
PERFORMANCE ANALYSIS OF DOUBLE DIGIT DECIMAL MULTIPLIER ON VARIOUS
FPGA LOGIC FAMILIES

Rekha K. James, K. Poulose Jacob*

Department of Computer Science
 Cochin University of Science and Technology

 Kochi, Kerala, India
 email: rekhajames@cusat.ac.in,

kpj@cusat.ac.in

Sreela Sasi†

Department of Computer and Information
Science

 Gannon University
 Erie, PA, USA

 email: sasi001@gannon.edu

ABSTRACT

Decimal multiplication is an integral part of financial,
commercial, and internet-based computations. This paper
presents a novel double digit decimal multiplication
(DDDM) technique that performs 2 digit multiplications
simultaneously in one clock cycle. This design offers low
latency and high throughput. When multiplying two n-digit
operands to produce a 2n-digit product, the design has a
latency of 1)2/(n cycles. The paper presents area
and delay comparisons for 7-digit, 16-digit, 34-digit double
digit decimal multipliers on different families of Xilinx,
Altera, Actel and Quick Logic FPGAs. The multipliers
presented can be extended to support decimal floating-point
multiplication for IEEE P754 standard.

Keywords: Decimal Multipliers, FPGA, Carry Save Adders

1. INTRODUCTION

The majority of the world's commercial and financial data
is stored and manipulated in decimal form. A simple
example is a pocket calculator, which is based on some
form of decimal arithmetic. Currently, general purpose
computers do decimal computations using binary
arithmetic. Binary data can be stored efficiently and
manipulated very quickly on two-state computers.
Additional points favoring binary arithmetic include better
error characteristics and less hardware to implement the
same function. However, there are compelling reasons to
consider decimal arithmetic, particularly for business
computations. The reasons include human’s natural affinity
for decimal arithmetic and the inexact mapping between
some decimal and binary values. Binary floating point
values can only approximate certain common decimal
numbers. For example a value of 0.1 requires an infinitely
recurring binary pattern of zeros and ones. When an
average user performs a calculation such as addition of 0.1
and 0.9, the expected result is 1.0. The user would find it
very confusing to be presented with an answer of

0.999999. In this world of precision, such errors generated
by conversion between decimal and binary formats are no
more tolerable. In many cases, the law requires that results
of financial calculations performed on a computer exactly
match those carried out using pencil and paper. That can be
achieved only if the calculations are executed in decimal.
Recently, support for decimal arithmetic has received
increased attention due to this growing importance in
financial analysis, banking, tax calculation, currency
conversion, insurance, telephone billing and accounting
which cannot tolerate such errors.

Due to the increasing significance of decimal arithmetic,
standard specifications are recently added to the draft
revision of the IEEE 754 Standard for Floating-Point
Arithmetic [1]. The new IEEE 754R standard defines a
single data type that can be used for integer, fixed-point
and floating-point decimal arithmetic. Hardware support
for decimal operations, however, has been limited. But the
scenario is set to change with the cost of die space
continually dropping and the significant speedup
achievable in hardware [2]. But till now, there is little in
the way of hardware assist for financial applications that
perform operations on data stored in decimal form. This is
because decimal arithmetic operations are typically more
complex, slower and occupy more area leading to more
power and less speed when implemented in hardware.
Hence, the major consideration while implementing
decimal arithmetic is to enhance its speed and reduce area
as much as possible.

General-purpose processors, such as those from AMD
and Intel, provide the ability to add and subtract values
stored in decimal format. More-complex operations like
multiplication and division must be constructed from the
ground up using shifts, addition and subtraction. To speed
up such engineering and scientific calculations, today's
computers include high-performance, floating-point
coprocessors. Nowadays, Field Programmable Gate Arrays
(FPGAs) are frequently used for complex designs that are
oriented for functioning as co-processors.

Decimal multipliers are typically implemented using an
iterative approach because of their complexity. Several
iterative designs for fixed-point decimal multiplication

9781-4244-3846-4/09/$25.00 ©2009 IEEE 165

have been proposed [3, 4, 5, 6] in the seventies and
eighties. These designs iterate over the digits of the
multiplier, and based on the value of the current digit,
either successively add the current multiplicand or a
multiple of the multiplicand. The multiples are generated
using either lookup tables or developed using a subset of
previously generated multiples. Usually, the entire
multiplicand is multiplied by one multiplier digits to
generate a partial product in each cycle. The partial
product is added to an intermediate product register that
holds the previously accumulated partial products. Several
existing designs for decimal multiplication generate and
store multiples of the multiplicand before partial product
generation. Then the multiplier digits are used to select the
appropriate multiple as the partial product [7]. The
multiplier presented in [8] makes use of a secondary set of
multiples generated using combinational logic. This
design uses dedicated hardware operating at high
frequencies with relatively low latencies. The multiplier in
[9] stores intermediate product digits in a less restrictive,
redundant format called the overloaded decimal
representation that reduces the delay of the iterative
portion of the multiplier. An alternative approach is to
generate the partial product as needed. This leads to less
wiring and elimination of registers to store multiples of the
multiplicand [10]. An integral building block of a decimal
digit by digit multiplier is the single digit multiplier. The
single digit multiplier in [11] uses a standard 4 × 4
unsigned binary multiplier that generates an 8-bit binary
output that needs to be corrected to two decimal digits.

Decimal Floating point has 3 representations – 32 bit
format with 7 significand digits, 64 bit format with 16
significand digits and 128 bit format with 34 significand
digits. Fixed point multiplication of significands is an
integral component of floating point multiplication. This
paper presents double digit fixed-point decimal
multiplication that offers low latency and high throughput.
The proposed multiplier generates multiplicand multiples
for 2 digits simultaneously and uses decimal carry-save
addition in the iterative portion of the design. When
multiplying two n-digit operands to produce a 2n-digit
product, the design has an initiation interval of

1)2/(n cycles. The paper presents area and delay
comparison for implementations of 7 digit, 16 digit and 34
digit DDDM on different families of Xilinx, Altera, Actel
and Quick logic FPGAs.

 The organization of the paper is as follows: Initially, the
approach for double digit multiplication is discussed.
DDDM for 7 digits, 16 digits and 34 digits are synthesized
using VHDL. Finally, the paper concludes by tabulating a
comparison of area and delay analysis of the proposed
design for various lengths on different families of Xilinx,
Altera, Actel and Quick logic FPGAs.

2. DECIMAL MULTIPLICATION

A decimal multiplier multiplies an n-digit multiplicand,
A, by an n-digit multiplier, B producing a 2n-digit product,
P. A straightforward approach to decimal multiplication is
to iterate over the digits of the multiplier, B, and based on
the value of the current digit, Bi, successively add multiples
of A to a product register [12]. The multiplier is accessed
from least significant digit to most significant digit, and the
product register is shifted one digit to the right after an
iteration corresponding to division by 10. This approach
allows an n-digit adder to be used to add the multiples of A
to the partial product register. The multiples 2A through
9A, called primary multiples, are calculated at the start of
the algorithm and stored along with A to reduce delay. The
disadvantages of this approach are the enormous area or
delay required for generating all the eight multiples, and the
eight additional registers needed to store these multiples.
An alternative method is to find a reduced set of multiples
called secondary multiples. For example, if 2A, 5A, and 8A
are computed and stored along with A, all the other
multiples can be obtained with, at most, a single addition.
This reduced set of multiples is called a secondary set, as no
more than two members of the set need to be added to
generate a missing multiple. Another reduced set of
multiples comprising A, 2A, 4A, and 8A has a one-to-one
correspondence with the weighted bits of a BCD digit. The
disadvantage is that certain missing multiples can be
generated only by the addition of 3 multiples from the
reduced set. For example, the generation of 7A requires the
addition of three multiples: A, 2A, and 4A. Although the
secondary multiple approach reduces the delay or area and
register count, it introduces the overhead of potentially one
more addition for each iteration. The multiplier design
proposed by [8] uses decimal carry-save addition to reduce
this overhead. It gives a decimal multiplication algorithm
suitable for high-performance with short cycle times. Since
the floating point multiplier may need to handle operands
up to 34 decimal digits further improvements in latency are
suggested in this research using a double digit decimal
multiplication technique.

3. DOUBLE DIGIT MULTIPLICATION

The block diagram for the DDDM is shown in Fig. 1.
The ‘Secondary Multiple Generation Block’ generates
secondary multiples 2A, 4A and 5A of length (n+1) digits.
This is a purely combinational block with a maximum delay
of 6 gates [8]. The multiplier input, B is loaded into the
‘Multiplier Shift Register’ using an asynchronous load
input. Suitable secondary multiples are selected by using
two pairs of multiplexers for the two digit multiplier shift
register output using Table 1.

 166

Fig. 1. Block Diagram of the Double Digit Fixed Point Decimal Multiplication

The ‘Decimal Carry save Adder Block’ adds the two
selected secondary multiplies using carry save addition and
generates an (n+1) digit sum output (Si) and an (n+1) bit
carry output (Ci). Similar addition is done by the second

decimal carry save adder to produce S(i+1) and C(i+1). These
four outputs are now added by a 4:2 compressor to give
temporary sum (TS) and temporary carry (TC) values, of
length (n+1) digits and (n+1) bits respectively.

Secondary Multiple Generation Block

Decimal Carry Save Adder

Decimal (4:2) Compressor

Temporary Product Register

Decimal (4:2) Compressor

Negative edge triggered Partial Product Shift Register Final Product Shift Register

Decimal Carry Propagate Adder

Final Product Register

2A 4A 5A

4:1 Multiplexer

0 A 4A 5A

 0 2A 4A

3:1 Multiplexer

Decimal Carry Save Adder

Carry Save
Adder Block

Mi M’i

Si Ci

 M(i +1) M’(i +1)

S(i+1) C(i +1)

TS TC

Clk

TS TC PS PC

 PS(j+1) PC(j+1)

Final Product

Clk

Multiplier Shift Register

A

4:1 Multiplexer

0 A 4A 5A

 0 2A 4A

3:1 Multiplexer

B

Clk

 167

Table 1: Recoding of Digits of Bi.

Bi Mi M’i Bi Mi M’i

0 0 0 5 5A 0
1 A 0 6 4A 2A
2 0 2A 7 5A 2A
3 A 2A 8 4A 4A
4 0 4A 9 5A 4A

The TS and TC values stored in the ‘Temporary Product
Registers’ are added with the shifted output of the previous
partial product (PSi and PCi) in the ‘Partial Product
Register’ using a 4:2 compressor to get a new partial
product. The last two digits of the partial product formed is
a part of the final product. The new partial product is
stored in the ‘Partial Product Shift Register’ at the negative
edge of the clock in shifted form. For this purpose, the data
in the ‘Final Product Shift Register’ is shifted for 2 digits
during the previous positive edge, giving room to store the
new 2 digits of the final product during the negative clock
edge.

For each iteration cycle, the multiplicand is multiplied
by 2 digits of the multiplier. The partial product formed is
shifted by 2 digits and the process is repeated for

)2/(n iterations. After)2/(n iterations the final
product in the form of ‘carry save’ sum and carry is
available at the output of the ‘Partial Product Shift
Register’. This is then passed to a ‘Decimal Carry
Propagate Adder’, which is actually a Decimal
Incrementer. Decimal Incrementer is shown in Fig. 2. It is
a circuit that adds a single bit (Ci) to a decimal digit (Xi(3))
along with the carry in C o(i-1), and gives the result in
decimal with a carry out (Coi).

(1)

Fig. 2. Decimal Incrementer

The Coi is generated after 2 gate delays for each digit.
For ‘n’ digit multiplication, the ripple delay for Coi at the
final Decimal Propagate Adder is ‘2n’ gate delays. The
Boolean expressions for a single digit Decimal
Incrementer are given in equations 2-5. Total delay of the
‘Decimal Carry Propagate Adder’ is the delay of one digit
Decimal Incrementer and ‘2n’ gate delays. This is much
less than the delay of an ‘n’ digit BCD ripple adder. The
adder output is then stored in the ‘Final Product Register’.
The final product is available after 1)2/(n clock
cycles.

4. SYNTHESIS RESULTS

In FPGAs, the choice of the optimum multiplier depends
on area and propagation time. These parameters are studied
for DDDM for 7-digits, 16-digits, 34-digits and respective
implementation results are tabulated. The implementations
are written in VHDL to synthesize, place, and route the
design. The designs were implemented in different families
of Xilinx, Altera, Actel and Quick logic FPGAs and the
results that were generated are tabulated in Tables 2, 3 and
4. Estimated operating frequencies and logic resource
utilization are compiled using the place and route tool log
files. Table 2 shows the implementation results of DDDM
for 7 digits on different families of various FPGAs. Table 3
and Table 4 show the implementation results of double digit
fixed point multiplier for 16 digits and 34 digits
respectively on different families of various FPGAs. The
study reveals that efficient mapping of the double digit
multiplier is achieved when Xilinx FPGA devices are used.

5. CONCLUSION

This paper proposed double digit decimal fixed point
multipliers that can be used in floating point multiplier
circuits. This design leads to more regular VLSI
implementation, and does not require special registers for
storing easy multiples. The design was validated using
lengths of 7 digits, 16 digits, and 34 digits multipliers that
are required for all the three formats of floating point
decimal multiplication. The latency for the multiplication
of two n-digit BCD operands is 1)2/(n cycles, and a

new multiplication can begin every)2/(n cycle.

)1(0)1()2()3()1(0)0()3()0()1()2()1(0)3()3())((iiiiiiiiiiiiiiii CCXXXCCXXXXXCCXY (2)
).)1(01()2()1()2()3()1(0)2()3()0()1()1(0)2()2()())((iiiiiiiiiiiiiiiii CCXXXXXCCXXXXCCXY (3)

)1(0)1()3()1(0)0()1()3()0()1()1(0)3()1())((iiiiiiiiiiiiiii CCXXCCXXXXXCCXY (4)
))1(0)0()0(iiii CCXY (5)

)1()0()0()3()1()3(ioiiiiioiioi CXCXXCCXC

Decimal
Incrementer

Yi(3-0) Ci

 Xi(3-0)

 Co(i-1)

 Coi

 168

Table 2 : Implementation results of Double Digit Decimal Multipliers (7 Digit) on FPGAs

FPGA Family Speed
Grade

Utilized Area
(Logic Cells)

Maximum
Frequency(M Hz)

Delay
(ns)

APEX 20 KE -3 1109 22 47.04
APEX 20 K -3 1110 20.9 49.66
ACEX 1 K -3 1072 32.9 29.46

ALTERA

FLEX 10 KE -3 1072 25.2 37.54

Family
Speed
Grade

Utilized Area
(Core

Cells*/Modules)

Maximum
Frequency(M Hz)

Delay
(ns)

3200DX -3 1544* 10.1 98.08
A500K STD 2071* 20.7 47.6
54SXA -3 1526 15.6 63.78

ACTEL

RT54SX -1 1819 15.1 65.86

Family
Speed
Grade

Utilized Area
(*Gates/ CLBs)

Maximum
Frequency(M Hz)

Delay
(ns)

Cool Runner -6 *6804 0.5 2145.80
Spartan -4 504 18.7 54.64

Spartan 2 -5 525 31.5 33.35
Spartan XL -4 504 18.7 54.64

Virtex -4 525 30.4 34.11
Virtex E -6 525 45.2 25.23

XILINX

XC9500XV -7 4425 28.6 35.00

Family
Speed
Grade

Utilized Area
(Logic Cells)

Maximum
Frequency(M Hz)

Delay
(ns)Quick

Logic pASIC3 -1 1139 8.5 132.46

Table 3: Implementation results of Double Digit Decimal Multipliers (16 Digit) on FPGAs.

FPGA Family Speed
Grade

Utilized Area
(Logic Cells)

Maximum
Frequency(M Hz)

Delay
(ns)

APEX 20 KE -3 2446 22 107.38
APEX 20 K -3 2447 20.9 113.60
ACEX 1 K -3 2405 32.9 34.95

ALTERA

FLEX 10 KE -3 2405 25.1 85.07
Family Speed

Grade
Utilized Area (Core

Cells*/Modules)
Maximum

Frequency(M Hz)
Delay
(ns)

3200DX -3 3348 10.1 206.39
A500K STD 4469* 20.1 83.14
54SXA -3 3357 15.0 127.20

ACTEL

RT54SX -1 3937 14.6 129.88
Family Speed

Grade
Utilized Area

(*Gates/ CLBs)
Maximum

Frequency(M Hz)
Delay
(ns)

Cool Runner -15 *15588 0.5 2129.30
Spartan 2 -6 1152 36.0 59.08

Virtex -6 1152 40.1 51.92
XILINX

Virtex E -8 1152 58.6 36.75
Family Speed

Grade
Utilized Area
(Logic Cells)

Maximum
Frequency(M Hz)

Delay
(ns) Quick Logic

pASIC3 -1 2500 8.6 297.14

 169

Table 4: Implementation results of Double Digit Decimal Multipliers (34 Digit) on FPGAs

FPGA Family Speed
Grade

Utilized Area (Logic
Cells)

Maximum
Frequency(M Hz)

Delay
(ns)

APEX 20 KE -3 12279 22 306.82
APEX 20 K -3 12283 20.9 325.57
ACEX 1 K -3 12191 32.9 112.54

ALTERA

FLEX 10 KE -3 12191 32.7 194.33
Family Speed

Grade
Utilized Area (Core

Cells* /Modules)
Maximum

Frequency(M Hz)
Delay
(ns)

3200DX -3 17134 9.5 616.70
A500K STD 22048* 19.6 255.36
54SXA -3 16213 15.2 343.90

ACTEL

RT54SX -1 18759 14.7 346.58
Family Speed

Grade
Utilized Area

(*Gates/ CLBs)
Maximum

Frequency (M Hz)
Delay
(ns)

Cool Runner -15 *77218 0.5 2147.43
XILINX

Virtex E -8 5765 59.9 99.49

Family Speed
Grade

Utilized Area (Logic
Cells)

Maximum
Frequency(M Hz)

Delay
(ns) Quick Logic

pASIC3 -1 12427 8.6 870.73

The paper presents area and delay analysis on different
families of Xilinx, Altera, Actel and Quick logic FPGAs for
double digit decimal multiplier implementations. The study
reveals that efficient mapping of the double digit multiplier is
achieved when Xilinx FPGA devices are used. This design
can be developed into an IP core for FPGA. Using this IP
core, and development tools, designers can effectively
create multipliers to meet their individual requirements.
Future research focuses on implementing floating point
multipliers using the proposed fixed point multiplier design.

6. REFERENCES

[1] IEEE Standards Committee, “IEEE Standard for Floating-
Point Arithmetic.” http : // 754 r.ucbtest.org /
drafts/754r.pdf, February 2003.

[2] M. A. Erle, J. M. Linebarger, and M. J. Schulte, “Potential
Speedup Using Decimal Floating-Point Hardware.” 36th
Asilomar Conference on Signals, Systems and Computers,
Nov 2002.

[3] V R. H. Larson, “High Speed Multiply Using Four Input
Carry Save Adder,” IBM Technical Disclosure Bulletin, pp.
2053–2054, December 1973.

[4] T. Ohtsuki, Y. Oshima, S. Ishikawa, K. Yabe, and M.
Fukuta, “Apparatus for Decimal Multiplication,” U.S.
Patent, Jun 1987. #4,677,583.

[5] R. L. Hoffman and T. L. Schardt, “Packed Decimal Multiply
Algorithm,” IBM Technical Disclosure Bulletin, vol. 18, pp.
1562–1563, October 1975.

[6] J. J. Bradley, B. L. Stoffers, T. R. S. Jr., and M. A. Widen,
“Simplified Decimal Multiplication by Stripping Leading
Zeros,” U.S. Patent, Jun 1986. #4,615,016.

[7] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz,
and S. R. Carlough, “The IBM Z900 Decimal Arithmetic
Unit,” in Asilomar Conference on Signals, Systems, and
Computers, vol. 2, pp. 1335– 1339, November 2001

[8] M. A. Erle and M. J. Schulte, “Decimal Multiplication Via
Carry-Save Addition,” IEEE 14th International Conference
on Application-specific Systems, Architectures and
Processors, pp. 348-358, June 2003

[9] R. D. Kennedy, M. J. Schulte and M. A. Erle, “A High-
Frequency Decimal Multiplier,” IEEE 14th International
IEEE international conference on Computer Design
(ICCD’04), pp. 22-29, Oct 2004

[10] Erle, M.A. Schwarz, E.M. Schulte, M.J, “Decimal
multiplication with efficient partial product generation”, 17th

IEEE Symposium on Computer Arithmetic, 2005. ARITH-
17 2005. pp. 21- 28, June 2005

[11] Jaberipur, G.; Kaivani, A, “Binary-coded decimal digit
multipliers”, Computers & Digital Techniques, IET Volume
1, Issue 4, July 2007 pp. 377 – 381

[12] R. K. Richards, Arithmetic Operations in Digital Computers.
New Jersey: D. Van Nostrand Company, Inc., 1955.

 170

