
Quick Addition of Decimals using Reversible Conservative Logic

Rekha K. James, Shahana T. K, K. Poulose Jacob Sreela Sasi

 Cochin University of Science and Technology Gannon University
 Kochi, Kerala, India Erie, PA, USA

 E-mail:{rekhajames, shahanatk, kpj}@cusat.ac.in sasi001@gannon.edu

Abstract

In recent years, reversible logic has emerged as one

of the most important approaches for power
optimization with its application in low power CMOS,
nanotechnology and quantum computing. This research
proposes quick addition of decimals (QAD) suitable for
multi-digit BCD addition, using reversible conservative
logic. The design makes use of reversible fault tolerant
Fredkin gates only. The implementation strategy is to
reduce the number of levels of delay there by increasing
the speed, which is the most important factor for high
speed circuits.

Index Terms- decimal arithmetic, delay reduction,

fault detection, reversible logic

1. Introduction

Energy loss during computation is an important

consideration in low power digital design. Landauer’s
principle states that a heat equivalent to kT*ln2 is
generated for every bit of information lost, where k is
the Boltzmann’s constant and T is the temperature [1].
At room temperature though the amount of heat
generated may be small it cannot be neglected for low
power designs. The amount of energy dissipated in a
system bears a direct relationship to the number of bits
erased during computation. Bennett showed that energy
dissipation would not occur if the computations were
carried out using reversible circuits [2] since these
circuits do not lose information. A reversible logic gate
is an n-input, n-output (denoted as n*n) device that
maps each possible input pattern to a unique output
pattern. There is a significant difference in the synthesis
of logic circuits using conventional gates and reversible
gates [3]. While constructing reversible circuits with the
help of reversible gates fan-out of each output must be
1 without feedback loops. As the number of inputs and
outputs are made equal there may be a number of
unutilized outputs in certain reversible

implementations. The unutilized outputs from a
reversible gate/circuit are called “garbage”. This is the
number of outputs added to make an n-input k-output
function reversible. For example, a single output
function of ‘n’ variables will require at least n-1
garbage outputs. Classical logic gates such as AND,
OR, and XOR are not reversible. Hence, these gates
dissipate heat and may reduce the life of the circuit. So,
reversible logic is in demand in high-speed power
aware circuits. In recent years, reversible logic has
emerged as one of the most important approaches for
power optimization with its application in low power
CMOS, nanotechnology and quantum computing.

A reversible conventional Binary Coded Decimal
(BCD) adder was proposed in [4] using NG (New Gate)
and NTG (New Toffoli Gate) reversible gates. Even
though the implementation was improved in [5] using
TSG reversible gates, this approach is not taking care of
the fan-out restriction of reversible circuits, and hence it
is only a near-reversible implementation. These
implementations were for the conventional BCD adder
which is slow. Currently fast decimal arithmetic is
rapidly gaining popularity in the computing community
due to the growing importance of commercial,
financial, and internet-based applications, which
process decimal data.

Fault detection can be done by using parity-
preserving reversible logic gates. The feasibility of the
parity-preserving approach in design of reversible logic
circuits was demonstrated by B. Parhami [6] with
examples of adder circuits. Parity checking is one of the
oldest, as well as one of the most widely used, methods
for error detection in digital systems. The parity
preservation proves useful for ensuring the robustness
of reversible logic circuits.

In this research, an adder for quick addition of
decimals (QAD) suitable for multi-digit BCD addition
is implemented using parity preserving reversible
Fredkin gates. Fredkin gates are conservative reversible
gates. A gate is conservative if the Hamming weight
(number of logical ones) of its input equals the
Hamming weight of its output. If a gate is conservative
and reversible then it is parity preserving.

15th International Conference on Advanced Computing and Communications

0-7695-3059-1/07 $25.00 © 2007 IEEE
DOI 10.1109/ADCOM.2007.94

191

 The organization of this paper is as follows: Initially,
the design of the proposed BCD adder for ‘Quick
Addition of Decimals’ (QAD) is done. The necessary
background on parity preserving reversible logic gates
is given. The proposed QAD adder is then designed
using parity preserving reversible gates only so that
fault detection can be done. It is also demonstrated that
the proposed design is highly optimized in terms of
number of levels of reversible gate delays. A graphical
delay analysis of different implementations is also
presented.

2. Quick Decimal Adder

The proposed BCD adder shown in Figure 1 consists
of a 4-bit binary adder, a 6-correction circuit, and a
modified special adder along with a circuit (3-input
AND, 2-input OR) to generate decimal carry out (dcout).

Figure 1: BCD adder for Quick Addition of
Decimals (QAD)

 The 4-bit binary adder, consisting of 3 full adders
and 1 half-adder, adds the BCD inputs and generates a
binary sum, S (S3-0). This output is checked for a value
greater than ‘9’ or for a carry out, by the 6-correction
circuit and generates a ‘6-correction’ bit, ‘L’ using (1).

L= Cout + S3 (S1+S2) (1)

The circuit requires the carry from the previous stage

(Cin) only after this level. On receiving Cin the circuit
checks whether the sum, S is ‘9’ and Cin is ‘1’. It then
generates ‘K’ bit using (2).

K = S3S0Cin + L (2)

The inputs to the second adder are S (S3-0) and 4-bit

number, N (N3-0) whose value is depending on ‘K’ and
‘Cin’ as given below.

If K=1 then N=6 (01102) if Cin=‘0’
 N=7 (01112) if Cin=‘1’
 else N=0 (00002) if Cin=‘0’
 N=1 (00012) if Cin=‘1’

So N3 is always zero. N2 and N1 is K-bit and N0 is
‘Cin’. To reduce the hardware and to increase the speed
of the circuit, the final adder stage (4-bit special adder)
is a modified version of the 4-bit binary adder
consisting of a half adder, 2 full adders and an XOR
gate. The implementation of the special adder is shown
in Fig. 1.

3. 4-Digit Quick Decimal Adder

This adder accepts two 4 digit decimal numbers as

inputs in BCD (16 bits) and generates the BCDsum.
Figure 2 shows the 4-digit QAD implementation. The
shaded parts indicate the critical path.

Figure 2: Proposed 4-Digit Quick Decimal Adder

192

The first stage addition is carried out in parallel for
all digits and a ‘6-correction’ bit (Li) is generated
simultaneously by all the stages. So, the delay up to
this stage is given as

Tdelay = Tadder + T6-correction (3)

where Tadder is the delay of the 4-bit binary adder and
T6-correction is the delay of 6-correction circuit

On receiving the Cin, the Decimal Cout bit (Ki) is
generated after the delay of a 3-input AND gate and a
2-input OR gate at each stage as given in (4).

Tdcout = Tand + Tor (4)

So, for a 4-digit adder the delay in generating

Decimal Cout (dcout) after receiving Cin is 4Tdcout. In
general, for an ‘m’ digit BCD adder the delay for
generating the Decimal Cout (dcout) after receiving ‘Cin’
is mTdcout. The total delay of the m-digit adder is given
in (5).

Tmdigit = Tadder + T6-correction + mTdcout + Tsp-adder (5)
where Tsp-adder is the delay of the special adder.

The total delay for an m-digit ‘Quick Decimal Adder’
is ‘m’ times the delay of the additional logic required
(which is a 3-input AND and a 2-input OR) along with
the complete delay of single stage BCD adder which is

T1stage= (Tadder + T6-correction + Tsp-adder). (6)

Table 1 shows a comparison of conventional BCD

adder and the quick decimal adder in terms of area and
critical path delay done with the logic synthesis tool
Leonardo Spectrum from Mentor Graphics Corporation
using ASIC Library. The critical path delay and area are
normalized with respect to a full adder critical path
delay of 1.98 ns and area of 38µm2.

TABLE 1: Simulation Results of BCD Adders

BCD Adder

Critical path Delay

(ns)

Area
(µm2)

Conventional BCD

Adder (1 digit)

5.83

179

Conventional BCD

Adder (4 digit)

14.59

690

QAD (1 digit)

5.95

192

 QAD (4 digit)

12.06

742

Figure 3 shows the graphical analysis of area-delay
product normalized to that of a full adder. It can be seen
from the Figure 4 that there is a significant reduction in
area-delay product for the proposed BCD adder
compared to conventional implementation as number of
bits increases above 8.

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

No: of bits
ar

ea
 d

el
ay

 p
ro

du
ct

 n
or

m
al

iz
ed

 t
o

a
fu

ll
ad

de
r

Analysis of bcd and qad adders

bcd

qad

Figure 3: Analysis of area-delay product of
conventional BCD and QAD adders

0 5 10 15 20 25 30 35 40
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

A
re

a-
de

la
y

re
du

ct
io

n
fa

ct
or

No: of bits

Reduction in area-delay product

Figure 4: Reduction in area-delay product of QAD
over BCD adders

4. Reversible Gates

This section describes parity preserving reversible

logic gates. Figure 5 shows a Feynman Double Gate
(F2G) [6, 7] which can be used as an XOR gate or as a

193

copying gate. Figure 6 shows a Fredkin Gate (FRG)
[8]. These two parity preserving reversible gates satisfy
the condition A B C=P Q R. In general, a parity
preserving reversible gate is a gate in which the
following condition is valid.

∑Xi = ∑Yi (7)

where X indicates an input, Y an output and ‘i’
indicates the number of inputs or outputs of the
reversible gate.

Figure 5: Feynman Double Gate (F2G)

Figure 6: Fredkin Gate (FRG)

5. Parity Preserving Reversible Quick
Decimal Adder

Recently, the reversible implementations of the

conventional BCD adders were proposed by Hafiz [4]
and Thapliyal [5]. But these implementations make use
of reversible gates other than parity preserving gates
also and hence are not fault tolerant implementations.
The proposed reversible implementation of the quick
decimal adder is done using Fredkin gates. The basic
component of any adder is a full adder. A number of
parity preserving reversible full adders are available in
literature [6, 9]. Figure 7 and Figure 8 show the
implementation of a half adder and a full adder using
parity preserving Fredkin gates.

The full adder implementation in Figure 8 requires
only 5 Fredkin gates at 3 levels, compared to 3 level 6
gate (5 Fredkin gates and 1 Feynman gate)
implementation in [6], and 5 level 5 Fredkin gate
implementation in [9] while observing the fanout
restrictions.

Figure 7: Half adder using Fredkin Gates

Figure 8: Full adder using Fredkin Gates

The 4-bit binary adder realized using one half
adder and 3 full adders will achieve a reduced delay by
using these implementations. The least significant half
adder requires a path delay of two FRGs to generate C0
from the addends. Then the carry ripples through the
subsequent full adders with a path delay of two FRGs
per bit. This is because the first Fredkin gates of all full
adders work in parallel with the first Fredkin gate of
half adder in an n-bit binary adder. But in the
implementation in [6] delay is of 3 levels. So an
advantage of 1delay level/bit is achieved in the
proposed implementation. The delay to generate Cout in
the ‘n’ bit binary adder is
d c-ripple= 2+2(n-1) (8)

For a conventional n-bit adder which makes use of full
adder in [6] it is
d c-ripple (conventional) = 3n (9)

For a BCD adder this delay is the delay with n=4

for each digit. In QAD adder, since all digits are added
in parallel the delay remains the same as the delay of a
single digit for ‘m’ digit addition.

The parity preserving reversible implementation of
the 6-correction circuit is shown in Figure 9. The
implementation requires 3 FRGs to generate the L
output where L=Cout+S3 (S1+S2). This circuit takes only
2 more delays after generating the Sum to generate the
L bit. The delay to generate L bit from the inputs for
QAD adder is as given in (10)
dL= 4+2(n-1) (10)

The delay for ‘L’ bit generation for conventional

BCD adders is given in (11).
d L (conventional) = 2+3n (11)

Figure 9: Generation of ‘L’ bit using Fredkin Gates

F2G

A
B
C

P=A
Q=A B
R=A C

FRG

A
B
C

P=A
Q=A’B AC
R=AB A’C

F F

A

0

B
1
0

F
 AB=Carry

 A B=Sum

A
F

C
1
0

F
 Carry

 Sum F F
B
1
0

F

F

F

F

S1
S2
1 L

S3

0 1

S3 Cout

194

Figure 10 shows the reversible implementation for
generating Decimal Cout (dcout) or K-bit. The design
makes use of three FRGs. It is seen that the first gate
generate S3S0 as soon as the sum output ‘S’ is produced.
When Cin is received the next two FRGs generate the
Decimal Cout or K-bit. So, the additional delay in each
stage is due to the two FRGs only. For an ‘m’ digit
BCD addition the delay for the generation of K bit or
Decimal Cout from the BCD inputs is
dd-cout= 4+2(n-1) +2m (12)

Figure 10: Generation of ‘K’ bit using Fredkin
Gates

Special adder implemented using one half adder,

two full adders and one XOR gate requires 15 Fredkin
gates (3 for half adder, 5 for each full adder, 2 for XOR
gate) to generate the BCD sum d3-0. If the XOR gate is
implemented by one F2G gate then the number of gates
reduces to 14. For achieving a VLSI implementation, a
design using only one type of standard reversible gate
as the basic building block is to be adopted. So the use
of Fredkin gates only makes this design suitable for a
VLSI implementation. The Decimal Cout or the ‘K’ bit
is the input to be received last for the special adder. The
‘K’ input passes through a maximum of 5 Fredkin gates
to generate the BCD sum d3-0. So the special adder
gives an additional delay of 5 Fredkin gates. The total
delay in generating the BCD sum (d3-0) from the inputs
in terms of Fredkin gate delay is
dd-sum= 9+2(n-1) +2m (13)

For a conventional BCD adder the final adder is a

4-bit binary adder with delay as given in equation (9)
with ‘n’=4. So the total delay given by an ‘m’ digit
conventional BCD adder is
d d-sum (conventional) = (2+3n + 3n)m = (2+6n)m (14)

The delay can be further reduced by adopting carry

select technique for the ‘K’ bit generation. ‘K’ bit is
computed in advance for Cin=1 and Cin=0 before
receiving the actual Cin. Let K1 denote the ‘K’ bit with
Cin = 1 and K0 with Cin = 0. K1 and K0 are generated
using (15) and (16).

K1=S3.S0+L (15)
K0=L (16)

Figure 11 shows the generation of ‘K’ bit or the
Decimal Cout. The generation of K1 and K0 takes the
delay of only one Fredkin gate after receiving ‘L’ bit as
seen in Figure 11. After computing both values (K1 and
K0) a selection is done by a single FRG. Since an FRG
works as a 2:1 multiplexer with ‘A’ input as control
input and ‘B’ and ‘C’ inputs as data inputs, the
selection of K0 or K1 can be done with one FRG. So,
the additional delay in each stage to generate ‘K’ bit
after receiving Cin is due to one FRG only, where as for
the implementation in Figure 10 it is of two FRGs.

Figure 11: Generation of ‘K’ bit using K0 and K1

Now the delay gets modified as

dd-cout-carry select= 5+2(n-1) +m (17)

But in this implementation Cin is received by the
special adder along with the ‘K’ bit only. On receiving
Cin the half adder of the special adder generates the
carry bit after one Fredkin gate delay. So the special
adder gives an additional delay of 6 Fredkin gates.
dd-sum-carry select= 11+2(n-1) +m (18)

It is seen that no additional gates are required for

carry select design and gives an implementation with
reduced delay also.

Figure 12 shows the delay analysis of conventional
BCD adder; quick decimal adder and the QAD carry
select reversible implementations normalized to that of
a Fredkin gate.

6. Conclusion and Future Work

A reversible fault tolerant logic for quick addition

of decimals (QAD) suitable for multi-digit BCD
addition is presented. This work forms an initial step in
the building of complex reversible systems, which can
execute more complicated operations. The reversible
circuit proposed here forms the basis of a Decimal ALU
for a reversible CPU. The proposed Decimal adder has
4 advantages:

(i) Reduced delay by using the technique of quick
addition of decimals (QAD).

(ii) The use of reversible gates makes it a low
power implementation.

F

F
F

S3
S0
0

 K=Decimal Cout

S3 Cin

0 1

 Cin
 L

F

F

S3
S0
0

S3 L

1

 K=Decimal Cout

F

K0

K1

 Cin Cin

195

(iii) The approach provides a path of incorporating
fault detection by using parity preserving reversible
Fredkin gates.

(iv) The use of only one type of modular building
block (Fredkin gates) makes this suitable for a VLSI
design.

VLSI implementations using only one type of
modular building blocks can decrease system design
and manufacturing cost. Implementations using other
standard reversible gates such as TSG [10] or Toffoli
[3] gates can also be tried. But these are not parity
preserving gates and hence will not give a fault tolerant
implementation. Characterization of new families of ‘n-
input’ – ‘n-output’ reversible gates that can be used for
regular structures is an area, which can be explored
further.

In this research, a known traditional logic
implementation for BCD adder was modified to get a
delay reduction for multi-digit addition, and then each
of the internal elements was replaced with reversible
equivalents. Further investigation into determining
alternate implementations can be done using logic
synthesis methods [11, 12, 13, 14]. Additionally, it was
noted that there is lack of simulation tools that support

reversible gates, and this is most definitely an area
worthy of attention.

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

No: of digits

D
el

ay
 n

or
m

al
iz

ed
 t

o
a

F
ed

ki
n

ga
te

 [
lo

g
(d

el
ay

)]

Delay analysis of reversible BCD adders

conventional BCD adder

QAD BCD adder
QAD with carry select

Figure. 12: Delay analysis of reversible BCD
adders

7. References

[1] R. Landauer, “Irreversibility and Heat Generation in the
Computational Process”, IBM Journal of Research
Development, 5, pp.183-191, 1961.

[2] Bennett, C., “Logical Reversibility of Computation,” IBM
Journal of Research and Development,17, pp.525-532, 1973.

[3] T. Toffoli., “Reversible Computing”, Tech memo
MIT/LCS/TM-151, MIT Lab for Computer Science, 1980.

[4] Md. Hafiz Hasan Babu and A. R. Chowdhury, "Design of
a Reversible Binary Coded Decimal Adder by Using
Reversible 4-bit Parallel Adder”, VLSI Design ‘05, pp.255-
260, Jan 2005.

[5] H. Thapliyal, S. Kotiyal and M.B Srinivas, “Novel BCD
Adders and their Reversible Logic Implementation for IEEE
754r Format”, 19th International Conference on VLSI Design
(VLSI Design 2006), pp. 387-392, Jan 2006.

[6] B. Parhami; “Fault Tolerant Reversible Circuits” Proc.
40th Asilomar Conf. Signals, Systems, and Computers,
Pacific Grove, CA, October 2006.

[7] R. Feynman, “Quantum Mechanical Computers”, Optical
News, 1985, pp.11-20.

[8] E. Fredkin and T. Toffoli, “Conservative logic”, Intl. J.
Theoretical Physics, Vol 21, 1982, pp. 219-253.

[9] J.W. Bruce, M.A. Thornton, L. Shivakumariah, P.S.
Kokate, X.Li, "Efficient Adder Circuits Based on a
Conservative Logic Gate", Proceedings of the IEEE
Computer Society Annual Symposium on VLSI, April 2002,
PA, USA, pp 83-88.

[10] H. Thapliyal and M.B Srinivas, “A Novel Reversible
TSG Gate and Its Application for Designing Reversible Carry
Look-Ahead and Other Adder Architectures”, Tenth Asia-
Pacific Computer Systems Architecture Conference,
Singapore, Oct 24 -26, 2005.

[11] Dmitri Maslov, "Reversible Logic Synthesis”, PhD
Dissertation, Computer Science Department, University of
New Brunswick, Canada, October 2003.

[12] A. Agrawal and N. K. Jha, “Synthesis of reversible
logic,” in Proc. Design Automation & Test in Europe Conf.,
Feb. 2004, pp. 21 384–21 385.

[13] P. Gupta, A. Agrawal, N. K. Jha, “An algorithm for
synthesis of reversible logic circuits”, IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems”,
Nov. 2006, Volume: 25, Issue 11, pp. 2317-2330.

[14] Guowu Yang; Fei Xie; Xiaoyu Song; Hung, W.N.N.;
Perkowski, M.A., “A constructive Algorithm for Reversible
Logic synthesis” IEEE Congress on Evolutionary
Computation, July 2006, pp. 2416- 2421.

196

