
Message Integrity in the World Wide Web: Use of
Nested Hash Function and a Fast Stream Cipher

Sheena Mathew
Department ofComputer Science

Cochin University ofScience and Technology
Kochi, Kerala, India

sheenamathew@cusat. ac. in

Abstract-The focus of this work is to provide authentication and
confidentiality of messages in a swift and cost effective manner to
suit the fast growing Internet applications. A nested hash
function with lower computational and storage demands is
designed with a view to providing authentication as also to
encrypt the message as well as the hash code using a fast stream
cipher MAJE4 with a variable key size of 128-bit or 256-bit for
achieving confidentiality. Both nested Hash function and MAJE4
stream cipher algorithm use primitive computational operators
commonly found in microprocessors; this makes the method
simple and fast to implement both in hardware and software.
Since the memory requirement is less, it can be used for
handheld devices for security purposes.

I INTRODUCTION

Due to the prospering use of Internet applications like
e-commerce, ensuring confidentiality, integrity and
authenticity of information have acquired increased
importance [1]. When two parties are communicating over an
insecure channel, they need a method by which the
information sent by the sender can be accepted as
confidential, unmodified and authentic by the receiver. The
confidentiality of the message can be achieved by encrypting
the message by the symmetric key algorithms in
cryptography, which are faster and efficient and use the same
key for both encryption and decryption of data. The integrity
of the message can be verified by hash functions. Hash
function is a function of all the bits of the message. It accepts
a variable size message as input and produces a fixed size
output as the hash code. A change in any bit or bits in the
message results a change in the hash code [2] thus providing
an indication of message tampering. When A sends a message
to B, it appends to the message the hash code, which is
computed using the hash function. After receiving the
message B re-computes the hash code using the same hash
function and compares with the original hash code. If both are
same then B can assure that the message has started off from
the intended sender and it has not been tampered with, during
the transmission.
Common uses of Hash functions include authorization of

financial transactions, mobile communications (GSM and
GSPP) and authentication of Internet communications with
SSL/TLS and IPSec. It is also used as a pseudo random
function. Hash function provides a deterministic mechanism
for generating random seeming bit streams from some input

K. Paulose Jacob
Department ofComputer Science

Cochin University ofScience and Technology
Kochi, Kerala, India

kpj@cusat. ac. in

source without disclosing any information about the input. It
can also be used to give protection against viruses. Viruses
typically modify the host files that they infect, and hence one
way of virus detection involves checking files for signs of
unauthorized modification by computing the authentication
tags from each file [3].

COMPARE

z

Fig. 1. Use of combined hash code and encryption.

As shown in Fig. 1, sender A uses the nested hash function
to compute the hash code H(M) of the message M and
appends it to the message M. Using the 128-bit key K and the

1-4244-0716-8/06/$20.00 ©2006 IEEE. 147

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on February 18, 2009 at 04:04 from IEEE Xplore. Restrictions apply.

fast stream cipher algorithm MAJE4 the message and the hash
code are encrypted as Ek[M 11 H(M)] and sent to the receiver
B. Using the same key K and the fast stream cipher algorithm
MAJE4 the cipher text is decrypted back to produce the
message and the hash code. Now B re-computes the hash code
of the received message using the same nested hash function.
Thus B validates the integrity of the message by comparing
the hash code received from A with that generated by B. If
both hash codes are same then the transmission has happened
securely.

II DESIGN OBJECTIVES

The following factors are considered for the design [4] of
hash function and the stream cipher MAJE4.

A. Hash Function
1) Hash functions can be applied to messages of any

length.
2) It produces an output of fixed length.
3) For any given x, it is easy to compute H(x) making both

hardware and software implementation easy.
4) For any given value h, it is computationally infeasible to

find x such that H(x) = h.
5) For any given block x, it is computationally infeasible to

find y.x with H(y)=H(x).
6) It is computationally infeasible to find any pair (x,y)

such that H(x)=H(y).

B. MAJE4
1) The encryption sequence can have a large period.
2) The key stream can approximate the properties of a true

random stream.
3) MAJE4 is suitable for hardware or software

implementation. It uses only primitive computational
operations commonly found in microprocessors.

4) It is simple and fast. It uses simple algorithm, which is
easy to implement and eases the task of determining the
strength of the algorithm.

5) Low memory requirements make it suitable for handheld
type devices with restricted memory.

6) Mixed operators are used for the design of MAJE4. The
use of more than one arithmetic and / or Boolean operator
complicates cryptanalysis. Primitive operators like + and A are
used since these operators do not commute and hence
cryptanalysis becomes again more difficult.

7) Variable number of rounds are used. An increase in the
number of rounds increases cryptanalytic strength.

Assume the length IMI ofM as a multiple ofm bits, which can
be achieved by a suitable padding. Enough number of zeros
are added to bring the length of message to multiple ofm bits.
The blocks are then processed sequentially using the function
F. The result of the hash function till then and the current
message block are taken as the inputs. This operation is
repeated over the entire message blocks to find the hash code
of the message M at the end.

The following steps are used to compute the hash code.
1) The message is viewed as a collection of 64-bit blocks.

M= M[l],M[2].....M[n] with M[i]=64 bit for i=1,2,.....n.
2) Check whether the length IMI of M is a multiple of 64

bits and whether n is an even number, if not suitably append
enough zeros to bring the length to a multiple of 64 bits and to
make n even.

3) Apply the first function F1 which is the add operation to
the consecutive blocks. (MB[1] =M[1] + M[2], MB[2] =M[3]
+ M[4] and so on till MB[n/2] = MB[n-l]+MB[n].)

4) Apply the second function F2 which is an XOR
operation, to the random initial value and to MB[1] and form
the initial hash code. Then F2 is applied again to the initial
hash code and to MB[2] to form the next hash code and so on
Finally apply F2 on the result of the hash code obtained so

far and to MB[n/2] to form the final hash code H(M) of 64 bit
length.

5) Now H(M) is added with M as the authentication tag.

Fig. 2. Model of a Nested Hash Function

III NESTED HASH FUNCTIONS

The Merkle-Damgaard model is a good one for the design of
hash functions[5,6]. This model simplifies the management of
large inputs and the production of a fixed length output using
a function F. The message is viewed as a collection of m bit
blocks. M= M[l].....M[n] with M[i]=m bits for i=1,2....n.

Fig. 2 represents the steps explained above. The random
initial value used in step 4 provides message integrity
protection and authentication to the hashing process to
compute the hash of the initial message. The recipient can
verify that the message is authentic by using the same random
initial value, which was used to compute the hash code of the

148

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on February 18, 2009 at 04:04 from IEEE Xplore. Restrictions apply.

message. If these hashes match, then the message is believed
to have arrived unchanged from the sender. Thus the initial
random value prevents attackers from making undetectable
changes to the message. As specified in the design factors of
hash function, message of any length can be considered as the
input while the output hash code is of fixed 64-bit length. The
initial value used as K in (1) is random and hence the
attackers will not be able to predict the initial value easily.
The functions F1 and F2 in (1) are ADD and XOR operations
[7] which are easy to implement both in hardware and
software. At the same time the nested usage of operators +
and A complicates cryptanalysis. Mainly the security of the
message authentication mechanism depends on the
cryptographic properties of the hash function H. Here the
non-linearity is obtained when functions F 1 and F2 are nested.
This provides added security.

That is H(M) = F2K(F1(M)) (1)

It is also observed that the length in bits of a message
authentication code is directly related to the number of trials
that an attacker has to perform before a message is accepted.
For a message authentication value of bit length m, the
attacker has to perform on average 2 m-1 random online
message authentication code verifications. The minimum
reasonable length for the message authentication code is 32
bits; this corresponds to about 2 billion trials. Here more
appropriate 64 bits blocks are considered.

IV AFAST STREAMCWIPER -MAJE4

T he following steps are used in MAJE4 stream cipher [8].
One can choose either a 128-bit key or a 256-bit key.
128-bit key: The first four 32 bit words, ie. key[o], key[l],
key[2] and key[3] are considered for storing the key.
256-bit key: The key is stored in eight 32 bit words key[0],
key[p], key[2], key[3], key[4], key[5], key[6] and key[7].

Steps:
1) Assign the key length kl either as 128-bit or 256-bit.
2) if kl = 128 then div=4
else div=8
3) if kl = 128 then consider two lsb's of key[0], find the

decimal equivalent of these two lsb's and store in the
variable 'in'.

else
4) if kl = 256 then consider three lsb's of Key[0], find the

decimal equivalent of these three lsb's and store it in a
variable 'in'.

5) ran =key[0] key[in]
6) if kl = 128 then consider two lsb's of ran, find the

decimal equivalent of that and store in the variable 'inl'.
7) if kl = 256 then consider three lsb's of ran, find the

decimal equivalent of that and store in the variable 'inl'.
8) check the 16th bit in ran,

9) if itis 1 then
newran (key[inl] + key[inl+lmod div]) A(key[inl+2 mod div] + key[inl+3

mod div])

else
newran (key[inl] Akey[inl+lmod div]) + (key[inl+2 mod div] A key[inl+3

mod div])

10) The output 32-bit word is newran, which can be used to
XOR with the corresponding word in the plain text

11) Advance all the keys as
key[i]= key[1] * key[1] + key[1] >>20
12) go to step 3.

This MAJE4 is a 128-bit or 256-bit key algorithm and the
randomness property of the stream cipher is analyzed by using
the five statistical tests like frequency test, serial test, poker
test, runs test and autocorrelation test [9]. All the five
statistical tests are passed by this generator for all the random
streams produced. Hence MAJE4 algorithm can be used very
well for encrypting the message and the hash code as shown
in Fig.1.

V USE OF HASHCODE AND MAJE4

The following are the steps performed for obtaining the
confidentiality and authentication using MAJE4 and nested
hash function.

1) Sender encrypts the message M as well as the hash code
H(M) using 128-bit key K and the fast stream cipher
algorithm MAJE4, then sends it to the receiver.
2) Receiver decrypts the message as well as the hash code
using the same 128-bit key K and MAJE4 algorithm.
3) Receiver re-computes the hash code H(M) over the
message M and checks whether it matches with the received
hash code.
4) If it matches with the hash code, then the message can be
considered to have reached securely. Otherwise it can be
understood that some distortion has happened.

VI RESULTS

TABLE I
TIME TAKEN FOR ENCRYPTION OR DECRYPTION OF FILES OF

VARIOUS SIZES USING MAJE4

File size of
plain text
(bytes)

135094

File size of
cipher text
(bytes)

135094

270728 270728

541608 541608

812440 812440

1082953 1082953

Time taken (Sec.)

Encryption Decryption

0.05 0.05

0.10 0.10

0.20 0.20

0.30 0.30

0.40 0.40

149

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on February 18, 2009 at 04:04 from IEEE Xplore. Restrictions apply.

Tables I to III show the results of time requirements for the
MAJE4 and nested hash code when run with plain texts of
different sizes. The memory sizes of the plain text to be
encrypted, the cipher text, the time taken for encryption and
decryption and the time taken for producing the hash code are
given. The evaluation is done using Pentium IV processor,
Linux operating system and C compiler.

TABLE II
TIME TAKEN FOR PRODUCING THE HASH CODE OF FILES
OF VARIOUS SIZES USING NESTED HASH FUNCTION

In table III it can be seen that only 1/5th of additional time is
required for producing the hash code along with encryption
and decryption. More over if the message size is reasonably
small or upto about 135 kilobytes then the time taken for
producing the hash code is negligible. For large messages the
additional time requirement is very less as shown in Fig. 3.
The memory size required for executable code for nested hash
code is 5899 bytes and for MAJE4 it is 6254 bytes. Hence a
total of nearly 12 Kilobytes memory is enough for providing
both authentication and confidentiality of messages.

Time taken for producing
the hash code (Sec.)

0.01

0.02

0.04

0.06

0.08

TABLE III
TOTAL TIME TAKEN FOR PRODUCING THE HASH CODE
AND ENCRYPTION/DECRYPTION OF FILES OF VARIOUS
SIZES USING NESTED HASH FUNCTION AND MAJE4.

File size of plain
text (bytes)

135094

270728

541608

812440

1082953

Total time taken
for producing the

hash code &
recomputing the
hash code. (Sec.)

0.02

0.04

0.08

0.12

0.16

Total time taken
for encryption and
decryption.(Sec.)

0.10

0.20

0.40

0.60

0.80

1.2

1

0.8

0.6

0.4

0.2

0
135094 270728 541608 812440 1082953

PLAIN TEXT MEMORY SIZE (Bytes)

ENCRYPTION / DECRYPTION * HASH FUNCTION

Fig 3. Total time taken for message authentication and encryption /

decryption

VII CONCLUSION

From the analysis of results it is concluded that message
authentication can be achieved with confidentiality of
message by using a very small increase in time even for too
large messages. The time required for messages with a
memory of upto 135 Kbytes is found negligible. Also the
additional memory size needed for implementing the hash
function is only 5899 bytes. Because of the low memory
requirement, this hash code can be very well used in handheld
devices like mobile phones, personal digital assistants (PDA),
etc. for authentication purposes. Since it is faster, it can be
used for applications that require message integrity and
encryption / decryption of stream of data sent through the
Internet. As advanced cryptography becomes easier to
implement and manage, more companies and organizations
can take advantage of these benefits.

REFERENCES

[1] Mihir Bellare, Ran Canetti, Hugo Krawczyk, "Message
Authentication Using Hash Functions - The MAC Construction",
RSA Laboratories CryptoBytes, Vol.2, No. 1, Spring 1996.

[2] Mihir Bellare, Ran Canetti, Hugo Krawczyk , "Keying Hash
Functions for Message Authentication", Advances in Cryptology -

Crypto 96 Proceedings, Lecturer Notes in Computer Science Vol.
1109, N. Koblitc ed. Springer- Verlag, 1996.

[3] Raphabel C, W.Phan, Aavid Wanger, Journal of Computers &
Security 25(2006), pp 131- 136.

[4] William Stallings, Cryptography and Network Security: Principles
and Practices, Third Edition, Prentice Hall, 2003.

[5] Ivan Damgard, "A design principle for hash functions", InAdvances
in Cryptology - CRYPTO '89 Volume 435 of Lecturer Notes in
Computer Science, Pages 416-427, Berlin, NewYork, Tokyo, 1990,
Springer - Verlag.

[6] Ralph C. Merkle, "One way hash functions and DES", InAdvances in
Cryptology - CRYPTO '89 Volume 435 of Lecturer Notes in
Computer Science, Pages 428-446, Berlin, New York, Tokyo, 1990,
Springer - Verlag.

[7] Mihir Bellare, Roch Guerin, Philip Rogeway, "XOR MACs: New
Methods for Message Authentication using Finite Pseudorandom
Functions", Advances in Cryptology - Crypto 95 Proceedings,
Lecturer Notes in Computer Science Vol. 963, D. Coppersmith ed.
Springer -Verlag, 1995.

[8] Sheena Mathew, K. Paulose Jacob, "A New Fast Stream Cipher:
MAJE4", Proceedings ofIEEE, INDICON 2005, pp 60-63.

[9] D.E.Knuth, The Art ofComputer Programming - Vol. 1.,
Seminumeical Algorithms, Addision Wlesley, 1969.

150

File size of plain text
(bytes)

135094

270728

541608

812440

1082953

01)

z

F-

uJI

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on February 18, 2009 at 04:04 from IEEE Xplore. Restrictions apply.

