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Abstract 

 
Decimal multiplication is an integral part of 

financial, commercial, and internet-based 
computations. A novel design for single digit decimal 
multiplication that reduces the critical path delay and 
area for an iterative multiplier is proposed in this 
research. The partial products are generated using 
single digit multipliers, and are accumulated based on 
a novel RPS algorithm. This design uses n single digit 
multipliers for an n × n multiplication. The latency for 
the multiplication of two n-digit Binary Coded Decimal 
(BCD) operands is (n + 1) cycles and a new 
multiplication can begin every n cycle. The 
accumulation of final partial products and the first 
iteration of partial product generation for next set of 
inputs are done simultaneously. This iterative decimal 
multiplier offers low latency and high throughput, and 
can be extended for decimal floating-point 
multiplication.  
 
 
1. Introduction 
 
   Nowadays, decimal arithmetic is receiving 
significant attention in the financial, commercial, and 
internet-based applications. These applications often 
store data in decimal format. Currently, general 
purpose computers do decimal computations using 
binary arithmetic.  But, a number of decimal numbers 
such as 0.2 cannot be represented precisely in binary. 
In this world of precision, such errors generated by 
conversion between decimal and binary formats are no 
more tolerable. Recently, support for decimal 
arithmetic has received increased attention due to the 
growing importance in financial analysis, banking, tax 
calculation, currency conversion, insurance, telephone 
billing and accounting which cannot tolerate such 
errors. This can be overcome by using a decimal 
arithmetic and logic unit. Decimal arithmetic 
operations are typically more complex, slower and 
occupy more area leading to more power and less 

speed when implemented in hardware. Hence, the 
major consideration while implementing decimal 
arithmetic is to enhance its speed and reduce area as 
much as possible. Due to the growing importance of 
decimal arithmetic, standard specifications are recently 
added to the draft revision of the IEEE 754 Standard 
for Floating-Point Arithmetic.   
   Decimal multipliers are typically implemented using 
an iterative approach because of their complexity. 
Usually, the entire multiplicand is multiplied by one 
multiplier digit to generate a partial product in each 
cycle. The partial product is added to an intermediate 
product register that holds the previously accumulated 
partial products. In an iterative decimal multiplier 
presented in [1], decimal partial products are generated 
by creating two partial products for each multiplier 
digit. Multiplying two n digit Binary Coded Decimal 
(BCD) numbers requires n iterations, where all 
iterations consist of two binary carry-save additions 
and three decimal corrections. After n iterations, the 
carry and sum are added using a decimal carry-
propagate adder to produce the final product. The 
multiplier presented in [2] generates the partial 
products by the costly retrieval of product of BCD 
digits from look-up tables. Several existing designs for 
decimal multiplication generate and store multiples of 
the multiplicand before partial product generation, and 
then use the multiplier digits to select the appropriate 
multiple as the partial product [3, 4]. The multiplier 
presented in [4] makes use of a secondary set of 
multiples generated using combinational logic.  
Iterative additions are performed in two pipeline 
stages, which allows for a higher frequency of 
operation. The latency of this multiplier is (n + 4) 
cycles and a new multiplication can begin every (n + 
1) cycle. The multiplier in [5] stores intermediate 
product digits in a less restrictive, redundant format 
called the overloaded decimal representation that 
reduces the delay of the iterative portion of the 
multiplier. These approaches are based on either slow 
accumulation of easy multiples or costly retrieval of 
product of BCD digits from look-up tables. An 
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alternative approach is to generate the partial product 
as needed. Generating the partial products as needed is 
an ideal approach for three reasons as enumerated in 
[6]. The use of decimal digit-by-digit multipliers for 
partial product generation leads to less number of 
cycles, less wiring and do not require registers to store 
multiples of the multiplicand. The algorithm presented 
in [6] reduces the complexity of partial product 
generation by employing a recoding scheme to restrict 
the magnitude range of the operand digits. Further, by 
restricting the range of each digit in the partial product, 
the complexity of partial product accumulation is also 
significantly reduced. An integral building block of a 
decimal digit by digit multiplier is the single digit 
multiplier. The single digit multiplier in [7] uses a 
standard 4 × 4 unsigned binary multiplier that 
generates an 8-bit binary output which needs to be 
corrected to two BCD digits. 
   This paper presents a novel design for single digit 
decimal multiplication to reduce the critical path delay 
and area, which allows for a fast iterative multiplier 
design. The partial products are generated by single 
digit multipliers, and accumulated using a novel RPS 
algorithm. This iterative decimal multiplier offers low 
latency and high throughput.  

The organization of the paper is as follows: 
Initially, a new approach for single digit multiplication 
is discussed. A decimal fixed point multiplier is then 
proposed using single digit multipliers. A novel RPS 
algorithm is also proposed to select the inputs for 
partial product generation and accumulation. Finally, 
the paper concludes by tabulating an area and delay 
analysis of the proposed design using logic synthesis 
tool Leonardo Spectrum from Mentor Graphics 
Corporation using ASIC Library. 
 
2. BCD Digit Multiplication 
 
  A key component of a fixed-point multiplier is a 
single digit multiplier that multiplies an n-digit 
multiplicand, A, by an n-digit multiplier, B producing a 
2n-digit product, P. The single digit multiplier accepts 
two BCD inputs (A, B) which can take a value [0-9].  
It realizes a function F(A, B), giving a product in the 
range [0, 81] represented by two BCD digits. There are 
one hundred possible combinations of inputs for 
multiplication, out of which only 4 combinations 
require 4 × 4 multiplication, 64 combinations need 3 × 
3 multiplication, and the remaining 32 combinations 
use either 3 × 4 or 4 × 3 multiplication. The proposed 
design makes use of this property. The single digit 
multiplier consists of two parts: a binary multiplier that 
gives a binary product p(7-0), and a binary to BCD 
converter.   

 
2.1 Binary Multiplier 
 
  The binary multiplier consists of a 3 × 3 multiplier, a 
4 × 3 multiplier and a 4 × 4 multiplier. Figures 1, 2 and 
3 show the 3 × 3, 4 × 3 and 4 × 4 multiplication for 
BCD inputs respectively. In 4 × 3 multiplication for 
BCD inputs, one of the inputs is either 8(10002) or 
9(10012). So, the 4 × 3 multiplier gets simplified to 
three 2-input AND gates. In 4 × 4 multiplication for 
BCD inputs, both inputs are either 8(10002) or 
9(10012). So the 4 × 4 multiplier gets simplified to a 
half adder (a 2-input AND gate and a 2-input XOR 
gate). 
 
   x2 x1 x0 × 
   y2 y1 y0 
 ----------------------------------------------- 
   x2y0 x1y0 x0y0 
  x2y1 x1y1 x0y1 
 x2y2 x1y2 x0y2 
---------------------------------------------------------- 
p5 p4 p3 p2 p1 p0 
 

Figure 1 :  3 × 3 Multiplication 
 

  1 0 0 x0 × 
   y2 y1 y0 
 ----------------------------------------------- 
  y0 0 0 x0y0 
 y1 0 0 x0y1 
y2 0 0 x0y2 
------------------------------------------------------- 
y2 y1 y0 x0y2 x0y1 x0y0 
 

Figure 2:  4 × 3 Multiplication of BCD inputs 
 
  1 0 0 x0 × 
  1 0 0 y0 
 --------------------------------------------- 
  y0 0 0 x0y0 
1       0    0         x0  
-------------------------------------------------------- 
1       0 x0y0 x0  y0 0 0 x0y0 
 

Figure 3: 4 × 4 Multiplication of BCD inputs 
 
  The 3 × 3 and 4 × 3 multipliers give a 6-bit binary 
product, while a 4 × 4 multiplier produces a 7-bit 
binary result. The binary to BCD converter, following 
the binary multiplier, will be a 7-input converter. The 
design can be further simplified by using separate 
converters for 6-bit and 7-bit products. The 6-bit 
converter converts the binary output of the 3 × 3 
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multiplier or 4 × 3 multiplier outputs to its 
corresponding BCD. Instead of using a 7-bit binary to 
BCD converter, the 4 × 4 multiplier is designed to 
produce an 8-bit BCD output as shown in Figure 4. 
The 4 × 4 multiplier and the binary to BCD conversion 
circuit of its product now gets reduced to a 2-input 
AND, NAND, XOR and NOR gates. 
 
   1 0 0       x0  × 
   1 0 0       y0 
--------------------------------------------------------------- 
x0y0   (x0y0)’  (x0y0)’  x0 y0   0 (x0 + y0)’ x0 y0  x0y0 
 

 
Figure 4:  4 × 4 Multiplication of BCD inputs 

generating 8-bit BCD output 
 

 
2.2 6-bit Binary to BCD converter 
 
   Binary product can be converted to an equivalent 
BCD by a six-input, eight-output combinational logic. 
Although the general binary-to-BCD conversion is 
extensively addressed in the literature [8–10], a special, 
simpler and faster, binary-to-BCD converter depicted 
in [7] for a 6-bit input is used in this proposed design. 
The first row in Figure 5 shows the BCD weights. The 
weights of p3, p2, p1 and p0 are the same as the 
corresponding weights in the original binary number 
p(5-0). But, weights 16 and 32 of p4 and p5 have been 
decomposed to (10, 4, 2) and (20, 10, 2) respectively. 
The three overloaded decimal digits in the right four 
columns may be added, by an overloaded decimal 
adder to get the overloaded sum (D3D2D1D0) and a 
carry. In a standard BCD representation, the bit 
combinations A16 - F16 are invalid BCD digits. The 
overloaded decimal representation allows 4-bit digits 
to have any value from 016 - F16, even though the base 
of the number is still ten. This reduces the overhead of 
correcting sum digits when the sum is an invalid BCD 
and sum correction is only performed when sixteen is 
exceeded. When the final digits are formed, each 
overloaded decimal digit is corrected back to BCD by 
adding six to the digit, if it is in the range A16 - F16. The 
carry is added to the two BCD digits (“0 0 p5 p4” and 
“0 0 0 p5”) in the left four columns leading to 
(D7D6D5D4). 
   The block diagram of the proposed single digit BCD 
multiplier is shown in Figure 6. The 4-bit 2:1 
multiplexer selects the inputs to 4 × 3 multiplier 
depending on x3 bit. The 6-bit 2:1 multiplexer does the 
selection of 3 × 3 multiplier output or the output of the 
4 × 3 multiplier depending on the status of x3 and y3 
bits. If x3 and y3 are different then the output of 4 × 3 
multiplier is passed to the BCD converter, else the 

output of 3 × 3 multiplier is passed. After the 6-bit 
binary to BCD conversion the third multiplexer (8-bit 
2:1 vector mux) selects the BCD converted output or 
the output of the 4 × 4 multiplier output (which gives 
an 8-bit BCD result) depending on x3 and y3 bits. If 
both are ‘1’ then the 4 × 4 multiplier output is selected, 
else the BCD converter output is passed as the final 
product. 
 
 
80      40     20      10             8         4      2 1 
0        0     p5 p4            p3           p2     p1         p0 
0        0       0 p5             0        p4    p4 0 
0        0       0 0                  0       0    p5 0 
---------------------------------------------------------------- 
D7           D6      D5 D4                               D3        D2            D1       D0 

 
 

Figure 5: The principle of 6-bit binary to 
overloaded BCD conversion 

 
   

 
  Figure 6: Single digit BCD multiplier 

 
    
  A comparison of the proposed design with the 
existing design in [7] in terms of area and critical path 
delay is done with the logic synthesis tool Leonardo 
Spectrum from Mentor Graphics Corporation using 
ASIC Library 0.18 micron, 1.8 V CMOS technology, 
and is tabulated in Table 1. The table shows that the 
proposed design has reduced area and delay compared 
to the existing one in [7]. 
 

HA 

3×3 mul

4×3 mul 

4×4 mul 

2:1 vector Mux 

4-bit 4-bit 

Binary to BCD converter 

6-bit 

x3 

6-bit 

2:1 
vector 
Mux 

8-bit 

8-bit 

2:1 vector Mux 

6-bit 

    Sum 
 
 
    Carry 

8-bit 

 x2 x1 x0 y2 y1 y0 x0 y2 y1 y0 y0 x2 x1 x0  

 x0 y0 

x3 
y3 

0 1 

0 1 

0 1 

BCD Product 
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Table 1: Comparison of area and delay of single 
digit BCD multiplier implementations 
 

 
Type of 

Multiplier 

 
Area 
(μm2) 

 
% 

reduction 

 
Delay 
(ns) 

 
% 

reduction 

 
Proposed 
multiplier 

 
489 

 
 

8% 

 
7.56 

 
 

18% 

 
Multiplier 

in [7] 

 
532 

 
9.26 

 
3. Decimal Fixed Point Multiplication 
 
  The fixed point multiplier unit takes two n-digit 
operands, calculates n2 partial products and returns 
their sum as a 2n-digit integer. There are two main 
stages in the fixed-point multiplier design: generation 
of partial products and reduction of partial products. In 
the first stage of the process, the RPS algorithm selects 
appropriate inputs for generation of partial products 
using n single digit multipliers. After the generation of 
partial products they are reduced along with the carry 
of previous addition using multi-operand decimal 
adders. The process is repeated n times to generate a 2n 
digit product after the (n+1) th cycle. Many techniques 
have been developed to speed up the process of 
decimal addition. Direct decimal addition is one of the 
efficient techniques for two-operand decimal addition 
[11]. Erle and Schulte proposed a variant of direct 
decimal addition to produce intermediate results in a 
decimal carry-save format that can be used in an 
iterative decimal multiplier [12]. In another approach, 
proposed by Ohtsuki et al., a correction value of six is 
added to each digit of the first partial product using a 
binary carry-save adder [13]. Shirazi et al. proposed a 
technique for constant time decimal addition, called 
Redundant Binary Coded Decimal (RBCD) [14, 15]. 
Kenney and Schulte introduced three algorithms for 
performing fast decimal addition on multiple BCD 
operands: non-speculative tree, double correction 
speculation array and single correction speculation 
array [16]. The non-speculative tree algorithm that 
gives the minimum delay with same area of the three 
algorithms is the best suited for multi-operand decimal 
addition and is made use of in this research.  In [17] a 
new scheme is proposed to obtain the sum of each 
decimal column via a network of carry-free adders and 
converting the sum into decimal format via a fast 
binary to decimal converter.  

   The complete process is formulated as RPS 
algorithm and is given below. 
  
3.1 RPS Algorithm 
 
The steps for RPS algorithm to multiply two n-digit 
numbers are as follows. 
Step 1: Initialize i, j, k, m and a mod-n counter to 0. ( i 
- to select Ai, j - to select Bj) 
Step 2: For iterations = 0 to n-1, repeat steps (3) to (6) 
Step 3: For BCD-digit multipliers, c = 0 to n-1, repeat 
steps (4) to (5) 
Step 4: Select Ai and Bj as inputs to the cth single digit 
multiplier 
Step 5: If i = 0, then  
  If k = n, then i = k, m = m+1, j = m 
  Else k = k+1, i = k, j = 0,  End 
 Else i = i-1, j = j+1,  End 
Step 6: Perform multiplication on n single digit 
multipliers and store the result.  
Step 7: Increment counter, Enable multi-operand BCD 
addition 
Multi-operand BCD addition:  
Adderx = (∑PyzL + ∑PabH ) + CLadder (x-1) + CHadder (x-2)   

If x < n, then  
y = x to 0, z = 0 to x, a = (x-1) to 0, b = 0 to (

 x-1) 
  If x = n, then  

  y = (n-1) to x-(n-1), z = x-(n-1) to (n-
1), a = (x-1) to 0, b = 0 to (x-1) 

  If x > n, then  
y = (n-1) to x-(n-1), z = x-(n-1) to (n-1), a = 
(n-1) to (x-n), b = (x-n) to (n-1) 

CLadder (x-1) is the lower carry digit from the previous 
addition.  
CHadder (x-2) is the higher carry digit from the addition 
prior to previous addition. 
   The algorithm is explained considering a (7-digit × 
7-digit) fixed point multiplication. This example is 
considered since it is an integral component of a 32-bit 
decimal floating point multiplication that has 7 
significand digits. A (7-digit × 7-digit) multiplication 
results in 7 × 7 (49) partial products, each having 2 
digits given by PijL and PijH. The proposed design 
makes use of only seven single digit BCD multipliers. 
This design generates those partial products which are 
necessary for early accumulation using the RPS 
algorithm instead of generating the partial product 
digits of the complete multiplicand with the least 
significant digit of the multiplier. This is shown in 
Figure 7. The first iteration generates seven partial 
products as seen from the right most end of the partial 
product array of Figure 7.  
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A6 A5  A4 A3 A2 A1 A0   ×  

        B6 B5  B4  B3 B2  B1 B0 
----------------------------------------------------------------------------------------------------- 

       P60L P50L P40L  P30L P20L  P10L P00L  
          P60H P50H P40H P30H P20H P10H P00H 
          P61L P51L P41L  P31L  P21L P11L P01L 
              P6IH P5IH P4IH P3IH  P2IH  P1IH P0IH 
              P62L P52L P42L P32L  P22L P12L  P02L 
                 P62H P52H P42H P32H P22H P12H P02H 
               P63L P53L  P43L P33L P23L P13L  P03L 
         P63H P53H P43H  P33H P23H P13H P03H 
         P64L P54L  P44L  P34L P24L  P14L P04L 
            P64H P54H P44H P34H  P24H P14H  P04H 
            P65L P55L  P45L  P35L P25L  P15L  P05L 
    P65H P55H P45H P35H  P25H P15H  P05H 
                 P66L P56L  P46L P36L  P26L  P16L  P06L 
       P66H P56H P46H P36H P26H  P16H  P06H 
----------------------------------------------------------------------------------------------------------- 
       P13    P12   P11    P10   P9     P8      P7     P6     P5   P4    P3    P2     P1   P0 
       C12   C11   C10    C9   C8     C7     C6    C5     C4   C3   C2    C1 
             C7H   C6H   C5H   
------------------------------------------------------------------------------------------------------------ 
      FP13  FP12 FP11 FP10  FP9  FP8  FP7   FP6   FP5  FP4  FP3  FP2   FP1  FP0 

Figure 7: Partial product generation and accumulation in different cycles 
 
  Hence after the first cycle, the partial products 
generated are P00, P10, P01, P20, P11, P02, P30 (both PL 
and PH), as shown in red in the array.Similarly during 
the second cycle, seven more partial products are 
generated. Simultaneously those partial products which 
were generated in first cycle are added using multi-
operand decimal adders to generate the final products 
FP0, FP1 and FP2. This process is repeated for all seven 
cycles. The final product is ready after the eighth cycle. 
The block diagram of a 7-digit fixed point decimal 
multiplier is shown in Figure 8.  The controller block 
uses the RPS algorithm to determine the flow of inputs 
to single digit multipliers for each cycle. The detailed 
design of the controller block is shown in Figure 9. 

 

 
Figure 8: Fixed point decimal multiplier 

 

 
Figure 9: Fixed point decimal multiplier controller block 

 

Controller 

8 8 8 8 

Single digit BCD multiplier array of n multipliers 

8 8 8 8 

Register array (n2  8-bit ) 

A(n digit) B(n digit) 

 Final Product (2n digit) 

CLK 

BCD Adder Block  

8 8 8 

Mod 7 counter 8-bit Mux 7:1 8-bit  Mux 7:1 

Single digit BCD multiplier array of 7 multipliers 

CLK 

A6    A5     A4     A3     A2     A1     A0       B6     B5     B4     B3     B2     B1       B0 
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  The controller block is followed by an array of n 
single digit BCD multipliers that give the first set of 
partial products. These are stored in n registers of an n 
× n 8-bit register array as shown in Figure 10. During 
the first cycle, data is stored in registers that are 
marked as red. The inputs to the multi-digit BCD 
adders are selected from this stored data using the RPS 
algorithm, as shown in Figure 11. 
 
 
 

R00         R01       R02         R03         R04         R05         R06 
R10         R11          R12         R13         R14         R15          R16 
R20         R21          R22         R23         R24         R25         R26 
R30         R31          R32         R33         R34         R35         R36 
R40         R41         R42          R43         R44         R45         R46 
R50         R51          R52         R53         R54         R55         R56 
R60         R61          R62         R63          R64        R65         R66 

 
Figure 10: Register array for storing output of 
BCD-digit multiplication 

 

 
 
 

Figure 11: Selecting inputs to multi-operand BCD addition 
 

 

R00 R01 R02 R03 R04 R05 R06 
  
 
R10 R11 R12 R13 R14 R15 R16 
 
  
R20 R21 R22 R23 R24 R25 R26 
 
  
R30 R31 R32 R33 R34 R35 R36 
 
  
R40 R41 R42 R43 R44 R45 R46 
 
  
R50 R51 R52 R53 R54 R55 R56 
 
  
R60 R61 R62 R63 R64 R65 R66 

3rd cycle 

2nd cycle 

4th cycle 

5th cycle 

6th cycle 

7th cycle 

8th cycle 

P0 

P1 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

P9 P10 P11 P12 

Final Product -   FP13  FP12 FP11 FP10  FP9  FP8  FP7   FP6   FP5  FP4  FP3  FP2   FP1  FP0 

1st cycle 
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  The complete multi-operand BCD adder array is 
shown in Figure 12. During the eighth cycle FP9, FP10, 
FP11, FP12, and FP13 are generated using 11-operand (9-
partial products and the two carries (C8 and C7H) that 
are generated in previous cycles), 7-operand, 5-
operand, 3-operand decimal adders, and a 4-digit high 
speed decimal adder. The 4-digit high speed decimal 

adder is used to add the carry generated. The maximum 
depth of addition occurs at the eighth cycle, and this 
determines the clock frequency. Using this approach, 
when multiplying two n-digit operands to produce a 
2n-digit product, the worst-case latency is n + 1 cycles, 
and initiation interval is n cycles. 
 

 
Figure 12: BCD adder array 

  
 
4. Synthesis Results 
 
  The proposed decimal fixed point multiplier was 
coded for a (7-digit × 7-digit) multiplier in VHDL, and 
synthesized to evaluate the area and delay of the 
design. Synthesis was done using Leonardo Spectrum 
from Mentor Graphics Corporation with ASIC Library 
of 0.18 micron, 1.8 V CMOS technology. An area and 
delay breakdown for an approximate contribution of 
major components of the design shown in Figure 8 is 
given in Table 2. Even though the delay for the 
complete circuit is 29.95ns, the latency is less since the 
multi-operand BCD addition takes place 
simultaneously with the single digit multiplication of 
next set of inputs. 
    The proposed design differs from the iterative 
approach using easy multiples for partial product 
generation for hardware realization of BCD 
multipliers. The design in [7] uses similar approach, 
and so this is also synthesized in the same environment 
as the proposed multiplier. The proposed design of a 
single digit multiplier array block gives a reduction of 
8% in area and 18% in delay compared to the 
multiplier in [7]. 

    
Table 2: Area and Delay for different stages of 

Decimal Fixed Pont Multiplier (7-digit × 7-digit) 

 
 

 
Component 

 

Area Delay 
μm2 % ns % 

 
Controller 
 

 
2719 

 
15.06

% 

 
4.85 

 
16.19% 

Single digit 
multiplier 
array 

 
3423 

 
18.96

% 

 
7.56 

 
25.24% 

 
BCD adder 
array 

 
5791 

 
32.08

% 

 
12.93 

 
43.17% 

 
Register 
array 

 
6114 

 
33.87

% 

 
4.61 

 
15.39% 

 
Fixed point 
multiplier 

 
18047 

 
100% 

 
29.95 

 
100% 

1st 
cycle 

2nd cycle 3rd cycle 4th cycle 5th cycle 6th cycle 7th cycle 8th cycle 

3 
op. 
add
er 

5 
op. 
add
er 

8 
op. 
add
er 

10 
op. 
add
er 

11 
op. 
add
er 

14 
op. 
add
er 

15 
op. 
add
er 

13 
op. 
add
er 

11 
op. 
add
er 

7 
op. 
add
er 

5 
op. 
add
er 

3 
op. 
add
er 

2 digit BCD 
adder 

2 digit BCD 
adder 

4 digit high speed BCD 
adder 

P00 

P66 

FP1  FP0 

FP2 

FP4        FP3 

FP5 

FP9        FP8              FP7           FP6 

FP13  FP12      FP11    FP10 
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  5. Conclusion 
 
  This paper proposed a novel single digit BCD 
multiplier cell that can be used in iterative BCD 
multiplier circuits. It is demonstrated that this design 
gains an 8% savings in the area and 18% savings in 
delay compared to the existing design of [7]. This 
design leads to more regular VLSI implementation, 
and does not require special registers for storing easy 
multiples. A new RPS algorithm is used to generate 
and accumulate the partial products in an efficient 
manner for fixed point decimal multiplication. The 
design was validated using 7-digit × 7-digit fixed point 
decimal multiplication that is required for a 32-bit 
floating point decimal multiplication. The latency for 
the multiplication of two n-digit BCD operands is (n + 
1) cycles, and a new multiplication can begin every ‘n’ 
cycle.  Inclusion of parallelism improved the 
throughput.  

Future research focuses on incorporating pipelining 
in the design and for reducing the size of register 
arrays used for storing the partial products. 
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