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Abstract-- This paper discusses our research in developing 
a generalized and systematic method for anomaly detection. 
The key ideas are to represent normal program behaviour 
using system call frequencies and to incorporate 
probabilistic techniques for classification to detect 
anomalies and intrusions. Using experiments on the 
sendmail system call data, we demonstrate that concise and 
accurate classifiers can be constructed to detect anomalies. 
An overview of the approach that we have implemented is 
provided.  

Index Terms -Intrusion, Security, Anomaly 

I.  INTRODUCTION

Over the past few years, the scope and importance of 
security technologies has increased. But many of the 
modern computer systems are crammed with high 
security vulnerabilities. Most of the common applications 
and operating systems are full of security flaws at many 
levels. These vulnerabilities allow an attacker to gain 
unauthorized privileges, gain unauthorized access to 
protected data or interfere with the work of others. Many 
attacks make use of techniques based on buffer overflows 
and race conditions.  

Detection attempts to compromise the integrity, 
confidentiality, or availability of computing and 
communication networks are an extremely challenging 
problem [1]. Intrusion detection and prevention generally 
refers to a broad range of strategies for defending against 
malicious attacks [2]. Intrusion detection can be 
categorized into misuse detection and anomaly detection. 

Misuse detection techniques build signatures of all 
known intrusions and use these signatures for detecting 
attempts of intrusions. The main drawback of such 
systems is that they cannot detect new intrusions whose 
intrusion patterns are unknown.  The need for storing the 
intrusion signatures for each type of intrusion and the 
requirement of instant updating of the intrusion signatures 
impose severe performance bottleneck on misuse 
detection techniques. 

 Anomaly based techniques have been useful for 
Intrusion Detection to detect intrusions without known 
signatures. However, Anomaly detection techniques 
suffer from higher false alarm rate compared to misuse 
intrusion detection techniques.  Although many Anomaly 
Detection techniques have been proposed to date, no 
single no single technique can effectively detect all types 
all types of intrusions under various scenarios.  

In this paper, the concept of sequence sets is 
introduced to address the problem. A process can be 
profiled with frequencies of different system calls in 
different sequence sets. The representation of a process 
into different sequence sets and the corresponding 
frequency distribution has significantly enhanced the 
detection rate, and lowered the false alarms. To evaluate 
the effectiveness of the concept, a simple probabilistic 
model for anomaly detection is proposed. 

II.  BACKGROUND 

The most commonly exploited vulnerability in general-
purpose operating systems is the buffer overflow.  It is 
encountered due to insufficient bounds checking on 
arguments that are supplied by users and it occurs 
whenever a request for a buffer access crosses the array / 
buffer boundary that was allocated for it. For example, 
after it was first reported many years ago, exploitable 
“buffer overflow” still exists in some recent system 
software due to programming errors. 

In an overflow attack, the objective of the attacker is to 
corrupt the information in a carefully designed manner.  
Commonly they make use of functions that do not check 
the size of the arguments and pass very large strings as 
arguments to these functions, which either overwrites the 
function return address or places an executable code in 
the stack.   

 The correct method to prevent such attacks is to 
provide range checking for arrays or buffers used.  Owing 
to the heavy overhead involved, this is usually not 
preferred. For languages like C, where the size of 
arguments are unknown in most cases, range checking is 
not a good option.  The usual method is to go for static 
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code checking to determine risky functions and to 
substitute them with safer functions.  

Our experiments verify whether buffer overflows alter 
the execution sequence of a process, and attempt to detect 
anomalies caused by buffer overflows by analyzing 
system call sequences. A Bayesian network is used for 
the determination of anomalous sequences. 

Bayesian Belief Networks have attracted much recent 
attention as a possible solution for the problems of 
decision support under uncertainty. They are called 
Bayesian networks because they make use of Bayes rule 
for probabilistic inference [3].

The Bayesian network model can represent 
dependencies among the different objects into its 
structure.  It is made up of a set of variables (nodes) and a 
set of directed edges between variables. Each node has a 
number of states and a conditional probabilistic table that 
describes the probabilistic distribution of the states for the 
corresponding variable given the states of its parent 
nodes. Graphically a Bayesian network can be described 
by a directed acyclic graph [3, 4, 5]. A Bayesian network 
can effectively represent the dependence between 
variables and can give a concise specification of the joint 
probability distribution.  

III.  ANOMALY DETECTION 

Anomaly Detection problem can be defined as 
classifying each process Pi into normal and abnormal and 
associating a label L depending on the class to which Pi 
belongs. Anomaly detection basically involves collecting, 
organizing and profiling the behavior of processes, and 
classifying them according to the profiles.

Recently, there has been much research on monitoring 
program behavior to detect intrusions. Program-based 
intrusion detection uses the philosophy that normal 
program behavior can be characterized in an 
unambiguous way.  

Unlike the behavior of a human user or the behavior of 
network traffic, the behavior of a program ultimately 
stems from a series of machine instructions whose 
meanings we know. The observed programs are usually 
system programs, and their behavior should not change 
without our knowledge. Thus, if intrusions can be 
detected as deviations from normal program behavior, 
such an intrusion detection technique would be free from 
false alarms caused by changes in user behavior patterns, 
and free as well from missed intrusions caused by 
attackers that mimic benign users [6]. 

 Intrusion detection in such systems is done by 
comparing the profile of the input process behavior 
against the normal profile and taking actions according to 
some predetermined security policies. To profile normal 
usage patterns, Anomaly detection systems such as 
IDES[7] makes use of statistical measures on system 
features like the CPU and I/O activities with respect to  a 
particular user or a program. Decision making System 
features as well as inter-relationships among different 
events and features, vary highly in different computing 
environments [8].  

System call traces are a common type of audit data 
collected for performing intrusion detection. A system 
call trace is the ordered sequence of system calls that a 

process performs during its execution. The trace for a 
given process can be collected using system utilities such 
as strace. System call traces are useful for detecting a user 
trying to root exploit or attack. In this type of exploit, a 
user exploits a bug in a privileged process using a buffer 
overflow to create a root shell. Typically, the system call 
trace for a process being exploited is drastically different 
from the program process under normal conditions. This 
is because the buffer overflow and the execution of a root 
shell typically call a very different set of system calls 
than the normal execution of the program. 

Because of these differences, we can detect when a 
process is being exploited by examining the system calls. 
Traditionally, these methods typically build models over 
short contiguous subsequences of the system call trace. 
There have been many different methods proposed for 
building models over these short contiguous 
subsequences.  

Reference [9] describes a simple method to determine 
the normal behavior for privileged processes using local 
ordering of system calls. Normal sequences are 
represented with the help of look ahead pairs in [9] and 
contiguous sequences in [10].   [11] Presents a statistical 
method for misuse detection by locating sequences which 
occur more frequently in intrusion data as opposed to 
normal data. All these methods predict the probability for 
a subsequence to belong to a normal process or an 
exploit. In [2] an alternative representation for system call 
traces using a bag of system calls is introduced. In [6] and 
[12] a state based approach is used. 

One potential drawback of using fixed length 
subsequences for detecting intrusions is that the size of 
the database grows exponentially. To overcome the 
disadvantages of representing system call sequences 
using subsequences, a method to profile process behavior 
similar to the bag of system calls presented in [2] was 
developed and implemented [13]. This representation is 
called sequence sets.

A..  Sequence Sets 

System call trace for a particular process is termed as a 
sequence. A collection of similar sequences is called a 
sequence set. Sequences that start with the same sequence 
of system calls will be in the same sequence set if they 
continue to follow the same sequence of system calls. 
Certain sequences differ only in the number of times of 
execution of certain subsequences. These sequences, 
which differ only in the number of execution of 
subsequence of system calls, will be in the same sequence 
set. Consider the sequences described in Fig 1.  The 
sequences, sequence 1, sequence 2 and sequence 3, differ 
only in the number of times the subsequence S4, S5, S6 is 
executed. The system calls and the order in which these 
system calls are executed are same in all the three 
sequences. Hence they belong to the same sequence set. 

Determining which all sequences belong to a particular 
sequence set is a very complicated process. 
Determination of sequence sets can be considered as a 
classification problem. The given input sequences have to 
be divided into disjoint classes known as sequence sets. 
All known algorithms for classification can be applied to 
the classification of sequences. 
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In our approach, the input sequence is converted into 
frequency components of the system calls Xi = {f1,f2,- - -, 
fn} where n is the total number of possible system calls. 
The ordering information of adjacent system calls in the 
input sequence is lost and only the frequency of each 
system call in the sequence is preserved. Intrusion in this 
representation is defined according to frequency count of 
system calls.  

Sequence  1 Sequence 2 Sequence 3 

S1 S1 S1 

S2 S2 S2 

S3 S3 S3 

S4 S4 S4 

S5 S5 S5 

S6 S6 S6 

S7 S4 S4 

S8 S5 S5 

S9 S6 S6 

S10 S7 S4 

S11 S8 S5 

S12 S9 S6 

S13 S10 S7 

 S11 S8 

 S12 S9 

 S13 S10 

  S11 

  S12 

  S13 

Figure 1.  A set of system call sequence 

More formally, let s1,s2,s3,- ---,sk be the system call 
trace for a particular process. if i1,i2, i3, - -- ,in be the 
possible system calls in the sequence. The profile Pseq is 
defined as: Pseq = fi1,fi2,fi3, - - fin ,where fir represents the 
frequency of the system call ir in the sequence. 

IV.  INITIAL EXPERIMENTS

Initial experiments were conducted in Redhat Linux on 
simple processes to verify whether buffer overflows can 
be detected from system call traces. Buffer overflows 
were created by passing very large strings with intrusion 
code. System call traces were collected using the 
command “strace”.  A simple C program which is 
vulnerable to buffer overflow, the buffer overflow code 
passed to the buffer and the corresponding shell code are 
given in Fig 2. 

System call traces obtained during normal execution 
and abnormal execution of the vulnerable program are 
shown in Fig 3. The portion of the system call trace 
which is altered in the intrusion trace is shown in bold 
face.     

              

Figure 2. Buffer Overflow Demonstration 

It is discovered that the sequences of system calls 
made by a program during its normal executions are very 
consistent, and different from the sequences of its 
abnormal executions as well as the executions of other 
programs. It is also observed that buffer overflows cause 
deviation in normal program flow and system call 
sequence. Therefore a database containing the possible 
normal sequences with permissible deviations can be 
used as the definition of the normal behavior of a 
program and a profile of this database can be used as the 
basis to detect anomalies. These findings motivated us to 
search for simple and accurate intrusion detection models 
based on system call frequencies. 

Figure 3. System Call Trace Analysis

Normal ExecutionTrace 

Execve, Uname, Brk, Old_mmap, Open,Open, 
Fstat64,Old_mmap, Close, Open,Read, Fstat64 
Old_mmap,Old_mmap, Old_mmap, Close, 
Set_thread_area, Munmap,Mmap2, Read,  
Fstat64, Mmap2,Write, Munmap, Exit_group  

Intrusion Trace 

Execve, Uname,Brk, Old_mmap, Open,Open, 
Fstat64,Old_mmap, Close, Open,Read, Fstat64 
Old_mmap,Old_mmap, Old_mmap, Close, 
Set_thread_area, Munmap,Mmap2,Read,  
Setreuid, Exit      

Vulnerable C Program  

int overflow( char *data)  
{
char final[100]; 
strcpy(final, data);  
return; 
}
main ()  
{
char initial[160]; 
gets(initial); 
overflow(initial); 
return; 
}

Overflow Code 
Jump shellcode 
Setreuid(0,0) 
Exit(0) 

Shellcode  Used

"\x31\xdb\x31\xc9\x31\xc0\xb0\x46\xcd\x80\x31\xdb\x31\x
c0\xb0\x01\xcd\x80” 
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V. EXPERIMENTS USING SENDMAIL 

To conduct further experiments, as a commonly used 
program that is vulnerable to common exploits and buffer 
overflows, Sendmail daemon was used for studying the 
normal behaviour and to detect anomalous behaviour. 
The syslog intrusions [14] are simple examples of buffer 
overflows in sendmail. Though patches are currently 
available for the most of the vulnerabilities, sendmail and 
the buffer overflow attacks on Sendmail are good cases 
for experimental study.  Sendmail daemon was examined 
for detection of buffer overflow attacks. 

In order to construct a good classifier, we need to 
gather sufficient amount of training data and identify the 
set of meaningful features. Due to the unavailability of 
enough varieties of intrusion trace data, further 
experiments were conducted using data sets available at 
University of New Mexico [15].

 UNM data sets consist of system call traces for 
many processes. Synthetic data for sendmail, used in the 
experiments, were collected at UNM on SUN SPARC 
stations running unpatched SUNOS 4.1.1 and 4.1.4.  
System calls generated by a process and its children are 
stored in the same trace. Each trace is a sequence of 
(process id, system call number). System call numbers 
are stored in the order in which it is executed. There is a 
mapping file that associates the system call numbers to 
the corresponding system call names. The set include 
normal traces and abnormal traces. A normal trace 
consists of several invocations of the sendmail program. 
The abnormal traces used are from syslog-remote
intrusion and syslog-local intrusion. 

TABLE I. 
A SHORT SEQUENCE FROM SENDMAIL NORMAL DATASET 

 The abnormal traces include local and remote 
intrusions, each with variety of commands executed 
during the attack.  

A.  Data Preparation 

System call trace for a particular process is represented 
as a sequence. Each trace in the data set is a collection of 
several sequences. Sequences are separated and a 
frequency chart of system calls for each sequence is 
prepared. Each sequence is characterized by the start 
sequence. All sequences with similar starting sequences 
are grouped into a sequence set. It is assumed that the 
number of possible normal sequence sets for a particular 
process is limited. As per the UNM data sets, the number 
of possible sequence sets for Sendmail is nine and the 
first seven system calls in the sequence and the frequency 
of the first system call is used to identify the sequence set 
to which the particular sequence belongs. Table II shows 
a fragment from frequency chart of sequence set1. 

B.  Anomaly Status Determination 

Frequency of individual system calls in the execution 
trace of a process is used for determining the anomaly 
status of the particular process. Frequency of each system 

call in the input execution trace is determined and 
matched with a normal profile. Details of deviations in 
frequencies of the input execution trace are fed to the 
Bayesian network. The Bayesian model computes the 
anomaly score using system call frequencies and prior 
probability distributions and if the anomaly score is 
above threshold value, marks it as an anomalous 
situation. 

TABLE II. 
A FRAGMENT FROM THE FREQUENCY CHART OF 

SEQUENCE SET1

Process id 

System 
Call Number 

and Name 
3772 3805 3827 3783 3794

4 4 4 4 4 
2 2 2 2 2 

66 66 66 66 66 

66 66 66 66 66 

4 4 4 4 4 

13
8

13
8

13
8

13
8

13
8

St
ar

t-
se

qu
en

ce
 

66 66 66 66 66 

1-fork 1 1 1 1 1 

2-read 26 26 26 33 59 

3-write 8 8 8 15 41 

4-open 29 29 29 29 29 

F
re

qu
en

cy
 D

et
ai

ls
 

5-close 98 98 98 98 98 

A Bayesian Network defines the probability of 
anomaly for different combinations of system call 
frequencies. The Bayesian network makes use of a 
number of model parameters to detect anomalous 
sequences. The model parameter values are different for 

different sequence sets.
System call frequencies vary highly in different 

sequences. Even with in the same sequence set, for 
certain system calls this variation can be unlimited. But 
for certain system calls, with in the same sequence set, 
the variation in the frequency is relatively less or limited 
during normal executions. During a buffer overflow, it is 
often necessary to insert new code resulting in insertion, 
deletion or modification of the normal system call 
sequence. As a consequence, frequency of certain system 
calls in the sequence deviate from the normal. In most 
cases, frequencies of system calls can be used to detect 
anomalous sequence.  

System calls are categorized into three groups 
depending on their frequency variation in anomalous 
situations. Each model is concerned about a particular 
category of system calls. 

C.  Model Parameters 

 Underlying model parameters, their detection 
mechanisms and significance are described in the 
following section. 
1) Matching Profile :  

System calls that has limited or no variation with in the 
same sequence set are considered in the matching profile 

3750  5 3752   105 3752    104 3752  104 3752  106 
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model. This model approximates and profiles the 
distribution of frequencies of system calls during normal 
executions. The goal of this model is to approximate the 
distribution of the frequencies of system calls of each 
sequence set and detect instances that significantly 
deviate from the observed normal behaviour. 

For each sequence set there is a normal profile. The 
profile stores the minimum value for normal and 
maximum possible deviation for each system call 
frequency component, of the particular sequence set. 
Each input sequence is matched with corresponding 
normal profile. If the frequency components of the input 
sequence match with the normal profile, with permissible 
variations, it is treated as a normal sequence by the 
matching profile model. 
2) Frequency Pattern 

Frequencies of certain system calls and subsequences 
will vary highly even with in the same sequence set. This 
variation can be considered as normal if this variation is 
relative to the frequencies of similar system calls. 
Variation in the frequency of system call Read with 
system call number 2 in the sequence set1 as shown in 
Table II can be considered as example for this case. A 
Fragment from the frequency chart of sequence set4, with 
identifying sequence “105, 104, 104, 106, 105, 108, 112, 
1” is listed in Table III to demonstrate the variation in 
frequencies. 
3)  Irregularity count /Presence of system calls 

Many of the system calls will not appear in the 
execution sequence of a particular process and will have 
zero frequency value. This model takes care of system 
calls absent in all the normal sequences encountered 
during training phase. The model examines the input 
sequence for presence of anomalous system calls and 
outputs an abnormal value if found. 

Once the parameters are correctly identified 
probability tables can be constructed for predicting the 
anomaly score. The anomaly score is a value that 
specifies the extent of the deviation of the received 
request from the expected profile. It is a compound value 
that is obtained from the joint probability table. The 
anomaly score for each request can be in a range from 
0.00 to 1.00, where 0.00 represents a completely secure 
state and 1.00 a sure anomalous state.  

The frequency distribution model captures the concept 
of a ‘normal’ system call frequency for such system calls 
by looking at the relative ranking of the frequency 
component. It is based on the observation that repeating 
subsequences will increase the frequency of every system 
call in the subsequence. The analysis is based only on the 
relative order of the frequency values and does not rely 
on the value of the individual system calls. Table IV lists 
the ranking of the system call frequencies, as used by the 
frequency pattern model, corresponding to the processes 
listed in Table III. 

D.  Training  

Training involves determination of the sequence sets, 
system calls used by each of the models and , the 
structure as well as probabilities associated with each of 
the nodes in the Bayesian Model. The success of anomaly 
detection depends on the determination of the correct 

sequence sets and actual probabilities associated with 
each of the nodes in the Bayesian Network. 

System calls used by each of the models and the 
sequence sets involved are determined by analyzing the 
variations in system call frequencies and by matching 
against the identifying sequence.  

The Bayesian Network uses a separate node for each 
model parameter in each sequence set. The joint 
probability table associated with a node involving 
variables X1 to Xk is estimated from the training data as 
follows  

1   1  , - - -  k  k
1 1 k k

X = I X = IX =  I   , - - -  X  = I( )      =
N

P
N

 where N X1= I 1, --- Xk =Ik
 is the no of observations in 

which X1 --. Xk                 are in states I 1 ….  Ik.  

TABLE III.  
A FRAGMENT FROM THE FREQUENCY CHART OF 

SEQUENCE SET4 

System 
Call Number

1492 1575 1408 1423 

2 32 32 12 14 

3 15 15 10 11 

19 4835 4835 190 670 

50 16 16 17 17 

78 4814 4814 168 648 

104 16052 16052 564 2164 

105 9637 9637 344 1304 

106 8027 8027 283 1083 

108 1610 1610 61 221 

112 4830 4830 187 667 

128 8 8 10 10 

TABLE IV. 
A FRAGMENT FROM THE FREQUENCY PATTERN CHART 

OF SEQUENCE SET4 

System    
Call

Number 
1492 1575 1408 1423

2 8 8 9 9 

3 10 10 10 10 

19 4 4 4 4 

50 9 9 8 8 

78 6 6 6 6 

104 1 1 1 1 

105 2 2 2 2 

106 3 3 3 3 

108 7 7 7 7 

112 5 5 5 5 

128 11 11 10 10 

VI.  PERFORMANCE EVALUATION 

A concept prototype was developed and implemented 
to detect buffer overflows. Sequences were identified 
with their process-ids. Only normal sequences were used 
for training. Samples were selected using random() 
function from the list of normal sequences.  
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On analyzing the data set, it was observed that the 
number of normal profiles is limited. For evaluating the 
performance, a number of parameters were measured 
under different conditions. Sequences were identified 
with their process-ids. Only normal sequences were used 
for training. Samples were selected using random() 
function from the list of normal sequences. The prototype 
was tested using random samples from the list of normal 
and abnormal sequences. 

Performance was measured using cross validation 
method by varying training and testing data. Only normal 
datasets were used for training. Cross validation is a good 
method of evaluation when the predictions are based on 
new data [16]. 

The holdout method is the simplest kind of cross 
validation. The data set is separated into two sets, called 
the training set and the testing set. The normal profile is 
trained using the training set only. Then the data in the 
testing set is matched against  the profile. The testing data 
is new to detection mechanism. The errors made by the 
model are accumulated to give the mean test set error, 
which is used to evaluate the model. However, the 
evaluation may depend heavily on the data points which 
are used as training data and which are used as test data.  

To overcome the disadvatages of holdout method K-
fold cross validation with random division was used. In 
K-fold validation the data set is divided into k subsets, 
and the holdout method is repeated k times. Each time, 
one of the k subsets is used as the test set and the other   
k-1 subsets are put together to form a training set. Then 
the average error across all k trials is computed. Instead 
of running the algorithm k times, in random division 
method the data is divided randomly into a test and 
training set k different times. The advantage of this metod 
is that the size of the test set and the number of trials can 
be independenly selected.  

For evaluation 100,000 runs were used. This is because 
of the high variation observed in the performance of the 
different runs. Data sequences in each run are divided 
into training and testing sets. For experiments concerned 
with training percentage, size of the training data set was 
selected and all remaining data was used for testing. For 
all other experiments a total of 10,00,000 random data 
sequences were selected randomly from all the 10,000 
runs. The parameters are totaled and average of all the 
runs was computed. 

The parameters considered for performance 
measurement were accuracy, detection rate and false 
positive rate. [17] has defined accuracy, detection rate 
and false positive rate as follows.

Accuracy is a fraction of accurate identifications. 

Number of true positives + Number of true negatives
Accuracy =

Number of input sequences

Detection rate is a fraction of the intrusions identified. 

Number of true positives 
Detection Rate  =

Number of true positives + Number of false negatives

False positive rate is a fraction of the normal data 
misidentified as intrusions. 

Number of  false  positives
False Positive Rate =

Number of true positives + Number of false positives

where  true positives are the number of abnormal 
sequences detected as abnormal, true negatives are the 
abnormal sequences detected as abnormal, false positives 
are the normal sequences detected as abnormal and false 
negatives are the as abnormal sequences detected as 
normal. 

A.   Detection of abnormal sequences

The system assumes a threshold value of zero. The 
system was able to detect all abnormal sequences, 
keeping the number of false positives small. The false 
positives are caused by system call sequences, which 
significantly deviate from all examples encountered 
during the training phase. This is a common problem in 
intrusion detection practice as pointed out in [17] that the 
available intrusion data is not quite balanced. In such 
cases the detection rate and false positive rate will not be 
optimal. This is due to the huge disparity between the 
numbers of normal sequences belonging to different 
sequence sets of the dataset used for evaluation. If this 
disparity can be removed by selecting all the different 
varieties of data sequences for training, the number of 
false positives will be zero.  

Most of the false positives were caused by the absence 
of enough varieties of samples. A typical situation from 
model2, while considering the frequency ranks of 
sequence set5 is shown in Table V. Table VI lists the 
corresponding frequency ranking.  

TABLE V. 
AN EXTRACT FROM THE FREQUENCY CHART OF SET 5 

SHOWING FREQUENCY 

Frequency Values System 
Call

Number PID 
1408

PID 
1393

PID 
1423

PID 
2905

2 12 12 14 25 

3 10 10 11 16 

19 190 73 670 3070 

50 17 17 17 17 

78 168 51 648 3048 

104 564 174 216 1016 

105 344 110 130 6104 

106 283 88 108 5083 

108 61 22 221 1021 

112 187 70 667 3067 

128 10 10 10 10 

Here the false positives were caused due to the 
specialty of the training data set pertaining to sequence 
set 5. There are only 2 processes, 1423 and 2905 with  a 
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different frequency sequence for the system calls .If both 
1423 and 2905 do not appear in the randomly selected  
training data, the frequency rank profile for sequence set5 
will be unique . In this situation frequency sequences 
corresponding to both 1423 and 2905 will be tested as 
false positives, since they differ from the unique profile 
of sequence set5.  A similar situation occurs in sequence 
set1 also. The increase in the number of false positives 
was caused by the lack of sufficient number of variety 
data in the training data set.  

TABLE VI 
AN EXTRACT FROM THE FREQUENCY  CHART OF  SET 5 

SHOWING RANKS 

Frequency Ranking System 
Call 

Number 
PID 

1408
PID 

1393
PID 

1423
PID 

2905
2 9 9 9 8 
3 10 10 10 10 
19 4 4 4 4 
50 8 8 8 8 
78 6 6 6 6 

104 1 1 1 1 
105 2 2 2 2 
106 3 3 3 3 
108 7 7 7 7 
112 5 5 5 5 
128 10 10 10 11 

A similar situation occurs in sequence set1 in model1.  
Table VII and Table VIII show the corresponding 
situation.  

TABLE VII. 
AN EXTRACT FROM THE FREQUENCY CHART OF 

SEQUENCE SET1 SHOWING FREQUENCY 

Frequency Values Syste
m Call 

Name 

Syste
m
Call 

Number 

PI
D 4176 

PI
D 4187 

PI
D 3783 

PI
D 3794 

Read 2 26 26 33 59 

Write 3 8 8 15 41 

TABLE VIII 
 AN EXTRACT FROM THE FREQUENCY CHART OF 

SEQUENCE SET1 SHOWING RANKS 

Frequency  Ranking System 
Call 
Name 

System 
Call

Number PID 
4176

PID 
4187

PID 
3783

PID 
3794

Read 2 1 1 1 1 

Write 3 2 2 2 2 

The situation is caused due to the similarity of the 
processes appearing in sequence set1. There are only two 
processes 3783 and 3794 in sequence set1 with a different 
frequency profile. All other processes belonging to 
sequence set1 has a fixed pattern of frequency values for 
all system calls. In sequence set1 there are only two 
system calls, which are handled by the frequency rank 
model or model2. So if both 3783 and 3794 did not 

appear in the training data, profile for sequence set1 will 
contain fixed frequency values for all system calls with 
non zero frequency values and are handled by model1 
itself. In this special situation, even system call 2 and 3 
which were supposed to be handled by model2 will be 
handled by model1. Model1 signals both 3783 and 3794 
as false positives, due to the difference in the frequency 
values of system call 2 and system call 3.   

B.  Effect of Training Ratio on performance 

In the first set of experiments, performance was 
measured by varying training percentage. The prototype 
was tested using random samples from the list of normal 
and abnormal sequences. Fig 4 shows the corresponding 
chart. 

Figure 4.     Performance Evaluation1 

C.  Comparison of False Positives 

The number of false positives is a very important 
criterion to determine the success of the method.  
 1) Effect of Training Ratio 

The effect of training ratio on false positives was  
studied. Fig 5 shows the corresponding chart. 

Figure 5     Performance Evaluation2 
The emphasis has been on determining the success of 

the approach; efficiency issues were not much 
considered. It was clear from the experiments that 
frequencies of system calls are good discriminators to 
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detect abnormal behaviour due to buffer overflows. The 
approach can be extended to other processes and for 
different types of intrusions. 

VII.  CONTRIBUTIONS

Based on the observation that Anomaly detection 
approach is more suitable to the detection of buffer 
overflow   attacks, we identified a method to detect 
anomalies caused by buffer overflows. The idea is to  
analyze system call traces generated by the process. A 
representation for normal behaviour of processes using 
frequencies of system calls was developed for this 
purpose. A new idea to profile processes using sequence 
sets was introduced. We developed a Bayesian network 
on frequency variations to detect induced buffer 
overflows. We evaluate the proposed method on UNM 
data sets to confirm the performance. 

VIII.  CONCLUSION

What generally occurs is a race between intrusion 
techniques and detection techniques. As more efficient 
detection techniques are discovered, more complicated 
intrusion techniques will evolve.  The approach aims at 
building process profiles with system call frequencies and 
to detect anomalies by measuring deviations from the 
process profile.  The use of Bayesian network, 
incorporating different complex possibilities, improves 
detection and reduces false alarms. The accuracy of the 
detection models depends on sufficient training data and 
the right feature set. Preliminary experiments of using the 
approach on Sendmail data provided at the UNM site  
showed promising results. 
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