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 An Overview of known spatial clustering algorithms The space of interest can 
be the two-dimensional abstraction of the surface of the earth or a man-made 
space like the layout of a VLSI design, a volume containing a model of the 
human brain, or another 3d-space representing the arrangement of chains of 
protein molecules. The data consists of geometric information and can be 
either discrete or continuous. The explicit location and extension of spatial 
objects define implicit relations of spatial neighborhood (such as topological, 
distance and direction relations) which are used by spatial data mining 
algorithms. Therefore, spatial data mining algorithms are required for spatial 
characterization and spatial trend analysis. Spatial data mining or knowledge 
discovery in spatial databases differs from regular data mining in analogous 
with the differences between non-spatial data and spatial data. The attributes 
of a spatial object stored in a database may be affected by the attributes of the 
spatial neighbors of that object. In addition, spatial location, and implicit 
information about the location of an object, may be exactly the information 
that can be extracted through spatial data mining. 
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INTRODUCTION 
Spatial data means data related to space (Güting, 

1994). The space of interest can be the two-dimensional 
abstraction of the surface of the earth or a man-made space 
like the layout of a VLSI design, a volume containing a 
model of the human brain, or another 3d-space 
representing the arrangement of chains of protein 
molecules. The data consists of geometric information and 
can be either discrete or continuous. The explicit location 
and extension of spatial objects define implicit relations of 
spatial neighborhood (such as topological, distance and 
direction relations) which are used by spatial data mining 
algorithms. Therefore, spatial data mining algorithms are 
required for spatial characterization and spatial trend 
analysis. Spatial data mining or knowledge discovery in 
spatial databases differs from regular data mining in 
analogous with the differences between non-spatial data 
and spatial data. The attributes of a spatial object stored in 
a database may be affected by the attributes of the spatial 
neighbors of that object. In addition, spatial location, and 
implicit information about the location of an object, may be 
exactly the information that can be extracted through 
spatial data mining (Usama Fayyad, Gregory Piatetsky-
shapiro,Padhraic Smyth., 1996).  
Spatial data 

Spatial data consists of data that have a spatial 
component. Spatial objects can be made up of points, lines, 
regions, rectangles, surfaces, volumes, and even data of 
higher dimension which includes time. The spatial 

component is implemented with a specific location 
attribute such as address or implicitly done by partitioning 
the database based on location. Geographic Information 
systems (GIS), biomedical applications including medical 
imaging, agricultural science etc. produces large volume of 
spatial data. 
Spatial Clustering 
Clustering is a descriptive task that seeks to identify 
homogeneous groups of objects based on the values of their 
attributes (Ester, M., Frommelt, A., Kriegel, H.-P., and 
Sander, J, 1998). In spatial data sets, clustering permits a 
generalization of the spatial component like explicit 
location and extension of spatial objects which define 
implicit relations of spatial neighborhood. Current spatial 
clustering techniques can be broadly classified into three 
categories; partitional, hierarchical and locality-based 
algorithms. 
Partition based algorithms 
Given a set of objects and a clustering criterion, partitional 
clustering obtains a partition of objects into clusters such 
that the objects in a cluster is more similar to the objects 
inside the cluster than to objects in different clusters. 
Partitional clustering algorithms attempt to decompose the 
dataset directly into a set of k disjoint clusters, provided k 
is the number of initial clusters. An iterative optimization is 
done to emphasize the local structure of data, which 
involves minimizing some measure of dissimilarity in the 
objects within the cluster, while maximizing the 
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dissimilarity of different clusters. Partitional algorithms are 
generally iterative in nature and converge to some local 
optima. Given a set of data points   xi ∈ ℜd, i = 1,…,N , 
partitional clustering algorithms aim to organize them into   
K  clusters {C1, …, CK} while maximizing or minimizing a 
pre-specified  criterion function   J.  
K-mediod 
K-medoids algorithms are partitional algorithm which 
attempt to minimize squared error, the distance between 
points labeled to be in a cluster and a point designated as 
the center of that cluster. A medoid can be defined as that 
object of a cluster, whose average dissimilarity to all the 
objects in the cluster is minimal i.e. it is a most centrally 
located point in the given data set. In contrast to the k-
means algorithm k-medoids chooses data points as centers. 
PAM 
The Partitioning around medoid (PAM) algorithm 
represents a cluster by a medoid (Ng, Raymond T. and 
Jiawei Han., 1994). PAM is based on the search for k 
representative objects among the objects of the data set. 
These objects should represent various aspects of the 
structure of the data are often called centrotypes. In the 
PAM algorithm the representative objects are the so-called 
medoid of the clusters (Kaufman and Rousseeuw, 1987). 
After finding a set of k representative objects, the k clusters 
are constructed by assigning each object of the data set to 
the nearest representative object.  
Initially, a random set of K items is taken to be the set of 
medoids. Then, at each step, all items other than the chosen 
medoids from the input sample set are examined one by 
one to see if they should be the new medoids. The 
algorithm chooses the new set of medoids which improves 
the overall quality of the clustering and replaces the old set 
of medoids with them.  
Let Ki be the cluster represented by the medoid ti. To swap 
with a non medoid th, the cost change of an item tj 
associated with the of exchange of ti with th, Cjih has to be 
computed. (M. Ester, H.-P. Kriegel, S. Jörg, and X. Xu, 1996). 
The total impact to quality by a medoid change TCjih is 
given by TCjih = ∑ 𝐶𝑗𝑖ℎ𝑛

𝑗=1 . 
The k-medoid methods are very robust to the existence of 
outliers. Also, Clusters  found by  K-medoid methods  do 
not  depend on  the  order  in which  the  objects  are 
examined. They are invariant with respect to translations 
and orthogonal transformations of data points.  PAM does 
not scale well to large datasets because of its 
computational complexity. For each iteration, the cost TCjih 
has to be computed for k(n-k) pair of objects. Thus the total 
complexity per iteration is k(n-k)2 , thereby making PAM 
not an alternative for large databases. 
CLARA 

CLARA (Clustering Large Applications) improves 
on the time complexity of PAM (Ng, Raymond T. and Jiawei 
Han., 1994). CLARA relies on sampling. PAM is applied to 
samples drawn from the large datasets. For better 
approximations, CLARA draws multiple samples and gives 
best clustering as the result. For accuracy, the quality of a 
clustering is measured based on the average dissimilarity 
of all objects in the entire data set, and not only of those 
objects in the samples. 
The  method  used  in CLARA, which was  first described by 
Kaufman and Rousseeuw (1986), is based  on  the  
selection of  five  (or more)  random  samples of  objects. 
The  size  of  the  samples  depends  on  the  number  of  
clusters.  For  a clustering  into  k  clusters,  the  size  of  the  

samples  is  given  by  40 + 2k. [2]. for  CLARA,  by  applying  
PAM  just  to  the  samples, each iteration  is  of O(k(40  +  
k)2 +  k(n  -  k)).  This explains why CLARA is more efficient 
than PAM for large values of n. 
CLARANS 
CLARANS (Clustering Large Applications based on 
Randomized Search) improves on CLARA by using multiple 
different samples (Ng, Raymond T. and Jiawei Han., 1994). 
While CLARA draws a sample of nodes at the beginning of a 
search, CLARANS draws a sample of neighbors in each step 
of a search. This has the benefit of not confining a search to 
a localized area. In addition to the normal input to PAM, 
CLARANs uses two additional parameters; numlocal and 
maxneighbor. Numlocal indicates the number of samples to 
be taken. The numlocal also indicates the number of 
clustering to be made since a new clustering has to be done 
on every sample. Maxneighbor is the number of neighbors 
of a node to which any specific node can be compared. As 
maxneighbor increases, CLARANs resemble PAM, because 
all nodes are to be examined. J. Han et al shows the good 
choice for the parameters are numlocal = 2 and 
maxneighbor = max ((0.0125 x k(n-k)),250). The 
disadvantage of CLARANS is that it assumes all data are in 
main memory. 
SDCLARANS 
Spatial dominant CLARANS assumes the data set to contain 
spatial and non-spatial components (Ng, Raymond T. and 
Jiawei Han., 1994). The general approach is to cluster 
spatial components using CLARANS and then examines the 
non-spatial within each cluster to derive a description of 
that cluster. For mining spatial attributes, a tool named 
DBLEARN is used (Jiawei Han , Yandong Cai , Nick Cercone, 
1992 ).  From  a  learning  request, DBLEARN  first  extracts  
a set of  relevant  tuples  via  SQL  queries.  Then  based on  
the  generalization  hierarchies  of  attributes,  it  ,iteratively  
generalizes  the  tuples.  SDCLARANS is a combination of 
CLARANS and DBLEARN. 
NSDCLARANS 

Opposite to SDCLARANS, NSDCLARANS considers 
the non-spatial attributes in the first phase (Jiawei Han , 
Yandong Cai , Nick Cercone, 1992 ). DBLEARN  is applied to  
the  non-spatial  attributes, until  the  final  number  of  
generalized  tuples  fall below a certain  threshold. For each 
generalized tuple obtained above, the spatial components 
of the tuples represented by the current generalized tuple 
are collected, and CLARANS is applied. 
K-Mean 
K-means is one of the simplest unsupervised learning 
algorithms used for clustering. K-means partitions n 
observations into k clusters in which each observation 
belongs to the cluster with the nearest mean. This 
algorithm aims at minimizing an objective function, in this 
case a squared error function. The algorithm aims to 
minimize the objective function 𝐽 = ∑ ∑ �𝑥𝑖𝑗 −𝑛

𝑖=1
𝑘
𝑗=1

 𝑐𝑗�
2 where �𝑥𝑖𝑗 −  𝑐𝑗�

2is a chosen distance measure 
between a data point 𝑥𝑖𝑗and the cluster centre 𝑐𝑗, is an 
indicator of the distance of the n data points from their 
respective cluster centres. 
DENCLUE 

DENCLUE (Density basted Clustering) is a 
generalization of partitioning, locality-based and 
hierarchical or grid-based clustering approaches (A. 
Hinneburg and D. A. Keim, 1998). The influence of each 
data point can be modeled formally using a mathematical 
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function called influence function. This influence function is 
applied to each data point. The algorithm models the 
overall point density analytically using the sum of the 
influence functions of the points. An example influence 

function can be a Gaussian function  fGauss (x,y)=  𝑒−
𝑑(𝑧,𝑦)2

2𝜎2 . 
The density function which results from a guassian 

influence function is    𝑓𝐺𝑢𝑎𝑠𝑠𝐷 (𝑥) =  ∑ 𝑒−
𝑑(𝑧,𝑦)2

2𝜎2𝑁
𝑖=1 . Clusters 

can then be determined mathematically by identifying 
density attractors. Density attractors are local maxima of 
the overall density function. These can be either center-
defined clusters, similar to k-means clusters, or multi-
center-defined clusters, that is a series of center-defined 
clusters linked by a particular path which identify clusters 
of arbitrary shape. Clusters of arbitrary shape can also be 
defined mathematically. The mathematical model requires 
two parameters, α and ξ. α is a parameter which describes 
a threshold for the influence of a data point in the data 
space and ξ is a parameter which sets a threshold for 
determining whether a density-attractor is significant. 

The three major advantages for this method of 
higher-dimensional clustering claimed by the authors are 
that the algorithm provides a firm mathematical base for 
finding arbitrary shaped clusters in high-dimensional 
datasets.  Also, result show good clustering properties in 
data sets with large amounts of noise and significantly 
faster than existing algorithms. 
Hierarchical 

A sequence is said to be a hierarchical clustering if 
there exists 2 samples, c1 and c2, which belong in the same 
cluster at some level k and remain clustered together at all 
higher levels > k. The hierarchy is represented as a tree, 
called a dendrogram, with individual elements at one end 
and a single cluster containing every element at the other. 
Hierarchical clustering algorithms are either top-down or 
bottom-up. Bottom-up algorithms called hierarchical 
agglomerative clustering, treat each object as a singleton 
cluster at the outset and then successively merge (or 
agglomerate) pairs of clusters until all clusters have been 
merged into a single cluster. Top-down or divisive 
clustering proceeds by splitting clusters recursively until 
individual objects s are reached. 
Agglomerative algorithms 
CURE 

CURE identifies clusters having non-spherical 
shapes and wide variances in size (Sudipto Guha , Rajeev 
Rastogi , Kyuseok Shim, 1998).  CURE is a bottom-up 
hierarchical clustering algorithm, but instead of using a 
centroid-based approach or an all-points approach it 
employs a method that is based on choosing a well-formed 
group of points to identify the distance between clusters. 
CURE achieves this  by  representing  each cluster  by  a  
certain  fixed  number  of  points  that  are  generated  by  
selecting  well  scattered  points  from  the  cluster. In fact, 
CURE begins by choosing a constant number, c of well 
scattered points from a cluster. These points are used to 
identify the shape and size of the cluster. The next step of 
the algorithm shrinks the selected points toward the 
centroid of the cluster using some pre- determined fraction 
α. These scattered points after shrinking are used as 
representatives of the cluster.  The clusters with the closest 
pair of  representative  points  are  the  clusters  that  are  
merged  at each  step  of  CURE’s  hierarchical  clustering  
algorithm. CURE  is  less sensitive  to  outliers  since  
shrinking  the  scattered  points  toward  the  mean  

reduces the   adverse  effects  due  to  outliers  since 
outliers are  typically  further  away  from  the  mean  and  
are thus  shifted  a  larger  distance  due  to  the  shrinking.   

The  kinds  of  clusters  identified  by  CURE  can be  
tuned  by  varying  α:  between  0  and  1.  CURE  reduces to  
the  centroid-based  algorithm  if  α =  1,  while  for  α =  0, it  
becomes  similar  to  the  all-points  approach.  CURE’s  
hierarchical  clustering  algorithm  have a space complexity 
linear  to the  input  size  n  and  has  a  worst-case  time  
complexity  of O(n2 log n). For lower dimensions the 
complexity is further reduced to O(n2). The overview of 
CURE algorithm can be diagrammatically represented as 
[12] 

 
Figure 1 Overview of CURE 
ROCK 
ROCK (Robust Clustering using links) implements a new 
concept o links to measure the similarity/proximity 
between a pair of data points (Sudipto Guha, Rajeev 
Rastogi, Kyuseok Shim, 1999). A pair of data points are 
considered neighbors if their similarity exceeds a certain 
threshold. The number of links between a pair of points is 
then the common neighbors for the points. Points 
belonging to a single cluster will have a large number of 
common neighbors. Let sim(pi,pj) be a similarity function 
that is normalized and captures the closeness between the 
pair of points pi and pj. The sim assumes values between 0 
and 1. Given a threshold θ between 0 and 1, a pair of points 
(pi, pj) is defined to be neighbors if sim (pi,pj) > θ. Link (pi,pj), 
the number of common neighbors between the pair of 
points pi and pj. The criterion function is to maximize the 
sum of link(pq,pr) for data pairs pq, pr belonging to a single 
cluster and at the same time, minimize the sum of 
link(pq,ps) for pq and ps in different clusters. i.e. Maximize 
∑ 𝑛𝑖 ∗𝑘
𝑖=1  ∑ 𝑙𝑖𝑛𝑘 (𝑝𝑞,   𝑝𝑟)

𝑛𝑖1+2𝑓 (𝜃)𝑝 𝑞𝑝𝑟 ∈ 𝐶𝑖  where cluster Ci denotes 
cluster i of size n. The worst case time complexity of the 
algorithm is O (n2 + nmmma + n2 log n), where mm is the 
maximum number of neighbors, ma is the average number 
of neighbors, and n is the number of data points. The space 
complexity is O( min{n2, nmmma}) 
CHAMELEON 
CHAMLEON measures the similarity based on a dynamic 
model (George Karypis , Eui-Hong (Sam) Han , Vipin 
Kumar, 1999). Two clusters are merged only if the inter-
connectivity and closeness between two clusters are high 
relative to the internal inter-connectivity of the clusters 
and closeness of data points within the clusters. 
CHAMELEON operates on a sparse graph in which nodes 
represent data items, and weighted edges represent 
similarities among the data items. This sparse graph 
representation of the data set allows CHAMELEON to scale 
to large data sets. CHAMELEON finds the clusters in the 
data set by using a two phase algorithm. During the first 
phase, CHAMELEON uses a graph partitioning algorithm to 
cluster the data items into a large number of relatively 
small sub-clusters. During the second phase, it uses an 
agglomerative hierarchical clustering algorithm to find the 
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genuine clusters by repeatedly combining together these sub-clusters.

 
Figure 2  Overview of CHAMELEON algorithm 

 
CHAMELEON’s sparse graph representation of the data 
items is based on the k-nearest neighbor graph approach. 
Each vertex of the k-nearest neighbor graph represents a 
data item, and there exists an edge between two vertices, if 
data items corresponding to either of the nodes are among 
the k-most similar data points of the data point 
corresponding to the other node. CHAMELEON determines 
the similarity between each pair of clusters Ci and Cj by 
looking both at their relative inter-connectivity RI(Ci, Cj) 
and their relative closeness RC(Ci ,Cj ). CHAMELEON’s 
hierarchical clustering algorithm selects to merge the pair 
of clusters for which both RI (Ci ,Cj ) and RC(Ci ,Cj) are high; 
i.e., it selects to merge clusters that are well inter-
connected as well as close together with respect to the 
internal inter-connectivity and closeness of the clusters. 
The relative inter-connectivity between a pair of clusters Ci 
and Cj is defined as the absolute inter-connectivity between 
Ci and Cj normalized with respect to the internal inter-
connectivity of the two clusters Ci and Cj. The absolute 
inter-connectivity between a pair of clusters Ci and Cj is 
defined to be as the sum of the weight of the edges that 
connect vertices in Ci to vertices in Cj . This is essentially 
the edge-cut of the cluster, EC{Ci ,Cj } containing both Ci and Cj 
such that the cluster is broken into Ci and Cj . The relative 
inter-connectivity between a pair of clusters Ci and Cj is 
given by RI(Ci, Cj) = 

�𝐸𝐶{𝐶𝑖 ,𝐶𝑗 }�

�𝐸𝐶𝐶𝑖�+ �𝐸𝐶𝐶𝑗�

2

 which normalizes the 

absolute inter-connectivity with the average internal inter-
connectivity of the two clusters.  The relative closeness 
between a pair of clusters Ci and Cj is computed as, 

RC(Ci ,Cj ) = 
𝑆�̅�𝐶{𝐶𝑖 ,𝐶𝑗 }

�𝐶𝑖�

�𝐶𝑖�+ �𝐶𝑗�
 𝑆�̅�𝐶𝐶𝑖

+ 
�𝐶𝑗�

�𝐶𝑖�+ �𝐶𝑗�
 𝑆�̅�𝐶𝐶𝑗

, where 𝑆�̅�𝐶𝐶𝑖and 

𝑆�̅�𝐶𝐶𝑗are the average weights of the edges that belong in the 
min-cut bisector of clusters Ci and Cj , respectively, and 
𝑆�̅�𝐶{𝐶𝑖 ,𝐶𝑗 } is the average weight of the edges that connect 
vertices in Ci to vertices in Cj . The overall complexity of 
CHAMELEON’s two-phase clustering algorithm is O(nm + n 
log n + m2 log m). 
Divisive Algorithms 
STING 

Statistical Information Grid-based method exploits 
the clustering properties of index structures (Wei Wang , 
Jiong Yang , Richard R. Muntz, 1997). The  spatial  area  is  
divided into  rectangular  cells which  forms  a  hierarchical  
structure. Each cell  at a high  level  is partitioned  to  form  
a number of cells  of  the  next  lower  level.  Statistical 
information of each cell is   calculated and stored 
beforehand and is used to answer queries. For each cell, 
two types of parameters are considered; attribute-
dependent and attribute-independent parameters.  The  

 
attribute- independent parameter are the number of 
objects (points) in this cell, say n. Attribute-dependent 
parameters are  

• m: mean  of all  values  in  this  cell 
• s: standard deviation  of  all  values of  the 

attribute  in this  cell  
• min: the  minimum  value  of  the attribute  in  this  

cell  
• max: the maximum  value  of  the attribute  in  this  

cell  
• distribution the  type  of  distribution  that  the 

attribute  value  in  this  cell  follows. 
Clustering operations are performed using a top-

down method, starting with the root. The relevant cells are 
determined using the statistical information and only the 
paths from those cells down the tree are followed. Once the 
leaf cells are reached, the clusters are formed using a 
breadth-first search, by merging cells based on their 
proximity and whether the average density of the area is 
greater than some specified threshold. The  computational  
complexity  is  O(K),  where  K  is the number  of  grid  cells  
at  the  lowest  level.  Usually K << N, where N is the 
number of objects. 
STING+ 

STING+ is an approach to active spatial data 
mining, which takes advantage of the rich research results 
of active database systems and the efficient algorithms in 
STING (Wei Wang , Jiong Yang , Richard R. Muntz, 1997)for 
passive spatial data mining (Wei Wang, Jiong Yang, Richard 
Muntz, 1999).  A region in STING+ is defined as a set of 
adjacent leaf level cells. Also, object density and attribute 
conditions in STING+ are defined in terms of leaf level cells. 
The density of a leaf level cell is defined as the ratio of the 
number of objects in this cell divided by the area of this 
cell. A region is said to have a certain density c if and only if 
the density of every leaf level cell in this region is at least c. 
Conditions on attribute values are defined in a similar 
manner. Two kinds of conditions can be specified by the 
user. One condition is an absolute condition, i.e., the 
condition is satisfied when a certain state is reached. The 
other type of condition is a relative condition, i.e., the 
condition is satisfied when a certain degree of change has 
been detected. Therefore, four categories of triggers are 
supported by STING+; 

1. Region-trigger: absolute condition on certain 
regions 

2. Attribute-trigger: absolute condition on certain 
attributes 

3. Region trigger: relative condition on certain 
regions 

4. Attribute trigger: relative condition on certain 
attributes. 
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BIRCH 
Balanced Iterative Reducing and Clustering using 

Hierarchies, is designed for clustering large amount of 
multidimensional metric data points (Tian Zhang , Raghu 
Ramakrishnan , Miron Livny, 1996). It requires only one 
scan of the entire database and uses only a limited 
memory. BIRCH uses a hierarchical data structure called a 
CF-tree, or Clustering-Feature-tree that captures the 
needed information. A clustering-feature vector CF is a 
triple that stores the information maintained about a 
cluster. The triple CF= {N, 𝐿𝑆����⃗ , SS} contains the number of 
data points in the cluster, N, and 𝐿𝑆����⃗ , the linear sum of the N 
data points, i.e.∑ 𝑋𝚤���⃗𝑁

𝑖=1 , and SS, the square-Sum of the N data 
points i.e. ∑ 𝑋𝚤���⃗

2𝑁
𝑖=1 .  A CF-tree is a height balanced tree with 

a branching factor B. each internal node contains a CF 
triple for each of its children. Each leaf node also 
represents a cluster and contains a CF entry for each sub 
cluster in it. A sub cluster in a leaf node must have a 
diameter no greater than a given threshold value T.  

In the pre-clustering phase, the entire database is 
scanned and an initial in-memory CF-tree is built, 
representing dense regions of points with compact 
summaries or sub-clusters in the leaf nodes. Phase 2, 
rescans the leaf nodes entries to build a smaller CF-tree. It 
can be used to remove outliers and make larger clusters 
from sub-clusters. Phase 3 attempts to compensate for the 
order-dependent input. It uses either an existing centroid 
based clustering algorithm, or a modification of an existing 
algorithm applied to the sub-clusters at the leaves as if 
these sub-clusters were single points. The pre-clustering 
algorithm is both incremental and approximate.  

BIRCH is linear in both space and I/O time. The 
choice of threshold value is vital to an efficient execution of 
the algorithm. The worst case complexity of BIRCH can be 
O(n2). 

 
Figure 3 Overview of BIRCH 

Grid Based 
WAVE CLUSTER 

WaveCluster is a clustering approach based on 
wavelet transforms (Gholamhosein Sheikholeslami , Surojit 
Chatterjee , Aidong Zhang, 2000). WaveCluster is based on 
the representation of spatial object as a feature vector 
where each element of the vector corresponds to one 
numerical attribute.  These feature vectors of the spatial 
data can be represented in the spatial area, which is 
termed feature space, where each dimension of the feature 
space corresponds to one of the features. For an object 
with n numerical  attributes,  the  feature  vector  will  be 

one  point  in  the  n-dimensional  feature  space. The 
collection of objects in the feature space composes an n-
dimensional signal.  The high  frequency  parts  of  the  
signal  correspond  to  the  regions  of  the  feature  space 
where  there  is a rapid  change in  the  distribution  of 
objects,  that  is  the  boundaries  of clusters. The low  
frequency  parts  of  the  n-dimensional signal  which  have  
high  amplitude  correspond  to  the  areas of  the  feature  
space where  the  objects  are  concentrated,  i.e.,  the  
clusters  themselves.  
The WaveCluster Algorithm is given below 

1. Quantize feature space, and then assign objects to 
the units.  

2. Apply wavelet transform on the feature space.  
3. Find  the  connected components  (clusters)  in  the 

sub bands of  transformed  feature  space, at  
different  levels.  

4. Assign label to the units.  
5. Make the lookup table.  
6. Map the objects to the clusters. 

The complexity of generating clusters is O(n) and 
is not impacted by Outliers. WaveCluster can find 
arbitrarily shaped clusters and does not need to know the 
desired number of clusters. 
BANG 

BANG structure adapts to the distribution of items 
so that the dense areas have larger number of smaller grids 
and less dense areas have a few large ones (Erich Schikuta , 
Martin Erhart, 1997). BANG organizes the value space 
containing the patterns. The patterns are treated as points 
in a k-dimensional value space and are inserted into the 
BANG-Structure (E. Schikuta, 1996). These points are 
stored accordingly to their pattern values preserving the 
topological distribution. The BANG-structure partitions the 
value space and administers the points by a set of 
surrounding rectangular shaped blocks. These blocks are 
then sorted based on their density, which is the number of 
items in the grid divided by its area. Based on the number 
of clusters needed, the grids with the highest density are 
treated as cluster centre.  
CLIQUE 

CLIQUE, named for Clustering In Quest, the data 
mining research project at IBM Almaden and is an grid-
based approach for high dimensional data sets that 
provides “automatic sub-space clustering of high 
dimensional data” (Rakesh Agrawal , Johannes Gehrke , 
Dimitrios Gunopulos , Prabhakar Raghavan, 1998). CLIQUE 
identifies dense clusters in subspaces of maximum 
dimensionality.  It generates cluster descriptions in the 
form of DNF expressions that are minimized for ease of 
comprehension.  It produces identical results irrespective 
of  the  order  in which  input  records  are  presented  and  
does not  presume  any specific mathematical  form  for  
data  distribution. 
CLIQUE algorithm consists of the following steps; 

1. Identification of subspaces that contain clusters.  
2. Identification of clusters.  
3. Generation of minimal description for the clusters. 

The initial phase of the algorithm partitions the 
data space S into   non-overlapping rectangular units, 
where S= S  =  A1  x  A2  x  . . . x  Ad  a  d-dimensional 
numerical  space..  The units are obtained by partitioning 
every dimension into  ξ intervals of equal length, which is 
an input parameter. Each  unit  u  is  the  intersection  of  
one  interval  from  each attribute. The  selectivity of  a  unit  
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is  defined  to  be  the  fraction  of  total  data  points 
contained  in  the  unit.  A unit  u  is dense,  if  selectivity(u) 
is  greater  than  τ,  where  the  density  threshold  τ  is  
another input  parameter. Similarly all the units in all 
subspaces of the original d-dimensional space are defined.  
A  cluster  is  a  maximal  set  of  connected  dense  units  in 
k-dimensions.  Region in k dimensions is an axis-parallel 
rectangular k-dimensional set. A  region  can  be  expressed  
as a  DNF  expression  on  intervals  of  the  domains  Ai. A  
region  R  contained  in  a  cluster  C  is  said  to be  maximal  
if  no  proper  superset  of  R  is  contained  in  C.A  minimal  
description  of  a  cluster  is  a  non-redundant covering  of  
the  cluster  with  maximal  regions.   

The running  time  the algorithm  is the  
exponential  in  the highest  dimensionality  of  any  dense  
unit. The algorithm makes k passes over the database. Thus 
the time complexity is   O(ck  +  m  k)  for  a  constant  c 
where k is the highest dimensionality of any dense unit and 
m is the number of input points. This algorithm can be 
improved by pruning the set of dense units to those that lie 
in “interesting” subspaces using a method called MDL-
based pruning or minimal description length. Subspaces 
with large coverage of dense units are selected and the 
remainder is pruned. 
MOSAIC 

MOSAIC greedily merges neighboring clusters 
maximizing a given fitness function (Jiyeon Choo, 
Rachsuda Jiamthapthaksin , Chun-sheng Chen, 
Oner Ulvi Celepcikay, Christian Giusti and Christoph F. Eick, 
2007).   MOSAIC  uses  Gabriel  graphs  to  determine  
which  clusters  are density- based neighboring  and  
approximates  non-convex  shapes  as  the  unions  of  small 
clusters that  have  been  computed  using  a  
representative-based  clustering algorithm. The Gabriel 
graph of a set of points S in the Euclidean plane expresses 
one notion of proximity or nearness of those points. 
MOSAIC constructs the Gabriel graph for a given set of 
representatives, and then uses the Gabriel graph to 
construct a Boolean merge-candidate relation that 
describes which of the  initial  clusters  are  neighboring.  
This merge candidate relation is then updated 
incrementally when clusters are merged. 
Density Based Algorithms 
DBSCAN 

 Density based Spatial Clustering of Applications 
with noise (DBSCAN) creates clusters with a minimum size 
and density (M. Ester, H.-P. Kriegel, S. Jörg, and X. Xu, 
1996). Density is defined as the number of points within a 
certain distance of each other. The algorithm uses two 
parameters, Eps and MinPts to control the density of the 
cluster. Minpts, indicates the minimum number of points in 
any cluster.  
Definitions: The Eps-neighborhood of a point is defined by 
NEps (p) = { q ∈D |  dist(p, q)≤Eps }.  The distance function 
dist(p, q) determines the shape of the neighborhood. 
Algorithm DBSAN does not require the desired number of 
cluster as initial input. Two kinds of points in a cluster are 
specified in the algorithm, i.e. core points; points inside of 
the cluster and border points; points on the border of the 
cluster. An Eps-neighborhood of a border point contains 
significantly less points than an Eps-neighborhood of a core 
point. For every point p in a cluster C there is a point q in C 
so that p is inside of the Eps-neighborhood of q and NEps(q) 
contains at least MinPts points. A point p is directly density-
reachable from a point q wrt. Eps, MinPts if  

1) p ∈  𝑁𝐸𝑝𝑠(𝑞) 
2) �𝑁𝐸𝑝𝑠(𝑞)�  ≥ 𝑀𝑖𝑛𝑝𝑡𝑠 (𝐶𝑜𝑟𝑒 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

Directly density-reachable is symmetric for a pair of core 
points and it is not symmetric if one core point and one 
border point are involved.  A point p is density-reachable 
from a point q wrt. Eps and MinPts if there is a chain of 
points p1, ..., pn,  p1 = q, pn = p such that pi+1 is directly 
density-reachable from pi. A point p is density- connected 
to a point q wrt.  Eps and MinPts if there is a point o such 
that both, p and q are density-reachable from o wrt. Eps and 
MinPts. A cluster C wrt. Eps and MinPts is a non-empty 
subset of D, where D is a database of points, satisfy the 
following conditions: 

1) ∀ p, q: if p ∈ C and q is density-reachable from p 
wrt. Eps and MinPts, then q ∈ C. (Maximality) 

2) ∀ p, q ∈ C: p is density-connected to q wrt. EPS and 
MinPts. (Connectivity) 

The noise is defined as the set of points in the database D 
not belonging to any cluster Ci , i.e. noise = {p ∈D | ∀ i: p 
∉Ci}. 
Algorithm: DBSCAN starts with an arbitrary point p and 
retrieves all points density-reachable from p wrt. Eps and 
MinPts. If p is a core point, this procedure yields a cluster 
wrt. Eps and MinPts. If p is a border point, no points are 
density-reachable from p and DBSCAN visits the next point 
of the database. Merge two clusters, if two clusters of 
different density are “close” to each other. The algorithm 
may need to be called recursively with a higher value for 
MinPts if “close” clusters need to be merged because they 
are within the same Eps threshold. The expected time 
complexity of DBSCAN is O(n log n).  
GDBSCAN 

GDBSCAN - can cluster point objects as well as 
spatially extended objects according to both, their spatial 
and their non-spatial attributes (Jörg Sander , Martin Ester , 
Hans-Peter Kriegel , Xiaowei Xu, 1998). GDBSCAN 
generalizes DBSCAN in two important ways. Any notion of 
a neighborhood of an object can be used, if the definition of 
the neighborhood is based on a binary predicate which is 
symmetric and reflexive. Instead of simply counting the 
objects in the neighborhood of an object, other measures 
can be used for example, considering the non-spatial 
attributes such as the average income of a city, to define the 
“cardinality” of that neighborhood. 

To find a density-connected set, GDBSCAN starts 
with an arbitrary object p and retrieves all objects density-
reachable from p with respect to NPred; neighborhood of 
the object and MinWeight; minimum weighted cardinality. 
If p is a core object, this procedure yields a density-
connected set with respect to NPred and MinWeight . If p is 
not a core object, no objects are density-reachable from p 
and p is assigned to Noise, where Noise is defined as the set 
of objects in the database D not belonging to any density-
connected set Ci. This procedure is iteratively applied to 
each object p which has not yet been classified. 
OPTICS 

OPTICS creates an augmented ordering of the 
database representing its density-based clustering 
structure (Ankerst, Mihael, Markus M. Breunig, Hans-Peter 
Kriegel, and Jörg Sander, 1999). Let DB be a database 
containing n points. The OPTICS algorithm generates an 
ordering of the points o:{1..n} →DATABASE and 
corresponding reach ability-values r:{1..n}→ R≥0. OPTICS 
does not assign cluster memberships. Instead, the 
algorithm store the order in which the objects are 
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processed and the information which would be used by an 
extended DBSCAN algorithm to assign cluster 
memberships. This information consists of only two values 
for each object: the core-distance and a reachability 
distance. The core-distance of an object p is simply the 
smallest distance ε’ between p and an object in its ε-
neighborhood such that p would be a core object with 
respect to ε’ if this neighbor is contained in Nε(p). 
Otherwise, the core-distance is UNDEFINED. The 
reachability-distance of an object p with respect to another 
object o is the smallest distance such that p is directly 
density-reachable from o if o is a core object. Depending on 
the size of the database, the cluster-ordering can be 
represented graphically for small data sets or can be 
represented using appropriate visualization technique for 
large data sets. 
DBCLASD 

Distribution Based Clustering of Large Spatial 
Databases (DBCLASD) is another locality-based clustering 
algorithm, but unlike DBSCAN, the algorithm assumes that 
the points inside each cluster are uniformly distributed 
(Xiaowei Xu , Martin Ester , Hans-Peter Kriegel , Jörg 
Sander, 1998). Three parameters are defined in the 
algorithm; NNS(q), NNDist (q ), and NNDistSet(S). Let q be a 
query point and S be a set of points. Then the nearest 
neighbor of q in S, denoted by NNS(q), is  a point p  in  S- {q} 
which has the minimum distance to q. The distance from q 
to its nearest neighbor in S is called the nearest neighbor 
distance of q,  NNDist (q )for short. Let S be a set of points 
and ei  be the elements of S. The nearest neighbor distance 
set of S, denoted by NNDistSet(S), or distance set for short, is 
the multi-set of all values. The probability distribution of 
the nearest neighbor distances of a cluster is analysed 
based on the assumption that the points inside of a cluster 
are uniformly distributed, i.e. the points of a cluster are 
distributed as a homogeneous Poisson point process 
restricted to a certain part of the data space. A grid-based 
representation is used to approximate the clusters as part 
of the probability calculation.  DBCLASD is an incremental 
algorithm. Points are processed based on the points 
previously seen, without regard for the points yet to come 
which makes the clusters produced by DBCLASD 
dependent on input order. The major advantage of 
DBCLASD is that it requires no outside input which makes 
it attractive for larger data sets and sets with larger 
numbers of attributes. 
Others 
SParClus 
SpaRClus (Spatial RelationshipPattern-Based Hierarchical 
Clustering) to cluster image data is based on an algorithm, 
SpIBag (Spatial Item Bag Mining), which discovers frequent 
spatial patterns in images (S. Kim, X. Jin, and J. Han, 2008). 
SpIBag is invariant on semi-affine transformations. Semi-
affine transformation is a way to express or detect shape 
preserving images. SpaRClus uses internally SpIBag 
algorithm to mine frequent patterns, and generates a 
hierarchical structure of image clusters based on their 
representative frequent patterns. When SpIBag algorithm 
generates a frequent n-pattern p, SpaRClus computes a 
scoring function of its support image set  𝐼𝑝�  and decides if p 
will be used or not to join with other n-patterns, which 
enables more pruning power than using SpIBag alone. 
C2P 
C2P, Clustering based on Closest Pairs, exploits spatial 
access methods for the determination of closest pairs 

(Nanopoulos, A., Theodoridis, Y., and Manolopoulos, 2001). 
C2P consists of two main phases. The first phase efficiently 
determines a number of sub-clusters. The first phase of C2P 
has as input n points and produces m sub-clusters, and it is 
iterative. The first phase of C2P has the objective of 
efficiently producing a number of sub-clusters which 
capture the shape of final clusters. Therefore, it represents 
clusters with their center points. The second phase uses a 
different cluster representation scheme to produce the 
final clustering. The second phase performs the final 
clustering by using the sub-clusters of the first phase and a 
different cluster representation scheme. The second phase 
merges two clusters at each step in order to better control 
the clustering procedure. The second phase is a 
specialization of the first, i.e., the latter can be modified in: 
a) finding different points to represent the cluster instead 
the center point, b) finding at each iteration only the closest 
pair of clusters that will be merged, instead of finding for 
each cluster the one closest to it. The time complexity of 
C2Pfor large datasets is O(nlog n), thus it scales well to 
large inputs. 
DBRS+ 
Density-Based Spatial Clustering in the Presence of 
Obstacles and Facilitators (DBRS+) aims to cluster spatial 
data in the presence of both obstacles and facilitators 
(Wang, X., Rostoker, C., and Hamilton, H. J, 2004). The 
authors claim that without preprocessing, DBRS+ 
processes constraints during clustering. It can also find 
clusters with arbitrary shapes and varying densities. DBRS 
is a density-based clustering method with three 
parameters, Eps, MinPts, and MinPur. DBRS repeatedly 
picks an unclassified point at random and examines its 
neighborhood, i.e., all points within a radius Eps of the 
chosen point.  The purity of the neighborhood is defined as 
the percentage of the neighbor points with the same non-
spatial property as the central point. If the neighborhood is 
sparsely populated (≤MinPts) or the purity of the points in 
the neighborhood is too low (≤MinPur) and disjoint with all 
known clusters, the point is classified as noise.  Otherwise, 
if any point in the neighborhood is part of a known cluster, 
this neighborhood is joined to that cluster, i.e., all points in 
the neighborhood are classified as being part of the known 
cluster.   If neither of these two possibilities applies, a new 
cluster is begun with this neighborhood.  The time 
complexity of DBRS is O(n log n) if an R-tree or SR-tree is 
used to store and retrieve all points in a neighborhood. 

CONCLUSION 
 The main objective of spatial data mining is to find 
patterns in data with respect to its locational significance. 
The scope of spatial mining increases as the data generated 
from various sources which are geographically referenced 
increases. Every aspects of applications like health services, 
marketing, environmental agencies make use of spatial 
mining to find information contained within. The major 
challenges in spatial data mining are that the spatial data 
repositories are tend to be very large and the range and 
diversity in representing the spatial and non-spatial data 
attributes in the same canvas. Though the above discussed 
clustering algorithms try to resolve issues like scalability 
and complexity, it can be observed that a perfect clustering 
algorithm which comprehends all the issues with the 
dataset is an idealistic notion. Current research progresses 
on more dynamic, adaptive and innovative methods that 
decipher meaningful patterns that effectively satisfy the 
requirements of dealing huge volumes of data of higher 
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dimensionality, insensitive to large noises, unaffected by 
the order of input, and having no prior knowledge of the 
domain. 
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