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Preface 

Thunderstorm is one of the most spectacular weather phenomena 

in the atmosphere. Many parts over the Indian region experience 

thunderstorms at higher frequency during pre-monsoon months (March-

May), when the atmosphere is highly unstable because of high 

temperatures prevailing at lower levels. Most dominant feature of the 

weather during the pre-monsoon season over the eastern Indo-Gangetic 

plain and northeast India is the outburst of severe local convective 

storms, commonly known as ‘Nor’wester’ or ‘Kalbaishakhi’. The severe 

thunderstorms associated with thunder, squall line, lightning and hail 

cause extensive losses in agriculture, damage to structure and also loss of 

life. The casualty due to lightning associated with thunderstorms in this 

region is the highest in the world. The highest numbers of aviation 

hazards are reported during occurrence of these thunderstorms. In India, 

72% of tornadoes are associated with this thunderstorm. 

The severe thunderstorms have significant socio-economic impact 

over eastern and northeastern parts of India. An accurate location 

specific and timely prediction is required to avoid loss of lives and 

property due to strong winds and heavy precipitation associated with 



these storms. Forecasting thunderstorms is one of the most difficult 

tasks, due to their rather small spatial and temporal extension and the 

inherent non-linearity of their dynamics and physics. The improvement in 

prediction of these important weather phenomena is highly handicapped 

due to lack of observations and insufficient understanding. Realizing the 

importance of improved understanding and prediction of this weather 

event, an attempt is made to study severe thunderstorms during the pre-

monsoon season of 2006, 2007 and 2009. The improvement in the 

prediction of this severe weather phenomenon has been done in this 

work using empirical and dynamical approaches. The most widely used 

empirical approach for weather prediction is artificial neural network 

(ANN). ANN based approach can be used to model complex 

relationships between inputs and outputs or to find patterns in data. The 

recent advances in neural network methodology for modeling nonlinear, 

dynamical phenomena along with the impressive successes in a wide 

range of applications, motivated to investigate the application of ANNs 

for the prediction of thunderstorms.  

The second approach is based upon equations and forward 

simulations of the atmosphere, and is often referred to as computer 

modeling (Numerical Weather Prediction (NWP)). These models are 

computer programs that take the analysis as the starting point and evolve 



the state of the atmosphere forward in time using the understanding of 

physics and fluid dynamics. The complicated equations which govern 

how the state of a fluid changes with time require high performance 

computers to solve them. The output from the model provides the basis 

of the thunderstorm forecast. Accurate prediction requires knowledge 

about “where” and “when” storms will develop and how they will evolve. 

NWP models can allow forecasters to anticipate not only, whether or not 

thunderstorms will develop in an environment, but also such things as 

thunderstorm movement, type, severity and longevity. In India, studies 

related to modeling of clouds are very scarce, particularly in intense 

thunderstorm events. Understanding the importance of these weather 

events and their socio-economic impact, this research has been initiated 

for analyzing and predicting severe thunderstorm events over east Indian 

region with most commonly known NWP models namely Non-

hydrostatic Mesoscale Model (NMM) and Advanced Research WRF 

(ARW) model core of Weather Research and Forecasting (WRF) system.  

The thesis, presented in seven chapters deals with the work carried 

out in designing and developing computational models for the prediction 

of severe thunderstorms over east Indian region. 

Chapter 1 introduces the severity of thunderstorms over Indian 

region and its social impact and prediction challenges. 



Chapter 2 provides a brief description about computational 

models used for the prediction of thunderstorms over Indian region. It 

gives the introduction to ANN and NWP modeling. In this chapter, the 

definition of neural network, a brief history, the architecture of neural 

networks, the various activation functions used, the different learning 

processes, and the various learning algorithms are dealt with. This chapter 

also gives a brief introduction of numerical modeling and its governing 

equations, grid structure, boundary conditions and parameterization. The 

details of WRF modeling system and its dynamic cores like ARW and 

NMM models are also introduced. 

Chapter 3 describes the design and development of neural 

network model for the prediction of thunderstorms over Kolkata. In this 

work, the capabilities of six different learning algorithms in predicting 

thunderstorms were studied and their performances were compared. The 

results indicate that multilayer perceptron network (MLPN) model with 

Levenberg-Marquardt (LM) algorithm well predicted thunderstorm 

affected surface parameters as compared to other learning algorithms. 

This model was tried to find its usefulness for the advanced prediction of 

thunderstorms with 1, 3, 6, 12 and 24 h gaps. The results show that 1 h, 

and 3 h MLPN models are able to predict hourly temperature and relative 

humidity adequately with sudden fall and rise. 



Chapter 4 discusses the prediction of thunderstorms using the 

NMM model. In this study, an attempt has been made to understand the 

relative role of initial conditions, convective parameterization schemes 

and microphysics schemes for thunderstorm predictability. Three sets of 

initial conditions are experimented using NMM model for a 

thunderstorm event on 20 May 2006. The trends shown by various 

meteorological fields of 24 h simulation were in good agreement with 

each other and very much consistent with dynamic and thermodynamic 

properties of the atmosphere for the occurrence of a severe 

thunderstorm. The sensitivity experiments are conducted with NMM 

model by changing the convective parameterization schemes for two 

severe thunderstorm cases (20 May 2006 and 21 May 2007) at Kolkata 

and validated the model results with observation. This study shows that 

the prediction of thunderstorm affected parameters is sensitive to 

convective schemes. The Grell and Devenyi scheme is well predicted the 

thunderstorm activities, in terms of time, intensity and the region of 

occurrence of the events, as compared to other convective schemes and 

also explicit scheme. Another sensitivity experiments have been 

conducted with three microphysics schemes for a severe thunderstorm 

event on 15 May 2009. The results show that the NMM model with 

Ferrier microphysics scheme appears to reproduce the cloud and 



precipitation processes more realistically than other schemes for the 

prediction of this severe thunderstorm event. 

Chapter 5 gives a comparative study of two numerical models 

namely NMM and ARW in the prediction of severe thunderstorms. In 

this study, an attempt has been made to compare the predicted results of 

severe thunderstorm events during May 2009 and validated the model 

results with the observations. Both models are able to broadly reproduce 

several features of the thunderstorm events, such as spatial pattern and 

temporal variability over east region of India. Comparison of model 

simulated thunderstorm affected parameters with that of the observed 

show that NMM has performed better than ARW in capturing the sharp 

rise in humidity and drop in temperature. The genesis, intensification and 

propagation of thunderstorms are well captured by NMM model than 

ARW. 

Chapter 6 gives the performance evaluation of computational 

models for the prediction of thunderstorms over Kolkata. For this, the 

performance of thunderstorm affected parameters for the prediction of 

thunderstorm events using ANN and NWP models (NMM and ARW) 

were considered. The 24 h forecast data of surface temperature and 

relative humidity at Kolkata during severe thunderstorm days of May 

2009 were used to test these models. Performance and reliabilities of the 



models were then evaluated by a number of statistical measures. 

Comparison of observed and simulated results from 3 models indicates 

the superiority of NMM model in simulating thunderstorm over Kolkata 

on these severe thunderstorm cases. The results suggest that NMM 

model holds promise for prediction of surface weather parameters with 

reasonable accuracy in severe thunderstorm cases over east Indian region.  

Chapter 7 gives a brief summary and conclusions of the work and 

the future directions of ANN and NWP model studies. 
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A thunderstorm is a high frequency cumulus or cloud scale 

weather phenomenon characterized by the presence of lightning and its 

effect: thunder, which develops due to intense convection. It is usually 

accompanied by heavy rain and sometimes snow, hail, or no precipitation 

at all. Thunderstorms may line up in a series, and strong or severe 

thunderstorms may rotate which lead to catastrophe over the particular 

location. It is the towering cumulus or the cumulonimbus clouds of the 

convective origin and high vertical extent that are capable of producing 

lightning and thunder. The surface parameters play a significant role in 

the genesis whereas the strength of the upper air pull is required to assess 

the growth of the thunderstorms. Usually, thunderstorms have the spatial 

extent of a few kilometers and life span less than an hour. However multi-

cell thunderstorms developed due to organized intense convection may 

have a life span of several hours and may travel over a few hundreds of 
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kilometers. Thunderstorms are one or more convective cells in which 

electrical discharges are seen as lightning or heard as thunder. 

Each year, many people are killed or seriously injured by severe 

thunderstorms despite the advance warning. While severe thunderstorms are 

most common in the summer, they can occur just about any time of year. 

Many thunderstorms are typically short-lived (up to an hour) and limited in 

size (up to 10 km in diameter) but can traverse large distances during that 

time and are capable of inflicting significant damage (Kessler 1983). They 

can produce some hazardous weather conditions. Through lightning strikes, 

floods and tornadoes, thunderstorms have created massive property damage 

and death. Thunderstorms have been known to occur in almost every part of 

the world, although they are rare in the Polar Regions. Nearly 2000 

thunderstorm cells are estimated to be present over the planet at any given 

time. It is estimated that globally there are 16 million thunderstorms each 

year. In the United States (US) the areas of maximum thunderstorm activity 

are the Florida peninsula and the coast of the Gulf of Mexico (70 - 80 days 

per year). The global distribution of thunderstorms is rather complex, but the 

influence of certain controls is visible. The frequency generally tends to 

decrease in colder seasons. There are relationships, although not perfect, with 

topography, land - sea configuration, air mass movements, and airflow on all 

scales. Thunderstorms are most frequent at low latitudes, where the 

atmosphere’s low layers are heated mostly by contact with warm ground or 
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water and there by conditioned for an overturning process essential to 

thunderstorms. 

Europe and Australia have few seasons with more than 20 

thunderstorm days annually. In Asia, only in the southeastern sector and 

around Bangladesh does the frequency exceed 60. South America and 

Africa view for the most thunderstorm-prone continent. The pattern is 

intricate over central South America where as elsewhere additional data 

and examination of physical factors should contribute insight into the 

causes. The tropical oceanic regions around 200 north and south, regions 

of semi-permanent high pressure, are relatively free from thunderstorms. 

In the northern hemisphere, relatively few thunderstorms occur north of 

100N in winter (Dec-Feb). In the southern hemisphere the location of 

inter-tropical convergence zone dominates the pattern, although warm 

onshore winds and topography are also important, as in eastern Australia. 

Central Africa and Indonesia have been considered to have the world’s 

greatest incidence of thunderstorms. Between 1916 and 1919, the city of 

Bogur in Indonesia averaged 322 thunderstorms per year. However the 

accepted record is 242 thunderstorm days per year, recorded over a 10 

year period at Kampala, Uganda just north of Lake Victoria. In this area, 

as often elsewhere in the equatorial regions, local influences are very 

strong. Many regions of the world also have a seasonal preference for 

strong storms, including spring and summer for the south-central US, 
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June-August in the Sahel and March-May over the Gangetic Plain and 

Bangladesh. 

Many parts over the Indian region experience thunderstorms at 

higher frequency during pre-monsoon months (March-May), when the 

atmosphere is highly unstable because of high temperatures prevailing at 

lower levels. The main regions of high thunderstorm activity in India are 

east-northeast India, southwest peninsula (particularly Kerala) and 

northwest India. There are as much as 30 to 40 days of thunderstorm in 

parts of east-northeast India and in south Kerala during this season. 

Thunderstorm activity progressively increases from March to May. 

Though there is considerable thunderstorm activity in India during the 

monsoon season, the severity of thunderstorms is marked only in the pre-

monsoon season when they are accompanied by violent squalls. 

1.1 Structure and Formation of Thunderstorms 

Thunderstorms are generated by thermal instability in the 

atmosphere, and represent a violent example of convection - the vertical 

circulation produced in a fluid made thermally unstable by the local 

addition or subtraction of heat and the conversion of potential to kinetic 

energy. The convective overturning of atmospheric layers that sets up a 

thunderstorm is dynamically similar to convective circulations observed 

under laboratory conditions, where distinct patterns are generated in 

liquids by unequal heating. The orderly circulations produced in a 
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laboratory are rarely encountered in the atmosphere, where areas 

corresponding to the rising core of laboratory convective cells are marked 

by cumulus and cumulonimbus clouds. Clouds are parcels of air that have 

been lifted high enough to condense the water vapor they contain into 

very small, visible particles. These particles are too small and light to fall 

out as rain. As the lifting process continues, these particles grow in size 

by collision and coalescence until they are large enough to fall against the 

updrafts associated with any developing convective clouds. Cumulus (for 

accumulation) clouds begin their towering movement in response to 

atmospheric instability and convective overturning. Warmer and lighter 

than the surrounding air, they rise rapidly around a strong, central updraft. 

These elements grow vertically, appearing as rising mounds, domes, or 

towers. The atmospheric instability in which thunderstorms begin may 

develop in several ways. Radiational cooling of cloud tops, heating of the 

cloud base from the ground, and frontal effects may produce an unstable 

condition. This is compensated in air, as in most fluids, by the convective 

overturning of layers to put denser layers below less-dense layers. Figure 

1.1 shows the structure of a severe thunderstorm. 

Extensive studies indicate that thunderstorms go through a cycle of 

development from birth to maturity and to decay (Byers and Braham 

1949). All thunderstorms, regardless of type, go through three stages: the 

cumulus stage, the mature stage, and the dissipation stage. Depending on 

the conditions present in the atmosphere, these three stages can take 
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anywhere from 20 minutes to several hours to occur. The first stage of a 

thunderstorm is the cumulus stage, or developing stage. In this stage, 

masses of moisture are lifted upwards into the atmosphere. The trigger for 

this lift can be insolation heating the ground producing thermals, areas 

where two winds converge forcing air upwards, or where winds blow over 

terrain of increasing elevation. 

 
Figure 1.1: Structure of a severe thunderstorm (Britannica). 

The moisture rapidly cools into liquid drops of water, which 

appears as cumulus clouds. As the water vapor condenses into liquid, 

latent heat is released which warms the air, causing it to become less 

dense than the surrounding dry air. The air tends to rise in an updraft 

through the process of convection (hence the term convective system). 

This creates a low-pressure zone beneath the forming thunderstorm. In a 

typical thunderstorm, approximately 5×108 kg of water vapor are lifted, 
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and the amount of energy released when this condenses is about equal to 

the energy used by a city with population of 100,000 during a month. 

In the mature stage of a thunderstorm, the warmed air continues to 

rise until it reaches existing air which is warmer, and the air can rise no 

further. Often this cap is the tropopause. The air is instead forced to 

exists, giving the storm a characteristic anvil shape. The resulting cloud is 

called cumulonimbus incus. The water droplets coalesce into heavy 

droplets and freeze to become ice particles. As these fall they melt to 

become rain. If the updraft is strong enough, the droplets are held aloft 

long enough to be so large that they do not melt completely and fall as 

hail. While updrafts are still present, the falling rain creates downdrafts as 

well. The simultaneous presence of both an updraft and downdrafts marks 

the mature stage of the storm and during this stage considerable internal 

turbulence can occur in the storm system, which sometimes manifests as 

strong winds, severe lightning, and even tornadoes. Typically, if there is 

little wind shear, the storm will rapidly enter the dissipating stage and rain 

itself out, but if there is sufficient change in wind speed and/or direction 

the downdraft will be separated from the updraft, and the storm may 

become a super-cell, and the mature stage can sustain itself for several 

hours. In certain cases however, even with little wind shear, if there is 

enough atmospheric support and instability in place for the thunderstorm 

to feed on, it may even maintain its mature stage a bit longer than most 

storms. In the dissipation stage, the thunderstorm is dominated by the 
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downdraft. If atmospheric conditions do not support super-cellular 

development, this stage occurs rather quickly, approximately 20-30 

minutes into the life of the thunderstorm. The downdraft will push down 

out of the thunderstorm, hit the ground and spread out. The cool air 

carried to the ground by the downdraft cuts off the inflow of the 

thunderstorm, the updraft disappears and the thunderstorm will dissipate. 

Figure 1.2 shows the airflow during the three stages of thunderstorm. 

 

Figure 1.2:  The life cycle of an ordinary single-cell thunderstorm: (a) 
towering cumulus stage (b) mature stage (c) dissipating 
stage, from Markowski and Richardson (2010). 

The types of thunderstorms could be classified as four, they are 

single-cell (Byers and Braham 1949), multi-cell cluster, multi-cell line 

(also called as squall line) (Browning 1962) and super-cell (Browning 

1964). Which type forms depends on the instability and relative wind 

conditions at different layers of the atmosphere (wind shear). Single-cell 
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technically applies to a single thunderstorm with one main updraft. 

Within a cluster of thunderstorms, the term cell refers to each separate 

principal updraft. Thunderstorm cells can and do form in isolation to other 

cells. Such storms are rarely severe and are a result of local atmospheric 

instability; hence the term air mass thunderstorm. These are the typical 

summer thunderstorm in many temperate locales. They also occur in the 

cool unstable air which often follows the passage of a cold front from the 

sea during winter. While most single cell thunderstorms move, there are 

some unusual circumstances where they remain stationary. Multi-cell 

storms form as clusters of storms but may then evolve into one or more 

squall lines. They often arise from convective updrafts in or near 

mountain ranges and linear weather boundaries, usually strong cold fronts 

or troughs of low pressure.  

Multi-cell line storms, commonly referred to as squall lines, occur 

when multi-cellular storms form in a line rather than clusters. They can be 

hundreds of miles long, move swiftly, and be preceded by a gust front. 

Heavy rain, hail, lightning, very strong winds and even isolated tornadoes 

can occur over a large area in a squall line. Bow echoes can form within 

squall lines, bringing with them even higher winds. An unusually 

powerful type of squall line called a derecho occurs when an intense 

squall line travels for several hundred kilometers, often leaving 

widespread damage over thousands of square kilometers. Occasionally, 

squall lines also form near the outer rain band of tropical cyclones. The 
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squall line is propelled by its own outflow, which reinforces continuous 

development of updrafts along the leading edge. Super-cell storms are 

large, severe quasi-steady-state storms which feature wind speed and 

direction that vary with height (wind shear), separate downdrafts and 

updrafts (i.e., precipitation is not falling through the updraft) and a strong, 

rotating updraft (a mesocyclone). These storms normally have such 

powerful updrafts that the top of the cloud (or anvil) can break through 

the troposphere and reach into the lower levels of the stratosphere and can 

be 24 km wide. These storms can produce destructive tornadoes, 

sometimes F3 or higher, extremely large hailstones (10 cm diameter), 

straight-line winds in excess of 130 kilometer per hour (kmph) and flash 

floods. In fact, most tornadoes occur from this type of thunderstorm.  

1.2 Severe Thunderstorms in India 

A common feature of the weather during the pre-monsoon season 

(March-May) over the Indo-Gangetic plain and northeast India is the 

outburst of severe local convective storms, commonly known as 

‘Nor’westers’ (as they move from northwest to southeast) or ‘Kalbaishakhi’ 

(which means calamities in the month of Baishakh) (Desai 1950). 

Nor’westers are mesoscale convective systems, which can develop under 

large-scale envelope of the seasonal low-level trough over West Bengal – 

Bihar – Jharkhand belt with a possible embedded low-pressure area. Nearly 

28 severe thunderstorms occur in this region during April and May. Strong 

heating of landmass during mid-day initiates convection over Chhotanagpur 
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Plateau which moves southeast and gets intensified by mixing with warm 

moist airmass. The severe thunderstorms associated with thunder, squall 

lines, lightning and hail cause extensive losses in agriculture, damage to 

structure and also loss of life. The casualty due to lightning associated with 

thunderstorms in this region is the highest in the world. The strong wind 

produced by the thunderstorm downdrafts after coming in contact with the 

earth surface spreads out laterally and is referred as downbursts. These are 

real threat to aviation. The highest numbers of aviation hazards are reported 

during occurrence of these thunderstorms. In India, 72% of tornadoes are 

associated with Nor’westers (Science plan 2005).  

Convective dust-storms occur over northwest India during the pre-

monsoon season mid-March to mid-June. They are locally known as 

‘Andhi’. Over northwest India in the pre-monsoon season the lowest 

atmospheric layers have very high temperature and relatively low 

moisture content which makes the thunderstorms to have high bases 

above the ground of the order of 3 to 4 km. The ground being dry over 

long periods, there is loose and fine dust available in plenty. The rain 

falling down from these storms evaporate off before reaching the ground, 

particularly because of their high bases and the low relative humidity of 

the air below. These factors enable severe thunderstorms of northwest 

India generate dust-storms. Joseph et al. (1980) made a study of 40 cases 

of Andhi that occurred at Delhi airport during the period of 1973 to 1977, 

using a transmissometer (to measure the variation of horizontal visibility 
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as the dust wall moved across the airport), a weather radar (to study the 

movement of the associated thunderstorm cloud) and wind, temperature, 

humidity and pressure measuring instruments. From the nature of 

variations of horizontal visibility and wind speed near the ground level 

associated with these dust-storms, it was found that 4 types of Andhi 

occur. From the radar study it was found that the distance between the  

cumulonimbus cloud  and the associated  Andhi  dust-wall  on the ground 

can  be  as  large as 30 km. It is observed that, the horizontal visibility is 

reduced to less than 100 meters during strong dust-storms at Delhi airport.  

Considerable numbers of literatures are available on thunderstorm 

studies over the Indian region during the last three decades in which many 

successful investigations have been made to study the climatology on 

frequency, diurnal variation, month wise and season wise distribution of 

thunderstorms. The earliest study of thunderstorm frequency in India was 

by Dallas (1900) who took only 10 stations data of India during the year 

1897. The first series of published charts of monthly frequency of days of 

thunder in India and neighborhood based on data for a short period was 

published in the climatological atlas for airmen (India Meteorological 

Department (IMD) 1943). The average monthly and annual frequency of 

thunderstorm days for all Indian and neighboring stations are given in the 

climatological tables of observatories in India (IMD 1953). Later on 

climatological tables have also been prepared by IMD based on data of 

1931-60 (IMD 1969) and 1951-80 (IMD 1995). Simultaneously, the 
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World Meteorological Organization (WMO) published the average 

frequencies of thunderstorm days in the WMO publication (WMO 1953) 

and is shown in Figure 1.3. These averages are based on data for a 

uniform period of 15 years. In this (Figure 1.3), highest annual frequency 

of thunder in India is given as 60 days over east-northeast India.  

 
Figure 1.3: Annual number of thunderstorm days (WMO 1953). 

Rao and Raman (1961) used data of 20 years to present monthly 

and annual frequency of thunderstorms in India. Their study showed 

highest thunderstorm activity occurs over east-northeast India including 

Assam, West Bengal, Jharkhand and Orissa. The annual average of 

thunderstorm frequency for these areas exceeds 75 days/year. Raman and 

Raghavan (1961) for the first time systematically studied the diurnal 
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variation of thunderstorm occurrence over India. Alvi and Punjabi (1966) 

examined diurnal variation in squalls which usually accompany 

thunderstorms. They also worked out annual frequency of thunderstorms 

as 75 days/year over Bangladesh, West Bengal, adjoining Orissa and 

northeast India. However, the northeast Assam is the most thundery area 

in India with average exceeding 100 days/year.  The annual thunderstorm 

frequency is about 50 days over western Himalyas, southern parts of 

Kerala and adjoining Tamil Nadu. However later study by Rao (1981) 

gives maximum frequency of 60 to 80 days over West Bengal and 

adjoining Jharkhand and Orissa with relatively lower frequency of 40 to 

60 days over Bangladesh and Assam, whereas annual mean number of 

thunderstorm given by Pant and Rupa Kumar (1997) shows thunderstorm 

activity of 60 days over northeast India, Bangladesh, West Bengal and 

adjoining areas with maximum number thunderstorm as 80 over northeast 

Assam.  

Manohar et al. (1999) has been studied the average seasonal 

thunderstorm activity over India using monthly data from a large number 

of Indian stations. In this study, the latitudinal inter-month comparison of 

the thunderstorm activity during the pre-monsoon season showed a 

significant increase in the number of thunderstorm days, and their activity 

decreased with increasing latitude. Kandalgaonkar et al. (2005) made a 

climatological study by analyzing 30 years (1951–1980) of mean monthly 

thunderstorm days for six different zones North-West India (NWI), 
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North-Central India (NCI), North-East India (NEI), West-Peninsular India 

(WPI), South-Peninsular India (SPI), East-Peninsular India (EPI) with 

260 Indian observatories spread uniformly over the country. Figure 1.4 

shows the pie diagram of percentage of occurrence of thunderstorms for 

six different zones. From this figure it is seen that the highest (25%) 

percentage of occurrence of thunderstorm is noticed in NEI and the 

lowest (8%) in WPI, whereas the percentage of occurrence of TS in the 

other four zones is 24% in NCI, 13% in NWI, 11% in EPI and 19% in 

SPI. 

 
Figure 1.4: Pie diagram showing the percentage of occurrence of 

thunderstorms for six different zones (Kandalgaonkar 
et al. 2004). 

Tyagi (2007) studied the thunderstorm climatology over Indian 

region based on latest representative climatological data including 390 

IMD observatories, 50 Indian Air Force (IAF) observatories, six 

Bangladesh observatories, two Pakistan observatories and one each in 
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Nepal and Sri Lanka. The study has brought out higher (100-120 days) 

annual frequency of thunderstorms as compared to those given by earlier 

studies (80-100 days). The highest annual frequency (100-120 days) is 

observed over Assam and Sub-Himalayan West Bengal in the east and 

Jammu region in the north (Figure 1.5). The lowest frequency (less than 5 

days) is observed over Ladakh region. Mukherjee and Sen (1983) studied 

the diurnal variation of thunderstorm for some selected stations to 

understand the influence of different physical features viz., plain stations, 

hill stations, coastal stations, island stations etc.   

In addition to above there have been several studies based on 

limited period of data like, Gupta and Chorghade (1961) studied 

thunderstorm occurrences at Agartala based on period of three years 

(1957-1959), Viswanathan and Faria (1962) for Bombay, Krishnamurthy 

(1965) for pune, Awadeshkumar (1992) for Lucknow, Moid (1995) for 

Mohanbari airport and Santosh et al. (2001) for three aerodrome stations 

in Kerala. Mukherjee (1964) showed that the frequency of thunderstorm 

over Guahati was highest in night time during pre-monsoon months. He 

reported that hills in the region plays profound role in the development 

of thunderstorm. Figure 1.6 shows the climatological frequency of 

thunderstorm occurrences over Dum Dum (Kolkata) station during April 

and May. The maximum number of thunderstorms occurred in the year of 

1997 and minimum in 1987. An average of 16 numbers of thunderstorms 
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has occurred over this station which is very close to the average 

climatology of thunderstorm occurrence between 1951 and 1980. 

 

Figure 1.5: Climatological annual thunderstorm days over India (Tyagi 2007). 
 

 
Figure 1.6: Climatological frequency (1981-2009) of thunderstorm 

occurrences over Dum Dum (Kolkata) during April and 
May. 
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1.2.1 Tornadoes in India 

A tornado is a dark rotatory fragment of a severe thunderstorm 

cloud, generally super-cell type, descending down like a funnel, often 

swinging like the trunk of an elephant. It can have various other forms 

also. Tornadoes have been observed to occur in every continent except 

Antarctica. This dangerous phenomenon occurs mostly in the United 

States, but occasionally occurs in other parts of the world. India is also 

not free from occurrences of such tornadoes. Eastern parts of India 

particularly West Bengal and Orissa are vulnerable to tornadoes during 

pre-monsoon season (March-May). Several climatological studies of 

tornadoes for the Indian subcontinent have been conducted. The most 

comprehensive works were by Petersen and Mehta (1981), which 

documented 51 possible tornadoes across Bengal, 18 of which killed 10 

people or more. Twelve of these occurred from 1838 to 1963 and 24 

occurred after 1968. However, there might exist a tendency to report only 

the relatively significant tornadoes that leave more damage and attract 

more attention. Between1972 and 1978, 13 tornado events occurred in the 

area approximately coinciding with Bangladesh. Figure 1.7 shows the 

distribution of tornadoes in the Indian subcontinent. Tornadoes 

concentrate in Bangladesh and east-northeastern India. Considering the 

entire area of the country, this gives a frequency rate of occurrence of 

about 1×10−5yr-1km-2 (Goligerand Milford 1998).  
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Saha (1967) tabulated relatively more prominent reported 

tornadoes in India during the period 1838 to 1950. This study shows that 

northeast India and neighbourhood are prone to tornado genesis more than 

other parts of India. Saha also pointed out that the region extending from 

Peshawar to Allahabad including Delhi gets tornadoes but less frequently 

than east-northeast India. Goldar et al. (2001) documented 36 possible 

spring tornadoes over West Bengal, 14 of which killed 10 people or more. 

While some events may not have been tornadic, this study partially fills 

the gap from the 1890's to early 1900's. Figure 1.8 shows the monthly 

frequency of tornadoes in the Indian subcontinent between 1839 and 

1999. Most tornadoes occur during the pre-monsoon season, peaking in 

April. Other studies such as Singh (1981) have listed a few tornadoes for 

India. The associated wind speeds have been estimated to be of the order 

of 200-400 kmph. Litta et al. (2009) has been studied about a tornado (F3 

on the Fujita-Pearson scale) over Rajkanika block of Kendrapara district 

of Orissa, India (20.70N, 86.680E) in the afternoon of 31 March 2009 

(Figure 1.9). The devastation caused by the tornado consumed 15 lives, 

left several injured with huge loss of property. 

Northwest India does not frequently experiences this violent 

weather phenomenon; but there have been a few cases over the region. In 

northern Delhi, 28 people were killed and 700 were injured by a tornado 

that cut a path 5 km long and about 50 m wide on 17 March 1978. 
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Another tornado is reported to have killed 10 people near Ludhiana 

(Punjab) on 10 March 1975 (Kumar and Singh 1978; Kumar et al. 1979).  

 
Figure 1.7: The distribution of tornadoes in the Indian subcontinent 

(Petersen and Mehta 1995). 

 
Figure1.8: The monthly frequency of tornadoes in Indian subcontinent 

between 1839 and 1999 (Goldar et al. 2001). 
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Bhan (2007) has been studied about a tornado (F0 on the Fujita-Pearson 

scale) close to Ludhiana airport (Punjab), northwest region of India on 15 

August 2007. Relatively less damage occurred as it passed through in the 

open fields, but there were minor injuries to some cattle and damage to 

property. Although only a few tornadoes occur over this part of the 

country, they have a great potential of causing damage to property and 

loss of life.  

 

Figure 1.9: Photographs of the tornado over Orissa of 31 March 2009 
and a typical damage photograph due to the tornado 
(orissadiary.com). 

1.2.2 Hailstorms in India 

Severe thunderstorms tend to give precipitation, part of which 

reaches the ground as hail. Hail is more common along mountain ranges 

because mountains force horizontal winds upwards (known as orographic 

lifting), thereby intensifying the updrafts within thunderstorms and 

making hail more likely. Hailstorms are sufficiently important owing to 

their economic impact worldwide that some records are kept in most 
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nations that have hail falls at all regularly. Figure 1.10 shows one picture 

of the global annual hail day (i.e., a day with one or more hail events) 

frequency distribution, indicating where the frequency is at least one hail 

day/year (Doswell and Bosart 2001). One of the more common regions 

for large hail is across the eastern and northeastern region of India, which 

reported one of the highest hail-related death tolls on record in 1888. 

China also experiences significant hailstorms. Across Europe, Croatia 

experiences frequent occurrences of hail. Hailstorms have been the cause 

of costly and deadly events throughout history. One of the earliest 

recorded incidents occurred around the 9th century in Roopkund, 

Uttarakhand, India (Gokhale 1975).  

 
Figure 1.10: Mean annual frequency distribution of hail days 

(Doswell and Bosart 2001). 

India is among the countries in the world having large frequency 

of hail. Figure 1.11 shows hail occurrences over India for a hundred year 
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period from Ramamurthy (1983). In the northeast Indian subcontinent the 

maximum average frequency of about one hailstorm annually is found in 

the foothills. In some areas as many as nine hailstorms have been reported 

in a year, and some very large hailstones probably occur in this region. 

The complex topography produces great variations over short distances.  

In the Irrawaddy delta of Burma the maximum frequency is during 

autumn (September-November), but in the northern hill stations it is from 

April to July or August.  In the arid areas of southwestern Asia hail is 

rare, although occasional reports are received from the Yemeni highlands 

(Frisby and Sansom 1967).  

 
Figure 1.11: Hailstorm occurrences over India for a 100 year 

period (Ramamurthy 1983). 

 



Chapter 1 

Department of Computer Science 24 

Reviewing the annual reports of IMD from 1982 to 1989, 

Nizamuddin (1993) finds that there were 228 hail days (about 29 per year) 

of moderate to severe intensity. Hail size comparable to mangoes, lemons 

and tennis balls has been observed. Eliot (1899) found that out of 597 

hailstorms in India 153 yielded hailstones of diameter 3 cm or greater. 

These events killed 250 persons and caused extensive damage to winter 

wheat crops. India and Bangladesh are different from other northern 

hemisphere tropical stations in that hail is observed in the winter and pre-

monsoon seasons with virtually no events after the onset of the southwest 

monsoon. Chaudhury and Banerjee (1983) show that the percentage of 

hailstorm days out of thunderstorm days decreases from 5% to less than 

2% from March to May for east-northeastern India and Bangladesh. 

Figure 1.12 taken from their study shows the monthly distribution of 

moderate and severe hailstorms (Figure 1.12a) and the diurnal variation of 

hailstorms (Figure 1.12b). 

1.3 Objectives 

Forecasting thunderstorms is one of the most difficult tasks in 

weather prediction, due to their rather small spatial and temporal 

extension and the inherent non-linearity of their dynamics and physics. 

The improvement in prediction of these important weather phenomena is 

highly handicapped due to lack of mesoscale observations and insufficient 

understanding. An accurate location specific and timely prediction is 
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required to avoid loss of lives and property due to strong winds and heavy 

precipitation associated with severe local storms.  

 

 
Figure 1.12: (a) Monthly distribution of moderate and severe hail 

for India (b) diurnal variation of hailstorms 
(Chaudhury and Banerjee 1983). 

This research is expected to improve both understanding and 

prediction of thunderstorms over Indian region. Brief objectives of this 

research works are as follows: 

• Understand the genesis, development and propagation of severe 

thunderstorms over India. 

(a) 

(b) 
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• Thunderstorm prediction with Artificial Neural Network (ANN) 

model. 

• Customization of Non-hydrostatic Mesoscale Model (NMM) core 

of Weather Research and Forecasting system (WRF) with 

improved forecast skill for the prediction of thunderstorms. 

• Compare the skills of different numerical models namely NMM 

and Advanced Research WRF (ARW) for the prediction of severe 

thunderstorms. 

• Evaluate the performance of ANN, ARW and NMM models for 

the thunderstorm prediction over Kolkata and find out suitable 

model. 

1.4 Layout of the Thesis 

The rest of the thesis is laid out as follows: 

• Chapter 2 provides a brief description about computational models 

used for the prediction of thunderstorms over Indian region. 

• Chapter 3 describes the design and development of neural network 

model for the prediction of thunderstorms over Kolkata. 

• Chapter 4 discusses the prediction of thunderstorms using NMM 

model and the sensitivity study of NMM model with different 

initial conditions, convective parameterization schemes and 

microphysics schemes.  
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• Chapter 5 gives a comparative study of two numerical models 

namely NMM and ARW in the prediction of severe 

thunderstorms. 

• Performance evaluation of computational models namely ANN, 

NMM and ARW models for the prediction of severe 

thunderstorms over Kolkata are given in Chapter 6. 

• A brief summary and conclusion of the work and the scope for 

future work are given in Chapter 7. 

• References are listed after Chapter 7 along with the details of 

publications made by the author. 
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Accurate forecasting of thunderstorms and severe thunderstorms is 

critical for a large range of users in the community. The general public 

can benefit from timely forecasts and warnings of impending severe 

thunderstorms. The aviation industry in particular is one user group 

particularly affected by thunderstorms and one that can benefit greatly 

from enhanced forecasting services. In this case, the value can be 

expressed in terms of economic efficiency as well as in terms of safe 

operations of aircraft. Thunderstorm forecasting typically has proved to 

be one of the most difficult tasks, due to their rather small spatial and 

temporal extension and the inherent non-linearity of their dynamics and 

physics (Orlanski 1975). Generally, two methods are used to forecast 

weather: (a) the empirical approach and (b) the dynamical approach 

(Lorenz 1969).  
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The first approach is based upon the occurrence of analogues and 

is often referred as analogue forecasting. This is using past weather data 

to predict future events. The most widely used empirical approaches for 

weather prediction are regression, ANN, stochastic, fuzzy logic and group 

method of data handling. ANN based approach can be used to model 

complex relationships between inputs and outputs or to find patterns in 

data. ANN can be viewed as a mathematical model or computational 

model that is inspired by the structure or functional aspects of biological 

neural networks. ANNs are trainable self-adaptive systems that can 

"learn" to solve complex problems from a set of examples and generalize 

the "acquired knowledge" to solve unforeseen problems as in 

environmental prediction (Bishop 1995). The recent advances in neural 

network methodology for modeling non-linear, dynamical phenomena 

along with the impressive successes in a wide range of applications, 

motivated to investigate the application of ANNs for the prediction of 

thunderstorms. 

The second approach is based upon equations and forward 

simulations of the atmosphere, and is often referred to as computer 

modeling. Weather forecasting using computer models is known as 

numerical weather prediction (NWP). NWP in the recent years emerged 

as an important discipline that requires increased computing power and 

accurate modeling. It is regarded as a part of the grand challenge 

application that requires teraflop/petaflop capabilities. The rapid advent in 
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the techno-scientific research related to high resolution downscaling/ 

forecasting of the weather in the last few decades has led to the 

development of complex mathematical models for several spatio-temporal 

scales of evolution of the atmosphere. These models are computer 

programs that take the analysis as the starting point and evolve the state of 

the atmosphere forward in time using the understanding of physics and 

fluid dynamics. The complicated equations which govern how the state of 

a fluid changes with time require high performance computers to solve 

them. Computer models have become an integral part of the forecast 

process by allowing forecasters to combine conceptual models of 

meteorological systems with forecast states of the atmosphere to produce 

accurate forecasts. Thunderstorms are one such phenomenon where 

computer models have led to real improvement in forecasts. Models can 

allow forecasters to anticipate not only whether or not thunderstorms will 

develop in an environment but also such things as thunderstorm 

movement, type, severity and longevity.  

2.1 Neural Network Modeling 

Neural networks have seen an explosion of interest over the last 

few years, and are being successfully applied across an extraordinary 

range of problem domains, in areas as diverse as finance medicine, 

engineering, geology and physics. Indeed, anywhere that there are 

problems of prediction, classification or control, neural networks are 

being introduced. Neural networks could be define as an interconnected 
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of simple processing element whose functionality is based on the 

biological neuron. Biological neuron is a unique piece of equipment that 

carries information or a bit of knowledge and transfers to other neuron in 

the chain of networks. Artificial neuron imitates these functions and their 

unique process of learning (Fausett 1994). The interest in neural networks 

comes from the networks’ ability to mimic human brain as well as its 

ability to learn and respond. As a result, neural networks have been used 

in a large number of applications and have proven to be effective in 

performing complex functions in a variety of fields. These include pattern 

recognition, classification, vision, control systems and prediction (Haykin 

1994). 

A first wave of interest in neural networks emerged after the 

introduction of simplified neurons by McCulloch and Pitts (1943) also 

known as connectionist models. Four years later, the same authors 

explored network paradigms for pattern recognition using a single layer 

perceptron (Pitts and McCulloch 1947). Hebb (1949) developed the first 

learning rule that is if two neurons are active at the same time then the 

strength between them should be increased. In the 1950s and 1960s, a 

group of researchers combined these biological and psychological insights 

to produce the first ANN (Rosenblatt 1962). Initially implemented as 

electronic circuits, they were later converted into a more flexible medium 

of computer simulation. However, researchers such as Minsky and Papert 

(1969) later challenged these works. They showed that perceptron could 
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not learn those functions which are not linearly separable. They strongly 

believed that intelligence systems are essentially symbol processing of the 

kind readily modeled on the von Neumann computer. Parker (1985) and 

LeCun (1986) discovered a learning algorithm for multi-layer networks 

called back propagation that could solve problems that were not linearly 

separable. 

ANN is a network of collections of very simple processors 

("Neurons") each possibly having a (small amount of) local memory. The 

units operate only on their local data and on the inputs they receive via the 

connections or links which are unidirectional (Ajith 2006). A network 

unit has a rule for summing the signals coming in and a rule for 

calculating an output signal that is then, sent to other network units. The 

rule for calculating the output is known as the activation function. ANNs 

can learn to perform a task through repeated adjustments of weights. 

During the learning process, a rule is used to decide by how much the 

value of the weight should be changed (Callen 1999). Negnevitsky (2002) 

mentioned that, there are more than a hundred different learning 

algorithms in ANNs. Adaptation or learning is a major focus of neural net 

research that provides a degree of robustness to the ANN model. In 

predictive modeling, the goal is to map a set of input patterns onto a set of 

output patterns. ANN accomplishes this task by learning from a series of 

input/output data sets presented to the network. The trained network is 
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then used to apply what it has learned to approximate or predict the 

corresponding output (Haykin 1994). 

ANNs are nonlinear information (signal) processing devices which 

are built from interconnected elementary processing devices called 

neurons. An artificial neuron is a n-input single-output signal-processing 

element, which can be thought of a simple model of a non-branching 

biological neuron. Graphically, an artificial neuron is represented in 

Figure 2.1. In the figure, various inputs to the network are represented by 

the mathematical symbol, xn. Each of these inputs are multiplied by a 

connection weight. These weights are represented by wn. In this case, 

these products are simply summed (zin), fed through an activation function 

to generate results and then delivered as output yi. 

 

 

 

 

 

 
 

Figure 2.1: Graphical representation of single n-input artificial neuron. 
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Below, zin refers in all cases to the weighted sum of all the inputs to 

the neuron, i.e. for n inputs, where w is a vector of synaptic weights and x is 

a vector of inputs. 

  
       yi = Φ (zin+ b)                 (2.2) 

where Φ (.) is the activation function, b is the bias and yi is the output 

signal of the neuron. 

An artificial neuron is characterized by: 

• Architecture (connection between neurons). 

• Training or learning (determining weights on the connections). 

• Activation function. 

2.1.1 Architecture of neural networks 

The arrangement of neurons into layers and the pattern of 

connection within and in-between layer are generally called as the 

architecture of the network. Neural network architectures can be divided 

usefully into two main categories. They are Feed-forward or Feed-back 

networks. 

Feed-forward networks: Feed-forward ANNs allow signals to travel one 

way only; from input to output. There is no feedback (loops) i.e. the 

output of any layer does not affect that same layer. At any particular time, 

 
        (2.1) 
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an input pattern results in an output determined completely by the 

mapping function of the weights. The power of these networks is in the 

internal representations formed by the hierarchy of neuron layers. This 

type of network has the advantage of being unconditionally stable and 

fast. Feed-forward ANNs tend to be straight forward networks that 

associate inputs with outputs. They are extensively used in pattern 

recognition. Examples of feed-forward networks are Perceptron and 

Adaline (Haykin 1994). Figure 2.2 shows a single layer feed-forward 

network. A neural network in which the input layer of source nodes 

projects into an output layer of neurons but not vice-versa is known as 

single feed-forward or acyclic network. In single layer network, ‘single 

layer’ refers to the output layer of computation nodes as shown in Figure 

2.2. In multilayer feed-forward network consists of one or more hidden 

layers, whose computation nodes are called hidden neurons or hidden 

units.  

 

 

 

 

 

 

 

Figure 2.2: A single layer feed-forward network. 

   Input Layer Output Layer 
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Feed-back networks: Feed-back networks can have signals traveling in 

both directions by introducing loops in the network. Feed-back networks 

are very powerful and can get extremely complicated. Feed-back 

networks are dynamic; their 'state' is changing continuously until they 

reach an equilibrium point. They remain at the equilibrium point until the 

input changes and a new equilibrium needs to be found. Information 

storage capacity is improved in comparison to feed-forward networks. 

Figure 2.3 shows the architecture of feed-back network. Feed-back 

architectures (Figure 2.3) are also referred to as interactive or recurrent, 

although the latter term is often used to denote feed-back connections in 

single-layer organizations. Recurrent networks are well suited to 

associative memory, optimization, or retrieval type tasks, as exemplified 

by the Hopfield network (Hopfield 1982). 

 

 

 

 

 

 

 

 

 
 

Figure 2.3: An architecture of feed-back network. 
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2.1.2 Types of learning in neural networks  

A neural network has to be configured such that the application of 

a set of inputs produces (either 'direct' or via a relaxation process) the 

desired set of outputs. Various methods to set the strengths of the 

connections exist. One way is to set the weights explicitly, using a priori 

knowledge. Another way is to 'train' the neural network by feeding it 

teaching patterns and letting it change its weights according to some 

learning rule. The learning methods in neural networks can be classified 

into three categories. These are supervised learning, unsupervised 

learning and reinforcement learning. 

Supervised learning: In supervised learning, both inputs and outputs are 

provided. The network then processes inputs and compares its resulting 

outputs against the desired outputs. Errors are then propagated back 

through the system, causing the system to adjust the weights, which 

control the network. This process occurs over and over as the weights are 

continually tweaked. The set of data, which enables the training, is called 

the "training set." During the training of a network, the same set of data is 

processed many times, as the connection weights are ever refined. The 

term supervised originates from the fact that the desired signals on 

individual output nodes are provided by an external teacher. Examples of 

supervised learning are the delta rule and the perceptron rule. 
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Unsupervised learning: In this type, the network is provided with inputs 

but not with desired outputs. The system itself must then decide what 

features it will use to group the input data. This is often referred to as self-

organization or adaption. These networks use no external influences to 

adjust their weights. Instead, they internally monitor their performance. 

These networks look for regularities or trends in the input signals, and 

makes adaptations according to the function of the network. Even without 

being told whether it's right or wrong, the network still must have some 

information about how to organize itself. This information is built into the 

network topology and learning rules. An unsupervised learning algorithm 

might emphasize cooperation among clusters of processing elements. In 

such a scheme, the clusters would work together. If some external input 

activated any node in the cluster, the cluster's activity as a whole could be 

increased. Likewise, if external input to nodes in the cluster was 

decreased, that could have an inhibitory effect on the entire cluster. In this 

type of learning external teacher is not present. Typical examples are the 

Hebbian learning rule and the competitive learning rule (Fausett 1994).  

Reinforcement learning: This kind of learning is based upon both 

supervised and unsupervised learning. Here the learning machine does 

some action on the environment and gets a feedback response from the 

environment. The learning system grades its action good (rewarding) or 

bad (punishable) based on the environmental response and accordingly 

adjusts its parameters. Generally, parameter adjustment is continued until 
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an equilibrium state occurs, following which there will be no more 

changes in its parameters. Reinforcement learning is also called learning 

with a critic as opposed to learning with a teacher (Sutton and Barto 

1998). 

2.1.3 Activation functions  

An activation function Φ(v) performs a mathematical operation on 

the outputs of neuron Zin. It acts as a squashing function, such that the 

output of a neuron in a neural network is between certain values (usually 

0 and 1, or -1 and 1). The activation functions are selected according to 

the types of problem to be solved by the network. In general, there are 

three types of activation functions, denoted by Φ(v).  

First, there is the Threshold function which takes on a value of 0 if 

the summed input is less than a certain threshold value (v), and the value 

1 if the summed input is greater than or equal to the threshold value.  

 (2.3) 

 

Secondly, there is the Piecewise-Linear function. This function 

again can take on the values of 0 or 1, but can also take on values between 

that depending on the amplification factor in a certain region of linear 

operation. 

 (2.4) 

            1   if v ≥ 0 

            0   if v < 0  
Φ(v) = 

            1   v ≥ ½ 

            v   –½ > v >½ 

            0   v ≤ –½ 

Φ(v) = 
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Thirdly, there is the Sigmoid function. This function can range 

between 0 and 1, but it is also sometimes useful to use the -1 to 1 range. 

This non-linear function is the most common type of the activation used 

to construct the neural networks. It is mathematically well behaved, 

differentiable and strictly increasing function. An example of the sigmoid 

function is the hyperbolic tangent function. 

 
 

                                                                                                           
Figure 2.4 shows common non-linear function used for synaptic 

inhibition. 

2.1.4 Multilayer perceptron network 

When used without qualification, the ANN usually refers to a 

Multilayer Perceptron Networks (MLPNs). However, there are many 

other types of neural networks including Probabilistic Neural Networks, 

General Regression Neural Networks, Radial Basis Function Networks, 

Cascade Correlation, Functional Link  Networks, Kohonen Networks, 

Gram-Charlier Networks, Learning Vector Quantization, Hebb Networks, 

Adaline Networks, Hetero-associative Networks, Recurrent Networks and 

Hybrid Networks. MLPNs constitute an important class of feed-forward 

ANNs, developed to replicate learning and generalization abilities of 

humans with an attempt to model the functions of biological neural 

networks. Most of the literature in the field is referred to this neural 

tanh
  
2

  
 

Φ(v) = 
     1–exp(–v) 

     1+exp(–v) 

 

= (2.5) 
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network. This type of neural network is known as a supervised network 

because it requires a desired output in order to learn. The goal of this type  

 
Figure 2.4: Common non-linear function used for synaptic 

inhibition. Soft non-linearity: (a) sigmoid and (b) 
tanh; Hard non-linearity: (c) signum and (d) step. 

of network is to create a model that correctly maps the input to the output 

using historical data so that the model can then be used to produce the 

output when the desired output is unknown (Zurada 1992). The MLPN is 
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a nonparametric technique for performing a wide variety of detection and 

estimation tasks (Haykin 1994). 

In this section, the learning problem in the MLPN is formulated. 

The multilayer perceptron is characterized by a neuron model, network 

architecture, associated objective functional and learning algorithm. 

These four concepts are briefly described as follows:  

Neuron model: A neuron model is a mathematical model of the behavior 

of a single neuron in a biological nervous system. The characteristic 

neuron model in the multilayer perceptron is the so called perceptron. The 

perceptron neuron model receives information in the form of a set of 

numerical input signals. This information is then integrated with a set of 

free parameters to produce a message in the form of a single numerical 

output signal. 

Network architecture: In the same way a biological nervous system is 

composed of interconnected biological neurons, an ANN is built up by 

organizing artificial neurons in network architecture. In this way, the 

architecture of a network refers to the number of neurons, their 

arrangement and connectivity. The characteristic network architecture in 

the multilayer perceptron is the so called feed-forward architecture. 

Objective functional: The objective functional plays an important role in 

the use of a neural network. It defines the task the neural network is 

required to do and provides a measure of the quality of the representation 
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that the network is required to learn. The choice of a suitable objective 

functional depends on the particular application. 

Learning algorithm: The procedure used to carry out the learning 

process is called training algorithm, or learning algorithm. The learning 

algorithm is applied to the network in order to obtain a desired 

performance. The type of learning is determined by the way in which the 

adjustment of the free parameters in the neural network takes place. 

Figure 2.5 depicts an activity diagram for the learning problem in 

the multilayer perceptron. The solving approach here consists of three 

steps. The first step is to choose a suitable parameterized function space 

in which the solution to the problem is to be approximated. The elements 

of this family of functions are those spanned by a multilayer perceptron. 

In the second step the variational problem is formulated by selecting an 

appropriate objective functional, defined on the function space chosen 

before. The third step is to solve the reduced function optimization 

problem. This is performed with a learning algorithm capable of finding 

an optimal set of parameters (Lopez 2008). 

The architecture of a neural network refers to the number of 

neurons, their arrangement and connectivity. Any network architecture 

can be symbolized as a directed and labeled graph, where nodes represent 

neurons and edges represent connectivities among neurons. An edge label 

represents the free parameter of the neuron for which the flow goes in 
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(Chen and Haykin 2002). Most neural networks, even biological neural 

networks, exhibit a layered structure. In this work layers are the basis to 

determine the architecture of a neural network. Thus, a neural network 

typically consists on a set of sensorial nodes which constitute the input 

layer, one or more hidden layers of neurons and a set of neurons which 

constitute the output layer. As it was said above, the characteristic neuron 

model of the multilayer perceptron is the perceptron. On the other hand, 

the multilayer perceptron has feed-forward network architecture (Lopez 

2008). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5: Activity diagram for the learning problem in the 
multilayer perceptron. 

Multilayer Perceptron 
Define function space 

Objective Functional 
Formulate variational problem pace 

Learning Algorithm 
Solve reduced function optimization problem  



Chapter 2 

Department of Computer Science 46 

Figure 2.6 illustrates a MLPN with three layers. This network has 

an input layer (on the left), one hidden layer (in the middle) and an output 

layer (on the right). xi stands for the input variables. yk represents output 

variables. w stands for weight and Φ stands for activation function. 

 

 

 

 

 

 

 
 

Figure 2.6: The MLPN architecture with three layers. 

Input layer: A vector of predictor variable values (x1...xi) is presented to 

the input layer. The input layer (or processing before the input layer) 

standardizes these values so that the range of each variable is -1 to 1. The 

input layer distributes the values to each of the neurons in the hidden 

layer. In addition to the predictor variables, there is a constant input of 

1.0, called the bias that is fed to each of the hidden layers; the bias is 

multiplied by a weight and added to the sum going into the neuron. 
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Hidden layer: Arriving at a neuron in the hidden layer, the value from 

each input neuron is multiplied by a weight (wji), and the resulting 

weighted values are added together producing a combined value uj. The 

weighted sum (uj) is fed into an activation function, Φ, which outputs a 

value hj. The outputs from the hidden layer are distributed to the output 

layer. 

Output layer: Arriving at a neuron in the output layer, the value from 

each hidden layer neuron is multiplied by a weight (wkj), and the resulting 

weighted values are added together producing a combined value zj. The 

weighted sum (zj) is fed into an activation function, Φ, which outputs a 

value yk. The y values are the outputs of the network. 

2.1.5 The learning algorithms 

Learning algorithms are an integral part of ANN model 

development. The best-known example of ANN learning algorithm 

is back propagation (BP) (Patterson 1996; Haykin 1994; Fausett 1994). 

In BP, the gradient vector of the error surface is calculated. This vector 

points along the line of steepest descent from the current point, so we 

know that if we move along it a "short" distance, we will decrease the 

error. A sequence of such moves (slowing as we near the bottom) will 

eventually find a minimum of some sort. The difficult part is to decide 

how large the steps should be. Large steps may converge more quickly, 

but may also overstep the solution or (if the error surface is very 
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eccentric) go off in the wrong direction. A classic example of this 

in neural network training is where the algorithm progresses very slowly 

along a steep, narrow, valley, bouncing from one side across to the other. 

In contrast, very small steps may go in the correct direction, but they also 

require a large number of iterations. In practice, the step size is 

proportional to the slope (so that the algorithm settles down in a 

minimum) and to a special constant: the learning rate. The correct setting 

for the learning rate is application-dependent, and is typically chosen by 

experiment; it may also be time-varying, getting smaller as the algorithm 

progresses (Carling 1992). 

The algorithm is also usually modified by inclusion of a 

momentum term: this encourages movement in a fixed direction, so that if 

several steps are taken in the same direction, the algorithm "picks up 

speed", which gives it the ability to (sometimes) escape local minimum, 

and also to move rapidly over flat spots and plateaus. The algorithm 

therefore progresses iteratively, through a number of epochs. On each 

epoch, the training cases are each submitted in turn to the network, and 

target and actual outputs compared and the error calculated. This error, 

together with the error surface gradient, is used to adjust the weights, and 

then the process repeats. The initial network configuration is random and 

training stops when a given number of epochs elapses, or when the error 

reaches an acceptable level, or when the error stops improving. 
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More sophisticated techniques for non-linear function optimization 

have been in use for some time. These methods include Conjugate 

Gradient (CG), Quasi-Newton (QN), and Levenberg-Marquardt (LM), 

which are very successful forms of two types of algorithm: line search 

and model-trust region approaches. They are collectively known as 

second order learning algorithms. A line search algorithm works as 

follows: pick a sensible direction to move in the multi-dimensional 

landscape. Then project a line in that direction, locate the minimum along 

that line (it is relatively trivial to locate a minimum along a line, by using 

some form of bisection algorithm), and repeat. In this context, the 

direction of steepest descent is an obvious choice for a sensible direction 

(the same direction that would be chosen by back propagation). Actually, 

this intuitively obvious choice proves to be rather poor. Having 

minimized along one direction, the next line of steepest descent may spoil 

the minimization along the initial direction (even on a simple surface like 

a parabola a large number of line searches may be necessary). A better 

approach is to select conjugate or non-interfering directions - hence CG 

(Bishop 1995). 

The idea here is that, once the algorithm has minimized along a 

particular direction, the second derivative along that direction should be 

kept at zero. Conjugate directions are selected to maintain this zero 

second derivative on the assumption that the surface is parabolic 

(speaking roughly, a nice smooth surface). If this condition 
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holds, N epochs are sufficient to reach a minimum. In reality, on a 

complex error surface the conjugacy deteriorates, but the algorithm still 

typically requires far less epochs than back propagation, and also 

converges to a better minimum (to settle down thoroughly, back 

propagation must be run with an extremely low learning rate). QN 

training is based on the observation that the direction pointing directly 

towards the minimum on a quadratic surface is the so-called Newton 

direction. This is very expensive to calculate analytically, but QN 

iteratively builds up a good approximation to it. QN is usually a little 

faster than CG, but has substantially larger memory requirements and is 

occasionally numerically unstable. 

A model-trust region approach works as follows: instead of 

following a search direction, assume that the surface is a simple shape 

such that the minimum can be located (and jumped to) directly - if the 

assumption is true. Try the model out and see how good the suggested 

point is. The model typically assumes that the surface is a nice well-

behaved shape (e.g. a parabola), which will be true if sufficiently close to 

a minima. Elsewhere, the assumption may be grossly violated, and the 

model could choose wildly inappropriate points to move to. The model 

can only be trusted within a region of the current point, and the size of 

this region isn't known. Therefore, choose new points to test as a 

compromise between that suggested by the model and that suggested by a 

standard gradient-descent jump. If the new point is good, move to it, and 
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strengthen the role of the model in selecting a new point; if it is bad, don't 

move, and strengthen the role of the gradient descent step in selecting a 

new point (and make the step smaller). LM uses a model that assumes that 

the underlying function is locally linear (and therefore has a parabolic 

error surface). 

LM is typically the fastest of the learning algorithms, although 

unfortunately it has some important limitations, specifically: it can only 

be used on single output networks, can only be used with the sum squared 

error function, and has memory requirements proportional to w2 (where w 

is the number of weights in the network; this makes it impractical for 

reasonably big networks). CG is nearly as good, and doesn't suffer from 

these restrictions. BP can still be useful, not least in providing a quick (if 

not overwhelmingly accurate) solution. It is also a good choice if the data 

set is very large, and contains a great deal of redundant data. BP's case-

by-case error adjustment means that data redundancy does it no harm (for 

example, if you double the data set size by replicating every case, 

each epoch will take twice as long, but have the same effect as two of the 

old epochs, so there is no loss). In contrast, LM, QN, and CG all perform 

calculations using the entire data set, so increasing the number of cases 

can significantly slow each epoch, but does not necessarily improve 

performance on that epoch (not if data is redundant; if data is sparse, then 

adding data will make each epoch better). BP can also be equally good if 
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the data set is very small, for there is then insufficient information to 

make a highly fine-tuned solution appropriate (Hill and Lewicki 2007).  

2.1.6 Applications of neural networks 

The utility of ANN models lies in the fact that they can be used to 

infer a function from observations. This is particularly useful in 

applications where the complexity of the data or task makes the design of 

such a function by hand impractical. Neural networks have been 

successfully applied to broad spectrum of data-intensive applications 

(Nielsen 2001). 

Language processing: These applications include text-to-speech 

conversion, auditory input for machines, automatic language translation, 

secure voice keyed locks, automatic transcription, aids for the deaf, aids 

for the physically disabled which respond to voice commands and natural 

language processing. 

Character recognition: Neural network based products are available 

which can recognize hand printed characters through a scanner. It is 98% 

accurate for numbers, a little less for alphabetical characters. Quantum 

Neural Network software package (Qnspec) is available for recognizing 

characters, including cursive. 

Image (data) compression: Neural networks can do real-time 

compression and decompression of data. These networks can reduce eight 
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bits of data to three and then reverse that process upon restructuring to 

eight bits again. 

Pattern recognition: Many pattern recognition applications are in use 

like, a system that can detect bombs in luggage at airports by identifying 

from small variances and patterns from within specialized sensor's 

outputs, a BP neural network which can discriminate between a true and a 

false heart attack, a network which can scan and also read the PAP smears 

etc. Many automated quality control applications are now in use, which 

are based on pattern recognition.  

Signal processing: Neural networks have proven capable of filtering out 

electronic noise. Another application is a system that can detect engine 

misfire simply from the engine sound. 

Financial: Banks, credit card companies and lending institutions deal 

with many decisions that are not clear-cut. They involve learning and 

statistical trends. Neural networks are now trained on the data from past 

decisions and being used in decision-making. 

Servo control: A neural system known as Martingale's Parametric 

Avalanche - a spatio-temporal pattern recognition network is being 

designed to control the shuttle during in-flight maneuvers. Another 

application is ALVINN, for Autonomous Land Vehicle. 

Weather prediction: Weather forecasting for the future is one of the 

most important and ever-challenging areas of investigation for scientists 
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due to many sectors are largely dependent on the weather conditions. The 

applicability of ANN technology to improve weather forecasting is the 

recent development. 

2.2 Numerical Weather Prediction Modeling 

The atmosphere is a hydro-thermodynamic system where the 

motions obey the laws of physics (Holton 2004). Numerical models are 

designed to solve the fundamental equations that govern these motions in 

the atmosphere. These equations are derived from the Newtonian 

mechanics and thermodynamic laws, especially the conservation laws for 

mass, energy and momentum. These sets of equations are known as the 

primitive (so called since they are derived from conservation principles) 

or the fundamental equations, and are equations of momentum, mass 

continuity, thermodynamics and moisture. The equations of motion are 

highly non-linear partial-differential equations and complex in nature. So 

far there has been no success in solving the full governing equations 

analytically. Lewis Fry Richardson in 1922 conducted the first 

experimental numerical weather forecasting by solving the equations 

using a mechanical desk calculator. It took him six weeks to do a 6 hour 

forecast. Later, John Von Neumann and a group of scientists used the first 

digital computer for weather forecasting (Wallace and Hobbs 2006). 

However, with the invention of high speed computers today, it is possible 

to approximate these equations in their non-linear form with an 
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exceptional degree of accuracy. The equations describing fluid motion are 

generally known as Navier-Stokes equations. 

2.2.1 Governing equations 

A complete set of equations that govern the evolution of the 

atmosphere can be described as (Kalnay 2003): 

• Newton’s second law of conservation of momentum (three 

equations for the three components of velocity); 

• Conservation of mass or the continuity equation; 

• Conservation of energy or 1st law of thermodynamics; 

• The equation of state for gas; 

• Conservation equation for water mass. 

The equations for horizontal and vertical motion are derived from 

Newton’s second law or the law of conservation of momentum 

(Washington and Parkinson 2005). In the atmosphere, the major forces 

involved in motion are the force of gravity, the pressure gradient force 

and the Coriolis force. The pressure gradient force and the Coriolis force 

account for the major forces in the horizontal direction. Whereas in the 

vertical, the two main forces responsible are the force of gravity and the 

pressure gradient force, due to the variation of pressure with height. When 

the vertical pressure gradient is in balance with the gravitational force the 

motion is considered to be in hydrostatic equilibrium. In the early days, 

the models were designed to assume hydrostatic equilibrium due to 
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limitations in computing power. However, recently developed numerical 

codes provide the non-hydrostatic option, so that higher resolutions of the 

order of a few meters can be used to resolve the small scale circulations 

such as cumulus convection and boundary layer circulations (AMS 2000; 

Kalnay 2003).  

The conservation of mass or the continuity equation ensures that 

the mass of air parcels remain the same through time. That is, the rate at 

which mass enters a system is equal to the rate at which mass leaves the 

system, for constant density/pressure. The temperature of a parcel in the 

atmosphere could be modified by mixing with warmer or colder air or due 

to expansion or contraction of the parcel. Conservation of energy or the 

first law of thermodynamics is used so that if heat is applied to a parcel, 

this heat can be used to increase the internal energy and/or to produce 

work of expansion. The atmosphere is assumed to be a perfect gas 

(Kalnay 2003). The equation of state is used to predict the state of gases 

or liquids and is another form of thermodynamic equation relating the 

three thermodynamic variables of pressure, density and temperature. It is 

applied to the atmosphere, relating the change in temperature of a parcel 

of air to energy transfer between the parcel and its environment and work 

done by or on the parcel. The equation for conservation of water mass 

indicates that the total amount of water vapour in a parcel is conserved as 

a function of advection, evaporation or condensation. 
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The governing equations contain unknown variables (u, v, w, ρ, p 

and T), where u is the zonal, v is the meridional, and w is the vertical 

component of wind, ρ is the density, p is the pressure and T is the 

temperature, but as a solvable system (Washington and Parkinson 2005). 

Since the governing equations are higher-order non-linear partial-

differential equations, no analytical solution has been obtained. To get a 

possible solution, alternative techniques are used (Stull 2000). One 

method is to find an exact analytical solution by highly simplifying the 

governing equations. Highly simplified forms of these equations can be 

used to understand many of the atmospheric motions, such as the 

geostrophic wind, gradient wind and surface winds around high and low 

pressure centers and atmospheric waves (Jacobson 2005). Another 

method of solving the equations is by using finite difference 

approximations and this method is implemented in the modern day NWP 

models. Numerical models solve the governing equations by discretizing 

them using various numerical schemes. The most commonly used 

numerical schemes in mesoscale models are the interpolation schemes 

and the finite difference schemes (Pielke 2002). An interpolation scheme 

uses polynomials to approximate the dependent variables in one or more 

spatial directions. Finite difference schemes approximate the differential 

terms in the governing equations using a truncated form of the Taylor 

series expansion and writes the equations as a form of difference 

equations. The latter is more widely used, due to its conceptual simplicity 



Chapter 2 

Department of Computer Science 58 

and ease of computational programming (Pielke 2002). The variables of 

the governing equations are defined on a grid and integrated in time using 

the finite difference schemes to arrive at a forecast. 

2.2.2 Grid structure 

To solve these equations at every point in the atmosphere would 

incur an extensive amount of computer time. Therefore the equations are 

solved on a finite number of regularly spaced points knows as a grid. 

Figure 2.7 shows the arrangement of the variables within a grid cell or a 

grid volume. Variables are arranged in the three Cartesian directions ∆x, 

∆y and ∆z. The resolution of the models is determined by the dimension 

of these grid cells, which would be set according to the phenomena of 

interest to be simulated. One common way of arranging the variables in 

the grid is to represent the thermodynamic variables such as potential 

temperature, specific humidity, liquid water content, etc. in the center of 

the grid cell. Velocity components u, v and w are placed at the boundaries 

of the grid cells, usually at 1/2∆x, 1/2∆y and 1/2∆z.  

 
Figure 2.7: Arrangement of the variables in a staggered grid cell (Stull 2000). 
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There are several ways in which the variables are arranged on a 

grid and detailed discussions of the properties of the various arrangements 

are discussed in Arakawa and Lamb (1977) and Messinger and Arakawa 

(1976). The arrangement shown in Figure 2.8 is known as a staggered 

grid and one of the most commonly used of this type (the Arakawa C 

grid). The type of grid used is related to the computational stability of the 

numerical schemes used and has its own pros and cons. Moreover, 

staggering introduces considerable complexity in, for example, diagnostic 

studies and in post-processing of the graphical outputs. 

2.2.3 Vertical levels 

Several methods are used to represent the vertical coordinates in a 

model. Vertical coordinates are converted to pressure coordinates 

(Eliassen 1949) and are chosen to represent the large scale motions due to 

their hydrostatic nature. This coordinate system is widely used since it 

greatly simplifies the governing equations, and due to its easiness in 

relating the quantities from observation such as radiosonde that provide 

the altitude of observations in pressure values (Satoh 2004). However, 

using pressure coordinates comes with its drawbacks as they do not 

represent the presence of complex orography very well. To overcome this 

problem, ‘normalized pressure’ or sigma coordinates were introduced by 

Phillips (1957). This is the most widely used vertical coordinate system in 

numerical models and is sometimes referred to as the terrain-following 

coordinate system. The vertical coordinate, σ, is defined as: 
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                                σ = P/Ps                                                                              (2.6) 

where P is the atmospheric pressure at the point in question and Ps is the 

surface pressure below the point in question. Usually, more levels are 

defined near the surface in order to better resolve the processes in the 

boundary layer. 

 

Figure 2.8: Horizontal cross section of a nested grid structure. 
Density fields are placed at the center and velocity 
fields are on the edges of each grid square (Wiki 
2008). 

2.2.4 Spatial boundary conditions 

In contrast to global models, limited area or mesoscale models 

have their grids artificially closed on the sides of the domain. Therefore, it 

becomes necessary to define the dependent variables at the perimeter of 

the domain. These defined values are known as the boundary conditions. 

Each boundary top, bottom and the lateral boundaries are treated 

differently in mesoscale models (Pielke 2002). The main idea behind 



Computational Modeling 

Cochin University of Science and Technology  61 

using a boundary condition is to filter out or damp the disturbances such 

as internal gravity waves from being reflected back into the simulation 

domain and modifying the solutions of interest. The bottom boundary of a 

model is where the ‘real’ boundary is defined as it is where the surface 

conditions are characterized. Transfer of physical properties such as heat 

and moisture across the bottom boundary plays a fundamental role in the 

development of meteorological circulations within the model. 

At the top of the model, one of the techniques used to damp 

disturbances is to use the top as a rigid lid. The vertical velocity is set to 

zero at the top level and pressure is adjusted to account for mesoscale 

perturbations at that level (Pielke 2002). Another commonly used 

technique introduced by Klemp and Lilly (1978) is to use a damping or an 

absorbing layer at the model top, where disturbances are effectively 

removed. In mesoscale models, it is always a practice to keep the lateral 

boundaries far away from the region of interest. In general, two types of 

lateral boundary condition are utilized (Pielke 2002): open lateral 

boundary – where mesoscale perturbations are allowed to pass in and out 

of the domain, and closed lateral boundary – where perturbations are not 

allowed to enter or exit. 

2.2.5 Parameterizations 

Parameterization is a method of approximating an unknown term 

by using one or more known terms or factors (Stull 2000). Some of the 
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physical processes in the atmosphere are well understood but too complex 

or too unwieldy to formulate in a model. Other physical processes are not 

sufficiently well understood to formulate physical laws and some of these 

important processes are not explicitly resolved by numerical models. 

These non-explicitly resolved processes are known as sub-grid-scale 

processes. In order to represent these processes in numerical models, 

these processes are parameterized. An example of one of the important 

sub-grid-scale processes is the turbulent mixing in the boundary layer. 

Surface heating leads to formation of turbulent eddies which have a scale 

of a few meters to about a hundred meters, which is an important process 

in heat and moisture transfer, and crucial to the development of 

thunderstorms. However, due to their small scale, they might not be 

resolved by the models with a horizontal grid size of the order of a few 

kilometers. Instead of calculating the motion and heat transport by each 

and every eddy, the net vertical heat flux transport by the eddies is 

parameterized to be represented over the large scale domains. This is also 

known as turbulence parameterization. Moreover, several physical 

processes such as cloud microphysics, radiation, surface properties and 

vegetation effects, which are not explicitly resolved, are parameterized in 

the models. Main parameterization schemes used for NWP models are:  

• Microphysics: Bulk schemes ranging from simplified physics 

suitable for mesoscale modeling to sophisticated mixed-phase 

physics suitable for cloud-resolving modeling.  
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• Convective parameterizations: Adjustment and mass-flux schemes 

for mesoscale models.  

• Surface physics: Multi-layer land surface models ranging from a 

simple thermal model to full vegetation and soil moisture models, 

including snow cover and sea ice.  

• Planetary boundary layer physics: Turbulent kinetic energy 

prediction or non-local K schemes. 

• Atmospheric radiation physics: Longwave and shortwave schemes 

with multiple spectral bands and a simple shortwave scheme. 

Cloud effects and surface fluxes are included. 

2.2.6 Space scale 

Meteorological phenomena occur over a wide range of space and 

time scales. Phenomena having short time scales also tend to have small 

spatial scales, and vice versa. Curiously, the ratio of (horizontal) space to 

time scales, which has units of velocity (ms−1), is roughly the same order 

of magnitude for all features ( 10 ms−1). Orlanski (1975) proposed a set 

of scales that include the micro, meso and macro scales. Table 2.1 shows 

these three definitions, which have gained wide acceptance, despite an 

even newer proposal by Fujita (1981).  

A meteorological numerical model is a simplified abstraction of 

the real atmosphere, which is valid for a certain length and timescale. The 

model is given by a set of equations and the corresponding numerical 
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solvers. Within the model, a scale dependent discretization of the 

atmosphere in space and time is necessary. Temporal and spatial 

resolutions of a mesoscale model are better than in a macroscale model 

but coarser than in a microscale model. Mesoscale models are used for 

purposes ranging from weather forecasting, to air-quality regulatory 

applications, and to basic research. 

Table 2.1: Scale definitions (Orlanski 1975). 

Name Scale Range Meteorological phenomena 
Microscale-γ  < 20 m Turbulence, plumes, roughness  

Microscale-β  20-200 m Dust devils, thermals, wakes  

Microscale-α  200-2000 m Tornadoes, short gravity waves  

Mesoscale-γ  2-20 km Thunderstorm convection, complex terrain flows, urban 
effects  

Mesoscale-β  20-200 km Nocturnal low-level jets, cloud clusters, sea breezes 

Mesoscale-α  200-2000 km Fronts, low-pressure systems, hurricanes  

Macroscale-β  2000-20000 
km 

Baroclinic waves  

Macroscale-α  > 20000 km Tidal waves 

Over the last decade, sophisticated mesoscale models like MM5 

(Fifth-Generation Penn State/NCAR Mesoscale Model), RAMS 

(Regional Atmospheric Modeling System), ARPS (Advanced Regional 

Prediction System), ARW, NMM, etc. were developed. The physical 

complexity of these models allows today’s most accurate simulations. 

However, its use needs expensive computational resources as well as 

years of professional experience. To acquire spatially distributed 
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information in two or three dimensions, a model is often the only 

possibility. In the mesoscale, the objects of interest vary on small 

distances, thus requiring spatially highly resolved information. Mesoscale 

models also help understanding processes by allowing full control over 

environmental parameters. Hence it is possible to determine the steering 

factors of a phenomenon and also to test sensitivity against changes in 

environmental conditions. Scientific goals of mesoscale modeling include 

accurate numerical simulations of mesoscale processes to understand the 

role of synoptic scale parameters for generation and evolution of 

mesoscale phenomena, to find the limits of predictability by means of 

sensitivity studies, and to understand interactions of the mesoscale with 

smaller and larger scales. 

2.3 WRF Modeling System  

The development of the WRF modeling system is a multi-agency 

effort intended to provide a next-generation mesoscale forecast model and 

data assimilation system to advance both the understanding and prediction 

of mesoscale weather and accelerate the transfer of research advances into 

operations. The WRF modeling system was developed as a collaborative 

effort among the US organizations, the National Centre for Atmospheric 

Research (NCAR) Mesoscale and Microscale Meteorology (MMM) 

Division, the National Oceanic and Atmospheric Administration’s 

(NOAA), National Centers for Environmental Prediction (NCEP) and 

Forecast System Laboratory (FSL), the Department of Defense’s Air 
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Force Weather Agency (AFWA) and Naval Research Laboratory (NRL), 

the Center for Analysis and Prediction of Storms (CAPS) at the 

University of Oklahoma, and the Federal Aviation Administration (FAA) 

along with the participation of a number of university scientists. The 

model is designed to be a flexible, state-of-the-art, portable code that is 

efficient in a massively parallel computing environment. A modular 

single-source code is maintained that can be configured for both research 

and operations. It offers numerous physics options, thus tapping into the 

experience of the broad modeling community. Advanced data 

assimilation systems are being developed and tested in tandem with the 

model. WRF is maintained and supported as a community model to 

facilitate wide use, particularly for research and teaching, in the university 

community. It is suitable for use in a broad spectrum of applications 

across scales ranging from meters to thousands of kilometers. Such 

applications include research and operational NWP, data assimilation and 

parameterized-physics research, downscaling climate simulations, driving 

air quality models, atmosphere-ocean coupling, and idealized simulations 

(e.g. boundary-layer eddies, convection, baroclinic waves). The WRF 

modeling system infrastructure is given in Figure 2.9. The WRF system 

consists of these major components:  

• WRF Preprocessing System (WPS)  

• Dynamic solver  

• WRF Postprocessor (WPP) and graphics tools 
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Figure 2.9: WRF modeling system infrastructures.  

There are two dynamics solvers in the WRF for its computation of 

the atmospheric governing equations, and the variants of the model are 

known as: the ARW solver (originally referred to as the Eulerian mass or 

“em” solver) developed primarily at NCAR and the NMM solver 

developed at NCEP.  

2.3.1 ARW model 

The ARW system consists of the ARW dynamics solver together 

with other components of the WRF system needed to produce a 

simulation. Thus, it also encompasses physics schemes, initialization 

routines, post processing and a data assimilation package. ARW solver 

main characteristics are:  
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• Equations: Fully compressible, Euler non-hydrostatic with a run-

time hydrostatic option available. Conservative for scalar 

variables.  

• Prognostic Variables: Velocity components u and v in Cartesian 

coordinate, vertical velocity w, perturbation potential temperature, 

perturbation geopotential, and perturbation surface pressure of dry 

air. Optionally, turbulent kinetic energy and any number of scalars 

such as water vapour mixing ratio, rain/snow mixing ratio, and 

cloud water/ice mixing ratio.  

• Vertical Coordinate: Terrain-following hydrostatic-pressure, with 

vertical grid stretching permitted. Top of the model is a constant 

pressure surface.  

• Horizontal Grid: Arakawa C-grid staggering.  

• Time Integration: Time-split integration using a 3rd order Runge-

Kutta scheme with smaller time step for acoustic and gravity-wave 

models. 

• Spatial Discretization: 2nd to 6th order advection options in 

horizontal and vertical.  

• Turbulent Mixing and Model Filters: Sub-grid scale turbulence 

formulation in both coordinate and physical space. Divergence 

damping, external-mode filtering, vertically implicit acoustic step 

off-centering. Explicit filter option also available.  
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• Initial Conditions: Three dimensional for real-data, and one-, two- 

and three-dimensional using idealized data. A number of test cases 

are provided.  

• Lateral Boundary Conditions: Periodic, open, symmetric, and 

specified options available.  

• Top Boundary Conditions: Gravity wave absorbing (diffusion or 

Rayleigh damping). w = 0 top boundary condition at constant 

pressure level.  

• Bottom Boundary Conditions: Physical or free-slip.  

• Earth’s Rotation: Full Coriolis terms included.  

• Mapping to Sphere: Three map projections are supported for real-

data simulation: polar stereographic, Lambert-conformal, and 

Mercator. Curvature terms included.  

• Nesting: One-way, two-way, and moving nests.  

2.3.2 NMM model 

The NMM is designed to be a flexible, state-of-the-art atmospheric 

simulation system that is portable and efficient on available parallel 

computing platforms. The model is suitable for use in a broad range of 

applications across scales ranging from meters to thousands of kilometers. 

It consists of the NMM dynamics solver together with other components 

of the WRF system needed to produce a simulation. Thus, it also 

encompasses physics schemes, initialization routines and post processing. 
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Model physics parameterizations are quite similar in both dynamic 

solvers. The key features of NMM are:  

• Fully compressible, non-hydrostatic model with a hydrostatic 

option. 

• Hybrid (sigma-pressure) vertical coordinate.  

• Arakawa E-grid.  

• Forward-backward scheme for horizontally propagating fast 

waves, implicit scheme for vertically propagating sound waves, 

Adams-Bashforth Scheme for horizontal advection, and Crank-

Nicholson scheme for vertical advection. The same time step is 

used for all terms.  

• Conservation of a number of first and second order quantities, 

including energy and enstrophy. 

2.3.3 WRF system requirements 

The WRF modeling system software installation is fairly 

straightforward on the ported platforms. The model-component portion of 

the package is mostly self-contained, meaning that WRF model requires 

no external libraries (such as for various linear algebra solvers).  The 

WPS package, separate from the WRF source code, has additional 

external libraries that must be built (in support of GRIB2 processing). The 

one external package that both of the systems require is the netCDF 

library, which is one of the supported I/O API packages. The WRF code 
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has been successfully ported to a number of Unix-based machines. Table 

2.2 shows a list of the supported combinations of hardware and software 

for WRF. The WRF model may be built to run on a single processor 

machine, a shared-memory machine (that use OpenMP API), a distributed 

memory machine (with the appropriate MPI libraries), or on a distributed 

cluster (utilizing both OpenMP and MPI).  

Table 2.2: A list of the supported combinations of hardware and 
software for WRF. 

Vendor Hardware Operating 
System 

Compiler 

Cray   X1   UniCOS vendor 

Cray   AMD  Linux  PGI/PathScale 

IBM   Power Series   AIX   vendor 

SGI   IA64 / Opteron   Linux   Intel 

COTS*   IA32   Linux Intel/ PGI/gfortran/ g95/PathScale 

COTS*   IA64 / Opteron   Linux Intel/ PGI/ gfortran/ PathScale 

Mac  Power Series  Darwin xlf/ g95/ PGI/ Intel 

Mac  Intel  Darwin g95/ PGI/ Intel 

The WRF model is written in FORTRAN (what many refer to as 

FORTRAN 90). The software layer, RSL-LITE, which sits between WRF 

and the MPI interface, are written in C. Ancillary programs that perform 

file parsing and file construction, both of which are required for default 

building of the WRF modeling code, are written in C. Thus, FORTRAN 

90/95 and C compilers are required. Additionally, the WRF build 

mechanism uses several scripting languages: including perl (to handle 
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various tasks such as the code browser designed by Brian Fiedler), C-

shell and Bourne shell. The traditional UNIX text/file processing utilities 

are used: make, M4, sed, and awk. If OpenMP compilation is desired, 

OpenMP libraries are required.  The WRF I/O API also supports netCDF, 

PHD5 and GriB-1 formats, hence one of these libraries needs to be 

available on the computer used to compile and run WRF. 

2.3.4 WRF software framework 

The WRF Software Framework (WSF) (Figure 2.10) provides the 

infrastructure that allows efficient use of an array of high performance 

computing (HPC) systems, architectures which continue to evolve as we 

move into petascale computing and beyond. The architecture 

accommodates multiple dynamics solvers, physics packages that plug into 

the solvers through a standard physics interface and programs for 

initialization. The WFS is organized functionally as a three-level 

hierarchy (Figure 2.10) superimposed over the model subroutine call tree. 

The highest levels of the call tree correspond to the driver layer and the 

lowest levels correspond to the model layer. A mediation layer provides 

the interface between the driver and model layers.  

The driver is responsible for top-level control of initialization, 

time-stepping, I/O, instantiating domains, maintaining the nesting 

hierarchy between domain type instances, and setting up and managing 

domain decomposition, processor topologies and other aspects of 
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parallelism. The model layer comprises the subroutines that perform 

actual model computations. Model subroutines are written to be callable 

over an arbitrarily shaped piece of the three-dimensional model domain. 

The mediation layer provides the glue between the model and driver 

layers. The mediation layer contains information pertaining to both the 

model layer and the driver layer: model-specific information such as the 

flow of control to compute a time step on a domain and driver-specific 

mechanisms such as tiling and communication.  

 
Figure 2.10: WRF software framework. 

WRF simulations are typically carried out on HPC clusters as they 

require an effective compute resource that can handle complex and 

parallel simulations. HPC clusters are scalable performance compute 

solutions based on industry standard hardware connected by a private 

system high speed network. The main benefits of clusters are 
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affordability, flexibility, availability, high performance and scalability. A 

cluster uses the aggregated power of compute server nodes to form a high 

performance solution for parallel applications such as the WRF model. 

When more compute power is needed, it can be simply achieved by 

adding more server nodes to the cluster. The way HPC clusters are 

architected (i.e. multi-core, multi-processor based HPC servers with high 

speed interconnects) has a great influence on the overall application 

performance and productivity. In order to meet the demand of more 

powerful HPC servers, more execution cores (e.g. dual, quad-core) 

are being integrated into each processor and more processors are 

being tightly connected (e.g.  4, 8, 16 processors connected through 

HyperTransportTM technology, a packet-based, high-bandwidth, 

scalable, low latency point-to-point technology that links processors to 

each other, processors to coprocessors and processors to I/O and 

peripheral controllers). The cluster interconnect is very critical to deliver 

efficiency and scalability for the applications as it needs to handle the 

networking requirements of each CPU core without imposing additional 

networking overhead. In a multi-core multi-socket HPC server based 

cluster, the driving factors of performance and scalability for WRF have 

shifted from the frequency and cache size per core to the memory and 

interconnect throughput per core. The memory bottleneck can be solved 

by using interconnects that support Direct Memory Access (DMA), 

Remote DMA and zero-copy transactions. 
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2.3.5 WRF workflow  

Configuring and running WRF is a very complicated process. The 

typical workflow entails editing multiple configuration files (namelist 

files), setting environment variables, and running executables in the 

correct order. Figure 2.11 illustrates the program components and data 

flow in WRF model. Running real cases in WRF requires the following 

steps.  

WPS: The WPS is a set of three programs (geogrid.exe, ungrib.exe, and 

metgrid.exe) whose collective role is to prepare input to the real program 

for real-data simulations. Each of the programs performs one stage of the 

preparation: geogrid defines model domains and interpolates static 

geographical data to the grids; ungrib extracts meteorological fields from 

GRIB formatted files; and metgrid horizontally interpolates the 

meteorological fields extracted by ungrib to the model grids defined by 

geogrid. The work of vertically interpolating meteorological fields to 

WRF eta levels is performed within the real program. The data flow 

between the programs of the WPS is shown in Figure 2.11. Each of the 

WPS programs reads parameters from a common namelist file, as shown 

in the figure. This namelist file has separate namelist records for each of 

the programs and a shared namelist record, which defines parameters that 

are used by more than one WPS program. A brief description of each of 

the three main programs is given below: 
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geogrid.exe: The purpose of geogrid is to define the simulation domains, 

and interpolate various terrestrial data sets to the model grids. The 

simulation domains are defined using information specified by the user in 

the “geogrid” namelist record of the WPS namelist file, namelist.wps. In 

addition to computing the latitude, longitude, and map scale factors at 

every grid point, geogrid will interpolate soil categories, land use 

category, terrain height, annual mean deep soil temperature, monthly 

vegetation fraction, monthly albedo, maximum snow albedo, and slope 

category to the model grids by default. Besides interpolating the default 

terrestrial fields, the geogrid program is general enough to be able to 

interpolate most continuous and categorical fields to the simulation 

domains. Output from the geogrid is written in the NetCDF I/O format.  

ungrib.exe: The ungrib program reads GRIB files, "degribs" the data, and 

writes the data in a simple format, called the intermediate format. The 

GRIB files contain time-varying meteorological fields and are typically 

from another regional or global model, such as NCEP's NAM or GFS 

models. The ungrib program can read GRIB Edition 1 (GRIB1) and, if 

compiled with a GRIB Edition 2 option (GRIB2). GRIB files typically 

contain more fields than are needed to initialize WRF. Both versions of 

the GRIB format use various codes to identify the variables and levels in 

the GRIB file. Ungrib uses tables of these codes – called Vtables, for 

"variable tables" – to define which fields to extract from the GRIB file 
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and write to the intermediate format. Vtables for common GRIB model 

output files are provided with the ungrib software. 

metgrid.exe: The metgrid program horizontally interpolates the 

intermediate-format meteorological data that are extracted by the ungrib 

program onto the simulation domains defined by the geogrid program. 

The interpolated metgrid output can then be ingested by the WRF real 

program. The range of dates that will be interpolated by metgrid are 

defined in the “share” namelist record of the WPS namelist file, and date 

ranges must be specified individually in the namelist for each simulation 

domain. Since the work of the metgrid program, like that of the 

ungribprogram, is time-dependent, metgrid is run every time a new 

simulation is initialized. Output from the metgrid is written in the netCDF 

I/O.  

WRF: The WRF code contains an initialization program (real.exe/ 

real_nmm.exe) and a numerical integration program (wrf.exe). The real.exe/ 

real_nmm.exe portion of the code generates initial and boundary conditions 

for the wrf.exe program that are derived from output files provided by the 

WPS. The real.exe/real_nmm.exe program performs the following tasks:  

• Reads data from the namelist and allocates space.  

• Initializes remaining variables.  

• Reads input data from the WPS. 
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• Prepares soil fields for use in the model (usually vertical 

interpolation to the requested levels). 

• Checks to verify soil categories, land use, land mask, soil 

temperature and sea surface temperature are all consistent with 

each other. 

• Vertically interpolates to the models computational surfaces. 

• Generates initial and lateral condition file. 

The wrf.exe is the a numerical integration program that reads the 

initial conditions and the lateral boundary conditions set up for the 

forecast domain during the preprocessing steps to provide forecast over 

the specified duration. The settings in the namelist.input file are used to 

configure WRF model (real.exe/real_nmm.exe and wrf.exe). The data 

flow between the programs of the WRF module is shown in Figure 2.11. 

WPP: The WPP (wrfpost.exe and copygb.exe) was designed to 

interpolate both ARW and NMM output from their native grids to 

National Weather Service (NWS) standard levels (pressure, height, etc.) 

and standard output grids (AWIPS, Lambert Conformal, polar-

stereographic, etc.) in NWS and WMO GRIB1 format. This package also 

provides an option to output fields on the model’s native vertical levels. 

GRADS: The Grid Analysis and Display System (GrADS) is an 

interactive tool that is used for access, manipulation, and visualization of 

earth science data with different file format (GRIB, NetCDF, HDF and 
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BUFR). Operations are executed interactively by entering FORTRAN-

like expressions at the command line and also add their own functions as 

external routines written in any programming language. Grads can 

visualize the WPP output in image format, ASCII format and to standard 

out. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11:  WRF workflow chart. 
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Accurate forecasting of thunderstorms and severe thunderstorms is 

critical for a large range of users in the community. The general public 

can benefit from timely forecasts and warnings of impending severe 

thunderstorms. Thunderstorm forecasting typically has proved to be one 

of the most difficult tasks, due to their rather small spatial and temporal 

extension and the inherent non-linearity of their dynamics and physics 

(Orlanski 1975). ANN based approach can be used to model complex 

relationships between inputs and outputs or to find patterns in data. ANN 

can be viewed as a mathematical model or computational model that is 

inspired by the structure or functional aspects of biological neural 

networks. Neural networks are designed to extract existing patterns from 

noisy data. The procedure involves training a network (training phase) 

with a large sample of representative data, after which one exposes the 

network to data not included in the training set (validation or prediction 
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phase) with the aim of predicting the new outcomes (Bishop 1995). The 

interest in neural networks comes from the networks’ ability to mimic 

human brain as well as its ability to learn and respond. As a result, neural 

networks have been used in a large number of applications and have 

proven to be effective in performing complex functions in a variety of 

fields (Haykin 1994). 

ANN have proven to be powerful and general technique for 

machine learning (Shavlik et al. 1991). Most successful application of 

neural networks involved pattern recognition, statistical mapping or 

modeling (Sentiono et al. 2002). According to Bailey and Thompson 

(1990), successful application can include signal validation, process 

monitoring, diagnostics, signal and information processing and control of 

complex system. James et al. (2000) mentioned that, ANNs have the 

ability to tackle the problem of complex relationships among variables 

that cannot be accomplished by more traditional methods. ANNs are 

excellent tools for complex manufacturing processes that have many 

variable and complex processes. According to Palade et al. (2001), ANNs 

represent an excellent tool that has been used to develop a wide range of 

real world applications, especially in case when traditional solving 

methods fail. The advantages of ANNs such as ideal learning ability from 

data, classification capabilities and generalization for situation not contain 

training data set, computationally fastness once trained due to parallel 

processing, noise tolerance. There were these advantages that make 
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ANNs to be successfully applied to various real world problems, 

including medical diagnosis (Hayashi et al. 2000), image computing, 

speech recognition, process control and modeling (Palade et al. 2001). 

However, a little attention was paid to the use of ANNs in weather 

forecasting (Maqsood et al. 2000 and 2004; Bodri and Cermak 2000; Luk 

et al. 2000; Wedge et al. 2005; Steidley et al. 2005; Chaudhury and 

Chattopadhyay 2005).  

 Bodri and Cermak (2000) developed an ANN using 38 year of 

rainfall data to predict monthly and yearly precipitation levels for multiple 

sites in the Czech Republic. Using spatial and temporal data of recent 

rainfall, Luk et al. (2000) developed an ANN for short-term precipitation 

prediction focused on predicting flash flood rainfall amounts for 15 min 

ahead for various areas of western Sydney, Australia. Maqsood et al. 

(2004) used an ensemble of ANNs to provide 24 hour (h) predictions for air 

temperature, wind speed, and humidity at the Regina Airport in 

Canada. Wedge et al. (2005) developed an ANN for prediction of waves 

spilling over sea walls in using sea conditions and wall properties as 

inputs. Steidley et al. (2005) used ANNs to predict tidal water levels for 

periods of 3–48 h ahead for a shallow embayment on the coast of Texas in 

the United States. Chaudhury and Chattopadhyay (2005) designed a feed-

forward multi-layered ANN model to estimate the maximum surface 

temperature and relative humidity. The recent advances in neural network 

methodology for modeling non-linear, dynamical phenomena along with the 
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impressive successes in a wide range of applications, motivated to 

investigate the application of ANNs for the prediction of hourly temperature 

and relative humidity needed for the genesis of severe thunderstorms over 

Kolkata.  

In this chapter, experiments are conducted with ANN model to 

predict severe thunderstorms that occurred over Kolkata (22.520N, 88.370E) 

using thunderstorm affected meteorological parameters. The geographical 

location of the study area is given in Figure 3.1. 

 

Figure3.1: The geographical location of Kolkata in West Bengal. 

The performance of six learning algorithms namely Step (STP), Momentum 

(MOM), Quick Propagation (QKP), Delta-Bar-Delta (DBD), CG and LM are 

evaluated using predicted hourly surface temperature and relative humidity 

during thunderstorm days. The accuracy of the predictions was evaluated by 

the correlation coefficient (CC), the root mean-square error (RMSE), the 
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mean absolute error (MAE) and Percent Correct (PC) between the measured 

and predicted values. The developed ANN model with LM algorithm was 

applied to derive thunderstorm forecast from 1 to 24 h ahead at Kolkata. The 

goal of this study was to use ANNs to predict hourly temperature and relative 

humidity during thunderstorm days from 1 to 24 h ahead using prior weather 

data as inputs.  

3.1 Data and Methodology 

3.1.1 ANN experimental setup 

The developed ANN model is based on one of the neural network 

architecture named MLPN model (also known as multilayer feed-forward 

network). This is the most popular network architecture in use today. This 

is the type of network which the units each perform a biased weighted 

sum of their inputs and pass this activation level through a transfer 

function to produce their output, and the units are arranged in a layered 

feed forward topology. The network thus has a simple interpretation as a 

form of input-output model, with the weights and thresholds (biases), the 

free parameters of the model. Such networks can model functions of 

almost arbitrary complexity with the number of layers and the number of 

units in each layer, determining the function complexity. Important issues 

in multilayer perceptron design include specification of the number of 

hidden layers and the number of units in these layers (Hagan et al. 1996). 

Once the number of layers and number of units in each layer have been 
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selected, the network’s weights and thresholds must be set so as to 

minimize the prediction error made by the network. This is the role of the 

learning algorithms. The best known example of a neural network 

learning algorithm is BP. Modern second-order algorithm such as CG and 

LM are substantially faster for many problems (Bishop 1995; Shepherd 

1997). There are also heuristic modifications of BP which work well for 

some problem domains, such as QKP (Fahlman1988) and DBD (Jacobs 

1988). 

This study evaluates the utility of MLPN for estimating hourly 

surface temperature and relative humidity. Designing ANN model follows 

a number of systemic procedures. In general, there are five basics steps: 

(1) collecting data, (2) preprocessing data, (3) building the network, (4) 

train and (5) test performance of model. The basic flow in designing ANN 

model is given in Figure 3.2. The hourly surface weather parameters 

namely mean sea level pressure (hPa), relative humidity (%) and wind 

speed (ms-1) of 3 years (April and May 2007 to 2009) collected from the 

India meteorological department (IMD) of Kolkata were used as the input 

data for training and testing the ANN model which will be used for the 

prediction of hourly temperature. The hourly surface weather parameters 

namely hourly mean sea level pressure (hPa), temperature (0C) and wind 

speed (ms-1) of 3 years (April and May 2007 to 2009) of Kolkata were 

used as the input data for training and testing the ANN model which will 

be used for the prediction of hourly relative humidity. The other 
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additional input parameters for each model are month, day and hour of the 

observation. The total length of the data record included for ANN model 

is more than 4000. Fragment of the data used for this study are attached in 

the appendix.  

 

 

 

 

 

 

 

Figure 3.2: Basic flow for designing ANN model. 

After data collection, two data preprocessing procedures are 

conducted to train the ANNs more efficiently. These procedures are: (1) 

solve the problem of missing data and (2) normalize data. The missing 

data are replaced by the average of neighboring values. Neural networks 

generally provide improved performance with the normalized data. The 

use of original data as input to neural network may cause a convergence 

problem (Khan and Ondrusek 2000). All the weather data sets were 

therefore, transformed into values between -1 and 1 through dividing the 
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difference of actual and minimum values by the difference of maximum 

and minimum values. At the end of each algorithm, outputs were de-

normalized into the original data format for achieving the desired result. 

The configuration of the neural network depends highly on the 

problem. In this study, separate models with same configuration have 

been built to predict both surface parameters namely temperature and 

relative humidity. A three layer structure (one input layer, one hidden 

layer and one output layer) was selected with hyperbolic tangent (tanh) 

transfer function for hidden layer and linear transfer function for output 

layer. Figure 3.3 provides an overview of the structure of MLPN model 

for the prediction of temperature and relative humidity. The chosen 

weather data were divided into two randomly selected groups, the training 

group and test group. The hourly surface parameters during April and 

May 2007-2008 and April 2009 correspond to training group and the 

hourly surface parameters of May 2009 correspond to test group. Major 

numbers of thunderstorms are occurred over Kolkata in April and May. 

Thus the hourly data sets of these two months are selected for training and 

testing. Networks were trained for a fixed number of epochs. The error 

level was set to a relatively small value (10-4). The optimal number of 

hidden neurons was obtained experimentally by changing the network 

design and running the training process several times until a good 

performance was obtained. A random number generator was used to 

assign the initial values of weights and thresholds with a small bias as a 
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difference between each weight connecting two neurons together since 

similar weights for different connections may lead to a network that will 

never learn. Hourly surface temperature is used as test data for the first 

model and hourly relative humidity for second model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Architecture of MLPN for the prediction of (a) 
temperature and (b) relative humidity. 
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The 24 h ANN model outputs of surface temperature and relative 

humidity at Kolkata (22.520N, 88.370E) during three severe thunderstorm 

days of May 2009 (3, 11 and 15 May 2009) were used to evaluate these 

models. The capability of six different learning algorithms in predicting 

thunderstorms were studied and their performances were compared for 

the prediction of surface temperature and relative humidity. The learning 

algorithms took for these studies are STP, MOM, CG, QKP, LM and 

DBD. Performance and reliabilities of the models were then evaluated by 

a number of statistical measures like RMSE, MAE, CC and PC. The 

developed ANN model with LM algorithm was applied to derive 

thunderstorm forecast from 1 to 24 h ahead at Kolkata from the data of 3 

consecutive years (April and May 2007 – 2009). Models were created to 

predict temperature and relative humidity at hourly intervals with 1, 3, 6, 

12 and 24 h ahead. The results are evaluated using MAE, RMSE, CC and 

PC. The ANN model simulations are carried out using the NeuroSolutions 

software developed by NeuroDimension Inc. of Florida (NeuroDimension 

2005). The details of the NeuroSolutions software are given in appendix. 

3.1.2 Statistical analysis 

Verifying forecasts of continuous variables measures how the 

values of the forecasts differ from the values of the observations. The 

performances of the models developed in this study were assessed using 

various standard statistical performance evaluation criteria. The following 
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statistical parameters were calculated for the comparisons between the 

forecast and observation data. 

MAE: This is the average over the verification sample of the absolute 

values of the differences between forecast and the corresponding 

observation. The MAE is a linear score which means that all the 

individual differences are weighted equally in the average. The MAE is a 

common measure of forecast error in time series analysis. It measures 

accuracy (the level of agreement between the forecast and the 

observations) for continuous variables. The MAE is given by 

∑ −=
−

N

i
ii OF

N
MAE

1

1             (3.1) 

where Fi is the forecast and Oi is the observation. The difference between 

the forecast and the observation is the error. The lower the errors, the 

greater the accuracy. The range is 0 to infinity. The perfect score is 0. 

RMSE: It is a frequently used measure of the differences between values 

predicted by a model and the values actually observed. It measures 

average error, weighted according to the square of the error. It does not 

indicate the direction of the deviation. The RMSE puts greater influence 

on large errors than smaller errors, which may be a good thing if large 

errors are especially undesirable, but may also conservative forecasting. 

The RMSE is given by 
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CC: This indicates the strength and direction of a linear relationship 

between two random variables. That means it measures the strength of the 

linear relationship between the forecasts and observations. The r is given 

by 
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The value of r is such that –1 < r < +1.  The + and – signs are used 

for positive linear correlations and negative linear correlations, 

respectively. If F and O have a strong positive linear correlation, r is close 

to +1.  An r value of exactly +1 indicates a perfect positive fit. A 

correlation greater than 0.8 is generally described as strong, whereas a 

correlation less than 0.5 is generally described as weak. 

PC: It is used to represent the number of times out of 100 a task is 

performed correctly. Percentages represent the portion of 100 outcomes 

that are successful or meet certain criteria. The temperature forecast is 

‘Correct’ when the difference between the forecasted temperature and the 

actual is ±2°C or less. The relative humidity forecast is ‘Correct’ when 

the difference between the forecasted relative humidity and the actual is 

±10% or less. 
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3.2 Learning Algorithms for the Present Study 

 In neural network, the learning algorithms plays quite important 

role in the process. An appropriate topology may still fail to give a better 

model, unless trained by a suitable learning algorithm. A good learning 

algorithm will shorten the training time, while achieving a better 

accuracy. Therefore, training process is an important characteristic of the 

ANNs, whereby representative examples of the knowledge are iteratively 

presented to the network, so that it can integrate this knowledge within its 

structure. There is a number of learning algorithms used to train a MLPN 

and a frequently used one is called the BP learning algorithm. The BP 

algorithm, which is based on searching an error surface using gradient 

descent for points with minimum error, is relatively easy to implement. 

The pseudo code for BP algorithm (Mitchell 1997) is given as follows:  

Pseudo Coding  

Assign all network inputs and output 

Initialize all weights with small random numbers, typically between -1 

and 1  

repeat  

    for every pattern in the training set  

        Present the pattern to the network  

//        Propagated the input forward through the network:  

            for each layer in the network   
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                for every node in the layer   

                    1. Calculate the weight sum of the inputs to the node   

                    2. Add the threshold to the sum   

                    3. Calculate the activation for the node   

                end   

            end  

//        Propagate the errors backward through the network  

             for every node in the output layer   

                calculate the error signal   

            end  

            for all hidden layers   

                for every node in the layer   

                    1. Calculate the node's signal error   

                    2. Update each node's weight in the network   

                end   

            end  

//        Calculate Global Error  

            Calculate the Error Function  

    end  

while ((maximum  number of iterations < than specified) AND   

          (Error Function is > than specified)) 

However, the BP algorithm has some problems for many applications. 

The algorithm is not guaranteed to find the global minimum of the error 
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function since gradient descent may get stuck in local minima, where it 

may remain indefinitely. In addition to this, long training sessions are 

often required in order to find an acceptable weight solution because of 

the well-known difficulties inherent in gradient descent optimization. 

Therefore, a lot of variations to improve the convergence of the BP were 

proposed such as DBD, QKP (Fahlman1988; Rumelhart et al. 1986; 

Jacobs 1988). Optimization methods such as second-order methods (CG, 

QN and LM) have also been used for ANN learning in recent years. The 

LM algorithm combines the best features of the Gauss–Newton technique 

and the steepest-descent algorithm, but avoids many of their limitations. 

In particular, it generally does not suffer from the problem of slow 

convergence (Hagan and Menhaj 1994). Six learning algorithms were 

applied in this study, in order to identify the one which trains a given 

network more efficiently. All of them are variations of basic BP 

algorithms. Variations of these learning algorithms are given in the 

following sections: 

3.2.1 STP algorithm 

Gradient descent (GD) learning rules provide first order gradient 

information about the network’s performance surface (e.g. BP and real 

time recurrent learning). The most straightforward way of reaching the 

bottom (the minima) given which way is up, is to move in the opposite 

direction. With this scenario, the only variable is the step size (i.e. how far 

should it move before obtaining another directional estimate). If the steps 
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are too small, then it will take too long to get there. If the steps are too 

large, then it may overshoot the bottom, causing it to rattle or even 

diverge. The STP uses this procedure to adapt the weights of the 

activation component that it is stacked on (NeuroSolutions Manual 2003). 

3.2.2 MOM algorithm 

Step components try to find the bottom of a performance surface 

by taking steps in the direction estimated by the attached BP component. 

Network learning can be very slow, if the step size is small. It can 

oscillate or diverge if it is chosen too large. For further complicate 

matters, a step size that works well for one location in weight space may 

be unstable in another. The momentum provides the gradient descent with 

some inertia, so that it tends to move along a direction that is the average 

estimate for down. The amount of inertia (i.e. how much of the past to 

average over) is imposed by the momentum parameter. The higher the 

momentum, the more it smoothes the gradient estimate and the less effect 

a single change in the gradient has on the weight change. The major 

benefit is the added ability to breakout of local minima that a step 

component might otherwise get caught in. Note that oscillations may 

occur if the momentum is set too high. The momentum parameter is the 

same for all weights of the attached component. An access point has been 

provided for the step size and momentum allowing access for adaptive 

and scheduled learning rate procedures (NeuroSolutions Manual 2003). 
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3.2.3 CG algorithm 

The GD algorithms (like “step” and “momentum”) use only the 

local approximation of the slope of the performance surface (error versus 

weights) to determine the best direction to move the weights in order to 

lower the error. Second order methods use or approximate second 

derivatives (the curvature instead of just the slope) of the performance 

surface to determine the weight update. This information is very 

important for determining the optimal update direction. Since this method 

makes use of the second derivatives of the function to be optimized, it is 

typically referred to as the second order methods (Jalali-Heravi et al. 

2008). 

3.2.4 LM algorithm 

The LM algorithm is one of the most appropriate higher-order 

adaptive algorithms known for minimizing the Mean Square Error (MSE) 

of a neural network. It is a member of a class of learning algorithms 

called "pseudo second order methods". Standard gradient descent 

algorithms use only the local approximation of the slope of the 

performance surface (error versus weights) to determine the best direction 

to move the weights in order to lower the error. Second order methods use 

the Hessian or the matrix of second derivatives (the curvature instead of 

just the slope) of the performance surface to determine the weight update, 

while pseudo-second order methods approximate the Hessian. In 
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particular the LM utilizes the so called Gauss-Newton approximation that 

keeps the Jacobian matrix and discards second order derivatives of the 

error. If the performance surface is quadratic (which is only true in 

general for linear systems) then using a second order method can find the 

exact minimum in one step. A key advantage of the LM approach is that it 

defaults to the gradient search when the local curvature of the 

performance surface deviates from a parabola, which may happen often in 

neural computing (NeuroSolutions Manual 2003). 

3.2.5 QKP algorithm 

The QKP uses information about curvature of the error surface. 

This requires the computation of the second order derivatives of the error 

function during training. The QKP assumes the error surface, a function 

of connection weights, to be locally quadratic (i.e a parabola) and 

attempts to jump in one step from the current position directly into the 

minimum of the parabola. The QKP computes the derivatives in the 

direction of each weight. After computing the first gradient as in regular 

back propagation, a direct step to the error is attempted by changing the 

weight (Chakraborty and Chakraborty2002). 

3.2.6 DBD algorithm 

The DBD is an adaptive step-size procedure for searching a 

performance surface. The step size and momentum are adapted according 

to the previous values of the error at the neurons. If the current and past 
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weight updates are both of the same sign, it increases the learning rate 

linearly. The reasoning is that if the weight is being moved in the same 

direction to decrease the error, then it will get there faster with a larger 

step size. If the updates have different signs, this is an indication that the 

weight has been moved too far. When this happens, the learning rate 

decreases geometrically to avoid divergence (Haciismailoglu et al. 2009). 

A number of researchers have carried out comparative studies of 

MLPN learning algorithms. Kisi and Uncuoglu (2005) compared LM, CG 

and resilient algorithm for stream-flow forecasting and determination of 

lateral stress in cohesionless soils. They found that LM algorithm was 

faster and achieved better performance than the other algorithms in 

learning. Esugasini et al. (2005) considered the problem of breast cancer 

diagnosis and compared the classification accuracy of the standard 

steepest descent against the classification accuracy of the gradient descent 

with momentum and adaptive learning, resilient BP, QN and LM 

algorithms. The simulations show that the neural network using the LM 

algorithm achieved the best classification performance. Raju et al. (2011) 

demonstrated the application of ANNs in predicting the weekly spring 

discharge with three different learning algorithms like QKP algorithm, 

batch BP algorithm and LM algorithm. They conclude that the QKP 

algorithm had a better performance to the application. Ubeyli and Guler 

(2004) compared BP, DBD, extended DBD, QKP, and LM algorithms to 

compute the quasi-static parameters, the characteristic impedance and the 
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effective dielectric constant, of the asymmetric coplanar waveguides 

(ACPWs). The results of the LM algorithm for the quasi-static parameters 

of the ACPWs were in very good agreement with the results available in 

the literature. The results of above studies have illustrated that the relative 

performance of algorithms depends on the problem being tackled. 

3.3 Case Description 

For the ANN model validation, three severe thunderstorm cases of 

May 2009 (3, 11 and 15 May 2009) have been taken and the description 

of each case is as follows: 

Case 1 was a severe thunderstorm, which was reported on 3 May 

2009 over Kolkata with a maximum speed of 61.2 kilometer per hour 

(kmph) lasting for a few minutes. This intense convective event produced 

31.4 mm (millimeter) rainfall over Kolkata. In the synoptic charts at 0000 

UTC (Coordinated Universal Time) a low pressure area was found at the 

surface over north Chattisgarh and adjoining Jharkhand and a trough from 

this extending southward up to interior Tamilnadu across Andhra Pradesh 

is found. At 1.5 km above sea level (a.s.l) cyclonic circulation is seen 

over west Uttar Pradesh, a trough from this extends southeastwards up to 

south peninsula across east Madhya Pradesh and Andhra Pradesh. No 

significant trough in mid troposphere. No subtropical westerly jet maxima 

were seen over the region. A few places recorded moderate rainfall over 

Gangetic West Bengal (GWB) and isolated rainfall over Orissa, 
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Chattisgarh and Bihar. Bankura recorded 24.9 mm and Sriniketan 38.2 

mm of rainfall.  

Case 2 was a severe thunderstorm, which was reported on 11 May 

2009 over Kolkata with squally winds of the order of 87 kmph. Rainfall 

of 33.3 mm was reported over Kolkata. The synoptic charts show a trough 

at sea level chart from east Uttar Pradesh to north Tamilnadu across east 

Madhya Pradesh and Andhra Pradesh. Cyclonic circulation in lower 

levels is found over Bihar and neighborhood. Trough from this extends up 

to extreme south peninsula across Chattisgarh, Telangana and 

Rayalaseema. Another cyclonic circulation existed over Arunachal 

Pradesh and adjoining Assam and Meghalaya. A trough from Arunachal 

Pradesh to northwest Bay of Bengal was found in middle troposphere. 

Sub-tropical westerly jet maxima were found over the region. Light to 

moderate rain occurred at few places over Orissa and GWB with 

Midnapore and Alipore reporting 17.8 mm and 21.9 mm respectively.  

Case 3 was a severe thunderstorm, which was reported on 15 May 

2009. A squall passed over Kolkata on 15 May 2009 with a maximum 

speed of 68.4 kmph.  This intense convective event produced 16.9 mm 

rainfall over Kolkata. The synoptic charts show a trough at sea level from 

east Madhya Pradesh to south coastal Tamilnadu across Telangana and 

another trough to northeast Bay of Bengal across Orissa. Cyclonic 

circulation seen in lower levels over west Uttar Pradesh and a trough from 

this extends up to coastal Andhra Pradesh across Vidarbha with 
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embedded cyclonic circulation over Telangana. Trough in mid – 

troposphere is found from Arunachal Pradesh to north Bay of Bengal. 

Sub-tropical westerly jet maxima were found over the region. A few 

places of GWB recorded moderate rainfall and isolated rainfall over 

Orissa and Bihar. Bankura recorded 34.0 mm and Midnapore 51.6 mm of 

rainfall (Mohanty et al. 2009). 

3.4 Results and Discussion 

According to the previous studies of (Doswell 1987; Johns and 

Doswell 1992; McNulty 1995) the general preconditions for the initiation 

of thunderstorms are conditional instability, a sufficiently deep humid 

layer in the lower and mid-troposphere and an uplifting mechanism to 

initiate convection. The formation of thunderstorms is an interaction 

between these conditions on different scales. The surface parameters play 

a significant role in the genesis whereas the strength of the upper air pull 

is required to assess the growth of the thunderstorm (Asnani 2006). The 

greater the density differences between air masses (temperature and 

humidity) the greater the atmospheric instabilities that develop, and the 

greater the intensity of these thunderstorms (Price 2006). Recent studies 

show a high positive correlation between surface temperature and 

lightning activity (William 2005). The temperature and relative humidity 

on the surface are useful tool in forecasting the likelihood occurrence of a 

thunderstorm (Lopez et al. 2007). A sudden drop in temperature or 
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sudden increase in relative humidity during the day indicates for the 

occurrence of thunderstorm (Asnani 2006). 

3.4.1 Comparison of learning algorithms 

The ANN model predicted surface temperature and relative 

humidity with different learning algorithms during severe thunderstorm 

cases are explored in the following section. Analysis of the results of 

these experiments are helpful to understand the impact of learning 

algorithms on the prediction of severe thunderstorm events and assist in 

the customization of model for future severe thunderstorm predictions 

over east and northeast Indian region. 

Figure 3.4 shows the inter-comparison of observed and ANN 

model predicted diurnal variation of surface temperature (0C) with 

different learning algorithms over Kolkata valid for 3, 11 and 15 May 

2009. From the figures, it is clearly visible that the observed data (OBS) 

show a sudden drop in temperature in all three thunderstorm days. The 

ANN model with different learning algorithms captured the temperature 

drop during the thunderstorm hour for all the three cases. But the 

predicted intensity is different for different algorithms. For the first case 

(Figure 3.4a), the observed temperature showed a sudden drop of 150C 

from 36.70C to 21.70C at 1000 UTC. The ANN model prediction with LM 

showed a drop from 330C to 220C (110C) at 1000 UTC, whereas CG 

presented a drop from 340C to 270C (70C) at 1000 UTC. All other 
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algorithms showed a difference less than 40C during thunderstorm hour. 

The DBD has least performance than other algorithms. In the second 

thunderstorm case (Figure 3.4b), observed temperature fall is from 33.10C 

to 21.70C (110C) at 1200 UTC, whereas LM indicated a drop from 320C 

to 210C (110C) at the same thunderstorm hour. CG showed only 60C 

difference between predicted and observed values. The other algorithms 

presented less intensity in difference between predicted and observed 

values during thunderstorm hour. For the third case (Figure 3.4c), 

observed temperature showed a drop from 290C to 240C (60C) at 1300 

UTC, whereas LM showed a drop from 320C to 270C (50C). All other 

algorithms are also captured the sudden fall with almost same intensity of 

observation and LM algorithm for this thunderstorm case. 

Relative humidity at surface level has been taken into account, as it 

is an essential factor in intense convection. Storm days require a 

sufficiently humid and deep layer in the lower and middle atmosphere 

(Johns and Doswell 1992). Figure 3.5 shows the inter-comparison of 

observed and ANN model predicted relative humidity (%) with different 

learning algorithms over Kolkata for severe thunderstorm days.  For all 

the thunderstorm cases, ANN model with different algorithms have 

captured the increase in relative humidity during thunderstorm hour as in 

the observation. But the predicted intensity is different for different 

learning algorithms. In the first case (Figure 3.5a), the observed relative 

humidity showed a rise of 48% from 52% to 100% at 1000 UTC. The 
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ANN model prediction with LM showed a rise from 53% to 95% (42%) 

at 1000 UTC. All other algorithms except CG show same change in 

intensity (32%) at 1000 UTC, whereas CG presented a rise from 55% to 

81% (25%) at 1100 UTC.  The performance of CG algorithm is poor than 

all other algorithms during first thunderstorm case. In the second case 

(Figure 3.5b), observed relative humidity rise is from 66% to 100% (34%) 

at 1200 UTC, whereas LM indicated a rise from 68% to 100% (32%) at 

the same time. As in the previous case, the CG shows increase in relative 

humidity at 1400 UTC with 16% change in intensity. The changes in 

intensity predicted by other algorithms are also same and the intensity of 

sudden increase is 23%. For the third case (Figure 3.5c), observed relative 

humidity showed a rise from 63% to 100% (37%) at 1300 UTC, whereas 

LM showed a rise from 73% to 95% (22%). The other algorithms showed 

an intensity rise around 10%. From these analyses of temperature and 

relative humidity, it can be clearly seen that ANN model with LM 

algorithm well predicted diurnal variation during thunderstorm days and 

captured the sudden drop and rise with almost same intensity of 

observation as compared to other algorithms. 

The results of statistical analysis based on MAE, RMSE and CC to 

evaluate forecasted temperature and relative humidity are shown in Table 

3.1 and Table 3.2. The results of Table 3.1 indicated that, LM algorithm 

has less MAE and RMSE as compared to all other algorithms for these 3 

thunderstorm cases. The CG algorithm has also given moderate results.  
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Figure 3.4: Comparison of ANN predicted hourly surface temperature 

(0C) using different learning algorithms with observation 
on (a) 3 May 2009 (b) 11 May 2009 (c) 15 May 2009. 
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Figure 3.5: Comparison of ANN predicted hourly relative humidity 
(%) using different learning algorithms with 
observation on (a) 3 May 2009 (b) 11 May 2009 (c) 15 
May 2009. 
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All other algorithms displayed more error in all thunderstorm cases as 

compared to LM and CG algorithms. The average MAE and RMSE from 

these 3 cases are also less for LM algorithm than other 5 algorithms. 

Another verification method used for this study is correlation coefficient. 

From the table, it can be seen that all algorithms are positively correlated. 

The LM algorithm has the highest CC in all three cases as compared to all 

other algorithms. The average CC of LM and CG are high and the values 

are more than 0.9. The CC of other algorithms is less than 0.85. The 

performance of DBD algorithm is less efficient than other algorithms. The 

analysis shows that LM algorithm is best for hourly temperature 

prediction over Kolkata during thunderstorm days. 

Table 3.1: Performance comparison of different learning 
algorithms in hourly temperature prediction. 

Statistical 
Analysis Dates STP MOM CG LM QKP DBD 

MAE 3-May-09 3.36 3.24 2.69 2.08 3.48 3.41 
11-May-09 2.69 2.57 2.27 1.72 2.54 2.62 
15-May-09 2.93 2.66 2.08 1.21 2.69 2.90 
MEAN 2.99 2.82 2.35 1.67 2.90 2.98 

RMSE 3-May-09 3.54 3.50 2.90 2.35 3.70 3.69 
11-May-09 3.07 3.02 2.44 1.90 2.99 3.19 
15-May-09 3.07 2.76 2.20 1.41 2.78 3.04 
MEAN 3.23 3.09 2.51 1.89 3.16 3.31 

CC 3-May-09 0.82 0.82 0.90 0.93 0.79 0.80 
  11-May-09 0.89 0.89 0.94 0.97 0.89 0.86 
  15-May-09 0.74 0.80 0.91 0.96 0.80 0.74 
  MEAN 0.82 0.84 0.92 0.95 0.83 0.80 
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The results of Table 3.2 indicated that, LM algorithm has less error 

as compared to all other algorithms for these 3 thunderstorm cases as in 

temperature study. All other algorithms have also given moderate results 

except CG algorithm. The CG algorithm displayed more error in all cases. 

But in temperature prediction (Table 3.1), CG algorithm performed well 

than other 4 algorithms, namely STP, MOM, DBD and QKP. The average 

MAE and RMSE of LM algorithm has least value than other 5 algorithms.  

Table 3.2: Performance comparison of different learning 
algorithms in hourly relative hunidity prediction. 

Statistical 
Analysis Dates STP MOM CG LM QKP DBD 

MAE 3-May-09 6.62 6.78 8.21 5.24 7.06 6.65 
11-May-09 6.80 5.77 8.46 5.20 6.19 6.26 
15-May-09 9.23 9.20 9.86 3.02 9.53 8.98 
MEAN 7.55 7.25 8.84 4.49 7.60 7.30 

RMSE 3-May-09 8.77 9.50 12.64 6.55 9.43 9.42 
11-May-09 7.99 7.06 10.71 6.76 7.25 7.30 
15-May-09 10.33 9.94 10.93 3.71 10.56 9.89 
MEAN 9.03 8.83 11.43 5.67 9.08 8.87 

CC 3-May-09 0.86 0.86 0.69 0.93 0.84 0.86 
11-May-09 0.84 0.88 0.64 0.95 0.86 0.89 
15-May-09 0.68 0.76 0.67 0.95 0.68 0.69 
MEAN 0.80 0.83 0.67 0.95 0.80 0.82 

From the table (Table 3.2), it can be seen that all the algorithms are 

positively correlated. The LM algorithm has the highest CC in all three 

cases as compared to all other algorithms. The average CC of 3 

thunderstorm cases is more for LM algorithm and which is more than 0.9. 
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The CC of other algorithms except CG is 0.8 which is strong correlation. 

The performance of CG algorithm is less efficient than other algorithms 

for the prediction of hourly surface relative humidity during thunderstorm 

days. The results show that LM algorithm is best for hourly relative 

humidity prediction over Kolkata during thunderstorm days. 

Figure 3.6 gives the performance accuracy of learning algorithms 

for hourly temperature and relative humidity prediction. The PC of 

temperature presented a percentage number of the times when the forecast 

is accurate to within ±2°C. The results (Figure 3.6a) indicated that overall 

accuracy of LM algorithm for three events is 76%. CG gave a moderate 

accuracy of 61%. Other algorithms displayed less accuracy. The PC of 

relative humidity presented a percentage number of the times when the 

forecast is accurate to with ± 10% confidence range. The results (Figure 

3.6b) indicated that overall accuracy of LM algorithm for three events is 

88%. MOM algorithm also shows a good accuracy of 81%. The other 

algorithms displayed a moderate accuracy, which is more than 75%. The 

time-series plots and statistical analysis of temperature and relative 

humidity revealed that LM algorithm is well predicted the occurrence and 

intensity of all 3 thunderstorm cases as in the observation. The results 

suggest that the ANN model with LM algorithm holds promise for 

prediction of surface weather parameters with reasonable accuracy in 

severe thunderstorm cases. 
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 (a) Temperature 

 

 

Figure 3.6: Performance accuracy of learning algorithms for the 
prediction of (a) temperature and (b) relative humidity 
during thunderstorm days. 
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years (April and May 2007–2009). The ANN models were created to 

predict surface temperature and relative humidity at hourly intervals with 

1, 3, 6, 12 and 24 h ahead during severe thunderstorm cases and the 

results are evaluated in the following section. Analysis of the results of 

these experiments are helpful to understand the efficiency of developed 

ANN model to predict severe thunderstorm events in advance and can 

apply operationally over east and northeast Indian region. 

The comparison between observed and predicted surface 

temperature for 1 to 24 h advanced forecasting on 3, 11 and 15 May 2009, 

is shown in Figure 3.7. As seen in the figure, 1 h advanced forecast could 

forecast quite accurately. It was captured the sudden fall in temperature 

during thunderstorm hours for all 3 thunderstorm days. The 3 h forecast 

was in the next position and very close to the observation for the first 

case. Some deviations are there in the second and third cases. The 6 and 

12 h forecast failed to capture the entire pattern. For the first case, (Figure 

3.7a), the observed temperature showed a sudden drop of 150C from 

36.70C to 21.70C (150C) at 1000 UTC. The 1 h ahead forecast model 

showed a drop from 330C to 220C (110C) at 1000 UTC, whereas 3 h 

presented a drop from 320C to 250C (70C) at 1000 UTC. In the second 

thunderstorm case (Figure 3.7b), observed temperature fall is from 33.10C 

to 21.70C (110C) at 1200 UTC, whereas 1 h ahead forecast model 

indicated a drop from 310C to 210C (100C) at the same thunderstorm hour. 

The other models failed to capture a sudden fall during thunderstorm 
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hour. For the third case (Figure 3.7c), observed temperature showed a 

drop from 290C to 240C (60C) at 1300 UTC, whereas 1 h advanced 

prediction model showed a drop from 320C to 270C (50C). The 

temperature forecast at 24 h ahead model also gave good results as 

compared to 6 and 12 h ahead forecasts. The hourly temperature variation 

of 24 h ahead model show a fall with an intensity of 60C at 1600 and 1300 

UTC for the first two thunderstorm cases, and 30C at 1400 UTC for the 

third thunderstorm case. This model captured sudden fall with 6 hour time 

lag for the first case and 1 hour for second and third cases. 

The statistical analyses of the ANN model performance for the 

advanced prediction of surface temperature during thunderstorm days are 

given in Table 3.3. Both MAE and RMSE are less for 1 and 3 h advanced 

prediction and also have a high positive correlation. The errors are high 

and have low correlation (+ve or –ve correlation) for 6 and 12 h advanced 

predictions. The 24 h ahead forecast models are better performed than 6 

and 12 h ahead prediction and the average correlation is 0.70. The results 

were highly satisfactory for temperature forecast with 1 to 3 h ahead. The 

6 and 12 h ahead forecast accuracy was very poor as compared to 1, 3 and 

24 h. The PC of these 5 models are given in Figure 3.9a. The figure 

clearly indicates that overall accuracy of 1 h ahead forecast for three 

events is 70%. The 3 and 24 h ahead forecast models are also close to this 

with 65% and 54%. The other two models (6 and 12 h) displayed less 

accuracy.  
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Figure 3.7: Comparison of ANN predicted hourly temperature (0C) 

using different advanced prediction models with 
observation on (a) 3 May 2009 (b) 11 May 2009 (c) 15 
May 2009. 
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Table 3.3: Performance comparison of different advanced 
predictions for hourly temperature during 
thunderstorm days. 

Statistical 
Analysis Date 1 h 3 h 6 h 12 h 24 h 

MAE 3-May-09 1.34 1.88 4.04 6.06 4.61 
11-May-09 2.10 2.44 4.62 8.47 3.21 
15-May-09 2.07 2.32 3.84 6.54 2.11 
MEAN 1.84 2.22 4.17 7.02 3.31 

RMSE 3-May-09 2.36 2.13 4.94 6.81 6.35 
11-May-09 2.42 3.06 5.17 8.97 4.71 
15-May-09 2.29 2.95 4.82 7.19 2.93 
MEAN 2.35 2.71 4.98 7.66 4.66 

CC 3-May-09 0.97 0.93 0.63 -0.19 0.53 
11-May-09 0.95 0.82 0.48 -0.80 0.70 
15-May-09 0.94 0.76 0.38 -0.77 0.91 
MEAN 0.95 0.84 0.50 -0.59 0.71 

The comparison between observed and predicted relative humidity 

for 1 to 24 h ahead forecasting on 3, 11 and 15 May 2009 is shown in 

Figure 3.8. The results show, 1 h ahead forecast captured sudden increase 

in relative humidity at thunderstorm hours during all three severe 

thunderstorm cases. The 3 h advanced prediction model was able to 

predict the rise in relative humidity during thunderstorm hour in the first 

two cases. The 24 h forecast was also close to the observation for the 

second thunderstorm case even though one hour time lag exists. The 6 

and 12 h forecast failed to capture the entire pattern for all 3 cases as in 

temperature prediction. In the first case (Figure 3.8a), the observed 

relative humidity showed a rise of 48% from 52% to 100% at 1000 UTC. 
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The 1 h advanced ANN model prediction shows a rise from 60% to 97% 

(37%) at 1000 UTC. The 3 h ahead model showed a rise with an intensity 

of 20% at 1000 UTC. The other models failed to capture sudden rise as in 

1 and 3 h ahead forecast. In the second case (Figure 3.8b), observed 

relative humidity rise is from 66% to 100% (34%) at 1200 UTC, whereas 

1 h ahead model indicated a rise from 70% to 88% (18%) at the same 

time. The intensity of increase is less (12%) for 3 h ahead model and 6 

and 12 h ahead models failed to capture the sudden rise during 

thunderstorm hour. The 24 h ahead model showed a sudden rise from 

61% to 92% (31%) with one hour time lag for this thunderstorm event. 

For the third case (Figure 3.8c), observed relative humidity showed a rise 

from 63% to 100% (37%) at 1300 UTC, whereas 1 h ahead  model 

showed a rise from 70% to 92% (22%). The 3 and 24 h ahead models 

showed an intensity of rise around 3% and 12% respectively. From these 

analyses of temperature and relative humidity, it can be seen that 1 h 

advanced prediction model well predicted diurnal variation during 

thunderstorm days and captured the drop and rise with almost same 

intensity of observation as compared to other models.  

The statistical analyses of the ANN model performance for the 

advanced prediction of hourly relative humidity during thunderstorm days 

are given in Table 3.4. Both MAE and RMSE are less for 1, 3 and 24 h 

advanced prediction. The highest correlation coefficient is for 1 h advanced 

prediction model (0.80). The 3 and 24 h model have also a + correlation. 



Artificial Neural Network Model for Thunderstorm Prediction 

Cochin University of Science and Technology  117

 

 

 
 

 

10
20
30
40
50
60
70
80
90
100
110

00Z 02Z 04Z 06Z 08Z 10Z 12Z 14Z 16Z 18Z 20Z 22Z

Re
la
tiv

e 
hu

m
id
ity

 (%
)

Time (UTC)

OBS
1 h
3 h
6 h
12 h
24 h 

10
20
30
40
50
60
70
80
90
100
110

00Z 02Z 04Z 06Z 08Z 10Z 12Z 14Z 16Z 18Z 20Z 22Z

Re
la
tiv

e 
hu

m
id
ity

 (%
)

Time (UTC)

OBS
1 h
3 h
6 h
12 h
24 h 

10
20
30
40
50
60
70
80
90

100
110

00Z 02Z 04Z 06Z 08Z 10Z 12Z 14Z 16Z 18Z 20Z 22Z

Re
la
tiv

e 
hu

m
id
ity

 (%
)

Time (UTC)

OBS
1 h
3 h
6 h
12 h
24 h 

(a) 3 May 2009 

(b) 11 May 2009 

(c) 15 May 2009 

Figure 3.8: Comparison of ANN predicted hourly relative humidity 
(%) using different advanced prediction models with 
observation on (a) 3 May 2009 (b) 11 May 2009 (c) 15 
May 2009. 
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The errors are high and have low correlation for 6 and 12 h 

advanced prediction models as in the temperature forecast case. The results 

were satisfactory for relative humidity forecast with 1, 3 and 24 h ahead as 

in temperature forecast. The PC of these 5 models are given in Figure 3.9b. 

The figure clearly indicates that overall accuracy of 1 h ahead forecast for 

three events is 74%. The 3 and 24 h ahead forecast models are also close to 

this with 61% and 54%. The 6 and 12 h ahead model forecast accuracy was 

very poor as compared to other three advanced prediction models. 

Table 3.4: Performance comparison of different advanced 
predictions for hourly relative humidity during 
thunderstorm days. 

Statistical 
Analysis Date 1 h 3 h 6 h 12 h 24 h 

MAE 3-May-09 9.08 15.72 19.26 21.39 20.06 
  11-May-09 5.96 7.43 13.26 20.04 11.65 
  15-May-09 8.03 11.02 14.54 17.40 7.31 
  MEAN 7.69 11.39 15.69 19.61 13.00 

RMSE 3-May-09 10.63 18.73 25.01 24.59 27.65 
  11-May-09 7.73 10.58 15.47 21.63 14.05 
  15-May-09 9.98 12.55 16.94 19.67 8.71 
  MEAN 9.45 13.95 19.14 21.96 16.80 

CC 3-May-09 0.92 0.77 0.40 -0.39 0.45 
  11-May-09 0.85 0.70 0.19 -0.65 0.61 
  15-May-09 0.76 0.61 0.08 -0.40 0.72 
  MEAN 0.84 0.69 0.22 -0.48 0.59 

The models developed in this section show how surface 

temperature and relative humidity can be predicted for 1 to 24 h ahead 
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with an ANN model. Although the results varied, the 1 and 3 h ahead 

ANN models were able to predict hourly temperature and relative 

humidity adequately with sudden fall and rise. Even 24 h advanced 

prediction model can able to predict features of thunderstorm with 

reasonable accuracy. 

      (a) Temperature 
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Figure 3.9: Performance accuracy of different advanced prediction 
models for the prediction of (a) temperature and (b) 
relative humidity during thunderstorm days. 
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Even though the model performance of  6 and 12 h ahead 

forecasting was low and the forecasting was not as accurate as expected, 

the developed model can still useful in decision making for 

meteorologists and others who work with real-time thunderstorm forecast. 

3.5 Chapter Summary 

In this chapter, sensitivity experiments have been conducted with 

ANN model to test the impact of learning algorithms on severe 

thunderstorms prediction that occurred over Kolkata on 3, 11 and 15 May 

2009 and selected LM algorithm for further studies. The developed ANN 

model with LM algorithm was applied to derive thunderstorm forecasts 

from 1 to 24 h ahead at Kolkata. The objective of this study was to use 

ANNs to predict temperature and relative humidity during thunderstorm 

days from 1 to 24 h ahead using prior weather data as inputs. A statistical 

analysis based on MAE, RMSE, CC and PC is also performed for 

comparison among predicted and observed data with different learning 

algorithms and advanced predictions.  

The model setups were identical except for the use of different 

learning algorithms for the sensitivity experiments of learning algorithms. 

Hence the differences in the prediction results attributed to the sensitivity 

of learning algorithms. It is clearly demonstrated that LM algorithm 

performance is significantly better than other algorithms. After analyzing 

the results, it can be concluded that the ANN model with LM algorithm 
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has well predicted the hourly temperature and relative humidity in terms 

of sudden fall of temperature and rise of humidity during thunderstorm 

hours. The ANN models were created to predict surface temperature and 

relative humidity at hourly intervals with 1, 3, 6, 12 and 24 h ahead 

during same severe thunderstorm cases. Analysis of the results reveals 

that, the 1 and 3 h ANN models were able to predict hourly temperature 

and relative humidity adequately with sudden fall and rise. The efficiency 

of ANN models were reduced as the forecast lead time increased from 6 

to 12 h. The 24 h advanced prediction model can able to predict features 

of thunderstorm with reasonable accuracy. The results of these analyses 

demonstrated the capability of ANN model in prediction of severe 

thunderstorm events over eastern Indian region and will helpful for real 

time thunderstorm forecast. 

 
 ……. …….. 
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Weather forecasting is the application of science and technology to 

predict the state of the atmosphere for a future time and a given location. 

Human beings have attempted to predict the weather informally for 

millennia, and formally since at least the nineteenth century. Weather 

forecasts are made by collecting quantitative data about the current state 

of the atmosphere and using scientific understanding of atmospheric 

processes to project how the atmosphere will evolve. Once an all-human 

endeavor based mainly upon changes in barometric pressure, current 

weather conditions and sky conditions, forecast models are now used to 

determine future conditions. Human input is still required to pick the best 

possible forecast model to base the forecast upon, which involves pattern 

recognition skills, teleconnections, knowledge of model performance and 

knowledge of model biases. The chaotic nature of the atmosphere, the 

massive computational power required to solve the equations that 
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describe the atmosphere, error involved in measuring the initial conditions 

and an incomplete understanding of atmospheric processes mean that 

forecasts become less accurate as the difference in current time and the 

time for which the forecast is being made (the range of the forecast) 

increases (Doswell 2004).  

The understanding of the dynamical/physical mechanisms of 

thunderstorms is essential for improving the forecast of these systems. 

One of the ways to understand the physics and dynamics of these severe 

thunderstorms is to simulate these systems with the help of mesoscale 

models. A number of studies have been carried out (e.g. Brooks and 

Wilhelmson 1992; Farely et al. 1992) to simulate thunderstorms for 

studying various dynamical and physical processes occurring within 

them. Accurate simulation requires knowledge about “where” and “when” 

storms will develop and how they will evolve. The high resolution non-

hydrostatic mesoscale models with sophisticated parameterization 

schemes for the important physical processes would be very useful tool 

for reasonably accurate prediction of these severe thunderstorms (Weiss 

et al. 2006). However, mesoscale research and forecasting in India could 

not keep pace with developments of the post-1970 period, especially in 

respect of mesoscale observational techniques (Doppler Weather Radar 

(DWR), wind profilers, meso-network), mesoscale analysis and 

mesoscale NWP (Tyagi 2000). In India, studies related to modeling of 

clouds are very scarce and in particular intense thunderstorm events (Das 
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1999). Simulation of severe thunderstorms with high-resolution 

mesoscale models over Indian region have been attempted recently 

(Vaidya 2007; Chatterjee et al. 2008; Rajeevan et al. 2010).  

A simulation study was carried out by Vaidya (2007) for a pre-

monsoon thunderstorm over east coast of India. In this study, the model 

performances of ARPS and ARW models are compared by examining the 

predicted parameters. They found that in case of idealized simulation of 

thunderstorm, ARPS was able to predict the spatial distribution of rainfall 

and diverging winds better compared to ARW model. Mesoscale model 

MM5 with some modifications in the cloud microphysics scheme of 

Schultz has been used to simulate two hailstorm events over Gangetic 

Plain of West Bengal by Chatterjee et al. (2008). The authors found that 

the MM5 model has the ability to simulate hailstorm if the cloud-

microphysics scheme of Schultz is modified suitably. Rajeevan et al. 

(2010) simulated the features associated with a severe thunderstorm event 

over Gadanki (over southeast India) using WRF model and examined its 

sensitivity to four different microphysics schemes validated with many 

observations. This study suggests large sensitivity of the microphysics 

schemes in the simulations of the thunderstorm. The study also 

emphasizes the need for a comprehensive observational campaign using 

multi-observational platforms to improve the parameterization of the 

cloud microphysics and land surface processes over the Indian region.  
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Contemporary atmospheric numerical models contain a large 

number of physical parameterization schemes in order to represent the 

various atmospheric processes that take place in sub-grid scales. 

However, modeling systems also reflect inherent errors and uncertainties 

in specifying the initial state of the atmosphere, and simplifications in 

physics and parameterization of sub-grid scale processes further 

contribute to errors in model forecasts. It is believed that physics errors 

become more important as model resolution increases (e.g. Stensrud et al. 

2000; Wandishin et al. 2001). In this chapter, sensitivity experiments have 

been conducted with the NMM model to examine the impact of different 

initial conditions, convective parameterization schemes (CPSs) and 

microphysics schemes in capturing the severe thunderstorm events 

occurred over Kolkata during 2006, 2007 and 2009. The geographical 

location of study area is given in the Figure 4.1. The goal of this study is 

to determine the usefulness of high resolution NMM model when it 

comes to the severe thunderstorm prediction over east and northeast 

region of India.  

4.1 Data and Methodology 

 The NMM core of the WRF system is a next-generation mesoscale 

forecast model that will be used to advance the understanding and the 

prediction of mesoscale convective systems. The NMM model has been 

designed to be an efficient and flexible mesoscale modeling system for 

use across a broad range of weather forecast and idealized research 
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applications, with an emphasis on horizontal grid sizes in the range of 1-

10 km. This state-of-the-art mesoscale model (WRF-NMMV3.2.1) is used 

in this study to perform cloud-resolving simulation of the thunderstorm 

events over Kolkata. The details of NMM model specified in Chapter 2. 

 

Figure 4.1: The geographical location of study area. 

4.1.1 Initial and boundary conditions 

Since NMM is a limited area model, it needs to be fed with initial 

and lateral boundary conditions for the forecasts. The process of 

providing initial value data to a model is known as initialization. Initial 

conditions are typically provided by a numerical synthesis of available 

observations. The initial and boundary conditions for the NMM model are 

obtained from the NCEP Final Analysis (FNL) datasets. These data are on 

1o x 1o grids (110 x 110 km) (DS-083.2) prepared operationally every six 

hours (http://rda.ucar.edu/datasets/ds083.2). This product is from the 
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Global Data Assimilation System (GDAS), which continuously collects 

observational data from the Global Telecommunications System (GTS), 

and other sources, for many analyses. The FNLs are made with the same 

model which NCEP uses in the Global Forecast System (GFS), but the 

FNLs are prepared about an hour or so after the GFS is initialized. The 

FNLs are delayed so that more observational data can be used. The GFS 

is run earlier in support of time critical forecast needs, and uses the FNL 

from the previous 6 hour cycle as part of its initialization. The analyses 

are available on the surface, at 26 mandatory (and other pressure) levels 

from 1000 to 10 mb (millibar), in the surface boundary layer and at some 

sigma layers, the tropopause and a few others. Parameters include surface 

pressure, sea level pressure, geopotential height, temperature, sea surface 

temperature, soil values, ice cover, relative humidity, u and v winds, 

vertical motion, vorticity and ozone. The lists of input meteorological 

parameters used for NMM model are given in Table 4.1.   

Topography and the surface characteristics for all the grids are 

driven from the United States Geological Survey (USGS) dataset. This is 

a global dataset which comprises the land use, vegetation type, vegetation 

fraction, albedo, topographic heights and other variables that are provided 

at various resolutions. The dataset with the highest resolution of 30 

seconds (approximately 1 km) is used in this research. These datasets are 

used in the NMM model to define the surface properties. 
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Table 4.1: The input meteorological parameters for NMM model.  

Description Units 

Pressure Pa 
Pressure reduced to MSL Pa 
Geopotential height gpm 
Total ozone Dobson 
Temperature K 
Potential temperature K 
Geopotential height anomaly gpm 
u-component of wind m s-1 
v-component of wind m s-1 
Vertical velocity (pressure) Pa s-1 
Absolute vorticity s-1 
Specific humidity kg kg-1 
Relative humidity % 
Precipitable water kg m-2 
Water equivalent of accumulated snow depth kg m-2 
Total cloud cover % 
Land cover fraction 
Ice concentration fraction 
Surface lifted index K 
Best (4 layer) lifted index K 
Vertical speed shear s-1 
Volumetric soil moisture content fraction 
Ozone mixing ratio kg kg-1 
Convective inhibition J kg-1 
Convective available potential energy J kg-1 
Planetary boundary layer height m 
5-wave geopotential height gpm 
5-wave geopotential height anomaly  
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4.1.2 Experiment 1- Study with different initial conditions 

In this study, the model was integrated with multiple initial 

conditions starting from 19 May 2006 at 0000 UTC, 19 May 2006 at 1200 

UTC and 20 May 2006 at 0000 UTC for a period of 48 h (simulation is 

designated as Ex-1), 36 h (as Ex-2) and 24 h (as Ex-3) respectively and 

established the robustness of the results. A single domain with 3 km 

horizontal spatial resolution was configured as shown in Figure 4.2, 

which is reasonable in capturing the mesoscale cloud clusters. The dataset 

used in this research is the 1o x 1o grid FNL dataset (DS 083.2) and is used 

to update the boundary conditions every six hours.  

 
      Figure 4.2: Domain of NMM model. 

The domain covers 86.00E to 90.00E and 21.00N to 24.00N. The 

grids are centered at 88.00E, 22.50N with 167 X 165 grid points. The 

domain is configured with vertical structure of 38 unequally spaced sigma 
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(non-dimensional pressure) levels. The physical parameterizations used in 

this study are Geophysical Fluid Dynamics Laboratory (GFDL) for 

longwave and shortwave radiation (Schwarzkopf and Fels 1991; Lacis 

and Hansen 1974), NMM Land surface scheme (Eket al. 2003) for land 

surface, Mellor Yamada Janjic (MYJ) scheme (Janjic 2002) for planetary 

boundary layer, Ferrier scheme (Ferrier 2002) for microphysics, Janjic 

similarity scheme (Janjic1994) for surface layer and Grell-Devenyi cloud 

ensemble scheme (Grell and Devenyi 2002) for convective 

parameterization. All the above schemes are well tested for NMM model 

and are used operationally at NCEP. Table 4.2 shows the model 

configuration of the present study. A statistical analysis based on MAE, 

RMSE and CC is performed for comparisons between the simulated and 

observed data with different initial conditions. 

Table 4.2: NMM model configuration. 

Description Parameters 
Horizontal-Spatial resolution 3 km 
Integration time step 6 second 
Map projection Rotated latitude and longitude 
Horizontal grid system Arakawa E-grid 
Vertical co-ordinate 38 sigma levels 
Radiation parameterization GFDL/GFDL 
Surface layer parameterization Janjic similarity scheme 
Convective  parameterization  Grell-Devenyi ensemble scheme 
Land surface parameterization NMM Land surface scheme 
PBL parameterization Mellor-Yamada-Janjic 
Microphysics scheme Ferrier (new eta) scheme 
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4.1.3 Experiment 2 - Study with different CPSs 

The simulations from numerical models are known to be sensitive 

to the representation of the physical processes. In order to obtain realistic 

results it is necessary to incorporate appropriate physics into the model. It 

is believed that physics errors become more important as model resolution 

increases (Stensrud et al. 2000), such that numerical prediction of 

precipitation and associated convective processes remain a key challenge. 

Numerical simulations by means of NMM model with different CPSs 

have been carried out for the present study. The model was integrated for 

a period of 24 h, starting at 0000 UTC of 20 May 2006 as initial time for 

the first case and starting at 0000 UTC of 21 May 2007 as initial time for 

the second case. A single domain with 3 km horizontal spatial resolution 

is configured as shown in Figure 4.2, which is reasonable in capturing the 

mesoscale cloud clusters. Initial conditions for the 3 km domain are 

derived from 6 h FNL datasets (DS 083.2) at 1o x 1o grids. The domain is 

configured with vertical structure of 38 unequally spaced sigma (non-

dimensional pressure) levels. 

In this study, four simulations have been done for each case by 

changing the CPSs of the NMM model. The first simulation used the 

Kain-Fritsch scheme (KF), based on Kain (2004) and Kain and Fritsch 

(1993). The second simulation used Betts-Miller-Janjic (BMJ) 

parameterization, which is based on Janjic (1996) and Janjic (2000). The 

third one used Grell-Devenyi ensemble (GD) parameterization, based on 
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Grell and Devenyi (2002). Finally, the simulation used simplified 

Arakawa-Schubert scheme (AS), based on Arakawa and Schubert (1974) 

as simplified by Grell (1993). In addition, a simulation without a 

convective scheme (NO) is performed for each case to determine if the 

model could simulate the convection explicitly. The other physical 

parameterizations used in this study are same as experiment 1. To 

compare the differences among the CPSs, simulations are performed for a 

particular time period utilizing the same initial and boundary conditions 

and other physical parameterizations for each CPSs and then the model 

outputs are compared with observation. A statistical analysis based MAE, 

RMSE and CC is performed for comparisons between the simulated and 

observed data with different CPSs. 

4.1.4 Experiment 3 - Study with different microphysics schemes 

Microphysics schemes are used to handle clouds and precipitation 

in mesoscale models. The impact of cloud microphysics on cloud 

resolving simulations is an important issue in NWP and regional climate 

modeling. Because of the wide variety of cloud microphysics schemes 

currently being used, a natural concern is the sensitivity of the prediction 

and simulation of precipitation in high-resolution numerical models to the 

microphysics parameterization. Another important issue is whether 

realism is consistently gained with increasingly sophisticated cloud 

microphysics. The dependency of model results on microphysics 

parameterizations has traditionally been addressed through short-term 
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idealized simulations of a single precipitation system (e.g. a thunderstorm 

or a squall line) (Otkin and Greenwald 2008). Sensitivity experiments 

have been conducted for a severe thunderstorm event on 15 May 2009 

with three microphysics schemes namely Ferrier (FERR) (Ferrier et al. 

2002), WRF Single Moment 6 class (WSM6) (Hong et al. 2004) and 

Thomson scheme (THOM) (Thompson et al. 2004).  

In the present study, the model was integrated for a period of 24 h. 

A single domain with 3 km horizontal spatial resolution was configured. 

Initial conditions for the 3 km domain are derived from 6 h FNL data (DS 

083.2) at 1o x 1o grids. The domain is configured with vertical structure of 

38 unequally spaced sigma (non-dimensional pressure) levels. The 

physical parameterization schemes other than microphysics scheme used 

in this study are same as experiment 1. In all experiments, the model 

setups were identical except for the use of different microphysics 

schemes. The model results are analyzed and compared to the available 

surface observations in order to identify the parameterizations that 

provide the best representation of the spatio-temporal variability of 

thunderstorm affected parameters.  

4.1.5 Observational data 

A brief description of the observational data used for the present 

study is given in this section. In particular, DWR reflectivity images, 

surface observations from Automatic Weather Station (AWS) records and 

Automatic Rain Gauge (ARG) station data were used for validating the 



WRF-NMM Model For Thunderstorm Prediction 

Cochin University of Science and Technology  135

model results. The DWR was installed over Kolkata (22.570N, 88.350E) 

in April 2002. It has a beam width of 1 degree and nominal range of about 

450 km for reflectivity and 250 km for radial velocity as well as spectrum 

width. Maximum unambiguous radial velocity estimates following 

unfolding techniques is about 64 ms-1 (approximately 220 kmph) with a 

radial resolution of 1 km and 1 degree in azimuth.  Reflectivity factors 

(Z), radial velocity (V) and velocity spectrum width (W) are the three 

base data directly observed/measured by the radar. It is capable of 

monitoring clouds, precipitation systems and winds over large areas of 

more than 400 km from the radar location. DWR has the unique 

capability to continuously track and predict fast evolving weather systems 

such as thunderstorms, cyclones and cloudbursts. The detailed description 

of the radar was given by Bhatnagar et al. (2003). The DWR reflectivity 

factors Z (dBZ) over Kolkata during pre-monsoon thunderstorms are 

taken for the present study. 

IMD has augmented its AWS network under its modernization 

programme considering its utility in monitoring and predicting weather 

events. The network is being expanded with additional 550 AWS and 

1350 ARG stations.  At present, there are about 524 AWS and 456 ARG 

operationally working all over India. Each ARG Station is configured to 

measure hourly and cumulative rainfall for the day (Mohapatra et al. 

2010). The numbers of AWS stations are increased to 17 in the West 

Bengal region by the end of 2010. The surface observations from AWS 
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(Kolkata) and ARG data obtained during pre-monsoon thunderstorm days 

are used for validation. The weather charts include Daily Northern 

Hemispherical Analysis Centre (NHAC) operational charts at surface, 

925, 850, 700, 500, 300 and 200 hPa. The other observations which are 

used for the present studies are past weather reports, particularly of 

thunderstorms/thundershowers and associated severe weather phenomena 

such as squalls/hail storm etc.  

4.2 Case Description 

The occurrence of pre and post monsoon thunderstorms over 

Indian continent is a special feature. Thunderstorms are associated with 

heavy rainfall during short duration of 2–3 hours. For the present study 

three severe thunderstorm cases of 20 May 2006, 21 May 2007 and 15 

May 2009 have been taken and the description of each case is as follows.  

Case 1 was a severe thunderstorm, which was reported on 20 May 

2006 at 1200 UTC over Kolkata. This intense convective event produced 

52 mm rainfall over Kolkata. The weather situation started with a squall 

passing Kolkata airport on 20 May 2006 at 1100 UTC with a maximum 

speed of 19 ms-1 lasting for a few minutes. A few places recorded 

moderate rainfall over GWB and isolated rainfall over Orissa, Chattisgarh 

and Bihar. Dum Dum recorded 50 mm and Alipore 40 mm of rainfall 

(Mohanty et al. 2006). Case 2 was another severe thunderstorm occurred 

over Kolkata on 21 May 2007 at 1100 UTC. A squall was reported over 
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Kolkata at 1100 UTC from northwesterly direction with max speed of 19 

ms-1 lasted for 1 minute. This convective event produced 20 mm rainfall 

over Kolkata. A few places recorded moderate rainfall over GWB and 

isolated rainfall over Orissa, Bihar and Jharkhand (Mohanty et al. 2007). 

The descriptions of third thunderstorm case (15 May 2009) are already 

specified in Chapter 3.  

4.3 Results and Discussion 

Today there are a number of parameters available that may be used 

to characterize pre-convective conditions and predict the beginning of 

convection. Johns and Doswell (1992) reviewed severe thunderstorm and 

tornado forecasting in detail. According to him, three of the most 

important factors to examine in determining occurrence of severe 

thunderstorm events are intense instability, a sufficiently deep humid 

layer in the lower and middle troposphere and an updraft to initiate 

convection. The formation of thunderstorms is an interaction between 

these conditions on different scales. The occurrence and intensity of 

severe thunderstorms are examined in the following sections by the 

analysis of observed and model simulated results.  

4.3.1 Sensitivity study with different initial conditions 

Atmospheric flow is sensitively dependent on initial conditions. 

Initial conditions involve the same model, with the same forcing, run 

from variety of different start dates. Because the weather system is 
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chaotic, tiny changes in things such as temperatures, winds, and humidity 

in one place can lead to very different paths for the system as a whole. In 

this study, an attempt has been made to understand the relative role of 

initial conditions for thunderstorm predictability. The model simulated 

results with different initial conditions are explored in the following 

section. Analysis of the results of these experiments is helpful to 

understand the impact of different initial conditions on the simulation of 

20 May 2006 severe thunderstorm event and assist in the customization of 

model for future severe thunderstorm simulations over east Indian region. 

The storm initiation and development is examined by the analysis of 

stability indices, surface temperature and relative humidity, 24 h 

accumulated rainfall and composite radar reflectivity.  

4.3.1.1 Stability indices 

The formation, intensification and propagation of thunderstorms 

are mostly governed by the synoptic situation and localized dynamic and 

thermodynamic conditions of the atmosphere. Stability indices have been 

a corner stone in the forecasting of convection for many decades and 

often are used in the research literature as well. These indices are very 

helpful in predicting thunderstorms. To obtain a quick check on 

thunderstorm possibility, various thunderstorm indices and parameters 

have been developed. The indices are having critical values and above 

these critical values, there is possibility of thunderstorm. Studies on the 

efficiency of different stability indices for the thunderstorm prediction 
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have been made by several authors (Schultz 1989; Jacovides and 

Yonetani 1990). Jacovides and Yonetani (1990) found that combining a 

thermodynamic index with a kinematic parameter improved the skill of 

forecasting non-frontal thunderstorms in Cyprus. Advection of warm air 

in the lower levels and cold air in the upper levels (generally associated 

with deep troughs in upper tropospheric westerlies) increases the 

conditional instability in the atmosphere and favor outbreak of severe 

thunderstorms in Kolkata region (Alvi and Punjabi 1966; Rao et al. 1971). 

Mukhopadhyay et al. (2003) worked on objective forecast of 

thundery/non-thundery days using conventional indices over three 

northeast Indian stations. Tyagi et al. (2011) studied some thermodynamic 

indices for the prediction of thunderstorm occurrence over Kolkata during 

April and May 2006–2008 and proposed suitable threshold values in 

forecasting these thunderstorms. 

Most of the indices analyzed describe the stability of the 

atmosphere, as opposed to shear or moisture. They can be determined by 

mathematical formulae or by plotting on a skew-T/log-p diagram. Often a 

certain threshold value is defined above (below) which the possibility of 

thunderstorms is considered. Table 4.3 shows the selected indices for 

severe convective weather forecasting and their critical values for severe 

thunderstorms suggested by Air Weather Service (AiWS) Technical 

Report (1990) and Tyagi et al. (2011) for Kolkata. In this study, an 

attempt is made to examine different stability indices namely Convective 



Chapter 4 

Department of Computer Science 140
124

Available Potential Energy (CAPE), Lifted Index (LI), Total Total Index 

(TTI) and K Index (KI) obtained from NMM model during these severe 

local storm days over Kolkata (22.520N, 88.370E). The CAPE represents 

the amount of buoyant energy available to accelerate a parcel vertically 

and a CAPE value greater than 1500 Jkg-1 is suggested by Rasmussen and 

Wilhelmson (1983) as being necessary for super-cells to form. Brooks et 

al. (2003) demonstrated that threat of significant severe convective 

weather increases with increasing CAPE. Table 4.4 shows the NMM 

model simulated stability indices over Kolkata at 1200 UTC using 

different initial conditions. It can be seen from table that all 3 experiment 

results show a high value (2128, 2150 and 1909 Jkg-1) during the 

thunderstorm hour, which is a favorable condition for severe 

thunderstorms. The CAPE values of three experiments are greater than 

critical levels (1500 and 1000 Jkg-1). 

The LI measures the difference between a parcel's temperatures 

compared with the environmental temperature at 500 hPa, after the parcel 

has been lifted from the Lifting Condensation Level (AiWS Technical 

Report 1990). The LI has proved useful for indicating the likelihood of 

severe thunderstorms. The chances of a severe thunderstorm are best 

when the LI is less than or equal to -3. This is because air rising in these 

situations is much warmer than its surroundings and can accelerate 

rapidly and create deep and violent thunderstorms. Tyagi et al. (2011) 

suggested the same critical level (-3) for thunderstorms over Kolkata 
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region. The NMM model simulated LI with different initial conditions 

show a value of -5 at 1200 UTC for these three thunderstorm cases, which 

is a favorable environment for thunderstorm occurrence (Table 4.4).  

Table 4.3: The different stability indices and their critical values  
for severe thunderstorm. 

Stability Indices Description Critical 
values 

For Kolkata 
(Tyagi et al. 

2011) 
Lifted Index (LI) T500-Tparcel < -3 < -3 

K Index (KI) (T850- T500) + Td850 - (T700- DT700) > 33 > 24 

Total Total Index 

(TTI) 
(T850+ Td850)-2(T500) > 44 > 46 

CAPE 
 

> 1500 > 1000 

Table 4.4: NMM model simulated stability indices over Kolkata at 
1200 UTC using different initial conditions. 

Stability Indices Ex-1 Ex-2 Ex-3 

CAPE 2128 2150 1909 

LI -5 -5 -5 

KI 36 34 35 

TTI 45 42 46 

The KI is a combination of the Vertical Totals (VT) and lower 

tropospheric moisture characteristics. The VT is the temperature 

difference between 850 and 500 hPa, while the moisture parameters are 

the dew point depression at 850 and 700 hPa. The KI has proved useful in 
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indicating the probability of severe thunderstorms. As the KI increases, so 

does the probability of having a severe thunderstorm. Although  KI  

values  can  be  correlated  to  a probability of  thunderstorm  occurrence,  

these values  will vary  with seasons,  locations,  and  synoptic settings. 

The values between 31 to 35 shows 60-80% chance for thunderstorm 

occurrence and the values more than that will give 80-100% confidence 

(AiWS Technical Report 1990). Tyagi et al. (2011) suggested a critical 

level for KI, which is more than 24 over Kolkata. The model simulated KI 

values of all 3 experiments are more than the critical level suggested by 

AiWS Technical Report (1990) and Tyagi et al. (2011) (Table 4.4). Miller 

(1972) introduced the TTI for identifying areas of potential thunderstorm 

development. It accounts for both static stability and the presence of 850 

hPa moisture. A TTI of greater than 44 indicates favorable conditions for 

development of severe thunderstorms (AiWS Technical Report 1990). 

Higher values for TTI are associated with a greater probability of 

thunderstorms. The TTI value of Ex-3 is equal to 46, which is a favorable 

condition. The TTI value (45) of Ex-1 is also greater than the critical level 

suggested by AiWS Technical Report (1990). Ex-2 simulated TTI value 

(42) is less than both critical levels. Examination of the model simulated 

stability indices with different initial conditions clearly indicated that the 

NMM model well captured the instability of the atmosphere at 1200 UTC 

for the occurrence of a severe thunderstorm. Thus the thermodynamic 
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structure over Kolkata becomes conducive for a thunderstorm occurrence 

on the evening of 20 May 2006.  

4.3.1.2 Surface parameters 

The initiation and intensification of this severe thunderstorm is 

examined by the analysis of surface parameters namely precipitation, 

surface temperature and relative humidity. Surface temperature and 

relative humidity are useful parameters in determining the likelihood 

occurrence of a thunderstorm. Figure 4.3a shows the hourly variation of 

model simulated surface temperature at different initial conditions with 

the observed values over Kolkata (AWS data), from 20 May 2006 at 0000 

UTC to 21 May 2006 at 0000 UTC. The observed temperature showed a 

sudden drop from 330C to 220C at 1200 UTC. Ex-3 captured the variation 

with drop in temperature at 1100 UTC from 33.50C to 270C, one hour 

before the time of thunderstorm, which could be attributed to the cooling 

of the surface temperature due to precipitation by the thunderstorm 

system. Ex-2 has captured the temperature drop at 1000 UTC from 330C 

to 270C, which is two hours prior to the actual occurrence. Ex-1 showed a 

dip at 1300 UTC from 320C to 230C.  

Figure 4.3b shows the inter-comparison of observed and model 

simulated relative humidity using different initial conditions over Kolkata 

valid for 20 May 2006 at 0000 UTC to 21 May 2006 at 0000 UTC. The 

observed relative humidity values peaked from 48% to 95% at 1200 UTC 
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whereas Ex-3 showed a sharp rise from around 50% to 85% at 1100 UTC, 

which is one hour prior to the thunderstorm occurrence. Ex-2 showed a 

sudden rise from 55% to 88% at 1000 UTC whereas Ex-1 showed a peak 

from 61.5% to 99.6% at 1300 UTC.  Ex-3 has well captured the time and 

intensity of temperature and relative humidity as compared to other 

experiments. 

 

 

Figure 4.3: The inter-comparison of observed and model simulated 
(a) surface temperature (0C) and (b) relative humidity 
(%) with different initial conditions over Kolkata valid 
for 20 May 2006 at 0000 UTC to 21 May 2006 at 0000 
UTC. 

21
23
25
27
29
31
33
35
37

00Z 02Z 04Z 06Z 08Z 10Z 12Z 14Z 16Z 18Z 20Z 22Z 00Z

Te
m
pe

ra
tu
re
 (d

eg
 C
)

Time  (UTC)

OBS
Ex‐1
Ex‐2
Ex‐3

30
40
50
60
70
80
90
100
110

00Z 02Z 04Z 06Z 08Z 10Z 12Z 14Z 16Z 18Z 20Z 22Z 00Z

Re
la
tiv

e 
Hu

m
id
ity

 (%
)

Time (UTC)

OBS
Ex‐1
Ex‐2
Ex‐3

(a) 

(b) 



WRF-NMM Model For Thunderstorm Prediction 

Cochin University of Science and Technology  145

Verifying forecasts with statistical analysis measures how the 

values of the forecasts differ from the values of the observations. A 

statistical analysis based on MAE, RMSE and CC was performed for 

comparisons between the simulated and observed surface parameters 

namely temperature and relative humidity over Kolkata valid for 20 May 

2006 at 0000 UTC to 21 May 2006 at 0000 UTC and are given in Table 

4.5. The CC gives us a numerical measure of correlation. From the table, 

it can be clearly seen that, simulated temperature and relative humidity of 

Ex-3 have well correlated to the observation as compared to all other two 

experiments (Ex-1 and Ex-2). The CC of both parameters are 0.87 for Ex-

3, which is a strong correlation. When verifying deterministic forecasts, 

two commonly used error statistics to measure quantitative accuracy are 

the MAE and RMSE. The MAE and RMSE of each weather parameters 

have been computed to test the prediction error of the model. The MAE 

and the RMSE can be used together to diagnose the variation in the errors 

in a set of forecasts. The MAE and RMSE values of temperature in Ex-3 

are 1.620C and 2.280C respectively. The same errors of relative humidity 

in Ex-3 are 7.55% and 10.70%. The errors are less in Ex-3 as compared 

Ex-1 and Ex-2.  

Precipitation is recognized as one of the most difficult parameters 

to forecast in NWP despite the fact that the accuracy of numerical models 

has increased during the past several decades (Wang and Seaman 1997). 

Accurate estimates of precipitation at both temporal and spatial 
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resolutions are required for many applications. Figure 4.4 shows the 

comparison of observed and model simulated accumulated progressive 

rainfall with different initial conditions at Kolkata. 

Table 4.5: Statistical analysis of simulated and observed surface 
temperature and relative humidity over Kolkata based 
on MAE, RMSE and CC. 

Statistical Analysis Parameters Ex-1 Ex-2 Ex-3 

MAE 
Temperature 2.19 2.82 1.62 

Relative humidity 10.95 9.66 7.55 

RMSE 
Temperature 2.83 3.51 2.28 

Relative humidity 14.14 11.86 10.70 

CC 
Temperature 0.82 0.74 0.87 

Relative humidity 0.72 0.82 0.87 

Ex-3 is able to capture 29 mm of rainfall at 1100 UTC, which is 

less compared to actual observation (52 mm). Ex-2 is only able to 

simulate 22 mm at 1000 UTC, which is very less. The total accumulated 

rainfall of Ex-1 is 36.6 mm. But, the rainfall amount during thunderstorm 

hour (between 0900 and 1200 UTC) is only 16.6 mm. The results show 

the total rainfall between thunderstorm hours is well captured by Ex-3. 

The model simulated spatial distribution of 3 h accumulated rainfall 

between 0900 and 1200 UTC under different initial conditions is shown 

in Figure 4.5. From the spatial pattern of rainfall, it can be clearly seen 

that, the rainfall amount and spread are well captured by Ex-3 than other 

two experiments. Ex-2 is also captured rainfall intensity and distribution 
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over the study area. Ex-1 has failed to capture the intensity between 

thunderstorm hours. 

 

Figure 4.4: The inter-comparison of observed and model simulated 
diurnal variation of 24h accumulated rainfall (mm) 
with different initial conditions over Kolkata valid on 
20 May 2006. 

4.3.1.3 Composite radar reflectivity 

The use of composite radar reflectivity fields as a model output 

product has become increasingly popular recently as a means for display 

of high-resolution numerical model fields, mainly for convective weather 

scenarios. The reflectivity product offers significant advantages over 

traditional precipitation forecast displays, including the obvious fact that 

radar reflectivity is easier to verify in real time by directly comparing with 

readily available, observed reflectivity products. The chief advantage of 

the model reflectivity product appears to be that it allows one to more 

easily see detailed mesoscale and near-storm scale structures capable of 

being simulated by finer resolution models, such as the structure of deep 
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convection, movement of squall line and frontal precipitation bands 

(Koch et al. 2005). 

                  
 

         

Figure 4.5: The 3 h accumulated rainfall (mm) with different initial 
conditions over Kolkata valid for 20 May 2006 at 0900 
UTC to 1200 UTC. 

Recently, installation DWR has highlighted the better prospect of 

mesoscale prediction in the nowcast to very short-range time scale over 

Indian region (e.g. Srivastava et al. 2010). Kolkata DWR composite radar 

reflectivity imageries on 20 May 2006 from 0900 to 1200 UTC is shown 

in Figure 4.6. From the DWR products it can be seen that scattered echoes 

 

(a) Ex-1  (b) Ex-2 

(c) Ex-3 
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developed northeast of Kolkata (KOL) at 0900 UTC and moved towards 

Kolkata at 1000 UTC. This echo was intensified and over Kolkata at 1100 

UTC. This echo disappeared at 1300 UTC (Mohanty et al. 2006). 

  (a) 0900 UTC                     (b) 1000 UTC 

      

 
  (c) 1100 UTC         (d) 1200 UTC 

       

Figure 4.6: Kolkata DWR composite radar reflectivity (dBZ) imageries 
from 0900 to 1200 UTC on 20 May 2006. 

KOL 
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The storm structure and movement can be evaluated by comparing 

the modeled radar reflectivity to the observed radar reflectivity. In order 

to achieve that composite radar reflectivity (dBZ) calculated in different 

initial conditions are compared with observed one. NMM model 

simulated composite radar reflectivity on 20 May 2006 from 0900 to 1200 

UTC with Ex-1 is shown in Figure 4.7. Same for Ex-2 and Ex-3 are 

shown in Figure 4.8 and 4.9 respectively. By analyzing NMM model 

simulated composite radar reflectivity pictures of Ex-1 (Figure 4.7), scattered 

echoes are developed northwest of Kolkata at 0900 UTC. This echo moved 

towards Kolkata at 1000 and 1100 UTC. This echo was nearby Kolkata by 

1200 UTC. The movement of the system (northwest to southeast) in Ex-1 is 

opposite to that of the observed radar reflectivity (northeast to southwest), 

which is shown in Figure 4.6. By analyzing NMM model simulated 

composite radar reflectivity pictures of Ex-2 (Figure 4.8), scattered 

echoes are developed northeast of Kolkata at 0900 UTC. One more echo 

developed and intensified at 1000 UTC over northwest of Kolkata. The 

first echo moved southwest direction and the second one moved 

eastwards by 1100 UTC. The movement of first echo was faster than the 

observation (Figure 4.6). 

By analyzing NMM model simulated composite radar reflectivity 

pictures of Ex-3 (Figure 4.9), scattered echoes are developed northeast of 

Kolkata at 0900 UTC. This echo was moving southwestwards at 1000 

UTC and intensified at 1100 UTC. This echo moved further in southwest 
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direction at 1200 UTC. The NMM model with Ex-3 simulated this squall 

line movement by simulated composite radar reflectivity fields as 

observed by DWR imageries. The squall line movement in DWR pictures 

is well matching with Ex-3 than Ex-2 and Ex-1. 

          (a) 0900 UTC               (b) 1000 UTC 

  
 

          (c) 1100 UTC              (d) 1200 UTC 

  

Figure 4.7: NMM simulated composite radar reflectivity (dBZ) 
imageries from 0900 to 1200 UTC on 20 May 2006 
with Ex-1. 
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      (a) 0900 UTC              (b) 1000 UTC 

             
      (c) 1100 UTC                            (d) 1200 UTC 

            

Figure 4.8: NMM simulated composite radar reflectivity (dBZ) 
imageries from 0900 to 1200 UTC on 20 May 2006 
with Ex-2. 

The trends shown by various meteorological fields of Ex-3 are in 

good agreement with each other and very much consistent with dynamic 

and thermodynamic properties of the atmosphere for the occurrence of a 

severe thunderstorm. Ex-2 has also well captured all the meteorological 
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parameters with two-hour time lag. Ex-1 is failed to capture the direction 

of squall line movement. It may also be noted that all the characteristic 

properties of the genesis, occurrence and life cycle of severe thunderstorm 

were well simulated by the Ex-3. 

      (a) 0900 UTC                  (b) 1000 UTC 

                 
      (c) 1100 UTC                    (d) 1200 UTC 

                 
 

Figure 4.9: NMM simulated composite radar reflectivity (dBZ) 
imageries from 0900 to 1200 UTC on 20 May 2006 with 
Ex-3. 
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4.3.2 Sensitivity study with different CPSs 

The convective processes are implemented in NWP models 

through parameterizations because they are not resolved in the grid 

systems of most large scale and mesoscale models. The CPSs are 

procedures that attempt to account for the collective influence of small-

scale convective processes on large-scale model variables. They are 

representing dynamic and thermodynamic processes of moist convection 

occurring at sub-grid scales. No universal framework exists for CPSs, 

which led to the development of numerous different schemes. Properly 

parameterizing the effects of convection is still a challenging problem for 

NWP. The model simulated results with different CPSs for two severe 

thunderstorm cases (20 May 2006 and 21 May 2007) are explored in the 

following section. Analysis of the results of these experiments are helpful 

to understand the impact of CPSs on the simulation of severe 

thunderstorm events and assist in the customization of NMM model for 

future severe thunderstorm simulations over east Indian region. 

4.3.2.1 Stability indices 

Table 4.6 shows the inter-comparison of model simulated stability 

indices with different CPSs over Kolkata valid for 20 May 2006 at 1200 

UTC (Case 1) and 21 May 2007 at 1100 UTC (Case 2). The results of 

first thunderstorm case show that, only GD scheme is able to simulate a 

high CAPE value (1909 Jkg-1) during the thunderstorm hour, which is a 
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favorable condition for severe thunderstorms. The CAPE value of NO 

scheme (1433 Jkg-1) is also close to the critical level suggested by AiWS 

Technical Report (1990) and greater than the value suggested by Tyagi et 

al. (2011) for Kolkata. But CAPE values of KF and AS schemes are less 

than 1500 Jkg-1 and greater than 1000 Jkg-1during thunderstorm hour. The 

BMJ simulated CAPE is very less (983 Jkg-1) as compared to all other 

CPSs. The GD scheme captured the lowest LI value (-5) compared to all 

other CPSs as in CAPE (Table 4.6). The NO scheme simulated LI is -4. 

The AS and KF simulated LI (-3) is equal to the critical level. The BMJ 

simulated LI is -2, which is higher than the critical value and not 

favorable for thunderstorm occurrences. The model simulated KI values 

with different CPSs are more than the critical level suggested by AiWS 

Technical Report (1990) and Tyagi et al. (2011), which is favorable for 

severe thunderstorm. All the CPSs are able to capture a TTI of greater 

than or equal to 44. The GD and KF simulated TTI is 46 which is equal to 

the critical value suggested by Tyagi et al. (2011) (Table 4.3). The BMJ 

and AS are captured the least value (44) compared to other CPSs and 

equal to the critical level suggested by AiWS Technical Report (1990). 

By comparing all the stability indices with critical level (Table 4.3), it can 

be concluded that all the CPSs are well simulated the overall pattern 

except BMJ scheme. The GD scheme simulated stability indices are well 

shown the instability of the atmosphere at 1200 UTC for the occurrence 

of a severe thunderstorm.  
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The results of second thunderstorm case show that, GD, AS and 

BMJ schemes are able to capture a high CAPE value (4413, 3742, 2128 

Jkg-1 respectively) during the thunderstorm hour, which is a favorable 

condition for severe thunderstorms. The other schemes namely KF and 

NO (1071, 1034 Jkg-1 respectively) are not able to capture a value greater 

than the critical level (1500 Jkg-1) suggested by AiWS Technical Report 

(1990), but the values are more than 1000 Jkg-1, which is the suggested 

critical value by Tyagi et al. (2011). The GD scheme simulated LI is -8, 

which is the lowest value among all other CPSs. The AS and BMJ 

schemes are also able to capture a low value (-7 and -5) during the 

thunderstorm hour. The NO scheme simulated LI is -4. The KF simulated 

LI is equal to the critical level (Table 4.6). The NMM model simulated KI 

values with different CPSs are very high except BMJ scheme. BMJ 

scheme simulated KI value (26) is less than the critical level suggested by 

AiWS Technical Report (1990), but greater than the critical value (24) 

suggested by Tyagi et al. (2011) over Kolkata (Table 4.3). All the CPSs 

are able to capture a TTI greater than or equal to 46, which is a favorable 

condition for severe thunderstorms. The AS scheme simulated TTI is the 

highest among all other schemes (48). The GD and KF simulated TTI is 

47. The BMJ scheme is also captured a high value which is equal to 46 

(Table 4.6). The NO scheme is failed to capture a value greater than or 

equal to 46 as suggested by Tyagi et al. (2011), but greater than the value 

suggested by AiWS Technical Report (1990). By comparing all the 
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stability indices of different CPSs, it can be concluded that GD, AS, and 

BMJ schemes are well simulated the stability indices which is shown the 

instability of the atmosphere at 1100 UTC for the occurrence of a severe 

thunderstorm.  

Table 4.6: The inter-comparison of model simulated stability indices 
with different CPSs over Kolkata valid for 20 May 2006 
at 1200 UTC (Case 1) and 21 May 2007 at 1100 UTC 
(Case 2). 

Stability 
Indices 

Cases KF BMJ GD AS NO 

CAPE 
Case 1 1215 983 1909 1244 1433 
Case 2 1071 2128 4413 3742 1034 

LI 
Case 1 -3 -2 -5 -3 -4 
Case 2 -3 -5 -8 -7 -4 

KI 
Case 1 34 37 35 35 34 
Case 2 40 26 40 43 41 

TTI 
Case 1 46 44 46 44 45 
Case 2 47 46 47 48 45 

4.3.2.2 Surface parameters 

This study presents an inter-comparison of a few CPSs in WRF-

NMM model with different thunderstorm affected meteorological 

parameters like relative humidity, temperature, and precipitation. Figure 

4.10a shows the inter-comparison of observed and model simulated 

relative humidity (%) using different CPSs over Kolkata valid from 20 

May 2006 at 0000 UTC to 21 May 2006 at 0000 UTC. The observed 

relative humidity values are peaked from 48% to 95% (47% increase) at 
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1200 UTC whereas GD scheme showed a sharp rise from around 50% to 

85% (35%) at 1100 UTC, which is one hour prior to the thunderstorm 

occurrence. But all other CPSs are failed to capture the sudden rise, which 

is a characteristic feature of thunderstorm.  

 

 
Figure 4.10: The inter-comparison of observed and model 

simulated relative humidity (%) using different 
CPSs over Kolkata valid for (a) 20 May 2006 (b) 21 
May 2007. 

Figure 4.10b shows the inter-comparison of observed and model 

simulated relative humidity (%) using different CPSs over Kolkata valid 

from 21 May 2007 at 0000 UTC to 22 May 2007 at 0000 UTC. GD 
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scheme has well captured the intensity of relative humidity during the 

model simulated thunderstorm hour as in the observation. The observed 

relative humidity values peaked from 69% to 97% (28% increase) at 1100 

UTC whereas model showed a sharp rise from around 56% to 86% (30%) 

at 1000 UTC, which is one hour prior to the observed. All other 

parameterization schemes failed to capture the intensity and time as 

compared to the observation and GD scheme.  

A statistical analysis based on MAE, RMSE and CC is performed 

for comparison between the simulated and observed relative humidity 

with different CPSs valid for 20 May 2006 (Case 1) and 21 May 2007 

(Case 2) (Table 4.7). From the table, it can be clearly see that, GD scheme 

has less error as compared to all other schemes for both thunderstorm 

cases. There is not much variation between MAE values of KF and AS 

scheme, which is less compared to BMJ and NO schemes. In the case of 

RMSE, GD scheme has the least error compared to all other CPSs. The 

next position is for KF and AS schemes for the first thunderstorm case 

and AS and BMJ schemes for the second thunderstorm case. The NO 

scheme simulated results have the most error (MAE and RMSE). Another 

verification method used for this study is CC. From the table it can be 

clearly seen that, all the CPSs are positively correlated. The GD scheme 

has the highest correlation coefficient (0.87) for the first thunderstorm 

case. There is not much variation between the correlation coefficient of 

NO (0.82), AS (0.82) and KF (0.81) schemes. The BMJ scheme has the 
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least correlation (0.73) than other CPSs in the first thunderstorm case. All 

the schemes have strong correlation (> 0.8) except BMJ scheme. In the 

second case also, GD scheme is well correlated (0.78) to the observation 

than all other CPSs. In this case AS and BMJ schemes are more correlated 

to the observation than KF scheme. The NO scheme has the least 

correlation as in the error. 

Table 4.7: The statistical analysis of relative humidity with different 
CPSs over Kolkata valid for 20 May 2006 (Case 1) and 21 
May 2007 (Case 2). 

Statistical 
Analysis Cases KF BMJ GD AS NO 

MAE 
Case 1 7.81 8.36 7.55 7.68 8.59 
Case 2 9.85 10.52 9.14 9.56 13.16 

RMSE 
Case 1 10.79 14.11 10.70 10.87 11.78 
Case 2 16.87 15.25 11.16 15.12 20.49 

CC 
Case 1 0.81 0.73 0.87 0.82 0.82 
Case 2 0.69 0.72 0.78 0.74 0.55 

Figure 4.11a shows the inter-comparison of observed and model 

simulated surface temperature (0C) using different CPSs over Kolkata 

valid from 20 May 2006 at 0000 UTC to 21 May 2006 at 0000 UTC. The 

observed temperature values have a sudden fall from 330C to 220C (110C) 

at 1200 UTC whereas GD scheme showed a sharp fall from 33.50C to 

270C at 1100 UTC, which is one hour prior to the thunderstorm 

occurrence. But all other CPSs are failed to capture the sudden fall, which 

is a characteristic feature of thunderstorm. Figure 4.11b shows the inter-

comparison of observed and model simulated surface temperature (0C) 
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using different CPSs over Kolkata valid from 21 May 2007 at 0000 UTC 

to 22 May 2007 at 0000 UTC. GD scheme has well captured the variation 

with drop in temperature during the model simulated thunderstorm hour 

(1000 UTC) as in the observation. The observed temperature values have 

a sudden fall from 300C to 230C (70C) at 1100 UTC whereas model 

showed a sudden drop from around 340C to 270C (70C) at 1000 UTC, 

which is one hour prior to the observed. The intensity of temperature fall 

with GD scheme is same as in the observation. All other parameterization 

schemes are failed to capture the intensity and time as compared to the 

observation and GD scheme.  

The statistical analysis of temperature (0C) based on MAE, RMSE 

and CC is performed for comparisons between the simulated and 

observed values with different CPSs valid for 20 May 2006 (Case 1) and 

21 May 2007 (Case 2). The results are shown in Table 4.8. By taking both 

error measurement (MAE and RMSE) values together, it can be clearly 

seen that, GD scheme has less error as compared to all other schemes in 

both thunderstorm cases. The errors are less for NO scheme in the first 

thunderstorm case. While AS scheme has less MAE and RMSE, when 

two thunderstorm cases taken together. GD scheme has an average error 

of 2.620C for temperature and 10.80% for relative humidity. The next 

position is for AS scheme. All other schemes have more errors for the 

simulation of thunderstorm affected parameters. The GD scheme has the 

highest CC (0.87 and 0.82) in both cases as compared to all other CPSs.  
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Figure 4.11: The inter-comparison of observed and model 

simulated temperature (0C) using different CPSs 
over Kolkata valid for (a) 20 May 2006 (b) 21 May 
2007. 

The CC of NO scheme is higher for first thunderstorm case, but 

least for second case. When average correlation of two cases is taken, GD 

scheme simulated results are highly correlated to the observation than all 

other schemes. The next position is for AS scheme as in the MAE and 

RMSE. All other schemes have less correlation. 
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Table 4.8: The statistical analysis of temperature with different 
CPSs over Kolkata valid for 20 May 2006 (Case 1) and 
21 May 2007 (Case 2). 

Statistical 
Analysis Cases KF BMJ GD AS NO 

MAE 
Case 1 2.44 2.17 1.62 2.20 1.89 
Case 2 4.44 4.35 2.96 4.40 4.58 

RMSE 
Case 1 3.28 3.67 2.28 2.96 2.80 
Case 2 5.66 5.42 3.64 5.43 5.84 

CC 
Case 1 0.74 0.68 0.87 0.79 0.81 
Case 2 0.56 0.63 0.82 0.66 0.53 

The rainfall fields are examined by temporal and spatial pattern. 

Figure 4.12a shows the inter-comparison of observed and NMM model 

simulated diurnal variation of 24 h accumulated rainfall (mm) with 

different CPSs over Kolkata valid from 20 May 2006 at 0000 UTC to 21 

May 2006 at 0000 UTC. GD scheme is able to capture 29 mm of rainfall, 

which is less compared to actual observation (52 mm). GD scheme has 

predicted the rainfall at 1100 UTC, which is one hour prior to the actual 

severe thunderstorm occurrence (1200 UTC). The NO scheme is well 

captured the intensity (43 mm) with five hour time lag. But other schemes 

are failed to capture the intensity and time of occurrence. Figure 4.12b 

shows the inter-comparison of observed and NMM model simulated 

accumulated progressive rainfall with different CPSs at Kolkata valid 

from 21 May 2007 at 0000 UTC to 22 May 2007 at 0000 UTC. The GD 

scheme is able to capture 18.5 mm of rainfall at 1000 UTC, which is very 

close to the actual observation (20 mm). The GD scheme has predicted 
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the rainfall at 1000 UTC, which is one hour prior to the actual 

thunderstorm occurrence (1100 UTC). The GD scheme is well simulated 

the intensity and time of occurrence of precipitation over Kolkata on 21 

May 2007. But other schemes are failed to capture the rainfall amount and 

time of occurrence as compared to GD scheme. 

 

 

Figure 4.12: The inter-comparison of observed and model 
simulated accumulated rainfall (mm) with different 
CPS over Kolkata valid for (a) 20 May 2006 (b) 21 
May 2007. 
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The spatial distribution of 3 h accumulated rainfall (mm) between 

0900 and 1200 UTC with different CPSs on 20 May 2006 is shown in 

Figure 4.13. From the figures, it can be seen that, GD scheme is well 

simulated the rainfall intensity as compared to other schemes during the 

thunderstorm hours. NO scheme is also able to simulate the intensity, but 

the location is shifted to eastwards (near Bangladesh border). All other 

CPSs are failed to capture the intensity and time of this severe 

thunderstorm event. The spatial distribution of 3 h accumulated rainfall 

(mm) between 0900 and 1200 UTC with different CPSs on 21 May 2007 

is shown in Figure 4.14. From the figures, it can be clearly seen that GD 

scheme is well simulated the rainfall intensity as compared to other 

schemes during the thunderstorm hours. All other CPSs are failed to 

capture the intensity and time of this severe thunderstorm event. 

4.3.2.3 Composite radar reflectivity 

Kolkata DWR composite radar reflectivity imageries on 21 May 

2007 from 0800 to 1100 UTC is shown in Figure 4.15. By analyzing 

DWR imageries, scattered echoes are developed near Dumka (DMK) at 

0800 UTC and moving south eastwards at 0900 UTC. This echo is 

intensified into a squall line (30 km north of Kolkata) at 1000 UTC. This 

squall line moved further in southeast direction (Mohanty et al. 2007). 

NMM model with GD scheme simulated composite radar reflectivity on 

21 May 2007 from 0800 to 1100 UTC is shown in Figure 4.16. By 

analyzing NMM model simulated radar reflectivity pictures, scattered  
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               (a) KF                 (b) BMJ 

                 
              (c) GD                                 (d) AS 

                    
(e) NO 

             
Figure 4.13: The spatial distribution of 3 h accumulated rainfall (mm) 

between 0900 and 1200 UTC with different CPSs on 20 
May 2006. 
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             (a) KF               (b) BMJ 

  
            (c) GD                     (d) AS 

                     
                                                      (e) NO 

                                        

Figure 4.14: The spatial distribution of 3 h accumulated rainfall (mm) 
between 0900 and 1200 UTC with different CPSs on 21 
May 2007. 
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   (a) 0800 UTC        (b) 0900 UTC 

  

 
  (c) 1000 UTC                                  (d) 1100 UTC 

      

Figure 4.15: Kolkata DWR composite radar reflectivity (dBZ) 
imageries from 0800 to 1100 UTC on 21 May 2007. 

echoes developed northwest of Kolkata at 0800 UTC. This echo was 

moving south eastwards at 0900 UTC and intensified at 1000 UTC. This 

DMK 
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echo moved further in southeast direction and disappeared over sea. The 

GD scheme is well simulated this thunderstorm movement with simulated 

composite radar reflectivity fields. The other schemes are failed to capture 

the echoes and movement of this system (Figures are not shown). 

         (a) 0800 UTC               (b) 0900 UTC 

          
         (c) 1000 UTC                              (d) 1100 UTC 

         

Figure 4.16: NMM simulated composite radar reflectivity (dBZ) 
pictures from 0800 to 1100 UTC on 21 May 2007 with 
GD scheme. 
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The trends shown by various meteorological fields of NMM model 

with GD scheme are in good agreement with each other and very much 

consistent with dynamic and thermodynamic properties of the atmosphere 

for the occurrence of severe thunderstorms on 20 May 2006 and 21 May 

2007 even though one hour time lead exists. 

4.3.3 Sensitivity study with different microphysics schemes 

NWP models contain a large number of physical parameterization 

schemes in order to represent the various atmospheric processes that take 

place in sub-grid scales. Cloud microphysical processes play an important 

role through direct influences on the cold pool strength (due to rainfall 

evaporation) and latent heating (due to condensation). Therefore, 

microphysical parameterizations could be a principal source of 

uncertainty in convection allowing high resolution NWP models. It is 

important to quantify the uncertainty associated with the cloud 

microphysics parameterization – a salient concern in convection 

permitting models. It is also important to assess whether increasingly 

sophisticated cloud microphysics gives consistently better results. 

Therefore, assessing the cloud microphysics schemes is not only of 

practical significance but also helpful for guiding the future improvement 

of cloud microphysics parameterizations. The model simulated results 

with different microphysics schemes are explored in the following 

section. Analysis of the results of these experiments is helpful to 

understand the impact of microphysics on the simulation of 15 May 2009 
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severe thunderstorm event and assist in the customization of model for 

future severe thunderstorm simulations over east Indian region. 

4.3.3.1 Stability indices 

An attempt is made to examine different stability indices namely 

CAPE, LI, TTI and KI obtained from NMM model during this severe 

local storm day over Kolkata. Table 4.9 shows the NMM model simulated 

stability indices with three microphysics schemes (FERR, WSM6 and 

THOM) over Kolkata at 1300 UTC on 15 May 2009. The model 

simulated CAPE values with different microphysics schemes are high 

and greater than the critical levels (1500 and 1000 Jkg-1) during this 

thunderstorm hour, which is a favorable condition for severe 

thunderstorm occurrence. The NMM model simulated LI values with 

different microphysics schemes are very less (-6) at 1300 UTC, which is 

less than the critical level suggested by AiWS Technical Report (1990) 

and Tyagi et al. (2011) and favorable for thunderstorm occurrences. The 

model simulated KI value with FERR scheme (31) is close to the critical 

level suggested by AiWS Technical Report (1990) during the 

thunderstorm hour. The KI value of WSM6 and THOM schemes are very 

less than the critical level suggested by AiWS Technical Report (1990), 

but more than the critical level suggested by Tyagi et al. (2011) (Table 

4.3). The NMM model simulated TTI with FERR schemes are showing 

high values, which is greater than or equal to both critical levels (46 and 

44) during the thunderstorm hour of these severe local storm (Table 4.9). 
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The TTI value of WSM6 and THOM schemes are less than the critical 

level suggested by Tyagi et al. (2011). Examination of all the model 

simulated stability indices at 1300 UTC of 15 May 2009 clearly indicated 

that NMM model with FERR microphysics scheme has well captured the 

instability of the atmosphere for the occurrence of a severe thunderstorm. 

The model simulated thermodynamic structure over Kolkata was 

conducive for a thunderstorm occurrence as suggested by AiWS 

Technical Report (1990) and Tyagi et al. (2011). CAPE and LI values are 

well simulated by the other microphysics schemes, but failed to produce 

accurate values of KI and TTI indices suggested by AiWS Technical 

Report (1990) and Tyagi et al. (2011).  

Table 4.9: NMM model simulated stability indices over Kolkata at 
1300 UTC using different microphysics schemes. 

Stability Indices FERR WSM6 THOM 

CAPE 2428 2664 2603 

LI -6 -6 -6 

KI 31 27 25 

TTI 46 45 45 

4.3.3.2 Surface parameters 

Figure 4.17a shows the inter-comparison of observed (AWS) and 

NMM model simulated diurnal variation of surface temperature (0C) with 

different microphysics schemes over Kolkata valid from 15 May 2009 at 

0000 UTC to 16 May 2009 at 0000 UTC. From the figures, it can be 
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clearly seen that the NMM model with FERR scheme captured the sudden 

temperature drop during the model simulated thunderstorm hour (1400 

UTC), one hour after the observed. The observed temperature showed a 

drop from 290C to 240C (50C) at 1300 UTC, whereas NMM simulation 

shows a drop with same intensity of 50C from 310C to 260C at 1400 UTC. 

The other microphysics schemes are failed to capture the sudden 

temperature fall, a feature for thunderstorm occurrence. Figure 4.17b 

shows the inter-comparison of observed (AWS) and NMM model 

simulated diurnal variation of surface relative humidity (%) with different 

microphysics schemes over Kolkata valid from 15 May 2009 at 0000 

UTC to 16 May 2009 at 0000 UTC. NMM model with FERR schemes 

has captured the sudden rise of relative humidity values during the model 

simulated thunderstorm hour as in the observation. The observed relative 

humidity showed a rise from 63% to 100% (37%) at 1300 UTC, whereas 

NMM simulation showed a rise from 65% to 91% (26%) at 1400 UTC. 

The WSM6 and THOM schemes are failed to capture sudden rise of 

relative humidity as in the temperature. The NMM model well simulated 

the sudden rise and fall of surface relative humidity and temperature 

during the model simulated thunderstorm hour with one hour time lag.  

A statistical analysis based on MAE, RMSE and CC was 

performed for comparison between the simulated and observed surface 

temperature and relative humidity over Kolkata valid for 15 May 2009 at 

0000 UTC to 16 May 2009 at 0000 UTC. The results of the analysis are 
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given in Table 4.10. The simulated temperature and relative humidity 

with FERR scheme have more CC than other two schemes. The CC of 

temperature and relative humidity with FERR scheme are 0.87 and 0.72 

respectively. The CC of relative humidity with WSM6 and THOM 

schemes are very less and which is very below the range of strong 

correlation (0.8).  

 

 
Figure4.17: The inter-comparison of observed (AWS) and NMM model 

simulated diurnal variation of (a) surface temperature (0C) 
(b) relative humidity (%) with different microphysics 
schemes over Kolkata on 15 May. 
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The MAE and RMSE of each weather parameters have been 

computed. The MAE and RMSE values are less for FERR scheme as 

compared to other two schemes. The MAE and RMSE of temperature 

with FERR scheme are 1.930C and 2.470C respectively. The same errors 

of relative humidity with FERR scheme are 10.89% and 13.80%. The 

errors are high for other schemes. The results suggest that the NMM 

model with FERR scheme holds promise for prediction of surface weather 

parameters with reasonable accuracy in severe thunderstorm cases. 

Table 4.10: Statistical analysis of simulated and observed surface 
temperature and relative humidity over Kolkata based 
on MAE, RMSE and CC. 

Statistical  Analysis Parameter FERR WSM6 THOM 

MAE 
Temperature 1.93 3.28 3.07 

Relative Humidity 10.89 12.90 12.75 

RMSE 
Temperature 2.47 3.88 3.80 

Relative Humidity 13.80 16.28 16.07 

CC 
Temperature 0.87 0.81 0.74 

Relative Humidity 0.72 0.54 0.55 

The comparison of 3 h accumulated NMM model simulated 

rainfall with three microphysics schemes on 15 May 2009 is plotted in 

Figure 4.18. Prior studies have shown that a model’s microphysical 

parameterization scheme can strongly influence the magnitude of 

predicted precipitation (Otkin et al. 2006). The overall rainfall distribution 

is reasonably well captured by all three microphysics schemes. The 
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maximum intensity of model simulated rainfall with FERR scheme is 40 

to 55 mm. But the other two parameterization schemes are failed to 

capture this maximum intensity over West Bengal region. FERR scheme 

show a rainfall spread in the range of 25 to 40 mm over north, northwest 

and northeast of Kolkata. The other schemes are showing this spread, but 

failed to capture the intensity as in FERR scheme.  

           (a) FERR                             (b) WSM6 

  
            (c) THOM 

      

Figure 4.18: The spatial distribution of 3h accumulated rainfall 
(mm) between 1200 and 1500 UTC with different 
microphysics schemes on 15 May 2009. 
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Table 4.11 shows a quantitative assessment of model simulated 24 

h accumulated rainfall data using different microphysics schemes and 

surface rain gauge observations of IMD over West Bengal region on 15 

May 2009. The results show that FERR scheme was closer to the records 

than WSM6 and THOM schemes. The observed and simulated rainfalls 

with FERR scheme are closely agreed at Krishnagar and Dum Dum 

stations. The other two microphysics schemes are underestimated the 

rainfall amount over all 5 stations except Krishnagar as in the spatial 

rainfall distribution. The average rainfall from 6 stations show that FERR 

scheme simulated average rainfall is close to the observation. The results 

suggest an overall improvement from NMM model with FERR scheme 

with respect to ground based measurements. 

Table 4.11: The comparison of model simulated 24 h accumulated 
precipitation using different microphysics schemes of 6 
meteorological stations with rain gauge observations. 

STATION LAT LON OBS FERR WSM6 THOM 

Dum Dum 22.39 88.27 16.90 17.20 10.78 9.24 

Bankura 23.13 87.04 34.00 14.70 15.32 16.41 

Krishnagar 23.24 88.31 19.60 18.70 25.81 22.35 

Digha 21.50 87.48 21.00 18.40 10.00 11.87 

Midnapore 22.25 87.19 51.60 26.50 12.65 13.16 

Haldia 22.04 88.04 33.20 30.40 15.71 18.74 

MEAN 29.38 20.98 15.04 15.29 
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4.3.3.3 Composite radar reflectivity  

The storm structure can be evaluated by comparing the modeled 

radar reflectivity to the observed radar reflectivity. In order to achieve that 

composite radar reflectivity (dBZ) calculated in different simulation times 

are compared with observed one.  Figure 4.19 shows the Kolkata DWR 

imageries for the thunderstorm event, which occurred on 15 May 2009. 

The analysis of these imageries revealed that a strong echo was developed 

near Purulia (PRL) at 1000 UTC, which intensified into north-south 

oriented squall line by 1100 UTC. This echo gradually moved 

southeastwards at 1200 UTC. This echo was passed over Kolkata by 1300 

UTC. The intensity of the squall was reduced thereafter and disappeared 

at 1500 UTC. The movements of this severe thunderstorm are from 

northwest to southeast as in the typical Norwester’s (Mohanty et al. 

2009). 

NMM model simulated composite radar reflectivity with FERR 

scheme on 15 May 2009 from 1000 to 1300 UTC is shown in Figure 4.20. 

By analyzing simulated reflectivity plots it can be seen that a strong echo 

developed northwest of Kolkata at 1000 UTC. This echo moved towards 

Kolkata at 1100 UTC and over Kolkata at 1300 UTC as in the DWR 

imageries. The movement of squall line was well captured by FERR 

scheme as in the observation. The other microphysics schemes namely 

WSM6 and THOM (Figure 4.21 and 4.22) also captured this squall line 
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movement which was initiated northwest of Kolkata at 1000 UTC and 

moved further towards Kolkata during the following hours. 

       (a) 1000 UTC        (b) 1100 UTC 

       

 
        (c) 1200 UTC          (d) 1300 UTC 

             

Figure 4.19: Kolkata DWR composite radar reflectivity (dBZ) 
imageries from 1000 to 1300 UTC on 15 May 2009. 

 
 

PRL 
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         (a) 1000 UTC                 (b) 1100 UTC 

                 
          (c) 1200 UTC                  (d) 1300 UTC 

                  

Figure 4.20: NMM simulated composite radar reflectivity (dBZ) 
pictures from 1000 to 1300 UTC on 15 May 2009 
using FERR microphysics scheme. 

The trends shown by various meteorological fields of NMM model 

with FERR scheme are in good agreement with each other and very much 

consistent with dynamic and thermodynamic properties of the atmosphere 
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for the occurrence of a severe thunderstorm on 15 May 2009 even though 

one hour time lag exists. 

          (a) 1000 UTC                (b) 1100 UTC 

                
          (c) 1200 UTC                             (d) 1300 UTC 

            

Figure 4.21: NMM simulated composite radar reflectivity (dBZ) 
pictures from 1000 to 1300 UTC on 15 May 2009 
using WSM6 microphysics scheme. 
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         (a) 1000 UTC                 (b) 1100 UTC 

            
           (c) 1200 UTC                              (d) 1300 UTC 

            

Figure 4.22: WRF-NMM simulated composite radar reflectivity 
(dBZ) pictures from 1000 to 1300 UTC on 15 May 
2009 using THOM microphysics scheme. 

4.4 Chapter Summary 

The sensitivity experiments have been conducted with NMM 

model to examine the impact of different initial conditions, CPSs and 
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microphysics schemes in capturing the severe thunderstorm events 

occurred over Kolkata during May 2006, 2007 and 2009.  

The thunderstorm of 20 May 2006 over Kolkata is simulated using 

NMM model with different initial conditions to resolve mesoscale 

signature of the atmosphere and establish the robustness of the results. 

The simulation of the stability indices is good enough with the values 

indicating higher instability for the thunderstorm to occur. Ex-3 (24 h) has 

well simulated the thunderstorm initiation in terms of stability indices. 

Ex-3 has performed well in simulating all the thunderstorm affected 

parameters namely surface temperature, relative humidity and 

accumulated rainfall which is useful for occurrence and intensity of the 

severe thunderstorm even though one hour time lead exists. A statistical 

analysis based on MAE, RMSE and CC is also revealed that, time and 

intensity of surface parameters are well captured by Ex-3. From the 

spatial plots of composite radar reflectivity of Ex-3, it can be seen that a 

squall line is initiated at 0900 UTC, gradually moved towards Kolkata at 

1000 UTC and intensified at 1100 UTC as in DWR pictures. Ex-3 well 

captured the squall line movement than other initial conditions.  

The sensitivity experiments have been conducted with the NMM 

model to test the impact of CPSs on simulating severe thunderstorms that 

occurred over Kolkata on 20 May 2006 and 21 May 2007 and validated 

the model results with observation. In all experiments, the setups were 

identical except for the use of different convective schemes. Hence 
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differences in the simulation results may be attributed to the sensitivity of 

the convective schemes. This study showed that the prediction of 

thunderstorm affected parameters is sensitive to CPSs. It is clearly 

demonstrated that GD scheme performance is significantly better than 

other parameterization schemes including explicit scheme. By comparing 

both the thunderstorm cases, GD scheme is well simulated the instability 

of the atmosphere in terms of CAPE, LI, KI and TTI for the occurrence of 

a severe thunderstorm over Kolkata as compared to all other CPSs. The 

time-series plot and statistical analysis of surface temperature and relative 

humidity revealed that GD scheme is well captured the sufficient deep 

humid layer and dip in temperature for the occurrence of a severe 

thunderstorm on 20 May 2006 and 21 May 2007 as in the observation. 

The temporal and spatial patterns of precipitation simulated by GD 

scheme are in good agreement with the observation. But all other schemes 

are failed to capture the intensity and time of occurrence for both the 

thunderstorm cases. From the model simulated spatial plots of composite 

radar reflectivity, it can be cleared that the squall line movements are also 

well captured by GD scheme for both thunderstorm cases.  

The sensitivity experiments have been conducted for a severe 

thunderstorm on 15 May 2009 with three microphysical schemes to 

examine the sensitivity of the simulations to different cloud microphysics. 

Examination of the model simulated stability indices with different 

microphysics schemes on 15 May 2009 clearly indicated that NMM 
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model with FERR scheme has well captured the instability of the 

atmosphere for the occurrence of a severe thunderstorm. The model 

simulated surface precipitation with three microphysics schemes are 

analyzed and compared to the available observations in order to identify 

the microphysics scheme that provide the best representation of the 

spatio-temporal variability of precipitation in severe thunderstorm 

conditions. The best results are produced by FERR microphysics scheme. 

The analysis of surface temperature and relative humidity revealed that 

FERR scheme is well captured the sudden fall and rise on 15 May 2009 

with one hour time lag. The statistical analysis showed that FERR scheme 

has performed well in simulating all thunderstorm affected surface 

parameters. From the model simulated spatial plots of composite radar 

reflectivity with three microphysics schemes, it can be seen that in all 

three cases, a thunder squall is initiated northwest of Kolkata, gradually 

moving towards Kolkata as in DWR imageries. The NMM model with all 

microphysical schemes has reasonably well simulated the movement of 

the severe thunderstorm of 15 May 2009 as in the DWR imageries. 

The results of these analyses demonstrated the capability of high 

resolution WRF-NMM model in simulation of severe thunderstorm events 

and determined that the 3 km model improve upon current abilities when it 

comes to simulating severe thunderstorms over east and northeast Indian 

region. 

……. …….. 
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Forecasting of severe thunderstorms is a daunting challenge due to 

great complexity of the processes involved and interplay of many factors. 

Part of the problem is due to small time scales of these disturbances 

which enable only short lead times for forecasting. Meteorologists 

involved in severe weather forecasting have to look at a number of 

ingredients pertaining to the atmospheric flow and the thermodynamic 

conditions to demarcate the favorable or unfavorable environments for the 

growth of severe weather. This is an extremely difficult task as the 

parameters usually taken into consideration are essentially interdependent 

and vary in relation to each other in different situations.  

The use of NWP output to complement the interpretation of 

conventional observations can add great value to the forecast process. The 

higher time and space resolution of the model data enables a forecaster to 
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view the evolution of the weather situation in much greater detail and can 

provide an insightful framework within which actual observations can be 

interpreted. Forecasting thunderstorms has been an issue of debate for 

quite some time. Many NWP models like MM5, ARW, NMM and ARPS 

have been in operational use for weather forecasting at many places in the 

world. A basic characteristic of these models is that their governing 

equations are non-hydrostatic since the vertical and horizontal scales of 

convection are similar. Such models are also necessary for explicitly 

resolving gravity waves triggered by clouds. Presently, NWP models 

having a resolution less than 9 km are also available for the simulation 

and prediction of regional weather systems. These models can be used for 

a variety of applications including simulation and prediction of heavy 

rainfall, severe storms and tropical cyclones (Mohanty et al. 2004). NWP 

models have been developed with wide variety of flexibilities in terms of 

altering horizontal and vertical resolutions, nesting domains, and 

choosing options for different physical parameterization schemes. By 

setting some important parameters appropriately, these models can be 

used in a wide range of applications including thunderstorm forecasting 

(Mohanty et al. 2003). 

Numerical modeling of clouds has evolved in the past 4 decades. 

In 60’s, two-dimensional cloud models were developed to study evolution 

of clouds in idealized conditions. Subsequently, in 70’s, three-

dimensional cloud models were developed to quantify the effects of wind 
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shear on deep convection, squall lines and mid-latitude thunderstorms, 

which are associated with tornado genesis (Ogura and Takahashi 1971; 

Orville and Kopp 1977; Schlesinger 1978; Klemp and Wilhelmson 1978). 

Use of cloud resolving models (also known as cumulus ensemble models) 

started in late 70’s and 80’s to study collective effects of convection on 

the large-scale environment (Arakawa and Schubert 1974; Cotton et al. 

1982; Tao and Simpson 1984; Tao et al. 1987). The main objective was to 

improve cumulus (convective) parameterization scheme based on the 

knowledge gained from the cloud resolving models (CRM). A primary 

interest was to study the effect of wind shear on mesoscale convective 

systems, effect of ice processes on cloud formation and evolution, effects 

of stratiform rainfall and their relationship with deep convective rainfall. 

In 1990’s CRM was further improved to study multi-scale processes, 

cloud-chemistry interaction and surface processes (Grabowski et al. 1996; 

Lin and Arakawa 1997; Lynn et al. 1998; Tao et al. 1999). 

Although studies have been conducted for pre-monsoon 

thunderstorms over Indian region, serious attempt to predict the 

development was a recent activity (e.g. Dasgupta and De 2007; 

Chaudhary 2008; Ghosh et al. 2008; Mukhopadhyay et al. 2009; Latha 

and Murthy 2011; Tyagi et al. 2011). Dasgupta and De (2007) developed 

logistic regression model for prediction of pre-monsoon thunderstorms 

over Kolkata. Chaudhury (2008) has studied low level clouds during these 

thunderstorm days using soft computing technique in the form of rough 
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set theory. Latha and Murthy (2011) have presented pre-monsoon 

thunderstorm development in terms of turbulence and wind fields using 

doppler sodar observations. Use of satellite and DWR data in studying 

pre-monsoon thunderstorms are also available in the literature (Ghosh et 

al. 2008; Mukhopadhyay et al. 2009). 

In India, studies related to modeling of clouds and thunderstorms 

are scarce. The improvement in thunderstorm prediction is also highly 

handicapped due to lack of mesoscale observations and insufficient 

understanding (Rajeevan et al. 2012). Motivated by the need to develop 

NWP interpretation techniques for forecasting of severe weather in east 

Indian region, an attempt is made to examine the utility of numerical 

guidance. In this study, the simulated results of three thunderstorm events 

(3, 11 and 15 May 2009), using NMM and ARW modeling systems are 

compared. The temporal variations of surface temperature and relative 

humidity, which are useful for occurrence and intensity of the severe 

thunderstorms are evaluated and validated the model results with 

observations. The capacities of the NMM and ARW models in retrieving 

precipitation fields over east Indian region during three severe 

thunderstorm events were analyzed, by comparing the outputs of the 

models with ground observations. A quantitative verification of the 

results was performed with classical statistics parameters namely MAE, 

RMSE and CC. The model simulated radar reflectivity and cloud top 

temperature were compared with the Kolkata DWR and Kalpana satellite 
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imageries, to verify whether the models were able to simulate the genesis, 

intensification and propagation of these thunder squalls.  

5.1 Data and Methodology 

The skill of prediction has been demonstrated in this study through 

the numerical simulations with NWP models. NMM and ARW modeling 

systems were used here to perform cloud resolving simulation of 

thunderstorm events that occurred over east Indian region. The WRF 

model is a next-generation mesoscale forecast model that will be used to 

advance the understanding and the prediction of mesoscale convective 

systems. It features a software architecture allowing for computational 

parallelism and system extensibility. The WRF model will be used for a 

wide range of applications, from idealized research to operational 

forecasting, across scales ranging from meters to thousands of kilometers. 

The WRF model contains two dynamic cores: NMM (Janjic 2003) core, 

developed by NOAA/NCEP at USA and the ARW (Skamarock et al. 

2005) core, developed by NCAR at USA. NMM runs are initialized 

through the same basic mechanism as the ARW runs. The WPS reads 

GRIB data from an initializing model and interpolates it onto the target 

WRF domain grid. However, the functionality of the WPS had to be 

expanded to handle the horizontal staggering, map projection, and vertical 

coordinate used by the NMM, as each is distinct from its ARW 

counterpart. The details of each model are specified in Chapter 2. 
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In the present study, an attempt has been made to compare the 

simulated results of thunderstorm events during 3, 11 and 15 May 2009 

using NMM and ARW models. Both ARW and NMM models were 

integrated for a period of 24 hours starting from 0000 UTC of each day 

and ending at 0000 UTC of the following day. Boundary and initial 

conditions for both models are from FNL dataset of NCEP with 1o x 1o 

lat/lon grids. Both models thus have a common starting point, and avoid a 

potential source of difference. A single domain was configured with 3 km 

horizontal spatial resolution (Figure 5.1), which is reasonable in capturing 

the mesoscale cloud clusters. The domain covers 84.50E to 92.50E and 

19.50N to 27.50N and the grids are centered at 88.50E, 23.50N. Both 

NMM and ARW domains are configured with vertical structure of 38 

unequally spaced sigma (non-dimensional pressure) levels.  

 

Figure 5.1: Domain of NMM and ARW model. 



Comparison of Numerical Models for Thunderstorm Prediction 

Cochin University of Science and Technology  193 

In this study, same physics options are taken for both the ARW 

and NMM simulations. The physical parameterizations used in this study 

are GFDL for longwave and shortwave radiation (Schwarzkopf and Fels 

1991; Lacis and Hansen 1974), Noah Land surface scheme (Chen and 

Dudhia 2001) for land surface, MYJ scheme (Janjic 2002) for planetary 

boundary layer, Ferrier scheme (Ferrier 2002) for microphysics, Janjic 

similarity scheme (Janjic 1994) for surface layer and GD cloud ensemble 

scheme (Grell and Devenyi 2002) for CPS. All the above schemes are 

well tested for NMM and ARW models. Table 5.1 shows the model 

configuration for the present study.  

Table 5.1: NMM and ARW model configuration. 

Model WRF-NMM WRF-ARW 
Dynamics Non-hydrostatic Non-hydrostatic 
Horizontal resolution 3km 3km 
Forecast Length 24 hrs 24 hrs 
Map projection Rotated latitude and 

longitude 
Mercator 

Horizontal grid system Arakawa E-grid Arakawa C-grid 
Vertical co-ordinate Hybrid sigma to pressure 

vertical coordinate 
(38levels) 

Terrain following sigma 
vertical coordinate 
(38levels) 

Radiation  GFDL/GFDL GFDL/GFDL 
Surface layer  Janjic scheme Janjic scheme 
Land surface  Noah land surface  Noah land surface  
Convective  Grell-Devenyi Grell-Devenyi 
PBL parameterization Mellor-Yamada-Janjic Mellor-Yamada-Janjic 

Microphysics Ferrier (new eta) scheme Ferrier (new eta) scheme 
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Output from each model is post-processed to bring them back to a 

common format that enables direct comparison. The WPP vertically 

interpolates output from each model onto isobaric surfaces, diagnoses 

various fields not directly computed by the models, and generates a GRIB 

file on the model’s native projection (rotated latitude longitude for the 

NMM model and mercator for the ARW model). NCEP’s “product 

generator” horizontally interpolates the data from each model onto a 

common grid used for visualization and verification. The hourly 

observations of AWS data, DWR imageries over Kolkata, Kalpana 

satellite imageries and rain gauge observations from IMD are used in this 

study for model validation. The details of thunderstorm cases are 

described in Chapter 3. 

5.2 Result and Discussion 

The ARW and NMM model have become popular for various 

applications. Several researches related to comparison of impacts of 

mesoscale dynamic cores (NMM and ARW) over US have been 

performed (Gallus 2006). But only single study is available including 

both ARW and NMM model over Indian region (Pattanayak et al. 2008), 

which is for cyclone prediction. The main objective of this work is to 

analyze the skills of NWP models as drivers of thunderstorm modeling 

system over east Indian region. For that purpose, NMM and ARW models 

are evaluated during 3 severe thunderstorm cases and the thunderstorm 
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affected parameters from model outputs are analyzed in the following 

section. 

5.2.1 Analysis of stability indices  

Stability indices have been a corner stone in the forecasting of 

convection for many decades and often are used in the research literature 

as well. These indices are very helpful in predicting the severe weather 

events like thunderstorms. In the present study, an attempt is made to 

examine different stability indices of Kolkata (22.520N, 88.370E) obtained 

from NMM and ARW model in three thunderstorm days during May 

2009. Table 5.2 shows the inter-comparison of NMM and ARW model 

simulated stability indices over Kolkata at 0000 and 1200 UTC. The 

NMM and ARW model simulated CAPE values are high and greater than 

the critical levels (1500 and 1000 Jkg-1) suggested by AiWS Technical 

Report (1990) and Tyagi et al. (2011) at 0000 and 1200 UTC of these 

three thunderstorm events, which is a favorable condition for severe 

thunderstorms. The mean of simulated CAPE values of ARW and NMM 

models at 0000 and 1200 UTC are found to be much larger than the 

critical level. The average CAPE values at 1200 UTC of both models are 

very high than 0000 UTC, which indicates that the models tend to 

simulate large CAPE values at 1200 UTC, when commonly 

thunderstorms occur. ARW and NMM model simulated LI values are less 

than critical level during all thunderstorm days. The mean of simulated LI 

values of both models at 0000 UTC are nearly the same and are less than 
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the critical level (-3). ARW model resulted mean LI values are lesser than 

NMM simulated LI value at 1200 UTC. 

Table 5.2: Comparison of NMM and ARW model simulated 
stability indices for three thunderstorm events during 
May 2009. 

Stability 
Indices 

Critical 
Level 

Critical 
Level 

Tyagi et al. 
(2011) 

Thunder 
Storm 
Cases 

0000 UTC 1200 UTC 

NMM ARW NMM ARW 

CAPE > 1500 
 

> 1000 
 

3 May 2947 3338 3361 3583 
11 May 3685 3455 3932 3963 
15 May 3033 3100 2993 3554 
MEAN 3221.7 3297.7 3428.7 3700 

LI < -3 < -3 

3 May -7 -8 -7 -8 
11 May -10 -9 -10 -11 
15 May -9 -8 -6 -8 
MEAN -8.7 -8.3 -7.7 -9.0 

TTI > 44 > 46 

3 May 50 49 49 50 
11 May 51 51 56 58 
15 May 50 50 43 47 
MEAN 50.3 50.0 49.3 51.9 

KI > 33 > 24 

3 May 29 30 29 26 
11 May 28 27 39 36 
15 May 33 34 29 28 
MEAN 30.0 30.3 32.3 30.0 

Both models captured a higher TTI values except for the third 

case. NMM model simulated TTI value (43) is below critical levels (44 

and 46) for 15 May 2009 at 1200 UTC. In both time, model results show 

a high mean value (more than 48) of TTI, which is a favorable for severe 

thunderstorm occurrence. The mean of simulated KI values of both 
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models at 0000 UTC are very close to each other as in other stability 

indices. But ARW simulated value at 1200 UTC is very less than the 

critical level suggested by AiWS Technical report (1999), but greater than 

the value suggested by Tyagi et al. (2011).  

Examination of the model simulated stability indices for each 

thunderstorm day clearly indicated that both models have done well in 

capturing the instability of the atmosphere at 0000 and 1200 UTC for the 

occurrence of a severe thunderstorm. Thus model simulated 

thermodynamic structure over Kolkata becomes conducive for a 

thunderstorm occurrence. 

5.2.2 Analysis of surface relative humidity and temperature  

Relative humidity at surface level has been taken into account, as it 

is an essential factor in intense convection. Figure 5.2 shows the inter-

comparison of observed and model simulated relative humidity (%) using 

NMM and ARW model over Kolkata valid for 3, 11 and 15 May 2009 at 

0000 UTC to next day at 0000 UTC. The observed relative humidity 

values for 3 May 2009 (Figure 5.2a) peaked from 52% to 100% (48%) at 

1000 UTC whereas NMM model showed a sharp rise from around 49% to 

88% (39%) at 1200 UTC, which is two hour later than that of the 

observed. ARW was not able to capture the sharp rise of relative humidity 

during the thunderstorm hour as in the NMM model.  In the second case 

(Figure 5.2b), observed relative humidity showed a rise from 66% to 
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100% (34%) at 1200 UTC, whereas NMM simulation showed a rise from 

42% to 77% (35%) at 1000 UTC, which is two hour prior than that of the 

observed. ARW model simulation showed an increase from 34% to 52% 

(18%) at 1000 UTC. A sharp increase of 35% has been captured by NMM 

model as in the observed rise of 34%. ARW model is able to capture the 

rise with less intensity. In the third case (Figure 5.2c), observed relative 

humidity peaked from 63% to 100% (37%) at 1300 UTC, whereas NMM 

model showed a sharp rise from 65% to 91% (26%) at 1400 UTC, which 

is one hour later than that of the observed. In this thunderstorm case also 

ARW model was not able to capture the sharp rise of relative humidity 

during the thunderstorm hour as in the NMM model. For all the 

thunderstorm cases (Figure 5.2), NMM model has captured the sudden 

rise of relative humidity values during the model simulated thunderstorm 

hour as in the observations. 

A statistical analysis based on MAE, RMSE and CC was 

performed for comparisons between the simulated and observed surface 

relative humidity over Kolkata for 3 thunderstorm cases and are given in 

Table 5.3. From the table, it can be clearly seen that, simulated relative 

humidity of NMM model has more correlation with observation than 

ARW model for all 3 thunderstorm cases. The CC of NMM model is 

more than 0.7 for first and third thunderstorm cases and has an average 

CC value close to 0.7. The CC value of ARW model is very less for 

second and third cases and has a less average value.  
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Figure 5.2: Inter-comparison of NMM and ARW model simulated 

and observed diurnal variation of surface relative 
humidity (%) over Kolkata on (a) 3 May 2009 (b) 11 
May 2011 (c) 15 May 2011. 
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The MAE and RMSE of each model have been computed to test 

the prediction error of the model. The MAE and RMSE values of relative 

humidity are less for NMM model than ARW for all 3 thunderstorm 

cases. The average errors are high for ARW model and the values are 

16.21% and 19.04%.  

Table 5.3: Statistical analysis of simulated and observed surface 
relative humidity over Kolkata based on MAE, RMSE and 
CC. 

 

Statistical Analysis CASES NMM ARW 

MAE 

3-May 13.36 18.97 
11-May 13.11 17.18 
15-May 10.89 12.49 
MEAN 12.45 16.21 

RMSE 

3-May 17.37 21.62 
11-May 17.00 20.85 
15-May 13.80 14.65 

MEAN 16.05 19.04 

CC 

3-May 0.76 0.72 
11-May 0.53 0.49 
15-May 0.72 0.57 
MEAN 0.67 0.59 

Surface temperature is useful parameter in forecasting the 

likelihood occurrence of a thunderstorm. Figure 5.3 shows the inter-

comparison of observed and model simulated temperature (0C) using 

NMM and ARW model over Kolkata valid for 3, 11 and 15 May 2009 at 

0000 UTC to next day at 0000 UTC. The observed temperature (Figure 

5.3a) showed a sudden fall from 36.70C to 21.70C (150C) at 1000 UTC 
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whereas NMM model showed a fall from 35.10C to 26.10C (90C) at model 

predicted hour. For the second case (Figure5.3b), observed temperature 

showed a drop from 33.10C to 21.70C (11.40C) at 1200 UTC, whereas 

NMM simulation shows a drop from 37.10C to 280C (9.10C) at 1000 

UTC. In the third case, the observed temperature (Figure 5.3c) showed a 

sudden fall from 290C to 240C (50C) at 1300 UTC whereas NMM model 

showed a fall from 310C to 260C (50C) at model predicted hour of 1400 

UTC. In all three thunderstorm cases ARW model failed to capture the 

sudden temperature fall over Kolkata as in NMM model.  

A statistical analysis based on MAE, RMSE and CC was 

performed for comparison between the simulated and observed surface 

temperature over Kolkata for 3 thunderstorm cases and are given in Table 

5.4. NMM model have more correlation with observation than ARW 

model for all 3 thunderstorm cases. The CC of NMM model is more than 

0.8 for first and third thunderstorm cases as in the relative humidity and 

have an average CC value more than 0.8. The CC value of ARW model is 

also greater than 0.8 for first and third cases and an average is less than 

0.8 due to less correlation in second case. The MAE and RMSE of each 

model have been computed to test the prediction error of the model. The 

MAE and RMSE values of temperature are less for NMM model than 

ARW for all 3 thunderstorm cases. The average errors are less for NMM 

model than ARW and the values are 2.910Cand 3.860C.  
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Figure 5.3: Inter-comparison of NMM and ARW model simulated 

and observed diurnal variation of surface temperature 
(0C) over Kolkata on (a) 3 May 2009 (b) 11 May 2011 
(c) 15 May 2011. 
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Table 5.4: Statistical analysis of simulated and observed surface 
temperature over Kolkata based on MAE, RMSE and CC. 

 

Temperature CASES NMM ARW 

MAE 
 

3-May 3.03 3.45 
11-May 3.78 3.99 
15-May 1.92 1.93 
MEAN 2.91 3.12 

RMSE 

3-May 3.94 4.28 
11-May 5.19 5.28 
15-May 2.47 2.58 
MEAN 3.86 4.05 

CC 

3-May 0.86 0.86 
11-May 0.69 0.62 
15-May 0.87 0.85 
MEAN 0.81 0.77 

Comparison of the surface parameters simulated by both models 

indicated the superiority of NMM model in simulating thunderstorms 

over Kolkata even though one or two hour lead or lag exists. 

5.2.3 Analysis of precipitation 

Precipitation is recognized as one of the most difficult parameters 

to forecast in NWP. Most of the thunderstorms produce heavy rainfall 

during their lifecycle of 1-3 hours. The comparison of 24 h accumulated 

NMM and ARW model simulated rainfall with three thunderstorm cases 

are plotted in Figure 5.4. The overall rainfall distribution is reasonably 

well captured by the NMM model for all 3 thunderstorm cases. The 

rainfall spread simulated by ARW model is less for first two cases.  
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     (a) NMM – 3May 2009                    ARW – 3May 2009 

         
      (b) 11May 2009 

          
      (c) 15May 2009 

         

Figure 5.4: Comparison of NMM and ARW simulated 24 h 
accumulated rainfall during 3 thunderstorm events (a) 
3 May 2009 (b) 11 May 2009 and (c) 15 May 2009. 
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For third case, both model well captured the rainfall spread over West 

Bengal region. The maximum intensity of NMM model simulated rainfall 

over West Bengal is 30 to 50 mm for first two cases. But ARW failed to 

capture this intensity over West Bengal region in first two thunderstorm 

cases. The ARW model was able to capture the rainfall spread as in NMM 

model over this region for third thunderstorm cases. 

A quantitative assessment of ARW and NMM model simulated 

rainfall data and surface rain gauge observations of 6 stations over West 

Bengal region for three thunderstorm cases has been analyzed. The 

precipitation is accumulated for up to 24 h, starting from 0000 UTC of each 

day and ending at 0000 UTC of the following day. Comparison of modeled 

precipitation with rain gauge station observations for all three thunderstorm 

days is given in Table 5.5. Both models have well simulated the rainfall 

amount with NMM performing better than ARW as indicated in the table. It 

can also be seen from the values in Table 5.5 that NMM model had predicted 

the rainfall amount better than ARW on 3 May 2009 at the stations Dum 

Dum, Bankura, Basirhat and Balasore while ARW’s predictions were better 

at Sriniketan and Jamshedpur. The average rainfall of NMM model from six 

rain gauge stations are more than ARW model. On 11 May 2009, NMM 

model has done better than ARW model in simulating rainfall at all 6 

stations. ARW model simulated very less rainfall in 5 stations and over 

predicted the rainfall amount at Kharagpur. NMM simulated average rainfall 

on this day is very good as compared to ARW. On 15 May 2009, both 
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models have well simulated the rainfall amount as in the rainfall distribution 

plot. The average rainfall value of third case is more for ARW (21.65) model 

than NMM (20.98) as indicated in Table 5.5. Although ARW has done well 

occasionally in simulation of rainfall at these stations, the overall 

performance was better with NMM model. 

Table 5.5: Comparison of modeled precipitation of three thunderstorm 
cases with rain gauge observations. 

DATE STATION LAT LONG OBS NMM ARW 
 Dum Dum 22.39 88.27 31.40 23.26 6.56 

3 May  Bankura 23.13 87.04 24.90 14.73 12.62 
 Basirhat 22.40 88.53 21.20 14.12 12.14 
 Sriniketan 23.39 87.42 38.20 26.06 35.24 
 Balasore 21.30 86.56 43.30 31.04 11.80 
 Jamshedpur 22.44 86.12 35.80 15.49 32.00 
 MEAN 32.47 20.78 18.39 
 Dum Dum 22.39 88.27 33.30 23.10 12.48 

11 May Bankura 23.22 87.07 22.00 15.13 3.44 
 Canning 22.25 88.67 26.40 21.00 12.87 
 Basirhat 22.4 88.53 48.40 24.75 18.74 
 Digha 21.83 87.8 24.40 10.08 0.00 
 Kharagpur 22.2 87.19 16.80 11.99 19.31 
 MEAN 28.55 17.68 11.14 
 Dum Dum 22.39 88.27 16.90 17.19 35.30 

15 May Bankura 23.13 87.04 34.00 14.69 20.40 
 Krishnagar 23.24 88.31 19.60 18.72 17.17 
 Digha 21.5 87.48 21.00 18.39 18.40 
 Midnapore 22.25 87.19 51.60 26.54 17.70 
 Haldia 22.04 88.04 33.20 30.39 21.20 

 MEAN 29.38 20.98 21.69 
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In order to analyze the modeled precipitation, statistical analysis 

has been done by calculating the CC, RMSE and MAE which is given in 

Table 5.6. All statistical parameters are calculated by taking precipitation 

values of six rain gauge stations for three thunderstorm cases together. 

NMM model’s superior performance is witnessed with high correlation 

coefficient of 0.565, better than that of ARW. Further it can be seen that 

RMSE, MAE of NMM are less than that of ARW indicating better 

efficiency of NMM model in predicting rainfall at different stations. The 

statistical analysis showed that NMM model’s predicted rainfall amounts 

are closer to that of the observed in comparison with that of ARW. So 

NMM model has outperformed ARW in rainfall prediction and is superior 

out of two models. 

Table 5.6: Statistical analysis of simulated and observed precipitation 
for three thunderstorm cases. 

Statistical Analysis Description NMM ARW 

MAE 
 

10.905 15.379 

RMSE 
 

13.785 18.464 

CC 
 

0.565 0.121 

5.2.4 Analysis of composite radar reflectivity 

DWR is being used worldwide for the study of various severe 

weather phenomena like thunderstorms, hailstorms, tornadoes and cyclones. 

In other words, it can measure how fast rain or hail is moving towards or 
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away from the radar. From a volume scan (a series of 360o sweeps, each 

tilting a little higher than the last); forecasters can get a detailed look at 

structures and movements in storms close to the radar (Chatterjee et al. 

2008). Kolkata DWR composite radar reflectivity imageries on 3 May 2009 

from 1000 to 1300 UTC is shown in Figure 5.5. By analyzing Kolkata DWR 

composite radar reflectivity (dBZ) imageries on 3 May 2009, a strong echo 

was developed northwest of Kolkata (Ranchi (RNC)) at 0900 UTC. This 

echo intensified into north-south oriented squall line by 1000 UTC (Figure 

5.5a) and gradually moved towards Kolkata at 1100 UTC (Figure 5.5b). This 

echo was over Kolkata at 1300 UTC (Figure 5.5d) and disappeared at 1400 

UTC (Mohanty et al. 2009). 

NMM model simulated composite radar reflectivity (dBZ) on 3 May 

2009 from 1000 to 1300 UTC is shown in Figure 5.6. By analyzing NMM 

model simulated composite radar reflectivity plots, a squall line developed 

northwest of Kolkata at 1000 UTC. This squall line was moved towards 

Kolkata at 1100 UTC and was over Kolkata at 1300 UTC as in the DWR 

imageries. ARW model simulated composite radar reflectivity (dBZ) on 3 

May 2009 from 1000 to 1300 UTC is shown in Figure 5.7. ARW model 

simulated composite radar reflectivity plots also show a squall line, which 

developed northwest of Kolkata at 1000 UTC as in NMM model. This squall 

line was moved towards Kolkata at 1100 UTC, but didn’t reach Kolkata at 

1300 UTC, which indicating the slow movement of the squall line. The 

squall line movement and intensity was well captured by NMM than ARW.  
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    (a) 1000 UTC         (b) 1100 UTC 

        

 
    (c) 1200 UTC         (d) 1300 UTC 

        

Figure 5.5: Kolkata DWR composite radar reflectivity (dBZ) 
imageries from 1000 to 1300 UTC on 3 May 2009. 

 
 

RNC 
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       (a) 1000 UTC               (b) 1100 UTC 

      
       (c) 1200 UTC               (d) 1300 UTC 

     
 

Figure 5.6: NMM model simulated composite radar reflectivity 
(dBZ) pictures from 1000 to 1300 UTC on 3 May 
2009. 

 

Kolkata DWR imageries from 1000 to 1300 UTC on 11 May 2009 

are given in Figure 5.8. By analyzing Kolkata DWR imageries of 11 May 

2009, a strong echo was developed northeast of Kolkata at 1000 UTC, which 
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intensified into west-east oriented squall line by 1100 UTC. Another strong 

echo was developed at the northwest of Kolkata at 1100 UTC. These two 

echoes are merged at 1200 UTC and become intensified. This echo gradually 

moved towards Kolkata at 1300 UTC (Mohanty et al. 2009). Both NMM 

(Figure 5.9) and ARW (Figure 5.10) models are failed to capture two strong 

echoes in their plots. They are able to simulate one echo which was initiated 

from northeast of Kolkata at 1000 UTC as in observation. It was intensified 

and moved towards Kolkata at 1100 UTC (Figure 5.9). NMM model well 

captured this squall line movement as compared to ARW model (Figure 

5.10) even though the magnitude of composite radar reflectivity simulated by 

NMM model is less.  

By analyzing Kolkata DWR imageries on 15 May 2009 (Figure 

5.11), a strong echo was developed near Purulia (PRL) at 1000 UTC, which 

intensified into north-south oriented squall line by 1100 UTC. This echo 

gradually moved towards Kolkata at 1200 UTC. This echo was over Kolkata 

at 1300 UTC and disappeared at 1500 UTC (Mohanty et al. 2009). NMM 

model simulated composite radar reflectivity on 15 May 2009 from 1000 to 

1300 UTC is shown in Figure 5.12. By analyzing NMM model simulated 

composite radar reflectivity plots, a squall line developed northwest of 

Kolkata at 1000 UTC. This squall line was moved towards Kolkata at 1100 

UTC and was over Kolkata at 1300 UTC as in the DWR imageries. By 

analyzing ARW model simulated composite radar reflectivity pictures 

(Figure 5.13), a squall line developed northwest of Kolkata at 1000 UTC as 
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in NMM model. This squall line was moved towards Kolkata at 1100 UTC. 

This echo was not reached over Kolkata by 1300 UTC as in the DWR 

imageries and NMM simulated outputs. ARW model simulated more 

intensity than NMM model as in the previous case. However it is seen that 

the movement of the squall line was slow in ARW as compared to that of the 

observed.  

From the present analysis of the simulated composite radar 

reflectivity, it can be concluded that NMM model has reasonably well 

simulated genesis, intensification and propagation of three severe 

thunderstorms during 2009 pre-monsoon season over east Indian region as 

in the DWR radar reflectivity imageries. ARW model well simulated the 

thunderstorm initiation, while the squall line movement was slow. 

5.2.5 Analysis of cloud top temperature 

The ability to accurately forecast cloudiness is necessary in the 

fields of aviation. In recent years, brightness temperature and cloud top 

temperature derived from NWP model output have been used to 

demonstrate the advanced capabilities of these models for severe weather 

prediction (Otkin and Greenwald 2008). In this section, the ability of 

NMM and ARW model to realistically simulate the cloud top temperature 

(CTT) (0C) over east Indian region are examined. The comparisons of 

Kalpana satellite derived and model simulated CTT are presented here. 

Kalpana satellite is a dedicated, meteorological geostationary Indian 
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satellite launched by Geo-Stationary Launch Vehicle (GSLV) and 

operating since 24 September 2002. 

       (a) 1000 UTC                (b) 1100 UTC 

      
      (c) 1200 UTC                                                 (d) 1300 UTC 

       

Figure 5.7: ARW model simulated composite radar reflectivity 
(dBZ) pictures from 1000 to 1300 UTC on 3 May 
2009. 
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     (a) 0900 UTC        (b) 1000 UTC 

  

 
     (c) 1100 UTC          (d) 1200 UTC 

       

Figure 5.8: Kolkata DWR composite radar reflectivity (dBZ) 
imageries from 0900 to 1200 UTC on 11 May 2009. 
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       (a) 0900 UTC               (b) 1000 UTC 

      
       (c) 1100 UTC                                             (d) 1200 UTC 

             

Figure 5.9: NMM model simulated composite radar reflectivity 
(dBZ) pictures from 0900 to 1200 UTC on 11 May 
2009. 
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        (a) 0900 UTC              (b) 1000 UTC 

          
      (c) 1100 UTC             (d) 1200 UTC 

    

Figure 5.10: ARW model simulated composite radar reflectivity (dBZ) 
pictures from 0900 to 1200 UTC on 11 May 2009. 
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   (a) 1000 UTC                         (b) 1100 UTC 

           

 
  (c) 1200 UTC                                      (d) 1300 UTC 

         
 

Figure 5.11: Kolkata DWR composite radar reflectivity (dBZ) 
imageries from 1000 to 1300 UTC on 15 May 2009. 

PRL 
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       (a) 1000 UTC                 (b) 1100 UTC 

       
      (c) 1200 UTC                                  (d) 1300 UTC 

          

Figure 5.12: NMM model simulated composite radar reflectivity 
(dBZ) pictures from 1000 to 1300 UTC on 15 May 
2009. 
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        (a) 1000 UTC                (b) 1100 UTC 

       
        (c) 1200 UTC               (d) 1300 UTC 

       

Figure 5.13: ARW model simulated composite radar reflectivity 
(dBZ) pictures from 1000 to 1300 UTC on 15 May 
2009. 

This geostationary satellite carries onboard a Very High 

Resolution Radiometer (VHRR) along with other instruments. This sensor 

operates in three wavelengths bands, viz. (i) thermal IR band (TIR): 10.5–
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12.5 µm, (ii) visible band (VIS): 0.55–0.75 µm and (iii) water vapour 

band (WV): 5.7–7.1 µm. In WV and TIR bands, the spatial resolution is 8 

km whereas in VIS band spatial resolution is 2 km. The details of the 

Kalpana satellite are given by Kaila et al. (2002). This product indicates 

the contours of the CTT of the IR channel. The range of values for which 

contours are drawn is –20 to –800C. 

Kalpana satellite derived CTT (0C) imageries from 1000 to 1300 

UTC on 3 May 2009 are shown in Figure 5.14. The satellite imageries 

(Figure 5.14) of this thunderstorm case show that two convective cells 

developed over Bangladesh (northeast of Kolkata) and Jharkhand 

(northwest of Kolkata) at 1000 UTC. These cells expanded and merged 

over West Bengal by 1200 UTC and reached a maximum CTT of -600C. 

This cell is more intensified at 1300 UTC and reached upto -700C 

(Mohanty et al. 2009). The NMM model simulated CTT (Figure 5.15) 

also shows both convective cells over northeast and northwest of Kolkata 

at 1000 UTC. These cells are merged over West Bengal at 1200 UTC as 

in the satellite imageries. The model simulated CTT reached upto -700C 

during this cloud formation and movement. The ARW model simulated 

CTT show the cloud cluster over northwest of Kolkata as in the NMM 

model (Figure 5.16). The ARW model failed to capture convective cell 

over northeast of Kolkata as in NMM and observed imageries. The 

movement of this cloud cluster simulated by ARW model is slow as in 

DWR imageries.  
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     (a) 1000 UTC                      (b) 1100 UTC 

        
    (c) 1200 UTC         (d) 1300 UTC 

       
 

Figure 5.14: Kalpana satellite derived CTT (0C) imageries from 
1000 to 1300 UTC on 3 May 2009. 

  

The NMM model simulated CTT for other two cases also show 

cloud clusters over West Bengal region as in observations. But ARW 

model failed to represent the cloud clusters as in observations (Figures are 

not shown). The convection diagnosed by the CTT from NMM model 
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appears to be fairly representative of the structure and intensity observed 

in Kalapana satellite imageries.  

      (a) 1000 UTC                            (b) 1100 UTC 

            

      (c) 1200 UTC                (d) 1300 UTC 

             

Figure 5.15: NMM model simulated CTT (0C) from 1000 to 1300 
UTC on 3 May 2009.  
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      (a) 1000 UTC               (b) 1100 UTC 

             
      (c) 1200 UTC                               (d) 1300 UTC 

       

Figure 5.16: ARW model simulated CTT (0C) from 1000 to 1300 
UTC on 3 May 2009.  
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5.3 Chapter Summary 

In this chapter, an attempt has been made to compare the simulated 

results of three thunderstorm events during May 2009, using NMM and 

ARW model and validated the model results with observations.  

Analysis of the stability indices simulated by both models clearly 

indicate that ARW and NMM models have performed well in simulating 

the different thermodynamic indices such as CAPE, LI, TTI and KI at 

1200 UTC which is very much favorable for thunderstorm occurrence. 

Comparison of model simulated thunderstorm affected surface parameters 

with that of the observed revealed that NMM has performed better than 

ARW in capturing the sharp rise in humidity and drop in temperature 

even though one or two hour lag or lead exists. ARW model has failed to 

capture the rise and drop in humidity and temperature respectively. The 

statistical analysis of surface temperature and relative humidity indicate 

the superiority of NMM model in simulating the thunderstorm over 

Kolkata on these severe thunderstorm cases.  

The precipitation forecasts have been analyzed both spatially and 

temporally. The NMM model performed well for first two thunderstorm 

cases. Both models are good and the results are very close to each other in 

the third case.  But statistical analysis of precipitation clearly indicate that 

NMM model has done better with high CC than that of the ARW and also 

with low RMSE and MAE. Comparison of model simulated radar 
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reflectivity with that of the observed revealed that both models have done 

well in simulating the initiation of squall lines. NMM model has 

simulated well the propagation of the squall lines, which is in good 

agreement with that of the observed, while the squall line movement was 

slow in ARW. The NMM model simulated CTT appears to be fairly 

representative of the structure and intensity observed in satellite imageries 

than ARW model. From the above results, it can be concluded that NMM 

model has better capability in prediction of thunderstorms over east 

Indian region.  

 
……. …….. 
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Accurate and timely thunderstorm forecasts are essential for 

efficient management of national weather that mitigate associated aviation 

hazards, including turbulence, icing, hail, and lightning. Forecasting of 

severe thunderstorms is a challenge due to complexity of the processes 

involved and interplay of many factors. Thunderstorm prediction 

approaches are challenged by complex weather phenomena with limited 

observations and past data. The techniques for predicting thunderstorms 

can be classified into two groups (Wilson et al. 1998). One method is a 

historical treatment of thunderstorm extrapolation techniques (knowledge-

based expert systems including Fuzzy logic and ANN). The second 

method is prediction using high resolution NWP models. 

Riordan and Hansen (2002) explains this classification as follows: 

The first method is based upon the happenings of comparable cases (i.e. 
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similar weather situations). This method is useful for predicting local-

scale weather if recorded cases are plentiful (e.g. cloud ceiling and 

visibility in a few square kilometers around an airport). The second 

method is based upon equations of the atmosphere and is commonly 

referred to as computer modeling (NWP). The NWP models start with 

current weather observations and attempt to predict future weather, 

describing the physics and dynamics of atmosphere, mathematically. An 

accurate observation about what the weather is doing now is key to help 

predict, what it will do in the future. NWP models (i.e. MM5, ARW, 

NMM etc.) help in deciding, whether the conditions will be favorable for 

the development of thunderstorms or not. The prediction of thunderstorms 

is still subjected to forecaster’s experience and interpretation of NWP 

models. The NWP methods have been found to dominate the literature, 

almost exclusively, for forecasts over 10 h ahead (Hart 2002; Landberg 

1995). However, the published ANN methods based on observations 

appear to be more accurate over shorter periods (minutes to a few hours). 

They are also much simpler than the NWP methods. 

In recent years, a large literature has evolved on the use of ANNs 

in many weather forecasting applications (Radhika and Shashi 2009; 

Guhathakurta 2006). Neural networks are particularly appealing because 

of their ability to model an unspecified non-linear relationship between 

weather parameters. ANN has capability to extract the relationship 

between the inputs and outputs of a process, without the physics being 
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explicitly provided (Zurada 1992). The development of ANN, which 

perform nonlinear mapping between inputs and outputs, has lately 

provided alternative approaches to forecast thunderstorms. ANN has 

several advantages. ANNs are complex and flexible nonlinear systems 

with properties not found in other modeling systems. These properties 

include robust performance in dealing with noisy or incomplete input 

patterns, high fault tolerance, and the ability to generalize from the input 

data (Patterson 1996). Neural networks offer a number of advantages, 

including requiring less formal statistical training, ability to implicitly 

detect complex nonlinear relationships between dependent and 

independent variables, ability to detect all possible interactions between 

predictor variables, and the availability of multiple training algorithms. 

They are not computationally intensive as much as NWP systems. 

Disadvantages include its "black box" nature, greater computational 

burden, proneness to over fitting, and the empirical nature of model 

development.  

NWP model forecasts have become an indispensable source of 

information in virtually every aspect of weather forecasting. Simulation of 

active mesoscale systems such as tropical cyclones, heavy rainfall and 

severe thunderstorms with high-resolution mesoscale models has been 

attempted by many Indian researchers recently (e.g. Mohanty et al. 2004; 

Vaidya 2007; Chatterjee et al. 2008; Rajeevan et al. 2010). The level of 

detail in modern models allows for a wide variety of products and forecast 
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fields to be delivered, for use not only in general meteorology, but also in 

specialized areas such as aviation and air quality. Advances in data 

visualization and delivery methods show great promise for the users of 

meteorological products and the practitioners of the science. However, 

managing the mass of forecast data created by the models is fast 

becoming a science of its own. While NWP is the greatest success 

achieved, its application can still be said to be only partially effective. 

There are three main reasons for this: One has to face the problem of 

creating a sufficiently accurate picture of the state of the atmosphere at 

the outset of the forecast process. Errors introduced at the beginning of 

the forecast will propagate and amplify at each forecast interval, gradually 

eroding its accuracy and usefulness. To move from a theoretical 

understanding of the weather to computer code that can generate a 

weather forecast, modelers will inevitably have to make some 

approximations. To be successful, the model must integrate an 

understanding of many different phenomena and their interactions. 

The severe thunderstorms have significant socio-economic impact 

over eastern and northeastern parts of India and it’s very important to 

improve understanding and prediction of these severe local storms. 

Realizing the importance of improved understanding and prediction of 

these weather events, an attempt is made to compare the performance of 

ANN and NWP model results for the prediction of three severe 

thunderstorm events (3, 11 and 15 May 2009) over Kolkata using surface 
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temperature and relative humidity and to see whether these models are 

reproducible. The hourly surface temperature and relative humidity from 

ANN, ARW and NMM models, which are useful for occurrence and 

intensity of the severe thunderstorms, are evaluated and validated the 

model results with observations. A quantitative verification of the results 

was performed with classical statistics parameters namely MAE, RMSE, 

CC and PC.  

6.1 Data and Methodology 

6.1.1 Numerical model 

Both ARW and NMM models were integrated for a period of 24 

hours starting from 0000 UTC of each day and ending at 0000 UTC of the 

following day. Boundary and initial conditions for both models are from 

FNL dataset of NCEP with 1o x 1o lat/lon grids. Both models thus have a 

common starting point, and avoid a potential source of difference. A 

single domain was configured with 3 km horizontal spatial resolution, 

which is reasonable in capturing the mesoscale cloud clusters. The 

domain covers 84.50E to 92.50E and 19.50N to 27.50N and the grids are 

centered at 88.50E, 23.50N. Both NMM and ARW domains are configured 

with vertical structure of 38 unequally spaced sigma (non-dimensional 

pressure) levels. In this study, same physics options are taken for both the 

ARW and NMM simulations. The physical parameterizations used in this 

study are GFDL for longwave and shortwave radiation (Schwarzkopf and 
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Fels 1991; Lacis and Hansen 1974), Noah Land surface scheme (Chen 

and Dudhia 2001) for land surface, MYJ scheme (Janjic 2002) for 

planetary boundary layer, Ferrier scheme (Ferrier 2002) for microphysics, 

Janjic similarity scheme (Janjic 1994) for surface layer and GD cloud 

ensemble scheme (Grell and Devenyi 2002) for CPS. Output from each 

model is post-processed to bring them back to a common format that 

enables direct comparison. The details of thunderstorm cases are 

described in Chapter 3. 

6.1.2 ANN model 

This study evaluates the utility of MLPN for estimating hourly 

surface temperature and relative humidity with 24 h ahead. The hourly 

surface weather parameters namely mean sea level pressure (hPa), relative 

humidity (%), wind speed (ms-1) and temperature (0C) of 3 years (April 

and May 2007 to 2009) collected from IMD of Kolkata were used as the 

input and desired data for ANN model. The other additional input 

parameters for each model are month, day and hour of the observation. 

The total length of the data record included for ANN model is more than 

4000. A three layer structure (one input layer, one hidden layer, one 

output layer) was selected with hyperbolic tangent (tanh) transfer function 

for hidden layer and linear transfer function for output layer. The chosen 

weather data were divided into two randomly selected groups, the training 

group, corresponding to 67% of the patterns, and the test group, 

corresponding to 33% of patterns; so that the generalization capacity of 
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network could be checked after training phase. Networks were trained for 

a fixed number of epochs. Networks were trained for a fixed number of 

epochs. Hourly surface temperature is used as desired data for the first 

model and hourly relative humidity for second model. The ANN model 

with LM algorithm was applied to derive thunderstorm forecast of 24 h 

ahead at Kolkata. The 24 h observed (AWS) data of surface temperature 

and relative humidity at Kolkata were used to validate these models 

during three thunderstorm days of May 2009 (3, 11 and 15 May 2009). 

The results are evaluated using MAE, RMSE, CC and PC. The ANN 

model simulations are carried out using the Neuro Solutions software 

developed by Neuro dimensions Inc. of Florida (Neuro Dimension 2005).  

6.2 Results and Discussion 

6.2.1 Analysis of surface relative humidity  

Thunderstorm development is favored by large values of relative 

humidity if other conditions are favorable (Asnani 2006). Figure 6.1 

shows the inter-comparison of observed and model simulated relative 

humidity (%) using ANN, NMM and ARW model over Kolkata 

(22.520N, 88.370E) valid for 3, 11 and 15 May 2009 at 0000 UTC to next 

day at 0000 UTC. The observed relative humidity values for 3 May 2009 

(Figure 6.1a) peaked from 52% to 100% (48%) at 1000 UTC whereas 

NMM model showed a sharp rise from around 49% to 88% (39%) at 1200 

UTC, which is two hour later than that of the observed. ARW and ANN 
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models are failed to capture the sharp rise of relative humidity during the 

thunderstorm hour as in the NMM model.  In the second case (Figure 

6.1b), observed relative humidity showed a rise from 66% to 100% (34%) 

at 1200 UTC, whereas NMM model shows a rise from 42% to 77% 

(35%) at 1000 UTC, which is two hour prior than that of the observed. 

ARW model simulation shows an increase from 34% to 52% (18%) at 

1000 UTC. ANN model shows a sudden rise from 65% to 92% (27%) at 

1300 UTC. A sudden increase of 35% has been captured by NMM model 

as in the observed rise of 34%. ANN also captured sudden rise of 27% 

with one hour time lag for this thunderstorm event. ARW model is able to 

capture the rise with less intensity. In the third case (Figure 6.1c), 

observed relative humidity peaked from 63% to 100% (37%) at 1300 

UTC, whereas NMM model shows a sharp rise from 65% to 91% (26%) 

at 1400 UTC, which is one hour later than that of the observed. ANN 

model results show a small increase from 67% to 79% (12%) at 1300 

UTC. The intensity of increase is very less as compared to observation 

and NMM model. In this thunderstorm case also ARW model was not 

able to capture the sharp rise of relative humidity during the thunderstorm 

hour. For all the thunderstorm cases (Figure 6.1), NMM model has 

captured the sudden rise of relative humidity values during the model 

simulated thunderstorm hour as in the observations. ANN model results 

are better than ARW model for all three thunderstorm cases. 



Evaluation of Computational Models for Thunderstorm Prediction 

Cochin University of Science and Technology  235 

 

 

 

Figure 6.1: Inter-comparison of NMM, ARW and ANN models 
simulated and observed diurnal variation of surface 
relative humidity (%) over Kolkata on (a) 3 May 2009 
(b) 11 May 2009 (c) 15 May 2009. 
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A statistical analysis based on MAE, RMSE and CC was 

performed for comparisons between the simulated and observed surface 

relative humidity over Kolkata for 3 thunderstorm cases and are given in 

Table 6.1. From the table, it can clearly see that, simulated relative 

humidity of NMM model have more correlation with observation than 

ARW and ANN model for first and third thunderstorm cases. The ANN 

model performed well for second thunderstorm case than NMM and 

ARW model and it is greater than 0.7 for third case. The CC of NMM 

model is more than 0.7 for first and third thunderstorm cases and has an 

average CC value close to 0.7. The CC of ARW model is good for first 

thunderstorm case and is very less for second and third cases. The average 

CC of ARW is a less value and equal to ANN model. The MAE and 

RMSE of each model have been computed to test the prediction error of 

the model. The MAE and RMSE values of relative humidity are less for 

NMM model than ARW and ANN model for first thunderstorm case. The 

error is less for ANN model than ARW and NMM model for second and 

third thunderstorm cases. The average MAE and RMSE values are high 

for ARW model than ANN model and the values are 16.21% and 19.04%. 

The least errors are for NMM model and the values are 12.45% and 

16.05%. 

6.2.2 Analysis of surface temperature  

Surface temperature is useful parameter in forecasting the likelihood 

occurrence of a thunderstorm. Figure 6.2 shows the inter-comparison of 



Evaluation of Computational Models for Thunderstorm Prediction 

Cochin University of Science and Technology  237 

observed and model simulated temperature (0C) using NMM, ARW and 

ANN models over Kolkata valid for 3, 11 and 15 May 2009 at 0000 UTC to 

next day at 0000 UTC. The observed temperature (Figure6.2a) showed a 

sudden fall from 36.70C to 21.70C (150C) at 1000 UTC whereas NMM 

model showed a fall from 35.10C to 26.10C (90C) at model predicted 

thunderstorm hour (1200 UTC). ANN and ARW model show a small fall at 

1600 UTC with an intensity of 60C and 40C respectively. For the second case 

(Figure6.2b), observed temperature showed a drop from 33.10C to 21.70C 

(11.40C) at 1200 UTC, whereas NMM simulation shows a drop from 37.10C 

to 280C (9.10C) at 1000 UTC. ARW model couldn’t capture sudden fall for   

Table 6.1: Statistical analysis of simulated and observed surface 
relative humidity over Kolkata based on MAE, RMSE 
and CC. 

Statistical 
Analysis CASES ARW NMM ANN 

MAE 

3-May 18.97 13.36 20.06 
11-May 17.18 13.11 11.65 
15-May 12.49 10.89 7.31 
MEAN 16.21 12.45 13.00 

RMSE 

3-May 21.62 17.37 27.65 
11-May 20.85 17.00 14.05 
15-May 14.65 13.80 8.71 
MEAN 19.04 16.05 16.80 

CC 

3-May 0.72 0.76 0.45 
11-May 0.49 0.53 0.61 
15-May 0.57 0.72 0.72 
MEAN 0.59 0.67 0.59 
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Figure 6.2: Inter-comparison of NMM, ARW and ANN models 
simulated and observed diurnal variation of surface 
temperature (0C) over Kolkata on (a) 3 May 2009 (b) 
11 May 2009 (c) 15 May 2009. 
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this case. ANN results show a small fall with an intensity of 60C at 1300 

UTC. In the third case, the observed temperature (Figure 6.3c) showed a 

sudden fall from 290C to 240C (50C) at 1300 UTC whereas NMM model 

shows a fall from 310C to 260C (50C) at model predicted hour of 1400 

UTC. ANN model shows a drop from 320C to 290C (30C) at 1400 UTC. 

ARW model failed to capture the sudden temperature fall over Kolkata 

for second and third case.  

A statistical analysis based on MAE, RMSE and CC was 

performed for comparisons between the simulated and observed surface 

temperature over Kolkata for 3 thunderstorm cases and are given in Table 

6.2. The CC of NMM and ARW models are more than 0.8 for first and 

third thunderstorm cases. The average CC value of NMM model is more 

than 0.8 and 0.77 is for ARW model due to less correlation in second 

case. The CC of ANN model is higher than other two models for second 

and third case. The average CC of ANN model is less than other two 

models due to less correlation in the first case. The MAE and RMSE of 

each model have been computed to test the prediction error of the model. 

The MAE and RMSE values of temperature are less for NMM model than 

ARW and ANN models for the first and third thunderstorm cases. The 

least average errors are for NMM model and the values are 2.910C and 

3.860C. The MAE and RMSE values are less for ANN model than NMM 

and ARW models for the second thunderstorm case. The average ANN 
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model errors of surface temperature are more than ARW and NMM 

models.  

Table 6.2: Statistical analysis of simulated and observed surface 
temperature over Kolkata based on MAE, RMSE and 
CC. 

Temperature CASES ARW NMM ANN 

MAE 

3-May 3.45 3.03 4.61 
11-May 3.99 3.78 3.21 
15-May 1.93 1.92 2.11 
MEAN 3.12 2.91 3.31 

RMSE 

3-May 4.28 3.94 6.35 
11-May 5.28 5.19 4.71 
15-May 2.58 2.47 2.93 
MEAN 4.05 3.86 4.66 

CC 

3-May 0.86 0.86 0.53 
11-May 0.62 0.69 0.70 
15-May 0.85 0.87 0.91 
MEAN 0.77 0.81 0.71 

Figure 6.3 gives the performance accuracy of computational 

models for hourly temperature and relative humidity prediction. The 

accuracy of temperature presented a percentage number of the times when 

the forecast is accurate to within ±2°C. The result clearly indicated that 

overall accuracy of NMM model for three events is 61% for the case of 

temperature prediction. ANN gave a moderate accuracy of 54%. ARW 

model displayed less accuracy. The accuracy of relative humidity 

presented a percentage number of the times when the forecast is accurate 

to with ± 10% confidence range. The result clearly indicated that overall 
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accuracy of NMM model for three events is 60% for relative humidity 

prediction. ANN gave a moderate accuracy of 54%. ARW displayed a 

less accuracy of 38% as in temperature case. 

 
Figure 6.3: Performance accuracy of NMM, ARW and ANN 

models for the prediction of temperature (TMP) and 
relative humidity (RH) during 3 thunderstorm days. 

Comparison of the time-series plots of surface temperature and 

relative humidity simulated by ARW, NMM and ANN models indicate 

the superiority of NMM model in simulating thunderstorm over Kolkata 

on these severe thunderstorm cases even though one or two hour lead or 

lag exists. The statistical analysis of surface weather parameters revealed 

that NMM model is well predicted the occurrence and intensity of all 3 

thunderstorm cases as in the observation.  

54%
49%

61%

54%

38%

60%

10

20

30

40

50

60

70

ANN ARW NMM

A
cc

ur
ac

y 
(%

)

Computational Models

TMP

RH



Chapter 6 

Department of Computer Science 242 

6.3 Chapter Summary 

In this chapter, an attempt is made to compare the performance of 

ANN and NWP (ARW and NMM) models for the prediction of three severe 

thunderstorm events (3, 11 and 15 May 2009) over Kolkata using surface 

temperature and relative humidity and to check the capability of these 

models for the prediction of severe thunderstorm events over east Indian 

region. The hourly surface temperature and relative humidity from ANN, 

ARW and NMM models, which are useful tool for occurrence and intensity 

of the severe thunderstorms, are evaluated and validated the model results 

with observations. Performance and reliabilities of the models were then 

evaluated by a number of statistical measures namely MAE, RMSE, CC 

and PC.  

Comparison of model simulated thunderstorm affected surface 

parameters with that of the observed revealed that NMM has performed 

better than ANN and ARW models in capturing the sharp rise in humidity 

and drop in temperature even though one or two hour lag or lead exists. ANN 

model reproduced this feature for second and third case with less intensity of 

sharp changes. ARW model has failed to capture the sharp rise and drop in 

humidity and temperature respectively. The statistical analysis of surface 

temperature and relative humidity indicate the superiority of NMM model in 

simulating the thunderstorms over Kolkata on these severe thunderstorm 

cases. The results suggest that NMM model holds promise for prediction 
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of surface weather parameters with reasonable accuracy in severe 

thunderstorm cases over east Indian region.  

 

……. …….. 
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The thunderstorms are typical mesoscale systems dominated by 

intense convection. During April and May, the eastern parts of the 

country get affected by higher frequency of severe thunderstorms, locally 

named as ‘Nor’westers’ as it travels from northwest to southeast direction. 

Severe thunderstorms associated with squalls, lightning, hail, heavy rain 

cause extensive damage to standing agriculture crops, high rise buildings 

as well thatched huts, high tension electric poles and wires, and cause 

flash floods, resulting in loss of life and property. An accurate location 

specific and timely prediction is required to avoid loss of lives and 

property due to strong winds and heavy precipitation associated with 

these storms. Forecasting thunderstorms is one of the most difficult tasks, 

due to their rather small spatial and temporal extension and the inherent 

non-linearity of their dynamics and physics. The improvement in 

prediction of these important weather phenomena is highly handicapped 

due to lack of mesoscale observations and insufficient understanding. 

Realizing the importance of improved understanding and prediction of 
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this weather event, an attempt is made to study these severe thunderstorm 

events during the pre-monsoon season using empirical and dynamical 

approaches. The most widely used empirical approach for weather 

prediction is ANN. The recent advances in neural network methodology 

for modeling nonlinear, dynamical phenomena along with the impressive 

successes in a wide range of applications, motivated to investigate the 

application of ANNs for the prediction of thunderstorms. The second 

approach is based upon equations and forward simulations of the 

atmosphere (NWP). The most commonly known NWP models namely 

NMM and ARW models are used for this study.  

The capabilities of six different learning algorithms using MLPN 

in predicting thunderstorm affected parameters over Kolkata (22.520N, 

88.370E) were studied and their performances were compared. The ANN 

model was found to be efficient in fast computation and capable of 

handling the noisy and unstable data that are typical in the case of weather 

data. The results indicated that MLPN model with LM algorithm well 

predicted thunderstorm affected surface parameters. The developed ANN 

model with LM algorithm was applied to derive thunderstorm forecast 

from 1 to 24 h ahead at Kolkata. The studies of advanced prediction of 

these parameters showed that 1 and 3 h MLPN models were able to 

predict hourly temperature and relative humidity adequately with sudden 

fall and rise. The results of these analyses demonstrated the capability of 
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ANN model in prediction of severe thunderstorm events over eastern 

Indian region and will be helpful for real time thunderstorm forecast. 

The sensitivity experiments have been conducted with NMM 

model to examine the impact of different initial conditions, CPSs and 

microphysics schemes in capturing the severe thunderstorm events 

occurred over Kolkata during May 2006, 2007 and 2009. Three sets of 

initial conditions (19 May 2006 at 0000 UTC, 19 May 2006 at 1200 UTC 

and 20 May 2006 at 0000 UTC) were experimented using NMM model 

for a thunderstorm event on 20 May 2006. The trends shown by various 

meteorological fields of the third experiment (20 May 2006 at 0000 UTC 

as initial condition) were in good agreement with each other and very 

much consistent with dynamic and thermodynamic properties of the 

atmosphere for the occurrence of a severe thunderstorm. Another 

sensitivity experiments are conducted with NMM model by changing the 

CPSs such as KF, BMJ, GD, AS schemes and explicit scheme for two 

severe thunderstorm cases (20 May 2006 and 21 May 2007) at Kolkata 

and validated the model results with observation. In all experiments, the 

setups were identical except for the use of different convective schemes. 

Hence differences in the simulation results may be attributed to the 

sensitivity of the convective schemes. This study shows that the 

prediction of thunderstorm affected parameters is sensitive to convective 

schemes. The GD scheme has well predicted the thunderstorm activities, 

in terms of time, intensity and the region of occurrence of the events, as 



Chapter 7 

Department of Computer Science 248 

compared to other convective schemes and also explicit scheme. One 

more sensitivity experiment has been conducted for a severe thunderstorm 

event on 15 May 2009 with three microphysics schemes namely FERR, 

WSM6 and THOM to examine the sensitivity of the simulations to 

different cloud microphysics. The results show that the NMM model with 

FERR scheme appears to reproduce the cloud and precipitation processes 

more realistically than other schemes for the prediction of severe 

thunderstorm event. The studies found suitable options as 24 h simulation 

for initial conditions, GD scheme for CPS and FERR for microphysics 

scheme. These options are used for further studies of thunderstorms with 

NMM model.  

A comparative study with two numerical models namely NMM 

and ARW were done for the prediction of severe thunderstorm events 

during May 2009. Both models were able to broadly reproduce several 

features of the thunderstorm events, such as spatial pattern and temporal 

variability over east region of India. Comparison of model simulated 

thunderstorm affected parameters with that of the observed showed that 

NMM has performed better than ARW in capturing the sharp rise in 

humidity and drop in temperature. NMM model has predicted well the 

genesis, intensification and propagation of the squall line, which is in 

good agreement with that of the observed, while the squall line movement 

was slow in ARW. The statistical analysis of surface parameters indicates 

the superiority of NMM model in simulating the thunderstorm over 
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Kolkata on these severe thunderstorm cases. This suggests that NMM 

model has the potential to provide unique and valuable information for 

severe thunderstorm forecasters over east Indian region. 

The performance evaluation of computational models namely 

ANN, ARW and NMM models were done to predict severe thunderstorm 

events using thunderstorm affected parameters like surface temperature 

and relative humidity over Kolkata. Thunderstorm prediction is inherently 

complex process, so it is impossible to wait 100% accurate forecast 

results since we cannot measure all factors that may be local scales. From 

the results we can see that, the ANN models are not able to predict the 

sharp jumps and dips of surface parameters during the thunderstorm hour 

as it is a complex physical process. NMM model is able to predict these 

fluctuations adequately with reasonable accuracy. It is concluded from the 

results that, NMM model is good for thunderstorm prediction temporally 

and spatially since it is a short-lived mesoscale phenomenon which cannot 

be much easily predicted from historical data.  

7.1 Future Directions 

There are strong requirements in India for improved forecasting of 

rapid and severe thunderstorm over east and northeast Indian region. Even 

if a reasonable mesoscale analysis can be obtained, imbalances between 

the dynamic and thermodynamic fields can lead to model spinup which 

could degrade, e.g. short-term precipitation forecasts, a key requirement 
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for mesoscale systems. Thus improved mesoscale analyses will rely on 

the development of assimilation methods which will include alternative 

methods to replace current analysis approaches in which only data at or 

near the synoptic times are used. More comprehensive work will be 

carried out to improve the mesoscale model performance with modified 

initial condition through sophisticated 3DVAR/4DVAR assimilation 

system using ample amount of special high quality observations. 

It is clear that high impact weather systems such as thunderstorms, 

heavy precipitation or tropical cyclones have a high level of uncertainty 

associated with them. It is therefore more appropriate to provide forecasts 

of these features in terms of the development of mesoscale ensemble 

prediction systems (EPS). This will require further research on 

development of appropriate means of generating initial perturbations and 

accounting for model uncertainties. Nowcasting and very short range 

forecasting are concerned with the weather monitoring and forecasting of 

weather for the shortest time scales, ranging from 0 to 6 hours. These 

methods are expected to shift from the traditional specialized techniques 

to an utilization of more general NWP output products. This will be made 

possible through access to future more powerful computers, through the 

application of mesoscale NWP models at grid resolutions of the order of 1 

km or less and through application of mesoscale assimilation techniques.  

The Thunderstorm prediction systems are more likely decision 

support system than expert systems because they need guidance and 
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predictions must be evaluated by human interference. The future 

directions for improving these severe weather events over Indian region 

can be summarized as follows: 

• Comprehensive mesoscale data assimilation utilizing conventional 

and non-conventional observations from multi-observation 

platforms. 

• Prediction of life cycle of thunderstorm along with associated 

hazards using very high resolution (1-0.3 km) state-of-the-art 

mesoscale models. 

• Role of physical processes in particular deep convection, cloud 

microphysics, planetary boundary layer, land surface processes 

with high resolution mesoscale model and special observational 

datasets. 

• Understanding of cloud microphysics, aerosol concentration and 

atmospheric electricity in association with severe thunderstorms. 

• Systematic error evaluation and bias correction of NWP models in 

simulation of severe thunderstorms. 

• Improve prediction of intensity and time of occurrence of severe 

thunderstorms by using dynamical-statistical approaches. 

 
……. …….. 
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Appendix I: Fragment of the data between 1 and 15 May 2009 used for 

testing ANN model is given in the following table. Datasets 

of severe thunderstorm days are marked as bold and italic. 
Month Day Hour Mean Sea Level 

Pressure (hPa) 
Relative 

Humidity 
(%) 

Wind 
Speed  
(ms-1) 

Temperature 
(0C) 

5 1 0 1005.4 93 2.06 28.5 
5 1 1 1005.9 92 1.54 29.0 
5 1 2 1006.7 89 4.12 30.4 
5 1 3 1008.1 86 2.06 30.9 
5 1 4 1007.9 81 2.57 32.5 
5 1 5 1006.7 79 2.57 33.2 
5 1 6 1005.4 76 2.57 34.6 
5 1 7 1005.0 75 2.57 35.0 
5 1 8 1004.6 73 4.63 35.8 
5 1 9 1003.8 74 4.12 35.5 
5 1 10 1003.0 75 3.09 35.0 
5 1 11 1002.7 76 3.60 33.9 
5 1 12 1002.9 80 3.09 32.2 
5 1 13 1003.7 84 4.12 30.8 
5 1 14 1004.6 86 3.60 30.3 
5 1 15 1005.6 86 3.09 30.2 
5 1 16 1006.2 86 3.60 30.1 
5 1 17 1006.2 86 2.57 30.0 
5 1 18 1005.5 85 2.57 25.0 
5 1 19 1005.5 85 2.06 25.0 
5 1 20 1005.9 83 1.54 26.4 
5 1 21 1005.3 85 2.06 28.8 
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5 1 22 1005.2 92 2.57 28.7 
5 1 23 1005.9 93 1.54 28.4 
5 2 0 1007.4 93 0.51 28.5 
5 2 1 1007.7 91 3.09 29.3 
5 2 2 1008.1 89 2.06 30.7 
5 2 3 1008.2 85 2.06 31.4 
5 2 4 1008.4 82 2.57 32.1 
5 2 5 1008.2 76 2.57 33.8 
5 2 6 1008.6 76 2.57 34.6 
5 2 7 1007.4 75 3.09 34.5 
5 2 8 1006.9 72 2.06 35.6 
5 2 9 1005.6 75 3.09 35.6 
5 2 10 1005.3 76 2.06 34.7 
5 2 11 1004.8 76 2.06 34.2 
5 2 12 1005.4 80 3.09 32.7 
5 2 13 1006.0 85 2.57 31.4 
5 2 14 1007.4 87 2.57 30.6 
5 2 15 1007.8 89 2.57 30.0 
5 2 16 1008.6 90 2.06 29.7 
5 2 17 1008.6 92 1.54 29.5 
5 2 18 1008.3 94 1.54 29.0 
5 2 19 1008.0 96 2.06 28.4 
5 2 20 1007.5 97 1.03 28.1 
5 2 21 1007.3 98 1.03 28.0 
5 2 22 1007.2 98 1.03 27.9 
5 2 23 1007.4 99 0.51 27.7 
5 3 0 1007.8 99 1.03 27.7 

5 3 1 1008.6 95 1.03 29.2 

5 3 2 1009.7 88 1.54 30.9 

5 3 3 1010.6 82 1.54 32.0 

5 3 4 1010.7 77 1.54 33.3 
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5 3 5 1009.8 75 2.57 33.9 

5 3 6 1008.7 72 1.54 35.8 

5 3 7 1007.9 71 2.06 35.6 

5 3 8 1005.6 68 3.60 36.4 

5 3 9 1005.0 52 2.06 36.7 

5 3 10 1006.7 100 5.17 21.7 

5 3 11 1006.3 100 1.54 21.9 

5 3 12 1007.5 100 1.03 22.6 

5 3 13 1008.6 100 0.51 23.4 

5 3 14 1011.1 93 3.09 22.7 

5 3 15 1011.6 89 4.12 23.8 

5 3 16 1008.0 92 2.06 22.9 

5 3 17 1007.1 85 2.57 24.1 

5 3 18 1006.1 90 3.09 23.8 

5 3 19 1005.6 93 1.54 23.5 

5 3 20 1004.7 92 2.57 23.4 

5 3 21 1004.5 85 0.00 24.2 

5 3 22 1006.0 97 2.06 22.9 

5 3 23 1006.8 99 1.03 22.6 

5 4 0 1008.1 99 1.03 22.8 
5 4 1 1009.1 95 0.51 23.9 
5 4 2 1009.4 92 1.03 25.1 
5 4 3 1009.6 87 0.51 27.0 
5 4 4 1009.5 81 1.03 28.9 
5 4 5 1009.2 80 1.03 30.8 
5 4 6 1008.1 79 1.03 31.7 
5 4 7 1007.2 76 1.54 33.0 
5 4 8 1006.2 74 1.54 34.1 
5 4 9 1005.0 73 1.03 34.4 
5 4 10 1004.3 77 1.54 33.2 
5 4 11 1003.8 79 2.06 32.8 
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5 4 12 1003.7 82 1.03 31.5 
5 4 13 1004.0 83 1.54 30.6 
5 4 14 1004.2 85 2.06 29.9 
5 4 15 1005.0 89 2.57 29.6 
5 4 16 1005.3 89 3.09 28.8 
5 4 17 1006.3 90 2.06 28.4 
5 4 18 1005.7 94 1.54 28.0 
5 4 19 1005.4 87 2.06 27.8 
5 4 20 1005.1 96 1.54 28.0 
5 4 21 1004.7 94 2.06 28.3 
5 4 22 1004.6 97 1.03 27.7 
5 4 23 1005.3 99 1.03 27.1 
5 5 0 1006.6 100 0.51 26.7 
5 5 1 1007.5 99 2.06 27.9 
5 5 2 1007.9 93 2.57 29.8 
5 5 3 1008.2 91 2.06 30.6 
5 5 4 1009.0 88 2.57 31.6 
5 5 5 1009.1 83 2.06 33.2 
5 5 6 1008.3 78 2.57 34.0 
5 5 7 1007.4 76 2.57 35.3 
5 5 8 1006.4 73 2.57 35.9 
5 5 9 1005.6 71 2.06 36.4 
5 5 10 1004.9 73 2.57 36.3 
5 5 11 1004.4 72 2.06 35.7 
5 5 12 1004.5 75 2.06 34.4 
5 5 13 1005.2 79 1.54 32.9 
5 5 14 1006.3 83 2.06 31.7 
5 5 15 1006.5 85 2.06 30.7 
5 5 16 1006.8 90 2.57 29.7 
5 5 17 1006.2 94 2.57 29.0 
5 5 18 1005.8 95 3.60 29.0 
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5 5 19 1005.2 78 3.09 28.9 
5 5 20 1004.6 95 1.03 28.6 
5 5 21 1004.2 98 2.06 28.1 
5 5 22 1004.3 99 2.06 27.8 
5 5 23 1005.0 99 1.54 27.7 
5 6 0 1005.7 100 2.06 27.3 
5 6 1 1006.6 98 1.03 28.3 
5 6 2 1007.7 94 2.06 29.6 
5 6 3 1008.1 90 3.09 31.0 
5 6 4 1007.9 83 2.57 30.5 
5 6 5 1007.9 80 2.06 34.3 
5 6 6 1007.0 75 3.60 35.3 
5 6 7 1005.9 75 2.57 36.3 
5 6 8 1005.0 70 3.09 37.2 
5 6 9 1004.1 66 2.57 37.5 
5 6 10 1003.2 73 3.09 36.7 
5 6 12 1004.4 73 2.57 33.2 
5 6 13 1005.2 81 2.06 31.6 
5 6 14 1004.9 80 0.00 29.5 
5 6 15 1006.2 81 0.51 29.4 
5 6 16 1006.6 81 1.54 28.0 
5 6 17 1005.9 83 1.54 28.1 
5 6 18 1005.1 91 1.03 28.4 
5 6 19 1003.4 92 3.60 29.0 
5 6 20 1002.8 94 1.54 28.7 
5 6 21 1002.7 96 1.54 28.2 
5 6 22 1003.0 96 2.06 28.0 
5 6 23 1003.3 97 1.54 27.9 
5 7 0 1004.1 98 1.54 27.9 
5 7 1 1004.9 96 2.57 28.9 
5 7 2 1006.0 89 2.57 30.1 
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5 7 3 1006.8 85 1.54 31.8 
5 7 4 1006.7 80 1.03 32.8 
5 7 5 1006.3 76 0.51 34.4 
5 7 6 1005.6 64 0.51 35.9 
5 7 7 1004.8 57 0.00 36.9 
5 7 8 1003.8 56 1.03 37.9 
5 7 9 1002.7 50 1.03 38.3 
5 7 10 1002.1 47 0.00 38.3 
5 7 11 1001.8 50 1.03 37.4 
5 7 12 1001.9 55 1.54 36.0 
5 7 13 1002.3 78 2.06 34.3 
5 7 14 1003.3 87 2.06 32.2 
5 7 15 1004.0 90 2.57 30.8 
5 7 16 1004.5 91 3.60 30.1 
5 7 17 1004.4 92 2.57 29.9 
5 7 18 1003.8 93 1.54 29.8 
5 7 19 1003.5 95 2.06 29.5 
5 7 20 1003.3 94 1.03 29.1 
5 7 21 1003.2 95 1.54 28.8 
5 7 22 1003.2 98 1.03 28.4 
5 7 23 1003.5 99 1.54 28.4 
5 8 0 1003.9 98 1.54 28.5 
5 8 1 1004.9 90 2.06 29.7 
5 8 2 1005.6 80 2.57 31.5 
5 8 3 1006.1 74 2.57 33.4 
5 8 4 1005.7 61 3.09 35.9 
5 8 5 1005.2 53 3.09 37.7 
5 8 6 1004.6 48 1.03 39.6 
5 8 7 1003.5 45 2.06 39.8 
5 8 8 1002.6 42 2.06 40.5 
5 8 9 1001.8 42 2.06 40.6 
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5 8 10 1001.1 41 2.57 40.7 
5 8 11 1000.7 40 1.54 40.0 
5 8 12 1000.8 45 0.51 36.8 
5 8 13 1001.4 70 3.09 35.0 
5 8 14 1002.1 82 3.09 32.9 
5 8 15 1002.9 85 2.57 31.5 
5 8 16 1003.5 90 2.06 30.8 
5 8 17 1003.4 93 2.06 30.1 
5 8 18 1002.9 95 2.06 29.7 
5 8 19 1002.6 94 3.09 29.7 
5 8 20 1002.1 92 2.06 29.4 
5 8 21 1001.9 91 2.57 29.1 
5 8 22 1001.8 90 2.06 29.0 
5 8 23 1002.0 90 1.03 29.0 
5 9 0 1002.3 92 1.03 28.9 
5 9 1 1002.3 91 2.06 28.9 
5 9 2 1003.9 82 2.06 32.0 
5 9 3 1003.9 78 2.06 34.0 
5 9 4 1004.0 71 2.06 35.6 
5 9 5 1003.4 64 2.06 36.7 
5 9 6 1002.8 56 1.54 38.4 
5 9 7 1001.5 49 1.54 40.1 
5 9 8 1000.3 47 0.51 41.0 
5 9 9 999.5 47 1.54 41.3 
5 9 10 998.6 46 1.03 41.7 
5 9 11 998.3 49 2.06 39.8 
5 9 12 998.7 67 3.60 37.8 
5 9 13 999.6 78 2.57 34.5 
5 9 14 1000.4 82 2.57 32.6 
5 9 15 1001.0 88 3.60 31.5 
5 9 16 1001.7 90 3.09 30.8 
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5 9 17 1001.4 91 2.57 30.2 
5 9 18 1000.9 92 2.57 29.9 
5 9 19 1000.5 91 1.54 29.8 
5 9 20 1000.3 93 2.06 29.5 
5 9 21 1000.2 96 2.06 29.2 
5 9 22 1000.2 98 1.54 28.9 
5 9 23 1000.7 98 1.54 28.7 
5 10 0 1001.4 98 2.06 28.7 
5 10 1 1002.3 96 2.06 29.4 
5 10 2 1002.8 91 3.60 30.9 
5 10 3 1003.1 82 3.09 33.1 
5 10 4 1003.1 80 3.09 34.5 
5 10 5 1002.9 77 2.06 36.4 
5 10 6 1002.5 75 2.06 36.8 
5 10 7 1001.6 69 3.09 37.6 
5 10 8 1000.9 63 2.06 38.6 
5 10 9 999.9 65 2.06 39.0 
5 10 10 999.3 67 3.09 38.3 
5 10 11 999.2 76 3.60 35.7 
5 10 12 999.2 80 4.12 33.9 
5 10 13 999.9 85 3.09 32.4 
5 10 14 1000.6 88 3.60 31.1 
5 10 15 1001.2 91 4.12 30.4 
5 10 16 1001.7 92 2.06 30.1 
5 10 17 1001.6 92 2.57 30.0 
5 10 18 1001.0 93 2.57 29.9 
5 10 19 1000.7 94 3.09 29.8 
5 10 20 1001.2 93 1.54 29.8 
5 10 21 1001.4 93 1.54 29.7 
5 10 22 1001.2 95 1.03 29.2 
5 10 23 1001.9 96 2.06 29.0 
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5 11 0 1002.2 95 2.06 29.2 

5 11 1 1003.3 93 2.57 29.8 

5 11 2 1004.2 90 3.09 31.0 

5 11 3 1004.8 87 2.57 31.1 

5 11 4 1004.8 84 3.60 32.6 

5 11 5 1004.4 77 5.14 34.3 

5 11 6 1005.0 77 3.09 34.5 

5 11 7 1004.2 73 0.00 36.1 

5 11 8 1003.0 73 3.60 35.8 

5 11 9 1002.3 74 3.60 35.7 

5 11 10 1000.7 74 4.63 35.1 

5 11 11 1000.3 78 3.60 33.9 

5 11 12 1002.1 66 2.57 33.1 

5 11 13 1007.9 100 5.14 21.7 

5 11 14 1003.8 100 4.63 21.4 

5 11 15 1004.6 99 1.03 22.2 

5 11 16 1005.2 97 1.54 22.5 

5 11 17 1005.8 93 0.51 23.3 

5 11 18 1005.1 89 1.54 23.7 

5 11 19 1004.9 91 1.54 23.6 

5 11 20 1004.1 88 1.03 24.2 

5 11 21 1004.3 86 1.54 24.9 

5 11 22 1004.2 85 1.54 25.0 

5 11 23 1004.7 87 1.54 25.2 

5 12 0 1004.2 93 1.54 24.6 
5 12 1 1005.6 92 1.54 25.4 
5 12 2 1006.4 92 1.03 25.7 
5 12 3 1006.5 86 1.03 28.0 
5 12 4 1006.9 86 1.54 28.7 
5 12 5 1008.6 86 3.09 27.8 
5 12 6 1007.5 83 2.06 26.8 
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5 12 7 1007.5 94 2.06 25.1 
5 12 8 1005.8 95 1.54 24.8 
5 12 9 1004.9 93 1.54 25.4 
5 12 10 1003.7 92 1.54 25.5 
5 12 11 1001.4 66 2.57 34.9 
5 12 12 1001.4 72 0.00 33.7 
5 12 13 1001.9 74 1.03 32.5 
5 12 14 1003.0 74 1.54 31.6 
5 12 15 1004.8 79 2.06 31.0 
5 12 16 1005.6 79 2.06 30.6 
5 12 18 1005.3 90 2.06 29.5 
5 12 19 1004.7 66 1.03 29.1 
5 12 20 1004.0 94 1.03 28.6 
5 12 21 1003.5 97 0.51 27.7 
5 12 22 1003.2 99 0.51 27.1 
5 12 23 1003.2 100 0.51 26.8 
5 13 4 1005.1 79 2.06 31.0 
5 13 5 1004.5 79 2.06 32.3 
5 13 6 1003.2 78 3.60 33.3 
5 13 7 1002.6 74 3.09 33.8 
5 13 8 1001.5 74 3.09 33.7 
5 13 9 1000.9 77 3.09 33.3 
5 13 10 999.9 78 3.09 33.5 
5 13 11 999.2 82 2.57 32.9 
5 13 12 999.6 85 2.57 31.6 
5 13 13 999.9 86 3.09 30.3 
5 13 14 1001.1 91 3.09 29.8 
5 13 15 1001.7 93 2.06 29.4 
5 13 16 1001.6 94 1.54 29.2 
5 13 17 1002.1 95 1.03 29.0 
5 13 18 1002.6 98 1.03 28.4 
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5 13 19 1001.8 99 1.03 28.3 
5 13 20 1000.9 100 0.51 28.1 
5 13 21 1000.9 99 1.54 27.2 
5 13 22 1000.4 100 1.03 24.5 
5 13 23 1001.3 100 2.06 24.3 
5 14 0 1002.0 100 0.51 23.4 
5 14 1 1002.3 99 1.03 24.8 
5 14 2 1002.7 94 0.51 27.6 
5 14 3 1003.4 91 0.51 28.1 
5 14 4 1004.0 87 2.06 30.9 
5 14 5 1003.9 74 2.06 31.0 
5 14 6 1003.1 72 2.06 31.5 
5 14 7 1002.5 75 2.06 31.7 
5 14 8 1002.0 77 2.06 32.7 
5 14 9 1000.7 77 1.54 33.1 
5 14 10 1000.3 76 2.06 33.8 
5 14 11 999.6 80 2.57 32.9 
5 14 12 1001.1 85 3.60 30.3 
5 14 13 1000.7 95 0.51 26.1 
5 14 14 1001.2 99 1.03 27.0 
5 14 15 1002.2 98 2.06 27.7 
5 14 16 1002.9 96 1.54 27.9 
5 14 17 1003.1 97 1.03 27.4 
5 14 18 1002.7 99 1.03 27.3 
5 14 19 1002.9 100 1.03 27.0 
5 14 20 1002.8 99 1.03 27.0 
5 14 21 1002.7 100 1.03 26.9 
5 14 22 1002.8 99 0.51 27.0 
5 14 23 1002.9 100 1.03 27.1 
5 15 0 1004.2 100 0.51 27.2 

5 15 1 1005.0 100 0.51 28.1 
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5 15 2 1005.7 93 1.03 29.7 

5 15 3 1005.5 90 1.54 31.1 

5 15 4 1005.5 85 1.54 32.5 

5 15 5 1005.4 79 1.54 33.5 

5 15 6 1004.6 77 1.54 33.9 

5 15 7 1003.4 73 2.06 35.2 

5 15 8 1002.5 73 1.54 35.6 

5 15 9 1001.5 72 1.54 35.8 

5 15 10 1001.0 82 1.54 33.4 

5 15 11 1001.9 78 2.06 32.3 

5 15 12 1001.8 63 2.06 29.3 

5 15 13 1003.0 100 2.06 24.1 

5 15 14 1005.1 94 2.06 24.7 

5 15 15 1007.3 100 2.06 23.1 

5 15 16 1006.7 98 2.57 23.5 

5 15 17 1001.5 73 6.00 25.9 

5 15 18 1002.4 71 3.09 27.3 

5 15 19 1004.3 78 1.54 25.7 

5 15 20 1004.2 87 1.54 24.4 

5 15 21 1003.8 93 1.03 23.6 

5 15 22 1003.8 97 1.03 23.1 

5 15 23 1004.7 97 1.03 23.2 

 

Appendix II: Details of the NeuroSolutions software are given in the 

following section. 

NeuroSolutions is a neural network development environment 

developed by NeuroDimension Inc., FL. It combines a modular, icon-based 

(component-based) network design interface with an implementation of 

advanced learning procedures, such as conjugate gradients, Levenberg - 
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Marquardt and back propagation through time. The software is used to 

design, train and deploy neural network (supervised learning and 

unsupervised learning) models to perform a wide variety of tasks such as 

data mining, classification, function approximation, multivariate regression 

and time-series prediction. NeuroSolutions is based on the concept 

that neural networks can be broken down into a fundamental set of neural 

components. Individually these components are relatively simplistic, but 

several components connected together can result in networks capable of 

solving very complex problems. The network construction wizards will 

connect these components based on the user’s specifications. However, 

once the network is built the interconnections can be arbitrarily changed and 

components can be added or removed. The system configuration required 

for the installation of Neuro Solutions software are given as follows:  

• Operating System: Windows XP / Vista / 7  

• Memory: 512MB RAM (2GB recommended)  

• Hard Drive: 500MB free space  

• Video: 800x600 (1024x768 recommended)  

• Microsoft Excel 2000/2002(XP)/2003/2007/2010 

The ANN model developed in this thesis is used with 

NeuroSolutions, a Microsoft Excel plug-in that simplifies and enhances the 

process of getting data into and out of a NeuroSolutions neural network. 

This tool was designed to develop a complete solution to the problem in one 
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easy to use package while also giving the flexibility to customize its 

operation. The following figure presents a flow diagram describing the order 

in which the NeuroSolutions modules can be used to solve the problem. 

Notice that, at a minimum, only three operations are required: Tag Data, 

Create/Open Network, and Train Network. These operations are usually 

followed up by testing the models performance (Test Network) and applying 

the model to new input data where the output is unknown (Apply 

Production Dataset). More information could be found at 

http://www.neurosolutions.com/ 

 
 

……. …….. 
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