݅݊ሼ݂ሺݔ ൅ ,ᇱݔ ݕ ൅ ᇱ ሻݕ െ ܾሺሺݔᇱ, ,ᇱݔᇱሻ|ሺݕ ᇱሻݕ א   ௕ሽ        (4.8)ܦ

where Db is the domain of b,  and f (x, y) is assumed to be equal to  -∞ outside the 
domain of  f.  Eqn.4.7 implements a process similar to the concept of spatial 
convolution, with max operations replacing the sums of convolution and the 
additions replacing the products of convolution. Gray level dilation operation is 
rotating the structuring element about its origin and translating it to all locations in 
the image, just as convolution kernel is translated and rotated and then translated 
about the image. Fig.4.5 shows the dilated image when a disc shaped structuring 
element is used.  

 
   
 
 
 
 
 
 
 
 
 
 
 
 One important difference between convolution and gray scale dilation is 

 
(a)                                       (b) 

Fig.4.5 Image after Gray level dilation with a disc shaped structuring 
element. (a) Original Image (b) Image after gray level dilation 
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that, in dilation, Db a binary matrix defines which locations in the neighborhood are 
included in the max operation. In other words, for an arbitrary pair of coordinates 
(x0,y0) in the domain of  Db, the sum ݂൫ݔ െ ݕ,଴ݔ െ ଴ ൯ݕ ൅  ܾሺݔ଴,  ଴ሻ  is included inݕ
the max computation only if Db is 1 at those coordinates. If Db is 0 at ሺݔ଴,  ଴ሻ, theݕ
sum is not considered in the max operation.In gray scale operation, gray scale 
dilation usually  is performed using flat structuring elements in which the value 
(height) of b is 0 at all coordinates over which Db is defined. That is, ܾ ሺݔᇱ, ᇱሻݕ ൌ
,ᇱݔሺ ݎ݋݂   0 ᇱሻݕ א    ௕ܦ

In this case, the max operation is specified completely by the pattern of 0s and 1s 
in the binary matrix ܦ௕, and the gray scale dilation equation simplifies to Eqn. 4.9 

{ }1 ( ', ') ( ', ') bI =(f b)= max f x x y y x y D⊕ − − ∈                             (4.9) 

 At each translated pixel location, the rotated SE values are added to the 
image pixel values and maximum is computed. The general effect of performing 
dilation on a gray scale image is two-fold: (1) if all values of structuring element 
are positive, the output image tends to be brighter than the input. (2) Dark details 
either are reduced or eliminated, depending upon how their values and shapes 
relate to the SE used for dilation.  

The flat gray scale erosion is a local minimum operator, in which the 
minimum is taken over the set of pixel neighbors determined by the shape of Db. 

gray scale erosion as per Eqn.4.8, translating the structuring element to all 
locations in the image. At each translated locations, the SE values are subtracted 
from the image pixel values and the minimum is taken. As with dilation, grayscale 
erosion is most often performed using flat structuring elements.  Eqn.4.9 is similar 
in form to 2-D correlation, with the min operation replacing the sums of correlation 
and subtraction replacing the products of correlation.  The equation for flat 
grayscale erosion is reduced to Eqn. 4.10 

ଶ ൌܫ ሺ݂ ٓ ܾሻ ൌ ݉݅݊ሼ݂ሺݔ ൅ ,ᇱݔ ݕ ൅ ,ᇱݔᇱሻ|ሺݕ ᇱሻݕ א  ௕ሽ                              (4.10)ܦ

Thus, gray scale erosion is a local minimum operator, in which the 
minimum is taken over a set of pixel neighbors determined by the shape of ܦ௕ as 
shown in Fig. 4.6.  
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 Erosion reduces the size of a segment and dilation leads to enlargement 
according to the size of the structuring element used and combination of these 
operations enable underlying object shapes to be identified and reconstructed from 
their noisy distorted forms. Dilation and erosion can be combined to achieve 
variety of effects. Subtracting an eroded image from its dilated version produces a 
morphological gradient of the image [2, 4].  

4.1.2.1 Gray level Opening and closing 

 The expressions for opening and closing of  gray scale images have the 
same form as their binary counter parts. The opening of f   by the structuring 
element b denoted     f о b, is defined as Eqn.4.11. The morphologically opened 
image is given Fig.4.7 

 
݂оܾ ൌ ሺ݂ ٓ ܾሻ ْ ܾ                                                             (4.11) 

 
As before, this is simply the erosion of f by b, followed by the dilation of 

the result by b. Similarly closing of   f   by b, denoted f•b, is dilation followed by 
erosion (Eqn.4.12) 
 
 
       

 
(a)                                      (b) 

Fig.4.6 Image after Gray level erosion with a disc shaped structuring 
element. (a) Original Image (b) Image after gray level erosion 
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݂ • ܾ ൌ ሺ݂ ْ ܾሻ ٓ ܾ        (4.12) 

Because opening suppresses bright details smaller than the structuring 
element, and closing suppresses dark details smaller than the structuring element, 
they are used often in combination for image smoothing and noise removal. This is 
shown in Fig.4.8. 

 
 
 
 
 
 
 
 
 
 
 
 
Opening removes small details of the outline of the segment without 

affecting the total size of the relevant regions. After opening operation, the output 
image undergoes closing operation. The closing is able to remove holes in the 
interior of a region and smooth its contour [4].  The size of segment is almost 

 
(a)                                      (b) 

Fig.4.7 Image after Gray level opening (a) Original Image (b) Image after gray level 
opening with a disc shaped structuring element 

   
(a)                                      (b) 

Fig.4.8 Image after Gray level closing with a disc shaped structuring element. (a) 
Original Image (b) Image after gray level closing 
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maintained after the closing operation. The combination of opening followed by 
closing or closing followed by opening can suppress noise sufficiently [3, 4].  
 

4.2 Spatial filtering techniques using convolution and 
Correlation 
The principle objective of enhancement is to process an image, so that the 

result is more suitable than the original image for a specific application. Image 
enhancement technique falls into two broad categories: spatial domain methods and 
frequency domain methods. The term spatial domain refers to the image plane 
itself, and approaches in this category are based on direct manipulation of pixels. 
Frequency domain processing techniques are based on modifying the Fourier 
transform of an image. 

The term spatial domain refers to the aggregate of pixels composing an 
image. Spatial domain methods are procedures that are directly on these pixels 
values. Spatial domain processes are denoted by the expression.  

݃ሺݔ, ሻݕ ൌ ܶሾ݂ሺݔ,  ሻሿ        (4.13)ݕ

where, f(x, y) is the input image, g(x, y) is the processed image, and T is an operator 
on f, defined over some neighborhood of (x, y). In addition T can operate on a set of 
input images, such as, performing the pixel by pixel sum of K images for noise 
reduction. 

The neighborhood was defined about a point (x, y) by using square sub area 
centered at (x, y) as shown in Fig.4.9. The center of the sub image is moved from 
pixel to pixel starting, at the top left corner. The operator T is applied at each 
location (x, y) to yield the output, ‘g’, at that location. The process utilizes only the 
pixels in the area of the image spanned by the neighborhood [5]. 

Correlation and Convolution are basic operations for extracting 
information from images. They are in some sense the simplest operations that are 
performed on an image, but they are extremely useful. Moreover, because they are 
simple, they can be analyzed and understood very well, and they are also easy to 
implement and can be computed very efficiently. These operations have two key 
features: they are shift-invariant, and linear. Shift invariant means, performing the 
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same operation at every point in the image.  Linear means, it replaces every pixel 
with a linear combination of its neighbors. These two properties make these 
operations very simple. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.1 Correlation 

Consider a square filter. Then the results of correlation can be computed by 
aligning the center of the filter with a pixel, and then multiply all overlapping 
values together, and add up the result. The corresponding mathematical expression 
can be written as Eqn.4.14. 

,ݔሺܫоܨ ሻݕ ൌ ∑ ∑ ,ሺ݅ܨ ݆ሻܫሺݔ ൅ ݅, ݕ ൅ ݆ሻேିଵ
௝ୀ଴

ேିଵ
௜ୀ଴       (4.14) 

The importance of correlation is that, it is useful to find locations in an 
image that are similar to a template. To do this, consider the filter as a template and 
then slide it around the image looking for a location where the template overlaps 
the image so that values in the template are aligned with similar values in the 
image and the real correlation value is maximum[6]. The example for filtering 
using correlation shown in Fig.4.10 

Fig.4.9. A 3x3 neighborhood about a point (x ,y) in 
an image 

(x,y)

Image f(x,y)
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4.2.2 Convolution 

Convolution is just like correlation, except that flip it over the filter before 
correlating. In the case of convolution, flip the filter both horizontally and 
vertically. This can be written as Eqn.4.15 

ܨ כ ,ݔሺܫ ሻݕ ൌ ∑ ∑ ,ሺ݅ܨ ݆ሻܫሺݔ െ ݅, ݕ െ ݆ሻேିଵ
௝ୀ଴

ேିଵ
௜ୀ଴         (4.15) 

Correlation and convolution are identical when the filter is symmetric. The 
key difference between the two is that convolution is associative[7]. That is, if F 
and G are filters, then Eqn.4.16 

F*(G*I) = (F*G)*I.        (4.16) 

In general, people use convolution for image processing operations such as 
smoothing, and they use correlation to match a template to an image. Correlation is 
not associative, because it does not really make sense to combine two templates 
into one with correlation, whereas in the case of convolution, two filters may be 
often combined together.  

 

   
(a)                                      (b) 

Fig.4.10 Example for Correlation filtering. (a) Original Image (b) Image after 
correlation filtering 
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4.3 Thresholding 
Suppose that gray level histogram shown in Fig.4.11 corresponds to an 

image f (x,y), composed of light objects on a dark background, in such a way that 
objects on a dark background have gray levels grouped  into two dominant modes. 
One obvious way to extract the objects from the background is to select a threshold 
T that separates these modes. Then at any point (x, y) for which f(x, y) >T    is 
called an object point, otherwise, the point is called a background point.  

 

 

 

 

 

 
 
 
 
 
 

Fig. 4.11 (b) shows three different levels characterizing the image histogram. Here, 
multilevel thresholding classifies a point (x, y) as belonging to one object class if 

to other object class if ( ), 2f x y T> , and to the background if 

( ), 1f x y T≤ . Example for thresholded image is shown Fig.4.12 

 
 
 
 
 
 
 
 
 

 

(a)                                                                      (b) 
Fig.4.11 Gray level histograms that can be partitioned by a) A single threshold b) 
Multiple thresholds 

   
(b)                                       (b) 

Fig. 4.12 Example for Thresholding. (a) Original Image (b) Image after Thresholding 
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Thresholding can also be defined as the test against a function T of the form as 
represented in Eqn 4.17 

ܶ ൌ ܶሾݔ, ,ݕ ,ݔሺ݌ ,ሻݕ ݂ሺݔ,  ሻሿ       (4.17)ݕ

where  f(x, y) is the gray level of point (x, y) and p(x, y) denotes some local 
property of the point. A thresholded image g(x, y) is defined as Eqn 4.18 

݃ሺݔ, ሻݕ ൌ ൜1, ݂݅ ݂ሺݔ, ሻݕ ൐ ܶ
0, ݂݅ ݂ሺݔ, ሻݕ ൑ ܶ       (4.18) 

Thus, pixels labeled as 1 corresponds to objects, whereas pixels labeled as 
0 corresponds to the background. When T depends only on f(x, y) (gray level 
values) the threshold is called global. If T depends on both f(x, y) and p(x, y), the 
threshold is called local. If, in addition, T depends on spatial coordinates x and y 
the threshold is called dynamic or adaptive. 

In the case of global thresholding, partition the image histogram by using a 
single global threshold T. Segmentation is thus achieved by scanning the image 
pixel by pixel and labeling each pixel as object or background, depending on 
whether the gray level of that pixel is greater or less than the value of T. When 
applying a single threshold T midway between maximum and minimum gray 
levels, any pixel ≤ T is labeled as black (0) and any pixel with a gray level ൐ ܶ is 
labeled as white (1) thus generating a binary object. 

4.3.1 Adaptive Thresholding 
In this case, the thresholds are fixed up automatically, which will produce 

minimum average segmentation error.  

For choosing a threshold automatically, following iterative procedure has to be 
followed [2]. 

1. Select an initial estimate for T. Usually initial estimate is the midpoint 
between the minimum and maximum intensity values in the image. 

2. Segment the image using T. This will produce two groups of pixels: G1, 
consisting of all pixels with intensity values൒ ܶ, and G2, consisting pixels 
with values ൏ ܶ. 
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3. Compute the average intensity values ߤଵ ܽ݊݀ ߤଶ  for the pixels in regions 
G1 and G2. 

4. Compute  a new threshold value: ܶ ൌ ଵ
ଶ

ሺߤଵ ൅  .ଶሻߤ

5. Repeat steps 2 through 4 until the difference in T in successive iterations 
is smaller than a predefined parameter To. 

4.4 Extraction and Labeling of Connected 
Components 

The extraction of connected components in a binary image is central to 
many automated image analysis applications. The term connected component is 
defined in terms of a path, and the definition of a path in turn depends on 
adjacency. A pixel p at coordinates (x,y) has two horizontal and two vertical 
neighbors whose coordinates are (x+1,y), (x-1,y), (x,y+1) and (x,y-1). This set of 4-
neighbors of p, denoted N4 (p), is shaded in Fig.4.13a. The four diagonal neighbors 
of p have coordinates (x+1,y+1), (x+1,y-1), (x-1,y+1), and (x-1,y-1) are  denoted as 
ND(p). The N4(p) and ND(p) are the 8-neighbors of p, denoted N8(p) (Fig.4.13b). 
Two foreground pixels p and q are said to be 4-connected if there exist a 4-
connected path between them, consisting entirely of foreground pixels (Fig 4.13c). 
For any foreground pixel p, the set of all foreground pixels  connected to it, is 
called the connected component containing p. Identification and labeling of 
connected component in binary images (see Fig. 4.14) are widely used for 
automatic segmentation systems [2].  
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6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

(a )    (b)        (c) 

Fig. 4.13 Structure of a connected component. a) Pixels p and its 4-
neighbours N4(P), b) Pixels p and its 8-neighbours c) The shared 
pixels are both 4 connected and 8 connected. 

   
       (a)                                      (b) 

Fig.4. 14 Example for connected component labeling. (a) Original Image (b) Image after 
connected component labeling 
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4.5 Validation Methods for segmentation algorithm 
used in medical images- A Theoretical approach 

In medical imaging, the accuracy of segmentation technique is very important. 
Hence all segmentation methods have to be evaluated. While several systems for 
segmentation of medical data are currently in use in various research laboratories 
and hospitals, the issue of correct validation is often ignored. A validation method 
can be thought of as a combination of two components. One component is the 
notion of a ‘ground truth’ against which the results of an algorithm are to be 
judged. The second component is a measure for establishing the deviation of the 
results from its ground truth. For their second component, most validation schemes 
use standard statistical methods of finding means, modes, variances, standard 
deviations, or root mean squared errors. The first component requires developing 
the notion of a ground truth for a segmentation algorithm and that is where one 
tends to run into difficulty. The problem is not that there is no ground truth for 
medical data, but that the ground truth is not typically available to the segmentation 
systems in any form that they can readily be used. In this section, the methods that 
have been typically used for validation of segmentation algorithms is briefly 
summarized.  

 The following are representative of schemes used for validation of medical 
segmentation results. 

• Method 1: visual inspection 
• Method 2: comparison with manual segmentation 
• Method 3: testing on synthetic data 
• Method 4: use of fiducials on patients 
• Method 5: use of fiducials and/or cadavers 

 
Visual inspection and comparison with manual segmentation are very 

strenuous and are not reliable since the amount of data to be processed is usually 
large. Here, we depict three different measures for quantitatively evaluating 
segmentation results. 
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(1)  The misclassification rate (MCR) is the percentage of misclassified pixels 
and is computed as (background pixels were ignored in the MCR computation)  

 

ൌ ܴܥܯ ௡௨௠௕௘௥ ௢௙ ௠௜௦௖௟௔௦௦௜௙௜௘ௗ ௣௜௫௘௟௦
்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௔௟௟ ௣௜௫௘௟௦

 ൈ 100%  (4.19) 

 
(2) The root mean squared error (RMSE) is to quantify the difference between the 
true partial volumes and the algorithm estimations. The RMSE of an estimator ߠ෠ 
with respect to the estimated parameter θ is defined as [8]: 

 

෠൯ߠ൫ܧܵܯܴ ൌ ටMSE൫ߠ෠൯ ൌ ට൫Eሺθ෠ െ θ൯ଶ
     (4.20) 

E-is the error between two images,ie original image and noise added image. 
 
Let Nfp be the number of pixels that do not belong to a cluster and are segmented 
into the cluster, Nfn be the number of pixels that belong to a cluster and are not 
segmented into the cluster, Np be the number of all pixels that belong to a cluster, 
and Nn be the total number of pixels that do not belong to a cluster. Three 
parameters in this evaluation system may now be defined as follows [9] 

• Under segmentation (UnS): ܷ݊ܵ ൌ ୒௙௣ 
୒௡

, representing the percentage of 
negative false segmentation; 

• Over segmentation (OvS): ܱܵݒ ൌ ୒௙௡ 
୒௣

, representing the percentage of 

positive false segmentation; 
• Incorrect segmentation (InC): ୒௙௣ା୒௙௡

ே
,  representing the total percentage 

of false segmentation. 
 
Correct segmentation means there is no under segmentation and over segmentation. 
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4.6 Representation 
After an image has been segmented into regions based on the methods 

mentioned above the segmented pixels can be represented and described in a form 
suitable for further processing. Basically representing a region can be done in two 
ways- First one is, in terms of its boundary (external characteristics) and second 
one, in terms of pixels comprises its regions (internal characteristics). 
Representation scheme is chosen for making analysis of the selected region.  An 
external representation is chosen when the primary focus is on shape 
characteristics. An internal representation is selected when the primary focus is on 
regional properties, such as color and texture. In either case, the features selected as 
descriptors should be as insensitive as possible to variations in size, translation, and 
rotation [10].Choosing a representation of a region is only a part of making data 
useful to analysis. Next task is to describe the region based on chosen 
representation. This chapter is giving special emphasis on internal characteristics of 
segmented region, that is, texture, texture description and quantification of its 
texture content.  

4.6.1 Boundary of a region 
Boundary of a region classified in terms of external characteristics of a 

region. A region is a connected component, and the boundary of a region is set of 
pixels in the region that have one or more neighbors that are not in the region. The 
points on a boundary are ordered, if they form a clockwise or counter clockwise 
sequence. A boundary is said to be minimally connected if each of its points has 
exactly two 1-valued neighbors  that are not 4-adjacent. In order to find out the 
boundaries, the 2D coordinates are organized as  npx 2 arrays, where each row is 
an (x, y) coordinate pair, np is the number of points in the region or boundary. The 
exterior boundary of a region can be obtained with desired 4 or 8 connectivity with 
specified direction. Fig 4.15 shows the boundary of a set of regions with 4-
connectivity [2]. 
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4.6.2 Texture 

Texture is an internal representation of a region. A texture perceived by 
humans is a visualization of complex patterns composed of spatially organized, 
repeated sub patterns, which have a characteristic, somewhat uniform appearance. 
The local sub patterns within an image are perceived to demonstrate specific 
brightness, color, size, roughness, directivity, randomness, smoothness, 
granulation, etc. A texture may carry substantial information about the structure of 
physical objects [1]. 

The main challenge has been to describe the properties of texture in an 
image numerically for meaningful quantitative analysis. Quantitative analysis in 
textures is essential in many tasks such as classification of images based on their 
textures, segmentation of an image into homogeneous regions, synthesizing texture 
for computer graphics and image retrieval based on texture. However, it is very 
difficult to describe in precise terms what we visually perceive as texture, even 
though being able to visually distinguish one texture from another comes to us 
naturally. As a result, there is no unique definition for texture. We can characterize 
a texture by its properties as we perceive them based on visual and tactile senses. 
For example, we can describe a certain texture with such terms as ‘net-like’, 
‘rough’ or ‘smooth’. Therefore, a good approach to quantitative analysis of textures 
is to first describe a texture in a way that is perceptually and intuitively meaningful 
and then try to measure these properties in order to approximate visual perception 

    

             (a)                                               (b) 

Fig.4.15 Boundary representation a) Original Image b) 4-connected 
boundary 



Chapter 4 

122 

[5]. Spectral approaches are based on the properties of Fourier spectrum and are 
particularly suited to periodic or semi-periodic shapes. Three important things can 
be done using Fourier spectrum:  Dominant peaks of the spectrum show the main 
texture feature direction which depicts the fundamental spatial period of the texture 
from the peak frequency and isolates non-periodic objects by filtering out periodic 
components of the spectrum [6]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

4.6.2.2 Statistical Methods 
Numerous texture analysis methods have been proposed in the past four 

decades for measuring textural properties. One of the first and most widely used 
methods is the extraction of second order statistics based on pairs of gray-level 
distributions in the image [5]. In statistical texture analysis, texture features are 
computed from the statistical distribution of observed combinations of intensities at 

 

Fig.4.16. Examples of different types of Textures
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specified positions relative to each other in the image. According to the number of 
intensity points (pixels) in each combination, statistics are classified into first-
order, second-order and higher-order statistics. 

In medical image processing, texture is especially important, because it is 
difficult to classify human organ tissues using shape or gray level information. 
Some of the challenges are: 1) the shape of each organ is not consistent throughout 
all slices of a 3D medical image and may change quickly where the inter-slice 
distance is large, and 2) the gray level intensities overlap considerably for soft 
tissues. On the other hand, organs are expected to have consistent and 
homogeneous textures within tissues [3]. 

The most important characterizing factor of the texture is coarseness [4]. 
An image must have a certain level of coarseness for it to have meaningful texture 
and this is determined by the size of its textural primitives or equivalently, the scale 
of the image. At one extreme, the textural primitives can be so small that they 
become dots, indicating the highest level of fineness, in which case, the image can 
be described as white noise. On the other extreme, the textural primitive can be so 
large that only one can fit in the image. In both cases, there is no meaningful 
texture in the images. Once we ensure that there is a certain level of texture in an 
image, the challenge is to characterize the texture in meaningful terms.  

4.6.2.2.1 First order statistics 

Simple first-order statistical texture properties can also be computed 
directly from the image. These methods measure basic statistical variations in gray-
levels and are mostly based on the histogram of an image, which counts the total 
number of pixels with a given gray value within the image. Hence, a normalized 
histogram gives the probability that a given pixel in the image has a certain gray 
level value. Some simple first-order statistics include mean, variance and skewness 
of the distribution of gray-levels. One of the simplest approaches for describing 
texture is to use statistical moments of gray level histogram of an image or region. 
Let z be a random variable denoting gray levels and let p(zi), i=0,1,2….L-1, be the 
corresponding histogram, where L is the distinct gray levels. 
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A frequently used approach for texture analysis is based on the statistical properties 
of histogram. One class of such measures is based on statistical moments 
(Eqn.4.21). 

௡ߤ ൌ ∑ ሺݖ௜
௅ିଵ
௜ୀ଴ െ ݉ሻ௡݌ሺݖ௜ሻ      (4.21) 

where m is the mean value of z (average gray level) given by 

݉ ൌ ∑ ௜ሻ௅ିଵݖሺ݌௜ݖ
௜ୀ଴          (4.22) 

‘m’ is a measure of average intensity (n=0) (Eqn.4.22).  

1. ߪ ݊݋݅ݐܽ݅ݒ݁݀ ݀ݎܽ݊ܽݐܵ ൌ ඥߤଶሺݖሻ ൌ  ଶ     (4.23)ߪ√

 ଶ, the variance (Eqn.4.23) which is a measure ofߪ .ሻ , the second moment, isݖଶሺߤ
average contrast. 

For any region of interest, the mean and the standard deviation of the gray 
values in the region can be used to measure the spread of gray values of the pixels 
within that region. For example, a relatively dark region with a texture that can be 
characterized as homogeneous has a relatively low mean and a low standard 
deviation, assuming that the lowest gray level value is black and the highest is 
white on the gray color spectrum. The mean and standard deviation represent the 
gray level distribution in the region of interest. 

2. ܴ ݏݏ݄݁݊ݐ݋݋݉ܵ ൌ 1 െ ଵ
ଵାఙమ      (4.24) 

Smoothness R measures relative smoothness of intensity in a region. R is 0 
for a region of constant intensity and approaches 1 for regions with large 
excursions in the values of its intensity levels.  

3.Third moment ߤଷ ൌ ∑ ሺݖ௜ െ ݉ሻଷ௅ିଵ
௜ୀ଴  ௜ሻ    (4.25)ݖሺ݌

It, measures the skewness of a histogram. This measure is 0 for symmetric 
histograms, positive for histograms skewed to the right and negative for histograms 
skewed to the left. 

4.Uniformity ܷ ൌ  ∑ ଶ௅ିଵ݌
௜ୀ଴ ሺݖ௜)      (4.26) 

This measure is uniform when all gray levels are equal. 
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5. Entropy  ݁ ൌ െ ∑ ௜ሻݖሺ݌ logଶ ௜ሻ௅ିଵݖሺ݌
௜ୀ଴      (4.27) 

Entropy   is a measure of randomness. Another useful statistics is entropy 
[13], which can be used in regions of interest from both raw and texture images. 
Given a region of interest in a grayscale image, entropy is a function of pixel 
intensities (or probabilities), which measures uncertainty in the region of interest. 
If the histogram of the region, which describes the frequency distribution of the 
gray level values, is taken to be a probabilistic distribution, then the entropy 
computed using the histogram, is a measure of the region’s randomness. Let h = 
h1,….., hn be a normalized histogram of an image, where hi for i = 1,…. ,n is the 
frequency of gray values that fall into bin i. Then the entropy for the image is given 
by equation 4.27. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  

       
Fig. 4.17 An image with gray level value equal 1: entropy 0

        
Fig. 4.18 An image with uniform noise: entropy 4.15



Chapter 4 

126 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The smoothness, coarseness and periodicity of image regions can be 
assessed by using these first order statistical features. For example, the entropy of 
the coarse region is higher than the smoother regions because the values of pixels 
in that region are more random than the values in the other regions. This is also 
true when contrast and average intensity is high. Then that region is less smoother 
and less uniform than other images. Third moment of coarse texture region is less 
symmetric than other regions. An image with a uniform distribution of gray values 
has a high rate of randomness. In other words, the probability that a given pixel has 
a certain gray value is equal to the probability that the pixel has any other gray 
value. In this case the uncertainty is maximum. As an example, consider an image 
whose pixels have only binary values: 1 or 0. Also assume that half the pixels in 
the image are 1 and the rest are 0 (in which case the distribution is uniform). In this 
case, given a random pixel in the image, one cannot say with a high level of 
certainty that this pixel has a value of 1 (or 0), since the probability of any value 
occurring is 0.5. Therefore, the entropy, or equivalently the randomness, is 0.5. On 
the other hand, if an image has only values of 1, then one can say with 100% 
certainty that any given pixel in the image will have the value 1. Therefore, the 
uncertainty for such an image is minimized and the entropy is 0. Fig. 4.17, Fig.4.18 

 

Fig.4.19 An image added with Gaussian noise: entropy 5.6
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and Fig. 4.19 show three images with their corresponding histogram and entropy 
measures; Fig. 4.18  generated by uniform noise, Fig. 4.19  generated by Gaussian 
noise and in Fig. 4.17, all pixels have the value one and entropy =0 respectively. 

4.6.2.2.2 GLCM based second order statistics 

The basic statistical tools, introduced earlier, extract first order features. 
First order statistics are measures that do not take into account the location of gray 
values relative to each other. Therefore, if the pixels in a region of interest were to 
be scrambled, these statistical results would remain the same. Gray Level Co-
occurrence Matrices (GLCM), first introduced by Halarick, et.al [6], uses second 
order statistics. The central idea behind GLCMs is that gray values of pairs of 
pixels and their relative positions characterize certain textural properties. Haralick 
et al. introduced  a method based on Gray-Tone Spatial Dependence Matrices (also 
known as Gray-Level Co-occurrence Matrices), which assumes that the textural 
properties of a region can be determined from the overall or average spatial 
relationship between the gray levels in an image [5]. More specifically, a co-
occurrence matrix collects information regarding the distribution of pairs of pixels 
within an image according to a displacement rule, which is defined by a distance 
and an angle.  

For a given distance d and angle θ, the entry (i, j) in a normalized co-
occurrence matrix P(d, θ )is the joint probability that a pixel with gray value j 
appears at a distance d and angle θ with respect to a pixel with gray value i. Fig. 
4.20 shows the direction of GLCM generation. From the center ( ) to the pixel 1 
representing direction = 0° with distance d =1, to the pixel 2 direction = 45° with 
distance d = 1, to the pixel 3 direction = 90° with distance d = 1, and to the pixel 4 
direction = 135° with distance d = 1. Second-order statistics have a higher 
correlation with human visual perception [7]. 
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1. GLCM Construction 

The first step in building co-occurrence matrices is to specify a 
neighborhood structure, which in turn is used to construct the co-occurrence 
matrices from the region of interest in the grayscale image. Then second order 
statistics are computed on the co-occurrence matrices to characterize certain 
textural properties in the region of interest. 

If there are’ n’ gray levels in an image, for a given region of interest in the 
image, the dimension of each co-occurrence matrix is n-by-n. The number of co-
occurrence matrices is equal to the number of offsets in the neighborhood structure. 
Each row of a co-occurrence matrix represents the gray level of a pixel being 
referenced and the columns represent the gray levels of pixels that are offset to the 
reference pixel. Therefore, the number kij located at row i and column j of the co-
occurrence matrix representing offset O, indicates the number of times gray level 
gi appears with gray level gj offset by O [8-10].  

  

Fig.4.20 Direction of GLCM generation.
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Figure 4.21 shows the co-occurrence matrices built for a sample gray scale 

image using a neighborhood structure that has two offsets, each located at a 
distance of one from the reference pixel. Once the gray level co-occurrence 
matrices are constructed (Fig.4.22), then each matrix M is normalized to transform 
the values Mij from number of co-occurrences to probabilities (Pij) of co-
occurrences (Eqn.4.28): On the left, the grayscale image has 8 gray levels with 
values 1 to 8. Therefore, each co-occurrence matrix is 8-by-8. The neighborhood 

Fig. 4.21: Sample gray scale neighborhood structures, having two 
offsets.

Fig. 4.22 Construction of GLCMs.
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structure has 2 offsets and there is one co-occurrence matrix for each offset. In 
each matrix, the rows represent the gray levels of reference pixels and the columns 
represent the gray levels of offset pixels. For example, in the matrix for the offset 
left, as demonstrated in the Figure, gray level 1 appears two times with gray level 2 
to its left. Such properties include energy (which measures ‘orderliness’), contrast, 
correlation (which measures gray-level linear dependencies) and more. Many of 
these properties correlate with each other, thus computing all of them would be 
redundant. Given normalized co-occurrence matrices, certain statistical properties 
can be measured that describe certain textural properties of the image. For 
example, the co-occurrence values appearing along the diagonal of a co-occurrence 
matrix represent the frequency at which pixels with the same gray levels occur 
together in the image. If for a certain image, the values along the diagonals of its 
co-occurrence matrices are large, then this image must have little contrast as this 
means adjacent pixels have similar values. On the other hand, if the values farther 
away from the diagonal of the co-occurrence matrices are more significant, then 
the image must have high contrast. The following are some statistical tools used to 
extract textural properties from a normalized co-occurrence matrix. 
 

ܲሺ݅, ݆ሻ ൌ ெ೔ೕ

∑ ∑ ெ೔ೕ
೙
ೕసభ

೙
೔సభ

        (4.28) 

 
P = (Pi,j)        (4.29) 

A number of texture features may be extracted from the GLCM [12]. We 
use the following notation: G is the number of gray levels used. µ is the mean value 
of P (Eqn. (4.29)  µx, µy, σx and σy are the means and standard deviations of Px and 
Py. Px(i) (Eqn.4.30)is the ith entry in the marginal-probability matrix obtained by 
summing the rows of P(i, j) and Py(j) (Eqn. 4.31) jth entry in the marginal-
probability matrix obtained by summing the columns of P(i, j) [11,12]. 
 
ሺ݅ሻݔܲ ൌ ∑ ܲሺ݅, ݆ሻீିଵ

௝ୀ଴         (4.30) 
 
ሺ݆ሻݕܲ ൌ ∑ ܲሺ݅, ݆ሻீିଵ

௜ୀ଴         (4.31) 
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୶ߤ ൌ ∑ i ∑ ܲሺ݅, ݆ሻୋିଵ
୨ୀ଴

ୋିଵ
୧ୀ଴ ൌ ∑ i ∑ ௫ܲሺ݅, ݆ሻୋିଵ

୨ୀ଴
ୋିଵ
୧ୀ଴   

 
୷ߤ ൌ ∑ j ∑ ܲሺ݅, ݆ሻୋିଵ

୧ୀ଴
ୋିଵ
୨ୀ଴ ൌ ∑ j ௫ܲሺ݅, ݆ሻୋିଵ

୨ୀ଴   
 
௫ߪ

ଶ ൌ ∑ ሺ݅ െ ୶ሻଶீିଵߤ
௜ୀ଴ ∑ ܲሺ݅, ݆ሻீିଵ

௝ୀ଴ ൌ ∑ ሺ ௫ܲሺ݅ሻ െீିଵ
௜ୀ଴   ୶ሺ݅ሻሻଶߤ

 
௬ߪ

ଶ ൌ ∑ ሺ݆ െ ୶ሻଶீିଵߤ
௝ୀ଴ ∑ ܲሺ݅, ݆ሻீିଵ

௜ୀ଴ ൌ ∑ ሺ ௬ܲሺ݆ሻ െீିଵ
௜ୀ଴   ୷ሺ݆ሻሻଶߤ

 
and  ௫ܲା௬ሺ݇ሻ ൌ ∑ ܲሺ݅, ݆ሻ                             ݅ ൅ ݆ ൌ ݇ீିଵ

௜ୀ଴   
 
for  k = 0, 1, ..., 2(G − 1).  
 

௫ܲି௬ሺ݇ሻ ൌ ∑ ܲሺ݅, ݆ሻ                            | ݅ െ ݆| ൌ ݇ீିଵ
௜ୀ଴   

 
for k = 0, 1, ...,G − 1. 
 
The following features are some of the important features that are widely 
used: 
 
1.Homogeneity, Angular Second Moment (ASM) : 
 
ൌ ܯܵܣ ∑ ∑ ሼܲሺ݅, ݆ሻሽଶீିଵ

௝ୀ଴
ீିଵ
௜ୀ଴       (4.32) 

 
ASM is a measure of homogeneity of an image. A homogeneous scene will contain 
only a few gray levels, giving a GLCM with only a few but relatively high values 
of P(i, j). Thus, the sum of squares will be high. 
 
2.Contrast : 
 
ܶܵܣܴܱܶܰܥ ൌ ∑ ݊ଶீିଵ

௡ୀ଴ ∑ ∑ ܲሺ݅, ݆ሻீିଵ
௝ୀ଴

ீିଵ
௜ି଴               |݅ െ ݆| ൌ ݊      (4.33) 
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This measure of contrast or local intensity variation will favour contributions from 
P(i, j) away from the diagonal, i.e. i ≠ j. 
3.Entropy : 
ܻܱܴܲܶܰܧ ൌ ∑ ∑ ሺPሺi, jሻ  ൈ  logሺPሺi, jሻሻீିଵ

௝ୀ଴
ீିଵ
௜ୀ଴      (4.34) 

Homogeneous scenes have low first order entropy  
4.Correlation : 

ܱܰܫܶܣܮܧܴܴܱܥ ൌ ∑ ∑ ሼ௜ൈ௝ሽൈ௉ሺ௜,௝ሻି൛ఓ౮ൈఓ౯ൟ
ఙೣൈ ఙ೤

ீିଵ
௜ୀ଴

ீିଵ
௜ୀ଴    (4.35) 

Correlation is a measure of gray level linear dependence between the pixels at the 
specified positions relative to each other [13]. 
5.Sum of Squares, Variance : 
ൌ ܧܥܰܣܫܴܣܸ ∑ ∑ ሺ݅ െ ሻଶீିଵߤ

௝ୀ଴
ீିଵ
௜ୀ଴ ܲሺ݅, ݆ሻ     ( 4.36) 

This feature puts relatively high weights on the elements that differ from the 
average value of P(i, j). 
6.Sum Average : 
ൌ ܴܧܸܣ ∑ ݅ ௫ܲା௬

ଶீିଶ
௜ୀ଴ ሺ݅ሻ      (4.37) 

 

7.Sum Entropy : 
ൌ ܶܰܧܵ  െ ∑ ௫ܲା௬

ଶீିଶ
௜ୀ଴ ሺ݅ሻlog ሺ ௫ܲା௬ሺ݅ሻሻ    (4.38) 

8.Difference Entropy : 
ൌ ܶܰܧܦ  െ ∑ ሺ ௫ܲା௬ሺ݅ሻlog ሺ ௫ܲା௬ሺ݅ሻሻீିଵ

௜ୀ଴     (4.39) 
9.Cluster Shade : 

ൌ ܧܦܣܪܵ ∑ ∑ ൛݅ ൅ ݆ െ ୶ߤ െ ୷ൟଷீିଵߤ
௝ୀ଴

ீିଵ
௜ୀ଴ ൈ ܲሺ݅, ݆ሻ   (4.40) 

10.Cluster Prominence 

ܯܱܴܲ ൌ ∑ ∑ ൛݅ ൅ ݆ െ ୶ߤ െ ୷ൟସீିଵߤ
௝ୀ଴

ீିଵ
௜ୀ଴ ൈ ܲሺ݅, ݆ሻ   (4.41) 

11.Energy 

ܧ ൌ ට∑ ∑ ܲଶீିଵ
௝ୀ଴

ீିଵ
௜ୀ଴ ሺ݅, ݆ሻ      (4.42) 

Energy  is a measure of how uniform the texture is. Entropy is negatively 
correlated to energy and is a measure of randomness. When entropy is calculated 
based on co-occurrence matrices, it is a measure of randomness in co-occurrences, 
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as opposed to entropy that is calculated based on the values in a raw image. 
Contrast is also negatively correlated with homogeneity. 

4.7. Box plot and its uses 
Box plots are widely used for statistical analysis and interpretation of data 

[14]. It is a very useful tool for graphically portraying empirical distribution of data 
and its statistics, central location, skewness, outliners etc. The box plot of Fig.4.23 
displays the characteristics of the empirical distribution for single data at a glance: 
location, spread, skewness, tail lengths and outliers ("wild" values). The box 
represents 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
50% of ordered data stretching between the lower hinge and the upper hinge which 
represent the lower and the upper quartile of the data respectively. The bar in this 
box indicates the median, which, by its position depicts the symmetry or skewness 
of the data. The two hinges, the median and the two extreme values (lowest and 
highest) are known as the 5-number summary. The box also describes the spread of 
the data symbolized by the h-spread, whereas its width shows the sample size. The 
whiskers include all data, from the hinges up to the lower and the upper fences 
which define the outliers (“wild data”) cutoffs. The cutoffs are found by 

Fig.4.23 Box plot and its properties
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subtracting or adding a step (1.5 of the h-spread) to the lower and to the upper 
fences respectively. This means, in a given data set, 25% of the data can be 
arbitrarily wild without significantly affecting the median and hinges; and since the 
outlier cutoffs are defined by the h-spread, they are not affected by the outlier data 
and therefore can resist disturbances due the data. Comparing box plot medians is 
like a visual hypothesis test, analogous to the t test used for means. Box plots are 
very useful for finding the statistical significance between two datasets. 

4.8 An overview of decision system 
A decision tree is a classifier expressed as a recursive partition of the 

instance space. The decision tree consists of nodes that form a rooted tree, meaning 
it is a directed tree with a node called “root” that has no incoming edges. All other 
nodes have exactly one incoming edge. A node with outgoing edges is called an 
internal or test node. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All other nodes are called leaves (also known as terminal or decision 

nodes). In a decision tree, each internal node splits the instance space into two or 
more sub-spaces according to a certain discrete function of the input attributes 

 

Fig.4.24. Illustration of decision Tree with Replication [14] 



Basic Theory of Image Segmentation and Texture Quantification Techniques 

135 

values. In the simplest and most frequent case, each test considers a single 
attribute, such that the instance space is partitioned according to the attribute value. 
In the case of numeric attributes, the condition refers to a range. Each leaf is 
assigned to one class representing the most appropriate target value. Alternatively, 
the leaf may hold a probability vector indicating the probability of the target 
attribute having a certain value. Instances are classified by navigating them from 
the root of the tree down to a leaf, according to the outcome of the tests along the 
path [14]. Fig.4.24 shows the representation of decision trees.  

4.8.1 Properties of Decision Trees 
Several properties of the decision tree as a classification tool have been 

pointed out in the literature [24]: 

1. Decision trees are self–explanatory and when compacted they are also easy 
to follow. In other words if the decision tree has a reasonable number of 
leaves, it can be grasped by non–professional users. Furthermore decision 
trees can be converted to a set of rules. Thus, this representation is 
considered as comprehensible. Decision trees are capable of handling 
datasets that may have missing values. 

2. Decision trees can handle both nominal and numeric input attributes and its 
representation is rich enough to represent any discrete value classifier. 

3. Decision trees are capable of handling datasets that may have errors. 

4.9 Performance Assessment with Receiver Operating 
Characteristics (ROC) Curve 

A binary classification model classifies each instance into one of two 
classes; say a true and a false class. This gives rise to four possible classifications 
for each instance: a true positive (TP), a true negative (TN), a false positive (FP), 
or a false negative (FN). This situation can be depicted as a confusion matrix (also 
called contingency table) given in Fig. 4.25. The confusion matrix juxtaposes the 
observed classifications for a phenomenon (columns) with the predicted 
classifications of a model (rows). In Fig. 4.25, the classifications that lie along the 
major diagonal of the table are the correct classifications, that is, the true positives 
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and the true negatives. The other fields signify model errors. For a perfect model 
we would only see the true positive and true negative fields filled out, the other 
fields would be set to zero. It is common to call true positives hits, true negatives 
correct rejections, false positive false alarms, and false negatives misses. A 
number of model performance metrics can be derived from the confusion matrix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ROC curves are two-dimensional graphs that visually depict the performance and 
performance trade-off of a classification model [14]. ROC curves were originally 
designed as tools in communication theory to visually determine optimal operating 
points for signal discriminators [15]. Two new performance metrics need to be 
introduced to construct ROC curves (defined here in terms of the confusion 
matrix),- the true positive rate (TPR) and the false positive rate (FPR): To evaluate 
the performance of detection/classification model, specificity and sensitivity of 
detection were considered. Sensitivity and specificity are terms that show the 
significance of a test related to the presence or absence of the disease. Eqs. (4.43) 
and (4.44) are used to calculate these two parameters, respectively 

 
TPSensitivity TPR

TP FN
= =

+
      (4.43) 

Fig. 4.25: Format of a Confusion Matrix
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TNSpecificity TNR
TN FP

= =
+

     (4.44) 

 
ROC graphs are constructed by plotting the true positive rate (TPR) against 

the false positive rate (see Fig. 4.26).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Identify a number of regions of interest in a ROC graph. The diagonal line 

from the bottom left corner to the top right corner denotes random classifier 
performance, that is, a classification model mapped onto this line produces as many 
false positive responses as it produces true positive responses. To the left bottom of 
the random performance line we have the conservative performance region. 
Classifiers in this region commit few false positive errors. In the extreme case, 
denoted by the point in the bottom left corner, a conservative classification model 
will classify all instances as negative. In this way it will not commit any false 
positives but it will also not produce any true positives. The region of classifiers 

Fig.4.26: ROC curve: regions of a ROC graph
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with liberal performance occupies the top of the graph. These classifiers have a 
good true positive rate but also commit substantial numbers of false positive errors. 
Again, in the extreme case denoted by the point in the top right corner, we have 
classification models that classify every instance as positive. In that way, the 
classifier will not miss any true positives but it will also commit a very large 
number of false positives. Classifiers that fall in the region to the right of the 
random performance line have a performance worse than random performance, that 
is, they consistently produce more false positive responses than true positive 
responses. However, because ROC graphs are symmetric along the random 
performance line, inverting the responses of a classifier in the “worse than random 
performance” region will turn it into a well performing classifier in one of the 
regions above the random performance line. Finally, the point in the top left corner 
denotes perfect classification: 100% true positive rate and 0% false positive rate. 
The ranking values are typically normalized to values between 0 and 1 (the default 
decision threshold for most classifiers is set to 0.5, if the ranking value expresses 
the actual probability value of the instance being classified as true). At each 
threshold increment, the performance of the model is computed in terms of the true 
positive and false positive rates and plotted. This traces a curve from left to right 
(maximum ranking to minimum ranking) in the ROC graph. It means that the left 
part of the curve represents the behavior of the model under high decision 
thresholds (conservative) and the right part of the curve represents the behavior of 
the model under lower decision thresholds (liberal). 

Fig. 4.27 shows some typical examples of ROC curves. Part (a) depicts the 
ROC curve of an almost perfect classifier where the performance curve almost 
touches the ‘perfect performance’ point in the top left corner. Part (b) and part (c) 
depict ROC curves of inferior classifiers. At this level the curves provide a 
convenient visual representation of the performance of various models where it is 
easy to spot optimal versus sub-optimal models. 
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When using ROC curves for checking the performance of classifiers to 
distinguish between normal an deceased cases, ROC curve parameters are 
sensitivity and specificity. Sensitivity indicates the number of subjects who have 
the disease and are accurately identified by positive test. Thus, it is a measure of 
the probability of correctly diagnosing a condition [15].  Specificity indicates the 
number of subjects who do not have the disease, and are accurately identified by 
negative test. Thus, it is a measure of the probability of correctly distinguishing 
when the condition is not present in a subject. Other statistical method known as 
relative operating characteristic (ROC) curve is also used to analyze the 
experimental results. ROC curve is a graphical plot of the sensitivity against 
specificity for a binary classifier system as its discrimination threshold is varied 
[15]. The ROC can also be represented equivalently by plotting the fraction of true 
positive rate (TPR) against the fraction of false positive rate (FPR). An ROC 
curve demonstrates the tradeoff between sensitivity and specificity in which, the 
closer the curve to the 45° diagonal of the ROC space, the less accurate the test. At 
the same time, the area under the curve (AUC) is also a measure of the accuracy. 
The AUC is largely adopted to represent the expected performance of a classifier. 
The AUC of a classifier is equivalent to the probability that the classifier will rank 
a randomly chosen positive instance higher than a randomly chosen negative 
instance. 

 

(a)                              (b) (c)

 Fig.4.27 ROC curves: (a) an almost perfect classifier (b) a reasonable classifier (c) a poor 
classifier 
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Conclusions 
Theoretical explanations of spatial domain filtering techniques such as 

mathematical morphological filtering techniques, different thresholding methods 
and correlation filtering techniques were explained in this chapter.  Image 
representation using boundary extraction and statistical texture analysis using first 
order and second order gray level co-occurrence matrix were also detailed in this 
chapter. It also includes theoretical explanation of validation methods for 
segmentation, overview of decision systems and performance evaluation method 
using receiver operating characteristics curves. The following chapter presents the 
development and implementation of the theoretical study discussed in this chapter, 
for the extraction of glioma tumors and other pathological subjects and also the 
grade detection of glioma tumors.   
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Chapter 5 
Automatic Extraction of Glioma Tumors 

and other Pathological brain Tissues 
 
Different approaches for segmentation of pathological brain subjects have been 
proposed in recent years, but, none of them obtained good performances for all 
studied cases. In this chapter, two new methods for extracting glioma tumors using 
spatial domain techniques are presented. The first method is applicable only for 
extracting tumor regions from T2 weighted MRIs. Using the second method named 
as Adaptive Gray level algebraic set Segmentation Algorithm(AGASA), we can 
extract Tumor, Tumor boundary, Grey Matter and White Matter from the joint 
intensities of T2 weighted and T1 FLAIR MR Images. The performance and 
accuracy of segmentation techniques are validated on different datasets with 
respect to manual Ground Truth and the result obtained are very promising. A 
comparative study of the two methods with respect to fuzzy c-means clustering 
technique is also provided in terms of qualitative and quantitative measurements. 
  



Chapter 5 

144 

  



Automatic Extraction of Glioma Tumors and other Pathological brain Tissues   

145 

5.1 Introduction 
 Automated medical image segmentation is becoming an increasingly 
important image processing step for a number of clinical and research applications 
including but not limited to brain volumetry, treatment planning in radiation 
therapy, surgical planning, and image-guided intervention procedures. The 
principal objective of segmentation is to extract a region of interest (ROI) from an 
image for a specific application and the methods used for extracting the ROIs are 
specific and problem oriented. Segmentation of pathological tissues from 
conventional brain MRI is a difficult and time consuming task because of its 
complex structure. Usually MR images are affected by noise and partial volume 
effect which causes accurate segmentation and boundary determination of tumor a 
difficult task;   Most of the segmentation techniques used so far have limitations, as 
they require more computation time, go under segmented, over segmented, have 
problem with variation in intensity levels etc. The existing methods can be 
combined and modified for reducing the limitations to a certain extent [1]. 

 This chapter details the development of methods for extraction of various 
brain components including tumor and tumor boundary, from magnetic resonance 
images. A novel and robust algorithm for the extraction of definable objects such 
as white Matter (WM), grey Matter (GM), tumor and tumor boundary by 
preserving its shape and gray level information are developed, by using spatial 
domain processing techniques. The term spatial domain refers to the aggregate of 
pixels composing an image.  

 Section 5.2 explains the development method for extracting tumor from a 
single modality T2 weighted MRIs. The implementation, robustness of the method 
with respect to different noise levels, the results obtained with respect to different 
datasets and validation of results are also presented. Section 5.3 details the method 
for extracting complex brain structures such as grey matter, white matter, tumor 
and tumor boundary from the joint intensities of T1-FLAIR and T2 weighted 
MRIs. The accuracy of segmentation determines the eventual success or failure of 
any computer assisted method. The validation of segmented ROIs with manual 
ground truth and its discussions are explained in Section 5.4.  Section 5.5 gives a 
qualitative and quantitative comparative study of the two methods with respect to 
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the most widely used segmentation method in brain MRI segmentation, the Fuzzy 
c-means clustering method. These segmented tumors are used for tumor grading 
and 3D modeling of tumors for finding the volume of tumors, as explained in the 
forthcoming chapters. 

5.2 A Novel Technique for Extraction of low grade 
and high grade Glioma Tumor from T2-
Weighted MRI (Method 1) 

5.2.1 Method Development 
This section illustrates development of a novel and robust method for 

extraction of   low and high grade glioma using conventional T2-weighted MR 
images. Different imaging modalities in conventional MRI and its specialties were 
already discussed in Chapter 2.  T2 weighted image shows high contrast to tumor 
lesions. The following section detail the method of extraction of tumors from T2 
weighted MR images. Fig. 5.1 shows the flow chart for pre-processing and 
segmentation.  

5.2.1.1 Pre-processing and Extraction of Tumor 

 Normalization is the first stage of pre-processing. Normalization is done to 
reduce the variability of raw image intensities and subject orientation; this is 
important both for the segmentation and consistent feature evaluation.  For further 
analysis of segmented region of interest (ROI) using statistical textural properties, 
it is important to distinguish the ROI from its surroundings. So the pre- processed 
images should be segmented from brain MRI with minimum loss of tumor tissue. 
This can be done by using mathematical morphological operations, correlation 
filtering and thresholding [2, 3]. Fig.5.1 shows the flow chart of the various 
operations done on the raw MRI to obtain the segmented ROI. 
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The operations are done as given below. 

Step 1: 
 Normalization is done by dividing each pixel gray level values by the 

absolute maximum gray level pixel value present in the image. After 
normalization, the range of gray level pixel values will be between 0 and 1. 
 
 

Image subtraction

Image Pre-processing

Image complementation

Morphological dilation

Image filtering

Morphological opening and closing

Image thresholding and masking

MR Image  

Segmented ROI  

Fig. 5.1 The flow chart for Segmentation of ROI 
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Step 2: 

 As first part of the segmentation procedure, the pre-processed image (Fig. 
5.2(b)) is complimented and dilated (Fig.5. 2 c) using square shaped (gray level) 
SE, for intensity adjustment. The complemented and dilated image is subtracted 
from the normalized image. This is for reducing noise artifacts and partial volume 
effect present in the image and enhancing tumor boundary [9]. The resulting image 
undergoes spatial domain filtering by correlation method with a filter mask, w= [1, 
1]. The filtered output (Fig.5. 2d) undergoes morphological opening with a disk 
shaped SE. The main challenge in the tumor segmentation procedure is that usually 
tumor boundaries will not be clearly defined from the other regions and tumors 
may have heterogeneous borders and will have infiltrating nature. This boundary 
intrusions and protrusions are clearly visible after opening.  

The main disadvantage of morphological dilation is over segmentation [4, 
5].  This can be reduced to a great extent by using morphological opening (Fig. 5. 
2e) operation with a disc shaped SE of suitable radius. The dimension and shape of 
the SE is selected empirically and held constant for the entire image dataset. 
Opening operation (Fig.5.2e) is erosion followed by dilation. The opening removes 
small details of the outline of the segment without affecting the total size of the 
relevant regions. After the opening operation, the output image undergoes closing 
operation (Fig.5.2f)   in order to correct the variation in small details. The tumor 
boundary and region of the resulting image is visually enhanced. The repeated   
morphological operations with structuring elements of varied dimension and shape 
is for achieving accurate segmentation. The resultant image is thresholded 
(Fig.5.2g) to obtain a binary image. It is then morphologically labeled using 
connected component labeling technique to obtain the segmented ROI. The binary 
segmented tumor mask (Fig.5.2h)   thus obtained is  masked with the original 
normalized image to obtain the original gray level image of the corresponding ROI, 
as shown in Fig.5. 2i. 
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(a)    (b)            (c) 

      
(d)            (e)        (f) 

      
(g)         (h)            (j) 

Fig.5.2 Extraction technique for   high grade tumor from T2 weighted MRI slice 
a)Original image b)Pre-processed image c)Complemented and dilated image d) 
Filtered image e) Image after opening f) Image after closing g) Thresholded image 
h) Morphologically labeled image using connected component labelling i) 
Segmented gray level image 
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5.2.2 Implementation of method I 
The developed method is implemented and tested on the entire image 

database. The robustness of the method with respect to Gaussian noise and speckle 
noise is also tested. Accuracy of the method is validated with respect to manual 
ground truth.   This method also checks how much it reduces over- segmentation 
and under -segmentation. 

5.2.2.1 Image Database 

The MRI database consists of T2 weighted axial MRI data sets of 105 
patients, with each set containing twenty images. The thickness of each slice is 
5mm and the inter slice distance is 2mm. All patients underwent biopsy or surgical 
resection of the tumor with histopathological diagnosis. Out of this hundred and 
five histopathologically tested image database, forty five sets were of high grade 
and fifty five were of low grade and five normal image datasets. MRI images were 
collected from the department of Radiology in the Sree Chitra Institute of Medical 
Sciences and Technology (SCIMST) and Regional Cancer Centre, Trivandrum, 
Kerala, India. The images were gray scale images with each pixel level represented 
by 16 bits. Fig. 5.3 shows the sample T2 weighted image slices for segmentation 

 

  

 

 

a b

d
e f

Fig.5.3 T2 weighted images of low grade and high 
grade glioma tumors a), b) and c) Low Grade Glioma  
d), e) and f) High Grade Glioma 
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5.2.2.2 Evaluation of segmentation algorithm 

The evaluation of brain tissue classification is a complex issue in medical 
image processing [4]. A validation method can be thought of as a combination of 
two components. One component is the notion of ground truth (GT) against which 
result of an algorithm is to be judged [6]. The second component is a measure of 
establishing the deviation from the GT, i.e., an evaluation with actual segmentation 
is needed to assess how it deviates from the real one.  

In the case of segmentation of brain tissues from MRIs, there is indeed a 
true boundary of the brain tissue for each patient, but it is not correctly known. 
Approximations to the true boundary can be obtained in the form of manual 
segmentation algorithm by experts of neuro-anatomy; however manual 
segmentation is subject to inter observer variability and human error [7]. To 
minimize the influence of these factors, while maintaining a means of measuring 
the segmentation accuracy of the individual raters, the standard was defined on the 
basis of independent human observers. Randomly selected 20 images from 20 
patients’ image datasets were manually segmented by the radiology expert in our 
group. These images were selected as ground truth (GT) images for validation.  

Here there are two different measures for evaluating the segmented results 
obtained with the automatic segmentation algorithm developed. They are accuracy 
evaluation using quantitative techniques and qualitative techniques. 

1. Accuracy evaluation using quantitative techniques  

With the GT images in the dataset, three indices were calculated [2] by 
Eqns.5.1, 5.2, and 5.3. 
:ݔ݁݀݊ܫ ݋ݐ݋݉݅݊ܽܶ  ሾ%ሿܫܶ ൌ ்௉

்௉ାி௉ାிே
. 100;   (5.1) 

:݄ܿݐܽܯ ݐ݊݁ܿݎ݁ܲ  ሾ%ሿܯܲ ൌ ்௉
்஼

. 100;   (5.2) 

:݁ݑ݈ܸܽ ݊݋݅ݐܿ݅݀݁ݎܲ ݁ݒ݅ݐ݅ݏ݋ܲ  ܲ ൅ ሾ%ሿ ൌ ்௉
்௉ା଴.ହி௉

. 100   (5.3) 
     
where TP=true positives, i.e. pixels labeled as ROI in the GT and by the algorithm, 
FP= false positives, i.e pixels labeled as ROI in the GT, but not in algorithm and 
FN= false negative, i.e. pixels labeled as ROI in algorithm, not in GT. TC =pixels  
manually labeled as ROI in GT. The 0.5 coefficient for FP is introduced taking into 
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account that, for treatment purposes, the immediate area around the tumor will also 
be treated and a certain degree of FP is usually acceptable. 

Tanimoto index (TI) represents the percentage ratio between the number of 
pixels labeled as tumor by GT and the algorithm, and the number of pixels 
classified as tumor by the algorithm and/or by GT. The value of 100% signifies 
that there are no FP and FN. Percentage match (PM) index shows the 
correspondence between the GT and the segmentation algorithm. An ideal PM 
value is 100 %, which means algorithm localizes GT perfectly with ROI. 
Conversely, positive prediction value (P+) index estimates the correspondence in 
size and location between the segmented ROI and GT. For performance evaluation, 
computation time and accuracy of the automatic method with manual segmentation 
method are considered. 

5.2.2.3 Robustness of the method with respect to Gaussian noise and 
Speckle noise 

 The presence of noise and also low contrast of the MRI data make it 
difficult to precisely delineate regions of interest between tumor and other brain 
subjects. Many methods are reported in literature to reduce noise in MRIs. The 
MRI de-noising algorithms can be divided into four major categories; finite 
impulse filters, anisotropic diffusion, wavelet, and nonlocal mean algorithms. The 
algorithms using Modified Fuzzy c-means clustering algorithm [17], data 
processing algorithm based on least mean squared adaptive filtering to suppress 
structured noise in MR images[17],classical techniques like spatial averaging, low 
pass or median filtering are usually applied to the noisy image to increase the SNR 
[14] are also used for de-noising MRI data. Most of the segmentation algorithms 
found in literature tend to be very sensitive to noise, intensity in-homogeneities and 
low contrast. 

Almost all image processing filters are based on Gaussian assumption and 
do blur discontinuities between regions [8]. This is the main challenge in de-
noising MRI data for segmentation application, i.e. to preserve the edges and 
details but at the same time to reduce noise in uniform regions. Most of the de-
noising algorithms are not strong enough to retrieve the boundaries, to improve the 
contrast and in-homogeneities beyond a certain extent.  
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This section describes the  effect of Gaussian  and speckle noise  in the  
105 MRI data set containing low and high grade glioma  and  the robustness of the  
developed segmentation technique discussed  in the previous section, in terms of 
accurate segmentation  and visualization, for the noise-added image dataset. 

The presence of noise in T2 weighted MRI data make it difficult to 
precisely delineate regions of interest between tumor and normal brain issues. 
Hence it is necessary to pre-process MR image to reduce noise and to enhance the 
contrast between regions. In order to check the robustness of this algorithm with 
respect to noise, Gaussian noise and speckle noise at different noise levels were 
added to the MR images and segmentation was carried out using the newly 
developed algorithm, without using pre-processing filters. Signal-to-noise ratio 
(SNR) is used as a synthetic index to quantify the totality of noise influence and to 
characterize the effectiveness of MRI examination [9].  The SNR aims at exploring 
how much the noise has been reduced. 

5.2.3 Results and Discussions (Method I) 
5.2.3.1 Implementation of the algorithm for extraction of Tumor Region 

The method for automatic segmentation of   low grade and high grade 
glioma tumors developed as mentioned in Section 5.2.1 was tested on 105 patients’ 
T2 weighted axial MRI data sets and obtained promising results. Out of this 105 
histopathologically tested image database, forty five sets were of high grade, fifty 
five were of low grade and 5 were normal dataset. Each image dataset contains 20 
slices, out of which, tumor will be present only in six to eight slices. Fig 5.4 shows 
the effect of the segmentation algorithm on sample image slice of a low grade 
glioma tumor. Usually low grade tumor contains intensity in-homogeneity and 
partial volume effect. Here tumor region is accurately segmented according to the 
manual ground truth images. 
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Fig.5.4a shows the T2 weighted MR image of low grade glioma without a 

clear boundary. As discussed in Section 5.2.2 the boundary of the tumor is clearly 
visible after correlation filtering (Fig.5.4c), which was already complemented, 
dilated and subtracted from the normalized image. The structuring element used for 
dilation operation was a square shaped SE of small dimension. Thus square shaped 
SE of suitable dimension is selected for retaining the exact shape of the tumor. Fig. 
5.4d  is the result after morphological opening and closing with a disk shaped SE of 
suitable radius. After these operations, the boundary of the tumor is defined. It 
reduces partial volume effect. The shape of SE was determined and fixed by 
applying SE of different shape and dimension on the same image. Comparing the 
shape and size of the segmented tumor with respect to GT, the SE with suitable 
dimension was manually selected, later applied on different image datasets and 

   

   

a

d e f
Fig.5.4 Segmentation procedures for extracting low grade glioma tumor from 
a T2 weighted MR image a) Original Image b) Normalized and Subtracted 
Image c) Image after Dilation and Correlation filtering d) Image after 
morphological opening and closing e)Image after thresholding f)Segmented 
gray level tumor 
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finally automated for every slice. Image after morphological operation is 
thresholded (Fig.5.4e). The levels of thresholds were selected from the average 
gray level values in the tumor region. Initially, these values are selected manually 
for slices from different image datasets and finally automated for every slice. 
Connected component labeling was done after thresholding as shown in Fig.5.4f 
for selecting the largest connected component, which specifies the location also the 
binary mask of tumor. This operation was done for retaining the tumor mask only 
while removing the other background details which were present after the 
thresholding operation. The final segmented tumor (Fig.5.4f) retains the original 
gray level value of the tumor. 

Fig. 5.5 and Fig.5.6 show the application of this algorithm for automatic 
extraction of high grade glioma from a sample image slice and also for studying the 
effect on sample normal image slice.  The procedure is the same as was explained 
in the previous paragraph of extraction low grade glioma. It can be noted that, in 
the case of high grade glioma, the segmented tumor slices are retaining the gray 
level values (Fig.5.5h) and hence these segmented ROIs are used for grade 
detection using texture analysis using statistical quantification techniques, which 
will be useful for prognosis [10] and treatment planning. Another application of 
this segmentation technique is that, these segmented slices are used for 3D 
modeling of glioma tumors for obtaining volumetric size and further analysis of the 
tumor.  
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Fig.5.6 shows the effect of the segmentation algorithm in normal images. 
The final output is a blank image showing that the slice is a normal one with no 
tumor. From this, it can be well observed that the algorithm automatically detects 
the presence of tumor, by indicating the ROI with actual gray level values, if the 
slice contains tumor region or otherwise the resulting image will be a blank image. 
This technique is more reliable, more accurate, robust and less time consuming, 
with reduced complexity than other existing system. The comparison of this 
method with respect to other techniques and also the effect of noise on this 
algorithm are discussed in the next sections. 

  

       
(a)                      (b)      (c)    (d) 

         
(e)    (f)           (g)      (h) 

Fig.5.5 Segmentation procedures for extraction of high grade glioma tumor from a T2 
weighted MR image a) Original image b) Complemented and dilated image c) Image after 
correlation filtering d.) Image after morphological opening e) Image after closing g) 
Thresholded image g) Segmented binary tumor h) Gray  level tumor   



Automatic Extraction of Glioma Tumors and other Pathological brain Tissues   

157 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2.3.2 Validation of the method with manual Ground truth 

Accuracy and performance of this automatic segmentation method was 
evaluated by comparing with manual ground truth images (ROI). The method was 
then validated by randomly selecting 40 images each from 40 image datasets. The 
accuracy of the method was determined by computing Tanimoto index (TI) by 
validating against the manually labeled image, by Dr. Bejoy Thomas, Additional 
Professor, Imaging Sciences and Interventional Radiology, Sree chithra Tirunal 
Institute of medical sciences and Technology. The images are manually labeled as 
shown in Fig.5.7b. Fig.5.7c is the automatically segmented tumor. In Fig.5.7d, the 
manually segmented image slice (GT) is superimposed on automatically segmented 
image for the visual validation of the method. From this, it can be observed that, 

         
  (a)           (b)      (c) 

       
  (d)         (e)      (f) 

Fig.5.6 Automatic extraction method applied on normal image slice a) 
Normal image b) Complemented and dilated image c) Filtered and 
subtracted image d) Image after morphological opening e) Image after 
morphological closing c) Final output after thresholding and labeling 
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there is no pixel missing with respect to GT tumor region or overlapping with 
background. True Positive (TP), False Positive (FP) and False Negative (FN) 
values of the pixel count in the ROI, were calculated for finding TI. The TP, FP, 
and FN, TI values of low and high grade glioma are provided in the Table 5.1 and 
5.2 respectively.  

 
 
 

 
 
 
 
 
 
 
 
Table 5.1 TP, FN, FP and TI computed values of randomly selected   segmented low 

grade tumor for 10 images 
 

Low grade Tumor FN TP FP TI 

tumor_low 1 27 3143 57 97.397 

tumor_low 2 56 1896 24 95.951 

tumor_low 3 27 3534 42 98.085 

tumor_low 4 48 2326 26 96.917 

tumor_low 5 27 3736 122 96.165 

tumor_low 6 54 4313 77 97.052 

tumor_low 7 87 3467 39 96.493 

tumor_low 8 45 2925 79 95.933 

tumor_low 9 39 5056 19 98.866 

tumor_low 10 66 1978 72 93.478 

 
(a)              (b)          (c)      (d) 

Fig.5.7 Automatically labeled Tumor with respect to manual ground truth 
Original image b) Ground Truth image c) Automatically labelled tumor d) 
Labelled tumor with  manual ground truth boundary superimposed. 
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Table 5.2 TP, FN, FP and TI computed values of randomly selected    segmented high 
grade tumor for 10 images 

 

High grade Tumor FN TP FP TI 
tumor_high 1 10 7718 23 99.57 
tumor_high 2 17 6585 60 98.84 
tumor_high 3 19 8195 78 98.83 
tumor_high 4 15 9875 62 99.23 
tumor_high 5 21 7087 34 99.23 
tumor_high 6 17 8987 69 99.05 
tumor_high 7 16 5975 42 99.04 
tumor_high 8 5 8586 68 99.16 
tumor_high 9 12 9908 54 99.34 

tumor_high 10 26 6458 25 99.22 
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Fig.5.8 The Tanimoto Index computed for segmentation of low and high grade 
glioma, The ranges of values for low and high grade glioma are 93.4-98.7 and 
98.2-99.6 respectively. 
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 From these calculated parameters, it can be well observed that, the accuracy 
of the method in terms of TI, for extraction of low and high grade tumor is 93.4 - 
98.7 and 98.2-99.6 respectively and hence the performance of the method is highly 
appreciable. A plot of Tanimoto Index for the 20 low grade and high grade glioma 
is shown in Fig.5.8. The Graph depicts accuracy of the method. When comparing 
the accuracy of segmentation between two grades, extraction of high grade tumor 
is more accurate than low grade. Usually low grade glioma shows a non enhancing 
boundary so that the boundary determination of low grade glioma is more 
challenging than high grade glioma. 

5.2.3.3 Robustness of the method on noisy MR images 

This section details the segmentation results obtained for images degraded 
with Gaussian noise and speckle noise with different signal to noise ratio (SNR). 
This was achieved by varying the mean and variance of the noise, which is added 
to the original image. The developed method was implemented on these noisy MR 
images. It was observed that, this algorithm could remove the noise level effect up 
to a PSNR of 10db, when Gaussian noise with different mean and standard 
deviation was added. Fig.5.9 and Fig.5.10 show segmentation results obtained, 
when the original image was superimposed with Gaussian noise and without using 
any pre-processing filters for de-noising. From Fig. 5.9d, it was observed that the 
effect noise was reduced considerably after correlation filtering and morphological 
opening and closing. Also, it can be note that the segmented tumor coincides with 
the superimposed GT ROI. 

 In the case of image added with speckle noise, the algorithm worked 
effectively up to a PSNR of 12 dB without using any preprocessing filters. For a 
PSNR of less than 12 dB, further processing with Weiner filter is needed. Fig.5.11 
and Fig.5.12 shows the details of segmentation of noisy low grade and high grade 
glioma images of 12dB, added with speckle noise. The segmentation algorithm 
discussed in this chapter had proved its robustness with respect to noise, by 
correctly segmenting images with Gaussian noise added noisy image of 10db 
PSNR and speckle noise added noisy image of PSNR 12db. From this, it can be 
inferred that, the method is useful for de-noising MRI data as well as for tumor 
segmentation from noisy back ground. 
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a b c

d e f

Fig.5.9   Segmentation of low grade glioma tumor from a noise added image 
a) T2 weighted MR image b) Gaussian noise added image of PSNR 10db c) 
Image after dilation and correlation filtering d)Image after morphological 
opening and closing e) Image after thresholding f) Segmented gray level 
tumor 

 
a b c

Fig.5.10 High grade glioma tumor segmented  from Gaussian noise 
added image of PSNR 10db a) T2 weighted image b) Noise added 
image c) Segmented tumor from noise added image using 
morphological  filtering technique and thresholding 
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  (a)      (b)      (c) 

       

  (d)      (e)       (f) 

Fig.5.11Segmentation of low grade glioma tumor in speckle noise added image 
with PSNR of 12 db.  a)  Original image b) Speckle noise added image c) Image 
after opening d) Image after closing e) Thresholded binary image f) Segmented 
gray level image 

a)  b)    c)  

Fig.5.12 High grade glioma tumor segmented  from Speckle noise added image of 
PSNR 12db a) T2 weighted image b) Noise added image c) Segmented tumor from 
noise added image using morphological  filtering technique and thresholding 
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 The Graph shown in Fig.5.13 depicts the accuracy of segmentation at 
different SNR which is degraded by Gaussian noise and speckle noise. As per 
Fig.5.13a it can be observed that Tanimoto Index is greater than 90% at 10dB for 
low and high grade glioma and from 5.13b, TI is greater than 90% at 12dB for low 
and high grade glioma. From the graph it can be clearly observed that, as the image 
quality degrades up to a SNR of 10db for Gaussian noise and 12db for speckle 
noise, the method remains robust. 

5.3 A Novel Automatic Extraction Technique for 
Pathological Subjects and other Brain Tissues 
from T1 FLAIR and T2-weighted MR images 
using Adaptive Gray level Algebraic Set 
Segmentation Algorithm (AGASA) 

 The preceding section details the method of extraction of the tumor region 
alone, using T2 weighted MR images. This section discusses the method of 
extraction of tumor, tumor boundary, WM and GM from T1-FLAIR and T2 
weighted MR images using Adaptive Gray level Algebraic set  Segmentation 

 
(a)               (b) 
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Fig.5.13 Tanimoto Index of the segmented of low and high grade glioma with 
respect to SNR at different noise levels. (a)  Gaussian noise added images with 
different noise levels ,(b) Speckle noise added images with different noise 
levels  
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Algorithm (AGASA). The organization of this section is follows: Method 
development, implementation of the method followed by results and discussion. 

5.3.1 Method Development 
 An accurate segmentation of   low grade glioma is critical, because of the 
presence of undesired partial volume effect, which lies on the boundary between 
high and low intensity regions, making unerring boundary determination a difficult 
task. The segmentation of other pathological subjects in the brain like GM, WM 
CSF are also important for detecting various abnormalities in the brain. Hence a 
new method was developed for the extraction of all these constituents of the brain. 
Both T1 – Flair and T2 weighted slices of the MR images were used for the 
purpose.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.5.14 Block diagram for the Adaptive Gray level Algebraic set Segmentation Algorithm 
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 In this section, a novel method, named as Adaptive Gray level Algebraic 
Algorithm (AGAA) is presented for the automatic extraction of tumor boundary, 
glioma tumors, WM and GM, by using spatial domain filtering techniques, which 
mainly involves morphological methods, adaptive thresholding and correlation 
filtering. There are three general steps involved in this method. They are: 1) skull 
removal, 2) segmentation of brain tissue into GM and WM, and 3) extract the low 
grade and high grade tumor and tumor boundary. The block diagram of the 
algorithm is shown in Fig.5.14. 

5.3.1.1 Image pre processing and segmentation 

 A brain image consists of five regions – grey matter (GM), white matter 
(WM), cerebral spinal fluid (CSF), meninges (the protective membranes 
surrounding the brain) and skull, muscle, fat, skin or air. These regions are 
considered as five different classes. The goal of the segmentation process in this 
work is to assign tissue class labels (background, GM, WM, CSF, and low grade 
glioma or high grade glioma tumor and its boundary) to each slice in an image 
dataset which contains 20 slices. Using single modality conventional MRI, it is 
difficult to extract pathological subjects other than tumor. So joint intensities of 
both T1-FLAIR and T2 weighted images are used for differentiating tissue classes. 

 As an initial procedure, pre-processing was done based on the image profile. 
The pre-processing stage is a fundamental step in MR image analysis.   

5.3.1.2 Skull Stripping 

  The skull and non brain intracranial tissues like fat, muscle, skin etc., that 
surround the surface of brain cortex and cerebellum in the brain should be 
removed. This is needed to avoid the misclassifications of surrounding tissues, skin 
and scalp as WM or GM. By removing these it will get rid of non-brain tissues and 
will be left with only soft tissues. This was done by gray level erosion using a disc 
shaped structuring element, which result in the removal of thin connections 
between brain and non brain portions. Thus a skull removed brain mask was 
obtained and this method was automated for every image slice [11]. 

 The extraction of various tissue classes from an MRI slice involves various 
spatial domain processing. The main methods involved for pre-processing and 
segmentation of brain tissues were gray level morphological erosion, dilation, 
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image subtraction, adaptive thresholding, Correlation filtering, morphological 
labeling, segmentation of ROI and finally extraction of tumor boundary and other 
components like WM and GM. 

5.3.1.3 Extraction of Tumor and boundary of the Tumor 

 In this work, low and high grade glioma were extracted using T1 FLAIR 
(Fig.5.15a) and T2 weighted (Fig.5.15b) images of the same slice. Following steps 
shows the procedures for extracting tumors,  

1. Perform an erosion operation on T2 weighted image with a disc shaped 
structuring element of suitable radius corresponding to the thickness of the 
connectors between brain and the cranium (determined empirically, and held 
constant over scans), in order to eliminate connections from the brain to any 
misclassifiable non-brain structure like skull, meninges etc.   (Fig .5.15c). 

2. T1 FLAIR image (Fig.5.15a) is subtracted from the T2 weighted image 
(Fig.5.15b) for adjusting intensity of resulting image the subtracted image.  

3. Dilate the brain component obtained in the step 2 by a SE slightly smaller in 
size than the one used in the morphological erosion, for conditioning brain 
labels in the input image. This is for restoring the boundaries of the brain 
component that were distorted in the erosion step (Fig.5.15d). 

4. Dilated image is complemented and subtracted the resulting image with 
dilated image for adjusting intensity as shown in Fig .5.15e and it is 
thresholded to obtain regions with gray levels above certain threshold (Fig 
5.15f). 

5. Again, erosion with disc shaped SE of smaller radius is performed to remove 
unwanted gray level region and the resulting image is thresholded to obtain 
binary thresholded image (Fig.5.14g). The gray level erosion followed by 
dilation is done for avoiding under segmentation or over segmentation, 
partial volume effect and other noise present in the image. 

6. Binary tumor mask is extracted using connected component labeling from 
the binary thresholded image in the previous step. 
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7. Step 6 lead to obtain a binary mask of the brain tumor. A gray level is 
obtained by masking the initial MR image by this mask. In this way, all 
pixels outside the region were set to 0, while the tumor region had their 
initial value retained (Fig.5.14h). This can be used for further analysis. 

         
(a)       (b)             (c) 

      
( d)                 (e)            (f) 

          
  (g)         (h)      (i) 

Fig. 5.15 The various steps for segmentation tumor and boundary a)T1 
FLAIR b) T2 weighted c) Skull removed  d) Subtracted and dilated e) 
Complemented image f) Intensity adjusted image g) Thresholded and labeled 
image h) Segmented gray level tumor i). Tumor boundary 
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8. The heterogeneous tumor border (Fig.5.15i) of the segmented tumor was 
obtained using boundary extraction technique. The maximum perimeter of 
the tumor can be determined if the benchmark images are used for tumor 
boundary extraction. Bench mark images are the slices which provide 
maximum information about tumor shape and size. 

5.3.1.4 Extraction of Grey Matter 

This section deals with the segmentation of the grey matter, with tumor region 
removed. The algorithm for extracting grey matter is as follows; 

1. The intensity adjusted image (Fig.5.15d) of section 5.3.1.3 used for 
extraction of tumor, is considered for adjusting gray level values of GM and 
WM 

2. The intensity adjusted image is filtered using correlation filter with a filter 
mask w= [1 1] for enhancing the image.  

3. Perform adaptive thresholding operation by finding the minimum and 
maximum values of GM for obtaining the binary mask of GM with skull 
boundaries. Here threshold is determined for every pixel position (pixel 
adaptive). A binary GM with outer boundaries is obtained (Fig.5.16b). 

4. A gray level GM with outer boundaries is obtained by masking the gray 
level skull stripped image (Fig.5.16c). with the binary grey matter mask .The 
resulting image is dilated with disc shaped structuring element for  restoring 
the components of grey matter as shown in (Fig .5.16c) 

 
 
 
 
 
  

     
(a) (b) (c)

Fig. 5.16 Segmentation of grey matter with tumor removed. a) Enhanced 
image b) Binary mask of GM with outer layers c) Extracted GM with 
outer layers removed. 
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5.3.1.5 Segmentation of White Matter with tumor portion removed 

 The procedure for extracting white matter is quite similar to the extraction of 
grey matter up to step 2 of Section 5.3.1.4. After step 2, pixel adaptive thresholding 
is used for obtaining the binary mask of white matter. The highest and lowest gray 
level values in white matter are selected as levels in adaptive thresholding 
operation  by selecting an initial gray level value as threshold. The binary mask 
thus obtained is masked with the original T2 weighted image for obtaining gray 
level image. Fig.5.17 gives the details of extraction of white matter. 
 
 
 
 
 
 
 
 
 
 
 
 
5.3.2 Implementation of the Adaptive Gray level Algebraic 
set Segmentation Algorithm 
 The method developed was implemented on seventy MR image data sets 
with each image dataset containing 20 slices. Out of this, forty sets were of high 
grade and twenty were of low grade glioma and ten normal image datasets.  Image 
database development and validation of the algorithms were based on this MRI 
database which was already manually identified and segmented by the Radiologist. 
The selected images were histo-pathologically tested by the radiologists and have 
confirmed the presence of the disease. In this method, axial slices of T2 weighted 
and T1 FLAIR brain MRI data as shown in Fig.5.18 were considered. The images 
are gray level images and pixel levels are represented by unsigned 16bit integers. 

     
(a)   (b) (c)

Fig. 5.17 Segmentation of white matter with tumor removed a) Enhanced image 
b) Binary mask of white matter with tumor removed c) White matter with skull 
removed 
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5.3.3 Results and Discussion  
 This Section contains the experimental results of new method named as 
Adaptive Gray level Algebraic set Segmentation Algorithm (method II) and 
validation results. 

5.3.3.1 Segmentation of tumor, Grey Matter and White Matter 

This section presents the results of segmentation of tumor, tumor 
boundary, and GM and WM regions.  Examples of segmented ROIs of low grade 
glioma, high grade glioma and normal images are shown in Fig.5.19, 5.20 and 
Fig.5.21 respectively. Even in the presence of partial volume effect, intensity in-
homogeneities and infiltrative nature of tumor, the method is robust enough for 
defining the tumor boundary and extracts tumor and other pathological structures 
from the joint intensities T1-FLAIR and T2-weighted images. Benchmark images, 
two or three slices from each patient, are selected for obtaining exact area and 
perimeter of the tumor and its boundary.  Gray level morphological filtering 
technique is the major procedure in this method. The main drawback of 
morphological segmentation is, under or over segmentation. This was reduced to a 
great extent using this method (Fig.5.19e). This was eliminated by repeated dilation 
and erosion with slightly varied dimension in the structuring element. Disk shaped 
SE of varied dimension is used for different morphological operations performed in 
this method. The same algorithm is used for extraction of pathological subjects 

 

Fig.5. 18 Sample raw data from a patient volume used segmentation.
T1-FLAIR andT2-weighted MRI slice 
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from low and high grade glioma MR images and normal images. Thus, this 
algorithm is also effective for extraction of WM and GM from normal images. The 
other advantage of this segmentation procedure is that, segmented structures are 
preserving the gray level values of the original T2 weighted image. For further 
texture description and classification/tumor grading using texture quantification, 
gray level intensity images are very essential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
(a)                        (b)    (c) 

        
(d)        (e)      (f) 

       
(g)        (h)          (i) 

Fig. 5.19 Example of segmented ROIs of low grade glioma tumor from MR 
image slices. a) T2 weighted b)T1 FLAIR MR image c) Segmented  binary 
low grade  glioma tumor d) Gray level  tumor e) extracted tumor boundary. 
f)Binary segmented  WM with tumor portion removed g) Gray level WM 
with outer layers removed h) Segmented binary GM i) Gray level GM with 
outer layers removed. 



Chapter 5 

172 

 

 

 

 

 

 

  

     
(a)    (b)      (c) 

   
(d)      (e)    (f) 

     
(g)      (h)    (i) 

Fig. 5.20 Example of segmented ROIs of high grade glioma tumor patient from MR 
image slices. a) T1 FLAIR image b) T2 weighted image c) Segmented binary tumor 
d) Gray level tumor e) Extracted tumor boundary f) Gray level WM g) Binary 
segmented WM with outer layers removed h) Segmented binary GM  i)  Gray level 
GM with outer layers removed 
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 The method is tested for over segmentation and under segmentation as 
shown in Fig.5.22. Most of the segmentation methods in literature are prone to 

       
                        (a)     (b)      (c) 

      
       (d)      (e)             (f) 

          
(g )      (h)      (i)   

Fig.5.21. Example for Extraction method applied on a Normal Image. a) T2-
Weighted Image b) T1 FLAIR image c) Binary WM with  d) Binary segmented 
WM  with outer layers removed e) segmented gray level WM f)segmented binary 
GM g) Binary GM with outer layers removed h) Gray level  GM i) segmented and  
labeled image  
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under segmentation or over segmentation. The method is validated in terms of  
Tanimoto Index, Positive Prediction Value and Percentage Match with respect to 
manual Ground Truth images. 
 

 

 

 

 

 

 

 

 

 

5.3.3.2 Results of Validation against the manual Ground Truth 

 The goal of this automated segmentation algorithm is to make segmentation 
of MR images more practical by replacing manual outlining of the tumor by 
radiologist without any loss in accuracy. In order to evaluate the efficiency, 
accuracy, and computation time of the segmented method described here,  with 
respect to segmented WM, GM, and tumor from T1 FLAIR and T2-weighted  
MRIs, the authors used 20 images from 20 patients’ image dataset (10 low grade 
glioma and 10 high grade glioma). 

1. Visual similarity using labeling technique for measuring Efficiency  

 Examples of automatically labeled GM, WM and tumor with respect to GT 
are shown in Fig 5.23.  From the figures, it can be well observed that the algorithm 
is very efficient with respect to manual GT. Manually segmented ROIs were 
superimposed and labeled into automatically segmented image for visual validation 
of the algorithm. Visual similarity between automatic method and GT can be 

 

(a)      (b)              (c) 

Fig. 5.22 Segmentation problem cases, (a) Under-segmentation, (b) Over-segmentation 
(c) Clustering. Segmented boundaries are in yellow; red circles indicate errors. 
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observed using this labeling technique. The dataset images included pre-labeled 
maps of tissues of interest (WM, GM, and tumor). 

           
           
           
           
           
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Accuracy measurement using Tanimoto Index, Percentage Match and 
Postive prediction value 

 The algorithm was quantitatively compared with GT for accuracy 
performances. To measure the agreement between automated and standard 
segmentations, the no. of pixels in the tumor, WM and GM regions obtained from 
the automatic method were compared with the pixels in the standard segmentation 
or GT in each slice.  

                        

              

l              

Fig.5.23 Manually outlined Brain components on T1 FLAIR images (ground 
Truth) by expert Radiologist and automatically labeled brain components of high 
grade and low grade glioma tumors on T1-FLAIR images; 1column . Manually 
segmented T1 FLAIR images containing high and low grade tumor, 2ndcolumn. 
Automatically segmented and labeled high and low grade tumors, 3rdcolumn 
Automatically segmented and labeled GM, 4th column Automatically segmented 
and labeled WM, 5th column Automatically segmented and labeled tumor, GM, 
and WM with outer layers removed.     
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TP, FP, FN are measured in each case. Accuracy of segmentation was 
quantitatively evaluated by calculating Tanimoto index (TI), Percentage match 
(PM) and Positive prediction (P+) values of this algorithm with respect to GT. 
Tables 5.3 and 5.4 show the FN,TP,FP,TI, PM, and P+ of High and low grade 
Tumor, Tables 5.5 and 5.6 shows these parameters for WM (low and high grade) 
and  Table 5.7 and 5.8 show typical values of FN,TP,FP,TI, PM, and P+ for high 
and low grade GM for 10 sample images. From the tables,  it can be observed that 
the TI of low grade and high grade glioma tumor  ranges from 97.07%-99.8% and 
98.28%- 99.6 %,  TI of  WM for low grade and high grade ranges  are  97.97%-
99.79%  and 97.12%-99.55% and  TI of GM  for low and high grade  ranges  of 
values are 91.4%- 98.4% and 93.9% -96.6% respectively. Fig.5.24 shows the same 
results for TI for this algorithm with respect to GT for low and high grade tumor, 
WM, and GM of randomly selected 20 images from 20 image datasets. That is, the 
percentage of misclassified pixels is very low or in other words, FP and FN also 
give a measure of the 0.02-0.06%, 0.01-0.07% for tumor 0.03-0.1%, 0.04-0.12% 
for the WM and 0.04-.0.12% and 0.08-0.13% respectively including all segmented 
ROIs. FP and FN also a measure of number of over segmented pixels and number 
of under segmented pixels with respect to GT. TI of 100% signifies that there are 
no FP and FN. Thus the new method shows excellent performance for the three 
segmented ROIs. 

Table 5.3 Performance analysis for segmented high grade tumor in MRI 
images 

High grade 
Tumor FN TP FP TI PM P+[%] 

tumor_high 1 4 8791 33 99.367 99.626 99.813 
tumor_high 2 7 6985 20 99.388 99.714 99.857 
tumor_high 3 9 7195 54 98.941 99.255 99.626 
tumor_high 4 5 7875 60 98.957 99.244 99.620 
tumor_high 5 21 7087 34 99.202 99.523 99.761 
tumor_high 6 7 7005 22 99.362 99.687 99.843 
tumor_high 7 6 6975 14 99.472 99.800 99.900 
tumor_high 8 7 7587 62 98.892 99.189 99.593 
tumor_high 9 33 7499 34 99.246 99.549 99.774 
tumor_high 10 6 6941 41 99.086 99.413 99.706 
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Table 5. 4 Perfomance analysis for segmented low grade tumor in MRI images 

Low grade 
Tumor FN TP FP TI PM P+[%] 

tumor_low 1 17 4135 42 98.009 98.994 99.495 

tumor_low 2 16 1746 14 98.422 99.205 99.601 

tumor_low 3 7 4334 36 98.366 99.176 99.586 

tumor_low 4 43 4345 16 99.269 99.633 99.816 

tumor_low 5 27 2736 20 98.559 99.274 99.636 

tumor_low 6 14 3313 27 98.396 99.192 99.594 

tumor_low 7 24 2445 19 98.470 99.229 99.613 

tumor_low 8 19 1925 29 97.075 98.516 99.252 

tumor_low 9 4 4096 4 99.805 99.902 99.951 

tumor_low 10 6 1748 12 98.646 99.318 99.658 
 
Table 5. 5 Perfomance analysis of  segmented high grade WM for 10 sample 

images 

ROI FN TP FP TI PM P+[%] 
WM_high 1 91 44298 193 99.14 99.57 99.78 
WM_high 2 82 40982 400 98.09 99.03 99.51 
WM_high 3 196 39675 221 98.90 99.45 99.72 
WM_high 4 41 42489 172 99.20 99.60 99.80 
WM_high 5 406 40069 594 97.12 98.54 99.26 
WM_high 6 66 43967 99 99.55 99.78 99.89 
WM_high 7 168 43464 304 98.62 99.31 99.65 
WM_high 8 43 43198 129 99.41 99.70 99.85 
WM_high 9 72 43526 146 99.33 99.67 99.83 
WM_high 
10 18 43895 123 99.44 99.72 99.86 
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Table 5. 6  Perfomance analysis of  segmented low grade WM for 10 sample 
images 

ROI FN TP FP TI PM P+[%] 

WM_low 1 440 42987 1098 95.14 97.51 98.74 

WM_low 2 429 42086 900 95.90 97.91 98.94 

WM_low 3 167 41023 344 98.35 99.17 99.58 

WM_low 4 340 39228 412 97.94 98.96 99.48 

WM_low 5 417 40261 1494 93.09 96.42 98.18 

WM_low 6 398 38241 1583 92.35 96.03 97.97 

WM_low 7 420 40964 1120 94.82 97.34 98.65 

WM_low 8 343 40965 378 98.19 99.09 99.54 

WM_low 9 396 38156 1447 92.95 96.35 98.14 

WM_low 
10 362 39163 699 96.55 98.25 99.12 

 

Table 5. 7 Perfomance analysis of  segmented high grade GM for 10 sample 
images 

ROI FN TP FP TI PM P+[%] 

GM high 1 26 25583 455 96.57 98.25 99.12 

GM high 2 235 22845 730 93.99 96.90 98.43 

GM high 3 112 20107 1005 90.91 95.24 97.56 

GM high 4 186 17869 780 91.97 95.82 97.86 

GM high 5 186 16031 155 98.10 99.04 99.52 

GM high 6 233 22893 830 93.24 96.50 98.22 

GM high 7 260 18755 505 94.89 97.38 98.67 

GM high 8 317 21617 700 93.92 96.86 98.41 

GM high 9 60 19879 481 95.38 97.64 98.80 

GM high 10 192 18790 470 95.24 97.56 98.76 



Automatic Extraction of Glioma Tumors and other Pathological brain Tissues   

179 

Table 5. 8 Perfomance analysis of  segmented low grade GM for 10 sample 
images 

ROI FN TP FP TI PM P+[%] 

GM low 1 260 21088 172 98.39 99.19 99.59 

GM low 2 62 16820 642 92.91 96.32 98.13 

GM low 3 27 20511 516 95.21 97.55 98.76 

GM low 4 196 18962 721 92.93 96.34 98.13 

GM low 5 66 18924 642 93.65 96.72 98.33 

GM low 6 200 19982 1218 89.13 94.25 97.04 

GM low 7 185 18100 420 95.56 97.73 98.85 

GM low 8 147 18670 877 91.41 95.51 97.71 

GM low 9 256 27054 302 97.82 98.90 99.44 

GM low 10 214 21065 589 94.70 97.28 98.62 
 

 Percentage Match and Tanimoto Index are measures of accuracy. The WM 
and tumor segmentation had better PM and TI, than GM. The PM values for the 
new segmentation algorithm with respect to GT are excellent. From this, it is well 
observed that segmentation accuracy in terms of the segmented location area and 
size of ROI’s are very high. Because positive prediction value of ROIs are greater 
than 98%.  

 Fig.5.25 shows the Percentage Match (PM) of the segmentation algorithm 
with respect to GT.  The median values of PM  obtained from the box plot 
(Fig.5.25 ) for low grade tumor, GM and WM are 99.8, 97.5 and 99.6 respectively 
and for high grade  the median values tumor, GM and WM are, 99.4, 97.2 and 97.8 
respectively. The whiskers show the range of values. The horizontal bars are the 
median values, the boxes shows   the percentiles. Its ranges values for low and high 
grade tumor 99.01-99.86, and 98.9-99.49, WM 99.10-99.90 and 96.1-98.89 and 
GM are 95.26- 98.9 and 94.2-99.01 respectively  
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 The algorithm developed in this method is based on customorized 
mathematical morphology and adaptive thresholding techniques which 
incorporates spatial information. We tested the distribution of FP and FN was 
tested by computing TI.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           

(a)                                                                     (b) 

         

      (c)  

Fig.5.24. Tanimoto index (TI) of high grade and low grade Tumor , WM, and GM of 20 
patients.  



Automatic Extraction of Glioma Tumors and other Pathological brain Tissues   

181 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The positive prediction value, the correspondence with the location and size 
of segmented ROIs are also excellent as shown in Fig.5.25. P+ index estimates the 
correspondence in size and location between the Segmented ROI and GT. The 
ranges of values for low and high grade tumors  99. 3- 99.6%, 99.5- 99.85%, GM - 
98.1-99-1%, 98.3- 99.2% and WM are 98.3-99.5%, 99.5-99.8% respectively. The 
median positive prediction values obtained from the box plot (Fig. 5.25) of low and 
high grade tumor- 99.4 and 99.5, GM -98.7 and 98.8 and WM are 99.1 and 99.6 
respectively. 

3. Computation Time 

 For manually segmenting pathological areas of the brain, it takes at least 30 
minutes for each slice. The maximum time required for segmentation of ROIs 
using this method is only 0.1second, which makes the method attractive to 
clinicians. So the laborious manual segmentation can be dispensed with this 
automated method can aid radiologist to a great extent.   

 

Fig.5.26 Positive prediction (P+[%]) values of high and low grade tumors, GM, and 
WM respectively.  
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 A user friendly software package has been developed and is presented in 
chapter8. The computation time and accuracy of atlas based segmentation using 
expectation maximization [6], segmentation based on hidden Markov random field 
model based algorithm [12], Adaptive template moderated brain tumor 
segmentation [3], Segmentation of brain tissue from expectation maximization, 
mathematical morphology and active contour models [10], and assessment of 
automated brain structures segmentation based on the mean shift algorithm [13] are 
validated in the literature. Of these methods, segmentation discussed here, is more 
accurate with much less computation time. Our validation study was designed to 
determine how closely this method correlated with GT. The size of the structure 
depends on segmentation accuracy. Segmentation errors occur on the boundary of 
surfaces. Thus, larger the surface of an object, more number of pixels are 
misclassified. So accuracy is lower with larger objects than smaller objects. The 
incorporation of T2-weighted images, which distinguish tumor as hyper intense 
tissues, may enable the precise definition of tumor boundaries. Accuracy in terms 
of TI, PM, P+ and reproducibility is almost same when considering two grades. 

Fig 5.25 The percentage match of low grade and high grade glioma tumor, GM and 
WM is shown using box plot.  
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5.4 A comparative study between Fuzzy C-Means 
clustering Technique and the two methods 

 So far two novel methods for segmentation of tumor,GM and WM have been 
discussed. These two methods have to be compared with existing method that is 
widely accepted for segmentation of brain structures. The next section discuss the 
comparison of performance of the two methods with Fuzzy C-Means Clustering 
algorithm. Comparison was done qualitatively and quantitatively.  

5.4.1 Fuzzy C-Means Clustering Technique  
Fuzzy C-Means clustering technique is a widely used technique for 

segmentation of pathological tissues from brain MRI, which was already discussed 
in chapter 3. In general, cluster analysis refers to a broad spectrum  of methods 
which try to subdivide a data set X into  c subsets (clusters) which are pair wise 
disjoint, all non-empty, and reproduce X via union. The clusters  are then termed a 
hard (i.e., non-fuzzy) c-partition of  X. Fuzzy c-means (FCM) is a method of 
clustering which allows one piece of data to belong to two or more clusters[14]. It 
is based on minimization of the following objective function [15]: 
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 where m is any real number greater than 1, uij is the degree of membership 
of xi in the cluster j, xi is the ith of d-dimensional measured data, cj is the d-
dimension center of the cluster, and ||*|| is any norm expressing the similarity 
between any measured data and  the centre. Fuzzy partitioning is carried out 
through an iterative optimization of the objective function shown above, with the 
update of membership uij and the cluster centers cj by: 
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This iteration will stop when , where  is a termination 
criterion between 0 and 1, whereas k are the iteration steps. This procedure 
converges to a local minimum or a saddle point of Jm. 
The algorithm is composed of the following steps: 

1. Initialize U=[uij] matrix, U(0) 
2. At k-step: calculate the centers vectors C(k)=[cj] with U(k) 

 

 
3. Update U(k) , U(k+1) 

 

 
4. If || U (k+1) - U (k) ||<  then STOP; otherwise return to step 2. 

5.4.2 Implementation of the Fuzzy C-Means Algorithm 
 The Fuzzy C Means Algorithm (FCM) method is implemented for the image 
database of method I and method II. The method is also validated quantitatively by 
computing Tanimoto Index and qualitatively in terms of computation time. 

5.4.3 Results and Discussions 
 This section details the results obtained for the FCM method. Fig.5.27a 
shows a sample T2 weighted image and Fig.5.27b shows the tumor region 
detected. Fig.5.28 shows the visual validation of the method. Tumor and its 
boundary is extracted using iterative procedure and the extracted tumor boundary is 
superimposed on T1-FLAIR image. It can be well observed that the entire tumor 
region is not segmented out fully using this method; the tumor region is under 
segmented. The regions left out is marked in Fig. 5.28d 
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(a)         (b) 

Fig.5.27 Example for Fuzzy c-means algorithm
(a) T2 weighted image (b)Segmented  Image 

using fuzzy c-means algorithm 

 
(a)                    (b)    (c)         (d) 

Fig.5.28 Visual validation of fuzzy c-means clustering technique
(a) Segmented using the FCM algorithm (b) Tumor boundary (c) extracted boundary 

super imposed on T1 weighted image  (d) under segmentation detected in the 
rounded portions 
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Table 5.9 Performance Analysis of FCM method 

FCM TI FP Computation 
time TI FP Computation 

time 

Image 1 85.28 245 38 86.80 256 36 

Image 2 85.44 342 34 87.78 312 32 

Image 3 85.67 451 32 87.91 434 33 

Image 4 86.09 298 35 88.21 297 25 

Image 5 86.40 381 38 88.84 343 28 

Image 6 86.62 254 39 90.01 259 29 

Image 7 88.32 314 36 91.15 326 26 

Image 8 91.68 356 39 93.74 306 39 

Image 9 91.97 212 34 93.69 223 24 

Image 
10 92.00 235 35 93.70 275 35 
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Fig.5.29 Tanimoto index of low and high grade glioma 
using Fuzzy c-means clustering Algorithm. 
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 The Accuracy of segmentation of low and high grade glioma is calculated 
using Tanimoto index as shown in Fig.5.29. From Table 5.9 the percentage ranges 
of accuracy of segmentation for low and high grade glioma is 86.2-92.3 and 87.1-
93-2 respectively. The computation time and FP are also provided in the Table 5.9 
for low and high grade patients’ image dataset. That is, in this method, number 
misclassified pixels are high. Hence this method is not accurate as the two methods 
discussed in this chapter.  

5.4.3.1 Performance Comparison of Method I and Method II with respect 
to Fuzzy C-Means Clustering Technique 

 This Section gives a comparative study between the results obtained for 
method I and AGASA (method II) with respect to Fuzzy C-means clustering 
algorithm.  

Table 5.10 Comparative study of proposed method I and Method II with 
respect to FCM method 

Parameter for 
comparison Method I 

AGASA 
(Method II) 

FCM 

Segmentation 
Accuracy( TI%) 98% 98% 90% 

Average No. of 
Misclassified 

pixels (FP or FN) 
120 130 300 

Computation Time 1 Seconds 2 Seconds 36 Seconds 
 

The accuracy of these segmentation methods were already discussed in the 
previous sections as part of validation procedure and is given in Table 5.10. 
Accuracy of the FCM method is already computed using Tanimoto Index and 
visual validation was done by labeling procedure in all cases. From the Table 5.10, 
it is noted that the average values for TI is 98% for method I and Method II, and 
90% for FCM.  The average number of misclassified pixels is measured interms of 
average  FP is 120 for method I, 130 for AGASA (Method II ) and 300 for FCM.  
The positive prediction value, the correspondence with the location and size of 
segmented ROIs are also excellent as shown in Fig.5.25. P+ index estimates the 
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correspondence in size and location between the Segmented ROI and GT. The 
ranges of values for low and high grade tumors 99. 3- 99.6%, 99.5- 99.85%, GM - 
98.1-99-1%, 98.3- 99.2% and WM are 98.3-99.5%, 99.5-99.8% respectively. The 
median positive prediction values obtained from the box plot (Fig. 5.25) of low and 
high grade tumor- 99.4 and 99.5, GM -98.7 and 98.8 and WM are 99.1 and 99.6 
respectively. 

 Computation time for FCM is 36 seconds compared to 1second and 2second 
time for method I and method II. From the above values, it is clear that method I 
and method II  have better segmentation performance than the FCM method. The 
FCM method is quite complex and time consuming than the proposed methods. 

 Method I uses T2 weighted images only and it extracts the tumor region, 
whereas AGASA (Method II) is able to extract White matter, Grey matter and 
Tumor from the joint intensities of T1 FLAIR and T2 weighted images. The 
Accuracy and performance of two methods are almost same.  

Conclusions 
 A new simple, accurate and robust method for automatic extraction of low 
and high grade tumors from T2 weighted MRI was explained in this chapter. The 
robustness of the algorithm with respect to Gaussian noise and speckle noise was 
also demonstrated. The main drawback of this algorithm is that using the single 
modality T2 weighted images it is difficult to extract other brain subjects such as 
White matter and Grey Matter. The segmentation accuracy of the methods is 
computed using Tanimoto index. 

  This difficulty was overcome by developing a novel and robust algorithm 
named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) 
for the extraction of definable objects such as White Matter, Grey Matter, tumor 
and tumor boundary, which preserves its shape and gray level information. The 
spatial domain processing technique used mainly involves mathematical 
morphological methods, correlation filtering and adaptive thresholding technique. 
Here, we make use of joint intensities of two modalities of MRI. The method is 
validated against manually segmented images by an expert radiologist as Ground 
Truth images. The accuracy of method in terms of segmented region of interests 
was validated by computing TP, FP, FN with respect to Ground truth images.  The 
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Tanimoto Index, Percentage Match, Positive Prediction Value obtained and its 
ranges shows excellent performance of the new methods. 

The developed methods were compared with the widely used Fuzzy c-
means clustering technique and it is seen that, the new methods showed much 
better performance than FCM algorithm. 

 The main goal of development of this automated segmentation method is  
to make segmentations of MR images more practical by replacing manual 
outlining, which reduces operator time, without accuracy loss and to improve 
reproducibility. This segmentation method is suitable for image registration for 
surgical planning, detection of tumor growth and thus by determining prognosis of 
patients in the case of high grade tumors. Partial volume effects were very much 
reduced in low grade tumor as defined by the boundary of the tumor. It may be 
noted that, this method is fairly simple when compared with other frequently used 
methods. The segmented ROIs were retaining the gray level values of each pixel. 
Hence these segmented tumors are used for statistical texture analysis and grade 
detection of glioma tumor. Segmented gray level tumors are also used for 3D 
rendering of glioma tumors for volumetric analysis. A software package is 
developed which can be operated by the users and thus by assisting radiologist to a 
great extend for replacing the manual outlining of pathological subjects in brain 
MRI.  
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Chapter 6 

Technique for Grade Detection of Glioma 
Tumors from Conventional MRI using 

Statistical Methods 
 
Different approaches for classification/detection of abnormalities of human organs 
and other pathological subjects including brain tumors from various imaging 
modalities have been proposed in recent years, but none of them obtained 98% 
performance. In this chapter, a new efficient method for grade detection of glioma 
tumors is presented based on texture analysis. The images used for texture analysis 
contains only the segmented tumor regions which retain the normalized gray level 
values of the original image. Initially, Statistical texture analysis of segmented 
images from the database is performed using first order statistical methods and 
Gray level co-occurrence matrix (GLCM) based second order statistics, for feature 
extraction and feature set formulation. Then, a decision system was developed 
based on the thresholds fixed by selected discriminant features in the feature sets. 
The performance of the method, which is tested by using twenty patients’ image 
dataset and performance of detection system was evaluated using ROC analysis, 
which showed 98% above accuracy. 
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6.1 Introduction 
The characterization and grading of glioma tumors, via image derived 

features, for diagnosis, prognosis, and treatment response has been an active 
research area in medical image computing. This chapter presents the development 
of a new method for grade detection of glioma tumors from conventional T2 
weighted MR images. The steps involved in this work are texture analysis, feature 
extraction, feature selection and detection. Statistical texture analysis was done on 
the segmented tumor region  using first order statistical features and gray level co-
occurrence matrix (GLCM) based second order statistical features. 

The organization of this chapter is as follows. Section 6.2 presents   texture 
analysis for feature extraction using first order and second order GLCM based 
features, feature selection using box plots and feature set formulation based on the 
thresholds fixed by the selected features, for detection of high grade and low grade 
glioma tumors   from conventional T2 weighted MR images.  The implementation 
of the technique is detailed in section 6.3. Section 6.4 discusses results obtained 
from implementation of the method and development of a decision system for 
detection. Performance evaluation of the method using ROC analysis is also 
presented.  

6.2 A Novel Technique for grade Detection of Glioma 
Method Development 

The steps involved in technique are shown in the flowchart of Fig.6.1. 
They are texture analysis and feature extraction, feature selection, feature set 
formulation and development of the decision system based on the thresholds fixed 
by the selected features in the feature set.  
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6.2.1 Texture Analysis and Feature Extraction 
 After an image has been segmented into regions of interest, the resulting 
segmented pixels or regions are usually represented and described in a form 
suitable for further analysis.   

 The segmented regions can be represented in terms of its external (boundary) 
or internal characteristics (pixels comprising the region). External representation is 
chosen when the primary focus is on shape characteristics. An internal 
representation is selected when the primary focus is regional properties such as 
color and texture. Choosing a representation of a region is only a part of making 

Fig.6.1 Show the flow chart for decision system for grade detection of glioma 

Result

Feature extraction

Feature selection

Feature sets

Detection 

Segmented ROI

1 2 3
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data useful for analysis. Next task is to describe the region based on the chosen 
representation. Special emphasis is given here on texture, description and 
quantification of its content. Texture analysis is very important in brain tumor 
detection, as it is difficult to differentiate between various types of tumor tissues 
using shape [2, 3]. The main challenge is that the shape of a tumor is not consistent 
throughout all slices of MR image and may change quickly if the inter-slice 
distance is large. But, tumors are expected to have consistent textures for all slices 
[3] and hence prominent MRI slices are chosen from each patient data slice for 
grade detection. 

 Texture features have proved useful in differentiating normal and abnormal 
tissues [4] in different organs using different types of imaging modalities.  The 
segmented ROI was considered for texture analysis in the detection method 
described in this chapter. 

 As part of method development, two types of texture analysis were 
considered 

1. By considering only 16x16 sub image of entire segmented tumor region 
as done by earlier researchers 

2. By considering  the entire segmented tumor region 

  A set of textural descriptors is calculated for each ROI, using first order 
statistics (of texture type 1 and 2)   and GLCM based second order statistics (Type 
2). The discriminant features that are suitable for properly differentiating the two 
tumor grades were selected from these descriptors.  

6.2.1.1 First-order statistics  

 For any segmented ROI, the mean (average intensity) and the standard 
deviation (average contrast) of the level values in the region can be used to 
measure the spread of gray level values of the pixels within that region 
(Histogram)[1,4 - 6]. One class of such measures is based on statistical moments. 
Here statistical moments such as mean, standard deviation, entropy, kurtosis and 
skewness are calculated from a 1)16x16 sub image or blocks of the segmented ROI 
(Fig 6.2) and also the entire segmented tumor area. This is for the purpose of 
correctly detecting the grade of glioma. Intensity pattern in the tumor region is 
calculated using histograms of segmented ROI (SROI).  
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 Using first order statistical  moments  it is able to describe  the underlying 
structures that leads us to perceive the texture in terms of ‘coarseness’, 
‘uniformity’, ‘roughness’ and so on. Table 6.1 and 6.2 shows the typical values of 
five descriptors for 20 images (from 20 patients’ image dataset) calculated from a 
16x16 sub image of the segmented low grade and high grade glioma tumors 
respectively. Tables 6.3 and 6.4 show the same values, considering the whole 
segmented tumor regions, with respect to the same 20 images. From the table 6.1 
and 6.2, it can be observed that the typical values of all descriptors are not 
statistically significant. From these tables, it can be observed that the ranges of 
values average intensity for low grade 49-98; and high grade glioma 52-190 ; 
Standard deviation for low grade 8-30 and high grade glioma 10-110;  Kurtosis for 
low grade 2.2-8.5 and high grade glioma 3-42;  entropy for low grade 0.59-1.98 
and high grade glioma 0.4-8;  

 But the descriptors in the Table 6.3 and 6.4 are statistically significant. From 
these Tables 6.3 and  6.4  it can be well observed that the ranges of values of 
average intensity for low grade is 70-160 and  for high grade is190-230;  ranges of 
values  observed for standard deviation for low grade is10-60 and high grade is 90-
130 ; Range of values  for entropy for  low grade is 0.5-3 and high grade is 6.5-11. 
Range of values for kurtosis for low grade is 2-12 and high grade is 115-152 and 
the ranges of values observed for low grade-0.2-15 and high grade is10-20. 

 

Fig.6.2sub image selected from the 
segmented tumor region  



Technique for Grade Detection of Glioma Tumors from Conventional MRI using Statistical Methods    

199 

 So it can be observed that considering only a small region does not give 
sufficient statistical information for differentiating between low and high grade 
glioma. Hence the whole region is considered for calculating the discriminating 
features in later sections. 

Table 6.1  TTypical values of First order statistical features from 16x16 
segmented tumor sub image of 20 high grade dataset 

High grade Intensity Std. dev Kurtosis entropy Skewness 

Image 1 100.75 93.64 65.79 1.04 10.9 
Image 2 65.95 83.02 80.09 7.53 8.08 
Image 3 91.15 98.04 17.2 7.03 5.08 
Image 4 119.68 25.72 19.17 9.73 12.45 
Image 5 74.88 12.13 12.05 10.23 1.52 
Image 6 60.08 24.8 6.74 11.29 16.27 
Image 7 75.28 14.56 10.13 7.81 15.02 
Image 8 80.48 22.97 1.87 0.87 3.76 
Image 9 195.68 18.82 3.41 1.71 15.88 
Image 10 90.88 19.51 2.49 1.14 15.63 
Image 11 186.08 22.99 2.33 1.23 1.81 
Image 12 181.28 21.4 5.34 1.45 1.04 
Image 13 76.48 56.73 6.73 0.67 5.61 
Image 14 198.95 105.02 34.67 1.71 3.89 
Image 15 85.28 38.27 36.42 2.95 4.35 
Image 16 100.48 95 76.73 0.78 6.75 
Image 17 88.22 85.27 69.94 5.67 11.33 
Image 18 87.9 88.52 51.79 8.02 6.65 
Image 19 144.41 71.77 11.45 3.78 8.79 
Image 20 70.5 78.02 25.21 7.53 9.17 
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Table 6. 2 Typical values of First order statistical features of 16x16 
segmented tumor sub image from 20 low grade glioma image 
dataset 

Low grade Intensity Std. dev Kurtosis entropy Skewness 

Image 1 67.81 26.74 1.9 1.91 1.91 

Image 2 46.59 30.82 10.05 1.07 1.07 

Image 3 52.94 15.55 6.74 0.87 0.2 

Image 4 67.59 26.72 10.13 1.71 1.61 

Image 5 65.16 11.13 1.87 1.14 0.98 

Image 6 79.73 24.60 3.41 1.23 2.02 

Image 7 74.3 13.40 2.49 1.45 1.32 

Image 8 81.87 20.30 0.33 0.67 1.28 

Image 9 73.44 14.82 1.34 0.71 1.11 

Image 10 98.01 19.51 2.16 0.95 0.95 

Image 11 89.58 27.99 4.34 0.78 0.78 

Image 12 97.15 20.04 1.02 0.61 0.61 

Image 13 91.72 22.09 1.13 1.81 1.81 

Image 14 86.29 19.64 6.39 1.04 1.04 

Image 15 80.86 16.54 5.24 0.56 3.61 

Image 16 77.59 12.65 2.95 1.01 3.89 

Image 17 70 8.77 0.97 1.14 4.33 

Image 18 75.69 9.22 8.54 0.94 1.65 

Image 19 71.16 10.08 9.08 0.67 2.72 

Image 20 82.29 15.93 9.62 0.4 3.10 
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Table 6. 3 Typical values of First order statistical features of  the same low 
grade  glioma patients’ image dataset  considering the whole 
tumor region. 

 
Low grade Intensity Std. dev Kurtosis entropy Skewness 

Image 1 157.81 56.76 11.87 2.91 2.91 

Image 2 146.59 50.82 12.39 2.07 2.07 

Image 3 152.94 45.55 9.74 2.00 2.00 

Image 4 137.59 36.73 10.13 1.71 1.71 

Image 5 135.16 31.13 1.87 1.14 1.14 

Image 6 129.73 24.60 5.81 2.36 2.36 

Image 7 124.30 18.06 2.49 1.45 1.45 

Image 8 118.87 11.53 0.33 1.28 1.28 

Image 9 113.44 52.82 1.57 1.11 1.11 

Image 10 108.01 40.45 3.46 0.95 0.95 

Image 11 102.58 43.18 7.34 0.78 0.78 

Image 12 97.15 39.84 1.02 0.61 0.61 

Image 13 91.72 34.88 11.13 2.81 2.81 

Image 14 86.29 29.64 8.39 1.04 1.04 

Image 15 80.86 26.54 138.27 2.00 12.61 

Image 16 127.59 22.65 95.00 1.71 13.89 

Image 17 70.00 18.77 8.00 1.14 14.33 

Image 18 75.69 14.22 8.54 0.94 16.65 

Image 19 71.16 10.08 9.08 0.67 18.79 

Image 20 82.29 15.93 9.62 0.40 20.17 
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Table 6. 4 Typical values of First order statistical features of the same set of  
high grade  glioma considering whole tumor region 

High grade Intensity Std. dev Kurtosis entropy Skewness 

Image 1 200.95 93.64 115.79 6.04 9.00 

Image 2 195.95 103.02 120.29 7.53 18.08 

Image 3 205.31 98.04 117.20 7.03 7.08 

Image 4 209.10 93.64 119.17 9.73 12.48 

Image 5 217.28 99.62 119.88 10.23 10.52 

Image 6 200.95 112.64 118.38 11.29 16.27 

Image 7 193.31 117.04 131.89 7.81 15.02 

Image 8 205.31 115.52 121.99 9.08 13.76 

Image 9 220.10 118.77 134.71 10.97 15.88 

Image 10 225.86 122.02 127.76 9.66 15.63 

Image 11 218.40 75.27 115.01 9.59 16.45 

Image 12 220.40 128.23 134.90 8.66 16.77 

Image 13 222.39 156.73 136.73 11.01 17.24 

Image 14 214.39 135.02 134.67 6.53 17.71 

Image 15 226.73 138.27 136.42 8.82 12.61 

Image 16 228.38 95.00 116.73 8.75 13.89 

Image 17 230.38 125.27 139.94 8.67 14.33 

Image 18 232.38 128.52 151.69 8.02 16.65 

Image 19 234.38 131.77 110.45 7.78 18.79 

Image 20 216.37 138.02 125.21 7.53 20.17 
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6.2.1.2 Second order statistics  

 GLCM is a widely used tool for analyzing statistical textural properties [4-
22] of different types of tissues in biomedical imaging.  As part of feature 
extraction from the segmented tumor using GLCM features, 10 Halarick 
descriptors are calculated to quantify the spatial dependence of gray level values. 
These descriptors are computed from the co-occurrence matrices of size [16x16], 
and are constructed at a distance of d = 1 and for direction θ = 0°. The texture 
descriptors considered from GLCM are : Correlation, Contrast, Energy, Entropy, 
Homogeneity, Maximum probability; Inverse Difference Moment, Dissimilarity, 
Cluster Prominence and Cluster Shade of  level values and the other descriptors are 
relative values of these features. Contrast measures the amount of local variations 
present in an image, while energy is the sum of squared elements in GLCM. 
Energy may also be referred to as uniformity or the angular second moment. 
Lastly, correlation will show how correlated a pixel is to its neighbor over the 
whole image. Inverse Difference Moment (also called homogeneity) IDM is also 
influenced by the homogeneity of the image. The result is a low IDM value for 
inhomogeneous images, and a relatively higher value for homogeneous images. 

 The quantitative values of GLCM based features such as contrast, 
dissimilarity, energy, entropy; cluster shade; cluster prominence and correlation of 
the whole segmented ROI of high grade and low grade glioma of all datasets were 
computed and is provided in the Table 6.5 and 6.6 respectively for 20 patients’ 
image dataset. The ranges of values observed for  cluster prominence of  low  grade  
425-650  and  for high grade 1300-1700;  ranges of values of cluster shade for low  
grade  20-80  and  high grade 100-200; ranges of values of auto correlation for low  
grade  10-30  and  high grade 40-75; ranges of values of entropy for low  grade  
0.2-1.5  and  high grade 6-15; ranges of values of dissimilarity for low  grade  0.5-
10  and  high grade 50-250; ranges of values of energy for low  grade  3-15  and  
high grade 0.2-1.5; ranges of values of contrast for low  grade  0.2-1.5  and  high 
grade 6-15; ranges of values of inverse difference moment for low  grade  0.8-0.9  
and  high grade 0.87- 0.99; ranges of values of entropy for low  grade  0.2-1.5  and  
high grade 6-15 and  ranges of values of maximum probability for low  grade 4 - 6  
and  high grade 3.3-7.  
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Table 6. 5 Typical values of GLCM features for randomly selected 20 images 
from high grade glioma patients’ image dataset 
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Image  1 42.91 25.71 1295.03 -110.05 67.92 0.39 14.97 4.31 0.99 

Image  2 45.61 43.61 1315.00 -125.05 79.17 0.49 9.68 3.70 0.97 
Image  3 52.67 23.83 1218.00 -105.26 90.42 0.49 4.39 3.09 0.91 
Image  4 55.68 51.08 1487.00 -126.68 101.67 0.65 10.90 2.49 0.88 
Image  5 41.23 24.46 1378.00 -106.27 112.92 0.86 5.61 6.16 0.97 
Image  6 48.65 24.28 1439.99 -185.86 124.17 0.93 3.22 6.42 0.91 
Image  7 53.16 44.42 1473.78 -198.78 135.42 0.31 1.69 5.64 0.89 
Image  8 50.68 24.64 1507.58 -168.37 69.17 0.62 10.15 6.92 0.88 
Image  9 62.34 24.79 1541.37 -157.95 91.67 0.39 18.62 7.58 0.87 

Image  10 73.12 24.93 1575.16 -149.21 94.17 0.91 27.09 8.25 0.85 
Image  11 53.90 25.08 1408.96 -137.79 107.67 0.69 31.56 8.92 0.99 
Image  12 54.68 25.22 1642.75 -126.38 109.67 0.86 18.03 9.58 0.97 
Image  13 44.81 25.37 1376.54 -114.97 111.67 1.39 11.28 3.70 1.03 
Image  14 53.69 54.71 1510.34 -131.73 166.67 0.09 10.93 3.09 1.08 
Image  15 49.14 25.63 1744.13 -148.40 215.67 0.90 12.08 2.49 0.85 
Image  16 48.09 26.02 1577.93 -155.24 117.67 1.86 13.24 6.16 0.99 
Image  17 47.04 24.09 1609.90 -157.00 219.67 0.61 4.39 2.49 1.12 
Image  18 45.99 23.90 1623.70 -168.75 126.67 0.79 15.54 6.16 0.88 
Image  19 43.54 25.39 1637.49 -177.02 223.67 1.41 6.70 6.42 0.97 
Image  20 21.79 32.42 1651.28 -182.50 125.67 0.75 7.85 5.64 0.91 
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Table 6. 6 Typical values of GLCM features for randomly selected 20 images 
from low grade glioma patients’ image dataset 
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Image  1 30.08 15.88 606.09 -58.21 5.29 3.86 1.50 5.90 0.98 
Image  2 11.07 12.88 507.00 -59.45 9.17 4.86 0.97 6.16 0.99 
Image  3 23.94 14.28 456.00 -60.91 3.04 4.93 0.44 6.42 0.89 
Image  4 30.08 13.87 489.00 -61.59 3.58 6.49 1.09 5.64 0.88 
Image  5 29.51 13.07 567.00 -64.12 2.46 0.65 0.56 5.90 0.87 
Image  6 29.29 14.60 496.16 -65.04 1.33 9.31 0.32 6.16 0.82 
Image  7 29.07 13.74 486.55 -66.44 1.21 3.06 0.17 2.47 0.79 
Image  8 12.96 13.18 476.93 -5.78 12.17 6.15 1.02 3.83 0.75 
Image  9 25.81 13.16 467.31 -78.20 1.13 3.86 1.86 6.98 0.72 

Image  10 20.78 12.99 458.33 -34.43 2.10 9.08 0.71 3.13 0.68 
Image  11 27.80 13.82 447.24 -30.65 2.76 6.93 0.16 7.28 0.97 
Image  12 16.10 13.65 436.14 -26.88 13.64 8.56 1.30 5.64 0.91 
Image  13 25.44 5.48 425.05 -23.10 3.32 13.86 1.13 5.07 1.03 
Image  14 24.77 14.31 589.00 -45.67 4.10 0.86 1.09 5.01 0.89 
Image  15 27.10 13.87 542.90 -36.63 4.88 9.01 1.21 4.95 0.88 
Image  16 11.46 13.28 566.81 -38.12 10.51 14.65 1.32 4.89 0.87 
Image  17 28.45 11.74 590.73 -62.34 1.17 6.09 0.44 4.84 0.82 
Image  18 22.02 13.18 614.64 -79.95 2.33 7.93 1.55 4.78 0.79 
Image  19 21.58 9.75 610.55 -39.62 3.30 14.06 0.67 3.72 0.88 
Image  20 14.15 12.29 620.46 -39.25 3.64 7.51 0.78 4.96 0.89 
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From the above ranges of values, it can be observed that, GLCM features 
computed except maximum probability and inverse difference moment are 
considered for discriminating between low and high grade glioma. 

6.2. 2 Feature selection and feature set formulation 
 Feature selection and feature set formulation are very important, because the 
selected features must be sufficiently discriminating and suitably adapted for the 
application, since they fundamentally impact the resulting quality of the detection 
system. Box plots are used for feature selection and detection process. A detailed 
theoretical explanation for box plot and its uses are given in chapter 4. By using 
box plot, most relevant and discriminant textural descriptors can be identified and 
selected for detection of low grade and high grade glioma. Fifteen feature 
descriptors are extracted from the first order statistical model and GLCM model. 

 Initially, intensity based 5 first order statistical features of 16x16 sub images 
of segmented tumors were used for feature extraction and feature selection.  As a 
second step, the entire regions of segmented tumors were considered. The next 
procedure is the feature selection which is implemented using box plot. From the 
box plot of the extracted features it can be well observed whether the extracted 
feature is statistically discriminant or not, or how much discriminant it is. 
Similarly, from the 10 extracted GLCM features of entire segmented images, the 
discriminant features which are useful for detection procedure are identified using 
box plot. That is, Box plot identifies the statistical significance of a feature.  

6.2. 3 Results of feature selection and feature set formulation 
 1. Selection of first order statistics 

After the features were extracted   using first order statistical features and 
GLCM based features, feature selections were done using box plot. Initially, the 
first order statistical features extracted from 16x16 sub-images of the segmented 
tumors were tested using box plot.  

 The box plots of mean (Fig.6.3), standard deviation (Fig.6.4), kurtosis 
(Fig.6.5) and entropy (Fig.6.6) for16x16 sub image of segmented low grade and 
high grade tumors were plotted and it is well observed the ranges of values are not 
discriminant.  
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 The ranges values of average intensity of low and high grade are 49-98 and 
52-190 respectively. Ranges of values of Standard deviation for low grade 8-30; 
and high grade glioma 10-110 and the median values are 50 for high grade and 18 
for low grade. The ranges values for kurtosis for low and high grade glioma are 
grade 2.2-8.5and 3-42 respectively and for entropy the ranges of values of these 
low and high grades are 0.59-1.98 and 0.4-8 respectively. For all features, the 
ranges for low and high grade glioma are overlapping and hence it can be inferred 
that randomly selected 16x16 sub image of the tumor sub region is not sufficient to 
discriminate between  the two grades of tumor. Hence the 16x16 sub images of the 
segmented tumor region were not taken for further Analysis. The clinical 
observation also conforms to this observation.   

 The diagnosis and detection of glioma currently rely on the histopathologic  
examination  of biopsy specimens, but variations in tissue sampling for these 
heterogeneous tumors and restrictions on surgical accessibility make it difficult to 
be sure that the samples obtained are representative of the entire tumor [13].Hence 
we have to consider entire tumor  region for analysis. 
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Fig.6.3 Box plots of Average Intensity for 16x16 sub-image of segmented 
low and high grade glioma.   
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Fig. 6.4 Box plot of Standard deviation for 16x16 sub-image of segmented 
low and high grade glioma.  
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Fig. 6.5 Box plots of Kurtosis for 16x16 sub-image of segmented low 
and high grade glioma.  
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Fig. 6.6 Box plots of Entropy for 16x16 sub-image of segmented low and 
high grade glioma.  

Fig.6.7 Box plot of mean (Intensity) levels for forty five sets of high 
grade and fifty five sets of  low grade glioma patients. 
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Fig. 6.9 Box plot of histogram based entropy distribution for forty five sets 
of high grade  and fifty five low grade glioma patients ;  

Fig. 6.8 Box plot of standard deviation using first order statistics for forty 
five sets of high grade  and fifty five sets of  low grade glioma patients  
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Fig.6.10 Box plot of kurtosis using first order statistics for forty five sets of high 
grade and fifty five low grade glioma patients. 

 

Fig.6.11 Box plots of intensity based parameter-skewness for 
forty five sets of high grade and fifty five sets for low grade 
glioma patients  
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 Next, the box plots of intensity based 5 first order statistical features, for low 
and high grade glioma was calculated for entire tumor area and plotted. The box 
plots of mean (intensity), standard deviation, entropy, kurtosis, and skewness are 
shown Fig.6.7, Fig.6.8 Fig.6.9, Fig.6.10 and Fig. 6.11 respectively the ranges   of 
values of high and low grade tumor. It can be observed that these descriptors are 
well discriminated between high and low grades. From the box plot, it is inferred 
that all features other than skewness have distinct values for high and low grade 
glioma. The ranges of values obtained for entropy, standard deviation, kurtosis and 
intensity are high for high grade glioma and low for low grade and these are also 
well differentiated between two grades. Hence, these features are selected as 
prominent features in detection procedure.     
 From the plot of skewness, it can be observed that, the feature is not well 
differentiated between two grades as that of the other descriptors. From the box 
plots of first order statistical descriptors, we can infer some of the properties of 
high grade and low grade glioma. These statistical descriptors yield 
characterization of high grade glioma texture as coarse texture. Usually coarse 
textures show heterogeneous behavior. Mean, standard deviation, kurtosis and 
entropy are high for high grade glioma. Highly malignant glioma (grade IV) 
tumors contain heterogeneous tumor texture [26]. Hence, as malignancy increases, 
tumor heterogeneity also increasing and hence these values should also increase.It 
is observed that, Intensity, Standard deviation, Third moment (Skewness), 
Kurtosis, and Entropy are low in low grade glioma, as low grade glioma has 
smooth texture when compared to high grade. This proved the effectiveness of first 
order statistical descriptors for glioma grade detection.  

Table  6.7 The ranges of values of first order statistical features for segmented   
low grade and high grade glioma tumors  

Texture Intensity Std. dev Kurtosis entropy Skewness 

High Grade 190-240 90-150 115-152 6.5-15 8-25 

Low grade 70-160 10-60 1.5-12 0.5-5.2 0.2-3.0 
 

Table 6.7 portrays the ranges of values for first order statistical descriptors, 
such as intensity, standard deviation, entropy, kurtosis, and skewness for the two 
grades of glioma tumors. The ranges of values determined from the statistical 
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quantification of 100 MRI datasets of segmented ROIs (55-low grade, 45- low 
grade). From the Table 6.5 and Fig 6.6, Fig 6.7, Fig 6.8 and Fig 6.9, it is observed 
that Intensity, Standard Deviation, Third Moment (Skewness), Kurtosis, and 
Entropy is higher for high grade glioma and all these features are well 
discriminated between two grades. So these features are selected for differentiating 
between two grades. The feature skewness has overlapping values is hence 
knocked off. 

2. Selection of Second order Statistics 

The quantitative values of GLCM based features such as Cluster 
Prominence, Cluster Shade, Correlation, Entropy, Dissimilarity, Energy, Contrast, 
Maximum Probability and Inverse Difference Moment of segmented ROI for high 
grade and low grade glioma of all datasets were computed and its box plots are 
plotted. The box plots of cluster prominence (Fig.6.12), cluster shade (Fig.6.13), 
auto correlation (Fig. 6.14), Entropy (Fig. 6.15), dissimilarity (Fig.6.16), energy 
(Fig.6.17), contrast (Fig.6.18), inverse difference moment (Fig.6.19) and maximum 
probability (Fig.6.20) for   high grade and low grade Glioma tumors are plotted.  
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Fig.6.12 Box plots of Cluster prominence for forty five sets of high grade  and 
fifty five sets of  low grade Glioma patients .  
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Fig.6.13 Box plots of Cluster shade forty five sets of high grade and fifty five sets 
are low grade glioma patients.  
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Fig.6.14 Box plots of Auto correlation for forty five sets of high grade and fifty 
five sets of low grade glioma patients.  
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Fig.6.15 Box plots of Entropy forty five sets of high grade and fifty five low 
grade Glioma patients  
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Fig.6.16 Box plots of Dissimilarity for forty five sets of high grade and fifty 
five low grade Glioma patients
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Fig.6.17 Box plots of Energy for forty five sets of high grade and fifty five 
low grade glioma patients  

 

Fig.6.18 Box plots of Contrast for forty five sets of high grade  and fifty five 
low grade glioma patients.  
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Fig. 6.19 Box plot of Inverse difference moment for forty five sets of high grade  
and fifty five low grade glioma patients  

Fig.6.20 Box plot of  maximum  probability computed using GLCM based 
second order statistics for forty five sets of high grade  and fifty five low grade 
glioma patients 
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Ranges of values for the different features are given in Table 6.8. Thus, it 
is quite evident from these plots that these features are well discriminative between 
two types of tumors and cluster prominence, cluster shade and contrast are shown 
to be the most effective discriminators. Inverse difference moments and maximum 
probability have their ranges of values to be overlapping for high and low grade 
tumors, and cannot be selected as a good feature for detection.   GLCM based 
texture descriptors like, cluster prominence, cluster shade, dissimilarity, entropy, 
contrast and auto correlation is high and energy is low for high grade glioma 
texture. Dissimilarity, Entropy, cluster prominence, cluster shade and energy are 
measure of non uniformity or randomness of a texture and it is strongly correlated 
with texture heterogeneity [20]. When tumor malignancy increases, tumor 
heterogeneity also increases and patient prognosis decreases. In the case of low 
grade glioma, these texture descriptors are low; showing that low grade glioma 
tumor textures are smoother than high grade as expected. This   proves the 
effectiveness of the GLCM based texture descriptors for differentiating between 
two grades.  

Table 6. 8 Ranges of values of GLCM features for the segmented ROI, with 
respect to  low grade and high grade glioma tumors obtained using 
boxplot 
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High 
Grade 40-75 25-55 1300-1700 100- 200 6-15 50-250 0.2-1.5 

Low 
grade 10-30 5.0-16 425-650 20-80 0.2-1.5 0.5-10 3-15 

 
After determining the discriminant features using first and second order 

statistical features and its ranges values for low and high grade glioma, three 
feature sets are formulated.  
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6.2.4 Development of grade Detection system  
Classification of high and low grade glioma tumors were tried using 3 sets 

of features.  

Feature sets Thresholds 
for high 
grade 

Thresholds 
for low 
grade 

Feature Set 1-First 
order statistics       
Mean ≥190 ≤160
Standard deviation ≥90 ≤60
Kurtosis ≥100 ≤12
Entropy ≥6.5 ≤2
Skewness ≥8 ≤3
Feature Set 2-GLCM  
Cluster Prominence  ≥1300  ≤650 
Correlation ≥40 ≤30
Energy ≤1.5 ≥3
Entropy ≥5 ≤1.5
Contrast ≥30 ≤16
Dissimilarity ≥50 ≤10
Cluster Shade ≥100 ≤80
Feature Set 3-First order 
statistics  + GLCM (set3)     
Mean ≥190 ≤160
Standard deviation ≥90 ≤60
Kurtosis ≥100 ≤12
Entropy ≥6.5 ≤2
Skewness ≥8 ≤3
Correlation ≥40 ≤30
Energy ≤1.5 ≥3
Entropy ≥5 ≤1.5
Cluster Prominence ≥1300 ≤650
Contrast ≥30 ≤16
Dissimilarity ≥50 ≤10
Cluster Shade ≥100 ≤80

 

  Fig.6.21The flow chart of the grade detection system based on the thresholds of feature 
sets 

Feature 
Selection

Feature 
Extraction

Segmented 
ROI

Decision 

High 
grade 
glioma 

Low 
grade 
glioma 
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First feature set consisted of chosen five first order features like: first order 
statistical features like mean, standard deviation, kurtosis, entropy and skewness. 
Second feature set was formed using seven selected GLCM based features like 
Cluster Prominence, Cluster Shade, Correlation, Entropy, Dissimilarity, Energy 
and Contrast. Finally a third set of feature vectors were formulated by combining 
first and second feature set (12 features).  

A statistical decision system was developed based on the feature sets 
generated from the selected discriminant features for grading of glioma tumors. 
The three feature sets  was formulated and  the thresholds  for each feature in the 
feature sets were fixed based on the range of values determined from the boxplot. 
The flow chart for the decision system is shown in Fig.6.21. The decision system is 
chosen for grade detection of glioma, because the features selected for detection of 
glioma is highly discriminant between two grades. Hence it is very easy to develop 
a rule based detection system based on the thresholds of each features and this 
decision system is very efficient to discriminate between two grades.  

6.3 Implementation of the developed system 
 The implementation procedure of the developed decision system is discussed 
in this section. This decision system does not make any assumptions about the 
distribution of data. A training set consisting of 80MRI data was used to build the 
decision system, while test set with a group of different data was used to estimate 
the accuracy of the system. Selected statistical moment descriptors of each 
segmented ROI image were compared with the feature set 1, 2 and 3 and decision 
levels are checked. The feature sets value of a segmented ROI for the decision 
level is true is considered as high grade or otherwise it is a low grade tumor.  The 
details of image database used and performance evaluation using ROC Analysis 
are detailed here. 
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6.3.1 Image Database 
 T2 weighted axial MRI data sets of 100 patients were taken for analysis and 
detection. All patients underwent biopsy or surgical resection of the tumor with 
histopathological diagnosis. Out of this, hundred histopathologically tested image 
database, forty five sets were of high grade and fifty five were of low grade. The 
images were gray scale images. Segmented tumors from MR images in the 
database were taken as the data set for texture analysis, feature selection and in 
formulating the detection criteria. Eighty percentage of images in the data sets were 
used for training and unused twenty percentage images of the data sets were used 
for test purposes. Sample images in the dataset are shown in Fig.6.22 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.3.2 Implementation Steps 
 

1. The images in the training set were processed and ROI of the tumor region 
was extracted. 

2. The 12 features already chosen consisting of five features based first order 
statistics and seven features based on  GLCM based second order statistics 
were evaluated by considering the whole segmented / extracted tumor 
region in each case. 

3. Thresholds were fixed for high and low grade glioma detection. 

 
(a)                             (b)                             (c)                          (d) 

a

Fig.6.22  Sample images from the image database a) Original  T2 weighted 
image with low grade tumor b) Segmented gray  level low grade tumor c) 
Original  T2 weighted image with high grade tumor d)Segmented gray level 
tumor 
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4. Performance evaluation based on ROC analysis was done for the 3 sets of 
features, mentioned in section 6.4.1 

5. For the 20% of the test data also, steps 1 to 4, were repeated. 
 

5.3.3  Performance Evaluation of the glioma Detection 
Method 

 Performance evaluation of the detection method was done using ROC 
analysis. For this purpose the values for True positive (TP), False positive (FP), 
False Negative (FN), True Negative (TN), Sensitivity (TPR), Specificity and Area 
under the curve (AUC) of the detection system was evaluated. The detection is 
considered as TP, if the region of interest overlaps with the ground truth circle, 
otherwise it is FP. The definitions of this case are given in the Table 6.7. 
Sensitivity of a diagnostic test is the proportion of patients whose outcome is 
positive, that are correctly identified by the test. The specificity is proportion of 
patients for whom the outcome is negative that are correctly identified by the test. 
The AUC of a classifier is equivalent to the probability that the classifier will rank 
a randomly chosen positive instance higher than a randomly chosen negative 
instance. ROC curves in this study were plotted using MATLAB 7.1 An area of 1 
represents a perfect test, while an area of 0.5 represents a worthless test. 

 In particular, Sensitivity is a measure of the probability of correctly 
diagnosing a condition.  Specificity is equal to 1 – FPR. Thus, it is a measure of the 
probability of correctly distinguishing when the condition is not present in a 
subject. Other statistical method known as receiver operating characteristic (ROC) 
curve [25] was also used to analyze the experimental results. The area under the 
curve (AUC) is also a measure of accuracy. The AUC of a classifier is equivalent 
to the probability that the classifier will rank a randomly chosen positive instance 
higher than a randomly chosen negative instance.  
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Table  6. 9 Definition for TP, FP, FN, and TN for developed detection system 

TP high grade glioma is present and 
result detected is true 

FP high grade glioma present and 
result detected is false 

TN high grade glioma absent and 
result is detected true 

FN high grade glioma is absent and 
result  detected is false 

 

6.4 Results and Discussions 
6.4.1  Results of Performance evaluation of the detection 

system using Receiver operating characteristic curves  
The detection performance of the three feature sets was evaluated using 

ROC curve. The ROC curves for the three feature sets are shown in Fig. 6.23, 
Fig.6.24, and Fig.6.25. The graph depicts the tradeoff between the true-positive and 
false-positive rates.  The area under the curve of feature set 3 was more as 
compared to the other two methods. The AUC for feature sets1, 2, and 3 are 
0.8743, 0.9083 and 0.9735 respectively. The sensitivity and specificity using 
feature sets1, 2, 3  in detecting   grade of tumors are 94.56, 97.13, 99.03 and 77.72, 
83.042, 92.53 respectively. Table 6.10 shows the performance parameters TPR, 
TNR, AUC and its typical values. 

Table 6. 10 Performance evaluation of Feature set1, Feature set2 and Feature set3 

Performance  
Parameters 

Feature set 3 Feature set 2 Feature set 1 

TPR (%) 99.03 97.13 94.56 

TNR (%) 92.53 83.04 77.2 

AUC (%) 97.35 90.083 87.43 

FPR (%) 1.49 4.35 4.66 
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Fig.6.23 The ROC curve for feature set 1. Area under the curve (AUC)-87.43%, 
sensitivity -94.56%, specificity-77.2%, Performance of detection-Good test 

 

Fig.6.24 The ROC curve for feature set 2. Area under the curve (AUC)-90.083%, 
sensitivity -97.13%, specificity-83.04.2%, Performance of detection-Excellent test 
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It is very evident from the above results that the feature set 3 based  
detection gives more accurate results than feature set 1 and feature set 2 for the 
method. For comparing the performance of detection system the histogram 
(Fig.6.26) of different feature sets used for detection in terms of its sensitivity, 
specificity and AUC are plotted. For comparing the performance of the detection 
system, histogram of sensitivity (TPR), specificity (TNR) and AUC were plotted 
for the three feature sets. Detection based on feature set 3 showed best 
performances as it produced lesser error than the other two detection methods. 

Generally the performance of the algorithm in this chapter shows better 
performance than the other existing methods [8, 20, and 21] in terms of its TPR 
and TNR. In literature, classification of type and grade detection of tumor using 
Support Vector Machines (SVM) from multi-parametric MRIs [27] is discussed. 
The SVMs are computationally complex and time consuming.   In this work, the 
features selected are well discriminated between two grades and hence a decision 
system is sufficient for detection process. As per citations [8, 24, and 29], tumor 
heterogeneity and degree of malignancy are directly related and well established 
using this developed texture analyses. A comparison table for evaluating the 
performance of feature set 1, feature set 2, and feature set 3is shown in Table 6.10. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.6.25 The ROC curve for feature set 3  Area under the curve (AUC) - 97. 35%, 
sensitivity -99.03%, specificity-92.53%, Performance of detection-Excellent test 
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Conclusions 
 A novel method for grade detection of glioma tumors from segmented MRIs 
is presented in this Chapter. Entire segmented region of interest was considered for 
texture analysis.  Segmentation is important in this method because this work 
considered only the tumor texture. Statistical quantification of tumor texture was 
done using first order and GLCM based second order statistics. Of the three feature 
sets formed the feature set (12 features)containing 5first order statistical features 
and 7 GLCM based gave the best result for tumor grade detection 

 It should be noted that all features were extracted using grey level averaging 
and therefore not sensitive to small differences in delineation of ROIs. Along with 
the statistical features, by incorporating histopathological properties, edema 
properties, tumor shape etc., more sophisticated and robust system could be 
developed for detecting all grades and sub types of glioma 

 

99.03 97.13 94.56
92.53

83.04 77.2

97.35
90.083 87.43
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Fig.6.26 Performance comparison of different feature sets for detection of high and 
low grade Glioma tumors . TPR(%)-True Positive Rate(%); AUC(%)-Area under 
the curve; TNR(%)-True Negative Rate   
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Chapter 7 

3D Modeling of Segmented Glioma tumors 
from Brain MRI 

 
 
Volumetric change in glioma tumors over time is a critical factor in treatment 
decisions. Typically, the tumor volume is computed on a slice-by-slice basis using 
MRI scans obtained at regular intervals. The objective of this chapter is to 
calculate precise volumes of gliomas from MR images. This includes tumor 
segmentation and 3-dimensional (3D) visualization of the tumor. The appearance 
of high grade tumor on MR images varies greatly, due to tissue variation inside the 
tumor and the diffuse growth of the tumor. Hence a robust and accurate 
segmentation method should be chosen to distinguish the tumor tissue from the 
surrounding brain to gain exact volume values. Moreover, the segmented tumors 
should be visualized to get an opinion about the tumor’s shape and location in the 
brain. This chapter presents an efficient method for volume rendering 
(3Dmodelling) of glioma tumors from segmented 2D MRI datasets, by replacing 
the manual segmentation required in the state of art methods. For clinical follow-
up, the evaluation of the pre-operative tumor volume is essential.. The 3D modeled 
tumor consists of gray level values of the original image with exact tumor 
boundary. The 3D modeling was also done using segmented 2D slices with the help 
of medical software package called 3D DOCTOR. The results were validated with 
the ground truth models by the Radiologist. 
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7.1 Introduction  
The extraction of 3D objects and its visualization is one of the most 

important steps   in the analysis of the pre-processed medical image data, which 
can help in performing diagnosis, treatment planning, and treatment delivery. Thus 
in practice, radiation oncologists spend a substantial portion of their time 
performing the segmentation task manually, using available visualization and 
segmentation tools [1]. Also, there may be cases where the automatic methods fail 
or perform poorly. Another consideration is that medical doctors must always have 
final control over the segmentation [2].  

Due to the biological behavior, gliomas of WHO grade II to IV cannot be 
cured with surgery alone. The multimodal therapeutical concept involves 
maximum safe resection followed by radiation and chemotherapy, depending on 
the patient’s functional impairment scale. The survival rate is still only 
approximately 15 months, despite new technical and medical accomplishments 
such as multimodal navigation during microsurgery, stereotactic radiation or the 
implementation of alkylating substances [4]. The clinical follow-up of tumor 
volume is essential for an adaptation of the therapeutical concept. Therefore, the 
exact volume evaluation is fundamental to reveal a recurrent tumor or tumor 
progress as early as possible. 

 7.1.1 Back ground 
Volumetric change in glioblastoma multiforme (GBM) over time is a 

critical factor in treatment decisions. Typically, the tumor volume is computed on a 
slice-by-slice basis using MRI scans obtained at regular intervals. (3D)Slicer – a 
free platform for biomedical research – provides an alternative to this manual slice-
by-slice segmentation process, which is significantly faster and requires less user 
interaction. Methods that use all slices to calculate the tumor boundaries have more 
information available to make accurate predictions of tumor volume. Simpler 
methods such as geometric models provide only a rough estimate of the tumor 
volume and may not be sufficient for accurate determination of tumor burden. 
Geometric approximations use one or several user-defined diameters to estimate 
the tumor volume 
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The driving problem to be discussed for 3D modeling is segmentation of 
3D brain tumors from magnetic resonance image data. Tumors vary in shape, size, 
location, and internal texture, and hence tumor segmentation is known to be a very 
challenging problem [3].Various promising computer-assisted techniques to extract 
tumors and blood vessels from 2D MRI have been described in chapter 3. Since 
fully automated segmentation often fails to match human judgments of tumor 
boundaries, a number of interactive segmentation algorithms have been proposed   
[4]. Of these, Tumor and boundary extraction using graph cuts [5],  deformable 
models [5] , snakes[6], balloons[7] Active contour models[7]are efficient 
algorithms to segment objects where pixel and region based methods fail e.g. 
because of the variability of object shapes, diffuse boundaries, noise or artifacts 
[8]. Active contours are especially suitable for objects with variable boundary 
intensity [9].When manual tracing by a knowledgeable operator is used as ground 
truth, the overall agreements for the results of automatic methods are ranging from 
82% to 94% [10]. For some of these methods, the time required for the 
computations has been reported to vary from several hours to several tens of hours. 
Presumably, with modern computing platforms, this time can be reduced to several 
minutes or several tens of minutes [10]. 

 The 3D segmentation of tumors from 3D image data sets by stacking up a 
sequence of 2D tumor contours detected by 2D level-sets method in the parallel 
cross-sectional MRI images [11, 12], IARD segmentation techniques [13] which 
operates efficiently for certain regions of MRI, and hierarchical segmentation 
method using variational tools that extract bones and blood vessels as two separate 
3D objects [14], are some of the 3D segmentation techniques available in literature. 
Volumetric rendering of   Glioblastoma (high grade) tumors using nearest neighbor 
algorithm [15] and surface modeling algorithm [7] for tracking growth rate of the 
tumor in order to find out patients survival time and prognosis is described by R. 
Rajeswari and P. Anand kumar[16]. Comparison between the above two methods is 
also done [6].  Segmented MRI slices using Grow cut with region growing method 
and volumetric modeling is also done using (3D) slicer [6]. Segmentation and 3D 
modeling using active contour model and volume Delaunay triangulation method 
are also presented in literature [19-20].   

This chapter highlights the development of a novel method for brain tumor 
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segmentation and volumetric rendering of segmented tumor, which overcomes 
some of the above mentioned difficulties.  The method consists of automatic 
segmentation of tumors from 2D MRI slices, which is already mentioned in 
Chapter 5 and these segmented tumor slices are exported to a 3D rendering using 
MATLAB. For the verification of rendered 3D tumor volume, the 3D-DOCTOR 
software package that is usually used by Radiologists was used. 

7.2. A Novel Method for Volume Rendering of Glioma 
Tumor from the Segmented Axial Slices 

This section contains a description of the methods to perform the 
segmentation, visualization and volume calculation of tumors. The flow chart for 
the entire procedure is shown in Fig.7.1. The method consists of mainly two parts. 
The First part is automatic segmentation of tumor regions from the acquired slices 
having presence of tumor, in the MRI dataset. The second part involved stacking 
2D slices of the segmented tumor and performing volumetric rendering using 3D 
Doctor and MATLAB. 

 
 
  



Chapter 7 

236 

 
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
      

 

 

  

  

Stacking of segmented 2D slices

Morphological Filtering techniques 

Segmented Tumor Slice 

Morphological Labeling 

Image masking 

3D volumetric surface 

Intensity adjusted image 

2D MR Image (T1 FLAIR &T2) 
Weighted) 

Fig. 7.1 The flow chart for 2D Segmentation and 
Volumetric 3D rendering of tumor  
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7.2.1 Choice of Segmentation 
The method selected for segmentation is very crucial, since the segmented 

regions should have a true boundary, that is, there will not be any type of over 
segmentation or under segmentation. In consideration of the high diversity of the 
appearance of high grade and low grade glioma, pixel based methods are 
inappropriate. To prevent over-segmentation due to weak boundaries region based 
segmentation is not considered suitable either. Model based methods are able to 
segment results as desired but because of unavailable amount of sample data and 
the variant form of tumors, it is not possible to extract a statistically significant 
shape model. In conclusion, to fulfill the segmentation requirements spatial domain 
segmentation technique discussed in chapter 5 is chosen.  

7.2.2 Segmentation Based on Spatial Domain Filtering 
Techniques 
In this chapter, for segmentation, the second method described in Chapter 

4, using T1 Flair and T2 weighted images was considered.  Fig.7.2 shows an 
example of the segmentation technique already developed. This segmentation 
technique is applied for all images in a dataset. Fig. 7.2(d) and Fig. 7.2(e) show the 
segmented tumor and its boundary. Tumor boundary is superimposed on T2 
weighted MR image for displaying the segmentation accuracy.  
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7.2.3 Volume Rendering and Visualization 
Many software packages are available for volumetric rendering of 

biomedical images in order to assist radiologist, surgeons and oncologists. But 
volume rendering of any abnormality present in an organ is quite difficult, time 
consuming and prone to error, because, each slice should be segmented manually. 
In order to avoid the time-consuming manual slice-by-slice segmentation for 3D 
modeling, in the software package, 3D slicer, a new known segmentation method 
called Grow Cut tool is introduced [17]. In the method , the tumor  contour  needs 
to be first segmented on the MR slices using the active contour segmentation 

     
(a)     (b)                 (c) 

   
  (d)      (e)     (f) 

Fig 7.2 The example for development of tumor segmentation and Boundary 
Extraction techniques. (a) & (b) Axial slices of T2 weighted and T1 FLAIR 
image in a patient image dataset. (c) Segmented binary tumor (d) Segmented 
Gray level tumor (e) Tumor boundary (f) Extracted boundary is 
superimposed T1 FLAIR image. 
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method. Then the contour points are used to build up a 3D set of points (“point 
cloud”), which allowed generating a tetrahedral mesh using the Delaunay 
triangulation. To generate the final surface plot of the tumor model the surface of 
the tetrahedral mesh is visualized. The surrounding area of the tumor and the tumor 
tissue itself can be explored by adding moveable image slices in all three 
anatomical planes [18]. 

The main steps to create 3D models and volume rendering from 2D slice 
images are [19]:  

1. Create an empty space for 3D volume. 

2. Each image pixel's x and y coordinate on 2D space (Fig. 7.3 a) is 
transferred to the empty space. The slice number (considering thickness of 
each slice) with respect to the distance between each slice is taken as z 
coordinate. If a pixel is adjacent to another pixel, the 3D points will be 
connected together. 

3. Repeat the previous 2 steps until all slices are done. All the points in the 
3D space will be connected to form a mesh [19] structure. 

4. Finally 3D volume rendering is done. 

For the correct rendering of stacked image slices, all 2D images are of the 
same dimension and thickness with equal spacing. All connected components 
together form a mesh like structure and correspondingly a 3Dsurface is modeled. In 
this way, we can perform a hierarchical volume rendering of the segmented slices.  

In clinical practice, the pre-operative and post-operative tumor volumes are 
often based on the surgeon’s impression or by measuring the greatest axis of the 
tumor in x, y and z directions [19]. In this method, the volume of the tumor is 
calculated in two stages. Initially, volume of segmented regions of interest in each 
slice is calculated and the sums of slice volumes give the total volume of the tumor. 
The volume of each slice is computed by measuring the cross product transverse 
area of the tumor and the thickness of each slice.  
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7.2.4 Volume rendering using 3D DOCTOR  
3D-DOCTOR is an advanced 3D modeling, image processing and 

measurement software for MRI, CT, PET, microscopy, scientific, and industrial 
imaging applications. It supports both grayscale and color images stored in 
DICOM, TIFF, Interfile, GIF, JPEG, PNG, BMP, PGM, MRC, RAW or other 
image file formats and creates 3D surface models and volume rendering from 2D 
cross-section images in real time. It is very useful for surgical planning, simulation, 
quantitative analysis, finite element analysis (FEA) and rapid prototyping 
applications. The user can calculate 3D volume and make other 3D measurements 
for quantitative analysis. 3D-DOCTOR's vector-based tools support easy image 
data handling, measurement, and analysis.3D CT/MRI images can be re-sliced 
easily along an arbitrary axis. Multi-modality images can be registered to create 
image fusions. Misaligned slices can be automatically or semi-automatically 
aligned using 3D-DOCTOR's image alignment functions. This package is 
developed using object-oriented technology and provides efficient tools to process 
and analyze 3D images.    

Its main drawback is that, for 3Dmodelling of specific region of interest 

 
(a)        (b)    (c) 

Fig.7.3 The basic principles behind the 3D modeling algorithm. (a)  2D Image (b) 
Transformed 3D points for the 2D image (c) 3D modeled tumor 
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automatic boundary extraction is not possible. Hence the users have to perform 
manual segmentation for extracting the boundary. It is time consuming and prone 
to error in the absence of an expert radiologist. 

In order to overcome this difficulty, an automatic method is developed here 
for 3D modeling of tumors by using the surface rendering and visualization 
methods in 3D Doctor Environment. This is achieved by selecting all automatically 
segmented tumor slices in a dataset, extracted using the newly developed 
segmentation method named as Adaptive Gray level Algebraic Segmentation 
Algorithm (AGASA) and then surface rendering using 3D DOCTOR. 

7.2.5 Validation 
Segmented tumors are validated using the same method used for validating 

the performance of segmentation mentioned in Chapter 5. That is, by computing 
Tanimoto index (TI), Percentage Match and Positive Prediction value. In the case 
of 3D modeled images, intra- and inter-subject repeatability and reproducibility 
were maximized by repeated image assessment. Repeatability of a dataset is 
assessed by calculating the ratio of percentage of mean values of error and the 
volume computed by the same user and Reproducibility means ratio of percentage 
of mean values of error and the volume computed by the different user 

7.2.6 Growth rate assessment 
Growth rates were calculated in terms of halving times or doubling times 

for change in tumor enhancement volumes according to the following formula 
given in Eqn.(7.1). 
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           (7.1) 

 
where T* is the doubling time or halving time, t is the interval time in days, and Vo 
and V are the volumes at the onset of the interval and at the end of the interval 
period, respectively. Growth rates are sensitive enough to determine response to 
treatment [20]. 
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7.3. Implementation of the Method 
7.3.1 Image Database used 

The method developed is implemented on 10 patients’ brain MRI datasets 
which contains 22 axial slices of T2 weighted and T1 FLAIR images. Out of 10 
datasets, six were of high grade glioma and four sets low grade glioma. The 3D 
rendering operation was performed using MATLAB 3D modeling functions.  The 
thickness of each slice is 5mm with inter slice distance is 2mm.  For 3D rendering 
operation, segmented slices which contain tumor portions are considered. The 
selected images were histopathologically tested and have confirmed the presence of 
the disease.  In this work, MRI images were collected from the Department of 
Radiology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India. The 
images were gray scale images. The entire procedure was done using MATLAB 7.5 
and 3D DOCTOR. 
7.3.2 Implementation 

Segmentation method was applied for the entire images in the dataset. The 
number of slices in a dataset containing tumor will vary from 8 to15. The 
Segmented slices which contain the tumor portions are only considered for volume 
rendering. The segmented slices are already validated with the Ground Truth in 
chapter 5. 
 The order for stacking of segmented slices is very important and it should 
be arranged according to the order of the slices in the MRI dataset.  The Volume 
rendering was performed in all the 10 image datasets. 

The segmented slices in each datasets are exported to 3D DOCTOR 
software package and 3D volume of the tumor is rendered and visualized. Out of 
the 6 datasets, 4 datasets are MRI details of the same Glioblastoma patient acquired 
at different times, in order to analyze the response to chemotherapy and evaluate 
the prognosis of the patient in 420 days. From the volumetric modeling of the  4 
datasets, tumor growth rate was computed. The 3D modeled tumor was validated 
with the Ground truth. 
7.3.3 Results and Discussions 

The results of the segmentation and volume rendering processes are 
separately discussed below. 
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7.3.3.1 Results of Segmentation 

All slices in the datasets are considered for segmentation and tumor 
regions were extracted from the slices which contain tumor portions. Fig.7.4 and 
7.5 are the examples of tumor regions extracted from two sample datasets.From 
these figures it can be noted that the area, shape and intensity of the tumor (ROI) 
regions in each slice varying and 3D modeling of these slices will give a clear idea 
of tumor nature. The accuracy and performance of the segmentation method is 
most important because these factors determine the accuracy of the 3D modeled 
tumor. 

          
          
          
           

 

 

 
     

Accuracy of the segmented tumor in each slice is depicted in Table 5.3 and 
Table 5.4. Its accuracy is indicated by Tanimoto Index and its ranges of low grade 
and high grade are 97.07%-99.8% and 98.28%-99.6% respectively and the time 
required for computation is 1 second. From Fig. 7.4, it can be observed that 
numbers of slices which contain tumor region are only five and hence the volume 
of tumor will be low, whereas in Fig. 7.5, the number of slices containing tumor is 
ten and hence the volume of the tumor will be big enough to visualize. Usually 
sizes of low grade tumor are lesser and they   have lower contrast when compared 
to high grade tumor. These segmented slices in an image dataset are the input data 
sets for the3D modeling algorithms using 3D DOCTOR and software using 
MATLAB.  

 

Fig.7.4Sample slices of segmented low grade glioma tumor in a dataset 
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   For manual segmentation of tumor region, neuro-surgeons took three to 
nineteen minutes (mean: ten minutes), in comparison to the new automatic 
segmentation using the spatial domain filtering method implementation which took 
only 20% of that time (mean: 2 minutes). 

7.3.3.2 Results of Volume Rendering and Visualization 

The 3D modelled images using the new automated method are given in 
Fig.7.6. Here entire size of the image was considered for 3D surface rendering. 3D 
modelled tumor using MATLAB with different elevation angles are shown in Fig 
7.6 (a) and Fig.7.6 (b). Fig.7.6c gives a clear idea of 3D reconstructed high grade 
glioblastoma in MATLAB environment. Fig.7.7 shows 3D modelled tumor using 
the automatically segmented slices containing tumor region with 3D DOCTOR.  In 
this method, only one anatomical plane, that is axial, is considered and volume 
with respect to that plane is also calculated.  The volumes of 10 image datasets 
were computed using these two methods. 

  

 
 

 

Fig.7.5Sample slices of Segmented Glioblastoma (high grade) tumor in a dataset 
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For validation of  these two methods, 3D modelling of tumor from MRI 
slices was done manually using 3D DOCTOR by an expert radiologist and the 
results were compared  with respect to  volume of  tumor and computation time.  It 
is seen that the volume calculated using the two methods are approximately same 
and is given in the Table 7.1.The volumetric tumors are retains gray level value, 
hence it will be useful for texture based analysis.  

The calculated tumor volumes of   five different  image datasets 1 are 
shown in Table 7.1.Every data set was segmented on axial anatomical plane for 
five times by the same user (repeatability columns). All segmentation properties 
were the same for the users. From Table7.1, it can be observed that, the 
repeatability is high. That is the accuracy is also high for the two methods and 
almost the same as that obtained using manual method. The Volume Calculation of 
data sets were implemented using MATLAB using the formula i.e, sum of [(Total 
area of all slices) x (sum of Thickness of each slice and spacing between two 
slices)]. The Segmentation result was strongly related to the accuracy of boundary, 
thus the volume calculation results are influenced by the segmentation results. The 
time of computation is very much reduced for two methods when comparing with 
manual methods which take at least 60 minutes. 

 

    

(a)              (b)    

 
        (c) 

Fig.7.6 3D modeled images using the method. (a) 3D modeled image of low grade 
glioma (b) 3D modeled image of glioblastoma (high grade) (c) 3D visualization of 
high grade tumor 
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Table 7. 1 Performance of the 3D Modelling algorithm with respect to Manual method 

Data Sets Volume 
Calculated 

(cm3) 

Volume 
calculated 
using 3D 

DOCTOR(Au
tomated) 

(cm3) 

Repeat
ability 

(%) 

Repeatabilit
y (%)3D 

DOCTOR 
(Automated)

Time of 
computation

(Seconds) 
3D 

DOCTOR 
(Automated) 

Time of 
computati

on 
(Seconds) 

Data Set1 63.57 63.565 99.92 99.22 120 130 

Data Set2 45.54 45.54 99.98 99.28 115 126 

Data Set3 38.76 38.72 99.87 99.16 108 118 

Data Set4 62.53 62.51 99.95 99.57 119 120 

Data Set5 22.39 22.409 99.82 99.01 90 100 

 
The volume visualization allows exploring the tumor itself as 3D model in 

axial anatomical plane. Furthermore it is possible to explore the brain from each 
point of view. The 3D modelled gray level tumor provides the user with an 

  
(a)                                       (b) 

Fig.7.7 shows 3D modeled images of low and high grade 
Glioblastoma tumors. (a) Low grade tumor (b) Glioblastoma 
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excellent impression about the patient’s pathological state. To get an assumption 
about the tumor dimensions, the visualization displays the size in millimetres. 

To get a statement about the accuracy of the segmentation and thus the 
calculated volumes, the segmentation results should be compared with a neuro-
radiologist’s opinion. According to him, in the cases of well defined tumor 
boundaries, the segmentation led to an accurate tumor volume.  

7.4 Merits of the Method 
Growth rates are sensitive enough to determine response to treatment. The 

growth can be determined by the algorithm and Fig 7.8 shows change in volume of 
a tumor with respect to number of days. By generating volumetric data across time, 
the patient may be tracked and response or non -response to therapy documented. 

 

 
 
 
 
 
 
 
 
 

 
 

The automatic segmentation method followed by 3D surface modelling 
algorithm is capable of accurately and reliably determining the volume of low and 
high grade gliomas. Gray level volumes determined through the segmentation 
algorithm were highly correlated with measurements from manually segmented 
images using 3D DOCTOR. This approach will provide an accurate quantitative 
approach to assess the tumor changes in individual patients at different times per 
stages to give a progressive assessment to doctors. In addition, the structural 
models generated by this method represent 3D structural maps that may be 
correlated with data from other techniques for direct comparison or partial volume 

 

Day   0     87     189          376

Volume2.5  22.9    48.68     63.9

Fig. 7.8 The growth rates computed from a 3D modelled 
tumor over a 376-day period in a 42-year-old subject.  
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correction[21].The models generated are very useful for follow up in patients and 
to determine whether they are responding to therapy. It is useful in creating 
structural models highlighting focal change, which may be analyzed to determine 
the effects of multiple therapies (egs. whether the therapies act synergistically or 
antagonistically). 

The segmentation technique adopted in this method, it provides stable 
segmentation as shown in Table 5.3 and 5.4. It is also robust to changes in scanner 
protocol (TR/TE), including changes in the noise level of the images; and it is one 
of the quickest algorithms in terms of operator input and execution time as already 
explained in Chapter 5. Hence its volumetric model also has the same advantages.   

The main objectives of this method is to develop  a novel 3D modelling 
method with minimal human intervention, by replacing manual slice by slice 
automatic segmentation and reducing execution time considerably. A lot of 
methods are there in literature for 3D modelling algorithms like surface modelling 
[7], model-based approach [7], nearest neighbour algorithm [6], Active contour 
model and Delaunay triangulation [7] of the segmented data, etc. Main drawback 
of these algorithms is that much human intervention is required and it requires 
more execution time with a minimum time of 30 minutes. Using this method, 
maximum execution time is only 1minute. 3D modelling using the software 3D 
DOCTOR with automatic segmented slices will reduce the execution time. 
Replacing the manual method by automatic segmentation and 3D volumetric 
modelling can greatly enhance the capability in terms of fast computation time and 
accurate volumetric measurement of the tumor at various stages of growth. 

Conclusions 
A novel method for the 3D modeling of glioma tumors using 2D 

segmented slices is presented in this chapter. Manual segmentation of 2D slices is 
more time consuming and is very much prone to error. This interactive 3D 
modeling method is very accurate and less time consuming than any other method. 
These volumetric tumors can be used for volumetric analysis because it is 
preserving the gray level values of the original image for processing.  

The volumes of 10 segmented 3D modeled image data sets were calculated 
using the method with reduced execution time of each data set and without much 
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human intervention. Manual slice by slice segmentation in 3D Doctor Software 
package is replaced by automatic segmentation .Tumor growth rate is also 
calculated using this method.  

  The Volumetric tumor representations are suitable for image registration, 
surgical planning for detection of tumor growth and also for determining prognosis 
of patients in the case of high grade tumors. It may be noted that, the use of this 
method is fairly simple when compared to the other frequently used methods. Since 
it is preserving the gray level values, it will be very useful for texture quantification 
using statistical, structural and spectral approach.  
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Chapter 8  

AVG Glioma-A Software System for the 
Visualization and Grade Detection of Glioma 

 

 

‘AVG Glioma’ A software system with a front end (Graphical User Interface) 
designed based on the techniques developed in the ealier chapters, and it is 
detailed in this chapter. A discussion on the applications of the developed 
technique and concluding remarks are also outlined in this Chapter. The front end 
of the system is user friendly allowing non-expert computer users to be able to 
extract pathological subjects in the brain including tumor and its boundary.   The 
grade detection of  the extracted glioma  tumors  from a set of MRI slices is   
implemented using GUI. Implementation of 3D modelled tumor from segmented 
slices is also included in this system.  
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8.1 Development of a Graphical User Interface 
system  

The Block Diagram for the techniques developed in Chapter 5, Chapter 6 
and Chapter 7 are integrated into a system and given in Fig.8.1, which incorporates 
automatic extraction of glioma tumors,  tumor boundary, GM and WM from the 
joint intensities of T1FLAIR and T2 Weighted MRIs, glioma tumor extraction 
from T2 weighted MRI only. Automatic grade detection from segmented glioma 
tumors is possible. It also incorporates volumetric modelling using segmented 
slices. Based on this block diagram, a GUI is developed for the system.  The main 
motive behind the development of a GUI is to make the system more user friendly 
as possible, allowing non-expert computer users to be able to segment and detect 
the grade of glioma.  
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Fig.8.1 Basic Block diagram for the entire Techniques used in the AVG glioma  
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There are two main windows in the GUI, one is Segmentation window and 
the other one is Grade_ test as shown in Fig.8.2. The Segmentation window entries 
are “T1 FLAIR”, “T2_Weighted”, “Tumor”, “Tumor_boundary”, “Grey_Matter”, 
“White_Matter”, Labeled_image and Volumetric_Tumor. Using these entries, 
automatic segmentation of Tumor, Tumor boundary, Grey matter and white Matter 
can be extracted from the Database of T1 FLAIR and T2 Weighted images. The 
segmented slices in a database can be combined to get volumetric model of the 
extracted tumor.  Each of these entries is enabled using   push buttons allowing a 
set of actions. In the case of Grade Test Window, it contains Browse;  Grade 
_test_Glioma and Reset push buttons which also include a series of actions for 
grade test.   

 

Fig.8.2 Developed Graphical User Interface for ‘AVG glioma’ 
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Browse   Button: Allows opening of an image from the database, for segmentation 
and further procedures, that is, for grade detection or for 3Dmodelling. Using the 
Browse button, the users can select images in DICOM, TIFF or JPEG format. 
Fig.8.3 shows the image of GUI and database where the images are stored when 
Browse button is enabled.  

  

 

Fig.8.3 The image selection from an image database for automatic segmentation 
and grade detection using browse button 
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In the segmentation window, it contains two buttons for image selection. 
T1_FLAIR and T2_Weighted. These images are of JPEG or TIFF formats. 

T1_FLAIR:  It is a push button used to input and display T1 FLAIR image 
into the figure window of GUI as shown in Fig. 8.4 when it is enabled. 

T2_Weighted: It has the same function as that of T1_FLAIR push button 
discussed above, with only difference; instead of T1 FlAIR it displays T2 weighted 
images in the figure window of GUI as shown in Fig. 8.5 when it is enabled.  

 

Fig 8.4 T1 FLAIR image  when the push button T1_FLAIR is enabled. This is 
for selecting one of the  input image for segmentation 
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Tumor: This entry is for segmentation of tumor as per the method discussed in 
chapter5. When Tumor push button is enabled, it automatically extracts tumor 
region from the selected input slice as shown Fig. 8.6 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig 8.5 T2 Weighted image when the push button T2 Weighted is 
enabled. This is for selecting one of the input image for segmentation 
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Tumor_boundary: This entry is used for extracting tumor boundary from 
segmented tumors. Its execution time is less than 1 second .Fig 8.7 shows the 
extracted tumor boundary by enabling push button Tumor_boundary. 

 

 

Fig.8.6 The automatic extraction of Tumor region when Tumor 
button is activated from the selected set of images 
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_boundary. 

 

 

 

 

 

 

 

 

 

 

 

  

Fig.8.7 Boundary extraction while enabling the push button Tumor 
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Grey_Matter: when this entry is activated, it will extract the Grey matter. Fig.8.8 
shows segmented Grey matter when the push button Grey_Matter is activated from 
the given set of input image.  

White_Matter: white Matter can be extracted and displayed in the figure window of 
GUI on pressing the push button White_Matter as shown in  

 

 

 

 

 

Fig.8.8The extraction of Grey Matter when Grey_matter 
push button is enabled 
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Fig.8.9 The extracted White matter, when the White_Matter 
button is activated 
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Labeled _image: This entry is used for displaying the segmented and color labeled 
regions of tumor, white matter and Grey matter with skull removed image. Fig 8.10 
shows the example of labeled image when the Labeled _image button is activated 
for given set of input image.  

Grade_Test_Glioma: This entry will automatically segment and display and  detect 
the grade of glioma region if present, based on the thresholds automatically fixed 
for low and high grade glioma. A dialog box  appears based on the detected grade 
of  the glioma when the push button Grade_Test_Glioma is activated. Fig.8.11 
shows an example for high grade glioma detection and correspondingly  a  message 
box appeared as “high grade glioma’. Similarly , low grade detection is shown in 
Fig. 8.12.   

 

Fig.8.10 An example of extracted labelled image when the 
push button Labeled_Image is enabled 
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Fig.8.11 Example for grade test when push button  Grade_test_ Glioma   
is enabled. The test result is high grade glioma  

 

Fig.8.12 An example of Low grade glioma when 
activating Grade_test_Glioma push button after 
selecting a T2 weighted image from the database 



AVG Glioma-A Software System for the Visualization and Grade Detection of Glioma  

267 

‘ 

 

 

 

 

 

 

 

 

 

 

 

 

Volumetic_Tumor: When this entry is enabled, all segmented slices in a database 
are stacked together to form a MAT file;  based on the method discussed in 
Chapter7 to form the volumetric image of stacked slices when enabling 
volumetric_Tumor function key. Fig.8.13 shows the volumetric image model of 
glioma tumor when the corresponding push button is enabled. The volumetric 
modelling of segmented slices using the software package -3D Doctor cannot be 
implemented in this system because it requires some user intervention for 
exporting it into the 3D DOCTOR software environment. 

Reset: When Reset entry is activated by the Reset push button then all running 
progams are cleared and the figure window is also cleared. That is, GUI will return 
to its initial state.  

 

Fig 8.13 The example of volumetric modeling of tumor using 
segmented  tumor  slices in an image database when  push button 
Volumetric Tumor  is enabled.
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Conclusions 
A novel and fully automatic system for automatic segmentation, Grade 

detection and 3D Modelling of glioma tumors, from conventional MRI is 
developed.  A GUI with 11 entry keys for different functions was developed using 
MATLAB R2008a. All functions, that is, Segmentation, Glioma grade detection 
and 3D modelling are automated. The image database used here are clinically and 
experimentally tested and validated. Here we used only 20 image database which 
contains 20 slices each.   

We used only images in DICOM formats for segmentation and grade 
detection. But in the case of ROI extraction using T1FLAIR and T2 weighted 
images, the images can be of TIFF or JPEG formats. These segmented slices were 
used for 3D modelling of glioma tumors. The advantage of this GUI is that human 
intervention is not required, after the images are selected, for segmentation and 
further processing. Hence this system is vey user friendly and less time consuming. 
It is an aid to radiologists to save time, as they need to confirm only cases where 
second opinion  is required. 
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 9.1 Thesis Highlights 
 

This chapter brings the thesis to a close by presenting the conclusions 
drawn from the research. The objectives of research is introduced in chapter one. A 
medical perspective of Glioma and its visualization using different imaging 
techniques is examined in chapter two. Methods for Segmentation of various 
human organs including brain structures have been investigated in chapter three. 
The states of art methods for segmentation of brain tissues, classification or 
detection of different abnormalities present in human organs using statistical 
texture analysis from different imaging modalities are also reviewed in chapter 
three.  A brief overview of basic image processing tools used in this research is 
discussed in chapter four. Chapter five discusses a novel method known as 
Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) developed 
for extraction of low and high grade glioma tumor and other brain subjects. A 
comparative study between the developed methods and the existing methods are 
also included in this chapter. Next, a novel method for grade detection of glioma 
tumors using statistical methods from the segmented low and high grade MR 
images is detailed in Chapter six. Chapter seven gives a state of art method for 
volumetric modeling of glioma tumors using the segmented image slices for 
assessing growth rate of tumor. A novel software system ‘AVG glioma’ is 
developed for the automatic extraction and grade detection of glioma tumor and its 
3D visualization implementation is presented in chapter eight. 
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9.2Extraction of Low and High Grade Glioma and 
other Brain Tissues using Adaptive Gray level 
Algebraic set Segmentation Algorithm (AGASA)  

Two methods were developed for segmentation of low and high grade 
glioma. First method is an, accurate and robust method for automatic extraction of 
low and high grade tumors from T2 weighted MRIs. The robustness of the 
algorithm with respect to Guassian noise and speckle noise was also discussed. 
Using this method, it is able to delineate back ground structures other than tumor 
and reduce partial volume effect other noise present in the image.  The main 
drawback of this algorithm is that using the single modality -T2 weighted images- 
it is difficult to extract other brain subjects such as white matter and grey Matter. 
These segmented images are used for grade detection of glioma.  

  This difficulty was overcome by developing the novel and robust 
algorithm, named as Adaptive Gray level Algebraic set Segmentation Algorithm 
(AGASA) for the extraction of definable objects such as white matter, grey matter, 
tumor and tumor boundary. The method was validated with manually segmented 
images as ground truth images. The accuracy of the methods in terms of segmented 
region of interests was validated by computing True Positive, False Positive, and 
False Negative with respect to ground truth images.  The Tanimoto Index, 
Percentage Match, Positive Prediction Value were calculated and its ranges show 
excellent performance with average score of 98.7%.  The main goal of 
development of this automated segmentation method is  to make segmentations 
of MR images more practical by replacing manual outlining, which reduces 
operator time with measurable effect and to improve reproducibility. This 
segmentation method is suitable for image registration for surgical planning, 
detection of tumor growth and for determining prognosis of patients in the case of 
high grade tumors. Partial volume effects were very much reduced. This method is 
fairly simple when compared with other frequently used methods. The segmented 
ROIs retained the gray level values of each pixel and hence were directly used 
these segmented tumors are used for statistical texture analysis and grade detection 
of glioma tumor. Segmented gray level tumors are also used for 3D rendering of 
glioma tumors which can be used for volumetric analysis. 
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 These two methods were compared with respect to an existing method fuzzy 
c-means clustering technique in terms of its accuracy and computation time. It is 
observed that these two methods are more accurate and less time consuming than 
fuzzy c means clustering technique. 

9.3 Grade Detection of Glioma Tumors using 
Statistical Texture Analysis 

A novel method for grade detection of glioma tumors from segmented 
MRIs was developed. Entire segmented region of interest was considered for 
texture analysis.  Statistical quantification of tumor texture was done using first 
order and GLCM based second order statistics. Five first order statistical features 
were extracted and it is found that these features are well discriminated. From these 
features it was observed that high grade glioma had heterogeneous tumor textures 
and it is an evidence for the fact that as malignancy increases tumor tissue 
heterogeneity is also increasing. Ten Gray level co-occurrence (GLCM) based 
texture descriptors were extracted and seven well discriminant descriptors were 
selected using box plots.  

Three feature sets are formulated based on selected descriptors thresholds 
for each feature was fixed and based on these thresholds, a decision system was 
developed. The performance of the decision algorithm was evaluated for three 
feature sets. Area under the Curve (AUC) for feature sets1, 2, 3 are 0.8743, 0.9083 
and 0.9735 respectively. The sensitivity and specificity using feature sets1, 2, 3   in 
detecting   grade of tumors are 94.56, 97.13, 99.03 and 77.72, 83.042, 92.53 
respectively. The experiments proved that using feature set 3 had better detection 
performance than using other two feature sets.  

9.4 Volumetric modeling of glioma 
A Novel method for the 3D modeling of glioma tumors using 2D 

segmented slices is developed. Manual segmentation of 2D slices is more time 
consuming and is very much prone to error. This interactive 3D modeling method 
is very accurate and less time consuming than any other method. These volumetric 
tumors can be used for volumetric analysis because it is preserving the gray level 
values of the original image for processing. The volumes of ten 3D modeled 
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tumors are calculated using the method and execution time and human intervention 
is reduced. Manual slice by slice segmentation in 3D Doctor Software package is 
replaced by automatic segmentation .Tumor growth rate is also calculated using 
this method.  

  The Volumetric tumor representations are suitable for image registration, 
surgical planning for assessment of tumor growth and also for determining 
prognosis of patients in the case of high grade tumors. It may be noted that, the use 
of this method is fairly simple when compared to the other frequently used 
methods. Since it is preserving the gray level values it will be very useful for 
texture quantification using statistical, structural and spectral approach.  

9.5 Suggestions for Future research 
Although the present research gave good results, certain proposals for future work 
are listed below: 

• Along with the statistical features by incorporating histopathological 
properties, edema properties, tumor shape etc., more sophisticated and 
robust system could be developed for detecting all grades and sub types of 
glioma. 

• Detection/ Classification using fractal dimensions of glioma tumor and  
metastatic tumors can be  performed. 

• Research work can be done for classification between different subtypes of 
tumor using Gabor transform an Gray level Run length matrices and by 
principal component analysis. 



 

APPENDIX 

1)Robustness of Method 1 with respect to Rician Noise 

The effect of  Rician noise in MR images is as  follows.  

Here, the image intensity in magnetic resonance magnitude images in the 
presence of noise is to be governed by a Rician distribution. Rician noise 
depends on the data itself; it is not additive.So to add Rician noise to data,  we 
really make the data Rician distributed. The magnetic resonance signals are 
acquired in quadrature channels. Each signal produces an image that is degraded 
by a zero-mean Gaussian noise of standard deviation σ0 (which we define as the 
noise level). The two images are then combined into a magnitude image and the 
Gaussian noise probability distribution function (PDF) is transformed into a 
Rician noise PDF. 

A signal X is said to be corrupted by Rician noise if its PDF is given by eqn. 
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Where, A is the image pixel intensity in the absence of noise. σ is the 
standard deviation of the noise, and I0 is the modified  zeroth-order Bessel 
function of the first kind. Rician distribution is far from Gaussian for small 
SNR (X/σ ≤ 1). However, for ratios X/σ ≥ 3, it starts to approximate to 
Gaussian distribution. 

Table 1 shows TI of the segmented tumor from the Rician noise added images. 
The SNR of the images were computed for different noise levels. This is 
achieved by modelling Rician noise added image. The TI is calculated for 
SNR,  5dB to 70 dB.    Fig.1 shows a plot of performance evaluation of the 



method with respect to different levels of Rician noise affected images. From 
the graph it can be observed that, this method is robust enough for Rician noise 
also.        

Table  1 shows Computed values of TI from Rician  noise affected  images having  low and 
high grade tumors  with different values of standard deviation and SNR  

 

 

 

 

 

 

 

 

 

 

  

Image Variance 

SNR 
(Rician 
Noise) 

TI  (low 
grade) 

TI  (high 
grade) 

1 0.0028 5 60.46 70.80 
2 0.0026 7 63.17 74.78 
3 0.0024 8 69.41 78.91 
4 0.0022 9 80.33 83.09 
5 0.002 10 83.14 90.84 
6 0.0018 11 85.74 93.01 
7 0.0016 12 89.16 95.58 
8 0.0014 15 91.32 96.65 
9 0.0012 20 93.37 97.68 

10 0.001 30 95.07 98.01 
11 0.0008 40 96.97 98.70 
12 0.0006 50 97.17 99.03 
13 0.0004 60 97.96 99.33 
14 0.0002 70 98.54 99.60 



 

 

 

 

 

Table  2shows Computed values of TI from Gaussian  noise affected  images having  low and 
high grade tumors  with different values of standard deviation and SNR  

Image Mean  Variance 

SNR 
(Gaussian 
Noise) 

TI  (low 
grade) 

TI  (high 
grade) 

1 0.93 0.0028 5 68.78 73.50 
2 0.84 0.0026 7 72.03 78.20 
3 0.73 0.0024 8 76.54 87.42 
4 0.68 0.0022 9 85.93 90.86 
5 0.62 0.002 10 90.51 93.65 
6 0.5 0.0018 11 92.65 96.27 
7 0.4 0.0016 12 95.61 97.91 
8 0.3 0.0014 15 96.93 99.16 
9 0.1 0.0012 20 97.12 98.66 

10 0.09 0.001 30 97.59 99.30 
11 0.07 0.0008 40 98.62 99.47 
12 0.05 0.0006 50 98.82 99.63 
13 0.04 0.0004 60 98.86 99.67 
14 0.02 0.0002 70 98.87 99.69 
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Fig.1 Tanimoto Index of the segmented of low and high grade 
glioma with respect to SNR at different levels of Rician noise 



Table  3 shows Computed values of TI from speckle noise affected  images having  low and 
high grade tumors  with different values of standard deviation and SNR  

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 and Table 3 shows TI  computed  from Guassian and speckle noise added 
image , which was not included in Section 5.2.2.3 

  

Image Variance 
SNR (Speckle 
Noise) 

TI  (low 
grade) 

TI  (high 
grade) 

1 0.88 5 62.26 63.80 
2 0.68 7 65.25 69.78 
3 0.48 8 70.28 75.91 
4 0.25 9 76.09 81.21 
5 0.1 10 81.70 84.84 
6 0.08 11 84.62 90.01 
7 0.06 12 88.32 92.15 
8 0.03 15 90.18 96.95 
9 0.01 20 94.37 98.48 

10 0.009 30 96.15 98.78 
11 0.008 40 97.50 99.20 
12 0.001 50 98.19 99.62 
13 0.0008 60 98.88 99.74 
14 0.0003 70 98.94 99.69 



2. Robustness of AGASA with respect to Gaussian, Speckle and 
Rician noise 

In order to check the performance of AGASA  in the presence of noise,  
Gaussian noise, speckle noise and Rician noise at different noise levels were 
added to the MR images as mentioned in Section 5.2.2.3 and segmentation was 
carried out without using any pre-processing filters.  

 

 

 

 

 

 

 

 

Fig 1 shows an example of Gaussian noise added in T2 weighted (Fig.1a) and T1 
FLAIR (Fig.1b)  images of corresponding and segmented tumor (Fig.1c) using 
AGASA. The SNR of the images were varied by changing the mean and standard 
deviation of Gaussian noise and segmentation was carried out. Speckle noise added T2 
weighted image and T1 FLAIR with SNR of 20dB are shown in Fig. 2a and Fig.2b 
respectively.  The resulting extracted tumor is shown in (Fig.2c). From these figures, it 
can be observed that the presence of noise does not affect shape of the segmented 
tumor. Rician noise affected images were mathematically modelled and is shown in 
Fig.3 a (T2 weighted) and Fig.3 b (T1 FLAIR). The segmented tumor extracted from 
the Rician noise affected images is shown in Fig.3c.  

   
(a)                            (b)                                (c)                       

Fig.1 shows the example for checking performance of AGASA on 
Gaussian noise added images of 20dB SNR. (a) T2- weighted (b) T1- 
FLAIR (c) segmented tumor 



From these figures, it can be observed that, the method is able to delineate the presence 
of noise and the segmentation can be done very efficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To validate the robustness of AGASA, with respect to the various noises, T1 values 
were calculated. Table 1 shows validation of robustness of the algorithm with respect 
to Gaussian noise on 14 randomly selected images.  

   
(a)                            (b)                          (c)

Fig.1 shows the example for checking performance of AGASA on 
speckle noise added images of 20dB SNR. (a) T2- weighted (b) 
T1- FLAIR (c) segmented tumor

   
(a)                               (b)                           (c) 

Fig.3 shows the example for checking performance of AGASA on 
Rician noise added images of 20dB SNR (a) T2- weighted (b) T1- 
FLAIR (c) segmented tumor 



Table 1 Computed values of TI from Gaussian noise added images having  low and high grade 
tumors  with different values of mean, standard deviation and SNR  

Image  Mean   Variance 

SNR 
(Gaussian 
Noise) 

TI  (low 
grade) 

TI  (high 
grade) 

1 0.93 0.0028 5 69.78 75.50 
2 0.84 0.0026 7 72.30 79.20 
3 0.73 0.0024 8 77.54 88.42 
4 0.68 0.0022 9 85.93 91.86
5 0.62 0.002 10 90.51 93.65
6 0.5 0.0018 11 92.65 96.87
7 0.4 0.0016 12 94.61 97.49 
8 0.3 0.0014 15 96.93 97.69 
9 0.1 0.0012 20 97.12 98.66 

10 0.09 0.001 30 97.59 99.30 
11 0.07 0.0008 40 98.62 99.47 
12 0.05 0.0006 50 98.82 99.63 
13 0.04 0.0004 60 98.86 99.74 
14 0.02 0.0002 70 98.87 99.86 

Table 2 Computed values of TI from speckle noise added images having low and high grade 
tumors   with different values  of standard deviation and SNR  

Image  Mean  Variance 
SNR (Speckle 

Noise) 
TI  (low 
grade) 

TI  (high 
grade) 

1 0 0.88 5 62.61 63.80 
2 0 0.68 7 65.50 69.78 
3 0 0.48 8 70.84 75.91 
4 0 0.25 9 76.93 81.21 
5 0 0.1 10 81.70 84.84 
6 0 0.08 11 85.62 90.01 
7 0 0.06 12 88.32 92.15 
8 0 0.03 15 90.18 96.95 
9 0 0.01 20 94.74 97.48 
10 0 0.009 30 96.15 97.78 
11 0 0.008 40 97.50 98.20 
12 0 0.001 50 98.19 99.62 
13 0 0.0008 60 98.88 99.74 
14 0 0.0003 70 98.94 99.86 



Table 3 Computed values of TI from R ician  noise affected  images having  low and high grade 
tumors  with different values of standard deviation and SNR  

Image  Variance 

SNR 
(Rician 
Noise) 

TI  (low 
grade) 

TI  (high 
grade) 

1 0.0028 5 63.46 72.98 
2 0.0026 7 69.22 76.78
3 0.0024 8 72.54 80.42 
4 0.0022 9 82.93 88.21 
5 0.002 10 85.51 91.48
6 0.0018 11 88.47 94.70 
7 0.0016 12 90.62 97.86 
8 0.0014 15 92.93 98.69
9 0.0012 20 94.84 98.66 

10 0.001 30 95.90 99.20 
11 0.0008 40 96.25 99.37 
12 0.0006 50 97.67 99.43 
13 0.0004 60 98.06 99.56 

14 0.0002 70 98.17 99.76 
 

The mean and variance is varied for obtaining images with different noise levels or 
SNR and the corresponding TI values are calculated. Table 2 and 3 is gives an idea of 
robustness of the algorithm with respect to Speckle and Rician noise respectively for 
different values of SNR. 

The performance of the algorithm with respect to Gaussian, Rician and speckle 
noise is plotted in Fig.4 (a), Fig. 4(b) and Fig.4(c). From the graph, it can be observed 
that the algorithm is robust enough for images having SNR of 10dB Gaussian noise, 
15dB for Speckle noise and 12db for Rician noise. 

When comparing the performance of the method 1 in Section 5.2.2.3 and 
AGASA,  in terms of robustness with respect to noise, AGASA method is more 



suitable than method 1, for SNR greater than 20dB. For low SNR,  performance of the  
two methods is almost same.  
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Fig.4 Tanimoto Index of the segmented of low and high grade glioma with respect 
to SNR at different noise levels. (a)  Gaussian noise added images with different 
noise levels (b) Rician noise added images with different noise levels (c) Speckle 
noise added images with different noise levels 
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