
Anomaly Detection Using System Call
Sequence Sets

Surekha Mariam Varghese,
Dept of Computer Sc. and Engg, M.A. College of Engineering, .Kothamangalam, India.

email: surekha.laju@gmail.com

K.Poulose Jacob,
Dept of Computer Science, Cochin University of Science and Technology, Kochi, India

email: kpj@cusat.ac.in

Abstract-- This paper discusses our research in developing
a generalized and systematic method for anomaly detection.
The key ideas are to represent normal program behaviour
using system call frequencies and to incorporate
probabilistic techniques for classification to detect
anomalies and intrusions. Using experiments on the
sendmail system call data, we demonstrate that concise and
accurate classifiers can be constructed to detect anomalies.
An overview of the approach that we have implemented is
provided.

Index Terms -Intrusion, Security, Anomaly

I. INTRODUCTION

Over the past few years, the scope and importance of
security technologies has increased. But many of the
modern computer systems are crammed with high
security vulnerabilities. Most of the common applications
and operating systems are full of security flaws at many
levels. These vulnerabilities allow an attacker to gain
unauthorized privileges, gain unauthorized access to
protected data or interfere with the work of others. Many
attacks make use of techniques based on buffer overflows
and race conditions.

Detection attempts to compromise the integrity,
confidentiality, or availability of computing and
communication networks are an extremely challenging
problem [1]. Intrusion detection and prevention generally
refers to a broad range of strategies for defending against
malicious attacks [2]. Intrusion detection can be
categorized into misuse detection and anomaly detection.

Misuse detection techniques build signatures of all
known intrusions and use these signatures for detecting
attempts of intrusions. The main drawback of such
systems is that they cannot detect new intrusions whose
intrusion patterns are unknown. The need for storing the
intrusion signatures for each type of intrusion and the
requirement of instant updating of the intrusion signatures
impose severe performance bottleneck on misuse
detection techniques.

 Anomaly based techniques have been useful for
Intrusion Detection to detect intrusions without known
signatures. However, Anomaly detection techniques
suffer from higher false alarm rate compared to misuse
intrusion detection techniques. Although many Anomaly
Detection techniques have been proposed to date, no
single no single technique can effectively detect all types
all types of intrusions under various scenarios.

In this paper, the concept of sequence sets is
introduced to address the problem. A process can be
profiled with frequencies of different system calls in
different sequence sets. The representation of a process
into different sequence sets and the corresponding
frequency distribution has significantly enhanced the
detection rate, and lowered the false alarms. To evaluate
the effectiveness of the concept, a simple probabilistic
model for anomaly detection is proposed.

II. BACKGROUND

The most commonly exploited vulnerability in general-
purpose operating systems is the buffer overflow. It is
encountered due to insufficient bounds checking on
arguments that are supplied by users and it occurs
whenever a request for a buffer access crosses the array /
buffer boundary that was allocated for it. For example,
after it was first reported many years ago, exploitable
“buffer overflow” still exists in some recent system
software due to programming errors.

In an overflow attack, the objective of the attacker is to
corrupt the information in a carefully designed manner.
Commonly they make use of functions that do not check
the size of the arguments and pass very large strings as
arguments to these functions, which either overwrites the
function return address or places an executable code in
the stack.

 The correct method to prevent such attacks is to
provide range checking for arrays or buffers used. Owing
to the heavy overhead involved, this is usually not
preferred. For languages like C, where the size of
arguments are unknown in most cases, range checking is
not a good option. The usual method is to go for static

14 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

code checking to determine risky functions and to
substitute them with safer functions.

Our experiments verify whether buffer overflows alter
the execution sequence of a process, and attempt to detect
anomalies caused by buffer overflows by analyzing
system call sequences. A Bayesian network is used for
the determination of anomalous sequences.

Bayesian Belief Networks have attracted much recent
attention as a possible solution for the problems of
decision support under uncertainty. They are called
Bayesian networks because they make use of Bayes rule
for probabilistic inference [3].

The Bayesian network model can represent
dependencies among the different objects into its
structure. It is made up of a set of variables (nodes) and a
set of directed edges between variables. Each node has a
number of states and a conditional probabilistic table that
describes the probabilistic distribution of the states for the
corresponding variable given the states of its parent
nodes. Graphically a Bayesian network can be described
by a directed acyclic graph [3, 4, 5]. A Bayesian network
can effectively represent the dependence between
variables and can give a concise specification of the joint
probability distribution.

III. ANOMALY DETECTION

Anomaly Detection problem can be defined as
classifying each process Pi into normal and abnormal and
associating a label L depending on the class to which Pi
belongs. Anomaly detection basically involves collecting,
organizing and profiling the behavior of processes, and
classifying them according to the profiles.

Recently, there has been much research on monitoring
program behavior to detect intrusions. Program-based
intrusion detection uses the philosophy that normal
program behavior can be characterized in an
unambiguous way.

Unlike the behavior of a human user or the behavior of
network traffic, the behavior of a program ultimately
stems from a series of machine instructions whose
meanings we know. The observed programs are usually
system programs, and their behavior should not change
without our knowledge. Thus, if intrusions can be
detected as deviations from normal program behavior,
such an intrusion detection technique would be free from
false alarms caused by changes in user behavior patterns,
and free as well from missed intrusions caused by
attackers that mimic benign users [6].

 Intrusion detection in such systems is done by
comparing the profile of the input process behavior
against the normal profile and taking actions according to
some predetermined security policies. To profile normal
usage patterns, Anomaly detection systems such as
IDES[7] makes use of statistical measures on system
features like the CPU and I/O activities with respect to a
particular user or a program. Decision making System
features as well as inter-relationships among different
events and features, vary highly in different computing
environments [8].

System call traces are a common type of audit data
collected for performing intrusion detection. A system
call trace is the ordered sequence of system calls that a

process performs during its execution. The trace for a
given process can be collected using system utilities such
as strace. System call traces are useful for detecting a user
trying to root exploit or attack. In this type of exploit, a
user exploits a bug in a privileged process using a buffer
overflow to create a root shell. Typically, the system call
trace for a process being exploited is drastically different
from the program process under normal conditions. This
is because the buffer overflow and the execution of a root
shell typically call a very different set of system calls
than the normal execution of the program.

Because of these differences, we can detect when a
process is being exploited by examining the system calls.
Traditionally, these methods typically build models over
short contiguous subsequences of the system call trace.
There have been many different methods proposed for
building models over these short contiguous
subsequences.

Reference [9] describes a simple method to determine
the normal behavior for privileged processes using local
ordering of system calls. Normal sequences are
represented with the help of look ahead pairs in [9] and
contiguous sequences in [10]. [11] Presents a statistical
method for misuse detection by locating sequences which
occur more frequently in intrusion data as opposed to
normal data. All these methods predict the probability for
a subsequence to belong to a normal process or an
exploit. In [2] an alternative representation for system call
traces using a bag of system calls is introduced. In [6] and
[12] a state based approach is used.

One potential drawback of using fixed length
subsequences for detecting intrusions is that the size of
the database grows exponentially. To overcome the
disadvantages of representing system call sequences
using subsequences, a method to profile process behavior
similar to the bag of system calls presented in [2] was
developed and implemented [13]. This representation is
called sequence sets.

A.. Sequence Sets

System call trace for a particular process is termed as a
sequence. A collection of similar sequences is called a
sequence set. Sequences that start with the same sequence
of system calls will be in the same sequence set if they
continue to follow the same sequence of system calls.
Certain sequences differ only in the number of times of
execution of certain subsequences. These sequences,
which differ only in the number of execution of
subsequence of system calls, will be in the same sequence
set. Consider the sequences described in Fig 1. The
sequences, sequence 1, sequence 2 and sequence 3, differ
only in the number of times the subsequence S4, S5, S6 is
executed. The system calls and the order in which these
system calls are executed are same in all the three
sequences. Hence they belong to the same sequence set.

Determining which all sequences belong to a particular
sequence set is a very complicated process.
Determination of sequence sets can be considered as a
classification problem. The given input sequences have to
be divided into disjoint classes known as sequence sets.
All known algorithms for classification can be applied to
the classification of sequences.

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 15

© 2007 ACADEMY PUBLISHER

In our approach, the input sequence is converted into
frequency components of the system calls Xi = {f1,f2,- - -,
fn} where n is the total number of possible system calls.
The ordering information of adjacent system calls in the
input sequence is lost and only the frequency of each
system call in the sequence is preserved. Intrusion in this
representation is defined according to frequency count of
system calls.

Sequence 1 Sequence 2 Sequence 3

S1 S1 S1

S2 S2 S2

S3 S3 S3

S4 S4 S4

S5 S5 S5

S6 S6 S6

S7 S4 S4

S8 S5 S5

S9 S6 S6

S10 S7 S4

S11 S8 S5

S12 S9 S6

S13 S10 S7

 S11 S8

 S12 S9

 S13 S10

 S11

 S12

 S13

Figure 1. A set of system call sequence

More formally, let s1,s2,s3,- ---,sk be the system call
trace for a particular process. if i1,i2, i3, - -- ,in be the
possible system calls in the sequence. The profile Pseq is
defined as: Pseq = fi1,fi2,fi3, - - fin ,where fir represents the
frequency of the system call ir in the sequence.

IV. INITIAL EXPERIMENTS

Initial experiments were conducted in Redhat Linux on
simple processes to verify whether buffer overflows can
be detected from system call traces. Buffer overflows
were created by passing very large strings with intrusion
code. System call traces were collected using the
command “strace”. A simple C program which is
vulnerable to buffer overflow, the buffer overflow code
passed to the buffer and the corresponding shell code are
given in Fig 2.

System call traces obtained during normal execution
and abnormal execution of the vulnerable program are
shown in Fig 3. The portion of the system call trace
which is altered in the intrusion trace is shown in bold
face.

Figure 2. Buffer Overflow Demonstration

It is discovered that the sequences of system calls
made by a program during its normal executions are very
consistent, and different from the sequences of its
abnormal executions as well as the executions of other
programs. It is also observed that buffer overflows cause
deviation in normal program flow and system call
sequence. Therefore a database containing the possible
normal sequences with permissible deviations can be
used as the definition of the normal behavior of a
program and a profile of this database can be used as the
basis to detect anomalies. These findings motivated us to
search for simple and accurate intrusion detection models
based on system call frequencies.

Figure 3. System Call Trace Analysis

Normal ExecutionTrace

Execve, Uname, Brk, Old_mmap, Open,Open,
Fstat64,Old_mmap, Close, Open,Read, Fstat64
Old_mmap,Old_mmap, Old_mmap, Close,
Set_thread_area, Munmap,Mmap2, Read,
Fstat64, Mmap2,Write, Munmap, Exit_group

Intrusion Trace

Execve, Uname,Brk, Old_mmap, Open,Open,
Fstat64,Old_mmap, Close, Open,Read, Fstat64
Old_mmap,Old_mmap, Old_mmap, Close,
Set_thread_area, Munmap,Mmap2,Read,
Setreuid, Exit

Vulnerable C Program

int overflow(char *data)
{
char final[100];
strcpy(final, data);
return;
}
main ()
{
char initial[160];
gets(initial);
overflow(initial);
return;
}

Overflow Code
Jump shellcode
Setreuid(0,0)
Exit(0)

Shellcode Used

"\x31\xdb\x31\xc9\x31\xc0\xb0\x46\xcd\x80\x31\xdb\x31\x
c0\xb0\x01\xcd\x80”

16 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

V. EXPERIMENTS USING SENDMAIL

To conduct further experiments, as a commonly used
program that is vulnerable to common exploits and buffer
overflows, Sendmail daemon was used for studying the
normal behaviour and to detect anomalous behaviour.
The syslog intrusions [14] are simple examples of buffer
overflows in sendmail. Though patches are currently
available for the most of the vulnerabilities, sendmail and
the buffer overflow attacks on Sendmail are good cases
for experimental study. Sendmail daemon was examined
for detection of buffer overflow attacks.

In order to construct a good classifier, we need to
gather sufficient amount of training data and identify the
set of meaningful features. Due to the unavailability of
enough varieties of intrusion trace data, further
experiments were conducted using data sets available at
University of New Mexico [15].

 UNM data sets consist of system call traces for
many processes. Synthetic data for sendmail, used in the
experiments, were collected at UNM on SUN SPARC
stations running unpatched SUNOS 4.1.1 and 4.1.4.
System calls generated by a process and its children are
stored in the same trace. Each trace is a sequence of
(process id, system call number). System call numbers
are stored in the order in which it is executed. There is a
mapping file that associates the system call numbers to
the corresponding system call names. The set include
normal traces and abnormal traces. A normal trace
consists of several invocations of the sendmail program.
The abnormal traces used are from syslog-remote
intrusion and syslog-local intrusion.

TABLE I.
A SHORT SEQUENCE FROM SENDMAIL NORMAL DATASET

 The abnormal traces include local and remote
intrusions, each with variety of commands executed
during the attack.

A. Data Preparation

System call trace for a particular process is represented
as a sequence. Each trace in the data set is a collection of
several sequences. Sequences are separated and a
frequency chart of system calls for each sequence is
prepared. Each sequence is characterized by the start
sequence. All sequences with similar starting sequences
are grouped into a sequence set. It is assumed that the
number of possible normal sequence sets for a particular
process is limited. As per the UNM data sets, the number
of possible sequence sets for Sendmail is nine and the
first seven system calls in the sequence and the frequency
of the first system call is used to identify the sequence set
to which the particular sequence belongs. Table II shows
a fragment from frequency chart of sequence set1.

B. Anomaly Status Determination

Frequency of individual system calls in the execution
trace of a process is used for determining the anomaly
status of the particular process. Frequency of each system

call in the input execution trace is determined and
matched with a normal profile. Details of deviations in
frequencies of the input execution trace are fed to the
Bayesian network. The Bayesian model computes the
anomaly score using system call frequencies and prior
probability distributions and if the anomaly score is
above threshold value, marks it as an anomalous
situation.

TABLE II.
A FRAGMENT FROM THE FREQUENCY CHART OF

SEQUENCE SET1

Process id

System
Call Number

and Name
3772 3805 3827 3783 3794

4 4 4 4 4
2 2 2 2 2

66 66 66 66 66

66 66 66 66 66

4 4 4 4 4

13
8

13
8

13
8

13
8

13
8

St
ar

t-
se

qu
en

ce

66 66 66 66 66

1-fork 1 1 1 1 1

2-read 26 26 26 33 59

3-write 8 8 8 15 41

4-open 29 29 29 29 29

F
re

qu
en

cy
 D

et
ai

ls

5-close 98 98 98 98 98

A Bayesian Network defines the probability of
anomaly for different combinations of system call
frequencies. The Bayesian network makes use of a
number of model parameters to detect anomalous
sequences. The model parameter values are different for

different sequence sets.
System call frequencies vary highly in different

sequences. Even with in the same sequence set, for
certain system calls this variation can be unlimited. But
for certain system calls, with in the same sequence set,
the variation in the frequency is relatively less or limited
during normal executions. During a buffer overflow, it is
often necessary to insert new code resulting in insertion,
deletion or modification of the normal system call
sequence. As a consequence, frequency of certain system
calls in the sequence deviate from the normal. In most
cases, frequencies of system calls can be used to detect
anomalous sequence.

System calls are categorized into three groups
depending on their frequency variation in anomalous
situations. Each model is concerned about a particular
category of system calls.

C. Model Parameters

 Underlying model parameters, their detection
mechanisms and significance are described in the
following section.
1) Matching Profile :

System calls that has limited or no variation with in the
same sequence set are considered in the matching profile

3750 5 3752 105 3752 104 3752 104 3752 106

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 17

© 2007 ACADEMY PUBLISHER

model. This model approximates and profiles the
distribution of frequencies of system calls during normal
executions. The goal of this model is to approximate the
distribution of the frequencies of system calls of each
sequence set and detect instances that significantly
deviate from the observed normal behaviour.

For each sequence set there is a normal profile. The
profile stores the minimum value for normal and
maximum possible deviation for each system call
frequency component, of the particular sequence set.
Each input sequence is matched with corresponding
normal profile. If the frequency components of the input
sequence match with the normal profile, with permissible
variations, it is treated as a normal sequence by the
matching profile model.
2) Frequency Pattern

Frequencies of certain system calls and subsequences
will vary highly even with in the same sequence set. This
variation can be considered as normal if this variation is
relative to the frequencies of similar system calls.
Variation in the frequency of system call Read with
system call number 2 in the sequence set1 as shown in
Table II can be considered as example for this case. A
Fragment from the frequency chart of sequence set4, with
identifying sequence “105, 104, 104, 106, 105, 108, 112,
1” is listed in Table III to demonstrate the variation in
frequencies.
3) Irregularity count /Presence of system calls

Many of the system calls will not appear in the
execution sequence of a particular process and will have
zero frequency value. This model takes care of system
calls absent in all the normal sequences encountered
during training phase. The model examines the input
sequence for presence of anomalous system calls and
outputs an abnormal value if found.

Once the parameters are correctly identified
probability tables can be constructed for predicting the
anomaly score. The anomaly score is a value that
specifies the extent of the deviation of the received
request from the expected profile. It is a compound value
that is obtained from the joint probability table. The
anomaly score for each request can be in a range from
0.00 to 1.00, where 0.00 represents a completely secure
state and 1.00 a sure anomalous state.

The frequency distribution model captures the concept
of a ‘normal’ system call frequency for such system calls
by looking at the relative ranking of the frequency
component. It is based on the observation that repeating
subsequences will increase the frequency of every system
call in the subsequence. The analysis is based only on the
relative order of the frequency values and does not rely
on the value of the individual system calls. Table IV lists
the ranking of the system call frequencies, as used by the
frequency pattern model, corresponding to the processes
listed in Table III.

D. Training

Training involves determination of the sequence sets,
system calls used by each of the models and , the
structure as well as probabilities associated with each of
the nodes in the Bayesian Model. The success of anomaly
detection depends on the determination of the correct

sequence sets and actual probabilities associated with
each of the nodes in the Bayesian Network.

System calls used by each of the models and the
sequence sets involved are determined by analyzing the
variations in system call frequencies and by matching
against the identifying sequence.

The Bayesian Network uses a separate node for each
model parameter in each sequence set. The joint
probability table associated with a node involving
variables X1 to Xk is estimated from the training data as
follows

1 1 , - - - k k
1 1 k k

X = I X = IX = I , - - - X = I() =
N

P
N

 where N X1= I 1, --- Xk =Ik
 is the no of observations in

which X1 --. Xk are in states I 1 …. Ik.

TABLE III.
A FRAGMENT FROM THE FREQUENCY CHART OF

SEQUENCE SET4

System
Call Number

1492 1575 1408 1423

2 32 32 12 14

3 15 15 10 11

19 4835 4835 190 670

50 16 16 17 17

78 4814 4814 168 648

104 16052 16052 564 2164

105 9637 9637 344 1304

106 8027 8027 283 1083

108 1610 1610 61 221

112 4830 4830 187 667

128 8 8 10 10

TABLE IV.
A FRAGMENT FROM THE FREQUENCY PATTERN CHART

OF SEQUENCE SET4

System
Call

Number
1492 1575 1408 1423

2 8 8 9 9

3 10 10 10 10

19 4 4 4 4

50 9 9 8 8

78 6 6 6 6

104 1 1 1 1

105 2 2 2 2

106 3 3 3 3

108 7 7 7 7

112 5 5 5 5

128 11 11 10 10

VI. PERFORMANCE EVALUATION

A concept prototype was developed and implemented
to detect buffer overflows. Sequences were identified
with their process-ids. Only normal sequences were used
for training. Samples were selected using random()
function from the list of normal sequences.

18 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

On analyzing the data set, it was observed that the
number of normal profiles is limited. For evaluating the
performance, a number of parameters were measured
under different conditions. Sequences were identified
with their process-ids. Only normal sequences were used
for training. Samples were selected using random()
function from the list of normal sequences. The prototype
was tested using random samples from the list of normal
and abnormal sequences.

Performance was measured using cross validation
method by varying training and testing data. Only normal
datasets were used for training. Cross validation is a good
method of evaluation when the predictions are based on
new data [16].

The holdout method is the simplest kind of cross
validation. The data set is separated into two sets, called
the training set and the testing set. The normal profile is
trained using the training set only. Then the data in the
testing set is matched against the profile. The testing data
is new to detection mechanism. The errors made by the
model are accumulated to give the mean test set error,
which is used to evaluate the model. However, the
evaluation may depend heavily on the data points which
are used as training data and which are used as test data.

To overcome the disadvatages of holdout method K-
fold cross validation with random division was used. In
K-fold validation the data set is divided into k subsets,
and the holdout method is repeated k times. Each time,
one of the k subsets is used as the test set and the other
k-1 subsets are put together to form a training set. Then
the average error across all k trials is computed. Instead
of running the algorithm k times, in random division
method the data is divided randomly into a test and
training set k different times. The advantage of this metod
is that the size of the test set and the number of trials can
be independenly selected.

For evaluation 100,000 runs were used. This is because
of the high variation observed in the performance of the
different runs. Data sequences in each run are divided
into training and testing sets. For experiments concerned
with training percentage, size of the training data set was
selected and all remaining data was used for testing. For
all other experiments a total of 10,00,000 random data
sequences were selected randomly from all the 10,000
runs. The parameters are totaled and average of all the
runs was computed.

The parameters considered for performance
measurement were accuracy, detection rate and false
positive rate. [17] has defined accuracy, detection rate
and false positive rate as follows.

Accuracy is a fraction of accurate identifications.

Number of true positives + Number of true negatives
Accuracy =

Number of input sequences

Detection rate is a fraction of the intrusions identified.

Number of true positives
Detection Rate =

Number of true positives + Number of false negatives

False positive rate is a fraction of the normal data
misidentified as intrusions.

Number of false positives
False Positive Rate =

Number of true positives + Number of false positives

where true positives are the number of abnormal
sequences detected as abnormal, true negatives are the
abnormal sequences detected as abnormal, false positives
are the normal sequences detected as abnormal and false
negatives are the as abnormal sequences detected as
normal.

A. Detection of abnormal sequences

The system assumes a threshold value of zero. The
system was able to detect all abnormal sequences,
keeping the number of false positives small. The false
positives are caused by system call sequences, which
significantly deviate from all examples encountered
during the training phase. This is a common problem in
intrusion detection practice as pointed out in [17] that the
available intrusion data is not quite balanced. In such
cases the detection rate and false positive rate will not be
optimal. This is due to the huge disparity between the
numbers of normal sequences belonging to different
sequence sets of the dataset used for evaluation. If this
disparity can be removed by selecting all the different
varieties of data sequences for training, the number of
false positives will be zero.

Most of the false positives were caused by the absence
of enough varieties of samples. A typical situation from
model2, while considering the frequency ranks of
sequence set5 is shown in Table V. Table VI lists the
corresponding frequency ranking.

TABLE V.
AN EXTRACT FROM THE FREQUENCY CHART OF SET 5

SHOWING FREQUENCY

Frequency Values System
Call

Number PID
1408

PID
1393

PID
1423

PID
2905

2 12 12 14 25

3 10 10 11 16

19 190 73 670 3070

50 17 17 17 17

78 168 51 648 3048

104 564 174 216 1016

105 344 110 130 6104

106 283 88 108 5083

108 61 22 221 1021

112 187 70 667 3067

128 10 10 10 10

Here the false positives were caused due to the
specialty of the training data set pertaining to sequence
set 5. There are only 2 processes, 1423 and 2905 with a

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 19

© 2007 ACADEMY PUBLISHER

different frequency sequence for the system calls .If both
1423 and 2905 do not appear in the randomly selected
training data, the frequency rank profile for sequence set5
will be unique . In this situation frequency sequences
corresponding to both 1423 and 2905 will be tested as
false positives, since they differ from the unique profile
of sequence set5. A similar situation occurs in sequence
set1 also. The increase in the number of false positives
was caused by the lack of sufficient number of variety
data in the training data set.

TABLE VI
AN EXTRACT FROM THE FREQUENCY CHART OF SET 5

SHOWING RANKS

Frequency Ranking System
Call

Number
PID

1408
PID

1393
PID

1423
PID

2905
2 9 9 9 8
3 10 10 10 10
19 4 4 4 4
50 8 8 8 8
78 6 6 6 6

104 1 1 1 1
105 2 2 2 2
106 3 3 3 3
108 7 7 7 7
112 5 5 5 5
128 10 10 10 11

A similar situation occurs in sequence set1 in model1.
Table VII and Table VIII show the corresponding
situation.

TABLE VII.
AN EXTRACT FROM THE FREQUENCY CHART OF

SEQUENCE SET1 SHOWING FREQUENCY

Frequency Values Syste
m Call

Name

Syste
m
Call

Number

PI
D 4176

PI
D 4187

PI
D 3783

PI
D 3794

Read 2 26 26 33 59

Write 3 8 8 15 41

TABLE VIII
 AN EXTRACT FROM THE FREQUENCY CHART OF

SEQUENCE SET1 SHOWING RANKS

Frequency Ranking System
Call
Name

System
Call

Number PID
4176

PID
4187

PID
3783

PID
3794

Read 2 1 1 1 1

Write 3 2 2 2 2

The situation is caused due to the similarity of the
processes appearing in sequence set1. There are only two
processes 3783 and 3794 in sequence set1 with a different
frequency profile. All other processes belonging to
sequence set1 has a fixed pattern of frequency values for
all system calls. In sequence set1 there are only two
system calls, which are handled by the frequency rank
model or model2. So if both 3783 and 3794 did not

appear in the training data, profile for sequence set1 will
contain fixed frequency values for all system calls with
non zero frequency values and are handled by model1
itself. In this special situation, even system call 2 and 3
which were supposed to be handled by model2 will be
handled by model1. Model1 signals both 3783 and 3794
as false positives, due to the difference in the frequency
values of system call 2 and system call 3.

B. Effect of Training Ratio on performance

In the first set of experiments, performance was
measured by varying training percentage. The prototype
was tested using random samples from the list of normal
and abnormal sequences. Fig 4 shows the corresponding
chart.

Figure 4. Performance Evaluation1

C. Comparison of False Positives

The number of false positives is a very important
criterion to determine the success of the method.
 1) Effect of Training Ratio

The effect of training ratio on false positives was
studied. Fig 5 shows the corresponding chart.

Figure 5 Performance Evaluation2
The emphasis has been on determining the success of

the approach; efficiency issues were not much
considered. It was clear from the experiments that
frequencies of system calls are good discriminators to

0
0.01
0.02

0.03
0.04
0.05
0.06

0.07
0.08

0 0.2 0.4 0.6 0.8 1

Training Ratio

F
al

se
 P

os
iti

ve
 R

at
io

FP Ratio

20 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

detect abnormal behaviour due to buffer overflows. The
approach can be extended to other processes and for
different types of intrusions.

VII. CONTRIBUTIONS

Based on the observation that Anomaly detection
approach is more suitable to the detection of buffer
overflow attacks, we identified a method to detect
anomalies caused by buffer overflows. The idea is to
analyze system call traces generated by the process. A
representation for normal behaviour of processes using
frequencies of system calls was developed for this
purpose. A new idea to profile processes using sequence
sets was introduced. We developed a Bayesian network
on frequency variations to detect induced buffer
overflows. We evaluate the proposed method on UNM
data sets to confirm the performance.

VIII. CONCLUSION

What generally occurs is a race between intrusion
techniques and detection techniques. As more efficient
detection techniques are discovered, more complicated
intrusion techniques will evolve. The approach aims at
building process profiles with system call frequencies and
to detect anomalies by measuring deviations from the
process profile. The use of Bayesian network,
incorporating different complex possibilities, improves
detection and reduces false alarms. The accuracy of the
detection models depends on sufficient training data and
the right feature set. Preliminary experiments of using the
approach on Sendmail data provided at the UNM site
showed promising results.

ACKNOWLEDGMENT

We are very grateful to Anil Somayaji and Stephanie
Forrest, for helping us with the necessary intrusion data
and providing the details of their experiments at
University of New Mexico.

REFERENCES

[1] D.E. Denning, An intrusion-detection model, IEEE
Transactions on software Engineering, Vol:13, No:2,pp.
222-232,1987

[2] H. S. Javitz and A. Valdes. The SRI IDES Statistical
Anomaly Detector. In Proceedings of the IEEE Symposium
on Security and Privacy, May 1991.

[3] Finn V.Jensen, An Introduction to Bayesian Networks,
Springer, 1996.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 1997.

[5] Nong Ye , Mingming Xu, Probabilistic Networks with
Undirected Links for Anomaly Detection,
www.itoc.usma.edu/workshop/2000/Abstracts/WA1_2.pdf
Probabilistic networks-with-undirected.pdf

[6] C. C. Michael And Anup Ghosh, Simple, State-Based
Approaches to Program-Based Anomaly Detection, ACM
Transactions on Information and System Security, Vol. 5,
No. 3, August 2002.

[7] Dae-Ki Kang, Doug Fuller, Vasant Honavar, Learning
Classifiers for Misuse and Anomaly Detection Using a Bag
of System Calls Representation, In the Proceedings of the

2005 IEEE Workshop on Information Assurance and
Security,United States Military Academy, West Point,
NY,,pp118-125.

[8] W. Lee, S. Stolfo, and K. Mok. Mining in a Data-flow
Environment: Experience in Network Intrusion Detection.
In Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining
(KDD ’99), San Diego, CA, August 1999.

[9] S. Forrest. A Sense of Self for UNIX Processes. In
Proceedings of the IEEE Symposium on Security and
Privacy, pages 120–128, Oakland, CA, May 1996.

[10] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, 6:151–180, 1998.

[11] P. Helman and J. Bhangoo. A statistically based system for
prioritizing information exploration under uncertainty.
IEEE Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans, 27(4):449–466, July 1997.

[12] Sekar, R., Bendre, M., Dhurjati, D., And Bollineni, P, A
Fast Automaton-Based Method For Detecting Anomalous
Program Behaviors. In Proceedings Of The 2000 IEEE
Symposium On SecurityAnd Privacy. IEEE Computer
Society, Los Alamitos, Calif., 144–155.

[13] Surekha Mariam Varghese, Poulose Jacob,’ Process
Profiling Using Frequencies of System calls’

[14] CERT Syslog vulnerability-a workaround for
sendmail,http://www.cert.org/advisories/CA-
95.13.syslog.vul.html,October 19,1995.

[15] Computer Immune Systems - Data Sets and Software
http://www.cs.unm.edu/~immsec/systemcalls.htm

[16] Jeff Schneider, Cross Validation, 7 February 1997,
http://www.cs.cmu.edu/~schneide/tut5/node42.html.

[17] Learning Classifiers for Misuse and Anomaly Detection
Using a Bag of System Calls Representation, Dae-Ki
Kang, Doug Fuller, and Vasant Honavar

Ms Surekha Mariam Varghese received B-Tech in Computer
Science and Engineering from College of Engineering,
Trivandrum, India in 1990 and M-Tech in Computer and
Information Sciences from Cochin University of Science and
Technology, Kochi, India in 1996. She is currently a PhD
Scholar in the Department of Computer Science, Cochin
University of Science and Technology.

 She has worked as Lecturer at Manipal Institute of
Technology, Manipal, India during the period 1990-91. She
joined M.A. College of Engineering, Kothamangalam, Kerala,
India in the year 1991 in Computer Science and Engineering
department and is continuing there. Her research interests
include Computer Security, Operating Systems, Computer
Algorithms and Database Systems.

Dr. K. Poulose Jacob, Professor of Computer Science at
Cochin University of Science and Technology has more than
27 years of teaching experience and is currently the Director of
School of Computer Science Studies. His studies and research
in Multimicroprocessor Applications earned him his PhD from
Cochin University of Science and Technology. He is presently
Chairman, Board of Studies in Computer Science, and a
member of the Academic Council.

Dr. K.Poulose Jacob is a permanent professional member of the
ACM and a Life Member of the Computer Society of India. His
research interests are in Information Systems Engineering,
Intelligent Architectures and Networks.

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 21

© 2007 ACADEMY PUBLISHER

