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Abstract 

 
In recent years, reversible logic has emerged as one 

of the most important approaches for power 
optimization with its application in low power CMOS, 
nanotechnology and quantum computing. This research 
proposes quick addition of decimals (QAD) suitable for 
multi-digit BCD addition, using reversible conservative 
logic. The design makes use of reversible fault tolerant 
Fredkin gates only. The implementation strategy is to 
reduce the number of levels of delay there by increasing 
the speed, which is the most important factor for high 
speed circuits.  

 
Index Terms- decimal arithmetic, delay reduction, 

fault detection, reversible logic 
 

 
1. Introduction 

 
Energy loss during computation is an important 

consideration in low power digital design. Landauer’s 
principle states that a heat equivalent to kT*ln2 is 
generated for every bit of information lost, where k is 
the Boltzmann’s constant and T is the temperature [1]. 
At room temperature though the amount of heat 
generated may be small it cannot be neglected for low 
power designs. The amount of energy dissipated in a 
system bears a direct relationship to the number of bits 
erased during computation. Bennett showed that energy 
dissipation would not occur if the computations were 
carried out using reversible circuits [2] since these 
circuits do not lose information. A reversible logic gate 
is an n-input, n-output (denoted as n*n) device that 
maps each possible input pattern to a unique output 
pattern. There is a significant difference in the synthesis 
of logic circuits using conventional gates and reversible 
gates [3]. While constructing reversible circuits with the 
help of reversible gates fan-out of each output must be 
1 without feedback loops. As the number of inputs and 
outputs are made equal there may be a number of 
unutilized outputs in certain reversible 

implementations. The unutilized outputs from a 
reversible gate/circuit are called “garbage”. This is the 
number of outputs added to make an n-input k-output 
function reversible. For example, a single output 
function of ‘n’ variables will require at least n-1 
garbage outputs. Classical logic gates such as AND, 
OR, and XOR are not reversible. Hence, these gates 
dissipate heat and may reduce the life of the circuit. So, 
reversible logic is in demand in high-speed power 
aware circuits. In recent years, reversible logic has 
emerged as one of the most important approaches for 
power optimization with its application in low power 
CMOS, nanotechnology and quantum computing. 

A reversible conventional Binary Coded Decimal 
(BCD) adder was proposed in [4] using NG (New Gate)   
and NTG (New Toffoli Gate) reversible gates. Even 
though the implementation was improved in [5] using 
TSG reversible gates, this approach is not taking care of 
the fan-out restriction of reversible circuits, and hence it 
is only a near-reversible implementation. These 
implementations were for the conventional BCD adder 
which is slow. Currently fast decimal arithmetic is 
rapidly gaining popularity in the computing community 
due to the growing importance of commercial, 
financial, and internet-based applications, which 
process decimal data.  

Fault detection can be done by using parity-
preserving reversible logic gates. The feasibility of the 
parity-preserving approach in design of reversible logic 
circuits was demonstrated by B. Parhami [6] with 
examples of adder circuits. Parity checking is one of the 
oldest, as well as one of the most widely used, methods 
for error detection in digital systems. The parity 
preservation proves useful for ensuring the robustness 
of reversible logic circuits.  

In this research, an adder for quick addition of 
decimals (QAD) suitable for multi-digit BCD addition 
is implemented using parity preserving reversible 
Fredkin gates. Fredkin gates are conservative reversible 
gates. A gate is conservative if the Hamming weight 
(number of logical ones) of its input equals the 
Hamming weight of its output. If a gate is conservative 
and reversible then it is parity preserving.  
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 The organization of this paper is as follows: Initially, 
the design of the proposed BCD adder for ‘Quick 
Addition of Decimals’ (QAD) is done. The necessary 
background on parity preserving reversible logic gates 
is given. The proposed QAD adder is then designed 
using parity preserving reversible gates only so that 
fault detection can be done. It is also demonstrated that 
the proposed design is highly optimized in terms of 
number of levels of reversible gate delays. A graphical 
delay analysis of different implementations is also 
presented. 

 
2. Quick Decimal Adder 
 

The proposed BCD adder shown in Figure 1 consists 
of a 4-bit binary adder, a 6-correction circuit, and a 
modified special adder along with a circuit (3-input 
AND, 2-input OR) to generate decimal carry out (dcout). 
 

 
 

Figure 1: BCD adder for Quick Addition of 
Decimals (QAD) 

 

 The 4-bit binary adder, consisting of 3 full adders 
and 1 half-adder, adds the BCD inputs and generates a 
binary sum, S (S3-0). This output is checked for a value 
greater than ‘9’ or for a carry out, by the 6-correction 
circuit and generates a ‘6-correction’ bit, ‘L’ using (1). 
 
L= Cout + S3 (S1+S2)                       (1) 

 
The circuit requires the carry from the previous stage 

(Cin) only after this level. On receiving Cin the circuit 
checks whether the sum, S is ‘9’ and Cin is ‘1’. It then 
generates ‘K’ bit using (2).    

 
K = S3S0Cin + L                                             (2) 

       
The inputs to the second adder are S (S3-0) and 4-bit 

number, N (N3-0) whose value is depending on ‘K’ and 
‘Cin’ as given below.  

 
If  K=1 then  N=6 (01102) if Cin=‘0’ 
        N=7 (01112) if Cin=‘1’ 
             else  N=0 (00002) if Cin=‘0’ 
        N=1 (00012) if Cin=‘1’ 
 

So N3 is always zero. N2 and N1 is K-bit and N0 is 
‘Cin’. To reduce the hardware and to increase the speed 
of the circuit, the final adder stage (4-bit special adder) 
is a modified version of the 4-bit binary adder 
consisting of a half adder, 2 full adders and an XOR 
gate. The implementation of the special adder is shown 
in Fig. 1.  

 
3. 4-Digit Quick Decimal Adder 

 
This adder accepts two 4 digit decimal numbers as 

inputs in BCD (16 bits) and generates the BCDsum. 
Figure 2 shows the 4-digit QAD implementation. The 
shaded parts indicate the critical path.  
 

 
 

Figure 2: Proposed 4-Digit Quick Decimal Adder 
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The first stage addition is carried out in parallel for 
all digits and a ‘6-correction’ bit (Li) is generated 
simultaneously by all the stages.  So, the delay up to 
this stage is given as  

 
Tdelay = Tadder + T6-correction                                             (3) 

 
where Tadder is the delay of the 4-bit binary adder and     
T6-correction  is the delay of 6-correction circuit 

On receiving the Cin, the Decimal Cout bit (Ki) is 
generated after the delay of a 3-input AND gate and a 
2-input OR gate at each stage as given in (4). 

 
Tdcout = Tand + Tor                               (4) 

 
So, for a 4-digit adder the delay in generating 

Decimal Cout (dcout) after receiving Cin is 4Tdcout. In 
general, for an ‘m’ digit BCD adder the delay for 
generating the Decimal Cout (dcout) after receiving ‘Cin’ 
is mTdcout. The total delay of the m-digit adder is given 
in (5). 

 
Tmdigit = Tadder + T6-correction + mTdcout + Tsp-adder             (5) 
where Tsp-adder  is the delay of the special adder. 
 

The total delay for an m-digit ‘Quick Decimal Adder’ 
is ‘m’ times the delay of the additional logic required 
(which is a 3-input AND and a 2-input OR) along with 
the complete delay of single stage BCD adder which is  

 
T1stage= (Tadder + T6-correction + Tsp-adder).              (6) 

 
Table 1 shows a comparison of conventional BCD 

adder and the quick decimal adder in terms of area and 
critical path delay done with the logic synthesis tool 
Leonardo Spectrum from Mentor Graphics Corporation 
using ASIC Library. The critical path delay and area are 
normalized with respect to a full adder critical path 
delay of 1.98 ns and area of 38µm2.  

 
TABLE 1: Simulation Results of BCD Adders 

 
 

BCD Adder 
 

 
Critical path Delay 

(ns)  
 

 
Area  
(µm2) 

 
Conventional BCD 

Adder (1 digit) 

 
5.83 

 
179 

 
Conventional BCD 

Adder (4 digit) 

 
14.59 

 
690 

 
QAD (1 digit) 

 

 
5.95 

 
192 

 
 QAD (4 digit) 

 

 
12.06 

 
742 

Figure 3 shows the graphical analysis of area-delay 
product normalized to that of a full adder. It can be seen 
from the Figure 4 that there is a significant reduction in 
area-delay product for the proposed BCD adder 
compared to conventional implementation as number of 
bits increases above 8. 
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Figure 3: Analysis of area-delay product of 
conventional BCD and QAD adders 
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Figure 4: Reduction in area-delay product of QAD 
over BCD adders 

 
4. Reversible Gates 

 
This section describes parity preserving reversible 

logic gates. Figure 5 shows a Feynman Double Gate 
(F2G) [6, 7] which can be used as an XOR gate or as a 
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copying gate.  Figure 6 shows a Fredkin Gate (FRG) 
[8]. These two parity preserving reversible gates satisfy 
the condition A B C=P Q R. In general, a parity 
preserving reversible gate is a gate in which the 
following condition is valid. 

 
∑Xi = ∑Yi                              (7) 

 
where X indicates an input, Y an output and ‘i’ 
indicates the number of inputs or outputs of the 
reversible gate. 

 
Figure 5: Feynman Double Gate (F2G) 

 

 
 

Figure 6: Fredkin Gate (FRG) 
 

5.  Parity Preserving Reversible Quick 
Decimal Adder 

 
Recently, the reversible implementations of the 

conventional BCD adders were proposed by Hafiz [4] 
and Thapliyal [5]. But these implementations make use 
of reversible gates other than parity preserving gates 
also and hence are not fault tolerant implementations. 
The proposed reversible implementation of the quick 
decimal adder is done using Fredkin gates. The basic 
component of any adder is a full adder. A number of 
parity preserving reversible full adders are available in 
literature [6, 9]. Figure 7 and Figure 8 show the 
implementation of a half adder and a full adder using 
parity preserving Fredkin gates. 

The full adder implementation in Figure 8 requires 
only 5 Fredkin gates at 3 levels, compared to 3 level 6 
gate (5 Fredkin gates and 1 Feynman gate) 
implementation in [6], and 5 level 5 Fredkin gate 
implementation in [9] while observing the fanout 
restrictions. 

 
 
 
 
 
 
 

 
Figure 7: Half adder using Fredkin Gates 

 
 
 
 
 
 
 
 
 
 

Figure 8: Full adder using Fredkin Gates 
 

The 4-bit binary adder realized using one half 
adder and 3 full adders will achieve a reduced delay by 
using these implementations. The least significant half 
adder requires a path delay of two FRGs to generate C0 
from the addends. Then the carry ripples through the 
subsequent full adders with a path delay of two FRGs 
per bit. This is because the first Fredkin gates of all full 
adders work in parallel with the first Fredkin gate of 
half adder in an n-bit binary adder. But in the 
implementation in [6] delay is of 3 levels. So an 
advantage of 1delay level/bit is achieved in the 
proposed implementation. The delay to generate Cout in 
the ‘n’ bit binary adder is  
d c-ripple= 2+2(n-1)                              (8) 

 
For a conventional n-bit adder which makes use of full 
adder in [6] it is  
d c-ripple (conventional) = 3n                             (9) 

 
For a BCD adder this delay is the delay with n=4 

for each digit. In QAD adder, since all digits are added 
in parallel the delay remains the same as the delay of a 
single digit for ‘m’ digit addition. 

The parity preserving reversible implementation of 
the 6-correction circuit is shown in Figure 9. The 
implementation requires 3 FRGs to generate the L 
output where L=Cout+S3 (S1+S2). This circuit takes only 
2 more delays after generating the Sum to generate the 
L bit. The delay to generate L bit from the inputs for 
QAD adder is as given in (10)  
dL= 4+2(n-1)                            (10) 

 
The delay for ‘L’ bit generation for conventional 

BCD adders is given in (11). 
d L (conventional) = 2+3n                                         (11) 

 
 
 
 
 
 

 
Figure 9: Generation of ‘L’ bit using Fredkin Gates 
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Figure 10 shows the reversible implementation for 
generating Decimal Cout (dcout) or K-bit. The design 
makes use of three FRGs. It is seen that the first gate 
generate S3S0 as soon as the sum output ‘S’ is produced. 
When Cin is received the next two FRGs generate the 
Decimal Cout or K-bit. So, the additional delay in each 
stage is due to the two FRGs only. For an ‘m’ digit 
BCD addition the delay for the generation of K bit or 
Decimal Cout from the BCD inputs is  
dd-cout= 4+2(n-1) +2m                           (12) 

 
 
 
 
 
 
 
 

Figure 10: Generation of ‘K’ bit using Fredkin 
Gates 

 
Special adder implemented using one half adder, 

two full adders and one XOR gate requires 15 Fredkin 
gates (3 for half adder, 5 for each full adder, 2 for XOR 
gate) to generate the BCD sum d3-0. If the XOR gate is 
implemented by one F2G gate then the number of gates 
reduces to 14. For achieving a VLSI implementation, a 
design using only one type of standard reversible gate 
as the basic building block is to be adopted. So the use 
of Fredkin gates only makes this design suitable for a 
VLSI implementation. The Decimal Cout or the ‘K’ bit 
is the input to be received last for the special adder. The 
‘K’ input passes through a maximum of 5 Fredkin gates 
to generate the BCD sum d3-0. So the special adder 
gives an additional delay of 5 Fredkin gates. The total 
delay in generating the BCD sum (d3-0) from the inputs 
in terms of Fredkin gate delay is 
dd-sum= 9+2(n-1) +2m                              (13) 

 
For a conventional BCD adder the final adder is a 

4-bit binary adder with delay as given in equation (9) 
with ‘n’=4. So the total delay given by an ‘m’ digit 
conventional BCD adder is  
d d-sum (conventional) = (2+3n + 3n)m  = (2+6n)m            (14) 

 
The delay can be further reduced by adopting carry 

select technique for the ‘K’ bit generation. ‘K’ bit is 
computed in advance for Cin=1 and Cin=0 before 
receiving the actual Cin. Let K1 denote the ‘K’ bit with 
Cin = 1 and K0 with Cin = 0. K1 and K0 are generated 
using (15) and (16). 

 
K1=S3.S0+L                             (15) 
K0=L                                                        (16) 

Figure 11 shows the generation of ‘K’ bit or the 
Decimal Cout. The generation of K1 and K0 takes the 
delay of only one Fredkin gate after receiving ‘L’ bit as 
seen in Figure 11. After computing both values (K1 and 
K0) a selection is done by a single FRG. Since an FRG 
works as a 2:1 multiplexer with ‘A’ input as control 
input and ‘B’ and ‘C’ inputs as data inputs, the 
selection of K0 or K1 can be done with one FRG. So, 
the additional delay in each stage to generate ‘K’ bit 
after receiving Cin is due to one FRG only, where as for 
the implementation in Figure 10 it is of two FRGs. 

 
 
 
 
 
 
 

 
Figure 11: Generation of ‘K’ bit using K0 and K1 

 
Now the delay gets modified as 

dd-cout-carry select= 5+2(n-1) +m                          (17) 
 

But in this implementation Cin is received by the 
special adder along with the ‘K’ bit only. On receiving 
Cin the half adder of the special adder generates the 
carry bit after one Fredkin gate delay. So the special 
adder gives an additional delay of 6 Fredkin gates. 
dd-sum-carry select= 11+2(n-1) +m                          (18) 

 
It is seen that no additional gates are required for 

carry select design and gives an implementation with 
reduced delay also.  

Figure 12 shows the delay analysis of conventional 
BCD adder; quick decimal adder and the QAD carry 
select reversible implementations normalized to that of 
a Fredkin gate.  

 
6. Conclusion and Future Work 

 
A reversible fault tolerant logic for quick addition 

of decimals (QAD) suitable for multi-digit BCD 
addition is presented. This work forms an initial step in 
the building of complex reversible systems, which can 
execute more complicated operations. The reversible 
circuit proposed here forms the basis of a Decimal ALU 
for a reversible CPU. The proposed Decimal adder has 
4 advantages: 

(i) Reduced delay by using the technique of quick 
addition of decimals (QAD). 

(ii) The use of reversible gates makes it a low 
power implementation. 
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(iii) The approach provides a path of incorporating 
fault detection by using parity preserving reversible 
Fredkin gates. 

(iv) The use of only one type of modular building 
block (Fredkin gates) makes this suitable for a VLSI 
design.  

VLSI implementations using only one type of 
modular building blocks can decrease system design 
and manufacturing cost. Implementations using other 
standard reversible gates such as TSG [10] or Toffoli 
[3] gates can also be tried. But these are not parity 
preserving gates and hence will not give a fault tolerant 
implementation. Characterization of new families of ‘n-
input’ – ‘n-output’ reversible gates that can be used for 
regular structures is an area, which can be explored 
further.  

In this research, a known traditional logic 
implementation for BCD adder was modified to get a 
delay reduction for multi-digit addition, and then each 
of the internal elements was replaced with reversible 
equivalents. Further investigation into determining 
alternate implementations can be done using logic 
synthesis methods [11, 12, 13, 14]. Additionally, it was 
noted that there is lack of simulation tools that support 

reversible gates, and this is most definitely an area 
worthy of attention.  
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Figure. 12: Delay analysis of reversible BCD 
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