
IEEE~~~. -- Indco 2005- Cofeene Chnn Inia 1-13 Dec 2005

A New Fast Stream Cipher : MAJE4
Sheena Mathew, K. Paulose Jacob

Abstract- A new fast stream cipher, MAJE4 is designed and
developed with a variable key size of 128-bit or 256-bit. The
randomness property of the stream cipher is analysed by using
the statistical tests. The performance evaluation of the stream
cipher is done in comparison with another fast stream cipher
called JEROBOAM. The focus is to generate a long
unpredictable key stream with better performance, which can

be used for cryptographic applications.
Keywords- cryptography, stream cipher, pseudo random
number generator (PRNG)

I. INTRODUCTION

tream ciphers are an important class of symmetric en-

cryption algorithms. Their basic design feature is the
same as that for a One-Time-Pad cipher, which encrypts

by XOR'ing the plain text with a random key. But for a

One-Time-Pad Cipher it is required to have a key ofthe same
size as the plain text, which makes it impractical for most ap-

plications. While the stream ciphers require only a short ran-

dom key. This key is expanded into a pseudo-random key
stream, which is then XORed with the plain text to generate
the cipher text. Again the same key stream is used to decrypt
by XORing with the cipher text to form the plain text as

shown in Fig. 1. The security of the stream cipher rests in the
key. So the random number generators occupy a central place
in cryptographic designs owing to their property of picking
numbers unpredictably and in using these numbers to choose
cryptographic keys [6-13].
Here the design goal of stream cipher is to efficiently gener-

ate pseudo-random bits, which are identical to truly random
bits.
PRNGs (Pseudo Random Number Generators) used for

cryptographic purposes are required to be
1. of maximum period to accommodate the long length of

the transmitted message.

2. fast to speed up the process.
3. difficult to analyse, since analysis could penetrate the

cryptographic system.
4. capable of producing a good distribution of values.

PRNGs find extensive applications in computer simulation,
numerical analysis, genetic algorithms, and automatic pass-

word generation.
The following PRNGs were already considered for study

and implementation and extensive analysis were done to eval-
uate their performance and to select an appropriate PRNG.

1. Shift Register Based Generators
a.Linear Shift Register[1]
Linear Feedback Shift Register (LFSR)[1]
b.Nonlinear Shift Register[2]
Geffe Generator[2]

2. Arithmetic and Algebraic Operations Based
Generators
a. Linear Congruential Generators (LCGs)[3]
b. X2 mod N -Single precision and Multi precision[4]

3. A Fast Stream Cipher 'JEROBOAM'[5]
Among the above PRNGs, JEROBOAM was found to be a

reliable generator compared to the other generators, because
it passed all the five randomness tests considered for study for
all the random streams produced and has not undergone at-
tacks. Hence while designing the new stream cipher MAJE4,
the important features ofJEROBOAM were also considered.
The cipher MAJE4 is designed to work efficiently on 32-bit
processors.

Fig. 1. Stream Cipher

Department of Computer Science
Cochin University of Science and Technology
Kochi, Kerala, India - 682 022

Sheenamathew@cusat.ac.in., kpj@cusat.ac.in

The cipher MAJE4 is designed forusing a key ofsize 128 or

256 bit. MAJE4 produces a pseudorandom stream, which can

be used to XOR the plain text of any length. The aim of the
work is to design a secure stream cipher, which is higlhly se-

cure in software.

0-7803-9503-4/05/$20.00 C2005 IEEE

60 IEEE Indicon 2005 Conference, Chennai, India, I I - 1 3 Dec. 2005

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 18, 2009 at 03:11 from IEEE Xplore. Restrictions apply.

61-

II. DESIGN CONSIDERATIONS FOR MAJE4

1. The encryption sequence should have a large period. A
pseudo random number generator uses a function that
produces a deterministic stream of bits that eventually
repeats itself. The longer the key, the longer it takes for a
brute force attack and more difficult to do the crypta-
nalysis.

2. The key stream should approximate the properties of a
true random stream as possible.

3. Suitable for hardware or software. Uses only primitive
computational operations commonly found on micro-
processors.

4. Simple and Fast. Use simple algorithm, which is easy to
implement and eases the task of determining the
strength of the algorithm.

5. Low memory requirement. To make it suitable for de-
vices with restricted memory.

6. Mixed operators. The use of more than one arithmetic
and / or Boolean operator complicates cryptanalysis.
Use primitive operators like + and A since these opera-
tors do not commute and hence cryptanalysis becomes
more difficult.

7. Variable number of rounds. An increase in the number
of rounds increases cryptanalytic strength. Also it in-
creases the encryption / decryption time. A variable
number ofrounds permit the user to make a compromise
between security and execution speed.

III. DESCRIPTION OF MAJE4

The mathematical operators used are
1. Addition: Addition of words, denoted by +
2.Bitwise exclusive OR: This operation is denoted by A.
3. Right shift operation: The right shift ofword x right by y

bits is denoted by x>> y.
All the above-mentioned design considerations were taken

care while designing MAJE4 stream cipher. MAJE4 has a key
length of 128 or 256-bit. Here the randomness property has
been tested with the primary statistical tests like frequency
test, serial test, runs test, poker test and auto correlation test.
Since it uses only primitive computational operators like +5 A,
>> etc, it is suitable for hardware and software implementa-
tions. MAJE4 uses an algorithm, which is easy to implement
and fast also. The memory requirement for MAJE4 is less and
hence it is suitable for devices having restricted memory.
Here the nonlinearity is obtained by alternative usage of+ and
A operators, which complicates

A. Key setup
One can choose between a 128-bit key or 256-bit key.

256-bit key: The key is stored in eight 32 bit words key[o],
key[l], key[2], key[3], key[4], key[5], key[6] and key[7].
128-bit key: The first four 32 bit words, ie. key[0], key[l],

key[2] and key[3] are considered for storing the key.

B. Algorithm
Steps:
1. Assign the key length kl either as 128-bit or 256-bit.
2. ifkl=128then

kln=2, div=4
else
kln=3, div=8

3. if kl = 128 then consider two lsb's of key[o] and find the
decimal equivalent of these two lsb's and store in the
variable 'in'.
else
if kl = 256 then consider three lsb's of Key[0] and find
the decimal equivalent ofthese three lsb's and store it in
a variable 'in'.

4. ran =key[o] Akey[i0]
5. if kI = 128 then consider two lsb's of ran and find the

decimal equivalent ofthat and store in the variable 'inl '.
6. if kl = 256 then consider three lsb's of ran and find the

decimal equivalent ofthat and store in the variable 'inl'.
7. check the 16th bit in ran,

if it is 1 then
newran=(key[in0] + key[inl+Imod div]) A (key[inl+2 mod div] +

key[inl+3 mod div])
else

~~~~A ~ ~ +~Anlewran=(key[infl] 'key[inl+lmod div])+ (keY[1nl+2 mod div]
key[inl+3 mod div])

8. The output 32-bit word is newran, which can be used to
XOR with the corresponding word in the plain text.

9. Advance all the keys as
key[i]= key[i] * key[j] + key[1] >>20

10. go to step3

IV. RANDOMNESS TESTS

The analysis ofMAJE4 is done mainly using the tests listed
below [3]. These tests are commonly used for determining
whether the binary sequences possess some specific charac-
teristics that a truly random sequence is likely to exhibit.

]. Frequency Test.
2. Serial Test
3. Poker Test
4. Runs Test
5. Autocorrelation Test

Frequency Test (monobit test): To test whether the num-
ber of 0's anid 1's in the sequences are approximately the
same, as would be expected for a random sequence.

61IEEE Indicon 2005 Conference, Chennai, India, I I - 1 3 Dec. 2005

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 18, 2009 at 03:11 from IEEE Xplore.  Restrictions apply.



62 IEEE Indicon 2005 Conference. Chennai. India. 11-13 Dec. 2005

Serial test (2 bit test): To determine whether the number of
00,01,10 and I I as subsequences of s are approximately the
same, as would be expected for a random sequence.
Poker test: Let m be a +ve integer. Divide the sequence into

n m non-overlapping parts of length m. To test whether the
number of each sequence of length m are approximately the
same, as expected for a random sequence.
Runs test: To determine whether the number ofruns ofvari-

ous lengths in the sequence is as expected in the random se-
quence.
Auto-correlation test: To check whether correlation be-

tween the sequence and the shifted version of it is approxi-
mately 0 when the number of shifts is not divisible by the
period as expected for a random sequence.
The frequency test is for uniformity and the other tests are

for independence.

Table III: Statistical Analysis Using Frequency, Serial, Poker And
Runs Tests With 256 Bit Key

Number of Total no.
random num- ofbits
bers gener- produced

ated

Statistical Analysis

256-bit key

Frequ-ency Serial test Poker test Runs test
test

soo 16000 0.3610 4.2347 269.69 12.79
1500 32000 0.8820 5.5466 501.05 15.86
1500 48000 0.3100 5.9851 481.64 18.87
4000 128000 0.0031 1.6390 2044.4 27.17
6000 192000 0.0316 2.3485 2011.3 27.32
8000 j 256000 0.0082 2.3659 4109.3 21.40

L 10000 320000 0.0630 1.6504 I 4116.4 16.16

VI. PERFORMANCE EVALUATION

V. RESULTS

Here Frequency, Serial, Poker and Runs tests are analysed
using the Chi-square table and Autocorrelation test is ana-
lysed using Normal table, as specified for each randomness
tests. The fast stream cipher MAJE4 successfully passes all
the five statistical tests for every run. Tables 1,2 and 3 show
the results of the specified tests.

Table 1: Statistical Analysis Using Autocorrelation Test

Number of ran- Total num- Statistical Analysis
dom numbers ber ofbits
generated produced

128-bit key 256-bit key

Autocorrelation Autocorrelation
test test

300 9600 2.0855 1.5007
500 16000 2.2158 1.8581

800 25600 2.0762 2.3439
1000 32000 2.4944 1.6045

2000 64000 1.6368 1.4902

Table [I: Statistical Analysis Using Frequency, Serial, Poker And
Runs Tests With 128 Bit Key

The summary of performance evaluation is presented here
by comparing with JEROBOAM stream cipher and shown in
Table 4.

A. Timing Analysis
From the timing analysis it can be noted that when we com-

pare JEROBOAM 128-bit and MAJE4 128-bit, MAJE4
128-bit is almost 9 times faster as shown in Fig.2. Also the
memory requirement is less in MAJE4. The evaluation is
done using Pentium IV Processor, Linux Operating System
and C compiler.

Table

PRNGs used Key length

JERO-BOAM 128-bit
MAJE4 128-bit

MAJE4 Variable
~128-bit

IV: Timing Analysis

No. of No. of
radmrandom bits
numbers per each
generated randomInumber
26,80,000

1 15 IGO9

58,34,000

16
,,J7,J77 J,-

32

Total no. of bits
produced

(speed Mbps)

40.89
352.15
178.03

M r Variable 43,99,999 32 134.27

400

300

Number of ran-
dom numbers

L generated

Total no.
of bits

produced

_o500 16000
1000 I 32000
1500 48000
4000 128000
6000 192000
8000 256000
10000 320000

Statistical Analysis

128-bit key

Fre-quency Serial Poker test Runs test
test test

1.3690 3.6252 294.27 24.00
1.5961 3.5682 566.25 28.43
1.4083 3.4354 538.08 19.97
0.0632 1.2458 2099.7 29.93
0.2475 1.8224 2022.3 30.12
0.4100 2.9614 4101.1 32.33

0.I_0903 13.7286 4159.0 30.25

200

100

0

- i'

Fig. 2. Comparison of Number of Random Bits Produced per
Second (in Mbps)

62 IEEE Indicon 2005 Conference. Chennai. India. I I 1 3 Dec. 2005

'A21

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 18, 2009 at 03:11 from IEEE Xplore.  Restrictions apply.



~ ~
ni,1-3Dc 056

B. Memory Requirement

On comparing the memory required for executable files of
JEROBOAM 128-bit and MAJE4 128-bit, MAJE4 was found
consuming lesser space compared to JEROBOAM. The
memory size required for optimised code for JEROBOAM is
6341 bytes, for MAJE4 128-bit is 5435 bytes and for MAJE4
128-bit or 256-bit is 5678 bytes.

VII. CONCLUSIONS

From the results of analysis and performance evaluation it
can. be concluded that MAJE4 is a reliable generator, which is
much faster than JEROBOAM. All the five statistical tests are
passed by this generator for all the random streams produced.
Since the memory requirement is less, it can be used for de-
vices with restricted memory for security purposes. Since it is
faster and produce independent bits, this stream cipher can be
used for applications that require encryption / decryption of a
stream of data sent through the Internet.

REFERENCES

[1] Bruce Schneier, Applied Cryptography, 2nd Edition, John Wiley and
Sons, 1996.

[2] Kencheng Zeng, Chung-Huang Yang, Dah-Yea Wei and T.R.N. Rao,
"Pseudorandom Bit Generators in Stream-Cipher Cryptography", IEEE
Computer, February 1991, pp 8-17

[3] D. E. Knuth, The Art of Computer Programming - Vol..2,
Seminumerical Algorithms, Addison -Wesley, 1969.

[4] L. Blum, M. Blum and M. Shub, "A Simple Unpredictable Pseudo-
Random Number Generator", SIAM Journal on Computing, Volume
15, Issue 2, May 1986, pp 364 - 383.

[5] Herve Chabanne and Emmanuel Michon, "Jeroboam", 5th Interna-
tional Workshop on Fast Software Encryption, Springer-Verlag, Lon-
don, 1998, pp 49-59.

[6] Ritter T., "The Efficient Generation of Cryptographic Confusion Se-
quences", Cryptologia, Vol 15, No 2, 1991, pp 81-139.

[7] U.V. Vazirani and V.V. Vazirani, "Efficient and Secure Pseudo- Ran-
dom Number Generation, Advances in Cryptology", CRYPTO 84,
LNCS Vol.196, Springer -Verlag, 1985, pp 193-202.

[8] Mustak E. Yalcin, Johan A. K. Suykens and Joos Vandewalle, "True
Random Bit Generation From a Double-Scroll Attractor", IEEE Trans-
actions on Circuits and Systems, Vol. 51, No.7, July 2004, pp
1395-1404.

[9] J. Boyar, "Inferring Sequences Produced by Pseudo-Random Number
Generators", Journal ofACM, Vol.36(l), Jan 1989, pp 129-141.

[10] T. Seigenthaler, "Decrypting a class of Stream Ciphers Using Cipher
text Only" , IEEE Transactions on computer, Vol C-34, No.1, Jan
1985, pp 81-85.

[11] Park Stephen K. and Keith W. Miller, "Random Number Generators:
Good ones are hard to find", Communications of the ACM, October
1988, pp.1 192-1201.

[12] William Aiello, Sivaramakrishnan Rajagopalan and Ramarathnam
Venkatesan, "Design ofPractical and Provably Good RandomNumber
Generators", SODA'95, ACM Jan 1995.pp 1-9.

[13] William Stallings, Cryptography and Network Security: Principles and
Practices, Third Edition, Prentice Hall, 2003.

63IEEE Indicon 2005 Conference, Chennai, India, 11-13 Dec. 2005

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 18, 2009 at 03:11 from IEEE Xplore.  Restrictions apply.


