
Fixed Point Decimal Multiplication using RPS Algorithm

Rekha K. James, Shahana T. K, K. Poulose Jacob, Sreela Sasi

Cochin University of Science and Technology Gannon University
 Kochi, Kerala, India Erie, PA, USA

 {rekhajames, shahanatk, kpj}@cusat.ac.in sasi001@gannon.edu

Abstract

Decimal multiplication is an integral part of

financial, commercial, and internet-based
computations. A novel design for single digit decimal
multiplication that reduces the critical path delay and
area for an iterative multiplier is proposed in this
research. The partial products are generated using
single digit multipliers, and are accumulated based on
a novel RPS algorithm. This design uses n single digit
multipliers for an n × n multiplication. The latency for
the multiplication of two n-digit Binary Coded Decimal
(BCD) operands is (n + 1) cycles and a new
multiplication can begin every n cycle. The
accumulation of final partial products and the first
iteration of partial product generation for next set of
inputs are done simultaneously. This iterative decimal
multiplier offers low latency and high throughput, and
can be extended for decimal floating-point
multiplication.

1. Introduction

 Nowadays, decimal arithmetic is receiving
significant attention in the financial, commercial, and
internet-based applications. These applications often
store data in decimal format. Currently, general
purpose computers do decimal computations using
binary arithmetic. But, a number of decimal numbers
such as 0.2 cannot be represented precisely in binary.
In this world of precision, such errors generated by
conversion between decimal and binary formats are no
more tolerable. Recently, support for decimal
arithmetic has received increased attention due to the
growing importance in financial analysis, banking, tax
calculation, currency conversion, insurance, telephone
billing and accounting which cannot tolerate such
errors. This can be overcome by using a decimal
arithmetic and logic unit. Decimal arithmetic
operations are typically more complex, slower and
occupy more area leading to more power and less

speed when implemented in hardware. Hence, the
major consideration while implementing decimal
arithmetic is to enhance its speed and reduce area as
much as possible. Due to the growing importance of
decimal arithmetic, standard specifications are recently
added to the draft revision of the IEEE 754 Standard
for Floating-Point Arithmetic.
 Decimal multipliers are typically implemented using
an iterative approach because of their complexity.
Usually, the entire multiplicand is multiplied by one
multiplier digit to generate a partial product in each
cycle. The partial product is added to an intermediate
product register that holds the previously accumulated
partial products. In an iterative decimal multiplier
presented in [1], decimal partial products are generated
by creating two partial products for each multiplier
digit. Multiplying two n digit Binary Coded Decimal
(BCD) numbers requires n iterations, where all
iterations consist of two binary carry-save additions
and three decimal corrections. After n iterations, the
carry and sum are added using a decimal carry-
propagate adder to produce the final product. The
multiplier presented in [2] generates the partial
products by the costly retrieval of product of BCD
digits from look-up tables. Several existing designs for
decimal multiplication generate and store multiples of
the multiplicand before partial product generation, and
then use the multiplier digits to select the appropriate
multiple as the partial product [3, 4]. The multiplier
presented in [4] makes use of a secondary set of
multiples generated using combinational logic.
Iterative additions are performed in two pipeline
stages, which allows for a higher frequency of
operation. The latency of this multiplier is (n + 4)
cycles and a new multiplication can begin every (n +
1) cycle. The multiplier in [5] stores intermediate
product digits in a less restrictive, redundant format
called the overloaded decimal representation that
reduces the delay of the iterative portion of the
multiplier. These approaches are based on either slow
accumulation of easy multiples or costly retrieval of
product of BCD digits from look-up tables. An

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.89

343

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.89

343

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.89

343

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.89

343

alternative approach is to generate the partial product
as needed. Generating the partial products as needed is
an ideal approach for three reasons as enumerated in
[6]. The use of decimal digit-by-digit multipliers for
partial product generation leads to less number of
cycles, less wiring and do not require registers to store
multiples of the multiplicand. The algorithm presented
in [6] reduces the complexity of partial product
generation by employing a recoding scheme to restrict
the magnitude range of the operand digits. Further, by
restricting the range of each digit in the partial product,
the complexity of partial product accumulation is also
significantly reduced. An integral building block of a
decimal digit by digit multiplier is the single digit
multiplier. The single digit multiplier in [7] uses a
standard 4 × 4 unsigned binary multiplier that
generates an 8-bit binary output which needs to be
corrected to two BCD digits.
 This paper presents a novel design for single digit
decimal multiplication to reduce the critical path delay
and area, which allows for a fast iterative multiplier
design. The partial products are generated by single
digit multipliers, and accumulated using a novel RPS
algorithm. This iterative decimal multiplier offers low
latency and high throughput.

The organization of the paper is as follows:
Initially, a new approach for single digit multiplication
is discussed. A decimal fixed point multiplier is then
proposed using single digit multipliers. A novel RPS
algorithm is also proposed to select the inputs for
partial product generation and accumulation. Finally,
the paper concludes by tabulating an area and delay
analysis of the proposed design using logic synthesis
tool Leonardo Spectrum from Mentor Graphics
Corporation using ASIC Library.

2. BCD Digit Multiplication

 A key component of a fixed-point multiplier is a
single digit multiplier that multiplies an n-digit
multiplicand, A, by an n-digit multiplier, B producing a
2n-digit product, P. The single digit multiplier accepts
two BCD inputs (A, B) which can take a value [0-9].
It realizes a function F(A, B), giving a product in the
range [0, 81] represented by two BCD digits. There are
one hundred possible combinations of inputs for
multiplication, out of which only 4 combinations
require 4 × 4 multiplication, 64 combinations need 3 ×
3 multiplication, and the remaining 32 combinations
use either 3 × 4 or 4 × 3 multiplication. The proposed
design makes use of this property. The single digit
multiplier consists of two parts: a binary multiplier that
gives a binary product p(7-0), and a binary to BCD
converter.

2.1 Binary Multiplier

 The binary multiplier consists of a 3 × 3 multiplier, a
4 × 3 multiplier and a 4 × 4 multiplier. Figures 1, 2 and
3 show the 3 × 3, 4 × 3 and 4 × 4 multiplication for
BCD inputs respectively. In 4 × 3 multiplication for
BCD inputs, one of the inputs is either 8(10002) or
9(10012). So, the 4 × 3 multiplier gets simplified to
three 2-input AND gates. In 4 × 4 multiplication for
BCD inputs, both inputs are either 8(10002) or
9(10012). So the 4 × 4 multiplier gets simplified to a
half adder (a 2-input AND gate and a 2-input XOR
gate).

 x2 x1 x0 ×
 y2 y1 y0

 x2y0 x1y0 x0y0
 x2y1 x1y1 x0y1
 x2y2 x1y2 x0y2
--
p5 p4 p3 p2 p1 p0

Figure 1 : 3 × 3 Multiplication

 1 0 0 x0 ×
 y2 y1 y0

 y0 0 0 x0y0
 y1 0 0 x0y1
y2 0 0 x0y2

y2 y1 y0 x0y2 x0y1 x0y0

Figure 2: 4 × 3 Multiplication of BCD inputs

 1 0 0 x0 ×
 1 0 0 y0

 y0 0 0 x0y0
1 0 0 x0
--
1 0 x0y0 x0 y0 0 0 x0y0

Figure 3: 4 × 4 Multiplication of BCD inputs

 The 3 × 3 and 4 × 3 multipliers give a 6-bit binary
product, while a 4 × 4 multiplier produces a 7-bit
binary result. The binary to BCD converter, following
the binary multiplier, will be a 7-input converter. The
design can be further simplified by using separate
converters for 6-bit and 7-bit products. The 6-bit
converter converts the binary output of the 3 × 3

344344344344

multiplier or 4 × 3 multiplier outputs to its
corresponding BCD. Instead of using a 7-bit binary to
BCD converter, the 4 × 4 multiplier is designed to
produce an 8-bit BCD output as shown in Figure 4.
The 4 × 4 multiplier and the binary to BCD conversion
circuit of its product now gets reduced to a 2-input
AND, NAND, XOR and NOR gates.

 1 0 0 x0 ×
 1 0 0 y0

x0y0 (x0y0)’ (x0y0)’ x0 y0 0 (x0 + y0)’ x0 y0 x0y0

Figure 4: 4 × 4 Multiplication of BCD inputs

generating 8-bit BCD output

2.2 6-bit Binary to BCD converter

 Binary product can be converted to an equivalent
BCD by a six-input, eight-output combinational logic.
Although the general binary-to-BCD conversion is
extensively addressed in the literature [8–10], a special,
simpler and faster, binary-to-BCD converter depicted
in [7] for a 6-bit input is used in this proposed design.
The first row in Figure 5 shows the BCD weights. The
weights of p3, p2, p1 and p0 are the same as the
corresponding weights in the original binary number
p(5-0). But, weights 16 and 32 of p4 and p5 have been
decomposed to (10, 4, 2) and (20, 10, 2) respectively.
The three overloaded decimal digits in the right four
columns may be added, by an overloaded decimal
adder to get the overloaded sum (D3D2D1D0) and a
carry. In a standard BCD representation, the bit
combinations A16 - F16 are invalid BCD digits. The
overloaded decimal representation allows 4-bit digits
to have any value from 016 - F16, even though the base
of the number is still ten. This reduces the overhead of
correcting sum digits when the sum is an invalid BCD
and sum correction is only performed when sixteen is
exceeded. When the final digits are formed, each
overloaded decimal digit is corrected back to BCD by
adding six to the digit, if it is in the range A16 - F16. The
carry is added to the two BCD digits (“0 0 p5 p4” and
“0 0 0 p5”) in the left four columns leading to
(D7D6D5D4).
 The block diagram of the proposed single digit BCD
multiplier is shown in Figure 6. The 4-bit 2:1
multiplexer selects the inputs to 4 × 3 multiplier
depending on x3 bit. The 6-bit 2:1 multiplexer does the
selection of 3 × 3 multiplier output or the output of the
4 × 3 multiplier depending on the status of x3 and y3
bits. If x3 and y3 are different then the output of 4 × 3
multiplier is passed to the BCD converter, else the

output of 3 × 3 multiplier is passed. After the 6-bit
binary to BCD conversion the third multiplexer (8-bit
2:1 vector mux) selects the BCD converted output or
the output of the 4 × 4 multiplier output (which gives
an 8-bit BCD result) depending on x3 and y3 bits. If
both are ‘1’ then the 4 × 4 multiplier output is selected,
else the BCD converter output is passed as the final
product.

80 40 20 10 8 4 2 1
0 0 p5 p4 p3 p2 p1 p0
0 0 0 p5 0 p4 p4 0
0 0 0 0 0 0 p5 0
--
D7 D6 D5 D4 D3 D2 D1 D0

Figure 5: The principle of 6-bit binary to
overloaded BCD conversion

 Figure 6: Single digit BCD multiplier

 A comparison of the proposed design with the
existing design in [7] in terms of area and critical path
delay is done with the logic synthesis tool Leonardo
Spectrum from Mentor Graphics Corporation using
ASIC Library 0.18 micron, 1.8 V CMOS technology,
and is tabulated in Table 1. The table shows that the
proposed design has reduced area and delay compared
to the existing one in [7].

HA

3×3 mul

4×3 mul

4×4 mul

2:1 vector Mux

4-bit 4-bit

Binary to BCD converter

6-bit

x3

6-bit

2:1
vector
Mux

8-bit

8-bit

2:1 vector Mux

6-bit

 Sum

 Carry

8-bit

 x2 x1 x0 y2 y1 y0 x0 y2 y1 y0 y0 x2 x1 x0

 x0 y0

x3
y3

0 1

0 1

0 1

BCD Product

345345345345

Table 1: Comparison of area and delay of single
digit BCD multiplier implementations

Type of

Multiplier

Area
(μm2)

%

reduction

Delay
(ns)

%

reduction

Proposed
multiplier

489

8%

7.56

18%

Multiplier

in [7]

532

9.26

3. Decimal Fixed Point Multiplication

 The fixed point multiplier unit takes two n-digit
operands, calculates n2 partial products and returns
their sum as a 2n-digit integer. There are two main
stages in the fixed-point multiplier design: generation
of partial products and reduction of partial products. In
the first stage of the process, the RPS algorithm selects
appropriate inputs for generation of partial products
using n single digit multipliers. After the generation of
partial products they are reduced along with the carry
of previous addition using multi-operand decimal
adders. The process is repeated n times to generate a 2n
digit product after the (n+1) th cycle. Many techniques
have been developed to speed up the process of
decimal addition. Direct decimal addition is one of the
efficient techniques for two-operand decimal addition
[11]. Erle and Schulte proposed a variant of direct
decimal addition to produce intermediate results in a
decimal carry-save format that can be used in an
iterative decimal multiplier [12]. In another approach,
proposed by Ohtsuki et al., a correction value of six is
added to each digit of the first partial product using a
binary carry-save adder [13]. Shirazi et al. proposed a
technique for constant time decimal addition, called
Redundant Binary Coded Decimal (RBCD) [14, 15].
Kenney and Schulte introduced three algorithms for
performing fast decimal addition on multiple BCD
operands: non-speculative tree, double correction
speculation array and single correction speculation
array [16]. The non-speculative tree algorithm that
gives the minimum delay with same area of the three
algorithms is the best suited for multi-operand decimal
addition and is made use of in this research. In [17] a
new scheme is proposed to obtain the sum of each
decimal column via a network of carry-free adders and
converting the sum into decimal format via a fast
binary to decimal converter.

 The complete process is formulated as RPS
algorithm and is given below.

3.1 RPS Algorithm

The steps for RPS algorithm to multiply two n-digit
numbers are as follows.
Step 1: Initialize i, j, k, m and a mod-n counter to 0. (i
- to select Ai, j - to select Bj)
Step 2: For iterations = 0 to n-1, repeat steps (3) to (6)
Step 3: For BCD-digit multipliers, c = 0 to n-1, repeat
steps (4) to (5)
Step 4: Select Ai and Bj as inputs to the cth single digit
multiplier
Step 5: If i = 0, then
 If k = n, then i = k, m = m+1, j = m
 Else k = k+1, i = k, j = 0, End
 Else i = i-1, j = j+1, End
Step 6: Perform multiplication on n single digit
multipliers and store the result.
Step 7: Increment counter, Enable multi-operand BCD
addition
Multi-operand BCD addition:
Adderx = (∑PyzL + ∑PabH) + CLadder (x-1) + CHadder (x-2)

If x < n, then
y = x to 0, z = 0 to x, a = (x-1) to 0, b = 0 to (

 x-1)
 If x = n, then

 y = (n-1) to x-(n-1), z = x-(n-1) to (n-
1), a = (x-1) to 0, b = 0 to (x-1)

 If x > n, then
y = (n-1) to x-(n-1), z = x-(n-1) to (n-1), a =
(n-1) to (x-n), b = (x-n) to (n-1)

CLadder (x-1) is the lower carry digit from the previous
addition.
CHadder (x-2) is the higher carry digit from the addition
prior to previous addition.
 The algorithm is explained considering a (7-digit ×
7-digit) fixed point multiplication. This example is
considered since it is an integral component of a 32-bit
decimal floating point multiplication that has 7
significand digits. A (7-digit × 7-digit) multiplication
results in 7 × 7 (49) partial products, each having 2
digits given by PijL and PijH. The proposed design
makes use of only seven single digit BCD multipliers.
This design generates those partial products which are
necessary for early accumulation using the RPS
algorithm instead of generating the partial product
digits of the complete multiplicand with the least
significant digit of the multiplier. This is shown in
Figure 7. The first iteration generates seven partial
products as seen from the right most end of the partial
product array of Figure 7.

346346346346

A6 A5 A4 A3 A2 A1 A0 ×

 B6 B5 B4 B3 B2 B1 B0

 P60L P50L P40L P30L P20L P10L P00L
 P60H P50H P40H P30H P20H P10H P00H
 P61L P51L P41L P31L P21L P11L P01L
 P6IH P5IH P4IH P3IH P2IH P1IH P0IH
 P62L P52L P42L P32L P22L P12L P02L
 P62H P52H P42H P32H P22H P12H P02H
 P63L P53L P43L P33L P23L P13L P03L
 P63H P53H P43H P33H P23H P13H P03H
 P64L P54L P44L P34L P24L P14L P04L
 P64H P54H P44H P34H P24H P14H P04H
 P65L P55L P45L P35L P25L P15L P05L
 P65H P55H P45H P35H P25H P15H P05H
 P66L P56L P46L P36L P26L P16L P06L
 P66H P56H P46H P36H P26H P16H P06H

 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0
 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1
 C7H C6H C5H
--
 FP13 FP12 FP11 FP10 FP9 FP8 FP7 FP6 FP5 FP4 FP3 FP2 FP1 FP0

Figure 7: Partial product generation and accumulation in different cycles

 Hence after the first cycle, the partial products
generated are P00, P10, P01, P20, P11, P02, P30 (both PL
and PH), as shown in red in the array.Similarly during
the second cycle, seven more partial products are
generated. Simultaneously those partial products which
were generated in first cycle are added using multi-
operand decimal adders to generate the final products
FP0, FP1 and FP2. This process is repeated for all seven
cycles. The final product is ready after the eighth cycle.
The block diagram of a 7-digit fixed point decimal
multiplier is shown in Figure 8. The controller block
uses the RPS algorithm to determine the flow of inputs
to single digit multipliers for each cycle. The detailed
design of the controller block is shown in Figure 9.

Figure 8: Fixed point decimal multiplier

Figure 9: Fixed point decimal multiplier controller block

Controller

8 8 8 8

Single digit BCD multiplier array of n multipliers

8 8 8 8

Register array (n2 8-bit)

A(n digit) B(n digit)

 Final Product (2n digit)

CLK

BCD Adder Block

8 8 8

Mod 7 counter 8-bit Mux 7:1 8-bit Mux 7:1

Single digit BCD multiplier array of 7 multipliers

CLK

A6 A5 A4 A3 A2 A1 A0 B6 B5 B4 B3 B2 B1 B0

347347347347

 The controller block is followed by an array of n
single digit BCD multipliers that give the first set of
partial products. These are stored in n registers of an n
× n 8-bit register array as shown in Figure 10. During
the first cycle, data is stored in registers that are
marked as red. The inputs to the multi-digit BCD
adders are selected from this stored data using the RPS
algorithm, as shown in Figure 11.

R00 R01 R02 R03 R04 R05 R06
R10 R11 R12 R13 R14 R15 R16
R20 R21 R22 R23 R24 R25 R26
R30 R31 R32 R33 R34 R35 R36
R40 R41 R42 R43 R44 R45 R46
R50 R51 R52 R53 R54 R55 R56
R60 R61 R62 R63 R64 R65 R66

Figure 10: Register array for storing output of
BCD-digit multiplication

Figure 11: Selecting inputs to multi-operand BCD addition

R00 R01 R02 R03 R04 R05 R06

R10 R11 R12 R13 R14 R15 R16

R20 R21 R22 R23 R24 R25 R26

R30 R31 R32 R33 R34 R35 R36

R40 R41 R42 R43 R44 R45 R46

R50 R51 R52 R53 R54 R55 R56

R60 R61 R62 R63 R64 R65 R66

3rd cycle

2nd cycle

4th cycle

5th cycle

6th cycle

7th cycle

8th cycle

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9 P10 P11 P12

Final Product - FP13 FP12 FP11 FP10 FP9 FP8 FP7 FP6 FP5 FP4 FP3 FP2 FP1 FP0

1st cycle

348348348348

 The complete multi-operand BCD adder array is
shown in Figure 12. During the eighth cycle FP9, FP10,
FP11, FP12, and FP13 are generated using 11-operand (9-
partial products and the two carries (C8 and C7H) that
are generated in previous cycles), 7-operand, 5-
operand, 3-operand decimal adders, and a 4-digit high
speed decimal adder. The 4-digit high speed decimal

adder is used to add the carry generated. The maximum
depth of addition occurs at the eighth cycle, and this
determines the clock frequency. Using this approach,
when multiplying two n-digit operands to produce a
2n-digit product, the worst-case latency is n + 1 cycles,
and initiation interval is n cycles.

Figure 12: BCD adder array

4. Synthesis Results

 The proposed decimal fixed point multiplier was
coded for a (7-digit × 7-digit) multiplier in VHDL, and
synthesized to evaluate the area and delay of the
design. Synthesis was done using Leonardo Spectrum
from Mentor Graphics Corporation with ASIC Library
of 0.18 micron, 1.8 V CMOS technology. An area and
delay breakdown for an approximate contribution of
major components of the design shown in Figure 8 is
given in Table 2. Even though the delay for the
complete circuit is 29.95ns, the latency is less since the
multi-operand BCD addition takes place
simultaneously with the single digit multiplication of
next set of inputs.
 The proposed design differs from the iterative
approach using easy multiples for partial product
generation for hardware realization of BCD
multipliers. The design in [7] uses similar approach,
and so this is also synthesized in the same environment
as the proposed multiplier. The proposed design of a
single digit multiplier array block gives a reduction of
8% in area and 18% in delay compared to the
multiplier in [7].

Table 2: Area and Delay for different stages of

Decimal Fixed Pont Multiplier (7-digit × 7-digit)

Component

Area Delay
μm2 % ns %

Controller

2719

15.06

%

4.85

16.19%

Single digit
multiplier
array

3423

18.96

%

7.56

25.24%

BCD adder
array

5791

32.08

%

12.93

43.17%

Register
array

6114

33.87

%

4.61

15.39%

Fixed point
multiplier

18047

100%

29.95

100%

1st
cycle

2nd cycle 3rd cycle 4th cycle 5th cycle 6th cycle 7th cycle 8th cycle

3
op.
add
er

5
op.
add
er

8
op.
add
er

10
op.
add
er

11
op.
add
er

14
op.
add
er

15
op.
add
er

13
op.
add
er

11
op.
add
er

7
op.
add
er

5
op.
add
er

3
op.
add
er

2 digit BCD
adder

2 digit BCD
adder

4 digit high speed BCD
adder

P00

P66

FP1 FP0

FP2

FP4 FP3

FP5

FP9 FP8 FP7 FP6

FP13 FP12 FP11 FP10

349349349349

 5. Conclusion

 This paper proposed a novel single digit BCD
multiplier cell that can be used in iterative BCD
multiplier circuits. It is demonstrated that this design
gains an 8% savings in the area and 18% savings in
delay compared to the existing design of [7]. This
design leads to more regular VLSI implementation,
and does not require special registers for storing easy
multiples. A new RPS algorithm is used to generate
and accumulate the partial products in an efficient
manner for fixed point decimal multiplication. The
design was validated using 7-digit × 7-digit fixed point
decimal multiplication that is required for a 32-bit
floating point decimal multiplication. The latency for
the multiplication of two n-digit BCD operands is (n +
1) cycles, and a new multiplication can begin every ‘n’
cycle. Inclusion of parallelism improved the
throughput.

Future research focuses on incorporating pipelining
in the design and for reducing the size of register
arrays used for storing the partial products.

6. References

[1] T. Ohtsuki, et al., “Apparatus for Decimal
Multiplication,” U.S. Patent, June 1987, #4,677,583
[2] Ueda, T.: ‘Decimal multiplying assembly and multiply
module’.U.S. Patent 5379245, January 1995
[3] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M.
Schwarz, and S. R. Carlough, “The IBM Z900 Decimal
Arithmetic Unit,” in Asilomar Conference on Signals,
Systems, and Computers, vol. 2, pp. 1335– 1339, November
2001
[4] M. A. Erle and M. J. Schulte, “Decimal Multiplication
Via Carry-Save Addition,” IEEE 14th International
Conference on Application-specific Systems, Architectures
and Processors, pp. 348-358, June 2003

[5] R. D. Kennedy, M. J. Schulte and M. A. Erle, “A High-
Frequency Decimal Multiplier,” IEEE 14th International
IEEE international conference on Computer Design
(ICCD’04), pp. 22-29, Oct 2004
[6] Erle, M.A. Schwarz, E.M. Schulte, M.J, “Decimal
multiplication with efficient partial product generation”, 17th
IEEE Symposium on Computer Arithmetic, 2005. ARITH-17
2005.
pp. 21- 28, June 2005
[7] Jaberipur, G.; Kaivani, A, “Binary-coded decimal digit
multipliers”, Computers & Digital Techniques, IET Volume
1, Issue 4, July 2007 pp. 377 – 381
[8] Schmookler, M.: ‘High-speed binary-to-decimal
conversion’, IEEE Trans. Comput., 1968, 17, (5), pp. 506–
508
[9] Rhyne, V.T.: ‘Serial binary-to-decimal and decimal-to-
binary conversion’, IEEE Trans. Comput., 1970, 19, (9), pp.
808–812
[10] Arazi, B., and Naccache, D.: ‘Binary-to-decimal
conversion based on the 282 1 by 5’, Electron. Lett., 1992,
28, (23), pp. 2151–2152
[11] M. Schmookler and A. Weinberger, “High Speed
Decimal Addition,” IEEE Trans. Computers, vol. 20, no. 8,
pp. 862-867, Aug. 1971
[12] M.A. Erle and M.J. Schulte, “Decimal Multiplication via
Carry-Save Addition,” Proc. IEEE 14th Int’l Conf.
Application-Specific Systems, Architectures, and Processors,
pp. 348-358, June 2003.
[13] T. Ohtsuki et al., “Apparatus for Decimal
Multiplication,” US Patent #4,677,583, June 1987.
[14] B. Shirazi, D.Y. Yun, and C.N. Zhang, “RBCD:
Redundant Binary Coded Decimal Adder,” IEE Proc.—Part
E, vol. 136, no. 2, Mar. 1989.
[15] B. Shirazi, D.Y. Yun, and C.N. Zhang, “VLSI Designs
for Redundant Binary-Coded Decimal Addition,” Proc.
Seventh Ann. Int’l Conf. Computers and Comm., pp. 52-56,
Mar. 1988.
[16] R. D. Kenney and M. J. Schulte, ‘High-Speed Multi-
operand Decimal Adders’ IEEE Transactions on Computers,
vol. 54, No. 8, Aug 2005, pp. 953-963
[17] L. Dadda, ‘Multioperand Parallel Decimal Adder:A
Mixed Binary and BCD Approach’, IEEE Transactions on
Computers, Vol. 56, No. 9, Sept 2007

350350350350

