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Chapter One

Preliminaries

1.1 Introduction

Lifetime data analysis encompasses a wide variety of methods for analyzing

time to occurrence of some event of interest. The event may be death, appearance of

some disease, relapse from remission, equipment breakdown etc. The response

variable is then the time until the event of interest occurs, which is variously referred

to as lifetime. failure time or survival time. Applications of lifetime distribution

methodology range from investigations of the durability of manufactured items to

study of human diseases and their treatments. The modern era in lifetime data

analysis started some decades back with applications to engineering. Starting from

1970, the field expanded rapidly with respect to theory, methodology and fields of

applications. The development proceeded to two inter mingling streams; viz.

reliability theory and survival analysis. The reliability theory deals with models and

methods for lifetime of components and systems in engineering and industrial fields

where as the survival analysis concerns with data arising from medical studies.

The definition of lifetime includes a time scale and a time origin as well as the

specification of the event that determines the lifetime. The lifetime is not always the

real or chronological time. The prototypical event is death. which accounts for the

name given to these methods. The following examples illustrate various types of

lifetime data that arise in practical situations.

Example 1.1: A standard experiment in the investigation of carcinogenic substance is

one in which laboratory animals are subjected to doses of the substance and then



Preliminaries

observed to see if they develop tumors. A main variable of interest is the time to

appearance of a tumor, measured from when the dose is administrated.

Example 1.2: Nelson (1972) considered a life test experiment in which specimens of

a type of electrical insulating fluid were subjected to constant voltage stress. Then the

time until each specimen failed or broke down is termed as the event time.

Example 1.3: Demographers and social scientists are interested in the duration of

certain life ‘states’ for humans. For example, the duration of marriages formed during

a particular year is the lifetime variable where a marriage may end due to annulment,

divorce or death.

Example 1.4: Gehan (1965) discussed the results of a clinical trial, in which the drug

6-mercaptopurine (6-MP) was compared to a placebo with respect to the ability to

maintain remission in acute leukemia patients. Remission time for each patient is the

lifetime variable in this study, which is used to compare the effect of two drugs on

patients.

1.2 Basic Concepts

Let T be a nonnegative random variable representing the lifetime of an

individual with an absolutely continuous distribution function F(t). The basic

concepts that are usually employed to specify the probability distribution of T in

survival analysis are the survivor function and the hazard rate function.

Let f(t) be the probability density function (p.d.f) of T The probability of

an individual surviving up to time I is defined as the survivor function which is given

by
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5(z)=P(T2z)=jf(u)du. (1.1)

S (t) is also referred to as the reliability function in the framework involving lifetimes

of manufactured items. S(t) is a monotone, non-increasing, right continuous function

with 5(0)=1 and S(oo)=lim,_,°_,S(t) 0.

The hazard rate function /l(t) is defined as

_ P(t ST<t+At|T2t)l(f)=glm0I-D

If the density f (I) exists, /1(1) can be written as

2%

'~¢

\_z/1(t)=—— (1.2)
The hazard rate function specifies the instantaneous rate of death or failure at

time t, given that the individual has survived up to time t /1(1) is referred to as the

failure rate function and force of mortality in different contexts.

Any of the three functions discussed above fully specifies the distribution of

the lifetime variable T From equation (1.1), we have S(t)=l—F(I). Now. from

(1.2), we obtain

,1(i)=—iiogs(i)

which provides
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S(t)=exp[—lJ'/i(u)du]. (1.3)

By defining the cumulative hazard rate function A(t) as

I

A(t)= J‘/l.(u)du (1.4)

we have

S(t)=exp(—/\(t)). (1.5)
Now from (1.2) and (1.5). it follows that the probability density function can be

written in terms of the hazard rate function as

f(t)=/1(t)exp(—A(t)) (1.6)
Another concept that is used for modeling survival data is the mean residual

life function, which is also known as the expected residual life. The mean residual life

of time t is given by

m(t)=E(T—t|T.>_t). (1.7)

m(t) represents the average remaining lifetime for an individual at time t, given that

the individual has survived up to time I If m(t)exists, then by the definition (1.7), it

follows that

no

J.S(u)a'um(r)='—— (1.8)
S(t)

4



Preliminariesm
no

JS(Lr)clu. From (1.8), the survivor function can be
0

which yields m(0)=E(T)

written in terms of the mean residual life function as

S(t)= exp —I(m(u)) ldu . (1.9)

1.3 Censoring

Lifetime data often includes different patterns of missing or incomplete
observations. The situation in which the exact lifetime values are unavailable for

certain individuals is known as censoring. Practical constraints such as time and cost

in continuing the study may result in censoring.

Various types of censoring schemes deal with different moulds of incomplete

observations.

1.3.1 Right Censoring

ln right censoring. only the lower bounds of lifetimes are available for some

individuals. This may be happened when a decision is made to terminate a life test

before all items have failed, or when a person in a prospective study is ‘lost to follow­

up’ because they move away from the region where the study take place (Lawless,

2003). Right censoring is the most common censoring scheme observed in survival

and reliability studies.

Example 1.5: Prentice (1973) discussed the data on 40 lung cancer patients taken

from a study designed to compare the effect of two chemotherapy treatments in

prolonging survival time. All patients in the study were received prior therapy and

then randomly assigned to one of the two treatments termed ‘standard’ and ‘test’

Survival times are measured in days from the start of the treatment for each patient.
5
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Observations correspond to patients who were still alive at the time of data collection

are considered to be right censored.

Type I and Type II censoring schemes are two different forms of right censoring.

1.3.1.1 Type I Censoring

In type I censoring scheme, each individual has a fixed potential censoring

time R >Osuch that T is observed if T S R; otherwise we know only that T > R

Type I censoring often happens. when a study is conducted over a specified time

period. Suppose that there are /2 individuals under study. Then under type I censoring,

we have I, =min(7}.R,) and the indicator variable  =1(T, S R,) for i=1,2,....n.

Due to the simplicity in the censoring pattern. type I is the most commonly employed

censoring scheme in practical studies.

1.3.1.2 Type II Censoring

Consider a situation where only the rsmallest lifetimes rm S....SI(,.)in a

random sample of n individuals are observed. where r is a number between 1 and n

This situation of incomplete data is referred to as type II censoring. In type II

censoring scheme, the value of r is chosen before the data are collected and the data

consist of the r smallest lifetimes in a random sample of T,T3,...,T“. A significant

advantage of type 11 censoring is that, we know the number of observed lifetimes in

advance, which helps enormously when planning adequate tests. Type II censoring is

often discussed in theoretical works than in practical studies.

1.3.1.3 Progressive Type II Censoring

Progressive type II censoring is a generalisation of type II censoring. In this set

up, the first r, failures in a life test of n items are observed; then /2, of the remaining

6
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n—r, unfailed items are removed from the experiment, leaving n—r, -211 items still

present in the study. When further r2 items have failed, :12 of the still unfailed items

are removed, and so on. The experiment terminates after some prearranged series of

repetitions of this procedure.

1.3.1.4 Independent Random Censoring

A very simple random censoring process that is often realistic is the one in

which each individual is assumed to have a lifetime T and a censoring time Z , where

T and Z are independent, continuous random variables with survivor functions 5(1)

and G(r) respectively. This implies that, at any time I, the survival experience in the

future is not statistically altered by survival and censoring experience in the past. If

G(t) does not depend on any of the parameters of S(I), then we call it as non

informative censoring process. Then, the observed variable will be (Y,§), where

Y = min(T,Z) and the censoring indicator 6 is defined such that 5:] if T 5 Z and

0 if T > Z. The data on n individuals consist of the pairs  ,i = l,2,...,n.

1.3.2 Left Censoring

A lifetime T associated with an individual is considered to be left censored if

it is less than a censoring time L. This means that the event of interest has already

occurred before the individual entered into the study at time L and that exact lifetime

is unknown.

Example 1.6: Baboons in the Amboseli Reserve, Kenya, sleep in the trees and

descend for foraging at some time of the day. Observers often arrive later in the day

than this descent and for such days they can only ascertain that descent took place
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before a particular time, so that the descent times are left censored (see Andersen et

al., 1993).

1.3.3 Double Censoring

When individuals are experiencing both left censoring and right censoring, the

situation is considered to be doubly censored. Doubly censored data may also occur,

when T represents an outcome variable that can only be accurately measured within a

certain range [U.V]. The observed data for n individuals can be represented by

{mm{v,,max(T,,U,)},1(T, <U,),I(T. >v.)} ,i=l,2,...,n.I I

Example 1.7: Consider the AIDS clinical trial discussed by Cai and Cheng (2004).

The study was designed to compare the virological responses to three treatments for

HIV infected children. One major end point of the study was the plasma HIV-I RNA

level obtained by the NucliSens assay. As a result of the limit of the quantification of

assay, the observed RNS copies per millilitre of plasma are highly unreliable if it is

below 400 or above 750000. The lifetimes for the individuals with plasma level within

this window are only exactly observed and if the plasma level is below 400, the

lifetimes are left censored and if it is above 750000, the lifetimes are right censored.

1.4 Truncation

A possibility for incomplete data in survival or reliability studies arises, due to

the limited time span of the study or dropouts of the subjects for various reasons.

Such situations are described by the phenomenon, truncation. In many life testing

situations, individuals cannot be randomly selected and followed prospectively from

the time origin t=0, but some value u > 0. If the selection of i th individual at time

11, requires that  Zu- and the observed data for individual i consist of (u,,t. 5)1 1'1"
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where ti Zui is a lifetime or censoring time. we say that the lifetime T, is left

truncated at 11,. In many occasions, at least some of the data arise chronologically

before the time by which individuals are selected for the study. Then, the condition for

i th individual to be included in the data set is T, Sig. This is referred to as right

truncation of the lifetime Ti. Truncated samples of this type arise in reliability and

epidemiology studies (Kalbfleisch and Lawless, 1988). For various kinds of

truncation, one could refer to Lawless (2003).

Example 1.8: Kalbfleisch and Lawless (1989) analyzed data on patients infected with

HIV via blood transfusion, who were subsequently diagnosed with AIDS. The data

were used to estimate the distribution of the time Tbetween HIV infection and AIDS

diagnosis. The study group was assembled in 1987 and consisted of individuals who

had a diagnosis of AIDS prior to July I, 1986. For each patient the date of HIV
infection could also be ascertained, because the individuals selected were deemed to

have contracted the HIV through a blood transfusion on a particular date. The

condition for 1' th individual to be included in the data set was therefore that, 7} S v, ,

where v, is the time between the individual’s HIV infection and July I, 1986. This is

an example of right truncated data.

1.5 Inference Procedures

In survival studies, various techniques are employed for modeling and analysis

of lifetime data. Three different approaches to model survival data are parametric

methods, semiparametric methods and nonparametric methods. In conventional

parametric methods, we assume that the random variable T follows some probability

distribution f (t;6) , where the functional form of f (t;6I) is known, but the parameter

6 is unknown. Continuous probability models such as exponential, Weibull,

9
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lognormal, log logistic, Pareto and inverse Gaussian are commonly used in the

analysis of lifetime data. The estimation of parameters of the model is done using

different procedures such as maximum likelihood estimation, method of moments,

Bayesian techniques etc. For more details on parametric lifetime models and on their

inference procedures, one may refer to Martz and Waller (1982), Sinha (1986) and

Lawless (2003).

In many practical situations, the functional form of f(t) is unknown.

Semiparametric and nonparametric methods, which allow a distribution free approach,

are useful in such situations. Semiparametric methods do not make assumptions on

the distribution of lifetimes, but make assumption on how the covariates influence the

lifetimes. However, nonparametric methods allows a completely assumption free

approach for the modeling of survival data. If there are no censored observations in a

sample of size n , the nonparametric estimate of 5(1) is the empirical survivor

function, which is given by

Number of 0b.s'ervati()n.s' 2 I
§ESF (‘l ‘

)7

When censored observations are present, the number of lifetimes greater than

or equal to I will not be known exactly. Thus. 3'55, (I) do not give a correct estimate

of the underlying survival distribution. Accordingly, Kaplan and Meier (1958) defined

a product-limit estimator for 3

1.5.1 Kaplan-Meier Estimator (Product-Limit Estimator)

Let (!,*,5,) be a random sample of n lifetimes which may include censored

observations, where I; is the observed lifetime or censoring time and  is the

10
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indicator function which equals to one if I: is a lifetime and 0 otherwise. Suppose

that there are k distinct lifetimes I, < I: <  < tk where the possibility of more than

one death at tj is allowed. Let dj =Zl(r,7' =t_,,5,. =1) represents the number of

deaths at I}. where  is the indicator function. Then the product-limit estimator of

5(1) is defined as

§(r)=H 1' b’ (1.10)
where nj = Zl(t,i 21].) is the number of individuals at risk at time 1].. The product­

limit estimator does not change at censoring time points.

Alternatively, the survivor function S (1) can be estimated nonparametncally

using the estimator of the cumulative hazard rate function.

1.5.2 Nelson-Aalen Estimator

The estimator of the cumulative hazard rate function (1.4) is given by

f\(z)= Z —" (1.11)
1:55: "1

which is referred as the Nelson-Aalen estimator where dj. and nj are defined as in

Section l.5.l.

Now using (l.5), S(I) can be estimated by

S(!)=exp(—/A\(t)). (l.l2)
11
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Both Kaplan-Meier and Nelson-Aalen estimators possess desirable large
sample properties like strong consistency and asymptotic normality. It is important to

note that both  and ;\(t) are nonparametric maximum likelihood estimators of

S (I) and /\(t) respectively. For more properties of theses estimators, one may refer

to Lawless (2003).

1.6 Regression Models

The use of explanatory variables or covariates is a significant method of

describing the heterogeneity in a population under consideration. In most survival

studies, the focus of interest is to establish the relationship between lifetime variable

and covariates. In a lung cancer study, factors such as age, general conditions of the

patient and the type of tumor can be considered as covariates. In reliability context,

the voltage level during the break down time of equipment is an example of covariate.

Regression models are employed to understand and exploit the relationship between

the lifetime variable and the covariates. In some practical situations, the effect of

covariates on lifetime variable may change over time and such covariates are referred

to as time-dependent or time—varying covariates.

Parametric and semiparametric regression models are often employed to

analyse lifetime data with covariates. Parametric regression models have been studied

by Feigl and Zelen (I965), Zippin and Armitage (I966), Glasser (I967) and Prentice

(1973) among many others. In semiparametric regression models, even though we do

not make any assumption about the underlying form of the lifetime distribution, some

postulations about how the covariates affect the lifetime variable are necessary. The

proportional hazards model introduced by Cox (1972) is the commonly employed

semiparametric regression model in survival analysis. For recent advances on

semiparametric models, one could refer to Chen and Cheng (2005) and Gimenez et al.

(2006).
12
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1.6.1 Cox Proportional Hazards (PH) Model

The proportional hazards model assumes that the covariates have a

multiplicative effect on the hazard rate function of individuals. In proportional hazards

model, the hazard rate function of time T given the pxl vector of covariates X

takes the form

/l(t|X)=,?U(t)r(X) (1.13)

where /in (t) is the baseline hazard rate function which is common to all individuals

and r(X) is a positive valued real function. /in (I) is the hazard rate function for an

individual with covariate vector X such that, r(X)=l. The proportional hazards

model possesses the property that, any two individuals have hazard rate functions that

are constant multiples of each other. A specification of the proportional hazards model

proposed by Cox (1972) with r(X)=exp(,B'X) is widely used in literature and

known as Cox’s proportional hazards (PH) model, where /5’ denote the pxl vector

of regression parameters.

Under Cox proportional hazards model, the hazard rate function of time I, in

presence of the covariate vector X can be specified by

,t(1|x)=/t,(1)exp(,/ix) (1.14)

where  is an arbitrary unspecified baseline hazard rate function which is

common to all individuals. Cox’s proportional hazards model is also referred to as

relative risk model when the covariates are time-dependent. The model given by

(1.14) assumes that covariates have multiplicative effect on the lifetime variable. If

13
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the multiplicative assumption holds well, Cox’s model does not depend on the true

form of the baseline hazard rate function, so the model can be considered as

distribution free.

When the model (1.14) is true, the survivor function for T given X will be

5(z|x)=s0(:)“‘”"") (1.15)
Now, the primary objective is to estimate the regression parameters and the

cumulative baseline hazard rate function. To estimate the vector ,3, Cox (1972)

proposed a partial likelihood method.

Suppose that the lifetime variable T is randomly right censored by the

censoring variable Z Now, we observe (t,6,X) where I: min(T,Z), 6: l(T =r)

and X is the corresponding covariatc vector and  is the usual indicator function.

Let (t,.,(S,X,), i=l,2,...,n be independent and identically distributed copies of

(t,§,X  Define Y, (I) = I (I, 2 t) for i=1,2,...,n. The partial likelihood proposed by

Cox (1972) for estimating ,6’ is given by

0)

L(fl)=fi  (L16)
§v,(».t>exp(/2x,)

Maximum likelihood estimates of ,6’ can be obtained by maximising the partial

likelihood L(,B) given in (l.l6). The nonparametric estimate of the cumulative

baseline hazard rate function is then given by

14
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AU(r)= T'—. (1.17)
Yl(t.»)exp(/3'X,)

Since SO (I) = exp(—/\,,  , So (I) can be estimated as

A A
SU(t)=exp(—/\,,(!)) (1.18)

which leads to the estimator of S(t|X) given by

§(z|X)=exp(—A(zlX))=§,,(z)“"“”l (1.19)

1.7 Competing Risks Models

In the analysis of medical data or industrial data, the failure of individuals or

items may be attributed to more than one cause or factor. These causes (factors) in

some sense compete each other for the failure of the experimental unit. The term

competing risks refers to such situations in which an individual, either a living

organism or an inanimate object is exposed to two or more causes of death (failure),

but its eventual death (failure) can be attributed to exactly one of these causes of

failure. Accordingly, models which are used to analyse such data are referred to as

competing risks models.

The competing risks models arise in public health, demography, actuarial

science, industrial reliability applications and experiments in medical therapeutics.

The theory of competing risks dates back to 1760, when Daniel Bernoulli studied the

effect of small pox eradication on the mortality structure of the overall population.

15
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The following examples demonstrate some situations in which competing risks data

arise.

Example 1.9: Hoel (1972) discussed the data of survival times for two groups of

laboratory mice, all of which were exposed to a fixed dose of radiation at an age of 5

to 6 weeks. The first group of mice was lived in a conventional lab environment and

the second group was kept in a gerrn-free environment. After autopsy, the cause of

death for each mouse was assigned to be one of the three causes of failure: thymic

lymphoma, reticulum cell sarcoma or other causes. Another example of competing

risks data in survival analysis is from a study of breast cancer patients where the cause

of death was recorded as ‘cancer’ or ‘other’ (Boag, I949).

Example 1.10: There are numerous examples in industrial experiments, where items

may fail due to one of the several causes. Hinds (1996) observed the data on failure of

engines fitted to heavy vehicles which is an example of competing risks problem in

industry. Five causes of failures were identified viz. 1- the cooling system, 2-dirt

contamination, 3- mechanical failure, 4—ignition fault and 5- fuel fault. For each unit,

the miles travelled before failure and the cause of failure were reported.

Example 1.11: In economics, Flinn and Heckman (1983) applied a competing risks

model for modeling the unemployment time, where T is the waiting time till the end

of unemployment and C indexes the reason for leaving unemployment.

Consider a competing risks situation with k causes (modes) of failure, so that

the cause of failure C takes values on the set{1,2....,k} Now a pair (T,C) is defined

for each individual where T > O is the continuous lifetime variable and C is the cause

(mode) of failure for that individual. In the traditional analysis of competing risks

data, the failures due to all other causes except the cause of interest are combined and

treated as censored data under the assumption that the causes of failure are

16
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independent each other. Another approach which is useful in the study of competing

risks data is the latent failure time approach. In a latent failure time model, we assume

that with j th cause of failure, there exists a nonnegative random variable  which

represents the observed lifetime if all causes except the j th one are inoperative. T, is

referred to as the latent or conceptual lifetime of an individual. In the simultaneous

presence of all k causes, only the smallest of such nonnegative random variables

T=min (Ti) is observable, together with the actual cause of failure. Now the data

consist of the time and type of first failure. Once the interest is focused upon a

particular failure type, failure times due to other causes can be viewed as random right

censored observations. Crowder (2001) and Kalbfleisch and Prentice (2002) gave

exclusive reviews on this topic.

A finite mixture model can also be used for the analysis of competing risks

data (Crowder, 2001). The observed failure time data may be partitioned into separate

sets for each failure mode and a lifetime distribution can be fitted to each mode

separately. Then,

: plfl (t)+ Pzfz lt)+----+ pkfk (I)

where f(t) and _f/. (t) are the probability density functions corresponding to T and

T]. respectively with p_,. be the probability of an individual to fail by cause j

(j= l,2,..,k ). For the analysis of lifetime data using finite mixture models, one could

refer to McLachlan and Peel (2000).

Analysis of competing risks data using parametric models has been carried out

by Sampford (1952), David (1957), Cox (1959), Berkson and Elveback (1960),

Boardman and Kendell (1970), Herman and Patel (1971). Moeschberger and David
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(I971) and I-Ioel (1972). However, such parametric assumptions may be unrealistic in

some situations, especially in the context of medical studies. Even when a certain

parametric form can be assumed, there is no guarantee that the joint survivor function

of (T,,T2,...,T,_) is identifiable. Accordingly, although the concept of latent failure

times provides a theoretical basis for discussion, it is not to be recommended except in

special types of applications where the unobserved potential failure times can be given

a clear meaning.

Recently, various models have been developed to assess the lifetimes of a

specific risk in presence of the other competing risk factors. The causes of failure may

be assumed to be dependent or independent. Even though the assumption of

dependence among the causes may be more realistic, there is some concern about the

identifiability of the underlying model. For the analysis of survival data with

dependent competing risks, one could refer to Aras and Deshpande (I992),

Moeschberger (I974), Moeschberger and Klein (1995) and Matsuyama and

Yamaguchi (2008). Markov process and counting process models can be employed

for the analysis of competing risks data. Aalen (I976), Fleming and Harrington (I99 I)

and Andersen et al. (I993) provided comprehensive reviews on this area. For an

exhaustive treatment of different competing risks models, we can refer to David and

Moeschberger (1978) and Crowder (20()l ).

Two important concepts that are used to specify the distribution of the

observable random pair (T, C) in competing risks set up are cause specific hazard rate

functions (/1}.  and cause specific subdistribution functions (cumulative incidence

functions).

18
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1.7.1 Cause Specific Hazard Rate Function

Suppose that an individual is subjected to k causes of failure and for each

individual we observe the time to failure and cause of failure. Then cause specific

hazard rate function /7.]. (I) is defined as

P(T<r+Ar,C=j|T2t)
2j(:)=A1lig;U At j=1,2,...,k (1.20)

It can be noted that, /1, (I) is the instantaneous rate of failure by cause j in

the presence of all other failure types, given that the individual has survived up to time

t Cause specific hazard rate functions often have intuitive and scientific appeal.

/1,. (I) was termed ‘decremental forces’ by the English actuary Makeham (1874) and

‘cause specific hazard rate function‘ by Prentice et al. (1978). It is identical to the

‘force of transition’ function in Aalen’s Markov formulation. Cause specific hazard

rate function is also identical with the ‘forces of mortality‘ commonly employed in

demography.

We assume that the k failure types are mutually exclusive and exhaustive so

that an individual can have at most one realized lifetime. Assuming the existence of

the quantities 2.].  the overall hazard rate function /1(1) is given by

/1(t)=:/1J.(t). (1.21)
Prentice et al. (1978) established that only the probabilities that can be expressed as

functions of {/1].  can be estimated from the observed data (T,C).
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Using (1.3) and (1.21), we can represent the survivor function in terms of

cause specific hazard rate functions as

S(t)=expE—IJ‘Zi:/lj(u)duj. (1.22)

1.7.2 Cause Specific Subdistribution Function (Cumulative Incidence Function)

In a competing risks set up with k causes of failure, cause specific

subdistribution function, F, (I)of the observable random pair (T,C) is defined as

F.(t)=P(Tst,C=j) j=l,2,...,k (1.23)

Each F,(t) is a subdistribution function in the sense that F,(oo)S1 The

significance of the cause specific subdistribution functions in modeling competing

risks data is well recognised in demography, epidemiology and survival analysis.

Comparison of cause specific subdistribution functions is useful in selecting

appropriate treatment for a patient (Gray, 1988). Cause specific subdistribution

functions are directly estimable from the observed data (T,C) without making any

untestable assumptions and avoid the identifiability problem in competing risks set up

(Prentice et al., 1978). Pepe and Mori (1993) pointed that, even though, the cause

specific hazard rate functions are estimable from the data (T, C), they do not directly

indicate the magnitude of the proportion of patients suffering each of the cause

specific end points. For more examples involving the use of cause specific

subdistribution functions in survival analysis, we may refer to Lin (1997), Cheng et al.

(1998), Gooley et al. (1999), Cronin and Feuer (2000) and Farley et a1. (2001).

Either set of functions described above fully specifies the joint distribution of

T and C, but they lead to different types of regression models when covariates are
20



Preliminaries

present. Hougaard (2000), Crowder (2001), Kalbfleisch and Prentice (2002) and

Lawless (2003) provided reviews on this area.

The problem of identifiability in modeling the competing risks data in terms of

latent failure times is well known. In competing risks frame work, the identifiability

problem arise because for a particular individual, we could only observe the random

vector (T,C), the occurrence of j th type of failure effectively censoring the

remaining latent failure times due to other causes. Tsiatis (1975) has proved that,

given any joint survivor function with arbitrary dependence between component

variates, there exists a different joint survivor function in which the variates are

independent. It is also shown that the two survivor functions reproduces the same

cause specific subdistribution function ,.  Thus from the observations of ('1‘,C)

alone, one cannot make sure which of the two models is correct since the both will fit

the data equally well. Heckman and Honore (I989) and Bedford and Lindqvist (2004)

studied the identifiability problem in detail.

Censoring can occur both in reliability life testing and medical follow up

studies under competing risks set up as well. Many researchers have studied the

problem of nonparametric estimation of survivor function, cause specific hazard rate

functions and cause specific subdistribution functions of competing risks models. To

overcome the identifiability problem discussed above, we suppose that each

individual may subject to censoring and along with the lifetime variable T, the cause

of failure (death) for each individual is also observed. Now the observed data of :1

individuals consist of (t,,5,,5,C,),i=l,2,...,n, where I, is the observed lifetime,  is

the censoring indicator and C, is the cause of failure for i th individual. In such

situations, the nonparametric estimator of survivor function proposed by Kaplan and

Meier (1958) can be directly generalized to include competing risks. However,
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Prentice et al. (1978) emphasized that, only those quantities which can be expressed in

terms of cause specific hazard rate functions can be estimated from the competing

risks data even if the risks are dependent. So. it is more common to use the Nelson­

Aalen estimator of the cumulative hazard rate function in modeling competing risks

data (see Lawless, 2003). Let 6. =I(C,=j), and n, denote the number of:1

individuals at riskjust prior to time t,,i=1,2,...,n, j= l,2,...,k Then the estimator of

the cumulative hazard rate function for j th cause of failure can be obtained as

which directly gives the estimator of survivor function using (1.22).

1.7.3 Regression Models in Competing Risks

Consider a competing risks situation with k possible causes of failure. Let

T > 0 be the lifetime variable and Ce {1,2,....k} be the cause of failure. Assume that

a pxl vector of covariates X is observed for each individual. The Cox proportional

hazards model given by (1.14) can be extended into the competing risks set up as

,t_,(r|x)=,t,,_,(:)exp(/5',x) j=1,2,...,k (1.24)

where ,6’. is the pxl vector of regression parameters for cause j and /in/(I) is the

baseline cause specific hazard rate function common to all individuals and /l./. (t|X) is

the cause specific hazard rate function at time I in presence of the covariate vector X

Regression parameters and cumulative baseline cause specific hazard rate

functions can be estimated using the partial likelihood approach as in non competing
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risks situation described as in Section 1.6.1. Let(t,,(2,(2C,,X,.), i=l,2,...,n be the

observed data where  is the indicator variable defined as  = I (T, = t,.) . The partial

likelihood for estimating ,BI.,j= l,2,...,k is given by

L(,6,....,/3‘): "11  (1.25)
YI(ti)exp(IBi‘Xl)

I=l

where Y,.(t)=l(t,_>_t) and c‘)‘U=l(Ci=j) for i=l,2,...,n;j=l,2,...,k Then (1.25)

is a product of k similar terms, of which j th one is given by

L(,6j)=IlI  j=l,2,...,k (1.26)
ix/,(r.>exp(/3s;x,)

Regression parameters can be estimated by maximizing the likelihood function given

in (1.25). The generalised Nelson-Aalen estimator of cumulative baseline cause

specific hazard rate functions is given by

A 5.A(,_,.(:)=Z  j=l,2,...,k (1.27)
Yi(f.)€Xp(fl,-Xi)

l=l

Consequently, the survivor function for T given X can be estimated as

§(t|X)=exp[—:K(,gi(t)exp(B}X)j. (1.28)j=l
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Thus, (1.28) leads to the estimator of cause specific subdistribution functions as

. - exp /3",-XFj(t[X)=Z:(Z,.S(t|X)”# j=l.2....,k (1.29)
.249 }’I(1‘.)cxp(,5’;XI)

I=l

For various types of regression models employed for the analysis of competing risks

data, one could refer to Kalbfleisch and Prentice (2002) and Lawless (2003).

1.8 Testing

In life testing and reliability experiments, situations to make decisions about

some assumptions under consideration are quite often. Statistical hypothesis tests are

employed to validate a postulate under consideration and make appropriate decisions.

One of the major testing problems in classical survival analysis is to compare

the underlying survivor distributions of two or more populations. Log rank test, a

generalisation of the rank test proposed by Savage (1956) to include censoring times

is widely used to compare two survivor distributions. Log rank test is also referred to

as Mantel-Cox test in literature.

Two sample tests for comparing survivor distributions were also considered by

Mantel (1966), Cox (1972), Peto and Peto (1972). Two sample tests with prominent

stratification feature was studied by Peto et al. (1976, 1977). Collet (2003) discussed

about the sample size requirement for two sample log rank tests. Linear rank tests for

the equality of m - survivor distributions with uncensored data were considered by

Hajek and Sidak (1967) and Hettmansperger (1984). Johnson and Mehrotra (I972),

Struthers (1984) and Cuzick (1985) considered m-sample tests with censored data

among many others. Further, the counting process formulation of the rank tests was

studied by Aalen (1978) and Gill (l98()).
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In competing risks situations, various problems of statistical testing arise with

data sets. Two major research problems are to test equality of cause specific hazard

rate functions or cause specific subdistribution functions and to test independence of

time to failure and cause of failure. When the risks are independent, different authors

have proposed nonparametric tests for testing the equality of two or more cause

specific hazard rate functions against ordered alternatives. Froda (1987) proposed

locally most powerful rank tests for testing the equality of two risks against scaled

alternatives. Bagai et al. (l989a, 1989b) developed distribution free rank tests for

testing the equality of two cause specific hazard rate functions against stochastic

ordering alternatives. Neuhaus (1991) has proposed asymptotically optimal rank tests

for comparing several independent competing risks differing in their location or scale

parameters. Yip and Lam (1992, 1993) suggested a class of weighted log rank type

statistics for testing the equality of cause specific hazard rate functions. By

generalising the approach of Harrington and Fleming (1982), Gray (1988) proposed a

class of k -sample tests for comparing the cumulative incidence functions. Recently, a

procedure based on U -statistic for testing the equality of cause specific hazard rate

functions was proposed by Molinari (2005). The situation with two dependent risks

has been considered by Deshpande (1990), Aras and Deshpande (1992), Aly et al.

(1994) and Sun and Tiwari (1995). One can refer to Sun (2001), Kulathinal and

Gasbarra (2002) and Tiwari et al. (2006) for different approaches to test the equality

of cause specific hazard rate functions. In the case of discrete (grouped) data, Dykstra

et al. (1995) studied the likelihood ratio test for testing the equality of cause specific

hazard rate functions against ordered alternatives.

Testing the independence of time to failure and cause of failure is another

significant problem in the analysis of competing risks data. Kochar and Proschan

(1991) considered the problem of testing the independence of time to failure and

cause of failure in the multiple dependent competing risks model. Recently, Dykstra et
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al. (1998), Dewan et al. (2004), Gasbarra et al. (2006) and Dewan and Kulathinal

(2007) addressed the same testing problem in different situations.

Crowder (1997) proposed a test for independence of competing risks when

failure times are discrete. Other major objectives of hypothesis testing in competing

risks analysis are to test proportionality of the cause specific hazard rate functions and

to test stochastic dominance of a particular type of failure over other causes of failure.

Sen (1979) proposed nonparametric tests with maximum asymptotic relative

efficiency for testing the interchangeability of two competing risks. Deshpande and

Senguptha (1995) considered the problem of testing proportionality assumption of the

cause specific hazard rate functions in competing risks set up.

For more approaches to the testing problems in competing risks set up, one

could refer to Stanish et al. (1978). Bagai and Prakasha Rao (1992), Kochar (1995),

Wada and Sen (1995), Sun and Tiwari (1997), Hu and Tsai (1999), Dewan (2005),

Friedlin and Korn (2005), Williamson et al. (2006), Chen et al. (2008) and Dignam

and Kocherginsky (2008).

1.9 Neural Networks

Neural networks are persuasive data modeling tools that are able to capture

and represent input/output relationships. The network consists of an interconnected

group of artificial neurons. Information given as input is processed through the

neurons to produce some desired output. The advantages of neural networks lie in

their ability to learn and represent both linear and nonlinear variable relationships

directly from the data being modeled. Further, neural network models need not make

any assumptions about the distribution of the data or about the relationship of

covariates with the lifetime. Neural network models use an algorithmic approach

which helps to solve complexities beyond the reach of empirical statistical methods.
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Neural networks have been successfully applied to a broad spectrum of data intensive

applications. Medical diagnosis, signal processing, pattern recognition, credit

assignment, stock market prediction and speech recognition are some of the real life

problems where neural network models can be applied successfully.

Multilayer Perceptron (MLP) is the most commonly used form of neural

network model for prediction and classification problems. It is proved that with

appropriate number of hidden units, a multilayer perceptron can approximate any

functional relationship (Ripley. 1996). A multilayer perceptron network consists of

one input layer of units, one output layer of units together with one or more layers of

hidden units. The input signal propagates through the network in a forward direction,

on a layer by layer basis. All computed values from the previous units are combined

into a single value using a combination function before feeding into the next unit.

Linear combination functions are commonly employed for this purpose, where each of

the hidden layer units and output units take a weighted sum of its inputs and adds a

constant. The next step is to calculate a fixed function of the result. The fixed function

is referred to as the activation function. A commonly used form of activation function

is logistic activation function given by

1

a (x) = —.—.
l+exp(—x)

Threshold and identity activation functions are also common in a multilayer

perceptron network. The results are then passed to the hidden units in the next layer or

to the output units.

The weights of the network are the parameters of the model, which are

determined by minimizing some objective function. Usually the objective function

will be either the sum of squared distances between the target values and the network
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calculated outputs or the (negative of the) log likelihood of the data. To calculate the

partial derivatives of the objective function with respect to the weights, a standard

back propagation algorithm is used. The optimization techniques such as quasi­

Newton or Levenberg—Marquardt algorithms are employed to find the local minima.

In practice, we divide the data into training and validation sets. Data from the training

set are used for preliminary model fitting whereas data from the validation set are

used to assess the adequacy of the model. To avoid over fitting. either the early

stopping rule or the regularization techniques such as weight decay or weight

elimination method can be used. The typical architecture of a multilayer perceptron

neural network is given in Figure l.l.

Inputs Outputs

Input layer Hidden layer Output layer

Figure 1.1 The typical architecture of a multilayer perceptron network.

The basic element of a neural network model is a single unit perceptron. A

single perceptron, can be treated as a regression model, represented by
I)

_y = w,, + Z H‘!-Xj where _v is the expected response, .\'= <3‘/,.\‘2....\'l,) is the input vector,
j=/
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w J. 5 are the corresponding weights and we is the bias added. For more details on this

topic, one could refer to Cheng and Titterington (1994).

Neural networks have been recently used for prediction and classification

problems in survival analysis. Kappen and Neijt (1993) trained the ‘single time point

models’ to predict the I year survivor probability, where t is a pre fixed constant. De

Laurentiis and Ravdin (1994) mentioned that artificial neural networks are better than

Cox regression model under the situations when the proportionality assumption of the

hazard rate functions cannot be applied to the data, the relationship of explanatory

variables to the outcome is complex and unknown and there are interactions among

explanatory variables. Biganzoli et al. (1998) pointed out that the feed forward neural

networks provide flexible nonlinear modeling of censored survival data. Street (1998)

used a single network to predict survivor probability at each time point. Smith and

Anand (2()()0) transformed the output from Cox regression into survival function

estimation using neural networks. Ripley et al. (2004) described the models based on

multilayer perceptrons for survival analysis. A neural Bayesian approach to survival

analysis was introduced by Bakker and Heskes (1999) and Bakker et al. (2004). For

more studies about the use of neural networks in various situations in survival

analysis. one could refer to Ravdin and Clark (1992), Macahdo (I997) and Eleuteri et

al. (2003a, 2003b) among many others. A survey on the use of neural networks in

survival analysis was given by Ripley and Ripley (2001).

Recently. Biganzoli et al. (2006) proposed a partial logistic artificial neural

network model for the analysis of competing risks data in the discrete set up. Later,

Lisboa et al. (2009) employed the automatic relevance determination technique to

regularize this model, which is commonly employed in Bayesian modeling as a

regularization technique.
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1.10 Present Study

The discussions in previous sections reveal that there has been much research

on analyzing various forms of competing risks data. Nevertheless, there are several

occasions in survival studies, where the existing models and methodologies are

inadequate for the analysis competing risks data. ldentifiabilty problem and various

types of and censoring induce more complications in the analysis of competing risks

data than in classical survival analysis. Parametric models are not adequate for the

analysis of competing risks data since the assumptions about the underlying lifetime

distributions may not hold well. Motivated by this, in the present study. we develop

some new inference procedures, which are completely distribution free for the

analysis of competing risks data.

The thesis is organized into seven chapters. of which first chapter is the

introductory chapter, where we have pointed out the relevance and scope the study

along with a review of literature. In Chapter 2, we introduce a semiparametric

Bayesian approach for the analysis of competing risks data. In the context of Bayesian

analysis of competing risks data, Gasbarra and Karia (2()()()) proposed to model

competing risks data using overall hazard rate functions and conditional probabilities.

Gelfand et al. (2000) considered the modeling of overall baseline hazard rate function

using latent failure time models. However, as pointed out in Prentice et al. (1978),

modeling and analysis of competing risks data using cause specific hazard rate

functions is more realistic. Motivated by this, we develop a semiparametric Bayesian

procedure using cause specific hazard rate functions, for the analysis of competing

risks data. We assume that each cumulative baseline cause specific hazard rate

function has a gamma prior distribution and the estimation of regression parameters is

carried out by considering the cumulative baseline cause specific hazard rate functions

as nuisance parameters. We derive posterior distribution of the cumulative baseline
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cause specific hazard rate functions and then propose Bayes estimators for the

cumulative baseline cause specific hazard rate functions under squared error loss

function. The proposed method generalises the work of Kalbfleisch (1978) into the

competing risks set up. Simulation studies are carried out to assess the finite sample

performance of the proposed estimators. We illustrate the practical utility of the

method using a real lifetime data given in Klein and Moeschberger (2003).

In many survival studies, patients are only watched within a window of

observational time; otherwise we only know that the event time is below or above the

window. The data obtained in such situations are doubly censored. The complex

nature of the doubly censored data, do not allow us to use the well-known partial

likelihood approach given in Fine and Gray (1999) for the analysis of data in the

competing risks set up. It may be noted that, the semiparametric regression model

given in Cal and Cheng (2004) cannot directly be employed to model cause specific

subdistribution functions. Motivated by this, in Chapter 3, we propose a

semiparametric transformation model for cause specific subdistribution functions,

using the hazard of Gray (1988). We derive estimators for the regression parameters

and the cumulative baseline cause specific hazard rate functions. Asymptotic

properties of the estimators are discussed. A simulation study is conducted to assess

the finite sample behaviour of proposed estimators. We apply the proposed model to a

real life data.

Modeling and analysis of lifetime data using neural network models is a topic

of recent interest. In Chapter 4, we use different neural network models for various

prediction and classification problems in competing risks set up. Time to failure and

cause of failure are embedded as input variables. The novelty of our models is that

cause of failure is treated as an input variable for the analysis. Applications of the

proposed models to real life data sets have been well established. The estimates of
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cumulative cause specific hazard rate functions, cause specific subdistribution

functions and survivor function are compared to the smoothed estimates of those,

using the kernel density method, given in Wells (I994). It is shown that neural

network models perform equally well, comparing to the standard techniques but in a

more smoothed manner.

The independence of time to failure T and cause of failure C is an important

research question in the context of competing risks. In Chapter 5, we develop tests for

testing independence of T and C against the alternative that they are not independent.

We consider both continuous lifetime data and categorical lifetime data. First, we

discuss the tests for independence of time to failure and cause of failure for

continuous lifetime data. We introduce a class of test statistics using martingale

approach and discuss the limiting distribution of the proposed test statistics. A test

statistic using likelihood ratio procedure is developed and its asymptotic distribution

is also derived. Simulation studies are conducted to assess the finite sample

performance of the proposed test statistics. The methods are also illustrated using two

real life data sets. We, then consider the same testing problem with categorical

lifetime data. Occasionally in competing risks data, the cause of failure for an

individual has not been exactly observed but has only been narrowed down to a subset

of all potential risks. Situations with incomplete information about the cause of failure

are referred to as masking. We consider four different situations with categorical data.

First, we derive likelihood ratio test for the independence of T and C when the data

are unmasked. The situations with uncensored and censored lifetimes are discussed

subsequently. We, then derive likelihood ratio test statistics for masked data. We carry

out simulation studies to assess the power of the proposed test statistics. The proposed

procedures are well demonstrated with real data sets.
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Quantile function, as an alternative to the distribution function can be

employed for modeling and analysis of statistical data. The role of quantile function

and other concepts derived from it is well established in exploratory data analysis and

in different areas of applied statistics (see Parzen, 1979 and Gilchrist, 20()()). In

survival studies with heavy tailed lifetime models, a single long term survivor can

have a marked effect on reliability measures based on a distribution function. It is

therefore more convenient to work with quantile functions that are less influenced by

extreme observations. Motivated by this, in Chapter 6, we develop a test statistic

based on quantile functions for testing equality of cause specific subdistribution

functions. We derive the asymptotic distribution of the test statistic and it is shown to

be chi-square. A simulation study is carried out to assess the finite sample behaviour

of the test statistic. The practical utility of the procedure is illustrated using two real

life data sets.

Finally, Chapter 7 summarizes major conclusions of the study and discusses

future works to be carried out in this area.



Chapter Two

A Semiparametric Bayesian approach for the Analysis

of Competing Risks Data

2.1 Introduction

In many practical situations, it is possible that we may have some additional

information on the lifetime of individuals in terms of past data. For example, in

survival studies. disease history of the patient may be often available. Conventional

statistical techniques do not provide a method to incorporate this prior information in

the data analysis. This motivated researchers to develop Bayesian techniques for the

analysis of survival data.

In classical survival analysis, Hjort (1990) used discrete time independent

increment beta process to model discrete failure times. Later, Walker and Mallick

(1997) employed independent gamma process for modeling competing risks data

using piece wisc constant hazard rate functions. For a detailed review on different

semiparametric Bayesian approaches to model survival data, one may refer to Sinha

and Dey (I997), Ibrahim et al. (200la), Nieto-Barajas and Walker (2002), Cai (2003),

Mallick and Walker (2003), Ibrahim et al. (2004), Nieto-Barajas and Walker (2005),

Laud et al. (2006) and Henschel et al. (2()09).

ln competing risks situations without covariates, Gasbarra and Karia (2000)

proposed to model the survival data using overall hazard rate functions and

The results in this chapter have been accepted for publication as entitled ‘A

Semiparametric Bayesian Approach for the Analysis of Competing Risks data’, in

Communications in Statistics- Theory and Methods (see Sreedevi and Sankaran,

2010).
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conditional probabilities. Gelfand et al. (2000) considered the modeling of competing

risks data using overall baseline hazard rate function through latent failure time

approach. Recently, a semiparametric mixture model for the analysis of clustered

competing risks data was proposed by Naskar et al. (2005). However, as pointed out

in Prentice et al. (1978), modeling and analysis of competing risks data using cause

specific hazard rate functions is more realistic. Motivated by this, we introduce a

semiparametric Bayesian method, based on cause specific hazard rate functions for

the analysis of competing risks data. The proposed method generalises the work of

Kalbfleisch (1978) into the competing risks set up.

The chapter is organized as follws. In Section 2.2, we consider the

semiparametric Cox proportional hazards model in the competing risks set up. The

likelihood for the estimation of regression parameters is derived by treating each

cumulative baseline cause specific hazard rate function as a nuisance parameter with a

certain prior distribution. We, in Section 2.3, derive the posterior distributions of the

cumulative baseline cause specific hazard rate functions and then propose Bayes

estimators for the cumulative baseline hazard rate functions under squared error loss

function. Simulation studies are carried out in Section 2.4, to assess the finite sample

behaviour of the proposed estimator. We, in Section 2.5, demonstrate the practical

utility of the method using a real life example given in Klein and Moeschberger

(2003). Finally, Section 2.6 summarizes major conclusions of the study.

2.2 Prior Distributions

In this section, we propose a marginal likelihood for the estimation of

regression parameters. Consider a competing risks situation with k causes of failure.

Let T be a nonnegative random variable representing the lifetime of an

individual,Ce {l,2,...,k} be the cause of failure and X denote the pxl vector of

covariates. Now, we consider the Cox proportional hazards model in competing risks

set up given by
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where ,6}. is the pxl vector of regression parameters for cause j and /i1,j(t) is the

baseline cause specific hazard rate function common to all individuals and /1]. (t|X) is

the cause specific hazard rate function at time t in presence of covariate vector X

Suppose that the lifetime variable T is randomly right censored by the

variable Z Now, we observe (t,5,5C,X) whcre t=min(T,Z) and 6=I(T=t).

Let (t,,§,,c$Cis X,), 1': l,2,...,n be independent and identically distributed copies of

(t,c5,6C,X). Let S(t|X) be the survivor function and f(t|X) be the probability

density function in presence of covariate vector X Now, the likelihood function for

the observed data can be formulated asu k 5: _ ‘
L=1‘H‘1[f,(r,.[x,.)] [5(r,.|x,.)]' ”' (2.1)

i=l j=l

where fl. (t|X) is the cause specific subdensity function in presence of the covariate

vector X .Using (1.22), we obtain
k

S(t|X)=exp£—ZA/(t|X)j (2.2)j=l

where /\,.(t|X)=AUj(t)exp(,Bji.X) is the cumulative cause specific hazard rate

function given X Now, we can write

S(t|X)=1iIGj.(t|X) (2.3)
j=l

where G]. (t|X)=exp(—Ag, (t|X)) for j: l,2,...,k

Note that, even though the functions G/.(I|X) for j=l,2,...,k are not the

survivor functions of any observable random variables, they do satisfy the

mathematical properties of a survivor function and can be referred as survivor-like

36



functions (Porta et al., 2007). When the distinct causes of failures are assumed to be

independent, l—GJ.(t|X)is fully interpretable as the probability of failure due to

cause j, if the other causes of failures were removed (Gooley et al., 1999). Porta et

al. (2008) provided a detailed review of the survivor-like functions that can be defined

in competing risks set up. By defining the indicator variable 5,]. = I(C,. = j), we can

rewrite the likelihood function (2.1) in terms of survivor-like functions asn L 6v. 76
1‘: H[g/(’.'iXi)] [G1(’.'iXz):iI I (2.4)

l=l j=|

where gj (_\')=—Gj  with prime represents the derivative of GI. (y) with respect

toy

Now, we modify the likelihood (2.4) to incorporate the prior information.

Conditional on the cumulative baseline cause specific hazard rate functions, G}. (r|X)

can be written as

G]. (t|X,A0_,.  = exp(—A0J. (t)exp(fl;.X)) j= l,2,...,k (2.5)

Consider a partition of [0,oo) into finite number of n disjoint intervals, say [a,.,aM)

for i=0,l,...,n withao =0 and am =oo Define the hazard contribution of the ith

interval due to j th cause as

qu. = P[Te [a,_,,a,),C, = jlr 2 a,._,,AU]. (1,. )] (2.6)

where q,.]. =1 if P[T2a,_,,C,. =jlA0_,.(t,)]=O for i=0,l,...,n j=1,2,...,k

Note that, /\Ul(a(,)=0 for each j and hence

A0].(a,)=X—log(l—qU)=::r;j i=l,2...n j=l,2...,k (2.7)
1:!i=1

As mentioned in Kalbfleisch (1978), the probability distributions of the prior

parameters can be specified on the space {/\(,,.(t)] by specifying the finite
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dimensional distributions of q,l.,....,q"]. for each partition [a,._,,a,.) for i=O,l,...,n. It

is clear from (2.7) that each A,” (I) is a non decreasing process with independent prior

by its construction. Now the problem reduces to the specification of a non decreasing

independent increment process prior for A0l.(t) and for this, we need to specify

independent prior for each r,.J.. Accordingly, we follow the prior elicitation method

given in Ibrahim et al. (200lb).

Let DU = (I10,T0,l)0,C0l)0,X0) denote the data from the previous study, where

no denotes the sample size of the previous study, To denotes a right censored vector

of survival times with censoring indicators U(,,X,, denotes the pxl vector of

covariates and C,,e{l.2,....k} be the possible causes of failure. Since /\(,J.(r) is

treated as a nuisance parameter, we assume that the cumulative baseline cause specific

hazard rate functions and the vector of regression parameters are independent.

Let E0 (,(3j,A(,j  denote the prior for (,6J.,A0j  . Now thejoint prior density for

(,6J.,/\0j  is given by

7r(/3].,/\,,J.(t)lD,,)=7r(,6,|D(,)fl(A0j(t)|D,,) j=l,2,...,k (2.8)

We take, 7z'(/\Uj (t)|DU)as a product of M independent gamma densities where the

mean and variance of the gamma density can be elicited from D0 (Ibrahim et al.,

2001b).

The prior given by (2.8) has several advantages. First, it has a closed form and

it is easy to interpret. Second, the prior elicitation is straight forward. Third, (2.8) is

computationally feasible and easy to interpret. Fourth, the prior given by (2.8)

assumes a prior independence between (,BJ.,A,,,.(t)), which further simplifies the

interpretations as well as the elicitation scheme.
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Let A:,j.(t) be an initial guess at Au/(I) and 7]. be the specification of weight

attached to that guess. Also take, av = 7]./\:,j (a,) for each j

Assume that , r” = —log(l—q”.) has independent gamma distributions

r.. ~ G(a..—a,_,,,}/i)i=1,2...,n; j=l,2...,k (2.9)ll U
where }/J. >0 is the scale parameter and aU.—a, is the shape parameter of the_l,.

gamma prior distribution.

Now, exp(—/\.*,,  is a completely specified survivor-like function and A0}. (I) is a

gamma process by its construction. By considering the partition (0,!) ,[t,oo) and (2.9)

it shows that Am. (I) ~G(}/J./\(,,.(t),}/I.) and hence E{A0J.(t)} =A:,j (I) and

var{A,,j(t)}=Af,,(t)/7] ,j=l,2,...,k

Now, we derive the marginal likelihood based on parameters of the prior

distribution for estimating flj.,j=l,2,...,k First, we suppose that, there is no

censoring and all individuals have observed lifetimes. Now conditional on A0]. (2) , we

have

ficj (ti‘flj’Xi’A0j (ti))=exP(—-E/\l)j(’i)exp(I6_lXi)j

j=1,2,...,k. (2.10)

Without loss of generality we can assume, I, S I: 5.... S In and r;.,. = Am. (r,.)—/\(,,. (t,_,)

for i'=l,2,...,n+1 and j=l,2,...,k, where 10:0 and IN, =00. Here I,.’s define the

intervals of partition of [0,oo) , with to :0 and IN, =00.

Now 1;]~G(}//(A:,i(t,)—/\;/(t,_,)),}{/) for i=l,2,...,n+l; j=1,2,...,k,and they

are independently distributed. Since, A0/(t,)=Z';r;j. for i=1,2,...,n+l;
(=|

j = 1, 2,...,k ,it follows from (2.10) that
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HG].(I,|,Bj,X,,q_i,r3j,...,n,+U)=exp(—:qjA,jj (2.11)i=1

where

21> ll
,., Z; exp(/;',X,) l=l,2,...,n; )'=1,2,...,/<, (2.12)/ERII)

with R(t,.)is the set all individuals at risk just prior to time 1‘,..

Integrating (2.1 l) with respect to the distributions of rU,rlj,...,1;U., we get,

Haj (1,. |fl_,, x,.)= exp(—Z y,B,jA;_, (1, )) (2.13)i=1 i=1
where

3,]. =—1og(1—exp(/;;.x,)/()3. +A,.,.)) i=l,2,...,n j= l,2,...,k. (2.14)

The expression (2.13) is true for any cumulative baseline cause specific hazard

rate function /\:,,.(t). We assume that, Af,,.(r) is absolutely continuous. Following

Kalbfleisch (1978). under the assumption of no ties in the data, the likelihood function

(2.4) is obtained as

L(161v"-1:61) : 111(7)" eXP{_i 7131/A1); (’1')} H  (5)31/ij (2-15)_/'=l i=1 =1
where /III].(1)=(d/dz)/\f,,(t),j=1,2,...,k.

The likelihood given by (2.15) is a product of k identical terms, of which jth factor

is given by

L1): 7;" eXP{"i 7/B1"/Aim (’1

In presence of censored lifetimes (2.15) becomes

{/ll;j(1,)BU} j=l,2,...,k (2.16)
1:1

1

L<.6......a)=H{exp{—§y,B.,A;,<r.>}/'=|

ll

{;»,,1,;‘,(z,)B,.,.}""J. (2.17)i=|
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Under the assumption of piecewise hazard rates, we have Am. (I) = /10].! , where /10,. is

left unspecified. Now from (2.17), it follows that the likelihood of  and

(/lm,...,/lm) for each specified 7]., j=1,2,...,k is given byL’ I) ll 6
L(fl1""’flk ) : I-IEeXP["7,”l1),'Zt.B.,,’)I—Il7,’l'U_/By) I J- (2-18)j=l 1=l i=1

Estimates of ,8 = (,B,,,B3,...,,B,) are obtained by maximizing the likelihood (2.18),

which can be done using Newton-Raphson iterative algorithm.

Consider a situation, where A0,. (I) is fully specified at the starting point. Then

the j th factor of  will be given by

lint.//Aw, L].  = exp{—%A:,,. (ti )exp(/)’,.X,.  (ti )exp(/>’,X,.)

j=1,2,...,k (2.19)
On the other hand, suppose a situation with little faith in the prior estimates of

Am.  Then to a first order approximation, the j th factor of  will be

given by

l,2,...,k (2.20)u..
H

Ljlfl./)5 Kjlfilexplflixil/Ar}

where K J. is the normalising constant.

This shows that L(,B,,...,,6k) gives a spectrum of likelihoods ranging from

truly nonparametric situations (7/. near to 0, j = 1,2,...,k) to situations where AU].

j= l,2,...,l< is assumed to be completely known. By allowing ALI. (t)to depend on

one or more unknown parameters, for example if A(",,(r)=/lwt, j=1,2,...,k, the

likelihood (2.18) corresponds to a generalization of the usual parametric analysis

(7J.—>oo,j=1,2,...,k) with exponential survivals. The dependence of prior
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parameters on the estimate of /3 can be evaluated by choosing different sets of values

for prior parameters in (2.18).

In the case of ties

T“ =....=Tl,,| =r, <T3, =....=T.,, =1, <....<Tm, =....=T,,,,,m =tm ‘_ 1 _

the j th factor of the likelihood for estimating [>’j;j = 1, 2,...,k is obtained as

7,Af.‘,(rl I,a _ m 7,‘ + Am ' I '
L/(flj)'H -TA Z(‘1)ZexP _ y,i+Ai+I+ZeXp(/fix-\‘l) “Ji=1 }/j i [=0 me 3 .\E /2,

j: l,2,...,k (2.21)

where P, is the class of all subsets of [items chosen from 1, 2,...b,., and A” is defined

as in (2.12) and Am+lj =0.

2.3 Posterior Distributions

In the following, we first derive the posterior distribution of the cumulative

baseline cause specific hazard rate function /\“,.(t) and then we propose Bayes

estimator for Aw. (I) under squared error loss function.

Let(t,..cZ,dC,.X,.), i=l,2,....n be a set of independent and identically

distributed observations as defined in Section 2.2. Let  and  denote the indicator

variables as defined in Section 2.2.

The conditional survivor-like function of T for cause j is

Gj.(t‘X,A(,j(t))=exp(—/\Ui (z)exp(fl',X)). (2.22)

As mentioned in Section 2.2, we assume that the prior distribution of A0, (I) is the

gamma process with parameters }/I. and AL]. (I)

Consider a partition of [(),oo) into In disjoint intervals

[an =0,a,),[a,,a3),...,[a,,,_,,am =00) and suppose that n =1 The extension to n 2 2
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values follows directly from the results for 11:] Assume that a,._, Sr, <a, and

r,,J.=—log(l—q,.,J.)and r,.2j.=—log(l—q,3J.) where q”j.(1,3j are the hazard

contributions of the intervals [a,._,,t,)and [t,,a,) respectively. Now ru. has

independent gamma distributions for i=l,2....,m and j=l,2,...,k Then the

conditional survivor function for t, is given by

s(,,;r,,,.,,,,x,)=f1c,,(,,
k

rj.,r',,j,X,)=rIexp{—(r” +....+r,._,,. +r,.U)exp(/J’./X,)}
/'=l

(2.23)

where r]. = (r'U.,r:/.,...,i;._l].).

By taking the product of (2.23) with independent gamma probability densities for the

priors of r,j......,q_,/,i;,/,q2j,r;+”,...,n", and integrating over 2;,” = 1;”. + rm, we getI.’ m
5(I,.r,/. e (r;,,J..2;,,/i +dr,,,,.),l = l.2...m|X, ) = Uh]. (I|.I'm/......I;,,0j [X, )rIa'r,(,/' {=1I=|

(2.24)

where /1}.  is thejoint density of I, and rm] given the covariate X, ,i = l.2,...,m

The posterior density of r]. given T, = t, is obtained as

88 h. , = 'X
f,-(nlT.=r.,r.,)‘ (M) /0‘ fl] "W ‘ 1| ’) (2.25)

7/1} (In )10g(7,s/7.,s)(7,i/71, )””"’

where }/U. = 7}. +exp(flL.X,) and the denominator is the marginal density of T, from

the expression for likelihood (2.15). A closed form expression for equation (2.25)

does not exist, but the probability laws can be characterized using moment generating

functions. Now /1,. (t,,r,,.,...,rW.,C, = j]X,) is a product of m factors, of which lth one

involves r,’ only, while I, is the only lifetime such that, a,._, S I, < u,.. It follows that
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r r are independent with respect to the posterior distribution and that the densitylj""’ In]

of r,j (I at I) is gamma. Now the moment generating functions of r,.J. can be written as

M,’ (61. |T, =t1)=E{eXp(€,.nj+....+Q,Ufi,U)|7] =t,}=I:IM,,U (6?,_,.|T, :2)
I

with 6,. :(3lj,€2j‘n-I,8,"j),

where

Mm (y]j|7-1 =z,)={y,J./(;»,,.—6;,)}"”'"'t" l=l,2,...,i—l

and

M”, (49,,.|T, :tl):{yj/(yj -9,, l=i+1,...,m.
For the i th interval we evaluate the differential,E) .

fl Hexpigij (rm/' + ’?2r)}eXP{_’?'I/ expifl./X1)}gIj (":1/‘)«5’2j ("i2/)dr:Ij‘1’i2/'

where g” and g3}. are independent gamma prior densities for r,” and rm. The ratio

of these gamma prior densities to the marginal density of t, is proportional to the

moment generating function of 5.’,

y am.)-a.-., a.,—a(I.) _0M = ——"' L log 5—' " log 31 (2.26)7|/-60 7.I'_6i/ 71-611 y}
where an =}/It/\:,,,(a,) for l=l,2...m and aj,(t,)=;/I./\:,J.(r,) It follows that, r”. is

distributed as the sum of three independent random variables Wj.,Yj. and U]. where

W]. and Y’. are gamma variables and U]. ~ L(;/U, yl.) with density,

“fl °xP{("7j”j)"eXp(_7j“j)}/1°g(7i_//’7/)'

Moment generating function of the density of U]. is the last factor of (2.26). Now,

given I, <1: <.....< 1”. A0, (I) is an independent increment process. Then

44



A Semi arametric Ba esian A roach for the Anal ‘sis ofCom etintz Risks Data

U0. .‘L(yj+Aij,yj+A[+l-I) i=l,2,...,m

where A”. = Z exp(/3'j.x,) (i=l,2,...,m,j=l,2,...,k)as defined in (2.12).
IeR(I,)

Under squared error loss function, E{A0j (t)‘t,X,/ii} is the estimator of A0, (I) If

t, < 23 <  < I” and t,_, 51 < t,. then the posterior distribution of A0]. (I) is the sum of

independent variables W” +U,,. +....+ l/l/H]. +U,_H + pg,

where

W,_,. ~ G(}/JAB]. (t,)— }/IAIU (t,_,  ;/J. + AU),UU ~ L(;/J. +A,,., 7]. + AW) 1 = l,2,...,i—l

and p,.l. ~ G(;/IALJ. (t,)— }/[Ag]. (t,._, ),}/J. + AU)for j=1,2,...,k

Now it follows that,

exp([)"jX,) ( y.+A,. J
E U. =——————— 1 ' '—

( 0) (7./+AIi)(7/+AI+I/)/0g 7»/+AI+Ij

and the Bayes estimator of An]. (I) is given by~ i—l
A(,,.(:,)= E{A(,,(z,)l:,,X,/3,}=Z{E(x,, +U,/.)}+E(pU)

I=l

i = l,2,...,m ; j =1, 2,...,k (2.27)

Using the estimators of ,6] and A j=l,2,...,k, we obtain the estimator ofo,-~

S(t|X)fr0m (1.28). The estimator of F]. (t|X), j = l,2,...,k is obtained from (1.29).

However, note that the estimators of S(t|X) and Fj(t|X) are not true Bayesian

estimators.

When parameter values of prior distribution are near to zero, E(U,,. ) E An.“

l=1,2,...,n—l and E(X,J.)sE(p,.J.)50 anditfollowsthat

E{A0_,.(t)1t,X,/3].}; 2 AU." 1': 1,2,...,m ; j =1,2,...,k.
I:i, SI
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Note that for a single censored observation, the moment generating function of

r”. is (2.26) except for the last factor. Thus a censored observation does not insert a

random jump into the posterior distribution of A0]. (I) and doesn’t upshot any further

complication in the analysis.

Remark 2.1: When j=1, the procedures developed in Section 2.3 and 2.4 reduce to

the work by Kalbfleisch (1978).

2.4 Simulation Study

We carry out an extensive simulation study to assess the finite sample

performance of the proposed estimators. We consider two causes of failure. For

simplicity, we consider a single covariate X, which is generated using a Bernoulli

random number. The data are generated from the following model. The
subdistribution function due to failures from cause 1 is given by

A ll" X )
F,(t|X)=1-[l—m(l—exp(—t)):|flP ‘

which is a unit exponential mixture with mass (l—m) at oo when X=O. The

subdistribution function due to failures from cause 2 is given by

F2(z|x)=1—[1—(1—m)(1—exp(—z))]

Censoring variable is generated from uniform distribution over the interval(0.a)

cxp[‘,B3/Y)

where a is chosen in such a way that 20% or 40% of the lifetimes are censored. We

generate random samples of size n = 100 and 250.

To calculate the absolute value of the bias and mean square error (MSE) of the

estimates, 1000 samples are generated. As the values of bias and MSE do not vary

with m, we present the simulation results for m=0.5. To study the effect of

censoring, we consider three situations viz. no censoring, mild censoring (20% of the

observations are censored) and heavy censoring (40% of the observations are

censored). The pattern of simulation results seen to be similar for all the combinations
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of prior parameters and hence we show the results for only two different combinations

of prior parameter values viz. 9/, = 73 :1 and yl = 10, 7: =50. Absolute bias and

MSE of the estimates of ,6]. ‘s; j = 1,2 in the three censoring situations for both the

combinations are given in Tables 2.1 and 2.2 respectively. We note that, both

absolute bias and MSE decrease with increase in sample size. Also it is clear that, if

the censoring percentage increases absolute bias and MSE also increases. Absolute

value of bias and MSE of I31. (t|X) ;j= l,2are estimated at five arbitrarily selected

time points. Absolute bias and MSE of the cause specific subdistribution functions in

different censoring situations for the two prior parameter combinations }/I = 7/: =1 and

7/, :10, 7/: :50 are given in Tables 2.3(a)-(c) and 2.4(a)-(c) respectively. It can be

noted from Tables 2.3(a)-(c)- 2.4 (a)-(c) that, both absolute bias and MSE decrease

with increase in sample size and increase if censoring percentage increases.

Table 2.1 Absolute bias and MSE of 3, ; j =1,2for y, = 1, y. =1

47

'6 ,6 sample Absolute M813 Absolute M§E' 2 size bias /3, ,8, bias /32 [32
No Censoring

I I 100 0.0102 0.0004 0.0166 0.0022250 0.0073 0.()001 0.0071 0.0002
Mi1d(2()%) Censoring

1 1 100 0.0163 0.0005 0.0184 0.0121250 0.0093 0.0002 0.0163 0.0003
Heavy (40%) Censoring

I I 100 0.0198 0.0008 0.0214 0.01 18250 0.0100 0.0005 0.0184 0.0003
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Table 2.2 Absolute bias and MSE of ,3]. ;j= 1,2 for )1 =10. 7: :50

‘B /3 Sample Absolute M8E Absolute M8E' 2 size bias ,5, ,6’, bias ,6’: ,6:
No Censoring

-1 2 100 0.0024 0.0032 0.0132 0.0009250 0.0018 0.0022 0.0098 0.0008
Mild (20%) Censoring

-1 2 100 0.0029 0.0099 0.0165 0.0045250 0.0023 0.0055 0.0104 0.0012
Heavy (40%) Censoring

-1 2 100 0.0034 0.0024 0.0176 0.0158250 0.0027 0.0222 0.01 10 0.0092

Table 2.3a Absolute bias and MSE of F"j(t|x);j=1,2 with no censoring for
7, =1,}/3:1 and ,[)’,=l, /33:1

Absolute MSE Absolute
Sample Ti_me bias pl W.) bias .MsE
size points fil (llx) 13.2 Mx) F2 (t|x)

0.10 0.011 1 0.0185 0.0020 0.0003
0.25 0.0249 0.1322 0.0071 0.0127

100 0.50 0.0425 0.1532 0.0157 0.0532
1.00 0.0797 0.1121 0.0353 0.1121
2.00 0.0999 0.1902 0.0490 0.1732
0.10 0.0081 0.0066 0.0001 0.0001
0.25 0.0200 0.0398 0.0027 0.0007

250 0.50 0.0321 0.1030 0.0113 0.0128
1.00 0.0786 0.0021 0.0307 0.1032
2.00 0.0807 0.0921 0.03 80 0.1421
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Table 2.3b Absolute bias and MSE of 1-8]. (tlx) , j = 1, 2 with mild (20%) censoring

for 7, =1,}/2 =1 and ,B,=1, /33:1

Sample Time Abgioalsute MSE Absizlsute AMSE
size points 13.] (tlx) F, (t|x) 13,2 (t|x) F2 (t|x)

0.10 0.0129 0.0107 0.0104 0.0012
0.25 0.0574 0.0329 0.0430 0.0172

100 0.50 0.1119 0.0908 0.1024 0.0156
1.00 0.1818 0.1289 0.1818 0.0832
2.00 0.2089 0.1876 0.2089 0.0932
().10 0.0104 0.0098 0.0085 0.0001
0.25 0.0235 0.0231 0.0235 ().0111

250 0.5() 0.0501 0.0543 0.0501 ().0098
1.00 0.0851 0.0983 0.0851 0.0721
2.00 0.1045 0.1093 0.1045 0.0762

Table 2.3c Absolute bias and MSE of F]. (t|x); j = 1, 2 with heavy (40%) censoring

for y, =1,73 =1 and ,B,=1, ,B3=1

Sample Time Abbsizlsute MSE Abbsizlsute AMSE
SIZC points ,3‘ (tlx) F. (t|x) fig MX) F2 (tlx)

0.10 0.0197 0.0187 0.0201 0.0098
0.25 0.0784 0.0456 0.0560 0.0221

100 0.50 0.1459 0.1098 0.1 198 0.0224
1.()() 0.1918 0.1342 0.2098 0.1234
2.00 ().2234 ().1911 0.2564 0.1256
0.10 0.0154 0.0167 0.0187 0.0008
0.25 0.0236 0.0434 0.0467 0.0195

250 0.50 0.0703 0.0709 0.0809 0.0098
1.00 0.1291 0.1004 0.1567 0.0876
2.00 0.1651 0.1198 0.1897 0.1098
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Table 2.4a Absolute bias and MSE of F}. (I|x); j = 1,2 with no censoring for

}/I =10, y: :50 and ,Bl=-1, ,B3=2

Absolute Absolute

Table 2.4b Absolute bias and MSE of F]. (t|x) ; j =1, 2 with mild (20%) censoring

Sample Time bias pl W.) bias .MSE
size points [3] (tlx) 13.2 Mx) F2 (tlx)

0.10 0.0048 0.0()24 0.0001 0.0001
0.50 0.0135 0.0351 0.0023 0.0007

100 1.00 0.0312 0.0321 0.0065 0.0009
2.00 0.0581 0.0666 0.0098 0.0033
5.00 0.0982 0.1084 0.0132 0.0155
0.10 0.0023 0.0012 0.0001 0.0001
0.50 0.0098 0.0209 0.0014 0.0004

250 1.00 0.0231 0.0245 0.0041 0.0006
2.00 0.0322 0.0321 0.0067 0.0021
5.00 0.0876 0.0897 0.0092 0.0098

for 7. :10, 7: :50 and /3,:-1, /32:2

Sample Time Abécime A1‘/[SE Absizlsute AMSE
size points 131 (tlx) F, (t|x) 13.2 (t|x) F2 (IIA)

0.10 0.0062 0.0083 0.0004 0 0004
0.50 0.0203 0.0382 0.0080 0.0009

100 1.00 0.0543 0.0555 0.0032 0.0013
2.00 0.0672 0.0843 0.0132 0.0100
5.00 0.1093 0.1012 0.0145 0.0421
0.10 0.0034 0.0045 0.0003 0.0004
0.50 0.0122 0.0212 0.0058 0.0006

250 1.00 0.0342 0.0387 0.0079 0.0009
2.00 0.0367 0.0755 0.0134 0.0085
5.00 0.0933 0.0908 0.0142 0.0143
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Table 2.4c Absolute bias and MSE of 13]. (t|x); j = 1, 2 with heavy (40%) censoring

for 7, =10, 7: :50 and /3,:-1, ,5: =2

Sample Time Abbsizlgute AMSE AbSPl"[e AMSE
size points F~| (flit) F, (tlx) bias F3  F2 (t|x)

0.10 0.0101 0.0087 0.0008 0.0007
0.50 0.0232 0.0421 0.0083 0.0013

100 1.00 0.0772 0.0592 0.0121 0.0045
2.00 0.0921 0.0932 0.0196 0.0120
5.00 0.1041 0.1211 0.0202 0.0401
0.10 0.0077 0.0062 0.0008 0.0007
0.50 0.0189 0.0219 0.0081 0.001 1

250 1.00 0.0432 0.0382 0.0100 0.0021
2.00 0.0532 0.0721 0.0163 0.0090
5.00 0.0991 0.1013 0.0192 0.0140

2.5 Data Analysis

We apply the proposed method for the analysis of the bone marrow

transplantation data of 43 patients given in Klein and Moeschberger (2003). Time to

relapse for a patient in days was recorded as survival time. Each individual is suffered

by one of the two diseases Non Hodgkin Lymphoma (NHL) or Hodgkins Disease

(HD), which eventually lead to death. The causes of death are classified into NHL and

HD in this study. Three explanatory variables associated with each patient, which are

patient’s Karnofsky score, the waiting time to transplant recorded in months and the

graft type of transplantation. In the present study we considered the graft type of

transplant as the covariate. Estimates of ,8]; j=l,2 are obtained by maximising

(2.18) using Newton-Raphson algorithm. One tie is present in the above data, which is

broken in random order. Estimated values of /3’; j: 1.2, using the standard partial

likelihood method and the proposed Bayesian method with different sets of prior
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parameter values are given in Table 2.5. Standard Error (S.E) of the estimates are also

given in brackets.

Table 2.5 Estimates of ,6}. j: 1,2 using partial likelihood method and Bayesian
methods with different sets of prior parameter values.

Method ,3, (S.Eof,1§,) 3, (S.Eof[§2)
Partial likelihood o.o1531(o.5o2o) -0.3332(0.5863)

7, = 161.5, y. =0.6l 0.0l55l(3.12e-05) -0.33142(0.000l6)

y, =o.75, 7: =0.61 -1.7s94(o.o0043) -0.33046(0.000l7)

y, = y. = 10 -0.8966(0.00018) 0.2437(3.3e-O5)
7, = 50, ;/3 = 100 -0.3371(5.30e-05) O.2994(1.9le-05)

y, = 161.5, )3 =2o0 0.01556(3.11e—05) 0.3453(l.70e-05)

7, = y. =500 0.2899(2.02e-05) 0.3964(1.52e-05)
y, = }’3 = 1000 0.4186(1.64e—05) 0.4227(l.44e-05)

From Table 2.5, it can be noted that, for the prior parameter combination

y. = 161.5 and }/3 =0.6l, the estimates of ,8}. for j=1,2 given by the proposed

likelihood are close to the estimates obtained by the standard partial likelihood given

in Lawless (2003). Estimates offlj. are stable over the range0 < 7|,}/I < oo for j = 1,2

We estimate the cumulative baseline cause specific hazard rate functions using (2.27).

Then the cause specific subdistribution functions are also estimated for each set of

prior values. Plots of the estimates of cause specific subdistribution functions using

the standard partial likelihood method and Bayesian approach with different prior

distributions are given in Figure 2.1.
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Figure 2.1 Estimates of cause specific subdistribution functions for patients with
NHL and HD.

In Figure 2.1, solid line represents the estimates of subdistribution function

due to failures from NHL and dotted line represents the estimates of subdistribution

function due to failures from HD. Plots of cause specific subdistribution functions

given in Figure 2.1 show that, values of subdistribution function due to failures from

HD is smaller than the subdistribution function due to failures from NHL. In both

causes, the cause specific subdistribution functions estimated using Bayesian method

with different prior parameter values, yield smaller values compared to the same

estimated using standard partial likelihood method. When prior parameter values are
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near to zero, estimates of the cause specific subdistribution functions yield relatively

small values.

2.5 Conclusion

In this chapter, we proposed a semiparametric Bayesian method for the

analysis of competing risks data, by treating each cumulative baseline cause specific

hazard rate function as a nuisance parameter with a gamma prior. The proposed

method generalised the work of Kalbfleisch (1978) to the competing risks set up. The

Bayesian approach proposed here can be used for the estimation of F/(I) which

overcomes the limitation of the study of Gelfand et al. (2000). The simulation studies

show that the performance of the method is efficient in terms of absolute bias and

MSE. The method is applied to a real life data given in Klein and Moeschberger

(2003). The proposed method can be extended by modeling the dependence among

cause specific hazard rate functions in each interval using Markov Processes.
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Chapter Three

A Semiparametric Regression Model for Doubly Censored

Competing Risks Data

3.1 Introduction

In many survival studies, patients are only watched within a window of

observational time; otherwise we only know that the event time is below or above the

window. This pattern of incomplete observations is referred to as double censoring

and accordingly the data obtained in such situations are termed as doubly censored

data. Consider an example from a sociological study given below. ln early childhood

learning centers, interest is to determine when a child learns to accomplish cenain

specified tasks. The age at which a child learns the tasks would be considered as the

lifetime. Often some children can already perform the tasks, when they enter into the

study. Such lifetimes are considered to be left censored. It is also possible that, some

children may learn the tasks during the study period, which are the exactly observed

lifetimes while some others may not learn the tasks during the entire study period in

which case, the lifetimes would be right censored. An example for a doubly censored

survival data is discussed in Example 1.7. For more examples of doubly censored

data, one could refer to Gehan (1965). Mantel (1967). Peto (1973) and Turnbull

(1974) among others. As mentioned in Cal and Cheng (2004), doubly censored data

differs from doubly interval censored data in which the occurrences of both the

originating event and the terminating event are either right or interval censored.

The results in this chapter have been communicated as entitled ‘A Semiparametric

Regression Model for Doubly Censored Competing Risks Data’ (See Sankaran and

Sreedevi, 2010a).
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Analysis of doubly censored survival data is considered by many researchers

in literature. Turnbull (1974) proposed the self consistent estimator (SCE) of survivor

function for doubly censored data where the concept of SCE was first introduced by

Efron (1967). The properties of SCE were studied by many authors including Tsai

and Crowley (1985), Chang and Yang (1987), Gill (1989), Chang (I990), Gu and

Zhang (1993) and Mykland and Ren (1996). Recently, Cai and Cheng (2004)

introduced a semiparametric transformation model to study the effect of covariates on

hazard rate functions. For various approaches to the analysis of doubly censored

survival data, one could refer to Bravo and Esteban (1993), Wellner and Zhan (1997),

Chen and Zhou (2003) and Zhou (2004). The analysis of doubly censored data in the

competing risks set up without covariates was recently discussed in Adamic (2008).

He developed a self-consistent expectation-maximization algorithm to find the

nonparametric estimator of the cumulative incidence functions.

As mentioned in Chapter 1, a standard procedure for the analysis of competing

risks data with covariates is to model cause specific hazard rate functions under a

proportional hazards assumption (see Prentice et.al, 1978 and Larson, 1984).

However, cause specific hazard rate functions do not have a straight forward

interpretation in terms of survival probabilities for a particular failure cause. Further,

many researchers pointed out that, the effect of a covariate on cause specific hazard

rate function of a particular failure type may be very different from the effect of

covariate on the corresponding cause specific subdistribution function. Accordingly,

Fine and Gray (1999) presented a proportional hazards model for cause specific

subdistribution functions based on the log(—log) transformation model under right

censoring. To estimate the parameters of the transformation model, Fine and Gray

(1999) explored the hazard of the subdistribution function, originally given in Gray

(I988).

In this chapter, we propose a semiparametric transformation model for the

regression analysis of doubly censored competing risks data. The complex nature of

the data, as seen in Section 3.2, does not allow us to use the well-known partial
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likelihood approach given in Fine and Gray ([999). It may be noted that, the

semiparametric regression model given in Cai and Cheng (2004) cannot directly be

employed to model cause specific subdistribution functions. Motivated by this, we

modify the approach of Cai and Cheng (2004), using the hazard of Gray (1988) to

model cause specific subdistribution functions.

In Section 3.2, we describe the model and inference procedures. We estimate

the regression parameters and the cumulative baseline cause specific hazard rate

functions using estimating equation approach. We, then discuss asymptotic properties

of the estimators in Section 3.3. The estimators are shown to be asymptotically unique

and consistent. Limiting distributions of the estimators are derived. A simulation

study is can‘ied out in Section 3.4 to assess the finite sample perl’0rmance of the

proposed estimators. We apply the proposed method to a real life data in Section 3.5.

Finally, Section 3.6 provides brief conclusions of the study.

3. 2 Model and Inference Procedures

Let T be a nonnegative random variable representing the lifetime of an

individual with distribution function  and X be the corresponding pXl vector

of covariates. Let U and V represent the left and right censoring times respectively.

We assume that both U and V are always observed and also that U and V are

independent of each other. It is also assumed that both the left censoring and right

censoring times are independent of the lifetime T Let C E {l,2,....k} be the cause of

failure associated with each observed lifetime. When T is subjected to double

censoring, one can only observe the vector{'l',¢5,,(5:.(l—cZ53)C,X},where

T'=max{U,min(T,v)}, 5,=1(T<U), 5,=1(T>v) with 1(.) as the indicator

function. Our objective is to model cause specific subdistribution functions
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F].(tiX) = P(T g I,C = j|X) based on the data, to study the effect of covariates on

lifetime variable.

Gray (1988) introduced the concept of a new hazard rate function in the competing

risks set up. Following Gray (1988), the hazard rate function for j th cause is defined

88

1].(r|X)=m)fiP{zsTsz+Az,C=j)T2zu(TsznC¢j),x}
_/=l.2...,k (3.1)

In (3.1), the risk set associated with /?~.j(t:X) at time I, includes all the

individuals who has not failed by cause j just prior to time I This follows that,

1]. (t|X) can be viewed as the hazard rate function for the improper random variable,
:1:

T =I(C=j)><T+{l—I(C:j)}xoo with distributionFJ(r|X), where F].(rlX)

satisfies ):,.(tiX)=—¥]Og(1:i::i(tiX)) ,j=l,2,..,k

Now, we consider the Cox proportional hazards model in competing risks situation

using (3.1) as

1j(z|x)=,i,j(:)exp(fl;X) j=l,2,..,k (3.2)
where /1}. (t I X) is the cause specific hazard rate function in presence of the covariate

vector X /iUj(t) is the baseline cause specific hazard rate function which is

common to all individuals and ,3}. is the pxl vector of regression parameters for

cause j

Now we consider a semiparametric transformation model for the cause

specific subdistribution function

F_/(’iX)=g(h«u'(’)+I6iX) (33)
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where  is a continuous, strictly increasing link function and  is a

completely unspecified, invertible and monotone increasing function and ,6}. is

the p><l vector of regression parameters for j=1,2,..,k

Under a proportional hazards assumption given in (3.2), g(u)=l—exp(—exp(u)),

which provides h"].(t)=1og(/~\0J.(r)), with /~\0Ji(t)= I/i,,j(u)du, the cumulative
0

baseline cause specific hazard rate function.

Thus, (3.3) can be written as

Fj(rlx)=i—exp[—(/KW(i)exp(/i;X))] j=l,2,...,k (3.4)
Let {'f,.,6. 63,.,(l—(X,62,.)C,.,X‘.} for i=l,2,...,n be n independent and identicallyIt’

distributed copies of {T,¢fi,53,(1—cZ§l)C,X}. Now, our objective is to estimate ,6].

and /~\,,, (I) for j = l. 2.....k . using the observed data. We note that

P(T‘, gr <v,;C, = j|X,)= P(U, gt <v|X,)P(T‘,. guc, = j|X,)
_/=l,2,...,k; i=l,2,...,n. (3.5)

Under the model (3.4), we have

SI < l/14%‘, = j|Xl)= P(U‘. g t < V[X,.){l —exp[—(/'\:”. (t)exp(,5:'X,))”
j=l,2,...,k;i=l,2,...,n (3.6)

where /-\;,j (I) and be the true values of /-\(,j. (t) and /3}. respectively. This induces

the formulation of estimating equation for f\,,,(.) at any given flj as

g:<V,;(:, = ,-)—1(U,. gr <v){1—exp[—(/1”,(r)exp(/3;Xi))]H= 0iii

(6 <t<6lb);j=l,2,...,k (3.7)u— —

where 0“ and 49,, are pre specified constants such that, both PU", <19”) and

P(T, > 9b) are positive.
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Let /A\0l.(Ii,6’].) be a solution to the equation (3.7). Note that /A\w (rlfll) is a

step function in I that arises at the distinctjump points of

{1(T', gnc, =j);i=1,2,...,n}, {1(U,. g:<v,);i=1,2,...,n,j=1,2,...,k}

Now, following the generalized estimating equation method, we obtain the

following class of estimating equations for  as

'Zl[X,[1(T”, gz<v,;C, =j)—1(U,. gt<V)‘P]d77(r)=0 j:L2Wk (3.8)

with ‘P=(1—exp[—(/Knj(t|,Bj)exp(,B}X,))]) and where 77(t) is an increasing,

data dependent weight function, which converges to a deterministic function 77(r)

uniformly in tE[€“,t9,,]. We choose weight function 77 to be counting process of

{T} in our analysis. We employ Newton —Raphson procedure to solve the equations

(3.7) and (3.8) which provides the estimates of the regression parameters and the
A

cumulative baseline cause specific hazard rate functions. Let ,6]. denote the root of
A

flj). In Section 3.3, we show that, under mild conditions,(3.8) and let /A\"J.  = /A\0j (I

,3j and /101(1) are unique and consistent for large n.

The estimation of Fj(t|X) is straightforward, following the estimation of ,6]. and

/~\0j', j= l,2,..,k. The estimator of F]. (t[X) can be obtained as

l:"j(t]X)=l—exp —(/‘\,,/.(z)exp(/‘3,'.X))] j=l,2,..,k (3.9)

The consistency of /3']. and /10]. ensures the consistency of 13"]. (t|X  To obtain the

distribution of 13'}. (t|X) at a given covariate level X0 we prove that, the process

vj(tiX0):n"2(g"{fij(tlX0)}—g_'{Fj(t|X(,)}) j=l,2,..,k
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is asymptotically equivalent to 17!. (t|X0) = n_l/2’Z'l7j (t|X0,), where
i=l

fi})} AI-1QU,+cz(r)"[](7-', st<V,.;C, = j)—I(U,. sz<v,.)\P] with17j(t|X(,,.)={XU—X(t

‘I’=(l—exp[—(/1;(r)exp(/3:'X,))]) and aj-(I) is the limit of
H

n"Z1(U,.sz<t4)g(/1f,j(z),/ij'x,) with g(.) as defined in (3.14) and

Q0. = 0i(x,. —x (r
42..

;3_j))*[1(T, sr<V,;C, =j)—I(U, sz<v,.)ty]dr;(:)

with ‘P=(l—exp[—(/1;](t)exp(,B;'X,))]) and A]. as the expectation defined by

(3.16). In Section 3.3 we also show that 17}. (t|X(,), converges weakly to a zero mean

Gaussian process and hence assures the consistency of 13]. (t|X) for j = l,2,...,k

3.3 Asymptotic Properties

In the following, we discuss the uniqueness, consistency and limiting

distributions of the proposed estimators.

Theorem 3.1 A A
The estimators ,3]. and A0]. (I) are unique and are strongly consistent for ,6].

and /\(,j(t) respectively for j=l,2,...,k

Proof

To establish this, we follow the approach given in Cai and Cheng (2004). We

assume that, the cumulative baseline cause specific hazard rate function /~\0j(r)is

continuous. By strong law of large numbers for large n,AZ().

Di={z3,:ll/3,—fl; SA}”e[6u~6b]’
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St<V,;C, =j)—l(U,Sr<1fl){1—exp[—((/K;(r)—e)exp(,B}X,))]]]<0,1:1

j=1,2,..,k (3.10)
and

St<V,;C, =j)—I(U, St<1fl){1—exp[—((/1:}(I)+e)exp(,8}X,))]]]>0,i=13|»­

.2,..,k (3.11)1

when e is sufficiently large, and hence there exists :1 unique /A\(,j (I  such that,

I1

EMT", s1<v,.;C,.=j)—1(U,.st<14){1—exp[—(/1,4(1|flj)exp(fi;x,))M=().i=1

j=1,2...,I< (3.12)

By differentiating both sides of (3.12) with respect to  we can have the identity.

A _ EMU)‘S’<W)g(A()_/(1116)):/3iX1)X1'
AW (Ii’B1):X(ti’6J'): lzln _ I

Zltu,sz<m)g(A0,(r|fi,)./ax.)
i=1

__3_
29,6].

j=1.2,...k (3.13)
where

g(/KW.  =(exp[—(/~\Uj (r)exp(,B}X))]/-XW. (t)X exp(,B}X))

j=l.2,...k (3.14)

To show the existence and uniqueness of /Aij, let Q]. (,6!) be the left- hand side of

9Q (/31)
(3.8). It follows from (3.13) that, 11"‘ ’

8,8} =—.41j(,Bj);j=1.2,...k, where

$5

A,-(fl,)=fZ {X.—2?(r|fl,)}®2I(U.~st<mg(A.,(z1z3,).fl;x,)dr7(z)

j=l.2,...k (3.15)
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which is non positive definite and for any vector b.b®0 =l,b®' =b and b®2 =bb

Furthermore, since (3.10) and (3.11) hold for any e) 0 when and only when ,6}. = /3i,

we can have that A0. t/37: —)A . t uniformly in re 49,9, andj j 0} a I
n"' —;  = —A whereage, J"

A}. = E “X, —)?(rl,/5j)}®2 g(/~\0j(t),,Bj*.'X,)G(t|XI )dr)(t)

j=l,2,..,k (3.16)

with G(t|X)=Pr(USt<ViX), and X(t|,Bj) as the limit of §(t‘,Bj) for

j: l,2,..,k When X, is non-degenerate and A]. is negative definite for all j , since

4 :­
n J.(,Bj ) —-> O, by the standard inverse theorem, there exists a unique solution ,3]. to

the equation Qj(,Bj)=0 in a neighborhood of  for j=l,2,..,k. Thus, coupled

with the non positivity of /Al}.  for large It, ensures the uniqueness of the root of

Q].  = () in the entire domain of ,6}. . asymptotically for j = l,2,..,k It also follows

that. /A3]. is strongly consistent with /A\0j(t fly/)—>/.\:,j(r) for j=l.2,..,k, almost

surely uniformly in te [¢9u,6,,].

Theorem 3.2

The process vj(t|X0) converges weakly to a zero mean Gaussian process

with dispersion matrix Z2). =21"/11'-'[E;Q,-J-Q,-J. J/117' for j: l,2,..,k as n —>oo.i=|
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Proof

The consistency of ,5’, and Taylor series expansion of Q}.  around  give

n":   : Aj."n’“3Qj  for j = l,2,..,k Taking a Taylor series expansion of

/A\0].(t|,6’;) around ;\:,](t) we have,

n—l/3Q,‘  : n—I/3Zfi:H:X' — J?   j= l,2,..,k
i=1 9“

where

p,.j.(t|/-\W.,,BJ.)=I(7-"I. Sr<V,;C,. =j)—I(U, St<lfl){l—exp[—(/1,4(t)exp(,6;X,))]}

Furthermore, it follows from uniform law of large numbers (Pollard,l990) that

Wflil-X(r|/31*)sup
IEl9u'0Ib]

—>0. almost surely as n——>oo for j=l.2,..,l< The

functional central limit theorem (Pollard, 1990) ensures the weak convergence of

z1"’3Zp,j(rl/~\;j.,[>’,7) forj=l,2,..,k This coupled with the strong representation
i=l

theorem and the uniform convergence of  to  entails that

n"”QJ.  is asymptotically equivalent to n"’3:Qij where
i=l

9;.

Q,.J.=J(X,.—X(t
9..

/s;))[1<r.i sz<v,-;c.. =1‘)-1(U.-Std’.-)‘*’]d72(r)

with ‘I’ =(1—expl—(/K;(z)exp(/5'j'X,))]) for j: l,2,..,k as defined in Section 3.2.

IConsider I1”: 137): n"’3A;'ZQ,j, where A}. is defined by (3.16) . and
i=|

X(tl,Bj) is the limit of }T(r|/3}.) which is also defined by (3.13). From standard
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central limit theorem. it follows that, the distribution of 21'/3(,6A’j—,B:) can be

approximated by a zero mean normal random vector, with dispersion matrix,

I I H l
£j:" AI. ZQUQU A]. ,=1,2,..,k

i=|

An estimator of Z]. is given by i.:r1_'/A1T‘( ‘j_)[ AU. AU   where AU is

obtained by replacing all the theoretical quantities in Q0. with their empirical

counterparts and /Al].  is defined by (3.16).

To show the asymptotic distribution of,

V]. (tlX0)=r1’”2{/A\0j(t ,3}. )—/\:,j (I) +  —  X0} we take Taylor series expansion

of /A\0_,. (I 3].) around  and /A\0j(tl,B;) around /~\:,j.(t) and obtain

,r3;)— A3,, 0)} = ,r'”:{—x (1"ix: {AW (I Af|Q:j +0./(‘)4 po'(’l;\i>j’I6i

j= L2,.../<

It follows that V/. (I l X0) is asymptotically equivalent to

L7j.(t|X(,)=n‘”l:t7].(t|Xm) for j=l.2,..,k. To show the weak convergence of
i‘l

17]. (r|X(,) to a zero mean Gaussian process, it is enough to show the finite dimensional

convergence and tightness of I71 (IIXU  It is straight forward to see that, for any finite

X0

for j=l,2,..,k is asymptotically normal with mean zero. Since aj(t). A1 and

number of time points. {t,,...,tm , the joint distribution of {l7(t, |X0).....i7(r,,,

X0—X(t|/5?) for j=l.2,..,k are nonrandom, it remains only to show that
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n"”Zl;Q,.J. and ;z"’2Z|p,/(t|/K(,g/,,6;) for j=l,2,..,l< are tight. Since Q0. does not

involve I, rz’”3ZQ,.J is tight. The tightness of r2"'”:;pU(t|/7\:,!.,3;) for j=l,2,..,kirl ITI
follows from the basic properties of empirical processes (Shorack and Wellner, 1986).

3.4 Simulation Study

We carry out a simulation study to assess the finite sample behavior of the

proposed estimators. We consider two causes of failure. For simplicity, we consider a

single covariate X which is generated using a Bernoulli random number. The data

are generated from the following model. The subdistribution due to failures from

cause 1 is given by

Pr(7} St;C'. =1|Xi)=1—[l—m(l—exp(—r))Txp(flix')

which is a unit exponential mixture with mass (1—m) at so when X, :0. The

subdistribution due to failures from cause 2 is given by

Pr(T, sac, =2{X,)=1—[1—(i—m)(1—exp(—z))]°‘”(”’X')

Left censoring variable U is generated from uniform distribution over the

interval(0,a) and right censoring variable V is generated from U+Unif0rm(0,b)

where a and b are chosen in such a way that 15% of the observations are left

censored and 20% of the observations are right censored. We generate random

samples of size n = I00 and 250.

Three different combinations of parameter realizations are considered for

simulations. 1000 samples are generated for each combination, to calculate the

absolute value of the bias and mean square error (MSE) of the estimates. We use

values in the neighborhood of zero as initial values for estimating regression

parameters. Empirical coverage probability (ECP) for BI. and 13"]. (t|X) j=1.2 are
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also estimated. The absolute bias, MSE and ECP of the estimates of,B]. j= 1,2 for

different combinations of parameter realizations are given in Table 3.1. As the values

of bias and MSE do not vary with m , we present the simulation results for m =0.5. It

can be noted that, absolute bias and MSE are negligible for both ,3, and £2 and

decrease as sample size increases. From Table 3.1, it is also clear that, ECP for ,3,

and flz increase as sample size increases. The absolute value of the bias, MSE and

ECP of the estimates of cause specific subdistribution functions are also computed, at

five arbitrarily selected time points, which are given in Tables 3.2-3.4. Tables 3.2-3.4

show that, absolute bias and MSE are insignificant for 13!. (r|X ) ; j = 1,2 and also that

the values decrease with an increase in sample size. The ECP for l7",(tlX) and

F2 (t|X) increase as sample size increases.

Table 3.1 Absolute bias, MSE and ECP of ,6]. j = 1,2

A A S:‘:;:’‘* :‘3::";;“ “SE E57 ‘.:E’;:";‘~;“ “E5 E3“ ' ' /3. 2 2 ,6.
-I 0.5 100 0.0136 0.1449 94.5 0.0136 0.1649 90.1250 0.0118 0.1394 99.1 0.0127 0.1333 95.2

0.5 -1 100 0.0304 0.1312 94.8 0.0130 0.1396 91.7
250 0.0188 0.1196 100 0.0114 0.1294 96.2

-0.6 -0.75 100 0.0590 0.1327 94.4 0.0178 0.1163 90.8
250 0.0143 0.1083 99.8 0.0149 0.0849 95.2
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Table 3.2 Absolute bias, MSE and ECP of F] (xlx) j= 1,2 for 13, =-1. 62:05

Absolute Absolute
sample Time bias ‘M513 13c1> for bias ‘M313 be? for
size points filmx) F,(tlX) F,(z|X) fezmx) F2(t|X) F2(t|X)

0.1 0.0023 0.0027 94.8 0.0013 0.0008 92.6
0.25 0.0110 0.0645 93.1 0.0051 0.0178 91.5

100 0.5 0.0199 0.1423 93.5 0.0134 0.0981 92.1
1.0 0.0295 0.1691 92.8 0.0238 0.1562 91.0
2.0 0.0354 0.1809 91.0 0.0350 0.1983 90.3
0.1 0.0012 0.0007 99.3 0.0009 0.0004 98.1
0.25 0.0093 0.0343 98.9 0.0020 0.0021 98.5

250 0.5 0.0162 0.1013 99.4 0.0033 0.0054 97.3
1.0 0.0156 0.1281 98.7 0.0051 0.0131 96.9
2.0 0.0172 0.1645 97.1 0.0138 0.0956 95.0

Table 3.3 Absolute bias, MSE and ECP of 13",. (:|X) j= 1,2 for /3, =05, ,/32:4

Sample Time Ab;‘z’l’S”‘e AMSE gcp for Abbsiiule AMSE 13019161
size points mtlx) F,(t|X) F,(z|X) mtlx) F2(t|X) F3(t|X)

0.1 0.0022 0.0005 95.1 0.0043 0.0019 91.6
0.25 0.0085 0.0072 94.8 0.0243 0.0158 92.8

100 0.5 0.0174 0.0304 94.7 0.0661 0.0456 92.2
1.0 0.0596 0.1551 93.0 0.0906 0.0876 92.5
2.0 0.0882 0.1775 92.8 0.0223 0.0089 91.3
0.1 0.0009 0.0004 99.9 0.0015 0.001 1 99.2
0.25 0.0013 0.0008 99.1 0.0029 0.0042 98.7

250 0.5 0.001 1 0.0006 99.4 0.0047 0.11 10 98.3
1.0 0.0012 0.0004 98.6 0.0057 0.0164 97.0
2.0 0.0019 0.0009 96.7 0.0037 0.0070 96.1
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Table 3.4 Absolute bias, MSE and ECP of of I3]. (t|X) j =1,2 for ,6, =-0.6,

,B2 =-0.75

Ab. 1 . Ab 1
sample Time ;i‘;:‘° AMSE F:CPfor :ES“‘° ‘MSE ecpfor
size points filmx) F,(t|X) F,(z1X) mrlx) F3(t|X) F2(t|X)

0.2 0.0017 0.0014 94.1 0.0031 0.0049 91.5
0.5 0.0107 0.0575 93.8 0.0188 0.1759 90.9

100 1.0 0.0295 0.1278 93.9 0.0484 0.1 168 92.3
2.0 0.0548 0.1498 91.9 0.0900 0.1850 91.7
5.0 0.0815 0.1467 91.0 0.1204 0.1909 90.4
0.2 0.0003 0.0001 99.3 0.0005 0.0001 98.8
0.5 0.0063 0.0198 99.1 0.0095 0.0453 98.6

250 1.0 0.0143 0.1020 98.4 0.0211 0.1019 97.9
2.0 0.0234 0.1248 98.3 0.0388 0.1719 95.9
5.0 0.0401 0.1343 97.9 0.0535 0.1423 95.1

3.5 Data Analysis

We apply the model to a real data of Nowinski et al. (1979) given in

Kalbflescih and Prentice (2002, pp: 390-395). 204 mice were observed to study the

genetic and viral factors that may influence the development of spontaneous tumors

leukemia in AKR mice. The mice were followed over a 2-year period starting from

their birth date, for mortality due to any of the causes and the surviving mice were

then sacrificed. We choose a base date and the failures before the base date are

considered to be left censored. The possible causes of death were identified as 1:

thymic leukemia. 2: non thymic leukemia, 3: non leukemia and no other tumors, 4:

unknown causes, 5: other tumors and 6: accidental death. Since thymic leukemia

seems to the major cause of mortality in AKR mice in the above data set, we consider

the data as a two risks problem with the two causes of death viz. thymic leukemia and

other causes. We choose the variable sex as covariate in our analysis.

We find the initial estimates of cumulative baseline cause specific hazard rate

functions by ignoring left censored observations as suggested in Klein and
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Moeschberger (2003) for the estimation of the survivor function. These estimates are

substituted in (3.8) to calculate initial estimates of ,Bj;j =1,2 Then the estimates of

,6]. values are substituted in (3.7) to solve for A0j;j=l,2. The process is repeated

until the estimates converge. We get the estimates as ,3, =O.3l345 and ,3: =O.36l 19

for the above data set. The estimates of I-A"j(t|X);j=l,2 are computed using (3.9).

The plots of cause specific subdistribution functions for male mice and female mice

are given in Figure 3.l(a)—(b). ln Figures 3.1 (a)-(b), solid line represents the
subdistribution function due to failures from thymic leukemia and dotted line
represents the subdistribution function due to failures from other causes.
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(b) Female mice

Figure 3.1(a)-(b) Plots of cause specific subdistribution functions for male mice and

female mice
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Figure 3.l(a)-(b) shows that female mice have a high probability of remission

comparing to male mice.

To check the proportionality assumption of hazard rates for each cause of the

model (3.2) for the above data set, we use a graphical method, known as Andersen

(1982) plots. The covariate sex is discrete and takes only two values. Let Am, (I) be

the estimate of the cumulative baseline cause specific hazard rate for rth stratum,

r= l,2;j= 1,2. Here, we plot A310 (1) versus /A\,j(,(I) forj = 1.2 If the

proportional hazards model holds, the curves should be straight lines through the

origin. Figures 3.2 (a)-(b) give the Andersen plots for failures due to thymic leukemia

and other causes respectively.
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(a) Thymic leukemia
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(b) Other causes

Figure 3.2 (a)-(b) Andersen plots for the two causes
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From Figure 3.2(a)-(b), it follows that the proportionality assumption holds well for

both causes.

3.6 Conclusion

In this chapter, we proposed a semiparametric transformation mode] for the

analysis of doubly censored competing risks data. The present study extended the

work of Fine and Gray (1999) into the doubly censored set up. The model proposed

by Fine and Gray (1999) assumed that the covariate has common effect on cause

specific hazard rates, but in the proposed model we assumed that covariate has

different effect on different causes. The present study also extended the work of Cai

and Cheng (2004) into competing risks set up. The proposed method can be applied to

other semiparametric transformation models by considering different choices of g

and  The method can also be directly extended to the time dependent covariate

set up.
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Chapter Four

Neural Network Models for Competing Risks Data

4.1 Introduction

In survival studies, nonparametric methods are very popular due to the fact

that the lifetime data may not always meet parametric model assumptions. Gasbarra

and Karia (2000), Crowder (2001), Kvam and Singh (2001) and Lawless (2003)

provide comprehensive reviews on various nonparametric methods employed in

survival analysis. Recently, researchers paid attention on neural network models for

the analysis of survival data. Multilayer Perceptrons (MLP) are the most commonly

employed neural network models for prediction and classification problems in

survival analysis. The main advantage of neural network models is that, the inherent

nonlinear structure of the network provides a platform to deal with complex input­

output relationships. Further, neural network models need not make any assumptions

about the distribution of data or about the relationship of covariates with the survival

time. Neural network models use an algorithmic approach to solve complexities

beyond the reach of empirical statistical methods.

Another significant advantage in using neural network models is that, the

network provides smoothed estimates of cumulative hazard rate functions or survivor

function without using any additional smoothing techniques. There are many

nonparametric smoothing techniques viz. spline smoothing, kernel density smoothing,

and additive smoothing are available in literature for the analysis of the survival data.

However, smoothing techniques like kernel density smoothing may result

computational issues. For example. in a kernel smoothing method, the selection of

The results in this chapter have been communicated as entitled ‘Neural Network

Models for Competing Risks Data’ (see Sankaran and Sreedevi, 20l0b).
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kernel function and band width is an important issue, since the wrong choice of kernel

function and band width may result in wrong conclusions (Wells, 1994). As the neural

network models inherently smooth the estimates, it resolves such issues of wrong

selection of methods and models.

Multilayer perceptron neural network models were employed in survival

studies to improve the estimates of the survivor function (see Bakker and Heskes,

I999 and Bakker et al., 2004). Ambrogi et al. (2007) discussed the role of neural

network models with genetic algorithms in the analysis of survival data. One can refer

to MacKay (I992), Faraggi and Simon (1995), Bishop (1996), Machado (1997),

Neal (I996), Ripley (1998), Neal (2001), Biganzoli et al. (2002) and Ahmed (2005)

among many others for various applications of neural network models in survival

analysis.

Recently, Biganzoli et al. (2006) employed partial logistic artificial neural

networks to model competing risks data in the discrete set up. Later, Lisboa et al.

(2009) employed automatic relevance detennination technique to regulan'ze this

model, which is a commonly employed regularization technique in Bayesian

modeling. However, neural network models are less explored for modeling and

analysis of competing risks data when the lifetime variable is continuous. Motivated

by this, in this chapter, we present neural network models for prediction and

classification problems in the analysis of competing risks data. The novelty of our

models is that, causes of failure are treated as an input variable, which allows a

straightforward accommodation of censoring times. The estimates of the cumulative

cause specific hazard rate functions, cause specific subdistribution functions and

survivor function are compared with the estimates obtained using nonparametric

kernel density smoothing method of Wells (I994).

The chapter is organized as follows. We, in Section 4.2, discuss neural

network models for the estimation of cumulative cause specific hazard rate functions,

cause specific subdistribution functions and survivor function. We describe the

specifications of the proposed multilayer perceptron neural network models in Section
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4.2.]. The models are illustrated with two real data examples in Section 4.2.2. Two

different classification problems in competing risks set up are addressed in Section

4.3. A binary network to classify individuals into two groups of survived and relapsed

patients at a pre specified time point is presented in Section 4.3.]. In Section 4.3.2, a

softmax neural network is presented to classify individuals according to their cause of

failure. Neural network models developed for classification problems are well

demonstrated with a real life example. Finally, Section 4.4 summarizes major

conclusions of the study.

4.2 Estimation Problems

In this section, we present multilayer perceptron neural network models for the

estimation of basic quantities of the competing risks models. As a first step, we only

use the simplest possible network architecture. The extension of our models to handle

complex situations is straightforward. From the existing neural network models, our

models distinguished by the inclusion of causes of failure as input variables. Further,

this input variable is also used for estimation. One advantage of including the cause of

failure as an input variable is that, by denoting the censored observations with a cause

labeled ‘0’, we can easily include the censored observations as input varaibles.

4.2.1 Neural Network Models

We first introduce multilayer perceptron neural network models for the

estimation of cumulative cause specific hazard rate functions and cause specific

subdistribution functions of competing risks models in absence of covariates. We

present multiple time point models, which predict the desired output at each specified

time point. The data is divided into training and validation sets. The training set

consists of 80% of the total data points which are used for preliminary model fitting

and the validation set contains the remaining 20% of the data which are used to assess

the adequacy of the model. We choose negative of the log likelihood function as the

objective function to train the networks. Further, a standard back propagation learning
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algorithm is employed with quasi-Newton optimisation technique. We use normal

error functions in our models. Weight decay procedure is used as the complexity

regularisation technique, with weight decay constant 1.

Time to failure and cause of failure are given as input variables for the

estimation of cumulative cause specific hazard rate functions and cause specific

subdistribution functions. The network is fully connected with one neuron in the

hidden layer. Activation functions are selected according to the nature of target

variables. For the estimation of cumulative cause specific hazard rate functions, we

use exponential activation functions. For estimating cause specific subdistribution

functions, logistic activation functions are used. Estimates of cumulative cause

specific hazard rate functions and cause specific subdistribution functions given by

the nonparametric methods (Lawless, 2003) are given as target variables.

The output of the models, excluding bias terms is given by

an ,2 w,ma,,  wjhxjj (4.1)I 1
where j ranges over the inputs, /1 ranges over the hidden units 0 denote the output

units. at, denote the activation function used in output layer and u,_ denote the

activation function used in the hidden layer.

We modify the above specified network to estimate the survivor function

directly in presence of covariates. The explanatory variables along with the survival or

censoring time and cause of failure are given as input variables. Hidden layer has two

nodes. The first hidden node is connected to the input from explanatory variables and

survival or censoring time. The second hidden node is connected to the input from the

cause of failure. Estimates of the survivor function obtained using Cox’s partial

likelihood method are given as the target variables. We use logistic activation

functions. The focal advantage is that, our model is assumption free and allows a

direct estimation of the survivor function. To estimate cause specific subdistribution

functions, along with time to failure and cause of failure, explanatory variables are
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also given as input variables. Estimates of cause specific subdistribution functions

(Lawless, 2003) are given as target variables. The output given by (4.1) can be
modified into the situation with covariates.

The efficiency of the neural network models is measured in terms of the mean

square error of the estimates. We compare the estimates given by neural network

models with the corresponding smoothed estimates using the kernel density technique

given in Wells (1994).

Now, consider a competing risks situation with k causes of failure. The Cox

proportional hazards model for competing risks data, in which, the hazard rate

function for cause j at time I, in presence of the covariate vector X can be specified

by

/l.,.(t|X)=/lL,j(r)exp(,[5’J.X) j=l.2....,k (4.2)
where /10]. (I) is an arbitrary unspecified baseline cause specific hazard rate function

and ,6]. is the vector of regression parameters for cause j

The observed data consist of (t,.,c2,cZC,.,X,.), i=l,2,...,n where 1, is the

observed lifetime or failure time,  is the censoring indicator and X, is the

corresponding covariate and C, e {l,2,...,k} is the cause of failure.
A

Let /5']. be the maximum partial likelihood estimate of ,5’. An estimator of the

cumulative baseline cause specific hazard rate function (Breslow type) /A\0,_J. (t,,BJ.) is

given by I ,, ‘l
A0,U.(:,,Bj)= Zy,.(..)exp(fi, x)j (1 J(u) (4.3)() i-I

where l\_/j(t)=Z:l(Y, St,cZj =1) and (21. =l(cZ = l,C, =j).
i=l

Let K be a density function on [-1, 1] , symmetric about zero with unit integral

and let the parameters {b"} be a sequence of positive numbers tending to zero. Now, a
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smoothed estimate of baseline cause specific hazard rate function is /l0_,j(t,,6j) is

given by
IA A l t— A A .

AW (2,,/1,): jb—K[b—"jaAn,,, (u,/3,) _] = l,2,...,k (4.4)0 II n
where /A\0,U. (I,/ll.) is given by (4.3). In absence of covariatcs we can write (4.4) as

A ' l t—u A ,
1,,,U.(I)= —K (1/\0"I(ll) j =l,2,...,k (4.5)0 bn bit

with ;\W (t) as the Nelson-Aalen estimate of cumulative cause specific hazard rate

function.

Following the estimation of (4.4), the smoothed estimator of survivor function for T

given X is given by A  A A,
S(tlX)=expL—ZA0,_,(I)exp(,[1JX)j. (4.6)/—l

Thus, (4.6) leads to the smoothed estimator of cause specific subdistribution functions

ZIS

fi,<rIx>=z4.s‘<«|x>.;l’lfl—
r,<r,>exp(/ix.)

I-I

j=l,2,...,k (4.7)

Remark 4.1: When j=l, the estimator given by (4.4) reduces to the smoothed

estimator of baseline hazard rate function proposed by Wells (I994).

Remark 4.2: Asymptotic properties of the estimators follow by extending the results

of Wells (1994) under certain assumptions.

4.2.2 Data Analysis

In this section, we illustrate the models given in Section 4.2.! with two real

life data sets.
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We, first consider the mortality data on RFM strain male mice given by Hoel

(1972) to illustrate the estimation of cumulative cause specific hazard rate functions

and cause specific subdistribution functions. Mice were divided into two groups and

one group of mice lived in a conventional lab environment and the second group was

kept in a genn—free environment. There are three causes of death viz. thymic

lymphoma, reticulum cell sarcoma and other causes. The mice all died by the end of

experiment, so there are no censoring. The data set contains l8l time points. Mean

square error (MSE) of the neural network models for estimating cumulative cause

specific hazard rate functions and cause specific subdistribution functions are given in

Table 4.l. Figures 4.l(a)—(c) compare the smoothed estimates of cumulative cause

specific hazard rate functions obtained using nonparametric methods (Lawless, 2003)

and neural network models. To employ the kernel smoothing method, we consider

K(.r) = 1 —|x| and b" is chosen in such a way that the mean square error of the estimates

is minimum. The estimates of cause specific subdistribution functions using the two

approaches are given in Figures 4.2(a)—(c). ln Figures 4.l(a)—(c) and 4.2(a)-(c) dark

line represents the smoothed estimates of Wells (1994) and dotted line represents the

corresponding neural network estimates.

Table 4.1 MSE of the neural network models for estimating /1]. (I) and 17"}. (t) for

mice mortality data, j = 1,2,3.

Estimate MSE

A, (I) 000493
A, (z) 0.00266
A, (r) 0.001 12
‘, (1) 0.00347
‘, (1) 0.00329
1?, (r) 0.00209
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Figure 4.1 (a)-(c) Plots of the estimates of cumulative cause specific hazard rate

functions for mice died of thymic lymphoma, reticulum cell sarcoma and other causes
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Figure 4.2 (a)-(c) Plots of the estimates of cause specific subdislribution functions for

mice died of thymic lymphoma, reticulum cell sarcoma and other causes

From Figures 4.l(a)-(c) and 4.2(a)-(c), it is clear that, neural network models directly

give smoothed estimates of both cumulative cause specific hazard rate functions and

cause specific subdistribution functions without using any funher smoothing

techniques.
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Now, we consider a competing risks data with covariates given in Andersen et

al. (1993, p:709) for the illustration. The data consist of survival times of 202

melanoma patients with cause of death and covariates viz. age, sex, an indicator

variable of patient’s condition, year of operation, tumor thickness and ulceration. We

consider the three covariates namely, age, sex and tumor size of the patient for

illustration. The covan'ate age is in years, sex (l—man, 0- woman) and survival time in

days. C=l (death from malignant melanoma); C=2 (death from any other causes);

C=3 (alive on 1, Jan 1978).

Mean square error (MSE) given by neural network model for estimating

survivor function and cause specific subdistribution functions for the melanoma data

set is given in Table 4.2. Figure 4.3 compares the estimates obtained using two

approaches for survivor function. To employ the kernel smoothing method, we

consider K(.\-) = |—|.\'| and b" is chosen in such a way that the mean square error of the

estimates is minimum. We use (4.6) and (4.7) respectively to obtain the smoothed

estimates of survivor function and cause specific hazard rate functions. Figures 4.4(a)­

(b) plot the smoothed nonparametric estimates of cause specific subdistribution

functions given by (4.7) and the corresponding neural network estimates. In Figures

4.3 and 4.4(a)-(b) dark line represents smoothed estimates of Wells (1994) and dotted

line represents the corresponding neural network estimates.

Table 4.2 MSE of the neural network models for estimating §(t) and F]. (t) for the

melanoma data set, j = 1,2.

Estimate MSE
5 (1) 0.00234
A. (1) 0.00057

A2 (I) 0.00158
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Figure 4.3 Plot of the estimates of survivor function for melanoma data

It can be noted that Figure 4.3 is not monotone, since the difference in

covariate levels affect the estimates of the survivor function. Figure 4.3 shows that the

absolute difference between two estimates of the survivor function exceeds 0.1 only

for three data points. The maximum difference observed is 0.2578. This corresponds

to the value 17.42, for the covariate tumor thickness, where as the average value of

tumor thickness for patients is 2.906. Considering the other two data points, for

which the absolute difference between estimates exceeds 0.1, the value of covan'ate

variable tumor thickness exceeds 10. But, for those data points which deviate

extremely from the average value of the input variable age, the estimated values do

not show much deviation. It follows that, tumor thickness has significant effect on the

estimates of survivor function.
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Figure 4.4 (a)-(b) Plots of the estimates of cause specific subdistribution functions for

melanoma data

4.3 Classification Problems

In this section, we present neural network models for two different

classification problems in competing risks set up. We consider the situations in

presence of covariates.
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4.3.1 Binary Model Network

We present a neural network model to estimate the survivor probability within

a pre specified time point and hence to classify the individuals into two groups at any

specified time point according to the relapse or survival of the patient at that particular

time point. We modify the data by splitting the time into two periods, before the pre

specified time point and after the pre specified time point. This model is a standard

classification neural network. This model is an extension of the binary model

introduced by Ripley et al. (2004) into the competing risks set up.

Let 7-' denote the pre specified time point. Assume that pa. be the probability

of relapse fori th patient due to cause j before T and 5,]. be the indicator variable

which equals 1 if i th patient is relapsed due to cause j before Tand () otherwise.

Now the likelihood function of the observed data is given by

L =  Pf” (1 — Pi. )H)i
1:1 j=l1' L’ K‘

where p.-. =Zp,, and 6,, =Z¢zj with 0SpU. SI and oszpg. $1
j=l ,'=| j=I

To incorporate censorship, we follow Ripley et al. (2004). Each censored patient is

included twice in the data, with indicator l and 0 with appropriate weights. We used

multilayer perceptron network with one hidden layer and logistic activation functions.

4.3.2 Softmax Neural Network

In the following, we present a softmax neural network to classify the

individuals into different groups according to their causes of death. The individual’s

survival time or censoring time and the explanatory variables are given as inputs.

Censored individuals are considered as a separate class. Target variable is the

indicator function denoting the class membership. The model is fitted with cross

85



Neural Network Models for Competing Risks Data

entropy error function and softmax activation function. With a softmax activation

function, the probability of the membership for class j is given by

exp(hj)If
Ze"P(h/)
1:1

where h]. is the output from the previous unit.

For illustration of classification problems, we use the satne mice mortality data

due to Hoel (1972). Living environment of the mice is selected as covariate. The

accuracy of the classification is assessed in terms of sensitivity and specificity.

Sensitivity is the proportion of event responses that are predicted to be events and

specificity is the proportion of non—event responses that are predicted to be non­

events.

The time point is selected as 550 days and we run the binary model to predict

the survival before 550 days for three observed causes. The sensitivity and specificity

of the model is calculated using a 0-] loss function. The results of the classification in

tenns of sensitivity and specificity are given in Table 4.3. Both models seem to yield

best results regarding classification.

Table 4.3 Sensitivity and Specificity based on a 0-1 loss function for the binary model

Cause Sensitivity Specificity
Thymic lymphoma 94. I 45.9
Reticulum cell sarcoma 93.2 44.6
Other causes 95.4 49.0

To assess the accuracy of classification using softmax neural network models, we

calculate the specificity and sensitivity based on a 0-1 loss function. The results are

given in Table 4.4.
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Table 4.4 Sensitivity and Specificity based on a 0-] loss function for softmax neural
networks

Cause Sensitivity Specificity
Thymic lymphoma 87.7 75.8
Reticulum cell sarcoma 82.3 73.4
Other causes 91.2 78.7

4.4 Conclusion

In this chapter, we developed neural network models for various estimation

and classification problems in the analysis of competing risks data. We developed

multiple time point neural network models to estimate cumulative cause specific

hazard rate functions, cause specific subdistribution functions and survivor functions.

When covariates are present, we introduced a multilayer perceptron neural network

model for the direct estimation of survivor probability. We extended the smoothing

procedure proposed by Wells (1994) into the competing risks set up and compare the

smoothed estimates with the same given by neural network models. It has been shown

that neural network models give the smoothed estimates inherently without using any

other smoothing techniques. Another important advantage of the neural network

models is that, they are free from any assumption about the distribution of data. The

flexibility that the neural network models offer for modeling the data is also an

additional advantage.

We, further proposed a binary model to classify individuals into two groups of

survived and relapsed patients at a pre specified time point. Classification of failure

times according to the cause of failure is important in testing the independence of time

of failure and cause of failure. A softmax neural network model was also employed to

classify the individuals according to their cause of failure. The heuristic and

algorithmic approaches help us to solve complexities in the real life situation that are

beyond the reach of empirical statistical methods.
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Chapter Five

Tests for Independence of Time to Failure and Cause of

Failure

5.] Introduction

In the analysis of competing risks data, decision making problems arise quite

often. In competing risks set up, the imponant problems of hypothesis testing are to

test whether any one of the risks acts more seriously than the other risks and to test

whether the time to failure and cause of failure are independent or not.

In Chapter I, we note that latent failure time approach for modeling the

competing risks data is not recommended except in special types of applications

where the unobserved potential failure times can be given a clear meaning. Deshpande

( I990), Aras and Deshpande (1992) and many others employed an approach based on

the observable random pair (T, C) for modeling competing risks data as an alternative

to the latent failure time approach. The nature of dependence of T and C is vital and

important in such modeling. This motivated researchers to develop tests for

independence of TandC The problem of testing the independence of time to failure

and cause of failure can be represented by the null hypothesis

H0 :/i.j(t)=7r]./17(1) for j=l,2,...,k and for all I

Some results of this chapter have been entitled and communicated as A Class of

General Tests for Testing Independence of Failure Time and Cause of Failure in a

Competing Risks Model’ (see Sankaran, Dewan and Sreedevi, 20l0) and some other

results are entitled and communicated as ‘On Testing Independence of Failure Time

and Cause of Failure in a Competing Risks Model for Grouped Data (see Dewan,

Sankaran and Sreedevi, 2010).



Tests for independence of time to failure and cause of failure

against the alternative

H, :/1]. (r)¢7r}./1}.(t) at least for one j and for some I

where 7:}. = P(C= j) for j: l,2,...,k, represents the probability of a failure due to

cause j

Kochar and Proschan (1991) considered the testing problem for a multiple

dependent competing risks model when the lifetime data are continuous. A class of

restricted tests for testing independence of Tand C was derived by Dykstra et al.

(1998). Dewan et al. (2004) developed a test procedure using conditional

probabilities for testing independence against specific alternatives. When the risks are

dependent, Gasbarra et al. (2006) proposed a class of tests using the crude hazard rate

functions and conditional probabilities. Testing independence of Tand C when

causes of failure are missing was discussed by Dewan and Kulathinal (2007). Most of

these tests were based on U —statistics.

In survival studies, categorical (grouped) failure grouped time data may arise

from a life test. For example, Mendenhall and Hader (I958) discussed the grouped

data on failure times of radio transmitter receivers with two risks of failure. When the

lifetime data are categorical. the exact time to failure of an individual may not be

known, but we know only the interval in which it lies. Censoring within the intervals

may also be present (see Byar and Green, 1980). Chiang (1968) studied competing

risks problem when the lifetimes are categorical and derived the relationship between

net, crude and partial crude probabilities. David and Moeschberger (I978) have

considered the parametric analysis of categorical competing risks data. Dykstra et al.

(1995) considered likelihood based inference for cause specific hazard rate functions

under order restrictions for categorical lifetime data. Test for independence of time to

failure and cause of failure is vital in the analysis of categorical lifetime data also,

which has not been developed yet.

Motivated by this, in this chapter. we develop tests for independence of time to

failure and cause of failure for both continuous and categorical competing risks data.
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Occasionally in competing risks situations, the cattse of failure for an individual has

not been exactly observed, but has only been narrowed down to a subset of all

potential risks. Such situations with incomplete information on the causes of failure

are referred to as masking. Recently, a vast amount of research has been carried out in

the statistical analysis of competing risks data with masking. For example, one can

refer to Kodell and Chen (1987), Lapidus et al. (I994), Dewanji and Senguptha

(2003). Craiu and Duchesne (2004), Craiu and Lee (2005), Craiu and Reiser (2006)

and Antony and Sankaran (2008) among many others. In the present study, we also

consider the testing problem with masked data when the lifetime is categorical in

nature.

In Section 5.2, we discuss the tests for independence of time to failure and

cause of failure for continuous lifetime data. In Section 5.2. l, we introduce a general

class of tests using martingale approach and discuss its properties. A test statistic

using likelihood ratio procedure is derived in Section 5.2.2. Asymptotic distribution of

the test statistic is also derived. In Section 5.2.3, we carry out simulation studies to

assess the finite sample performance of the proposed test statistics. The methods are

illustrated using two real life data sets in Section 5.2.4. We, in Section 5.3, consider

the testing problem with categorical lifetime data. We consider four different

situations with categorical lifetime data. In Section 5.3.], we derive likelihood ratio

test statistics for independence of T and C when all causes of failures are known

(unmasked data). We discuss the testing problem when the data are censored in

unmasked set up. In Section 5.3.2, we derive likelihood ratio test statistic for the same

testing problem, when the data are masked. In the masked data set up, we discuss

situations with uncensored and censored lifetimes separately. In Section 5.3.3, we

carry out a series of simulation studies to calculate the power of the proposed test

statistics. We illustrate our procedures with real data sets in Section 5.3.4. Finally,

Section 5.4 summarizes major conclusions of the study.
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5.2 Tests for Continuous Lifetime Data

We use two approaches viz. martingale approach and likelihood ratio approach

to develop tests for testing independence of time to failure and cause of failure for a

continuous lifetime data. The asymptotic distributions of the proposed test statistics

are derived.

5.2.1 Martingale Approach

This approach is based on cause specific hazard rate functions which are the

fundamental quantities in competing risks data as they can be estimated on the basis

of data on failure time and cause of failure.

Suppose that there are n individuals under study. Let Nj(r) denote the

number of transitions from alive to death due to cause j during the time

interval(0,t], forj=l,2,...,k We now consider the situation where the lifetime

variable Tis right censored by the censoring variableZ In practice, one could

observe, Y, = min(7},Z,.) and 60. =I(Y, SZ,,C,. = j)on n individuals. Note that, C­I

is observed only if Y.=7'. and  is the usual indicator function forI I

i=l,2,...,n;j=l,2,...,k. In this situation Nl.(I)=i:l(Y,.St,(2].=l) and
i=l

Y(t) = X/(Y, > I), is the number of individuals who have survived beyond the time
l=l

The history ofthe entire process up to time t is represented by lF,_, where lF,g

represent the 0’-field generated by the counting process {Nj(r),j= l,2....,k} The

cause specific hazard process is given by Y(t)/1j(t) for j: l,2,...,k and 120 As

discussed in Chapter I, the cumulative cause specific hazard rate functions A]. (I) are

defined as
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I

Aj(:)=j,1j(s)ds j=|,2,...,k
()

and under the assumption that the k failure causes are mutually exclusive and

exhaustive, the overall cumulative hazard rate function A(t) is given by

k

A (t) = Z A I (t)
j=l

If we assume that Tand C are independent. /1]. (t) can be written as /1]. (I) = Ir}-/1(1)

Where It}. = P(C= j) is the probability of a failure due to cause j for j: l.2....,k

and /l.(t) = Z1].
I.»

i=|

Now, we test the null hypothesis

H0: /1j(t)=7z'j/1(1) for j=l,2,...,k and forall r (5.1)
against the alternative

H, /1j(t)¢7rj/1(1) for at least one j and for some! (5.2)

The construction of the test statistic is based on the simple idea of comparing the

estimates of both sides of (5.1). The Nelson-Aalen estimator (Andersen et al., 1993)

of Aj(t) and /\(t) are given by

j: l,2,...,k (5.3)
and ‘  (5_4)

:­

where c(u)=l{Y(u)>0} and dN(z4)=ZdNj(u).
j=I

The probabilities Ir]. j= l,2,...,/< can be written as
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T

7r.=F.(r)= js(u)dAj(u) (5.5)1 1
0

where S(t) = P(T >1) is the survivor function of T and 1' = sup {I : F(t) 3 1} Thus

the estimator of 7!]. can be obtained as

A T A A
7‘r].=Fj(r)= js(u)dAj(u) j=l,2,...,k (5.6)

u

where  is the well known Kaplan-Meier estimator of 5(1). Note that ft}. is

independent of t, and in the uncensored set up 72'}. is nothing but the probability of a

/.5

failure due to the causej In case of right censoring, Zfij need not be equal to one.
j=I

In such cases, the estimator of 7!}. is 7?}. which is the normalized version of the

estimate. Consider a measure of departure from the null hypothesis as follows

Zj (I) = '.[Wj (u){d;\,. (u)—z2,dix().)}

dNl(u) it tlN(u)
Y(u) ’ Y(u)

j = l,2,...,k (5.7)=]c(.,)w,().)

where w]. (I) is a locally bounded predictable weight process. By the Doob—Meyer

decomposition theorem, we have
I

Mj(z)=N}.(:)—zrJ.j,1j(u)y(u)du j=l,2,...,k (5.8)
0

are zero mean martingales with respect to the increasing family of o'—fields

{lF,_,t 2 0} Taking summation on (5.8), we get

M (I) = N(t)— II/1(u)Y(u)(1u
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where M(t)=iMj(t).
J'=l

Now (5.7) can be written as

I)

Since 7?]. is a consistent estimator of /1']. (Lawless,2()O3),(7rj —7'rj)—>0 and hence the

second factor of (5.9) vanishes.

Define

c(t)wj(t)=k(t)Y(t) j=l,2,...,k (5.10)
Then for large n, (5.9) is asymptotically equals to

I

zJ.(:)= jk(u)(6,. —7rjc1N(u)) j=l,2,...,k (5.11)
0

where k(t) is a locally bounded predictable process and 6]. = l(C= j). We note
I.­

that Zlj (t)=0. Further.Zj ’s are locally square integrable martingales. Under H”.
,'=1

it can be shown from Andersen ct al. (I993) that Z(t)=[Z1(t)....,Zk(t):lTis

asymptotically distributed as a k variate normal with mean vector 0 and covariance

matrix 2(1), which can be consistently estimated by W (I) = {WM  , where

I

wjm (1) = _[k2(u)(Aj,,, —z‘r,,,):i.dN(u) j,m = l,2,...,k (5.12)
0

with Ajm as the Kronecker delta. Thus a test statistic is given by
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,‘{2=ZT(”£')l'l7(‘£')Z(T) (5.13)
where W(1') is the generalized inverse of W(1'). If we delete the last row and last

column of W(t), to give say W0(t) . and let Z0 (I) =[Zl (t),...,Zk_, (t)]T (5.13) can

be alternatively given as, 3 —l2 =Z;l(r)vv.r(r) 20(7) <5-14>
where W0(z')_l is the ordinary inverse of W(r). Under Hunt’: is asymptotically

distributed as chi—square with k -1 degrees of freedom (see Andersen et al., I993).

Possible choices for weight function k (I) in (5.10) are

a) k(r) = S(r) , b) k(r) = 53 (r) . c) k(t) = Y(r)S(t) and d) k(r) = Y(t)

When k(t)=Y(t), we get

2]. (oo)=o:d’(it)dNj (u)—?Y(Li)diV(z¢), j=l,2,...,k.

Thus, (5.11) is the generalization of the Wilcoxon and Kruskal—Wallis tests to right

censored data due to Gehan (1965) and Breslow (I970). The efficiency of these tests

obviously depends on the choice of weight function. A possible approach to find the

optimal value of k (I) is that to choose k(t) which minimizes the mean square error

of the test statistics. However. the exact mean square error of the test statistic is not

available. In practice, we choose an optimal weight function using bootstrap

procedure, which will be discussed in Section 5.2.4.

5.2.2 Likelihood Ratio Test

Let N’ (!)={(N, (t).....Nk (I)):re FF} be a k -variate counting process with

intensity process /1‘ =  Then the likelihood L based on a sample is given

by (Andersen et al., 1993)
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L=H[1iI/1; (I)./iv,(I)]cxp[—i[i/1;(!)c1!J (5.15)rel’ j=l

where H represents the product integral.
IEIF

Since ,1} (r) = ,1}. (2) r(:) , underHU, the likelihood (5.15) becomes

_ k ‘I [H I k
L =I‘I I‘I(/lj(I)y(I)) N I exp[-I2:/7./-(!)Y(!)(Itj. (5.I6)Ieli" j=l () j=l

As (5.16) is a semiparametrie model, we follow the approach given in El Banni et al.

(2006) to obtain the likelihood ratio test statistic. Differentiating log L* with respect

to /1}. (I) and equating to zero, we get the maximum likelihood estimate of /1}. (I) as

/?‘:j(’):("(t)Yd(]:,)_/'(’)

Since, under H0 ,/1}. (t) =7:/1(1), the likelihood function (5.16) becomes

j=l,2,...,k.

L“ =H[fi(l(r)fljY(t))dN’(I)Jexp{—]i:/1(t)frjY(t)a'rj.re? j=l j=l
Differentiating logL° with respect to 1(1) and equating to zero, we get the

maximum likelihood estimate of /?.(t) as

l»t,)=L;‘;,~)<'>

Similarly, differentiating log L0 with respect to Itj and equating to zero, we get the

maximum likelihood estimate of 7:]. j: l,2,...,k as

where 1': sup{r 2 F(t) 3 1}

96



Tests for independence of lime to Iiailure and cause of liailurc

Thus we can obtain the likelihood ratio test statistic for testing (5.1) as

" - ./~(.)..uv(.)H HM’) I ”j II j=lwe (5.17)
Hlrilz‘,-<r>"”""}I j=l

A

wherexlj(t),7'rj and /1(t) are the maximum likelihood estimates of /l}.(t),/rj and

/1(t) respectively.

In the following, we can establish that the asymptotic distribution of —2logQ is a chi­

square distribution with k -1 degrees of freedom.

From (5.17), we can have that

—2logQ = 2]fi(log /ll. (t)—log(frj/l(t)))zlNj (I)
o j=1

= 2]Zk:(logij(t)—log(7ij/i.(t)))/if(I)Y(t)clt (5.13)

By Taylor’s series expansion, (5.18) can be written as

(5.19)

Under H0 ,  (t)—fr./l(r))Y(t) =0 and thus (5.19) can be asymptotically written

218

y(:)d: (5.20)
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From Andersen et al. (I993, p: 403) it is seen that, —2logQ is a partial score

statistic and it follows that -2logQ has chi-square distribution with It —l degrees of

freedom. Then, we reject the null hypothesis when —2logQ is large.

5.2.3 Simulation Study

We carry out an extensive simulation study to assess the performance of the test

statistics. In martingale approach, the four different weight functions (a)—(d) described

in Section 5.2.] are considered. We consider two causes of failure. Lifetimes are

generated from exponential distributions with parameters /l1 and Av.) which

correspond to two different causes. To study the effect of censoring on the proposed

test statistics, we consider three different situations viz. no censoring, mild censoring

(20% of the observations are censored) and heavy censoring (40 0/c of the observations

are censored). In the censored situations, observations are generated from a uniform

random variable over(0,a), where a is chosen in such a way that 2()% or 40% of the

observations are censored. Random samples of size n = 50,100 and 250 are generated

1000 times. To calculate the empirical type I error, we generate lifetimes from the

exponential models with parameter values /11 =2,xl._, =8,7r, =().2 and 7:2 =0.8.

Empirical power of the test is calculated by generating lifetimes from the exponential

models with parameter values /11 = 8,13 = 2, 7:, =0.2 and 7:3 = 0.8.

To assess the performance of the likelihood ratio test discussed in Section 5.2.2,

1000 random samples of size n: 5(),|00 and 250 are generated. The exponential

distributions with same parameters and proportions described above are used for

computing empirical type I error and power of the test statistic.

Tables 5.] and 5.2 provide the empirical type I error and power, in percent, for

different test statistics developed using martingale approach. Table 5.3 presents the

empirical type I error and power of the likelihood ratio test.
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Table 5.1 Empirical type 1 error (in percentage) of different test statistics

n Alpha Slzleiztic No _ 20%_ 40%_Censoring Censonng Censoring

50 5 Q, 4.4 4.4 4.650 5 Q3 5.2 5.1 5.850 5 Q3 4.9 4.9 5.550 5 Q4 5.1 5.6 5.750 1 Q, 1.2 1.2 1.350 1 Q3 1.4 1.5 1.650 1 Q, 1.4 1.4 1.650 1 Q4 1.6 1.8 1.9100 5 Q, 4.3 4.1 4.6100 5 Q3 5.2 5.1 5.4100 5 Q, 4.8 4.8 5.0100 5 Q4 5.0 5.() 5.2100 1 Q, 1.0 1.0 1.2100 1 Q3 1.3 1.3 1.5100 1 Q, 0.9 1.2 1.3100 1 Q4 1.4 1.6 1.8250 5 Q, 3.8 4.1 4.3250 5 Q3 5.1 4.9 5.4250 5 Q, 4.6 4.5 5.5250 5 Q4 4.8 4.9 5.2250 1 Q, 0.9 1.0 1.2250 1 Q3 0.8 1.1 1.3250 1 Q; 0.9 0.9 1.2250 1 Q4 1.4 1.4 1.5
From Table 5.1, it is clear that all the four test statistics have type I error, close to the

chosen significance level for all values of n. When sample size is large, the effect of

censoring on type I error is marginal.
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Table 5.2 Empirical power (in percentage) of different test statistics

n Alpha Test No . 20%. 40%.Statistic Censoring Censoring Censonng

50 5 Q, 5().() 48.9 44.350 5 Q, 51.0 51.9 48.350 5 Q; 52.8 51.6 46.750 5 Q, 34.3 23.9 23.3
50 1 Q, 12.4 1().2 10.350 1 Q3 48.8 43.1 42.350 1 Q; 49.1 44.7 42.150 1 Q, 14.1 14.3 12.9
1()() 5 Q, 70.5 72.1 71.41()() 5 Q, 76.4 75.4 75.010() 5 Q, 79.2 78.2 76.51()() 5 Q, 44.1 43.0 43.2
100 1 Q, 21.1 20.2 19.3100 1 Q3 66.8 63.2 62.0100 1 Q; 68.1 64.3 60.1100 1 Q, 30.9 28.2 23.2
250 5 Q, 98.6 95.6 93.2250 5 Q3 98.1 97.4 94.5250 5 Q; 98.2 94.3 94.6250 5 Q, 98.5 94.1 92.1
250 1 Q, 87 1 77.2 74.2250 1 Q3 88.6 87.8 84.3250 1 Q, 89.1 90.1 88.6250 1 Q, 87.2 90.6 88.4

Table 5.2 shows that all the proposed test statistics have good power in general. As

sample size increases, the power of the four test statistics increases, especially for Q4

However, Q3 and Q3 behaves in similar fashion in most of the simulations,

essentially because of the choice of weight functions. The presence of censoring does

not provide much difference to the power of the tests.
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Table 5.3 Empirical type I error and power (in percentage) of the likelihood ratio test

statistic

No Censoring 20% Censoring 40% Censoring
n Alpha

Type I Power Type 1 Power Type I Powererror error error
50 5 5.5 95.9 5.4 84.8 5.4 82.3I00 5 4.3 97.l 5.0 96. I 5.] 94.3250 5 4.0 99.3 3.9 98.8 4.8 96.2
50 l l.0 77.8 1.0 71.2 l.2 68.5l()0 l 0.8 88.5 0.7 80.6 0.9 78.6250 1 0.6 98.1 ().6 87. I ().9 85.4

The results of the simulation study using likelihood ratio test statistic show that the

test has good power.

5.2.4 Data Analysis

We consider two real life data sets to establish the utility of the proposed test

procedures in practical situations. First, we consider a competing risks data given in

Hoel (I972). The data obtained from a laboratory experiment on RFM strain male

mice, which had received a radiation dose of 300 rads at ages of 5 to 6 weeks. Three

causes of death were observed viz. thymic lymphoma, reticulum cell sarcoma and

other causes. The data were studied by different authors including Aly et al. (1994),

Kochar et al. (2002) and Dewan et al. (2004). The estimates of the cumulative hazard

rate functions due to the three different causes are given in Figure 5.1.
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Figure 5.1 The estimates of the cumulative hazard rate functions of death from

thymic lymphoma, reticulum cell sarcoma and other causes.

Figure 5.l shows that, the estimates of cumulative hazard rate functions due to

failures from ‘other causes’ yields large values comparing to the cumulative hazard

rate functions due to failures from thymic lymphoma and reticulum cell sarcoma.

Further, we consider the ‘other causes’ as censored variables and analyze the

same data set as a two risks problem. The estimates of the cumulative hazard rate

functions due to the two types of cancer thymic lymphoma and reticulum cell

sarcoma, when considering ‘other causes’ as censored variables are given in Figure 5.

2.
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Figure 5.2 The estimates of the cumulative hazard rate functions due to causes thymic

lymphoma and reticulum cell sarcoma in the censored case

Figure 5.2 shows that, the estimates of cumulative hazard rate function due to failures

from reticulum cell sarcoma possess large values comparing to the cumulative hazard

rate functions due to failures from thymic lymphoma.

To apply the test procedure (5.13) in the above two situations, we consider

different weight functions (a)-(d) given in Section 5.2.1. Test statistics on these cases

were calculated along with their P—values. Let Q,,Q2,Q_,,Q4 and Q’ represent the

test statistics obtained using weight functions (a),(b),(c),(d) and the likelihood ratio

test respectively. Table 5.4 provides the values of the test statistics along with their

P—values.

From Table 5.4, it follows that, the test statistic values are highly significant

for all the four weight functions (a)-(d). Likelihood ratio test statistic is highly

significant in both censored and uncensored set up. Thus failure time and cause of

failure can be assumed to be not independent for Hoel’s data in both uncensored and

censored situations.
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Table 5.4 Test statistic values using different weight functions and likelihood ratio

test statistic for mice mortality data

Tesfi/ifitcistic Test statisticTest value P value. . for 3 causes P value ‘statistic _ for 2 causes
( uncensored (censored data)

data)

Q. 13.348 <0.0l 18.799 < 0.0]
Q: 26.206 <0.0l 32.8] I < 0.0]
Q, 26.()8 <0.0l 38.597 < 0.01
Q4 |3.223 <0.0l 27.41 I <0.0l
Q* 162.597 < 0.01 64.339 <0.0l

To find the optimalk(t), we use the bootstrap procedure. We choose optimal

k as the value of k which minimizes the bootstrap mean square error estimate

for the proposed test statistics. The bootstrap technique for determining optimal k (I)

is applied to the real data given above. The bootstrap estimates of the absolute value

of the biases and the mean square errors (MSE) of the test statistics Q, ,Q2, Q3 and

Q4 are computed from the real data based on 1000 bootstrap samples of size l8l,

which are given in Table 5.5.

From Table 5.5, it is clear that the estimates of the mean square error based on

the bootstrap samples yields the lowest value for the statistic Q4 in both uncensored

and censored set up. Thus we can conclude that the weight function k(t) = Y(t), is

the optimal choice of weight function and Q4 is the best test statistic, if mean square

error is the optimality criterion.
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Table 5.5 Bootstrap estimates of absolute value of the biases and mean square error

of test statistics Q,,Q2, Q3 and Q4 based on 1000 bootstrap samples for mice

mortality data

Test Statistic Bias and MSF. without Bias and '
censoring MSE with censoring

Q. 0.50059 0.97267 1. I213 2.3693
Q; 0.52775 0.908 0.37406 l.2235
Q3 0.44099 0.84408 1.07 2.4634
Q4 0.15795 0.70372 0.27757 0.83607

Now, we consider a censored data from a laboratory test on pneumatic tires

given in Davis and Lawrence (1989). The test involves rotating the tires against a

steel drum until some type of failure occurred. Failures were classified into 6 modes

or categories. l-open joint on the inner linear; 2-rubber chunking on the shoulder; 3­

loose casing low on the side wall; 4—cracking of the tread rubber; 5-cracking on the

side wall; 6-any other causes. C=0 denotes that the tire did not fail under test, so that

failure time is censored. Figure 5.3 plots, the estimates of cumulative cause specific

hazard rate functions for pneumatic tire data set.

From Figure 5.3, it can be noted that the cumulative hazard rate function due

to failures from cause 4 is significantly different from the cumulative hazard rate

functions due to failures from all other causes.
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Table 5.6 provides the values of the test statistics along with their P-values

for various weight functions for the above discussed data set. The bootstrap estimates

of the absolute value of the biases and the mean square errors of the test statistics

Q,,Q3, Q3 and Q4 are computed from the real data based on 1000 bootstrap samples
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of size 172, those are given in Table 5.7.
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Table 5.6 Test statistic values using different weight functions and likelihood ratio

test statistic for the data on pneumatic tires

Test statistic
Test_ _ value P value

statistic
(censored data)

Q, 8.1618 <0.01
Q3 I 6.4635 <0.0 I
Q; 16.6499 <0.01
Q4 8.5328 <0.0l
Q‘ 12.939 <00:

Table 5.7 Bootstrap estimates of absolute value of the biases and mean square error

of test statistics Q,,Q2, Q3 and Q4 based on 1000 bootstrap samples for the data on

pneumatic tires

Test statistic Bias MSE

Q. 0.4005 0.5726
Q2 0.2897 0.5392
Q3 0.3998 0.5983
Q4 0.1121 0.3835

The bootstrap estimates of the absolute value of the biases and the mean

square errors of test statistics Q,,Q2, Q3 and Q4 computed from the real data. As

earlier, Q4 provides small bias (0.1 l2!) and MSE (0.3835). Thus we can conclude

that time of failure and causes of failure are not independent for the failure time data

on pneumatic tires.
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5.3 Tests for Categorical Lifetime Data

In this section, we consider the tests for testing independence of time to failure

and cause of failure for a grouped lifetime data. Four different situations in categorical

competing risks data; viz. (l)— unmasked uncensored data (2)— unmasked censored

data (3)- masked uncensored data and (4) -masked censored data are considered here.

5.3.1 Unmasked Data

In this section, we derive the likelihood ratio tests for independence of time to

failure and cause of failure when all causes of failure are known. First we consider the

testing problem when the data are uncensored.

5.3.1.1 Uncensored Case

Suppose that an individual is exposed to k risks of death and also that the life

span of the individual is split into In intervals, I, =[!,._,,t,), i= l,2,...,m with to :0.

Then, the probability that the individual fails in the i th interval due to j th cause is

denoted by pl} ,where

p,j=P[TeI,,C=j] (5.21)m I.- k m
with 22:12,}. =1. Now, p,_ =Zp,j and pd. = Zpi, for 1': l,2,...,m j= |,2,...,k ,i=1 j=l j=l i=l
where p,-_ is the probability of failure in the i th interval and pi. is the probability of

failure due to cause j

Assume that n individuals are being observed. Let d” be the number of

failures in the i th interval due to j th cause. Let a',._ denote the number of failures in

the i th interval and d_}. , the number of failures due to j th cause. Thenk m m k
d,._ =Zd,.,. ,dIj =24]. and n=EZdijj 1 i=1 l=l j=|
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We wish to test the hypothesis that the time to failure is independent of the cause of

failure. That is,

H0 : pa. = p,_p_j for all 1': l,2,...,m;j=l,2,...,k (5.22)
against the alternative that the equality does not hold at least for one i or j

Now the likelihood function of the observed data is given by
H k

L=IIIIPfw
i=l j=l

Then, the unrestricted maximum likelihood estimate of pH. is given by

A di' . .
p,-j =7’ t=l,2,...,m;} =l,2,...,k (5.23)

Under H0, the likelihood function is given by

n k I
LU : H pivrl, n pl‘ 1i=l ,'=1

Then, under H0 , maximum likelihood estimates of p,_ and p_}. are given by

p,._=i—- and p_,.=7" i=l,2,...,m;j=l,2,...,k (5.24)
Using (5.23) and (5.24), the likelihood ratio is given byIn It

1](i».-.)"‘ _ (iz,)"Al=
Ilipui

i=l j=l

which gives

In L‘ __ IH _ k _
—2logA,=2 X d,,.1og‘f—;’—Zd,._1og$—Zd_,Iog% (5.25)

Ii=1 j: r=i rt
Using Taylor series expansion of (5.25), we get
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In L‘  I d
—2l0gA,—2n  logl—’—log——''— ’_, F, n n n n

(1.1. 3
cl — " "

_mk~(1} ":=1 j=l did; ”
/1

Notice that  — ;3,_/34.) = 0. Then, under H0,
{=1 j=l

has asymptotically a ,1’&_,)(,,, H. Large values of

the statistic are significant.

5.3.1.2 Censored Case

Let d,(. be the number of individuals who are censored in the i th interval.

The total number of failures observed is given by

(1 =ZZd,.,. (5.26)
Then,

Let p,-C >0 be the probability that an individual is censored in the i th interval. Then

In I; m
zZpU+Zpl<' ='­

i'=li=l j=l

The likelihood is given by
In K_ ‘Iii I’.L— I‘[p,, p,., (5.27)
i=| _;=l

ll0
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The expression for the likelihood in (5.27) is not useful for defining the test statistic.

Accordingly, we consider the conditional probability

qy. = P ( an individual fails in the i th interval|

it is alive at the beginning of the i th interval) (5.28)
k

Then, q,._ = Zqij is the conditional probability of individual failing in the i th given
j=l

he was alive at the beginning of thei th interval. Let n, denote the number of

individuals at risk in the beginning of the i th interval,

L’

L = I 1‘Iq,j"~' (1 —q,._ )"‘ ""‘ (5.29)
k

Note that there are mk parameters q,j.,() S q,.J— S I ,0 S Ziqu. _<_ l , for each i
j=l

The unrestricted maximum likelihood estimates of the parameters in the censored case

are given by

. d.-,- . .q,-j =—. I= l,2,...,m _] = l,2,...,k (5.30)
"i

Under the hypothesis of the independence of failure time and cause of failure, we

have

q,j=p_jq,._ i:l,2,...,m j=l,2,...,k

The likelihood function under H0 is given by

L“ = fifi :2,-"'1 (1 “Ii. >"'
i=l j=l

Then under H0 , the maximum likelihood estimates are given by
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A  A d,'_ . _ .
p_j =— and q,._ =n—, 1=l,2,....m,}=l,2,...,k. (5.31)(1 ,­

where d is as defined in (5.26).

Thus, using (5.30) and (5.31), the likelihood ratio is

which leads to

Ill k k m
—2IogA, =2[ Zd,jlogzl,j—Z¢I_j l()g(/j—ZcI,_log(I,_+d logd ]i=1 j=l j=l i=l

III ll

:22
1:1 j=l

_ di_d.jd,j logrlu. log d (5.32)

Using Taylor series expansion of (5.32) and the fact that

we have,
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I L‘

Thus under H0 ,T2 = —2log A2 = 2
i=1 j

dndi has asymptotically a ,1/'l '- -/
(1

distribution with (k—l)(m—l) degrees of freedom. Again, large values of the test

statistic reject the null hypothesis.

5.3.2 Masked Data

In a competing risks scenario, sometimes the experimenter may not able to

obtain complete information on the cause of failure for all individuals. Identifying the

cause for all individuals might be too expensive or just may not be feasible. Several

authors have considered likelihood based inference for the analysis of such competing

risks data (see Dinse (1982), Dewanji (I992), Goetghebeur and Ryan (I995), Dewanji

and Sengupta (2003) and Lu and Tsiatis (2005)).

In the following, we derive the likelihood ratio test for testing independence

of T and C when only partial information about the cause of failure is available.

5.3.2.1 Uncensored Case

Consider a situation where 21 individuals are being observed. Let pijand do.

are defined as in the previous section. Let rim denote the number of failures in the i th

interval whose causes are unknown. Let pm be the probability that an individual fails

in the i th interval and the cause of failure is unknown.

Then

in L m
n = Z d” + 2 dm. _l .i—l 1 I'l

and
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Now the likelihood based on observed data is given by
III R In

L = H H l’«1J'/ in ”"/W.=i j=l i-—|

The unrestricted maximum likelihood estimates of pl./and pm given as

“ _ dill , d " _ (lit:pij _ -1 dn pin _II II i=l,2,....m;j=|,2,...,k (5.33)

Under H0, we have

k

pl./. =(p,._+p,.u)p_J. and pi“ =(p,._+p,”)[l—Zp.jj,i= l,2,....m;j=l.2,...,k1::

The second relationship follows from the fact that the sum of entries corresponding to

i th interval is constant.

Thus, under H0, the likelihood is given byk k In
LC : H I7.)'dj [I ‘:1 Fjj (Pi. + Pm )d'i+dm. J:,;—i i=l

Then, under H0, the maximum likelihood estimates are given as

, d_' , A a',.+d,- . _
p.j=—"i,p,._+p,.”= "H "; 1=l,2,...,m;}=l,2,...,k (5.34)

Now using (5.33) and (5.34) the likelihood ratio is given by

2 (Im

Ik]ld.j(Ij  +diII )1], film [gdiu Jr‘: J: I:i=|
III A’ I, 1.

ri"n| Id,-J.‘ ‘d,-"""
i=1 j=l

A3

There fore
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III k In
-2 log A3 = Zzzdy. logdy. +22 II," log (1,-H + 2n log n

=l.'=t 1:1 ik III In III
_    _   + din   + din )_  Z din  dinj,'=1 I'=l

I i

= i E  -Pg (di +diI iidii" .;--,I__
N

The last step follows from the fact that

II

n, ,,, (di. + din )Z dini=l i=1
Thus, under H0,

has a 12 distribution k (m—l) d.f. Large values of '1} are significant.
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5.3.2.2 Censored Case

We now consider the situation with censored observations in a masked failure

time data. The total number of individuals is given by d and let dh. be the number of

individuals who are censored in ith interval. Suppose that, d,“ is the number of

individuals who die in i th interval and whose cause of failure is unknown. Let the

probability of this event as pm . Then,

The likelihood is given by

Let q,” be the probability that an individual fails in the i th interval with unknown

cause of failure given that he is alive at the beginning of the i th interval.

The likelihood function in terms of the conditional probabilities is given by
m k

L =  qUd'j (qiu ldm  _ qi _ qiu )”—d'.-dm
i=1 j=l

where the number of individuals at risk at the beginning of i th interval is
l—l 1—l i

ni=n—Zd,— 11,‘ d,“ i=l,2,...,m.I=l I I I=l
L­

In this case, there are mk +m parameters q,j,0 S q,.]- S] ,0 S Zqlj S l. for each i and
F1

q,-“.i=l,2,...,m.

The unrestricted maximum likelihood estimates of the parameters are given by

E -Q and A -d’“ for"-l2 n ‘-12 k (535)1,:,-— "I . q,-”— "H 1- ,  1.1- ,  .
ll6
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Since the causes are missing completely at random, then under the null hypothesis of

the independence of failure time and cause of failure, we have

A­

q,j = p_jq,_ and q," =(q,_+q,") I—Zp_j i= l,2,...,m,j=l,2,...,k
j=l

The second condition follows from the fact that the sum of individuals failing in the i

th interval is constant.

Thus. the likelihood function under H0 is given by
m

0 ,\_ I. k E1/.-.. m (.1,+a,,,) H (I
L :HI7.j I l‘_ P4] H(‘Ii.+‘lii.) (l_qi._(/in) I Mj=l ,=1 i=l

Then, under H0, maximum likelihood estimates are given by

di. + din(],._+(},“ = ,i=|.2.....m.j=l.2,...,k (5.36)

Hence, using (5.35) and (5.36) the likelihood ratio is given by

k I m (‘it Him) In Ed,“
, (di.+diu) Kzdiuji=l

which gives

—2log A4 = 2% id,-J. log 11,]. + 2%‘/i," logd,“ + 2[a' + Edi‘, J logfid + fi:d,”j}=| I—I I=li=| ' *— - i=l
IIIk m In

—  logdj _  + din )]0g(di. + din ) _ 2(Zdm jl0g[Zdiujj=l i=l i'=li=l

ll7
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m d ' +diu)k

=2ZZd,j l0gd,j—log
i=I =I1' d +Zd,.,,

i=I

(di. + din)

i=I 2 di"  + E dinji=li=I

III J
+2Zd,,‘ log ('“ —log

I.)
J

The last step follows from the identity

( i. iu)Zdiud. '  + din) I" ,'=
.lZ| "I:-‘“'—.,T‘ =_I "I-~'—T'— =0­’: I d din IE  J [ J
m k

Let,

dl + diu m dind _dj(di.+din) d _(II (H i“ "I
_ ((1 +Zd,.,,j ((1 +Zd,,,JT4 — —2logA4 = I Z '=' + I '1I=l j=l dj  4-din)

Under H0, 7:, has asymptotically a ,1’: distribution with d. k(m—l). Large values

of the statistic are significant.
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5.3.3 Simulation Study

We carry out a series of simulation studies to assess the performance of the

proposed test statistics. We consider two causes of failure. We generate 1000 random

samples of size n = 50,100 and 250 from exponential distributions. To calculate the

empirical type I error, lifetimes are generated from the exponential models with

parameter values /'11 = 2,12 =8,7r, =0.2 and 7!: =O.8. We consider both I% and 5%

significance level for the tests. Censored observations are generated by a uniform

random variable over (O,a), where u is chosen in such a way that, the desired

proportion of the observations are censored. Masked observations are chosen at
random.

Empirical power of the test is calculated by generating lifetimes from the

exponential models with parameter values /11 =8,/1,3 =2,7r, =().2 and 7:: =0.8. The

generated data is grouped into intervals with non zero frequencies in each cell. Tables

5.8—5.l0 provide empirical type I errors and empirical powers of T, -7}.

Table 5.8 Empirical type I error and power (in percentage) of the test statistic T,

SIIESEIKES/fife Sample size Type I error Power50 1.2 71" =' 100 1.2 99250 0.8 10050 5.3 92C’ = 100 5.4 100
250 5.2 100

ll‘)
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Table 5.9 Empirical type I error and power (in percentage) of the test statistic T2 with

20% censored observations

Sl]ge'\]:I_'?:./215:3 Sample size Type I error Power50 l.3 58“ =' 100 1.2 89250 I . I 10050 5.2 510! =5 100 5.1 99
250 4.95 100

Table 5.10 Empirical type I error and power (in percentage) of the test statistic T3

with 2()% masked data

S1l€yef;l(Ez;/:)Ce Sample size Type l error Power50 0.6 50“ =' I00 0.3 83250 0.9 I0050 4.6 58" =5 100 4.9 95250 5.1 100

To investigate the effect of censoring and masking on the performance of the

test statistics, we carry out a series of simulation studies using exponential distribution

with the same parameters given above. Empirical power and empirical type I error of

the test statistic 7:, are computed for various amounts of censoring and masking. The

results are given in Tables 5.l l—5.l6.
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Table 5.11 Empirical type I error and power (in percentage) of the test statistic T4

with 20% censored and 20% masked data

Slli?/131?;/::)Ce Sample size Type I error Power50 0.6 520‘ =' 100 0.7 32250 0.8 9950 5.3 560‘ =5 100 5.2 94
250 4.9 100

Table 5.12 Empirical type I error and power (in percentage) of the test statistic T4

with 30% censoring and 20% masking

Sil%"]/35%‘:/g)Ce Sample size Type I error Power50 0.6 490‘ =' 100 0.7 81250 0.8 9850 4.3 5501 =5 100 4.4 89250 4.5 99
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Table 5.13 Empirical type I error and power (in percentage) of the test statistic T4

with 40% censoring and 20% masking

S'l%r\‘/'ef]“Ef,2;';:e Sample size Type I error Power50 0.5 480‘ =' 100 0.6 77250 0.7 9550 3.9 510‘ = I00 4.0 30250 4.3 97

Table 5.14 Empirical type I error and power (in percentage) of the test statisticT4

with 20% censoring and 30% masking

Siligginéi/36 Sample size Type I error Power50 0.5 480! =1 100 0.6 86250 0.6 9850 4.1 52
(I : 100 4.3 90250 4.4 99
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Table 5.15 Empirical type I error and power (in percentage) ofthe test statistic T4

with 20% censoring and 40% masking

e Sample size Type I error Power50 0.6 46“ =' 100 0.7 30250 0.7 9650 4.2 50“ :5 I00 4.3 86250 4.4 97
Table 5.16 Empirical type I error and power (in percentage) of the test statistic T4

with 30% censoring and 30% masking

Sili?/ie:lC(?7:)Ce Sample size Type I error Power50 0.5 44“ =‘ 100 0.6 75250 0.7 9550 4.0 500‘ =5 100 4.1 82250 4.2 96
From the above tables we observe that the tests based on T, and T2 attain their levels

but T3 and T4 do not attain their levels. It is seen that masking slightly affects the

levels attained for sample sizes 50 and I00. However, there is no affect of masking

when sample size is large (250). When proportion of masked data is fixed and

censoring proportion changes we observe that the levels are not attained. The

empirical type I error decreases with increase in censoring, but increases with increase

in sample size. Similar conclusions can be drawn when proportion of censored data is
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fixed and proportion of masked data changes. It can also be noted that, in all cases,

power of the test statistics increases as sample size increases.

5.3.4 Data Analysis

We now consider four different types of grouped data to test whether the time

of failure and the cause of failure are independent or not. First, we discuss the analysis

of data on failure times of radio transmitter receivers, given in Lawless (2003, p: 460).

Failures are classified to two types; those confirmed on arrival at maintenance center

(cause I) and those unconfirmed (cause II). We only consider observed failure times

by deleting last 44 observations. There are 325 observed failure times; those are given

in Table 5.l7.

Table 5.17 Data on failure times of radio transmitter receivers

Time Failures due Failures due
interval to cause l to cause I[(),50) 26 I5
[50, l()0) 29 I5[l0(),|50) 28 22[l50,200) 35 I3
[20(),250) 17 I l[25(),300) 2| 8[300,350) I l 7[350,400) l l 5[400.450) l2 3[450,500) 7 4[500,550) 6 1[550,600) 9 2[600,630) 6 1

The test statistic T, has the value 9.4707, with P—value >0.0l. Thus, we do not reject

the null hypothesis that time to failure and cause of failure are independent.

For the illustration of procedure in the censored case, we consider data from a

laboratory test on pneumatic tires (Davis and Lawrance,l989). The data is discussed
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in Section 5.2.4. There are I72 failure times. We have grouped this data into 3

intervals, 0-149, I5-249 and >250. We have combined modes 2,3 and 5,6 to get non­

zero frequencies in each cell. Finally, we have four modes of failure with 21 censored

observations and the data is given in Table 5. I 8. In Table 5.18, cause I failures denote

the failures due to failure mode I in the original data, cause 2 failures denote the

failures due to failure modes 2 and 3, cause 3 failures denote the failures by failure

mode 4 and failures due to cause 4 denote the failures by failure modes 5 and 6.

Table 5.18 Data on failure times of pneumatic tires

“:2:/Z] Cause I Cause 2 Cause 3 Cause4 Obcsfitfiggieodns[0,l50) 6 I3 6 8 2[ I 50,250) I0 I2 42 2() 2>=250 3 5 21 4 I7Total 19 30 69 32 21
The value of the test statistic is T2=l8.89. The corresponding P— value is less than

0.005 which means that the failure times and causes of failure are not independent.

For example of masked data, consider the hard drive manufacturing data of

I72 computers given in Flehinger et al. (2002). Originally there are three causes of

failure with two masked sets of failures viz. (l,2,3) and (I,3). There are 66 masked

observations. For these individuals, the exact cause of failure is not known, but we

only know that the cause of failure is anyone within the group (l,2,3) and (1,3). We

grouped the data into 4 intervals. The grouped data is presented in Table 5. I9.

Table 5.19 Data on failure times of hard drives

. Time Cause I Cause 2 Cause 3 Maskedinterval observations[O,1.0) I4 8 2 9[I.0,2.0) 8 2 12 I3[2.0,3.0) 5 4 I7 20>=3.0 8 5 21 24Total 35 I9 52 66
I25



Tests for independence of time to failure and cause of failure

We get the value of 73 as 27.343, with P— value less than 0.005. Thus we reject the

null hypothesis that time to failure and cause of failure are independent.

For the illustration of the procedure in censored and masked set up, we

consider the same data given in Table 5.18 with one observation in every cell (except

censored cells) is masked. The modified data set is given in Table 5.20.

Table 5.20 Data on failure times of pneumatic tires with masking

Time Censored Masked
interval Cause 1 Cause 2 Cause 3 Cause4 obser- obser­

vations vations[0,l50) 5 12 5 7 2 4[ 150,250) 9 I l 4] 19 2 4>=25O 2 4 20 3 I7 4Total 16 27 66 29 2] 12
The value of the test statistic T4 is 22.79. The corresponding P—value is less than

0.005 which means that the time to failure and causes of failure are not independent.

5.4 Conclusion

In this chapter, we developed nonparametric test procedures for testing

independence of time to failure and cause of failure for both continuous and

categorical competing risks data. For continuous lifetime data, a class of tests using

martingale approach and a test statistic using likelihood ratio method are derived.

Asymptotic properties of the test statistics were also studied. For categorical lifetime

data, we considered the situations when the lifetimes are censored within intervals and

some of the causes of failures are unknown. Simulation studies were conducted to

assess the power of the proposed test statistics. We illustrated our procedures with real

life data sets.



Chapter Six

A Quantile Based Test for Comparing Cumulative Incidence

Functions

6.1 Introduction

Quantile function. as an alternative to the distribution function can be

employed for modeling and analysis of statistical data. The role of quantile function

and other concepts derived from it is well established in exploratory data analysis and

in different areas of applied statistics (see Parzen, 1979 and Gilchrist, 2000). In

survival studies, with heavy tailed lifetime models, a single long term survivor can

have a marked effect on reliability measures based on a distribution function. It is

therefore more convenient to work with quantile functions that are less influenced by

extreme observations. One can refer to Reid (1981), Slud et al. (1984), Su and Wei

(1993), Nair et al. (2008), Nair and Sankaran (2009) and Sankaran and Nair (2009) for

modeling and analysis of lifetime data using the quantile based reliability measures.

Recently, Peng and Fine (2007) and Jeong and Fine (2()09) have studied

nonparametric quantile inference for competing risks models. In this chapter, we

consider the problem of testing equality of cumulative incidence functions using

quantile functions.

The chapter is organized as follows. In Section 6.2, we present the basic

concepts of competing risks models in terms of quantile functions. A test statistic

based on quantile functions is proposed in Section 6.3. The asymptotic distribution of

The results of this chapter have been accepted for publication as entitled ‘A Quantile

Based Test for Comparing Cumulative Incidence Functions‘ in Statistics and

Probability Letters (see Sankaran, Nair and Sreedevi. 2010).
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the test statistic is shown to be chi-square in Section 6.4. A simulation study is carried

out in Section 6.5, to assess the performance of the test statistic. Section 6.6 illustrates

the practical utility of the proposed procedure using two real life data sets. Finally, in

Section 6.7, we provide a brief conclusion of the study.

6.2 Quantile Functions

Let T be a random variable representing the lifetime of a subject (or an

individual) having an absolutely continuous distribution function F(t) and

Ce {l,2,...,k} be the possible causes of failure. Let S(t) be the survivor function of

T The cumulative incidence function F]. (I) is defined as

F.(t)=P(Tst,C=j) j=l,2,..,k (6.1)1

Note that, the probability of failure F (I) is

F(t)=iFj(t). (6.2)
F1

Recently, attention has been paid to the problem of studying possible

differences in mortality from different causes. This problem can be studied by

comparing cumulative incidence functions. Accordingly, we consider the problem of

testing the null hypothesis

HU:F,(t)=F2(t)=....=Fk (t)forallt>0. (6.3)
For various approaches for testing (63), one can refer to Aras and Deshpande

(1992), Aly et al. (1994), Carriere and Kochar (2000), Kochar et al. (2002) and El

Barmi et al. (2008) and references there in. In the present work, we study the problem

of testing (6.3) using quantile functions.

Define the quantile functions

Qj(u)=inf{!lFj(t)Zul _j=l,2....k (6.4)
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Then (6.4) is the smallest time for which the probability of failure due to cause j

having occurred exceeds u, in the presence of other risks, which prevent the

occurrence ofcause j

Now, the hypothesis (6.3) can be represented as

H0:Q,(u)=Q2(u)=....=Qk(u) for all O<u<l (6.5)
From (6.2) and (6.3), we obtain

HOIF-(t)=—F(t) j=l,2,..,k,t>(). (6.6)

Now using (6.6), the hypothesis (6.5) can be written as

H(,:Qj(%)=Q (u) j=l,2,..,k,()<u<l (6.7)

where Q (u)=inf{!iF (t)Zu}

6. 3 A Test Statistic

Let Tbe the lifetime random variable and Ce{l,2,...,k} be the possible

causes of failure as defined in Section 6.2. Suppose that the lifetime variable T is

randomly right censored by the censoring variable Z Assume that T and Zare

independent. Let G be the distribution function of Z Under right censoring, we

observe n independent and identically distributed samples(X,,C,),i=l,2,..,n of

(X,C) whereX=min(T,Z), and C is observed only whenX=T.With usual

counting process notation, let NU (I): l(X. .<_t,C. = j). Denote Nj(t)=2N,.j.(t),
i=|

Y, (t) = 1(X, Zr) andY(t) = $2)’,  A nonparametric estimator of F]. (t) is obtained
i=l

38
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0:1) (x)

Y(x)1(Y(x)>0)dNj(x) j=l,2,..,k (6.8)F)" (I) =I
0

where 3(1) is the Kaplan-Meier estimate of S

Let }’=mJin{P(C=j)AFj(z'j)}, where 1:]. =sup{t|Fj(t)<l} and a/xb is the1

minimum of a and b For fixedu,0<u< }/ a nonparametric estimate of Qj(u) is

given by

Q‘j(u)=1nr{zl ‘j(:)2u} j=l,2,..,k. (6.9)
We can obtain the estimate of Q(u) as

Q(u)=1nr{1I 15‘ (:)2u} (6.l())
A

where PA‘ (I) = l —S (1) . Now we consider the quantity

zj.(u)=t/Z[Qj(5j—Q (10) j=l,2,..,k (6.11)
Then a test statistic for testing (6.5) is given by

,1’3(u)=Z'(u)}:(u)_Z(u) (6.12)
where Z(u)=(Z,(u),...,Zk(u)) and ):(u)_ is the generalized inverse of i(u)

with  as a consistent estimator of variance-covariance matrix £(u) of Z(u).

We show, in Section 6.4, that under H), , for fixed 14, ,1’: (u) follows 12 distribution

with k—l degrees of freedom. In practice, we reject H0 if ,1’: >,(3a.,‘._,, where

1'2 = sup ,1’2(u) and ,1’2a_k_, is the ordinate value of chi-square distribution with
()<u<y

k -1 degrees of freedom at a’ level.

l3()
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Note that i(u) has maximum rank/(-1. If we delete, for instance, the last

row and last column ofi(u) , to give fl0(u), say and let Z0(u) = (Z, (u),...,Zk_, (1.1))

then (6. l 2) may be obtained as
A

12 (u)=Zt}(u)£6' (u)Zo(u)

where i(',' (u) is the ordinary inverse of }:O(u).

As shown in Section 6.4, the expression for Z is complex and it involves the

cause specific hazard rate functions. The estimation of 21, thus generally requires

smoothing. To obtain the approximate value of fZ(u). we can employ the method

given in Peng and Fine (2007). Let y(t)=P(X >r). Let 77"’ be the solution of

F,(7]‘”)=min(max{0,—n"Z@,(Q,(u))4f,},l), where 17., is obtained as 1,, with
i=1

S(u) _ 'J-Y,(u)S(u)z,,(r) = I—V(7;dN,,(u)0 - 0 ’ " IN. v ‘Y. ‘/1 »
/1,(u)du+ J-{—S(u)}{J.(——'&Z— J-Afldv

n

}du
0 )‘(V) 0 _\'(\')

and S(t),_v(t)and /1,(t)dt are replaced by corresponding empirical quantities and

§,'sare independent standard nonnal variables; i=l,2...n and l=l,2...k The

estimate of the variance of Q,(1.1),l=1,2...k;the diagonal elements of ):(u), are

obtained with the empirical variance of 7]‘/’calculated by repeatedly generating

({,‘,,§2,...§“) while fixing the data at their observed points. after omitting infinite

values I = l,2...k. The estimate of the variance of the off diagonal elements of :(u) is

obtained with the empirical covariance between 17"’and 77"") calculated by

generating (§,,if2,...f,,)again while fixing the data at their observed
values,I,m = l,2...k and l¢ m.
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6.4 Asymptotic Distribution

We, now find the asymptotic distribution of the proposed test statistic.

Theorem 6.1

Assume that, F}. (I) is continuous, twice differentiable and the density f]. (I)

is uniformly bounded below by a positive constant for t€[p,q],0Sp<q<}’*

j=l,2,....k, where 7*=minrj, where 2'j=sup{tlFj(t)<l} Then for fixed1 I
u ,0 < u < y,’-(2 (u) follows chi-square distribution with k -1 degrees of freedom.

Proof

Consider

which can be written as

2,<u>=fi[c2,[g]—Q,(g]]+J;[Q,[g]—Q <u>j+JZ(Q <u>—<2 <u>)

j=l,2,...,k (6.13)

Under H0 , since Q].  = Q (14) for all u (0 < u < y), (6.13) becomes

kZj(u)=\/;(Qj(fl)—Qj(%)j+x/h(Q (u)—Q (u)) j=1,2,...,k (6.14)

From Andersen et al. (1993) and Peng and Fine (2007), we can obtain that for fixed

14, (0<u<}/),  (l7:—)—Qj  is asymptotically normal with mean 0 and

Va1'lElI1CB 0'- U ,W CFC‘ f() h
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(l—(u/k))2 Q"“‘I"" dFj(x) j=1,2,...k (6.15)

Similarly, we can prove that for O<u<}/,\/n(QA (u)—Q (u)) is asymptotically

normal with mean 0 and variance 0'2 (u),where

2

flu): (l—u) 9"’) arm
-/.*2(Q(")) 0 (l_F("'))

where f*(t) is the density corresponding to F(t). Thus, for fixed u, Zj(u)

(6.16)

asymptotically normal with mean 0 and variance 0'2"’ (u), where

W to =03 <u>+a2 <u>—2E[Q‘, (u>—Q, <u>][Q“ <u>—Q* <~>]

j = l,2,...,k (6.17)

This implies that, for fixed 14 ,0< u < }/,Z(u) = (Z, (u),...,ZA, (11)) is asymptotically a

k — variate normal with mean zero vector and variance covariance matrix ,Z(u) Thus

the quadratic form ,1’: (u) follows ,1’: distribution with k -1 degrees of freedom.

6.5 Simulation Study

We carry out a simulation study to assess the perfomiance of the test statistic.

We consider two causes of failure. The variables (X,Y) are generated based on

Block and Basu’s (1974) absolutely continuous bivariate exponential distribution with

density

exp(_AxI _(’12 +’1U)x2) -"1 < ‘Y2’

%”+ij__i)exp(—2:x2 -(A wx.) xx

f(xnvx2)=
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where  are the parameters and 1:1,, +/L +xL_. Then the failure time is

I

A + /L.

proportional. /l1 =/l._, is equivalent to Q,(u)=Q2(u) for all u When/l1 at/L_, then

T = min(X,,X3) and cause specific hazard rate functions /1, (I) = ;j=l,2 are

Q,(u)¢ Q3(u). In particular, /11 </l._, is equivalent to Q,(u) > Q3(u) for allu .We fix

/1, =1. We set /1,, =0 and l and considered different values for  Now, /in =()

controls the degree of dependence between X I and X1. We considered uncensored,

mildly censored (20% censoring) and heavily censored (40% censoring) situations. In

the censored situations, observations are generated from a uniform random variable

over(0,a), where a is chosen in such a way that 20% or 40% of the observations are

censored. We generate random sample of size n = 50,l()0 and 250. We use

asymptotic critical values at 5% level. Empirical type 1 errors and empirical powers of

the test are calculated by generating 1000 repeated samples. For each sample, l()()0

bootstrap samples are selected to compute the estimate of the variance-covariance

matrix f‘.(u).

Table 6.1 gives the empirical type I errors and empirical powers (both in

percent) of the quantile based ,1’:-test statistic. Table 6.] show that, the proposed

statistic has empirical type I error values close to 0.05 when the null hypothesis is

true. Note that, empirical type 1 error doesn’t show much effect on censoring

percentage, when the sample size is large. By varying the values of parameter/la , we

estimate the empirical power of the test statistic. From Table 6.1, it is clear that,

increase in censoring percentage doesn't have much effect on the power of the

quantile based test statistic when sample size is large. The power of the test increases,

as sample size increases. When the degree of departure from null hypothesis

increases, empirical power of the test increases. The proposed method can be

compared with the simulation studies conducted by Aly et al. (1994, p: 997) for

/1, S  When sample size is small the performance of our test is much better than
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that of the test by Aly et al. (1994). For large samples, our test is equally powerful

with the test by Aly et al. (1994).

Table 6.1 Empirical type I errors and powers (in percentage) of the proposed test

statistic at an asymptotic level of 5%.

n=5() n=l()0 n=25()
/L.

10:0 A02] 10:0 10:1 10:0 10:1
No Censoring

0.5 90.8 91.2 94.3 94.4 99.7 99.71.0 5.2 4.8 4.9 5.1 4.9 4.9
1.5 80.9 76.5 84.3 83.2 99.7 98.4
2.0 94.1 94.7 96.3 96.1 99.8 99.8
2.5 96.5 96.4 99.3 99.5 10() 100

Mild (20%) Censaring

0.5 86.5 87.1 90.4 9().8 98.6 98.81.0 5.4 4.7 4.7 4.8 4.8 4.8
1.5 78.7 75.3 82.8 82.2 98.9 98.2
2.0 86.8 84.1 88.0 87.8 99.9 99.9
2.5 94.3 93.2 95.4 93.2 100 1()()

Heavy (40%) Censoring

0.5 80.2 81.1 84.5 86.5 98.7 98.71.0 3.8 3.9 4.0 4.1 4.5 4.6
1.5 76.5 73.3 81.2 81.() 97.6 95.4
2.() 83.2 79.1 84.4 85.9 99.3 99.6
2.5 92.1 93.1 93.6 94.2 10() l()0

6.6 Data Analysis

We illustrate the utility of the method with two real life data sets. First, we

consider the data from a laboratory experiment on 181 mice discussed by Hoe] (1972).

There are three causes of death viz. thymic lymphoma, reticulum cell sarcoma and
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other causes. All the mice are died at the end of study, so that there is no censoring.

The data were studied by different authors including Aly et al. (1994), Lam (1998),

Kochar et al. (2002), Dewan et al. (2004) and Sankaran et al. (2009). We consider two

situations with the above data set. First, the data is trated as a three risks problem. We

employ the bootstrap technique to estimate)Z(u) . The test statistic value is obtained as

Q: 296.95 with P-value <0.()000l, which indicates that the cumulative incidence

functions due to failures from the three causes are significantly different. It can be

noted that, Lam (1998) also has arrived the same conclusion using a test procedure

based on cause specific hazard rate functions. Figure 6.1 gives the plot of Q]. (u)

against u for three different causes. In Figure 6.1, the solid line represents the sub

quantile function due to failures from cause 1, the dotted line denotes the sub quantile

function due to failures from cause 2 and the dashed line represents the same due to

failures from cause 3.

1200 ­

1000 ­

B00 ­

600 ­

400 ­

200 ­
u Vs O1(u),Q2(u).Q3(u)

0.0 0.1 0.2 0.3 0.4 0.5

Figure 6.1 Plot of  (u) ; j = 1,2,3 against it for mice mortality data set

Figure 6.1 shows that, the sub quantile functions due to different causes of failure are

different each other. Q, (11) yields a smaller value, comparing to Q2 (u) and Q, (n),
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starting from u=0.04 to u=0.28 approximately. However, Q2(u) is significantly

greater than Q, (u)and Q3 (u) for almost all points even though the two sub quantiles

coincide at u = 0.3.

Now we consider the same data as a two risks problem to compare with the

Aly et al. (1994) procedure. All the lifetimes with cause of failure ‘other causes’ are

considered to be censored. The test statistic value is obtained as Q = 269.52 with P

value <0.0000l, which indicates that the cumulative incidence functions due to the

two causes, thyinic lymphoma and reticulum cell sarcoma are significantly different.

Using the test procedure by Aly et al. (1994), we obtained D’ = 8.97, which also infer

the same conclusion. Figure 6.2 gives the plot of Q]. (11) against it for two different

causes. In Figure 6.2, the solid line represents the sub quantile function due to failures

from cause 1, and the dotted line denotes the sub quantile function due to failures

from cause 2.

1200 ­

1000 ­

300 <

600 4

u Vs Q1(u), O2(u)

400 *

200 ‘

0.0 0.1 0.2 0.3 0.4 0.5 0.6
U

Figure 6.2 Plot of Q2, (u) ; j = 1,2 against 14 for mice mortality data set

Figure 6.2 shows that, the sub quantile functions due to different causes of failure are
A

different each other. Q, (u) yields a smaller value. comparing to Q3 (u) for most
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points. Even if at u =0.4 they coincide. Q, (Li) and Q2 (14) are significantly different

for all other points.

We also consider a competing risks data from a laboratory experiment on

pneumatic tires given in Davis and Lawrence (1989) to illustrate the utility of the

method. The failures were classified into six modes. 1- open joint on the inner liner, 2­

rubber chunking on the shoulder, 3-loose casing low on the side wall, 4-cracking on

the tread rubber, 5-cracking on the side wall, 6-all other causes. In the present study,

we first consider the data as a three risks problem. We merge the modes of failure 1,2

and 3 into a single failure mode and consider as cause 1 failures, while keeping the

mode of failure 4 as such and consider as cause 2 failures. Further, modes of failure 5

and 6 are merged into a single failure mode and denote as cause 3 failures. There are

172 failure times including 22 censoring times. The test statistic value Q = 37.8244

with P-value <0.00l, indicates that the cumulative incidence functions are

significantly different for all the causes. The plots of Qj(Li),j=1,2 are given in

Figure 6.3. In Figure 6.3, the solid line represents the sub quantile function due to

failures from cause 1, the dotted line denotes the sub quantile function due to failures

from cause 2 and the dashed line represents the same due to failures from cause 3.

400 ­

350 «

300 ­

250 J

2oo «

150 ­

100 ­
u Vs Q1(u).O2(u),Q3(u)

SOT I0 . . . 4
A

Figure 6.3 Plot of Q’. (Li) ; j = l,2,3 against it for pneumatic tire data set.
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Figure 6.3 shows that, the sub quantile functions due to the different causes of failure

are different each other. Q, (at) is smaller than Q (u) for the values of u value less

than 0.22 and grater for u value above 0.22. Initially Q, (it) has a very low value.

but starting dominates Q, (u)immediately and Q2 (M) near to the u value 0.15.

Now, we Consider the above data set as a two risks problem to compare with

the test statistic by Aly et al. (1994). The mode of failure 4, cracking on the tread

rubber seems to be the major cause of failure. So we merge all other modes of failure

into a single mode of failure and denote as cause 1 failures, while keeping the failures

due to mode 4 as such and consider as cause 2 failures. For the two risks problem, we

compare our statistic with the one proposed by Aly et al. (1994). The test statistic Q =

212.62 with P-value <0.0000l, which indicates that the cumulative incidence

functions due to the two Causes are significantly different. Using the test procedure by

Aly et al. (1994), we obtain D‘: 8.432, where D =\/I—1D3,' and D3,, is the statistic

proposed by Aly et al. (l994). which also infer the same conclusion. Figure 6.4 gives

the plot of Q}. (Lt) against it for two different causes. In Figure 6.4. the solid line

represents the sub quantile function due to failure from cause I, and the dotted line

denotes the sub quantile function due to failures from cause 2.

400 7

350 4

aoo ­

250 ­

200 ­

150 ‘
Q1(U) VS Q2(U)

100

50­0 t t - . r . 10.0 0.1 0.2 0.3 0.4 0.5 0.6
U

Figure 6.4 Plot of Qj(u);j= l,2 against ll for pneumatic tire data set.
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Figure 6.4 shows that Q.(u) and Q2(u) are significantly different for all points.

Q2(u) obviously yields a higher value comparing to Q,(u) for all u values.

Probability of failure due to cause 2 is clearly less than probability of failure due to

cause 1 for all time points.

6.7 Conclusion

In this chapter, we developed a quantile based test procedure for testing the

equality of cumulative incidence functions. The performance of the procedure was

studied using simulated examples. We demonstrated the practical utility of the method

using real life data sets. There are several advantages for the proposed procedure over

the existing techniques using distribution functions. Firstly, there exist simple quantile

functions as lifetime models that are highly flexible than distribution functions.

Further, quantile functions are very good approximations to lifetime distributions, so

that it can work well in many practical situations. Secondly, the proposed procedure

would be more suitable to work with data, for which distribution functions do not

have simple closed forms. Moreover, simulation studies show that the quantile based

test statistic seems to be robust in censored situations, than the existing ones.

In the present work, the Kaplan-Meier (1958) estimator of the survivor

function is employed to find out quantile estimators. When Q is a continuous

function, it may be more suitable to use a smoothed estimator rather than the step

function 13"", since smoothing reduces the random variation in the data and allows a

better display of interesting features of the lifetime distribution. Smoothed estimator

of the quantile function using kernel density function given in Padgett (1986) can be

employed in such contexts.
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Chapter Seven

Conclusion

7.1 Introduction

Survival data is a term used to refer the data measuring time to occurrence of

certain event of interest. Survival data frequently come from medical studies. but may

come from other applied fields like demography. engineering, economics and social

sciences. In many practical situations, individuals under study are exposed to the

failure due to more than one cause or factor and the eventual failure of an individual

can be attributed to exactly one of the causes or factors. Data arise from such

situations are referred to as competing risks data and accordingly the models

employed for the analysis of such data are referred to as competing risks models.

The literature on competing risks models reveal that there are several

occasions in survival studies where the existing models and methodologies are

inadequate for the analysis of the lifetime data. Identifiabilty problem and various

types of censoring induce more complications in the analysis of competing risks data.

This lead us to a consider some of important research questions on inference

procedures in the analysis of competing risks data.

Classical survival analysis does not provide a tool to incorporate the prior

information on the failure mechanism that generates the data during the modeling and

analysis of data. In Chapter 2, we proposed a semiparametric Bayesian approach for

modeling competing risks data by considering the cumulative baseline cause specific

hazard rate functions as nuisance parameters. We carried out simulation studies to

assess the asymptotic behaviour of the proposed method. The proposed method was

illustrated using a real life example.
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In many practical situations, lifetimes are observed to be doubly censored.

The complex nature of the doubly censored competing risks data, does not allow us to

use the well-known partial likelihood approach given in Fine and Gray (1999) for

modeling data. In Chapter 3, we proposed a semiparametric transformation model for

the cause specific subdistribution functions, conditional on the covariates for the

modeling and analysis of doubly censored competing risks data. The parameters of the

model were estimated using estimating equation approach. Asymptotic properties of

the estimators were discussed. A simulation study was Conducted to assess the finite

sample behaviour of the estimators. The utility of the proposed method was well

demonstrated using real a data set.

Modeling and analysis of lifetime data using neural network models is a topic

of recent interest. Neural network models are less explored for the analysis of

competing risks data when the lifetime variable is continuous. In Chapter 4, we

proposed neural network models for various prediction and classification problems in

the competing risks set up. The proposed neural network models were applied to real

life data sets.

Testing independence of time to failure and cause of failure is an important

research problem in the analysis of competing risks data. Many authors proposed tests

based on U -statistics to address this problem. In Chapter 5, we introduced a class of

tests using martingale approach. We also developed a test statistic using likelihood

ratio test procedure. When lifetime data are categorical, we provided likelihood ratio

test statistic that can be employed in different practical situations. Asymptotic

distributions of the test statistics were proved to be chi-square. A series of simulation

studies was carried out with continuous as well as categorical lifetime data to assess

the power of the proposed test statistics. The practical utility of the proposed test

statistics was demonstrated using different real life data sets.
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In survival studies, with heavy tailed lifetime models, a single long term

survivor can have a noticeable effect on reliability measures based on a distribution

function. It is therefore more convenient to work with quantile functions that are less

influenced by extreme observations. Accordingly, in Chapter 6, we developed a

quantile based procedure to test the equality of cumulative incidence functions. The

asymptotic distribution of the test statistic was shown to be chi-square. We carried out

a simulation study to understand the finite sample behaviour of the proposed test

statistic. Two real life data sets were used to illustrate the practical implementation of

the proposed procedure.

7.2 Future Works

In Chapter 2, we proposed a semiparametric Bayesian approach for the

modeling and analysis of competing risks data by assuming a prior distribution for

each cumulative baseline cause specific hazard rate functions. The analysis was

carried out by assuming independent increment process prior for cumulative baseline

cause specific hazard rate functions in each interval. However, this assumption is

unrealistic in many situations. Modeling the dependence among cause specific hazard

rate functions in each interval using Markov Processes is an interesting research

problem which is to be addressed. We can also attempt a true Bayesian approach to

model competing risks data by assuming suitable prior distribution for cause specific

subdistribution functions.

In survival studies, the individuals may observe to be grouped into a cluster.

The heterogeneity among variables may be due to certain unobserved common risk

factors present in the data. To model such unobserved factors, frailty models are

usually employed in survival analysis. Frailty models are basically random effect

models for survival data, where one of the random effects is specified by means of the

hazard rate function. The semiparametric Bayesian analysis of frailty models for
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competing risks data is an area yet to be explored. The extension of the
semiparametric transformation model to the frailty set up for doubly censored

competing risks data is another topic of research interest.

There are situations in survival studies where the exact lifetime of an event is

not known, but it known to lie in some interval. Various semiparametric models have

been developed for the analysis of such interval censored data. The analysis of

interval censored competing risks data is complicated and the research work in this

direction will be worth exploring. Apart from censoring, truncation is very common in

life testing experiments. As the literature on the analysis of truncated data in

competing risks set up is limited, the extension of our models to the truncated set up is

a topic of future work.

Occasionally in competing risks data, the cause of failure for an individual has

not been exactly observed, but has only been narrowed down to a subset of all

potential risks. Situation with incomplete information about the cause of failure is

referred to as masking. The semiparametric regression model in Chapters 3 can be

studied to analyze masked competing risks data with proper modification. Neural

network models proposed in Chapter 4 can also be modified to deal with masked data.

With masked causes of failure. the testing of independence of time to failure and

cause of failure for continuous lifetime data can be revisited. The problem of testing

equality of cumulative incidence functions or cause specific hazard rate functions,

when the data are masked is also worth exploring.

In biostatistical applications, there are situations where one can only observe

the lifetime T belongs to certain interval (O,C]or (C,oo) where C is known as the

status time. Such data are called as current status data. The analysis of current status

data with multiple causes of failure in presence of covariates is less explored in
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literature. The models developed in Chapters 2, 3 and 4 can be extended to this set up,

which is not straight forward.

Multivariate survival data often arise when each study subject experiences

several events or when we study repeated occurrence of the same event. Lifetimes of

left and right front brake pads in a car and times until a particular condition appears in

the left and right eyes of a person are examples of multivariate survival data. The

literature on the analysis of multivariate survival data with multiple causes of failure

is limited. The semiparametric Bayesian analysis of multivariate competing risks data

is not yet discussed in literature. Regression model described in Chapter 3 is worth

studying in multivariate set up. The neural network models proposed in Chapter 4 can

be attempted to handle multivariate competing risks data with proper modifications.

Testing the independence of time to failure and cause of failure for multivariate

competing risks data is a topic of research that remains to be explored. Testing the

equality of cause specific hazard rate functions or cause specific subdistribution

functions for multivariate competing risks data is another research problem that is yet

to be extensively studied.
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