
International Journal of Computer Information Systems and Industrial Management Applications.  
ISSN 2150-7988 Volume 5 (2013) pp. 564-570 
© MIR Labs, www.mirlabs.net/ijcisim/index.html                                                                                                                 
 
 

MIR Lab, USA 
 

Code Clones in Program Test Sequence 
Identification  

Anupama Surendran1, Philip Samuel2 and K. Poulose Jacob3 
 

1 Department of Computer Science, Cochin University of Science &Technology, Kochi-22, Kerala, India 
anupama.deepak@gmail.com 

2 Information Technology, School of Engineering, Cochin University of Science & Technology, Kochi-22, Kerala, India 
philips@cusat.ac.in 

3 Department of Computer Science, Cochin University of Science &Technology, Kochi-22, Kerala, India 
kpj@cusat.ac.in 

 

 
Abstract: Code clones are portions of source code which are 

similar to the original program code. The presence of code clones 
is considered as a bad feature of software as the maintenance of 
software becomes difficult due to the presence of code clones. 
Methods for code clone detection have gained immense 
significance in the last few years as they play a significant role in 
engineering applications such as analysis of program code, 
program understanding, plagiarism detection, error detection, 
code compaction and many more similar tasks. Despite of all 
these facts, several features of code clones if properly utilized can 
make software development process easier. In this work, we have 
pointed out such a feature of code clones which highlight the 
relevance of code clones in test sequence identification. Here 
program slicing is used in code clone detection. In addition, a 
classification of code clones is presented and the benefit of using 
program slicing in code clone detection is also mentioned in this 
work.  
 
Keywords: Code clone, program slicing, test sequence, static 

slicing 
 

I. Introduction 

Generally there is a misconception that software testing is 
performed as the final step of software development life cycle. 
As software testing plays an inevitable role in software 
development process, applying software testing only in the 
final stage of software development will make the whole 
process more complicated. This is due to the fact that the 
programmer sometimes will have to go back to the initial stage 
of software development to track the error. Due to the time 
constraints meet by the software developers in developing the 
software for specific applications, the process of automating 
software testing has gained so much importance. Therefore the 
software should be properly tested to check whether the 
developed software satisfies the user requirements before 
handing over the final version to the users. Due to these strict 
constraints meet by the programmers, some effective methods 
should be adopted to make the whole software testing process 
easier and in this work we have showed how the reusable 
property of software source code is utilized in software testing 
process. Several research works shows that about 7% to 23% 
of the software source code is cloned and in some cases nearly 

50% of the source code is cloned [1]. Software reuse is the 
process of using existing software components rather than 
building from the scratch and the concept of code clones is 
derived from this idea [1]. A code clone can be defined as a set 
of program statement which may be contiguous or 
non-contiguous and which repeats in several other parts of the 
same program or in different parts of the same program or in 
different files of the same application program [4]. Even 
though code reuse saves time and manual effort, some 
researchers claim that software code clone increases the 
software maintenance cost. For example, if a programmer 
makes any slight modification in a code clone, and if the same 
change is not made in the other code clones present in the 
program, it may cause inconsistency. Similarly when the code 
clones are created, the programmer sometimes forgets to map 
the variable values. In such cases the code clones will not be 
harmonic and this causes errors in the program. These are 
some of the problems which are to be faced in code clone 
maintenance.  Due to these issues related with the maintenance 
of software code clones, proper detection of code clones in 
each and every stage of software development is essential. 
Utilizing the positive aspects of code clones in an appropriate 
way can result in marked changes in the field of software 
testing industry. Many of our day to day computer applications 
take advantage of the code reuse property. The main reason 
behind this code reuse mentality is to make the software 
development process easier rather than writing the source code 
from scratch. For example, while making a newer version of 
operating system, developers are not writing the program code 
from the scratch, rather they try to concentrate only on the new 
functions which are to be integrated into the newer version. 
Similarly several libraries of mathematical routines are reused 
instead of developing them each and every time. The main 
point to be noted here is that the code developers can 
concentrate in developing the new features of the software 
rather than putting effort on the old problems repeatedly. This 
has the potential benefit of reducing the source code 
development time and cost. In testing, the need of using code 
clones in test sequence generation can be applied to such 
scenarios as there is no need to check or identify test sequence 
repeatedly for similar clones. This reduces the program 



 

tester’s effort as they have to consider only the minor 
variations made in the code clones. Apart from testing, code 
clones can be used in many other applications such as program 
comprehension, program compaction, checking plagiarism 
etc. 

In this paragraph, a brief overview of the significance code 
clones in real world application is given.  Code plagiarism is 
the repetition of source code in a program and detection of 
code clones helps to eliminate code plagiarism. There are 
several approaches to detect plagiarism. In string based 
approach the exact matches are obtained and in token based 
approach the source program is converted to tokens to detect 
the similarity between token sequences. Another approach is 
parse tree based approach in which a parse tree of the source 
program is constructed to detect code similarity. In Program 
dependence based approach, a program dependence graph is 
constructed to detect the code clones at a higher level and in 
metrics based approach, code segments are assigned certain 
scores based on some metrics and using this metrics code 
clones are detected. Program comprehension is the process of 
analyzing the program code for software maintenance 
purpose. Identification of similar code in a program makes 
program comprehension easier as it eliminates the need of 
repeated analysis of similar source code. Program 
comprehension methods include text based, lexical, syntactic, 
graphical and execution based methods. Program compaction 
is the process of reducing the code size. Code size can be 
reduced by detecting code clones present in a program and 
replacing the common code by code refactoring technique. In 
code refactoring, similar code from a program block is moved 
to a node which succeeds or precedes the block. The repeated 
portions of the source code will be placed in abstract 
procedures and a call to these abstract procedures is made 
instead of using the repeated code sequences [14] This paper 
describes a program slicing based approach for code clone 
detection and their use in test sequence identification. The rest 
of this paper is organized in the following manner. Section II 
gives the most related work and section III gives the reasons 
for the existence of code clones in software system and some 
of the basic terminologies. Section IV gives the basics of 
slicing and section V illustrates how code clones are detected 
generated using slicing and control flow graph. This section 
also explains the significance of code clones in program 
testing and the importance of this work. Section VI gives the 
conclusion and future modifications which can be applied to 
this existing work.  

II. Related work  

There are excellent research works going in the field of code 
clones and utilization of clones for various applications. To the 
best of our knowledge, no works are reported in the field of 
using code clones for software test sequence generation. C. K. 
Roy and J. R. Cordy [2007] have done an excellent survey on 
software code clones and their detection methods. R. 
Komondoor and S. Horwitz [2001] has explained how 
program slicing techniques are used program dependence 
graphs can be used to identify the code clones in a program. 
Similarly J. Krinke [2001] has also explained how source code 
clones are identified from program dependence graphs. 

Compared to these two approaches our method of code clone 
detection using slicing is more variable specific and we have 
used a slicing approach which gives all the dependency 
present in the program with less effort. In this work we have 
mainly concentrated on code clone detection part and the   

III. Basic Terminologies 

As pointed out in the Section I, code reuse is a common 
practice in software industry and the extent of code reuse 
varies in different industry.  As evidence to this fact, we have 
taken the example of Hewlett- Packard software industry, 
where three levels of code are considered in software 
developed. They are new code, reuse code and leveraged code. 
In reuse code, the existing code is used without making any 
modification and in leveraged code some modifications is 
made to the original source code. Figure 1 shows an evidence 
of reuse on six different firmware projects at Hewlett- 
Packard. The following subsections describe some of the 
common terminologies related to code clones. 
 

 
 
Figure 1.   Graph illustrating the percentage of code reuse in 

HP industry 

A. Reasons for existence of clones in software systems 
Code clones exit in a software system due to a number of 
reasons. In software industry we have already seen that code 
reuse is a common practice and during the code reuse, code 
clones are mainly generated due to the copy/paste practice. 
Similarly, a hardware driver can be reused in a similar 
hardware platform. The code clones can be introduced due to 
programming approaches also. For example, when two similar 
software systems are combined to produce a new system, there 
is a chance of existence of code clones in the newly developed 
system, even if they are developed by different personal. In 
generative programming, code clones exit due to the reuse of 
similar templates which contains the same logic. During 
software maintenance process, the developers will have to 
update existing software. Here the developer reuses the 
existing software code and tries to incorporate the 
modifications alone. In programming languages, if properties 
such as inheritance, parameter passing etc. is not present, then 
the programmer will have to rewrite the whole source code. If 
the programmer is not able to understand the functions of a 
software system, then they will be force to reuse the existing 
code to develop a new one. Similarly if a programmer has to 
complete a project within a deadline, then they may copy parts 

  565  Surendran, Samuel and Jacob



Code Clones in Program Test Sequence Identification  566

of source code and reuse them in other areas in order to save 
time. 

B. Code Fragment 
A group of program statements or lines within a program is 
known as code fragment. This set of sentences can be either 
conditional sequence set or it can be well defined functions or 
simply a group of statements. 

C. Definition (Code Clones) 
Consider a set of program statements ‘CLN’. Another set of 
program statements ‘CLNc’ can be considered as a code clone 
of ‘CLN’, if they contain the same set of program statements or 
if they have some similar properties up to certain extend. In 
order to check the degree of similarity which exists between 
code fragments ‘CLN’ and ‘CLNc’, we have to categorize the 
clones according to their behavioral properties [5]. 

D. Categories of code clones 
There are mainly four types of code clones. They are type1,             
type 2, type 3 and type 4 clones. Each of these is explained 
below. 

1) Copy Clones 
This type of clones is included in type 1 category. In this type 
of code clones, the code fragments will be exactly the same. 
The code clone formed will be the exact copy of the original 
code fragment. There will be some minor changes in white 
spaces, comments etc. 
 

 
Table 1. Copy Clones 

2) Renamed Clones 
This type of clones will come under type 2 category. In this 
type, the code clone formed will be syntactically similar to the 
original code. There will be changes in the name of identifiers, 
functions, literals etc. along with minor variations in white 
spaces, comments etc. Here we can see that code 2 is similar to 
code 1. The main difference is the change in the variable 
names. Therefore these two types of clones can be included in 
type 2 category 
 

 
Table 2. Renamed Clones 

 
3) Modified Clones 

This type of code clones comes under type 3 category and they 
can be considered as a modification of type 2 clones. They will 
have all the features of type 2 with some additional features. 

Additional features means that some lines will be changed, 
deleted or added to the clone. We can see that Code 2 is an 
example of Type 2 clone. Comparing Code 2 and Code 3, we 
can see that code 3 is having all the features of code 2 and apart 
from that, there is one extra statement present in code 3. 
Therefore these two types of clones can be included in type 3 
category. 
 

 
Table 3. Modified Clones 

 
4) Interpreted Clones 

This type of clones will have entirely different syntax and they 
come under type 4 category. There will be no similarity 
between the program text or program lines. Even though they 
differ syntactically, their functionality remains the same. Here 
code 1 and code 2 are syntactically not similar, but their 
behavior is the same. Therefore these two can be considered as 
Type 4 clones. 
 

 
Table 4. Interpreted Clones 

IV. Overview of Slicing  

We have used program slicing technique to identify the code 
clones in a program. Code clones are to be detected from the 
program source code. It may not be always practical to check 
the whole program which may contain thousands of lines of 
code to find the presence of code clones.  In several situations, 
the program tester will be interested only in particular parts or 
function of the source program which is supposed to perform 
certain important tasks. In such a scenario, it is not advisable to 
analyse the program lines one by one as this will only cause 
unnecessary waste of time and effort. Program slicing is 
applied in such situations. Instead of analysing the whole 
program, slicing converges the focus to some specific program 
parts implied by the slicing criterion [12]. It was Weiser who 
introduced program slicing in 1979 and his work encouraged 
many applicative research works in this field. 
 
The structural similarity of the control flow graphs which are 
constructed for the various slices in the program are used to 
identify the code clones. Sliced statements give the variable 



 

dependencies present in the program and also eliminate the 
need for unnecessary checking of the whole program. 

A. Slicing 
Process of reducing the complexity of a program by removing 
the irrelevant statements from a program is known as program 
slicing or in other words, a slice is a miniature version of the 
source program. According to Weiser, a static slice is a set of 
statements that directly or indirectly affect the value of a 
variable at a given program point and this point is known as 
slicing criterion. The slicing criterion is denoted by (S, V) 
where ‘S’ is the statement or line number and ‘V’ is the 
variable in the program. The static slices were uncertain in 
nature. Therefore B. Korel and Laski [1988] introduced the 
concept of dynamic slicing to target the programmer’s 
attention only to the relevant parts of the program. Runtime 
information about a program is used in dynamic slices. 
 
Some statements of the program will have an effect on the 
values computed at some point of interest. The point of interest 
is known as slicing criteria and it is represent as C= (x, y) 
where x is the statement present in a given program and y is the 
subset of variables present in the program. A static slice 
constructed by ignoring those parts of the program that are not 
relevant to the values stored in the chosen set of variables at 
the chosen point specified in the slicing criterion. Given a 
variable ‘v’ and a point of interest ‘n’, slice will be constructed 
for v at n. 
 
The set of statements that affects the value of a variable for one 
specific input is known as dynamic slice. In dynamic slicing 
we have to consider three parameters. First one is the point of 
interest within the program, second one is the variable and the 
third one is the sequence of input values for which the program 
was executed. Dynamic slicing criterion is defined as C= (x, y, 
i). Here ‘x’ is the statement in the program, ‘y’ is the subset of 
variables in the program and ‘i’ is the input value [10]. 

 
Table 5. Static slice example 

 

 
Table 6. Dynamic slice example 

Backward slices give all the program statements which affect 
the value of a particular variable at a particular point [6, 7]. 
Backward slicing criteria is defined as C=(x, y). Here ‘x’ is the 
statement number and ‘y’ is the slice variable 
 
Forward slices give all the program statements which are 
affected by declaring a variable at a given point in the program 
[6, 7, 9]. Forward slicing criteria is defined as C=(x, y). Here 
‘x’ is the statement number and ‘y’ is the slice variable. After 
applying program slicing technique, CFG of the slices [11] 
should be created. In our clone detection approach we are 
applying static slicing technique for clone detection. The 
structural similarity present in the control flow graph is taken 
in to consideration to detect the code clones. These are clearly 
illustrated in the next section. 

V. Identifying Test Sequences using Code 
Clones  
In the above sections, we saw the relevance of code clones and 
have explained the different types of code clones. This section 
explains our idea of utilizing code clones for identifying 
similar test sequences during program testing [13]. There is no 
need to identify separate test sequence for similar code clones 
and thus the testing effort is reduced. Here, program slicing is 
used to detect the presence of code clones [2, 3]. Consider the 
following example in Figure 2. 

 
Figure 2.   Employee Classification 

 
Here we can see that there are three classes of employee under 
the Company class. They are Finance officer, Marketing 
officer and Technical officer. The salary calculation code of 
Finance officer, Marketing officer and Technical officer is as 
follows:- 
 

 
Table 7. Salary calculation code of different officer classes 

 
Code clones exist in the above three categories of officers. 
Checking the Finance and Marketing officer class, we can 

notice that there is no change in the 
�

total salary
�

 
calculation steps. The salary calculation method, the basic 
salary value, hra value and da value are exactly same for both 

567  Surendran, Samuel and Jacob



Code Clones in Program Test Sequence Identification  568

the classes. Therefore these set of program statements can be 
considered as code clones. In this scenario, if we identify the 
test sequence statements for the Finance officer class, then 
there is no need to identify the test sequence again for the 
Marketing officer class, as we have already detected the test 
sequence for its clone. For this, the first step is that the tester 
should be able to detect the presence of code clones in Finance 
officer and Marketing officer class. 
 
For detecting the code clones, program slicing principle is 
initially applied to various classes. Then we are constructing 
the control flow graph of the slices obtained. We are mainly 
considering the structural similarity present in the CGF to 
identify the code clones. We are using slicing as the initial step 
of clone detection in order to avoid unnecessary checking of 
the whole program. Sliced statements will give an overview of 
the variable dependency present in the program. Consider the 
Finance Officer class in the Table 7 given above. Initially we 
perform static slicing with respect to the variable ‘total’ 
present in the statement ‘total= basic + da+ hra’. The resultant 
statements obtained is named as Set I. Next we perform static 
slicing in Marketing officer class. Here also, static slicing is 
done with the variable ‘total’ present in the statement ‘total = 
basic + da + hra’. This is named as Set II. Set I and Set II is 
given in Table 8 given below. 
 

 
Table 8.Slice of Marketing officer and Finance officer class 
 
The next step is to draw the control graph of the static slices 
obtained for both the classes. Here it can be noticed that the 
control flow graphs obtained for the static slice Set I and Set II 
are the same.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.  CFG of Set I              Figure 4. CFG of Set II 

 

We are making use of the structural similarity present in the 
control flow graph to detect code clones. For structural 
similarity, the CFG of Set I and Set II are checked to verify 
whether they are isomorphic graphs or not. Two graphs, G= 
{V, E} and G1= {V, E} are said to be isomorphic graphs if 
there exists one- to- one correspondence between their vertices 
and between their edges such that the incidence relationship is 

preserved. Suppose that an edge 
�
e

�
 has end vertices V1 

and V2 in G, then the corresponding edge 
�
e

�
 in 

�
G1

�
 

must be incident on vertices V11 and V12 that correspond to 
V1 and V2 respectively. Here both the control flow graphs 
satisfy these properties. Here the graphs of Set I and Set II 
have the same number of vertices, same number of edges and 
same degree sequence. Therefore these two control graphs can 
be regarded as code clones 
 
After detecting the code clones from the control flow graph, 
the next step is to check the node content of each graph. We 
are checking each and every node of the two code clones. Here 
all the nodes of both the graphs are equal. This indicates that 
there is no need to identify test sequence separately for the 
clones. If the test sequence for one of the clones is generated 
then the same test sequence is applicable to the other clone 
also. Substituting appropriate values in the test sequence 
statements of code clones simplifies program testing process. 
In the example given above, the test sequence for both the 
Finance officer class and Marketing officer class is identified 
from the code clones. The test sequence identified is given 
below. 
 
Test Sequence:- 
 
basic= 1000; 
if (basic >= 1000) 
{ 
da=100; 
hra=50; 
} 
 else 
{ 
da=50; 
hra=25; 
} 
total=basic+da+hra; 
 
Therefore, the total salary of both Finance officer class and 
Marketing officer will be ‘total= 1150’ which is got by 
substituting the desired values in the test sequence generated. 

A. Need for interpreting control flow graph node contents 
Even though the above given example in section V correctly 
identifies the test sequences from code clones, interpreting the 
control flow graph node contents is required in certain 
situations. This is required for identifying the correct test 
sequence and to generate correct test data values from them. 
This can be explained with the help of the same example given 
Figure 1. Already we have found out that code clones exist in 
Finance officer and Marketing officer class. Now consider the 
Technical officer class. Apply static slicing in Technical 

officer class with respect to the variable 
�
total

�
present in 

the statement 
�
total = basic + da + hra. The result will be a set 

1 

2 

4 9 

5 10 

11 

1 

2 

4 9 

5 10 

11 



 

of statements given in Set III. The CFG of Set III is given in 
Figure 5. 
 
Set III:- 
1 basic= 2000; 
2 if(basic >= 1000) 
3 { 
4 da=100; 
5 hra=50; 
6 } 
7 else 
8  
9  da=50; 
10 hra=25; 
11} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. CFG of Set III 
 

After constructing the control flow graph for Set III, we have 
to compare the CFG of Set I, Set II and Set III. We can see that 
all the three control flow graphs are structurally similar. The 
next step is to check the contents of each and every node of all 
the three control flow graphs. In the above section itself we 
have already found that the CFG of Set I and Set II are similar. 
In the CFG of Set III the contents of the first node is different 
from CFG contents of Set I and Set II. In Set I and Set II, the 

first node is having the content as
�
basic= 1000’. The CFG of 

Set III is having the content as
�
basic=2000’. Therefore there 

is a need for mapping of statements here. Even though the test 
sequence is almost similar in Set I, Set II and Set III, there is a 
minor difference in Set III CFG node values.  The program 
tester should identify these variations in node values so that 
correct test data value is generated from the test sequences. 

B. Significance of code clones in program testing 
In our method, we have made use of code clones for test 
sequence identification. Although from the maintenance point 
of view, code clones are generally considered as one of the 
most challenging problems faced in software development 
process, we have utilized some of the strong features of code 
clones that make them applicable in test sequence 
identification. Initially, we have applied program slicing to the 
source program. This is done in order to avoid unnecessary 
checking of the whole source program. Apart from that, slices 
obtained will give the dependence information which exists 

between the variables present in the program. In some cases, 
checking the CFG alone will not be enough to identify the code 
clones and this flaw in the detecting code clones will cause 
errors in test data generation process. This is due to the fact 
that the structural resemblance present in the CFG alone may 
not be able to correctly identify the code clones in all cases. 
Consider two control flow graphs which are structurally 
identical but with entirely different node contents. Here 
checking the structural similarity alone is not sufficient to 
detect the presence of code clones.  This is due to the presence 
of false positives in the detection of code clones. Therefore 
checking the structural similarity alone is not always enough to 
detect the code clones. Performing program slicing at the 
initial phase, constructing the control flow graph of the slices 
and checking the node contents of the CFG alleviates th defect 
present in the code clone detection up to a large extent. In our 
method we are using both static and forward dynamic slicing 
to generate program slices. Performing static slicing will 
display all the program statements which affect the value of a 
particular variable at a particular point. Here from the point 
specified, the rest of the source code is checked in a backward 
direction to get the result and the statements are checked in a 
bottom up manner. Using a text based or token based approach 
for clone detection has the defect of having to compare each 
and every line of the program code to detect the code clones 
[1]. By performing slicing as the initial step of code clone 
generation we can overcome this problem to a large extent, as 
slices display only the relevant parts of the program. This is 
one of the strong features of our approach. 

C. Significance of the work 
This section summarises the strengths of our approach. They 
are:- 

• Uses Code Clones for Test Sequence identification 
• Reduction in testing effort 
• Need of Program Slicing in Code Clone detection 
• Slicing avoids unnecessary program checking 
• Applying slicing gives the relevant parts of the 

program 
• Slices give dependence information in the   program  
• Static slices will give all possible Test sequences 
• Interpreting of node values in Code Clones helps to 

generate correct test data values 
 
VI. Conclusion 
 
In our work, we have discussed the identification of test 
sequences from proper identification of code clones present in 
a program. We have also showed how program slicing is 
applied to detect code clones and the relevance of program 
slicing in code clone detection. Program slicing gives an 
overview of the relevant parts of a program and this reduces 
program tester’s effort. Performing both static and forward 
dynamic slicing will give slice statements which gives a 
detailed view of variable dependency present in the source 
program. This in turn helps in test sequence identification. The 
control flow graphs of the slices are constructed and they are 
checked for structural and node content similarity in our 
method. This again strengths the code clone detection 
approach used here.  Here we have provided a method to 
generate test sequence from code clones using program 
slicing. In future we are going to deal with more issues like 

1 

2 

4 9 

5 10 

11 

569  Surendran, Samuel and Jacob



Code Clones in Program Test Sequence Identification  570

improvement in the detection of code clone methods and the 
type of slicing methods used in code clone detection. 

References 

[1] C. K. Roy and J. R. Cordy. A survey on software clone 
detection research. Technical Report 541, Queen’s University 
at Kingston, 2007 

[2] J. Krinke. Is cloned code more stable than non-cloned 
code? In Workshop Source Code Analysis and Manipulation, 
pages 57-66. IEEE CS Press, 2008 

[3] R. Komondoor and S. Horwitz. Using Slicing to Identify 
Duplication in Source Code. In SAS’01, pages 40–56, 2001. 

[4] E. Juergens, F. Deissenboeck, B. Hummel, and 
S.Wagner.Do code clones matter? In ICSE ’09, 2009. 

[5]E. Juergens, F. Deissenboeck, and B. Hummel. Clone 
detection beyond copy & paste. In IWSC’09, 2009 

[6] J. Krinke. A Study of Consistent and Inconsistent Changes 
to Code Clones. In WCRE’07, pages 170–178. IEEE CS, 2007 

[7] M. Weiser, Program Slicing, IEEE Transactions on 
Software Engineering, vol. 10, no. 4, pp. 352-357, July 1984 

 

 

 

 

 

 

 

 

[8] B. Korel, Automated Software Test Data Generation, IEEE 
Transactions on Software Engineering, vol.16, no. 8, 
pp.870-879, August 1990 

[9] B. Korel, Computation of Dynamic Program Slices for 
Unstructured Programs, IEEE Transactions on Software 
Engineering, vol. 23, no.1, pp. 17-34, January 1997 

[10] F. Tip, A Survey of Program Slicing Techniques, Journal 
of Programming Languages, vol 3, no3, pp. 121- 189, 
September 1995 

[11] J. L. Chen; F. J. Wang; Y. L. Chen, An Object-oriented 
Dependency Graph for Program Slicing, Proc. Technology of 
Object-Oriented Languages, pp. 121- 30,September 1997 

[12] K. B. Gallagher, J. R. Lyle, Using Program Slicing in 
Software Maintenance, IEEE Transactions on Software 
Engineering, vol 17, no. 8, pp. 751 – 761, August 1991 

[13] B. Beizer, “Software Testing Techniques”, Second 
Edition, International Thomson Computer Press, 1990, ISBN 
1-85032-880 

[14] C.K. Roy and J. R. Cordy. Near-miss Function Clones in 
Open Source Software: An Empirical Study. Journal of 
Software Maintenance and Evolution: Research and Practice, 
23 pp., 2009 


	I. Introduction
	II. Related work
	III. Basic Terminologies
	A. Reasons for existence of clones in software systems
	B. Code Fragment
	C. Definition (Code Clones)
	D. Categories of code clones
	1) Copy Clones
	2) Renamed Clones
	3) Modified Clones
	4) Interpreted Clones


	IV. Overview of Slicing
	Slicing

	V. Identifying Test Sequences using Code Clones
	A. Need for interpreting control flow graph node contents
	B. Significance of code clones in program testing
	C. Significance of the work


