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ABSTRACT

Decimal multiplication is an integral part of financial, 
commercial, and internet-based computations. This paper 
presents a novel double digit decimal multiplication 
(DDDM) technique that performs 2 digit multiplications 
simultaneously in one clock cycle. This design offers low 
latency and high throughput. When multiplying two n-digit 
operands to produce a 2n-digit product, the design has a 
latency of 1)2/(n cycles. The paper presents area 
and delay comparisons for 7-digit, 16-digit, 34-digit double 
digit decimal multipliers on different families of Xilinx, 
Altera, Actel and Quick Logic FPGAs.  The multipliers 
presented can be extended to support decimal floating-point 
multiplication for IEEE P754 standard. 
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1. INTRODUCTION 

The majority of the world's commercial and financial data 
is stored and manipulated in decimal form. A simple 
example is a pocket calculator, which is based on some 
form of decimal arithmetic. Currently, general purpose 
computers do decimal computations using binary 
arithmetic. Binary data can be stored efficiently and 
manipulated very quickly on two-state computers. 
Additional points favoring binary arithmetic include better 
error characteristics and less hardware to implement the 
same function. However, there are compelling reasons to 
consider decimal arithmetic, particularly for business 
computations. The reasons include human’s natural affinity 
for decimal arithmetic and the inexact mapping between 
some decimal and binary values. Binary floating point 
values can only approximate certain common decimal 
numbers. For example a value of 0.1 requires an infinitely 
recurring binary pattern of zeros and ones. When an 
average user performs a calculation such as addition of 0.1 
and 0.9, the expected result is 1.0. The user would find it 
very confusing to be presented with an answer of 

0.999999. In this world of precision, such errors generated 
by conversion between decimal and binary formats are no 
more tolerable. In many cases, the law requires that results 
of financial calculations performed on a computer exactly 
match those carried out using pencil and paper. That can be 
achieved only if the calculations are executed in decimal. 
Recently, support for decimal arithmetic has received 
increased attention due to this growing importance in 
financial analysis, banking, tax calculation, currency 
conversion, insurance, telephone billing and accounting 
which cannot tolerate such errors. 

Due to the increasing significance of decimal arithmetic, 
standard specifications are recently added to the draft 
revision of the IEEE 754 Standard for Floating-Point 
Arithmetic [1]. The new IEEE 754R standard defines a 
single data type that can be used for integer, fixed-point 
and floating-point decimal arithmetic. Hardware support 
for decimal operations, however, has been limited. But the 
scenario is set to change with the cost of die space 
continually dropping and the significant speedup 
achievable in hardware [2]. But till now, there is little in 
the way of hardware assist for financial applications that 
perform operations on data stored in decimal form. This is 
because decimal arithmetic operations are typically more 
complex, slower and occupy more area leading to more 
power and less speed when implemented in hardware. 
Hence, the major consideration while implementing 
decimal arithmetic is to enhance its speed and reduce area 
as much as possible.  

General-purpose processors, such as those from AMD 
and Intel, provide the ability to add and subtract values 
stored in decimal format. More-complex operations like 
multiplication and division must be constructed from the 
ground up using shifts, addition and subtraction.  To speed 
up such engineering and scientific calculations, today's 
computers include high-performance, floating-point 
coprocessors. Nowadays, Field Programmable Gate Arrays 
(FPGAs) are frequently used for complex designs that are 
oriented for functioning as co-processors. 

Decimal multipliers are typically implemented using an 
iterative approach because of their complexity.  Several 
iterative designs for fixed-point decimal multiplication 
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have been proposed [3, 4, 5, 6] in the seventies and 
eighties. These designs iterate over the digits of the 
multiplier, and based on the value of the current digit, 
either successively add the current multiplicand or a 
multiple of the multiplicand. The multiples are generated 
using either lookup tables or developed using a subset of 
previously generated multiples. Usually, the entire 
multiplicand is multiplied by one multiplier digits to 
generate a partial product in each cycle. The partial 
product is added to an intermediate product register that 
holds the previously accumulated partial products. Several 
existing designs for decimal multiplication generate and 
store multiples of the multiplicand before partial product 
generation.  Then the multiplier digits are used to select the 
appropriate multiple as the partial product [7]. The 
multiplier presented in [8] makes use of a secondary set of 
multiples generated using combinational logic.  This 
design uses dedicated hardware operating at high 
frequencies with relatively low latencies. The multiplier in 
[9] stores intermediate product digits in a less restrictive, 
redundant format called the overloaded decimal 
representation that reduces the delay of the iterative 
portion of the multiplier. An alternative approach is to 
generate the partial product as needed. This leads to less 
wiring and elimination of registers to store multiples of the 
multiplicand [10]. An integral building block of a decimal 
digit by digit multiplier is the single digit multiplier. The 
single digit multiplier in [11] uses a standard 4 × 4 
unsigned binary multiplier that generates an 8-bit binary 
output that needs to be corrected to two decimal digits. 

Decimal Floating point has 3 representations – 32 bit 
format with 7 significand digits, 64 bit format with 16 
significand digits and 128 bit format with 34 significand 
digits. Fixed point multiplication of significands is an 
integral component of floating point multiplication. This 
paper presents double digit fixed-point decimal 
multiplication that offers low latency and high throughput. 
The proposed multiplier generates multiplicand multiples 
for 2 digits simultaneously and uses decimal carry-save 
addition in the iterative portion of the design. When 
multiplying two n-digit operands to produce a 2n-digit 
product, the design has an initiation interval of 

1)2/(n cycles. The paper presents area and delay 
comparison for implementations of 7 digit, 16 digit and 34 
digit DDDM on different families of Xilinx, Altera, Actel 
and Quick logic FPGAs.  

 The organization of the paper is as follows: Initially, the 
approach for double digit multiplication is discussed. 
DDDM for 7 digits, 16 digits and 34 digits are synthesized 
using VHDL. Finally, the paper concludes by tabulating a 
comparison of area and delay analysis of the proposed 
design for various lengths on different families of Xilinx, 
Altera, Actel and Quick logic FPGAs. 

2. DECIMAL MULTIPLICATION 

A decimal multiplier multiplies an n-digit multiplicand, 
A, by an n-digit multiplier, B producing a 2n-digit product, 
P. A straightforward approach to decimal multiplication is 
to iterate over the digits of the multiplier, B, and based on 
the value of the current digit, Bi, successively add multiples 
of A to a product register [12]. The multiplier is accessed 
from least significant digit to most significant digit, and the 
product register is shifted one digit to the right after an 
iteration corresponding to division by 10. This approach 
allows an n-digit adder to be used to add the multiples of A
to the partial product register. The multiples 2A through 
9A, called primary multiples, are calculated at the start of 
the algorithm and stored along with A to reduce delay. The 
disadvantages of this approach are the enormous area or 
delay required for generating all the eight multiples, and the 
eight additional registers needed to store these multiples. 
An alternative method is to find a reduced set of multiples 
called secondary multiples. For example, if 2A, 5A, and 8A
are computed and stored along with A, all the other 
multiples can be obtained with, at most, a single addition. 
This reduced set of multiples is called a secondary set, as no 
more than two members of the set need to be added to 
generate a missing multiple. Another reduced set of 
multiples comprising A, 2A, 4A, and 8A has a one-to-one 
correspondence with the weighted bits of a BCD digit. The 
disadvantage is that certain missing multiples can be 
generated only by the addition of 3 multiples from the 
reduced set. For example, the generation of 7A requires the 
addition of three multiples: A, 2A, and 4A. Although the 
secondary multiple approach reduces the delay or area and 
register count, it introduces the overhead of potentially one 
more addition for each iteration. The multiplier design 
proposed by [8] uses decimal carry-save addition to reduce 
this overhead. It gives a decimal multiplication algorithm 
suitable for high-performance with short cycle times. Since 
the floating point multiplier may need to handle operands 
up to 34 decimal digits further improvements in latency are 
suggested in this research using a double digit decimal 
multiplication technique. 

3. DOUBLE DIGIT MULTIPLICATION 

The block diagram for the DDDM is shown in Fig. 1. 
The ‘Secondary Multiple Generation Block’ generates 
secondary multiples 2A, 4A and 5A of length (n+1) digits. 
This is a purely combinational block with a maximum delay 
of 6 gates [8]. The multiplier input, B is loaded into the 
‘Multiplier Shift Register’ using an asynchronous load 
input. Suitable secondary multiples are selected by using 
two pairs of multiplexers for the two digit multiplier shift 
register output using Table 1. 
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Fig. 1. Block Diagram of the Double Digit Fixed Point Decimal Multiplication 

The ‘Decimal Carry save Adder Block’ adds the two 
selected secondary multiplies using carry save addition and 
generates an (n+1) digit sum output (Si) and an (n+1) bit 
carry output (Ci). Similar addition is done by the second 

decimal carry save adder to produce S(i+1) and C(i+1). These 
four outputs are now added by a 4:2 compressor to give 
temporary sum (TS) and temporary carry (TC) values, of 
length (n+1) digits and (n+1) bits respectively. 
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Table 1: Recoding of Digits of Bi.

Bi Mi         M’i Bi Mi         M’i 

0 0             0 5 5A          0 
1 A            0 6 4A       2A 
2 0          2A 7 5A       2A 
3 A         2A 8 4A       4A 
4 0          4A 9 5A       4A 

The TS and TC values stored in the  ‘Temporary Product 
Registers’ are added with the shifted output of the previous 
partial product (PSi and PCi) in the ‘Partial Product 
Register’ using a 4:2 compressor to get a new partial 
product. The last two digits of the partial product formed is 
a part of the final product. The new partial product is 
stored in the ‘Partial Product Shift Register’ at the negative 
edge of the clock in shifted form. For this purpose, the data 
in the ‘Final Product Shift Register’ is shifted for 2 digits 
during the previous positive edge, giving room to store the 
new 2 digits of the final product during the negative clock 
edge. 

For each iteration cycle, the multiplicand is multiplied 
by 2 digits of the multiplier. The partial product formed is 
shifted by 2 digits and the process is repeated for 

)2/(n iterations. After )2/(n  iterations the final 
product in the form of ‘carry save’ sum and carry is 
available at the output of the ‘Partial Product Shift 
Register’.  This is then passed to a ‘Decimal Carry 
Propagate Adder’, which is actually a Decimal 
Incrementer. Decimal Incrementer is shown in Fig. 2. It is 
a circuit that adds a single bit (Ci) to a decimal digit (Xi(3))
along with the carry in C o(i-1), and gives the result in 
decimal with a carry out (Coi). 

(1)

Fig. 2. Decimal Incrementer 

The Coi is generated after 2 gate delays for each digit. 
For ‘n’ digit multiplication, the ripple delay for Coi at the 
final Decimal Propagate Adder is ‘2n’ gate delays. The 
Boolean expressions for a single digit Decimal  
Incrementer are given in equations  2-5. Total delay of the 
‘Decimal Carry Propagate Adder’ is the delay of one digit 
Decimal Incrementer and ‘2n’ gate delays. This is much 
less than the delay of an ‘n’ digit BCD ripple adder. The 
adder output is then stored in the ‘Final Product Register’. 
The final product is available after 1)2/(n clock 
cycles. 

4. SYNTHESIS RESULTS 

In FPGAs, the choice of the optimum multiplier depends 
on area and propagation time. These parameters are studied 
for DDDM for 7-digits, 16-digits, 34-digits and respective 
implementation results are tabulated. The implementations 
are written in VHDL to synthesize, place, and route the 
design. The designs were implemented in different families 
of Xilinx, Altera, Actel and Quick logic FPGAs and the 
results that were generated are tabulated in Tables 2, 3 and 
4. Estimated operating frequencies and logic resource 
utilization are compiled using the place and route tool log 
files. Table 2 shows the implementation results of DDDM 
for 7 digits on different families of various FPGAs. Table 3 
and Table 4 show the implementation results of double digit 
fixed point multiplier for 16 digits and 34 digits 
respectively on different families of various FPGAs. The 
study reveals that efficient mapping of the double digit 
multiplier is achieved when Xilinx FPGA devices are used.

5. CONCLUSION 

This paper proposed double digit decimal fixed point 
multipliers that can be used in floating point multiplier 
circuits. This design leads to more regular VLSI 
implementation, and does not require special registers for 
storing easy multiples. The design was validated using 
lengths of 7 digits, 16 digits, and 34 digits multipliers that 
are required for all the three formats of floating point 
decimal multiplication. The latency for the multiplication 
of two n-digit BCD operands is 1)2/(n cycles, and a 

new multiplication can begin every )2/(n cycle.

)1(0)1()2()3()1(0)0()3()0()1()2()1(0)3()3( ))(( iiiiiiiiiiiiiiii CCXXXCCXXXXXCCXY                      (2)
).)1(01()2()1()2()3()1(0)2()3()0()1()1(0)2()2( )())(( iiiiiiiiiiiiiiiii CCXXXXXCCXXXXCCXY           (3) 

)1(0)1()3()1(0)0()1()3()0()1()1(0)3()1( ))(( iiiiiiiiiiiiiii CCXXCCXXXXXCCXY                            (4) 
))1(0)0()0( iiii CCXY                                                                        (5) 

)1()0()0()3()1()3( ioiiiiioiioi CXCXXCCXC

Decimal  
Incrementer 

Yi(3-0) Ci

 Xi(3-0) 

     Co(i-1) 

     Coi
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Table 2 : Implementation results of Double Digit Decimal Multipliers (7 Digit) on FPGAs 

FPGA Family Speed 
Grade 

Utilized Area 
(Logic Cells) 

Maximum 
Frequency(M Hz) 

Delay 
(ns)

APEX 20 KE -3 1109 22 47.04 
APEX 20 K -3 1110 20.9 49.66 
ACEX 1 K -3 1072 32.9 29.46 

ALTERA 

FLEX 10 KE -3 1072 25.2 37.54 

Family 
Speed 
Grade 

Utilized Area 
(Core

Cells*/Modules) 

Maximum 
Frequency(M Hz) 

Delay 
(ns)

3200DX -3 1544* 10.1 98.08 
A500K STD 2071* 20.7 47.6 
54SXA -3 1526 15.6 63.78 

ACTEL

RT54SX -1 1819 15.1 65.86 

Family 
Speed 
Grade 

Utilized Area 
(*Gates/ CLBs) 

Maximum 
Frequency(M Hz) 

Delay 
(ns)

Cool Runner -6 *6804 0.5 2145.80 
Spartan -4 504 18.7 54.64 

Spartan 2 -5 525 31.5 33.35 
Spartan XL -4 504 18.7 54.64 

Virtex -4 525 30.4 34.11 
Virtex E -6 525 45.2 25.23 

XILINX

XC9500XV -7 4425 28.6 35.00 

Family 
Speed 
Grade 

Utilized Area 
(Logic Cells) 

Maximum 
Frequency(M Hz) 

Delay 
(ns)Quick 

Logic pASIC3 -1 1139 8.5 132.46 

Table 3: Implementation results of Double Digit Decimal Multipliers (16 Digit) on FPGAs. 

FPGA Family Speed 
Grade 

Utilized Area 
(Logic Cells) 

Maximum 
Frequency(M Hz) 

Delay 
(ns) 

APEX 20 KE -3 2446 22 107.38 
APEX 20 K -3 2447 20.9 113.60 
ACEX 1 K -3 2405 32.9 34.95 

ALTERA 

FLEX 10 KE -3 2405 25.1 85.07 
Family Speed 

Grade 
Utilized Area (Core 

Cells*/Modules) 
Maximum 

Frequency(M Hz) 
Delay 
(ns) 

3200DX -3 3348 10.1 206.39 
A500K STD 4469* 20.1 83.14 
54SXA -3 3357 15.0 127.20 

ACTEL

RT54SX -1 3937 14.6 129.88 
Family Speed 

Grade 
Utilized Area 

(*Gates/ CLBs) 
Maximum 

Frequency(M Hz) 
Delay 
(ns) 

Cool Runner -15 *15588 0.5 2129.30
Spartan 2 -6 1152 36.0 59.08 

Virtex -6 1152 40.1 51.92 
XILINX

Virtex E -8 1152 58.6 36.75 
Family Speed 

Grade 
Utilized Area 
(Logic Cells) 

Maximum 
Frequency(M Hz) 

Delay 
(ns) Quick Logic 

pASIC3 -1 2500 8.6 297.14 
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Table 4: Implementation results of Double Digit Decimal Multipliers (34 Digit) on FPGAs 

FPGA Family Speed 
Grade 

Utilized Area (Logic 
Cells) 

Maximum 
Frequency(M Hz) 

Delay 
(ns) 

APEX 20 KE -3 12279 22 306.82 
APEX 20 K -3 12283 20.9 325.57 
ACEX 1 K -3 12191 32.9 112.54 

ALTERA

FLEX 10 KE -3 12191 32.7 194.33 
Family Speed 

Grade 
Utilized Area (Core 

Cells* /Modules) 
Maximum 

Frequency(M Hz) 
Delay 
(ns) 

3200DX -3 17134 9.5 616.70 
A500K STD 22048* 19.6 255.36 
54SXA -3 16213 15.2 343.90 

ACTEL 

RT54SX -1 18759 14.7 346.58 
Family Speed 

Grade 
Utilized Area 

(*Gates/ CLBs) 
Maximum 

Frequency (M Hz) 
Delay 
(ns) 

Cool Runner -15 *77218 0.5 2147.43 
XILINX 

Virtex E -8 5765 59.9 99.49 

Family Speed 
Grade 

Utilized Area (Logic 
Cells) 

Maximum 
Frequency(M Hz) 

Delay 
(ns) Quick Logic 

pASIC3 -1 12427 8.6 870.73 

The paper presents area and delay analysis on different 
families of Xilinx, Altera, Actel and Quick logic FPGAs for 
double digit decimal multiplier implementations. The study 
reveals that efficient mapping of the double digit multiplier is 
achieved when Xilinx FPGA devices are used.  This design 
can be developed into an IP core for FPGA. Using this IP 
core, and development tools, designers can effectively 
create multipliers to meet their individual requirements. 
Future research focuses on implementing floating point 
multipliers using the proposed fixed point multiplier design. 
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