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(Preface

Cryptography is the science of security of transmitting messages from

a sender to a receiver. The objective is to encrypt message in such a way that

an eavesdropper will not be able to read it. A cryptosystem is a system of

algorithms for encrypting and decrypting the data for the purpose of ensuring

security. Public key cryptosystem such as RSA and DSS are traditionally being

preferred for the purpose of secure communication through the channel.

l*lowe\A'er elliptic curve ctyptosystcm have become a viable alternative since

they provide greater security and also because of their usage of key of smaller

length compared to other existing crypto systems. Elliptic curve cryptography

is based on group of points on an elliptic curve over a finite field.

Whenever data is transmitted across a channel. errors are likely to

creep in. Coding theory is a stream of science that deals with linding eflicient

methods to encode and decode data, so that any likely errors can be detected

and corrected. There are several methods to achieve coding and decoding. One

among them is Algebraic Geometric Codes that can be constructed from

curves. Clauds Shannon's 1948 paper "A mathematical theory of
communications” give birth to twin disciplines - Information theory and

Coding theory. The basic goal is efficient and reliable communication in an

uncooperative environment. To be efficient, the transfer of information must

not require a prohibitive amount of time and effort. To be reliable, the received

data stream must resemble the transmitted stream with the narrow tolerances.

The main objective of the thesis is to relate Algebraic Geometric Codes

to cryptography using Elliptic Curves. This is done by generating algorithms.

Algorithms have been implemented with the help of MATLAB and

comparative analysis is done with the help of existing algorithms.



The objectives of the thesis include

1. To generate cryptographic algorithms.

2. To combine decoding capability of Algebraic Geometric code with the

process of decryption.

3. To ensure reliability of message by error detection and correction.

4. To ensure authenticity by generation of digital signature algorithm.

U: Secret key can be shared between authorized users so as to ensure more

security.

The scope of the thesis is wide spread on transmitting the data. The

security of the message can be achieved by applying keys of smaller size.

Reliable data can be achieved by decoding the data so as to trace the data for

errors. There by combining reliability with security

This thesis is based on six chapters. The chapter wise description is as

follows. First chapter deals with Algebraic Geometric which include

discussions on finite field, basics of Coding theory, Elliptic curves and

Algebraic Geometric code. The Chapter two deals with basics of Cryptography.

In this, a study on various cryptosystems which includes RSA, Elgammal,

Elliptic curve cryptosystem and also existing cryptosystem using Algebraic

Geometric code is done. In Chapter 3 a discussion on secret sharing is done.

Secret sharing is the process of sharing secret among authorized users and the

authorized group can only reveal the secret.

The chapter 4 deals with theoretical aspects of the problem. Here we

are finding how Algebraic Geometric code can be related to Cryptography.

This is done by generating algorithms. Here two algorithms have been

developed. First algorithm convert message into Algebraic Geometric code and



the code is encrypted using secret key generated with the help of elliptic curve.

To this algorithm at the receiving end, after the decryption process, decoding is

done to detect and correct errors. The second algorithm considers a message as

points on curve and generates a Generator matrix .The encryption is done using

key from elliptic curve. The message takes fonn of a repetition code and

decoding can be done efficiently at the receiving end by using these repetition

codes.

In this thesis :1 secret sharing system is also developed where secret key

is generated by using parameters of elliptic curve and distributing it among

users. At the receiving end by getting shares from a set of authorized users

secret can be reconstructed.

Digital signature is the subset of electronic signature that makes use of

the concept of cryptography. Digital signature tries to combine the signature in

real world taking into account, the properties of the electronic world. The

properties that are provided and assured by the use of digital signatures include

authentication, integrity and Non—repudiation. A digital signature algorithm for

the above mentioned cryptosystem is also developed in this chapter. The last

section of the chapter deals with the security aspects of the system. Attacks are

common to all crypto systems, whenever we develop a system we should take

into consideration of all the possible attacks that it is prone to. Here various

cases have been studied and parameters that should be chosen to make the

system away from all attacks are considered.

The Chapter 5 deals with the implementation of the algorithms that are

developed. Implementations and various comparative analysis of the systems

have been done by taking into considering various fields, messages of various

lengths, Space requirement and also with other existing algorithms. In this

chapter a study on various curves such as elliptic curves, hyper elliptic curves,



super-singular curves, and koblitz curve is also done and their applicability in

generation of code and their usage in Cryptography is discussed.

The chapter 6 contains a comparative analysis of the system with the

existing systems ( Me-Eliece , ECC) is done and finally conclusion is given, In

this way we are trying to find a relation between Algebraic Geometric code and

Cryptography. While Cryptography provides a secure way of sending

messages, Algebraic geometric eode converts the information to be transmitted,

to a code. This code can be utilized to detect or correct errors. By combining

these two, we are imposing security and cn‘or detection or error correction over

our messages that are being transmitted.
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Communication is the process of transmitting data across channel.

Whenever data is transmitted across a channel, errors are likely to occur.

Coding theory is a stream of science that deals with finding efficient ways to

encode and decode data, so that any likely errors can be detected and corrected.

There are many methods to achieve coding and decoding. One among them is

Algebraic Geometric Codes that can be constructed from curves.

Cryptography is the science ol‘ security of transmitting messages from

a sender to a receiver. The objective is to encrypt message in such a way that

an eavesdropper would not be able to read it. A eryptosystem is a set of

algorithms for encrypting and decrypting for the purpose of the process of

encryption and decryption. Public key eryptosystem such as RSA and DSS are

traditionally being prel‘en‘ec| for the purpose of secure communication through

the channel. llowever Elliptic Curve eryptosystem have become a viable

altemative since they provide greater security and also because of their usage

of key of smaller length compared to other existing crypto systems. Elliptic

curve cryptography is based on group of points on an elliptic curve over a finite

field.

This thesis deals with Algebraic Geometric codes and their relation to

Cryptography using elliptic curves. Here Goppa codes are used and the curves

used are elliptic curve over a finite field. We are relating Algebraic Geometric

code to Cryptography by developing a cryptographic algorithm, which includes

the process of encryption and decryption of messages. We are making use of

fundamental properties of Elliptic curve cryptography for generating the

algorithm and is used here to relate both.

Concept of secret sharing is applied to the algorithm. Secret sharing is

a scientific method for dividing key information into several places and
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distributes it among the group of participants. Here we are making use of

Shamir secret sharing schemes. In this method we are encrypting infomration

using a secret key where as during the process of decryption, secret can be

reconstructed by the shares given by the different participants.

Errors are likely to occur during the process of communications. We

can decode an Algebraic Geometric code for the process of error detection and

correction. Decoding methods can be applied to this Cryptographic algorithm

to find whether any errors had occurred during the process of transmission.

Various decoding methods are available that, can be applied to the algorithm to

find whether errors have occurred in the information we communicated and can

correct it.

In this way we are trying to find a relation between Algebraic

Geometric codes to Cryptography. Cryptography provides a secure way of

sending messages. while Algebraic Geometric code converts the irrlbrrrratiorr to

be transmitted, to a code. This code can be decoded to detect or correct errors.

By combining these two we are imposing security and error correction or

detection over our message that are being transmitted.

In this thesis an algorithm is developed and implementation of the

method is done by using MATLAB. A comparative study of the algorithm

developed is done with existing public key crypto system, Elliptic Curve crypto

system, and cryptosystem using Algebraic Geometric code. It is done to prove

the efficiency of the system.

Attacks are common to all crypto systems whenever we develop a

system. We should take into consideration of all the possible attacks that is

prone to it. In this method various possible attacks is considered and a study is

made regarding it.
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1.1 Finite Field

1.2 Coding Theory
1.3 Elliptic Curves
1.4 Algebraic Geometric Codes
1.5 References

1.1 Finite field

A finite field is a field with finite number of elements. The order of

finite field is the number of elements in the field. The order is always a prime

or power of prime. Finite field is also called Galois field. Finite field is

important in number theoiy. algebraic geometry. (ialois Theory. Cryptography

and Coding theory. The finite field is classified as follows [1]

0 The order or number of elements of field is ofthe form p", where p is a

prime number called the characteristic of the field and n is a positive

integer.

0 For every prime number p and positive integer 11, there exists a finite

field with p" elements.

0 Any two finite fields with same number of elements are isomorphic.

Notation for the finite field is Fpnr It can also be represented as GF (p“) where

GF stands for Galois field. The finite field GF (2) consists of elements 0 and 1.

1.1.1Construction of finite fields

To construct GF (p"), first we have to find an irreducible polynomial or

minimal g.
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Definition 1.1(Irreducible polynomial [2]): A polynomial g 3 F[x] is said to be

irreducible over a finite field F ifg has a positive degree and g = b.c with b, C 8

F [x] implies that either b or c is a constant polynomial.

Definition 1.2 (Minimal Polynomial [2]): If 6 3 F is an algebraic field over k,

Then the uniquely determined monic polynomial g 3 k [X] generating a sub

string {fa k[x], f(6) = 0} of k[x] is called a minimal polynomial or irreducible

polynomial of 9 over k.

Properties ofa Minimal polynomial include [2].

l. g is incducible in k[x].

2. For [5 k[x], f(6) = 0, illand only ifg divides f.

3. g is monic polynomial in k[x] ofleast degree having 6 as a root.

The polynomial g is of degree n with coefficient in zp (for any prime p,

z P is the ring of integers) modulo p is field.

1.l.2Properties of GF (p") [3]

A Galois field will have following properties

i. It can be shown that for each positive integer ii, there exists an

irreducible polynomial of degree it over GF (p) for any p.

ii. It can be shown that for each divisor m of n, GF (p") has a unique sub

field of order p'“ moreover these are the sub fields of GF (p").

Theorem 1.1[3] Let 6 5 F be algebraic field of degree 11 over K and let g be the

minimal polynomial of 9 over K. Then

1. K (B) is isomorphic to K[x]/g.

2. | K (0)| / |K| = n and {1, 6  , 6""} is a basis ofK (6) over K.

3. Every 0. 8 K (9) is algebraic over K and its degree over K is a divisor of n.

Theorem 1.2: (Existence of Finite Field [3]) For every prime p and every

positive integer there exists a finite field with p" elements.
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Theorem 1.3[3]: For every finite field Fq the multiplicative group F*q of non

zero elements of Fq is cyclic.

Definition 1.3: (Primitive element [3]) A generator of the cyclic group F*q is

called the primitive element of Fq_

Theorem 1.4[3] Let Fq be a finite field and F, be a finite extension field , then

F, is a simple algebraic extension of Fq and every primitive element of F, can

serve as a defining element of F, over Fq,

Theorem l.5[3| If I7 is an iircducible polynomial in l-‘q[x] ofdegree m, then F

has :1 root (1 in F,,'” . Furthennore all roots of F are simple and are given by the. . 2 —[ . .
distinct n elements (1, a q’ a " ....... .. (1 ‘"" of 111'" .

1.1.3 Finite field arithmetic

Arithmetic in finite field is di1'l‘erent from standard integer arithmetic.

There is limited number ol‘ elements in finite field and for all operations

performed in the finite field, the result will be elements in the finite field.

While each element in the finite field itself is not infinite, there are infinitely

many different finite fields. Their number is necessarily ofthe fonn p", where p

is a prime number and n is a positive integer. One can perform operations such

as addition, multiplication, and subtraction using the usual operations on

integers followed by modulo p.

E.g. GF (5)94+5 = 9 is reduced to 4.

E.g. [3]: To represent the elements of Fq, Let FL, is regarded as a simple

algebraic extension of F; of degree 2. This is obtained by conjunction

of root of an irreducible quadratic polynomial over F3 say F (x) = x2+l

in F3 [x]. Thus F (a ) = (12 +1 = 0 in F9 and nine elements of F9 is

given by {O,1,2, (1, 1+ (1, 2+ (1, 2 (1, 1+2 Cl, 2+2 Cl}. Here a0 + amt form

primitive element.
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a. Addition and Subtraction

Addition and Subtraction of two finite fields are implemented in the

intuitive way of adding and subtracting the coefficients and performing the

modular reduction by subtracting or adding p until the resulting coefficient is

non-negative and less than p.

b. Multiplication

Multiplication is done in two stages: Multiply two polynomials, A (x)

and B (X), using ordinary polynomial multiplication to form an intermediate

product c' (x) to produce the result e (x).

c. Polynomial Exponentiation

Although raising a polynomial A (x) to the 11''‘ power can be obtained

by multiplying A (x) n times which is O (n), this is very difficult for large n.

Thus repeated squaring can be used. which can be obtained with complexity

0 (log n).

1.2 Coding Theory

CClauds Shannon s 1948 paper ‘A mathematical theory of
communications’ give birth to twin disciplines Information theory and Coding

theory. The basic goals of these disciplines are efficient and reliable

communication in an uncooperative environment. To be efficient, the transfer

of information must not require a prohibitive amount of time and effort. To be

reliable, the received data stream must resemble the transmitted stream with

narrow tolerances. [3]

1.2.1 General Communication System

Let us review the simplest communication scenario (The point —-to­

point eommunication).Shannon model of communication is as follows.
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Message Message
’ Transmitter Channel Receiver ’

l
Noise Source

V

Fig 1.1 Model of communication process

A source (emitting speech, audio, data etc) transmits via a noisy

channel (e.g.: phone line. optical link, wireless storage medium) to a
destination. But we are interested in a reliable transmission i.e. we would like

to recreate the transmitted information with as little distortion as possible as

transmitted. A more specific model of communication can be as follows

Encoder Channel DecoderT»T»
Message Code Word n—tuple code word n—tuple

Fig 1.2 Reliable Model ofcommunieation process

Message is passed through an encoder, which encodes the message. By

encoding; k-tuple message is convened into a code word of n—tuple. This code

word is passed through a channel. A channel is a discrete memory less channel.

The channel is discrete because we shall only consider finite alphabets. It is

memory less, in the sense, error in one symbol will not affect the reliability of

the neighboring symbols. The decoder receives from the channel an n—tuple of

symbols. Then the decoder decodes the information to get the transmitted

image. Decoding involves the process of error detection and correction also.
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The aim of coding is to provide secure transmission of message, in the

sense that errors occurred during the transmission can be corrected. In the

coding theory, basic thing is the creation of code words. The code word should

be created in such a way that it is possible for

0 Fast encoding of infomiation.

0 Easy transmission of encoded messages.

0 Fast decoding of received messages.

0 Correction of errors introduced in the channel.

0 Maximum transfer of information per unit time.

1.2.2 Codes and Types of codes

A code C over an alphabet A is simply a subset of A" = A x A x.....x

A (n copies). Elements of a code are called code words and the length of the

code is n, where A is a finite field Fq The dimension of a linear code C is

delined as 21 vector space over Fq_

Important parameters of code include

1. Infonnation rate: It is the number that is designated to measure the

proportion of each code word that is carrying the message and it is

given by k/n where k is the dimension of code and n is the length of the

code.

2. Relative distance: It is the number of positions where two code words

disagree.

Different types of codes include:

2. Linear Code

A code C is a linear code, ifv + w is a word in C so that v and w are in

C. i.e. linear code is a code which is closed under addition of words.
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For e.g.: c = {000,111} is a linear code since

000+000=00O

l 1 1+1 1 l=0O0

111+000=111

000+] 11=111

The distance of a linear code is equal to minimum weight of any non­

zero code word. The parameter of a linear code can be defined as (n, k, d)

where n is the length ofthe code, k is the dimension ofthe code and d is the

distance ofthe code.

If C is a linear code of length n and dimension k. then any matrix

whose rows form the basis for C is called generator matrix for C. Generator

matrix for a linear code must have k rows and 11 columns and rank K.

Theorem l.6[3] Generator Matrix:- A matrix C} is generator matrix for some

linear code C if and only if rank G is equals to number ol‘ rows of G.

Let C be a linear code of length 11 and dimension k, ifG is a generator

for C and ifu is a word of length k written as a row vector thenV=uG (1.1)
is a word in C.

There is another matrix associated with a code and closely connected

with a generator matrix. This matrix is called a parity check matrix and this

matrix plays an important role in decoding of code, which is used for the

purpose of error correction and detection.

A matrix H is called a parity check matrix for a linear code if the

columns of H fonn a basis for the dual code C‘. If C has a length n and
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dimension k, then any parity check matrix of C must have n rows and n-k
columns and rank n-k.

Theorem l.7[3]: A matrix H is a parity check matrix for some linear code C if

and only if the columns of H are linearly independent.

Theorem 1.8[3]: If H is a parity check matrix for a linear code C of length n

then C consists precisely of all code words V in K such thatVH=O (1.2)
These results can be used for error detection and correction.

Theorem l.9[3] Matrix G and H are generating and parity check matrices,

respectively for some linear code if and only if

i. The rows ofG are linearly independent.

ii. The columns of H are linearly independent.

iii. Number of rows of G plus the number of columns of H equals the

number of columns of G, which is equal to number of rows of H.

iv. GH=0.

b. Hamming Code

A code of length n = 2 '-1, r 2 2 having parity check matrix H whose

rows consists of all non-zero vectors of length r is called a hamrning code of

length 2'-l. Parity check matrix H for a hamming code C contains all r rows of

weight r and r columns of H are linear independent. Thus hamming code has

dimension 2' - 1- r and contains 2 2”" code words. Hamming codes are perfect

error correcting codes.
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c. Reed-Muller codes

This is another important class of codes, which includes the extended

Hamming code. The r 1" order Reed—Muller code of length 2 '" is denoted by

RM(r, m), 0 S r S m. We present a recursive definition of these codes

1. R(0,m)={0,0,0,1,11,1...1}
2. RM(m,m)=K2J

3. RM(r,m)= {(x,x+y)|xeRM(r,m-1),ysRM (r-l,m-l)};0<r< m

Generator matrix of RM(r, m) is defined by

G (r, m) = G (r, in-1) G (r, m—1)
0 G(r—l,m-l)

Theorem 1.10 [3]: The r "' order Reed—Muller code RM(r, m) delined above

have the following properties

1. Length 11 = 2 ‘"

2. Distance d= 2"”

3 Dimension k = Z 'm( i )

4. RM(r-1, m) is contained in RM(r, m )

5 Dual code RM(m- 1-r,m) , r< m

d. BCH codes

An Important class of multiple—error correcting code is the class of

Bose Chaudhari-Hocquingham codes or BCH codes. They are important

because of two reasons. Firstly they admit easy decoding scheme and secondly

the class of BCH code is quite extensive.
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e. Reed-Solomon code

Reed Solomon code is a linear systematic block code based on finite

field theory. The basic building block of Reed-Solomon codes is a symbol

composed of in binary bits, where m can be any natural numbers greater than

or equal to 2. For a given length m, the length of all the Reed-Solomon codes

composed of m bit symbols is 2'"-1. Reed-Solomon code is a special case of

BCH code. An efficient algorithm for BCH code was discovered in 1968. We

can apply same thing to reed-Solomon code also. An altemate definition of
Reed-Solomon code is as follows

Definition 1.4 [3]: Given a finite field F of size (1, let n = q—l and let 0. be a

primitive n "' root of unity in F. Also. let 1 S K S n then, the Reed-Solomon

code for these parameters has a code word (fo, l]...f,,_.). If and only if ct, al,

a2 .... ..a "'k are root of polynomial p(x) = f0+ f,(x) + ...... ..+f,F.x"".

With this definition. it is immediately seen that a Reed-Solomon code

is a polynomial code. Let g (X) be a generator polynomial, which is minimal,

roots at, (12, (13  a “"‘ and the code words are exactly the polynomials that

are divisible by g (x).

Let p(x) = V0 + Vlx + V3X2 +....+ V,,-.x "" and q(x) =f0(x) + f1(x)+.....f,,_1(x"" ),

using these facts we have

0 (f0, f1 ____ _V f,,) is a code word of the Reed-Solomon code

0 iff p(x) is of degree < k.

0 iffV,-=0 fori=k,...,n—l.

0 iffq(a‘) = O fori =1,....n-k.

We can say in Reed — Solomon code data encoded is visualized as a

polynomial. The code relies on a theorem from algebra that states that any k

distinct point uniquely determines a polynomial of degree at most k-1.
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Next code that is important and used in our algorithm is algebraic

geometric code. Algebraic geometric code is code based on Algebraic Curves.

Here in our system we are making use of Elliptic curves. The detail of the code

is given in section 1.4.

1.2.3 Bounds on Codes

Quality of codes is determined by two variants. They are transmission

rate and relative distance. The transmission rate is given by R = k/n and relative

distance given by 8 = d/n, where n is the length ofthe code, k is the dimension

and cl is the minimum distance. The main aim ol‘ coding theory is to generate

codes that optimize these parameters [4, 5. 6]. Quality of code can be defined

using bounds on codes.

a) Singleton bound

Let C be a code over 11 finite field with dimension k, minimum distance

d and length 11 then d S n—krl. Any code having parameters, which meet

singleton bond, is maximum separable code.

Definition l.5[4] : Let q be a prime power and let 11, d be positive integers with

d S n , then the quantity A q(n, d) is defined as maximum value of M, such that

there is a code over F q of length n with M code words and minimum distance
n—d #1

d. By singleton bound, we will have A q (n, d) S q

b) Plot kin bound

Here we will set 9 = 1-1/q, then A q (n, d) = 0 if d < 0 ,, and

A q(n, d) S d/d- 9 ,,, ifd > 6".

If we have a code that satisfied that the above condition, then we will

say it is having Plotkin bound [4].
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c) Gilbert — Vaishnamov bound

Here Aq(n, d) 5 q "/ v 4 (n,d—1)

d) Asymptotic bounds

Since we are looking for codes, which have large dimension and large

minimum distance with respect to n, it makes sense to normalize these

parameters by dividing by n. Let C be a code over F q of length n with q k code

words and minimum distance d. As specified, R and 8 detennines quality of

code. Both R and 5 should be between 0 and 1 and C is a good code if both R

and 6 is close to 1. Let L] be a prime power and 8 :2 R with O S 5 E 1 then

aq (8) = Lt (sup( 1/n(log q (Aq(n, d) ) ) ).

We will see asymptotic version of Plotkin and Gilbert Varslmamov

bounds. These bounds, give bounds on the value oful, (5).

Asymptotic Plotkin bound [3, 4] is as follows

With9 = 1- 1/q wehaveaq(5)= 1- 5/9, if0S5S9

aq(5) =0, if0 < 55 1.

In order to define Gilbert Varshnomov bound we have to specify

Hilbert entropy on set 6= 1-1/q and define a function Hq(x) on an interval

0 5 x 5 0 by x=0.

Hq(x) = 0 if X = 0
= x log q(q-1)-x log q(x)-(1-x)log q (1-x) if0 S x 5 q

The function Hq(x) is called Hilbert entropy function.
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Asymptotic Gilbert - Varshamov bound [4] can be defined as follows

find any 5 with 0 S 5 S q ,we have aq (6) 2 l—Hq (5). The Fig 1.3 is a graph for

Plotkin bound and Gilbert Varshamov bound.

Plotkiri Bound

Fig 1.3 Plotkin and GV Bound

1.3. Elliptic curves

1.3.1 Introduction

Elliptic curves are becoming more and important, not only as

cryptographic applications but as important in mathematical theory. Elliptic

curve originated from early mathematicians trying to find rational solutions to

the cubic equations. Curves can be defined over affine plane, by adding points

at infinity to affine plane to produce a projective plane and projective plane can

be defined as follows

1. Affine Coordinates: Co-ordinates of the form f (x, y) = 0 where f is a

non-zero polynomial.
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2. Projective coordinates [8]: coordinates of the form f (x, y, 2) =0 where

f is a non — zero polynomial of some degree d and projective rational

solutions are (x, y, z) and (Xx, ly, lz) for X = 0.We can define elliptic

curve over a finite field Fp as follows

Definition l.5[7] E: y2 + a1 xy +a3y = X3 + agxz + a4x+ as (1.3)

Where a,, a;...ag, 3 F,, and A 96 0, A is the discriminant of E and is defined as

follows

LA =—d£ —8d4" — 27 (1.3 + 9d3d4d(,

3.d4=2a4+4ag

4. do = a_;3+4 a(,

5. d3 = a.2 a5 +4 33 a(,—a1a3 a4+ 33 a32 —a..2

Let L be the extension field of Fq then the set of rational points on E is

E(L)={(x, y) 5 L x L: y2+ a. x y +a3y —x3 - azxz - a4x — a6 =0} H union{oo} (1.4)

Where oo is point at infinity and certain properties of the curve are as follows.

1) Equation —(1.3) is a Weierstrass equation.

2) Condition A ;E 0 ensures that the elliptic curve is smooth, that is, there

are no points at which curve have one or more tangent lines. The point

oo is the only point on the line at infinity that satisfies ithe projective

form of Weierstrass equation.
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3) The L-rational function points on E are the points (X, y) that satisfy the

equation of the curve and whose coordinates x and y belongs to L.

The point at infinity is considered as L rational point for all extension

fields of L on Fp. We can transfonn the elliptic curve Equation (1.3) to

y2=x3+ax+b (1.5)
where a and b 8 Fp. FF is finite field of size p. Such a curve is said to be super

singular and has discriminant A = -a3 . In this thesis we will be using elliptic

curve of equation (l.5).Consider an elliptic cuwc y: = x‘ +6 x + 5 over field fx_

The curve can be represented as follows as in Fig 1.5.

The points in Ea(6_.5)7- I n
5. .-1- I I 1>-4 *3- I 3
2r I1r- I ID L I I 40 1 2 3\ 4 5 5 7

X

Fig 1.4 Elliptic curve point represent representation E3(6,5)

This is the representation of curve along with points using algorithm in

MATLAB as specified in Appendix—A-II

1.3.2 Properties

Properties of an elliptic curve y2 = X3 + ax + b [7] are

1. Identity: P + co = 00 + P for all P 5 E (Fp).
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2. Negatives: lfP (x, y) 5 E (Fp) then (x, y) + (x, -y) = so. The point (x, -y) is

denoted as —p and is called negative of P.

1.3.3 Arithmetic of Elliptic curves

Arithmetic of elliptic curve includes all operations which can be done

on points on a curve

i. Point addition

Let P (x.. y.) £2 E (Pp) and Q (xg, y;) 9, E (F,,) where P 96 i Q. then P +Q = (x;_

yet) where

X3 —(.V:‘)’i/'X2'Xi)2 —-X1 — X: (1-6)

)’x=((Y2-Y:/X2-Xi) (Xi-X3) ‘)/i). (17)

Addition [7, 8] can be done by chord and tangent rule .The sum R of two points

I’ and Q is as follows. Draw a line through l’l and P3. this line intersect at 3 rd

point. Then P; is the reflection of this point about the x—axis.

K/E

Figure:l. 5 Elliptic curve point addition
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An example for elliptic curve addition is as follows. The curve equation is

y2=x3+ax+b with a = - 4, b = 4.To add two points, draw a line through them and

reflect the third point, where this line intersects the curve, in the x—axis.

y%xh4x—4 /W
_..-—x_.%!_“a

'-\ '4

[ll _.

1| _ _———_- a..4!" 1*‘' "'-- —-‘ Z—c«:- n1-‘a:i:'.:, 2: ‘~­

Fig l.6[8] (Elliptic curvc addition example)

The result of addition ofpoints A (-2, -2) and B (l, 1) is C (2, -2).

ii. Point doubling

Elliptic curve doubling occurs when P = Q. Doubling a point is a
process of computing P+P, P 3 E. Let in be the slope ofthc curve,

If y] 96 0 then x3 = m 3 — 2 x1, y3 =m (x. — x3)-y._ Here we take slope as
(3X3+3V2yJ

If y. = 0 then P. + P; = 00. Also we can say P + co =P for all points P on E.

yz=x‘-d.x+J

/'.u_.1.1s. ass; / \
Q%j__p-"/‘

4&1-A-n-1L«*""“‘' \ 2 272.33. -255:
I:-:oint:::--:4r.-c;.:.i 4.

xx.
\x.__

‘c.

,.-—‘r ­/ ‘i\

Figure 1. 7 [8]. Elliptic curve doubling
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iii. Scalar multiplication

Scalar multiplication is a process of multiplying a scalar value with a

point on curve. Let P be a point on curve, kP, that means scalar multiplication

of an integer k with a point P. That is P + P + P+ . . . . . . +P (k times). It is

done by doubling and adding method. This property of elliptic curve is used in

this thesis for implementation of cryptographic algorithm. Elliptic curve used

in cryptography contains only finite number of points. The figure below shows

scalar multiplication on elliptic curves.

Figure 1.8 Scalar multiplication

iv. Point Subtraction

Point subtraction consists of point addition and point negation or point

inverse. It is represented as P — Q. This can be evaluated by point addition of

the point P and inverse Q (-Q). i.e. R = P + (-Q).
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1.4. Algebraic Geometric Codes

Algebraic Geometric codes are codes defined over curves. Algebraic

geometric code is defined by V.D Goppa [5, 9, 10]. The curve used in algebraic

geometric code is defined over a finite field FL,‘ _ here we can make use of affine

and projective variety of curve whose dimension is one. This curve is

absolutely irreducible and non-singular, equations of curve should be

polynomials with coefficients OfFq .

The Key aim ofalgebraic geometric code is to replace polynomial over

a tinitc field by more general constructions. Goppa used language olialgcbraic

curves to introduce codes. So we can call it as Algebraic Geometric codes.

Before going into function and construction of algebraic geometric codes we

will discuss certain factors used for describing the code. They include

1.4 .1 Divisors

A divisor[6] D on a curve X is a fonnal sum of form D=)_npP where

np e Z and np = O for all but a finite number of points P on X. Divisors are

often thought to be the key stone to understand how Algebraic Geometry is

formed and its relationship to curve. To describe it more clearly, let C be a non­

singular projective curve in Pk3.The projective plane is over an algebraically

closed field K. For each line L in Pkg , we consider L H C, which is a finite set

of points on C. If C is a curve of degree d and if we counts points with proper

multiplicity then L 0 C will contains exactly d points. So we can write L ft C =

Znp P where P i 8 C are the points, ni_ the multiplicity and this formal stun is a

divisor on C. As L varies, we obtain a family of divisors on C parameterized by

the set of all lines in P2, which is a dual projective space (P k3)*' We refer to this

set of divisors as a linear system ofdivisors on C. If P is a point of C, the set of

divisors in the linear system contains P. They correspond to the lines L 8 (Pk 2)‘

passing through P and this set of lines determines P uniquely as a point in Pk 2.



Chapter 1 22
Another important thing in the construction of Algebraic Geometric

code is order function. The order is a generalization of the degree of a function

as well as its zeroes. There are two candidates, the x-order and the y—order.

Usually they are the same; however care must be taken to ensure their

accuracy.

Definition 1.6[6]: Let X: f(x, y) = 0 be a curve and P (x=a, y=[3) be a point on

curve X with (1 and [3 5 F, Let g (x, y) 3 F [X], then the largest power n for

which there exists polynomials go 3 F [X] and h” (x, y) a F [x, y] with ho (O, 0)

i 0 such that

g= ((x— (1) g”(x— a)/h"(x- ct. y- [3)) mod f

is called the x—order of g at P and denoted by ordp__\(g).The x-order can be

defined using the notation Vp_x(g/h) and is V,,>‘(g) - Vp.x(h) and y order is

defined analogously.

Let I’ be a field. A discrete valuation V on 1-‘ is a function fl to Z. It has the

following properties

- V(a,b)=V(a)+V(b)
- v (a +b)2 min {v (a), v (b);

0 V (a) =1 for at least one a.

It is some times convenient to put V (0) = oo, which preserves the axioms even

when a=O or b=O.

Proposition 1.l[8]: IfV is a discrete valuation then

V(1)=0andifV(a)<V(b)thenV(a+b)=V(a).

Assume further X is projective and f e K (X): then the following is equivalent

Ord,(f) 2 o for all y

Ordx(f) = o for all y. fa K‘ .
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The properties of 0rd, shown above allow us to define the divisor of a

function. Let X be a variety and fa K (X)* be a rational function (section 1.4.2)

on X, Then divisor of f is

Div (D = Ty ord , (f) y 5 Div (X)..'_a

A divisor is said to be principal if it is the divisor of a function. Two

divisor D and D' are linearly equivalent (D ~ D'), if the difference is a principal

divisor. We can use notation (f) for the divisor of f. The divisor at poles and

zeroes denoted by (I) 0 and (f) , respectively.

(150:  urd_\ ll 0rd 3'

:ur(l_\- (fl 0' 0rd _\

Thus we can say that divisor of a function is the difference between

poles and zeroes.

1.4.2 Rational Functions

Let X is a curve defined by a field F. On the points of X. any two

polynomials that differ by multiples of F have same value. So when we

compare it with the curve they will be the same.

Definition 1.7 [6]: Rational function R as the ratio f= (x, y, z)/B(x , y, z) of

two homogeneous polynomials of the same degree up to factorization modulo

F(x. 3'. 2).

A rational function f is defined at a point P, if there exists a

representation f = A/B such that B (P) gé 0.

Another important thing we have to discuss before the construction

and definition of algebraic geometric code is the space associated with the

divisor. The space associated with the divisor can be called as linear space.
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Let D =ZnpP, be a divisor and there are set of all functions satisfying

Vp (f) 2 -np at every point P, together with the zero function is called space

associated to D and is denoted by L (D). For an effective divisor D, L (D)

consists of rational functions and all its poles lie in the Supp (D) and the

multiplicity of each of them is not greater than np . We can describe it with the

help of a Lemma and a proof.

Lemma [1 .1] Let D e D‘ then

1. lfD' is linearly equivalent to D, then L (D) is isomorphic to L (D')
(as a vector space over K)

!‘~' lfdeg (D) < 0 then I. (D) = {0}

3. L (0): K.

Proof: (1) As D and D1 are equivalent there exists 2 c K (X) such that D =D]+(z).

Define a mapping (I): L (D)9K (X), xI—> xz. Clearly (D is k-linear and its image

is contained in I. (D'): Vp (xz) =Vp (x) e Vp (y) 3 —np + Vp (Z) = -np for every

P3X. More over (I) is bijective as W: I.(D')-9L (D), x 1% xz" is an inverse oftl).

(2)Assume that there exists x e L (D), x at 0, then D] = D + (x) is effective and

linearly equivalent to D. Ilence, 0 5 deg (D') = deg (D), which is a
contradiction

3. Clearly K is contained in L (0). On the other hand,, each element in L (0) has

no poles, therefore it is a constant.

1.4.3 Riemann —Roch Theorem.

It is one of the famous theorems in algebraic geometry. It deals with

computation of l(D) ,the dimension of vector space L(D).Let X be a curve

defined over a projective field and let d be the degree of X , g the genus of

curve =(d-l)(d-2)/2. A canonical divisor w is also defined such that deg (w) =

2g-2 and l (w) = g.
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Theorem 1. 11 [5] Given a divisor D, l(D) = deg (D) + 1- g + l(w—D), where w

is any canonical divisor.

By making use of all the above discussed concepts of algebraic

geometry we can define an algebraic geometric code by V.D Goppa as follows,

Let X be a curve, P be a set of points on the curve, D be the divisor then

Algebraic Geometric code associated to (X, P, D) is

C(X,P,D):= ((f(p,),f(p;) ...... ..,f(p,,) | fc L(D)} C Fq" (1.8)

In other words, the algebraic geometric code (‘(X. P. D) is the image of the
evaluation map

l:':L(D)9Fq"

f‘) ((f](Pi)..f2(P2) ------ -.fL(P..)) (1-9)
1.4.4 Construction of Algebraic Geometric Code

By making use ol‘ the definition described above we can constmct a

Goppa code as follows .Let X be a curve, P be a set of n points on the curve

{PLP3 V_P,,} and divisor D = P,-P3 _._.P.1 Let L(D) denote vector space for the

curve X, length of the vector space l(D) as per Riemann Roch theorem is

l(D) = n + g — 1. Let g =1, genus of an elliptic curve is one(in this thesis we are

concentrating only on elliptic curve). For an elliptic curve d=3, and genus g is

given by ((d-1)(d-2))/2. So g here is 1. Then 1 (D) = n = #p (number of points

on the curve). A code is represented by (n, k, d) from where n is the number of

elements, k is the dimension and d is the distance.

The dimension K is degD+1-g and minimum distance cl > n-deg D

(Thus we are mapping (X,P,D) to (n, k, cl) curve). Let C=(X,P,D) be an

algebraic geometric code and let f,_ fl“) _ fk be a basis for the vector space L(D)

over finite field Fq under the conditions above dim C= K and geometric matrix

is defined as
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fuPn  .. f1(Pn)

fk(Pl)   .. fk(Pn)

An example for an Algebraic Geometric code over Hermition curve is as

follows. Let our curve be F=V(x3+y2z+yz2) over the field F4_ _ As this curve is

smooth we can find genus of a curve by using Pluckers formula as

g = (3-1 )(3-2)/2 =1. This curve contains 9 points.

Q=(0:1:0)
P.=(0:0:1) P3=(0:1:l) P_;=(l:a:l)
P4=(l zazzl) P5=(u:a:l) P(,=(U.iC12i1)
P(,=(a:u3:l) ’,\~=(a3:a2:l)

Let D be the divisor ofthe sum of eight affine points, that is

I) = P] + . . . . . . . ..+ P3_

Let the code be CL (D, 4Q). The 4 dimensional space L (4Q) is spanned by the

following basis functions. The numbers in parentheses indicate the order of the

pole at point Q.

<13. =1 (0) <132=x/z (2) <I>3=y/z (3) <D4=x2/z2 (4)

with this information we can already give a generator matrix for the code CL

(D, 4Q) by evaluating CD1 , .... .., (D4 by evaluating the functions at points

P], . . . . ..P8_
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Cryptograpliy

2.1 Public key cryptography
2.2 Public key cryptosystems based on
Codes
2.3 References
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2.1 Public key Cryptography

2.1.] Introduction

The fundamental aim of cryptography has always been to provide

secure communiczilion over a channel. (‘ryplograpliy includes broad range 01‘

science including matlicmatics. computer science. inllirniation theory and

human psychology. Cryptographic systems can provide a number of services

with application emphasizing the determination. These services are the building

blocks ofa secure system and is defined by industry [1] as follows

0 Confidentiality-Concealment ofdata from all but authorized parties.

0 User authentication-Assurance that the parties involved in a real time

transaction.

0 Data origin authentication: Assurance of the source of message

0 Data integrity: Assurance that data has not been modified by

unauthorized parties.

0 Non-repudiation—The binding of an entity to a transaction in which it

participates, so that the transaction cannot be later repudiated. That is,

the receiver of a transaction is able to demonstrate to a neutral third

party, that claimed sender did indeed send the transaction.
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0 Availability- A measure of ability of the system to function efficiently

in providing the security.

0 Data integrity and non-repudiation of the information transmitted can

be achieved by digital signatures.

Cryptography is the process of converting ordinary plain text units called plain

text messages into units of encrypted text called cipher text message units. The

conversion process is done using a secret key.

Intruder Intruder
Plain text Cipher text Ciphcrtext Plan text

T’ ENCRYPT ——> A DECRYPT —+

lKey KeySender Receiver
Fig 2.1 Process of Cryptography

After converting plain text into cipher text, sender transmits the

message through communication channel. At the receiving end the cipher text

is converted into plain text, using key along with the decryption algorithm.

There are two types of Cryptography: - Symmetric and Asymmetric

cryptography. Asymmetric cryptography is useful for secure communications

and they don’t use single key, where as Symmetric cryptography uses single

key. Asymmetric cryptosystems use two keys, in which one is a public key and

the other is a private key. Public key is used for encryption and private key is

used for the process of decryption. So we can call Asymmetric cryptosystem

as a public key cryptosystem.
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Major objective of public key encryption is to provide privacy and

confidentiality. In public key encryption each entity A has a public key e and

corresponding private key d. In a secure system, the task of computation of d

from e is computationally infeasible. The public key defines the encryption

transfonnation and private key d defines decryption transformation. So if any

entity B wants to transmit a message M to A, it obtains A’s public key e and

uses encryption transformation to obtain cipher text. So cipher C = EL.(m) and

transmit C to A. At receiving end A decrypt the cipher text by decryption

transfonnation to get original message m. m=D.,(c ). Public key is not secret, it

is known to all and where as private key is secret.

In 1976, Diflie and Hellmann [2] developed a new field of

cryptography called Public key cryptography, which made an enormous impact

on directions and applications ofcryptography. Public key cryptosystems allow

all information including key to be distributed over an insecure communication

channel without loss of confidentiality. The private keys remain with the

original user and there is no need to transmit it. thereby increasing the security

of the system. Public key cryptosystem also accommodate digital signatures so

that sender of the message can be easily authenticated.

The map between plain text and cipher text for public key
cryptosystems make use of the idea of a one-way function so that encryption

using this function is computationally infeasible.

Some purposes where public key cryptography has been applied are

0 Confidential message transmission.

0 Authentication-which establishes that the message was sent by the

person claimed and that it has not been tampered with.

0 Non —repudiation — Which guards against people claiming not to

have agreed to do something that they really agreed to.
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Key establishment—Where two people using the open airways want

to agree upon a secret key for use in some symmetric key

cryptosystem.

Electronic cash mechanisms that ensure spender anonymity.

Electronic Voting schemes that ensures that votes are correctly and

confidentially trailed.

2. 1.2 Advantages

1. Security

The Primary advantage of Public key cryptography is increased

security. The private keys used in this are not revealed to anyone.

2. Digital Signatures

Another major advantage is that they can provide authentication via

secret key. it requires sharing Of some secret information and sometimes

requires trust of third party. A sender can then repudiate a previously signed

message by claiming that the shared secret was compromised by one of the

parties sharing the secret.

2.1.3. Different Public Key Cryptographic methods

In this section we will explain various cryptographic algorithms

2.1.3.1 RSA Cryptosystem

It is one of the widely known cryptosystem developed by R.Rivest,

A.Shamir and L. Adleman[3,4]. It is used to provide secrecy and security. Its

security based on integer factorization problem. RSA is widely used in

electronic commerce protocols. Every cryptographic algorithm can be

implemented in 3 steps



a. Key generation

b. Decryption

c. Encryption

a. Key generation

Since RSA is a public key cryptosystem it involves two keys —private

key and a public key. Messages are encrypted using public key and decrypted

using private key.

i. Generate two large prime numbers p and q.

ii. Compute n = p. q and up =(p—1).(q—l).

iii. Select a random integer e, 1<c< q).

iv. Determine d which satisfies d.e =1.

v. A’s public key is (n. c) . A"s private key is d.

7. Encryption

i. Obtain A’s authentic public key (11, e).

ii. Represent the message as an integer in in the interval [0, n-1].

iii. Compute c = in” ( mod 11).

iv. Send the cipher text to A.

c. Decryption

To recover the plain text we should do the following

Use the private key d to recover the message plain text
i.e. m = c"( mod n). One of the major problems in RSA is integer factorization

problem. Multiplying two large numbers is easy in forward direction, but

finding the numbers (or factors) in inverse is quite difficult. This problem is

called integer factorization problem

Here is an example of RSA encryption with small parameters [3].
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Key generation: A chooses prime p=237l and q=2557 and Computes

n = pq=6062l 7 and (p = (p—l )(q—l) =6057720. A then chooses e=367453 and by

using extended Euclidean algorithm he finds d=4953277. Such that ed =

1 (mod (p). So A’s public key pair is (n=6062617, e= 367453) and private key

(d=4953277).

Encryption: Consider that our message m = 5234681. B uses modular

exponentiation to compute c = m” (mod n) =523468l367453 (mod 6062617)

=5640058 and c is sent to A.

Decryption: To decrypt c. computes C" (mod n) = 5640058Mm7

(mod 6062617) = 523468l.Thus after the process of decryption we got the

original message we transmitted.

RSA system security is based on Integer factorization problem. Integer

factori7.ation problem is the problem of factorization of very large numbers.

Some other security issues related to RSA include the following [3. 4]

l. Factoring attacks: Given (n, e) as public information, one attack is to

factorize n and thereby computing tp and d.

2. Small encryption Exponent e: If e is very small m can be recovered for

c = in” (mod it) via em root ofc.

3. Forward search attack: If message space is small or predictable an

adversary can decode the entire possible message set until it gets c.

4. Small decryption Exponent d : If d is small, we can easily compute d from

publicly known e and n by using certain algorithms.

5. Multiplicative properties: Suppose we have two plain text messages ml and

m2 then, there are cl and c2 such that (m1, m2) ° =m1° . m2° = c1. c2

(mod n). This is referred to as homomorphism properties of RSA [3], which

lead to adaptive chosen text attack on RSA.
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6. Common modulus attacks: Sometimes there may be a central trusted

authority uses a single RSA modulus 11 and then in tum distribute a distinct

encryption/decryption pairing (e,,di) ea11 lead to factorization of n. The

factorization of 11 would lead to the discovery of all other key pairings that

were generated by the original trusted authority.

2.1.3. 2 Rabin Public Key Encryption

The Rabin public key encryption scheme was the first example of

provable secure encryption sche111e[3].The problem faced by a passive

adversary of reeoveriiig plain text froin some given eipher text is
computationally equivalent to liactoring of integers

a. Key generation

i. Generate two large random prime p a11d q whose size is roughly sa111e.

ii. compute 11 = p. (1.

iii. Ais public key is 11, As private key is (p ,q).

b. Encryption

i. Obtain A‘s authentic public key 11.

ii. Represent the message as integer i11 the interval [0, 11-1].

iii. Compute 1112 (mod 11).

iv. Send the cipher text C to A.

c. Decryption

To recover the plain text we should do the following.

i. Using Extended Euclidean algorithm find 4 square roots ml, n12, m3,

m4 ofC modulo n2.

ii. The message sent was ml, m2, m3 or m4.



Chapter 2 36
Here is an example of Rabin public key encryption with small

parameters [3]. For the purpose of key generation Entity A chooses two primes

p= 277 and q=331 and n= p. q = 91687. A’s private key is (p=277, q=3310)

and public key is n (=91687).

Encryption: Convert message to be sent into bits. Consider our

message is of 10 bits, we replicate last 6 bits of message if ml = 1001111001,

then m=1001111001111001 i.e. now m=40569. B computes c=m2(mod n)

=62l 11 and sends it to A.

Decryption: To decrypt we find 4\"c (mod n) then m1=405()9, m2=22033.

m3=40569. m4=51 1 18 . In binary

m1=10001000000l0110,m2=101011000010001

m3=l001111001111001, in-’1=1100011110101110

Here In} has redundancy. .-'\ decrypt to in and recovers the original

message m3=10011l001.

Security ofRabin public key encryption [3, 4] can be described as follows

1. The task faced by a passive adversary is to recover plain text in from

the corresponding cipher text C. The problem of computing n and

computing square roots modulo n is computationally difficult.

2. Chosen cipher text attack : The adversary select a random integer

m a Zn‘ and computes C = m2 (mod n), The adversary then presents C

to A’s decryption machine which decrypt and return the plain text with

a probability ‘/2, y:-& :1: m 2 ( mod n) , in which case gcd (n1-y ,n) is one

of the prime factors of n . If y E i m (mod n), then the attack is

repeated with a new m3.

3. It is also susceptible to the attack similar to those on RSA.
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A drawback on this system is that receiver is faced with the task of

selecting the plain text from among four possibilities. This problem is

overcome by adding pre specified redundancy to the original plaintext prior to

the encryption.

2.1.3 .3 The Diffie-Hellman Public Key exchange system

Diffie and Hellman [2] were the first to propose a solution to the key

distribution problem and digital signature problems in 1976 They used what is

known as trapdoor one-way function .A trapdoor one-way function is a special

function which is easy to compute, Howevci‘, given this type of mapping it is

very difficult to find an inverse without another ti'ap—door function.

a. Key Generation

i. A and B publicly select a finite group (3 with an element at :3 G.

ii. A geiierates a l'€ll1(lO1]] integci‘ It and computes ti" :2 (i. public key is it".

The key is exchanged by sending a“ to B.

iii. On the other hand B generates a random integer b such that ab 8 G.

and transmit 0th to A over the same channel. (Public key is exchanged).

b. Encryption

Let M be the message to be transmitted and M is represented as an

integer. A computes C = M. ( a")“' and C is sent to B.

c. Decryption

M is recovered by C. ((a“)b)'l .
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2.1.3 4 The Elgammal encryption

In 1985 Elgammal [6] proposed a public key cryptosystem based

around the Diffie — Hellmann key exchange scheme. This scheme is based on

discrete exponentiation which exhibits the properties of a trapdoor one-way

function. This system is based on using the multiplicative group of a finite

order Zp.

a. Key Generation

i. Generate a large random prime p and a generator (1., a multiplicative

group Zpii ofthe integers modulo p.

i. Select a random integer ti. 1 S u S p—2 and compute 01" mod p.

iii. A’s public key is (p, 01, ot"); A‘s private key is a.

7. Encryption

i. Obtain A"s authentic public key (p. (1. u").

—. ._.. Represent the message as an integer m in the range {0, 1 .... ..,p-1}.

iii. Select a random integer k, lsksp-2.

iv. Compute 'Y=(1k (mod p) and 6 = m. (ot")k .

v. Send cipher text C = (7, 6) to A.

c. Decryption

i. Use private key to compute y"""' .

ii. Recover the plain text in by computing (7%). 5 (mod p) .

e.g. [11] Let A selects the prime p = 2357 and a generator 0. =2 of Z2357.

A chooses the primitive key a=1751 and computes of’ (mod p)= 2”“ (mod

2357) = 1185.
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So A’s public key is (p=2357, at =2, (13 = 1185) . Let our message

In = 2035, B select a random integer K = 1520 and computes y = 21520

(mod 2357) = 1430 nd 5 = 2035 . 11851520 (mod 2357) = 697. B sends y=l430

and 8 = 697 to A. To decrypt A computes y”'I"'= 1430605 (mod 2357) = 872 and

recovers m by computing m= 872.697 (mod 2357) = 2035. i.e the message we

sent.

Main advantage is that all entities must choose same prime p and

generator (1, in which p and (1 should not be chosen as a part ofthe public keys.

This result in public keys ofsmaller sizes .An Additional advantage of having a

fixed base (1 is that exponentiation can be expedited via pre coinputations.

Security 01‘ Elgammal encryption [3. 6] can be as follows.

1. It is based on discrete logarithm problem over a field I-‘pi.

2. It is critical that dil'ferent random integer K used to encrypt different

nicssagc. suppose the same K is used to encrypt t\\'o messages 1111 and

1112 and the resulting cipher text pairs are (y. . 8.). (73 , 63),. Then

5./ 52 = ml/m2, m2 could be easily computed ifml is known.

Definition 3.1: Discrete Logarithm Problem: — Given a prime p, a generator (1

of Fp* , find the integer x , 0 5x 5 p-2 such that 01" E [3 mod p.

Whenever we develop a system, the parameters should be chosen in such a way

that the solution is infeasible.

2.1. 4 Elliptic Curve Cryptography

In 1985, Victor Miller [7] and N.Kobliz [8] independently, proposed a

public key cryptosystem analogue of the Elgammal scheme, in which group

Zp* is replaced by a group of points on the elliptic curve defined over a finite

field. The main attractions of elliptic curve cryptography over competing

technologies such as RSA and DSA is that various algorithms are known for



Chapter 2 40
solving the underlying hard mathematical problems in Elliptic Curve

Cryptography .Elliptic curve discrete logarithm problem takes fully exponential

time. On the other hand, the best algorithm known for solving the underlying

hard mathematical problem in RSA and DSA (Integer Factorization problem

and DLP problem) take sub-exponential time. This means that significant

parameters used in ECC is small compared to RSA and DSA but with

equivalent levels of security.

The lack of sub exponential attack on ECC offers potential reductions

in processing power. storage space, band width and electrical power. These

advantages are especially important in applications on constructed devices such

as smart card, pagers, cellular phones etc.

The performance of ECC depends mainly on the efficiency of finite

field computations and fast algorithm for elliptic scalar multiplication.

Although numerous known algorithms are available for the elliptic curve

arithmetic operations. the performance of ECC can be speeded up by selecting

specific underlying finite field and] or elliptic curve. ECC [9 10] is used in

many areas. Construction of elliptic curve eryptosystems requires following

steps.

1. Select an underlying curve.

2. Select a representation for the elements in Fq.

3. Implementation of arithmetic over Fq.

4. Select an appropriate elliptic curve E(Fq)­

The elliptic curve operations are implemented on E(Fq) . From these

things we can see that elliptic curve system is dependent on two things. First

one is finite field and its operations and the other, the elliptic curve and its

operations.
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Advantages

0 Greater flexibility in choosing cryptographic system.

0 Requires shorter keys.

0 Greater speed and requires less storage space. Because of this ECC can

be used in smart cards, Cellular phones, pages etc.

0 Reduced band width and much more efficiency.

0 Known theoretical attacks are less effective while using ECC.

Disadvantages

0 Patented, uncertainty regarding their implementation.

0 Algorithms are more complex. so quite diflicult to implement.

0 ECC is mathematically more subtle than RSA or DSA. That means

(liflicult to explain orjustify to the client.

0 llyper elliptic cryptosystem offer much smaller key size.

Main uses of liCC include key exchange. digital signature,
authentication, message transmission etc.

2.1.4.1 Elliptic Curve Discrete Logarithm problem

The security of crypto system is dependent on hardness of Elliptic

Curve discrete logarithm problem.

Definition 2.2[5]: The Elliptic Curve discrete logarithm problem (ECDLP) is,

given an elliptic curve B defined over a finite field Fq, a point P 5 E(Fq) of

order n, and a point Q 8 < P > , find the integer l 8 [0, n—l] such that Q = l.P.

The integer l is called the discrete logarithm of Q to the base P, denoted as

l= log pQ .

The elliptic curve parameters for the cryptographic scheme should be

carefully chosen in order to resist all known attacks on the ECDLP. The most
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na’1've algorithm for solving the ECDLP is exhaustive search where by one

computes the sequence of points P, 2.P, 3.P....until Q is encountered. The

running time is approximately n steps in the worst case and n/2 steps on

average. Therefore, exhaustive search can be circumvented by selecting elliptic

curve parameters with n sufficiently large to represent an infeasible amount of

computation.

2.1.4.2 Diffie — Hellmann Key Exchange for elliptic curves

Here we will see how Diffie — llellmann Key exchange is used along

with elliptic curves. This will enable the people involved in communication or

key exchange say for example A and B to securely construct a key for use in

symmetric key encryption such as DES or AES.

Procedure is as follows.

i. A and B agree 011 an elliptic curve 15 over a finite field Fq , So discrete

logarithm problem is hard in l:‘(F_,) . They also agree on a base point

P 3 E (Fq) such that the subgroup generated by P has a large order

(Usually prime).

ii. A chooses a secret integer a, and compute Pa = a. P, it then sends P 3

to B.

iii. B chooses secret integer [3, and then computes Pb = BP and sends

Pb to A.

iv. A computes a Pb = a .[3.P. The B computes [3 Pa = a. Pb. A and B agree

on a method to exchange key.

We will consider an example to illustrate this algorithm. Let

E: = y2= x3 +4 defined over a field Fm and P(2,2) be an element of Fm . Both

of these are agreed publicly by A and B. A then chooses a secret integer 113

and calculates P,= oi.P = (115,48). A sent P, to B. Bob chooses a secret integer

B = 98 and computer Pb: [3 P = (130,203). B sends this Pb to A. A computes aPb

= (161,169) and bob computes B.Pa = (161,169). There by A and B have
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securely generated the points. So that, encryption and decryption process can

be performed successfully.

2.1.4.3 El gamma] crypto system for elliptic curves [7,8]

Here we will see how El gamma] cryptosystem is used in cryptosystem

using elliptic curves. Let Fq be a finite field and let B be a base point. The

steps involved in this process include

a. Key Generation

i. Let a be rzinclom integer 01‘ Alice and b be random integer‘ of Bob.

ii. Compute p = b.B. Mz1kehB public. So public key is b.B.

b. Encryption

i. Let M be incssagc to he trzmsmitted. Convcn M to a point on the

elliptic curve. l.ct it be l’,,,_

ii. Alice computes cipher text as follows ( a.B , P... + a.p).

iii. This cipher text is sent to Bob.

c. Decryption

Bob receives cipher text and produces the message as follows.

Compute Pm + a. p — a. b. B, Where b is secret key of bob and

p = b. B. Then Convert Pm to message M.

2.1.4.4 Massey-Omura Elliptic Curve Cryptosystems

This is another cryptosystem [7] which make use of fundamentals of

elliptic curve and make use of advantages of elliptic curve Cryptosystems. Now

we describe the process involved in this cryptosystems
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a. Key generation

Let Fq be a finite field and E be an elliptic curve

i. Let N be a publicly large prime number Alice choose a secret key c,

such that 0 < c < N with gcd (c, N) = 1.

ii. Let Bob choose a secret key d with gcd (d, N) = l.

b. Encryption and Decryption

Let M be the message to be transmitted. Convert message M to a point

Pm by message embedding.

ii. Alice sends c. P... to bob .

iii. Bob responds it with d.(c. Pm).

iv. Alice sends back c'l" d .c. Pm, such that c".c = 1.

v. To decrypt Bob recovers message with d"('d .P,,.) by reversing the

embedding P”,

2.1.4.5 Digital Signatures in ECC

Digital signature of a message is a number dependent on some secret

known only to the signer. Signature must be verifiable. Digital signature

produce more data integrity and non — repudiation to message. We can

implement digital signature schemes in elliptic curve cryptography also. The

Elliptic curve Digital signature Algorithm [5] is as follows. The algorithm can

be described in three steps.

a. Key generation

Let Fq be a finite field and P be base point on elliptic curve. Generate a

random integer d whose values are in between 1 and q.
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b. Signature generation

iii.

iv.

vi.

0

Select a random integer k 2-: [1 ,n-1].

Compute P = (X1, y.) and convert x, to integer xx’ _

Compute r = XI] .(mod 11). [fr = 0 go to step 1.

Compute e = H (m).

Compute s = k'l . (e + d. r) (mod 11). If s= 0 go to 1.

Signature is (r, s).

. Signature Verification

Verify that r and s are integers between [l. n-l] if verification fails,

reject.

ii. Compute e = II (m).

iii. Compute w = s’l ( mod 11).

iv. Compute ii. = c. w ( mod n) and Compute ug = r.w ( mod n).

v. Compute X = u,P + U3 Q.

vi. If (X = w ) Retum( “ reject signature").

vii. Convert X to xll and to x1. Compute u = x. ( mod n).

viii. ifu = r then accept or else reject.

These are the various cryptographic algorithms available for elliptic

curve cryptography.

2.1.4.6 Security Level and Comparison of ECC with other cryptosystems

Security ofa cryptosystem [9-1 1] very important because whenever we

develop it should not be prone to attacks. Here we discuss certain factors that

focus on security of the elliptic curve system. Since we are using elliptic curve,

various factors in curve itself affect security of the system.
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1. Selection of field

An elliptic curve is constructed on finite field. We can choose elliptic

curve either on prime field FL, or F3”. Fq is prime finite field and F3” is

binary extended finite field. Elliptic curve discrete logarithm problem is

difficult to solve F2” than in Fq _

2. Representation of elements in F q

Once the field F is selected, there are many ways of representing

elements in the field. They include optimal nomial basis representation and a

polynomial basis representation. Since elements in one representation can be

efficiently converted into elements in other representation by choice of basis

matrix, then intractability of ECDLP is not effected by choice of

representation.

3. Selection of elliptic curve over F‘,

There are various ways for selecting elliptic curve. They include

random selection method, Koblitz curve selection method and Complex

multiplication method. Whatever method we choose it should satisfy Certain

constrains that is number of points on the curve should be divisible by a

sufficiently large prime and also should satisfy the security level of an elliptic

curve which is fixed and is 160 5 L 5 |_ logzq  This thesis uses Kobliz curve

selection method for generation of secure curves. The method is given in

Appendix B.IV.

The above levels are fixed in order to avoid various attacks on curves.

Attacks include Pollard- Rho attack , Pohig-Hellman attack, index-calculus

attack etc. If we are generating a curve according to the above mentioned

parameters we can overcome the attacks and a stable system is generated and

this will be more stable than other public cryptosystems.
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Security Level of ECC compared with RSA and DSA [9, 10] can be

represented by a graph. The graph representing security level of elliptic curve

cryptosystems compared with RSA and DSA.

COMPARISON OF SECURITY LEVELS
ECC and RSA & DSA

603:, ._,.. ..e.  A -2“...

Current Acceptable
“'3'7'-" Security Love:-I 110" ;'~..fv'>‘ '.‘~.

Fig 2.2 Security level ot‘ECC and RSA

Elliptic curve cryptography has gained attention in recent years due to

the ability to provide equivalent security as RSA at much smaller key sizes and

at faster rates. Because of this ECC has been considered for applications such

as smart card encryption due to less storage requirements and its computational

efficiency. Table below shows a comparative study of key size in bits for

equivalent levels of ECC with other cryptosystems. [9]

Symmetric ECC DH/DSA/RSA80 163 1024
128 283 3072
192 409 7680
256 51 1 15370

Table 2.1 Key size comparison
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The table 2.1 is a comparative study of key sizes of various

cryptographic systems. Here we have taken three different types of

cryptography which include Symmetric, Public and Elliptic Curve

cryptography. In these Cryptosystems, public key cryptography is widely used

now a days. When we compare them we ca11 see that ECC key size is very less

compared to public key cryptosystems. Attacks are very common in various

cryptosystems. The table below shows attacks on keys of various sizes on RSA

and ECC [10]

i Time to break in RSA/DSA ECC RSA/DSA
MIPS years Key Size Key Size Key Size ratio10* 512 106 5:1103 768 132 6:110“ 1024 160 7:1103" 2048 210 10:110“ 21000 600 35:1

Table 2.2 Comparison ECC with RSA21nd DSA

The Table 2.2 shows attacks on ECC key compared to RSA/DSA. In

addition to speed, elliptic curve resists breaking by current number sieve

method and index calculus method. We can conclude that elliptic curve

cryptography will dominate cryptosystems in near future.

2.2 Public key Cryptosystems based on Codes

In the above chapters we have seen various public key cryptographic

methods. Here a discussion on the cryptography based on codes is done. Codes

here come from Coding theory which involves the error detection and

correction. So here we are combining security with information reliability.
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2.2.1 Me -Eliece cryptosystems based on linear codes

In 1978 Mc—Eliece [12] introduced a public key cryptosystem based on

binary linear code. He suggested his scheme based on generator matrix of

a [l024,524,l0l] Goppa code. The security of the system is based on the NP­

completeness of the decoding problem for general linear codes. This scheme

requires very large block length to allow introduction of large number of errors

so as to force a high work factor. The computational overhead for the process

of encryption and decryption is very high. The algorithm can be described as

follows.

a. Key Generation

liach user A picks a K x N binary generator matrix GA of a t—en‘or

correcting binary linear code and publishes the matrix as GA‘ = S GAP. GA‘ is

the public key. S here is a randomly generated K x K non-singular binary

matrix and P is an .\' x N permutation matrix. G,\, P. S are private keys.

b. Encryption

Suppose M is the message to be transmitted, then M is converted as a

binary vector oflengtli K. Then process of encryption is done as follows.

M' = M. GA‘ + Z , Where Z is a random error vector of length n that

introduces t errors which is used for correction and detections of errors.

c. Decryption

Decryption is done by using a fast decoding algorithm. When A

receives M’ ,he first correct errors in Z.P" and then by using S" , retrieves M.

Cryptographic attacks for the cryptosystems described above are as

follows. The following attacks have been proposed on the system [12, 13, 14].

There are three possible attacks.
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1. Structural attack [l6]: This process involves getting S, G A, and P

from G A‘. Once these parameters are obtained, an intruder can easily

attack the system and get the message.

Recovering the message directly without the keys G or P or S: In this

attack, method one tries to get k i.e. size of the message. Once the

message size is obtained it tries to recover the message by solving K x

K system of linear equations.

Decoding attacks: From the message received they will try to decode

the message to get the original message by making use of available

parameters. The complexity of decoding an arbitrary q—ary linear code

with errors having arbitrary q array values is much higher than

complexity of decoding a code with comparable parameters.

2.2.2. N iederreiter cryptosystems

This ciyptosystem was proposed by Prof. H.Niederreiter in 1986 [13].

lt is based on Reed-Solomon code discussed in section 1.2.2. The procedure for

this method is as follows

a. Key generation

iii.

iv.

The parity check matrix H of a generalized Reed-Solomon code is used

here instead of generator matrix.

A non-singular scrambling matrix S of order n is used. This is used to

scramble the parity check matrix i.e. to destroy any evident structure of

the parity check matrix.

S and H are private keys.

Public key is H' = S.H.
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b. Encryption

i. The plain text M is converted into a vector of size n.

ii. The cipher text c= mHl.

c. Decryption

Once the cipher text is received, the user multiplies it with S"! and will

get m. H. This is the syndrome of plaintext in and by using fast decoding

algorithm we will get plain text vector in which in turn can be convened into

message M.

Attacks on Niederreiter Ciypto System can be described as The

Sidelnikov — Shestakov atlaek[l5] . The Niederreiter system was broken by

Sidelnikov — Shestakov. Everybody knows the public key ll‘. But no one

knows S and H separately. The breaking party tries to find trapdoors H“. and

S“. such that H“. = SH = ll.,.S,, where H“. = | yi fit‘ ] .The elements {yd and

{[5,} may differ‘ from the elements {xi} and mi} of H_, . .\'e\=ertl1eless. they

allow decrypting any cipher text.

2.2.3 Analysis of the System

This section deals with comparison of Mc—Eliece with Niederretier

cryptosystein based on linear code on key size and work function.

PKC Parameters Size of public key Work function
Me Eliece Binary, Large:5 x 105 >259

n=1024,k=524,t=50

Niederreiter n=128,d=64 32000 om‘)
Table 2.3 Comparison -Me-Eliece with Niederretier

From Table 2.3 we can see size of keys of these two system is very

high compared to other public key cryptosystems. The Me-Eliece Public key
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Cryptosystem [16] seems to be secure even without any modification. Reason

is that Goppa codes are sub codes over a finite field F3 and there exist too many

Generalized Reed Solomon code(GRS) that containing them as sub codes .

Thus there is no evident way of finding a Goppa polynomial or GRS code from

a scrambled matrix.

Niederreiter on the other hand is defined over a large alphabet. The

weakness of such kind of cryptosystems is due to the very regular structure of

the generator or parity check matrices, even if scrambled. The hiding of the

public key by means of adding carefully chosen matrices prevents known

attacks and provides security to this public key cryptosystems. Later various

researchers studied about the system and various modifications were made on

it. Mc-Eliece system was developed on Algebraic Geometric code also. In this

thesis we are concemed with Algebraic Geometric code over Elliptic curves.

The table below shows the parameters used by Mc-Eliece and the Algebraic

Geometric code using elliptic curves.

Result MC hece Elliptic Elliptic code Elliptic codecode code
(n,k,d) [1024,525,101] [l71,8l,90] [313,101,112] [995,451,544]

Field GF(2)-binary GF(157) GF(303) GF(997)
No.ofcorrectable 50 45 56 271
BITOFS

M°?‘S“g° 524 31 101 451
SIZC

Table 2.4 Comparison of Mc-Eliece code and elliptic codes

The Table 2.4 is a comparison which is done with the help of

MATLAB program for a standard Mc-Eliece code to the elliptic code. Result

shows that elliptic codes are better than standard Mc-Eliece code in decoding

point of view.
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Secret Sliaring

3.‘! Secret Sharing

3.2 Secret sharing based on algebraic

geometric Code
3.3 References

3.] Secret Sharing

Secret sharing scheme [1] involves the construction of a secret,

production of shares and distributing shares among various users. The secret

may be recovered only by certain predetermined groups. Secret sharing

protects secrecy and integrity ol‘ intorination (secret 5). S will be rel‘crred to as

the secret and I1,l3,...l,, will be referred as shares ofS. The set from where the

secrets are chosen will be denoted by S or by S0 and the set of the shares

assigned to the i"‘ user will be denoted by S; for all 1 S i S n.

A secret sharing scheme is coordinated by a dealer who has to be a

mutually trusted party. But there are secret sharing scheme which can be

configured without presence of dealer. The dealer receives this value, derives

the corresponding shares and distributes them to the users. Thus there are two

phases in secret sharing

1. Share — The dealer D associates with any player P, a secret a and

broadcast this information. Construction of ai depends upon the various

secret sharing methods.
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2. Reconstruct — The reconstruction of the secret can be made by the

participants after they pool together their shares or by a special party,

called combiner after receiving the shares from the users of an

authorized groups.

3.1.1 Access structure

The access structure of a secret sharing scheme is the set of all groups

which are designated to reconstruct the secret. The elements of access structure

will be referred to as the authorized groups and rest is called unauthorized

groups. The qualified groups are authorized to reconstruct the information

about the secret.

As Ito, Saito and Nishizeki [2] have remarked that any access structure

must satisfy the condition

V B 8 I’ ({l,2,...,n})) ( 3A 5 A)(Ag B) I’ B 5 A) .This means that if a

group can recover the secret a larger group can also recover the secret. This is

called Monotone access structure [3].A monotone authorized access structure is

AlI1lll={A8A|
The rank of access structure is defined as maximum (minimum) number of the

participants in a minimal authorized group.

3.1.2 Models of secret sharing

A secret sharing scheme is a method of splitting a secret into shares

such that secret can be detemiined only by the authorized sub groups.

Depending upon the quantity of information [4, 5] leaked to an unauthorized

group secret sharing can be classified as
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0 Perfect secret sharing schemes: The shares of any unauthorized group

give no infonnation about the secret.

0 Computational-secure secret sharing schemes: Some information about

the secret is leaked to the unauthorized groups, but the problem of

finding a secret is intractable.

There are various models for secret sharing. They are

a .Brickell-Davenport Model

Brickell and Davenport have proposed an elegant model for secret sharing [4].

Here secret sharing scheme is represented as a matrix M with some special

properties. The Matrix M has 11+ 1 column, the first one corresponding to the

dealer and the rest corresponding to the users. For i .9 { O.l...n} and Let

S(i) = {M ,‘ ;| r is a row in M}, Then S = S(0) and S = S(i) , for all 1SiSn . The

dealer chooses an element s in S and a row 1' of M such that M ,, 0 = S. The

matrix M is public and r is private.

b. Brickell-Stinson Model

It is another model in which secret sharing scheme can be represented

as a special set f of distribution rules. A distribution rule is a function

f: {O,1,.,.n}-)S U1.’ Si=1 such that f(O) 5 S and f(i) 8 Si for all lSiSn. If S0=S,

then a secret sharing scheme can be viewed as a special subset of the product of

the family (Si 1 Si 8 {0, 1...n}. An element f 3 F represents a possible

distribution of shares to the users, where f (0) is the secret and f (i) is the share

corresponding to the i"‘ user, for all 1 S i S n.

c. Entropy based model

This model used concepts of entropy for measuring the quantity of

uncertainty about the secret. It is based on the below specified definition.
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Definition 3.1[6] Suppose we have n users labeled 1,....,n and consider a set

of groups A Q P{1,2,.,n}. A perfect A —secret sharing scheme is a collection of

random variables (S, 11,12 .... ..,I_;) such that

0 (Correctness)-for any A 3 A, H(S| {I;| i 3 A})=0;

0 (Security)-For any A 5 A , H (S| {Ii | i c A}) = H(s).

In a non-perfect secret sharing scheme, the second item is replaced by

For any A 8 A . H(S| l,[ i :: /\)>0_

3.1.3 Different Secret Sharing Methods

So far we have seen the models of secret sharing. Now we will see

different methods of secret sharing. Generally speaking there are nine methods

of secret sharing methods available till date. They are

i. Threshold secret sharing

ii. Unanimous consent schemes

iii. Secret sharing for graph based structure

iv. Weighted threshold secret sharing scheme

v. Hierarchical secret sharing scheme

vi. Compartmented Secret sharing schemes

vii. General Secret sharing schemes

viii. Ramp Secret sharing schemes

ix. Construction based on decompositions

Next section we will see a brief discussion about each and every

method specified above.
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i. Threshold secret sharing scheme

The secret sharing scheme in which the number of participants in the

reconstruction phase plays a prominent role in recovering the secret is called

threshold secret sharing scheme. Most famous and successful scheme in this

scheme is Shamir’s scheme [1]. Shamir's scheme is based on polynomial

interpolation .Given any k pairs(x.,y,),.....,(xk, yk) with xi 9E xj for all

1 S i < j S k, there is one and only one polynomial P(x) of degree k-1 such

that P(xi) and P(xi) = yi, for all 1 S i E k. A polynomial P of degree k-1 is

chosen and secret S is the coefficient free portion ofthc polynomial. The shares

l.. I; ...l,, are chosen as l, =P (xi). for all 1 S i S 11. Having the shares. secrets

can be nb reconstructed using Lang rage‘s interpolation formula as

(t )45 = Zia/\ (H l‘lj€M_i,

Various secret sharing schemes based on threshold scheme concept are

available. Secret sharing based on Chinese remainder theorem, based on

information dispersal, based on special categories of integers etc. Detailed

discussions on these are beyond the scope of this thesis.

ii. Unanimous consent schemes

The condition in which A=A,,,i,, = {1, 2,....,n) is referred to as

Unanimous consent schemes of rank n. In this scheme apart from threshold

secret sharing schemes knowledge of shares of all users is required in order to

recover the secret. A Unanimous consent schemes is equivalent to (n, 11)

threshold secret sharing scheme. Karnin, Greene and Hellmann have proposed

a very simple Unanimous consent schemes [7 ]

0 The secret S is chosen as a random number from a set of real numbers.

0 The dealer generated the shares Ii as random numbers from the set, for

n—l

all 1 Sign-1 and In = S- 211; (modn).
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11-1

0 The Secret can be reconstructed as S = - Z I i ( mod n).
[2

iii. Secret sharing for graph based structure

An access structure in which all minimal access set has two elements

can be referred to as graph based access structure. A result developed by

Brickell and Davenport [4] can be specified as follows

Theorem 3.1: Let G be a connected graph. Then there is an ideal secret sharing

scheme for the access structure specified by G if and only if G is a complete

multipanitc graph

The access structure is specified by graph K..1_,,3 ,.._ Let V.,......V. be

the vertices of graph K .,,_,,3_ ,,._ The dealer chooses the pair wise distinct element

x._ x3...x. 3 GF.,. The shares corresponding to some secret S e GFq will be

defined as I. = X. S + 1‘, for all i S Vj and 1 5 i 5 1, where r is an zu'bitrary fixed

element from GFq_ Any two users ul. L13. u. 8 V“ , u_» ::V_i,,j1;tj3 can obtain the

secret s as s: (1u.—1u2)(xJ-.—xJ-2)*'.

iv. Weighted threshold secret sharing scheme

In this method a positive weight is associated with each user and the

secret can be reconstructed only if sum of the weights of the participants is

greater than or equal to a fixed threshold [1]. The weighed threshold scheme

can be explained by following definition

Definition 3.2[1] Let n 2 2, (o=( 031  _ (on) be a sequence of positive integers,

and a positive integer w such that 2 5 w 5 2:21 coi.The access structure A is

defined as

A={A eP{1,2.....n}|EiEAco1 3w }

is referred to as (co ,w ,n) —weighted threshold access structure. The parameters

ml ..... .. (02 is referred to as weights and w is referred to as threshold of the
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scheme. A (k, n) —threshold secret sharing scheme is a ((0, w ,n) weighted

secret sharing scheme with weight (1).: o)3=..... (0,, = 1 and w = k.

v. Hierarchical secret sharing scheme

As the name indicates in this method secret sharing is done n different

levels Ll, L3.....L,,. A level threshold kj is specified to thej ‘“ level, for all

1 3 j S m. The secret can be reconstructed if and only if there is a level such

that number of participants from this level or higher level is greater than or

equal to initialization level threshold. This stiucture can be defined as follows.

Dclinition 3.3: Let L ={L.,L; . . . . ..L,,,: be 21 partition {l,2...n] and let us

consider a sequence level threshold K=(k.,k3, .... ..k,,,), where I S ki E |L,|, for

all 1 S j S m and k; < k3..... < k.,,__ The (L, K) multilevel access structure is

given by

."\ 2 :A E l)( : l,2,...l1:)  2  A Lil Li lg; K‘):

This scheme can be called as (L , K) —multilevel secret sharing scheme.

vi. Compartmented secret sharing

In this secret sharing method , the set of users are partitioned into

compartment {Cl_C3.______C,,,}.Here a threshold kj is applied the j '1‘ compartment

for all 1 S j S m . The secret can be recovered if and only if the number of

participants from any compartments is greater than or equal to the

corresponding compartment threshold, and total number of participants is

greater than or equal to the global threshold.

The access structure of the compartment secret sharing is as follows

Definition 3.4[8]: Let C= {CLC2 _____ __C.,,} be a partition of {1,2,3....n} and let us

consider a sequence of compartment thresholds K=(k, ____km) where 1 S kj S

|Cj|, for all 1  j 3 m . The (C,K,k)- compartment access structure is given by
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A={A 3 P({1,2,...,n}) |(|A|2 k) /\(Vj = 1,_m')(yAn C,-| 2 k,-)} . In this case

a A-secret sharing scheme is referred to as a (C, K ,k) — compartmented secret

sharing. A (k, n)— threshold secret sharing scheme is similar to compartment

secret sharing with C = {l,2...n}(m=1) and K=( k, k).

vii. Ramp secret sharing

In these methods shares of smaller size is used. It provides a semi

access groups who can obtain some infomiation about secret. Thus this scheme

may provide a compromise between the level of security and size of shares. If

n 2 2 .l 5 Ir S n and 1 5 / S k, A (I. Ir, :1) A threshold Ramp scheme[9] is a

method of generating (S,(I., .....,I.,)) such that

0 For any A 5 P ({l,2....n}) such that |A| 2 k, the problem of finding the

element S, given the set {Ii | i E A }. is easy.

0 For any A 5 P({l,2....n}) such that /r — / +1 3 ‘Al 5 Ir -1, some

information about S, can be found having {Ii | i 5 A }-.

0 For any A E P ({l,2....n}) such that [Al 5 k -1, some information

about S, can be found having {l, | i E A }.

Blakely and Meadows [9] showed that Shamir’s threshold secret

sharing scheme can be transformed into a threshold Ramp scheme by choosing

secret S as a vector (P(x1), .... ..(P(x,,)) instead of P(0). Linear Ramp scheme [9]

are ramp scheme in which amount of secret information obtained by a semi­

access group grows linearly with respect to the size of group. That is a linear (l,

k, n) — threshold ramp scheme is the collection of random variables (S, I1___ ‘ In)

such that

0 For any A 1-: P ({1,2....3}) such that | A| 2 k, H(S| i 5 A)=O.

0 For anyA£:P({1,2....3})suchthatk—l+1S|A| Sk-1,

H(S| Ii|ieA)=(k -|A|)/l H(S).
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0 For any A 8 P ({l,2....3}) such that |A| Sk-l, H(Sl Ii |{ i e A}) = H(S).

viii. Constructions based on decompositions

In this scheme secret sharing scheme is used as a decomposition of

larger schemes. Martin [10] developed a method based on distribution rules

.Any method that uses matrix for the purpose of secret sharing can be used for

decomposition schemes. First Colum of the matrix is used as secret S and

remaining columns are used as shares. Access structure that is defined by

Stinson [l 1] is as follows

Delinition 3.5 [l l] : Let A be an access structure and A —decomposition of A

is a sequence A1_ A3 V_A,,, such that A, g A, for all I S l S m and for any

A 5 A,,,i,,, there are l S i.< i3<.... < if m such that A 5 Al, for all 1 S l S 1..

Stinson has proven that if the closures of the access structures from the

decomposition of a certain access structure can be realized. then that access

structure can be also realized. lt‘ we consider access structures A and let

A._A;.... A,“ be a A - decomposition of A such that there exists F, a

cd(A_i) — secret sharing scheme, having the set of secret sharing schemes

SL0 =GFq, for all 1 S j S m . Suppose that there exists some vectors

vly; vme GFq)‘ such that (*){vJ-| A 8 Ai } generates e GFql' for all A 8 Am.

3.2 Secret Sharing based on Algebraic Geometric code

In 1981 M.J Mc-Eliece and D.J Sarwate [12] found that Shamir secret

sharing scheme was closely related to the Reed-Solomon code. In this section

we will discuss how secret sharing can be applied to algebraic geometric codes.

Idea used by [12] is to encode the secret into a codeword (D....D,,). By using

the concept of coding theory by if we know D1 remaining D’s can be found out

and reconstruct the secret.
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3.2.1. Massey secret sharing scheme

This scheme is also referred as linear secret sharing scheme since it is

based on linear codes [12, 13, 14]. Let C C F q be a k-dimensional linear code

with generator matrix G. Throughout this we have to assume that G has no zero

column. Secret S is an element of F q and their shares are distributed among n-1

entities and a dealer .In order to determine the shares, the dealer chooses t 5 C,

t = (to ---- -- tn_.) such that to = S. He can choose such a t by first picking

randomly a vector u = (u.,, ---- -- uk...) 3 Fql‘ such that s = ugo. Such a u can be

chosen in qk" ways. Now I can be computed as t = uG. Shares are -{t,,.....t,,_.}

and G is shared. Only assumption made here is G can not have any zero

column because if a column g is zero then I; which is the share of the ill‘

participant will be zero. Hence this shareholder would not participate at all.

Since the columns of a generator matrix are linearly independent then

the secret can be recovered by first solving the linear equation

IH

go = ZF, Xi gj

after finding Xjl s, the secret can be computed as

(H

to = Ugo = 2:] Xju gj

From now on we will assume that this is the only way to recover the secret

for any set of shares.

3.2.2 Linear secret sharing in Algebraic Geometric Code on elliptic
curves

Secret sharing on elliptic curve can be explained with the help of the

theorem mentioned below.
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Theorem 3.2 [16] Let E be an Elliptic curve over GF (q) with the group of

GF (q) rational points E(GF(q). Then E (GF(q)) is isomorphic to Zn. EB Zn; _

where n1 is a divisor of q-l and n2.

Main thing in the secret sharing algorithm is the access structure of

secret sharing algorithm. The access structures of elliptic secret sharing

schemes [15] are based on some basic concepts of Algebraic-Geometric (AG)

codes. Let X be a absolute irreducible, projective and smooth curve defined

over GF(q) with genus l . D = {P0, . . . ,P,,} be a set of GF(q)—rational points of

X and G be a rational divisor satisfying supp(G) F] D = (p.

Let L(G) = { f 2 (E) T G 2 0} be the linear space (over GF(q)) of all

rational functions with divisor not smaller than G, and (B) = I m: ((2)) 2 0 } be

the linear space of all differentials with divisor not smaller than B. Then the

functional AG (algebraic-geometric) code CL(D;G) £2 GF(q) and residual AG

(algebraic-geometric) code Cg(I);G) 5 GF(q)are defined as the evaluations of

l.(G) and £’2(G). respectively. at the points in the set D.

CL (D; G) is a [n + 1, k = dim (L(G))-dim(L(G-D),d2 n + l - deg(G)] code and

C9 (D; G) is an [n+l; k = din1((G—D))—dim((G)); d = deg(G)-2g +2] code

over GF(q). Then CL(D;G) and C9 (D;G) are dual codes. Using C = CL(D;G),

secret sharing schemes based on AG codes were constructed in [7]. From the

results in [7], it is known that in the case of elliptic secret sharing schemes, i.e.,

where X = E is an elliptic curve and the genus g = 1, every subset with at least

n-deg(G)+2 elements is qualified and every subset with fewer than n - deg(G)

elements is unqualified. In the following result, we determine explicitly which

sets with n-deg (G) or n-deg(G)+l elements are qualified. In general, any

qualified set is said to be minimal if none of its proper subsets is also a

qualified set. We also note that, when X = E is an elliptic curve over GF(q), the

set of GF(q)—rational points on E, denoted by E(GF(q)), forms a finite abelian

group with zero element 0.
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Theorem 3.3: Let E be an elliptic curve over GF(q). Let D = {P0, P1, . . . , Pn}

be a subset of E(GF(q)) of n + 1 nonzero elements and let G = mO. Consider

the elliptic secret sharing scheme obtained from E with the set of players

P = {P,,. . . , P,,}. Let A = {PH ,....., Pi, } be a subset ofP with t elements, and let

B be the element in E(GF(q)) such that the group sum ofB and {PH , . . . Pi, }

in E(GF(q)) is 0. If A” = P / A is a minimal qualified subset for the secret

sharing scheme from C (D; G), then t gm. Furthermore,

1) When I = m, A° is a minimal qualified subset if and only ifB = O.

2) When 1 = m — 1, A” is a minimal qualilied subset ifand only ifB is not

i11 D or B is in the set A.

3) Any subset ofP of more than n —1n+ 2 elements is qualified.

An example can be illustrated as follows. Consider an elliptic curve

over a field E, and y: = x3 + x + 4. Then F. (F9) is a cyclic group of order

10 with () the point at intinily and the points on curve are

Po(4.0), Pi(4,3), P2(4.6), P3(6,1), P4(6.8), Ps(0.2), P(.(0.7), P7(3,4), Ps(3,5)

Here P0 is the generator of E(F9), then the points satisfy the condition

P,- = (i+l)P., are D = {P0, P._ P;_ P5_ P7). Then access structure contains {PL P3.

P5_ P7} and

All subsets of P with 3 elements in P

b. The subset 0f2 elements  P1, P7),( PL P3),  P5), (P1 P5), ( P3_ P5),

(P5. P1)}

By using these access structures, secret sharing method can be

implemented for Algebraic geometric code using Elliptic Curves.
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4.1 Theoretical Aspects of the problem

4.1.1 Introduction

Cryptography and Coding theory arc specilicd as two hands in
transmission of int'orm2ition. The Sender semis thc inl'orn1ation Vlil

communication channel. Communication channel is not error free. Lots of

errors will be there due to noise and other disturbances in the channel.

Information will be grabbled and combined with en'ors. While we transmit

information, we will be sending secured passwords, secured banking

information etc. There is a possibility that a third party reads and seizes these

infonnation and uses it. An intruder may change it and sent it through the

communication channel. It means secrecy of our information is compromised.

I.n order to overcome this problem two separate branches of science had been

developed: - Coding theory and Cryptography. Coding theory involves sending

information in coded form and decoding at receiving end, so that error

correction and detection can be done. Cryptography deals with secrecy of

information. Infonnation is encrypted and sent and at the receiving end

information is decrypted. By sending like this secrecy of information is

preserved. A third party who is trying to read the message can see only the
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encrypted infomiation so that it will be very difficult to access the information

transmitted. Here in this thesis we are combining Coding theory and

Cryptography, thereby ensuring secure error free information being transmitted

and received.

4.1.2 Concepts

Main concepts used in the system here includes

a. Finite field

Finite field [1, 2 is a field with finite number oliclemcnts. Finite field

can be represented in prime field, binary field and binary extension field.

0 Prime Field: The field is represented in the form Fp and it contains integers

ofthe form {0, l, 2....p-1} and contains p number of elements.

0 Binary Field: The field is represented in fonn Ff" and it contains biliary

elements The set 01‘ elements are 01‘ the form { (L... (11.....(1,,,_] :such that

at 5 :i='""0 at C1,“, where aie{O,l }.The set {a.,_ g__a,,,_.} is called basis of F3'"

over F 3

0 Extension field: The field of the form F2”. Elements are within binary field

containing p elements.

Representation of elements in binary and extension field can be in two ways.

1. A normal basis representation of F2” over F; is a basis of the form

{[3, B2, .... ..,[32"'" } where B 5 F2” . So every element a is usually

denoted by the string ( ao , at .... ..a,n.,) of length m . A normal basis

representation of F2"‘ has the computational advantage that squaring an

element is a simple cyclic shift of the vector representation.
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2. Polynomial basis Representation:Let f(x) =x’" +2 fixi where fie {0,l}
::o

for i = 1 to m-1 be an irreducible polynomial. For each polynomial,

there exists a polynomial basis representation. In such a representation

each element F2” corresponds to binary polynomial of degree less than

m.

In the proposed algorithm we have used finite field over prime field.

b.Curves

Algebraic varieties[5]: Let K be a field and l].....f,. be polynomials in

K[x.,x3_, ,x,.], Then we have a set V(f, ..... ..f, ) = {(a._,_ an) r. K":f1(a.,.....a,,) =

0 for all 1 S i S s} we call V(f.,...l; ) the affine variety defined by {f.,...f,. }.

Thus we can use the term affine variety V(f.,...f_, ) C K" is the set of solutions

ofthe equations f.(x,,. ....x,,) = f,(x. . . .x,,) = 0. This variety will have dimension

and variety of dimension one is called curve and variety of dimension 2 is

called surface. A non-Singular Curve [5] can be delined as follows ,Let F be a

curve, P = (a, b) 5 F , P is called a simple point ofF if either derivative F,,(P) 96

O or I’, (P) ;é 0 .In this case the line F\(P)(x-a) + F,(P)(Y-b) is called the tangent

line to F at P. A point which is not simple is called singular. A curve with many

simple points is called non singular curve. Every non-singular curve over C

can be realized as a surface R3. For example an elliptic curve has an equation of

the form yz = f(x) where f(x) is a cubic polynomial in x with no repeated

groups and can be thought as a torus[5, 6] in surface R3 . In general, every

non-singular curve can be realized as a torus with some number of holes. The

number of holes in a curve is called genus of the curve. Thus the genus of a

curve is a non—integer indicating the twistedness of a curve. The higher the

genus, the more twisted the curve. The genus of a curve can be measured by

using the Pluckers formula.
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Definition 4.1: (Pluckers formula) Let f(x, y) 5 k[x, y] be a polynomial of

degree (1 such that Curve C is a non-singular, then the genus of the curve is

defined to be

g = (d-1) (d-2)/2.

Let C be a non—singular curve of genus g over a field Fq‘ The Jacobian

of the curve C is an abelian variety Jac (C) of dimension g defined over Fq .

The genus of elliptic curve is 1.

c. Generator and Parity check matrices

We have discussed in section 1.4 about set of rational functions and

points [3, 4] on the elliptic curve. We are having an (n, k, d) code and generator

matrix is of order k x n and rank ofthe matrix is k. This means that rows of the

matrix are linearly independent. We can generate matrix using k-rational

functions and n-points on the curve. Format of generator matrix is

F.(P,) . . . . . . . . . . ..F1(P,,)

Fk(P,) ............ ..Fk(P,,)

Next we will see an example for generating generator matrix using

elliptic curve. Let our curve E : yz = x3 + 5x + 4 over a field F7 . Here 0 is the

point in infinity and there are 8 points. Points are computed using point

counting program in Appendix —B IV.

Po = (32) P3 =(0,5) Pe= (45)
P1 = (2,6) P4 =(5,0) P7 = (2,1)

P2 = (4,2) P5 =(0,2) P3 = (3,5)
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So here n=9, Let the vector space is defined over L(4P) , then k = 4 and

d = 5 there by (n , k, d ) code here is (9,4,5) code.

Let the rational functions be F. = 1; F3 = x/z; F3= xz/z and F4 = xy/z,

from these we can generate a generator matrix for a given code. Generator

matrix is of order k x n. where k is the set of rational functions and n is the

number of points. Afier computing rational functions, the pole orders of point

0 on those functions are computed and functions are selected on the order of

their values and not selecting two functions with same values. This makes

generator matrix linearly independent. The generator matrix here is a 4 X 9

matrix and is as follows

_­ _­ .—n ._4 ._­ ._. ._.

3 2 4 O 5 O 4 2 3
6 5 l 0 () 0 6 2 8
2 4 2 0 4 0 2 4 2

Parity check matrix for a code can be generated from the given

Generator matrix. If C is a code and C ‘ is the dual code, generator matrix ofC

is the parity check matrix ofC’ and vice-versa. Once matrix is generated, code

can be constructed as follows

C = UG, U is the information transmitted of size (1 x k). Some

important results of Coding theory [3] are

1. Rows of generator matrix are linearly independent.

2. Columns of parity check matrix are linearly independent

3. G.HT = 0

4. CH = 0. These results are used for decoding
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4.1.3 Limitation

in this chapter we are discussing about various requirements needed for

developing a cryptographic algorithm using Algebraic Geometric code. Main

aim is to generate an algorithm with maximum security. So when we choose

the parameters, it should be in such a way that, constrains of security is

optimized. Limitation here is when size of field increases computation

difficulty increases. But it can be overcome by increasing the capacity of the

processor.

4.2 Design of a Cryptographic algorithm using Algebraic

Geometric Code

Cryptography is the process of transmission of infonnation over secure

channel. In order to retain security of infomiation. we are converting the

information into a format that is not easily Lll1(lCl'SlZlll(lZll)l€ by an intruder or a

person who is illegally trying to acquire the message. As discussed in Chapter

two, we are having Symmetric Cryptography and Asymmetric Cryptography

[7-9]. Asymmetric cryptography is also called Public key cryptography. In

Public key Cryptography there will be two keys —one public key and other

private key. Public key is a key known by all people in the network. But private

key is a secret key known only to sender and receiver.

4.2.1. Key generation

i. User X select a random integer a , between 0 and ord B V where B is the

base point of the chosen elliptic curve.

ii. User Y select a random integer B , between 0 and ord B where B is the

base point of the chosen elliptic curve.

iii. Compute P=[3B .

iv. Public key information includes Fq , P, X the elliptic curve.
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Here we are assuming that data is communicated between user X and

user Y. The curve selection is done here by Koblitz random selection method.

The method is given in Appendix B-VI.

4.2.2. Encryption

Process of encryption involves the usage of generator matrix G[5]

constructed using principles described in section 1.4.

Let M be the message to be transmitted. Group the message into k units

i.e. m.. m;....mk. Tliesc units of messages are mapped into integers and stored

in a vector U.

i. Compute C = U H‘ * G k_,, (mod q) .

ii. Compute the Cl = ctP.C + Z Where Z is a random error vector of length

n that introduces t errors which is used for detection and correction of

errors. Multiplication of0tP to C is done by masking process [10, l 1].

iii. Send (Cl, y) to the receiver, where y is U. B.

4.2.3 Decryption

Receives the pair [C1, 7]

i. Multiply [3 to y to get 0. P.

ii. Compute C” from C]. C” = Cl /a.P.

iii. Compute C”. H where H is the parity check matrix for the code.

If c".H [3] =0 no errors in the information transmitted.

Multiply C H to G '1 [12] to get U. The U is converted into M.

Else

Go to 4.2.4.
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Proof: The Proof of the functionality of algorithm is as follows. During

the process of encryption Code C is formed by message converted into integers

and Generator matrix. The keys are selected with the help of the Base point.

Multiplication of key infonnation to the contents of code is done by the

Masking process. Masking is the process of multiplying (x, y) of key or P to C.

By doing this cipher text is not imbedded as points on curve but they are as the

contents of field elements [10, 11]. At the receiving end the receiver compute or

P and divide it w ith the information received resulting in encoded information.

This can be decoded to get the infonnation transmitted. If no errors by taking

inverse of G [12] we will get the needed information. This is because of the

linearly independent property ofGenerator matrix. The G here is a asymmetric

matrix and left inverse ot‘G is taken.

4.2.4 Decoding

Decoding is done for detection of errors. If no errors. Z component will

be zero. So in the decryption step we will receive the code transmitted.

Decoding is done as follows

1. Compute the syndrome.

s =C”.HwhereC=C+Z

C". H= (C"+z).H

= C". H + Z.H

= 0 + Z.H = Z.H

We now got an equation to find out errors. Let Z1‘ Z2 _ _  be
errors.

Z 1

2. H (c") =H 3Zn—k
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Here Z._M Z.,_k can be obtained by finding a low weight linear

combination of columns of H summing to S. This means we can obtain values

of error vectors by solving 11 linear equations in terms ofZ to values of S. So

U = C" — z.

The details of decoding algorithms are given in section 4.4.

4.3 Design of Cryptographic algorithm using the Concepts

of Repetition codes

In this session we will see how we can develop a eryptosystein by

making use of concepts of Algebraic Geometric code. Main thing in a

cryptosystcm is the generation of keys.

First. we have to choose some public key parameters. An elliptic curve

having a highly secured point over a finite field is chosen along with a fixed

base point. The selection of curve is done by using Kobliz selection method

given in Appendix B—Vl. Public information include

1. Elliptic curve

2. Finite field

Once we know the elliptic curve and field on which the curve is

designed we can compute the linear vector space L (D) [5] over the curve in

finite field. From the linear vector space we can generate rational functions and

also compute base point for the selected curve. From the theory of Algebraic

Geometric code we can generate a generator matrix G k X ,, by using rational

functions and points on selected curve. The rational functions are selected on

the strict pole order of the base point B. Next step is the process of generating

algorithms. The process involves four steps
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1. Key generation

2 Encryption

3. Decryption

4 Decoding

4.3.1 Key generation

There are two types of keys in a public key cryptosystems: - Public key

and Private Key. Consider that message is transmitted between two users X and

Y, keys can be defined as follows

i. Public key information includes Fq _ y_. P Where, 1'}. is the finite field, _ X

is the elliptic curve.

ii. User X selects a random integer a, between 0 and 0rd B_ where B is the

base point ofthe chosen elliptic curve.

iii. User Y selects a random integer B, between 0 and ord ., whe1'e B is the

base point ol‘ the chosen elliptic curve.

iv. Compute P = [3 B.

4.3.2 Encryption

Encryption is the process of converting a message into a form that is

not understandable by a third person. This is done by making use of the keys.

Let M be the message to be transmitted. Group the message into k units i.e. m],

1112. . . .mk. Convert this message into points. Conversion of messages into points

on curve is called message imbedding [11]. The generator matrix can be

constructed as follows. From the divisor D of the curve, find a sub space A and

let L (A) be the linear subspace associated with A. Let f._ f2____ fl be the

fimctions related to it. From this, we can generate a generator matrix by using L

(A) rational functions and message converted points.
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E: L (A) -)Fq

F9 ((f: (Pi), f2(Pz) ------ "fl( Pk))

Let G be the generator matrix created. Encryption process involves

following steps.

i. Compute G‘ = [G .tk+ (1 P], y] where y = (LB.

ii. Send G‘ to Y.

4.3.3 Decryption

Decryption is done at receiving end to convert data into its original

form. The process includes following step

i. Compute (1 P.

11. SubtractaPfromGl.

iii. By taking rational functions and solving them. we will get the points

represented through generator matrix.

iv. Points are then converted into messages units and they are in turn

converted into original message.

4.3.4 Decoding

Decoding process includes the process of error detection and

correction. Here, we are sending information as contents of generator matrix.

When we analyze it, we can see that it is a repetition of the point information,

there by we can treat it as repetition codes. The simplest kind of error detection

is done by making use of repetition codes .When we solve step 3 of decryption

algorithm we will get a set of repeated information. Every data is repeated

around at least t times. If they are repeated t times, we can say there are no

errors. Otherwise it can be assumed that error has occurred. Once an error is

detected we can select a point that is repeating maximum number of times. A

drawback of repetition code is redundancy, which means we have to transmit
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more infonnation to achieve the required result. Although the process seems to

be cumbersome, it is simpler than other cryptosystems using algebraic

geometric code.

4.4 Design and study of decoding algorithms

4.4.1 Introduction

The construction and decoding of Algebraic Geometric codes are two

important tasks in the development 01‘ algebraic geometric code. When ever we

construct a code it should be possible to correct maximum number of errors.

Decoding is done for the process of detecting errors that were accumulated

through an unreliable channel. Main aim of decoding is to reconstruct the

original code word from its corrupted fonn.

Generator matrix G and parity check matrix H are two main concepts

used in the construction of Algebraic Geometric code. The important property

used here is linearly independent property of the rows and colurrms of these

matrices. For a given Algebraic Geometric code C= mG , the important

property used in the process of decoding is C.H = O[5 ]. Most of the decoding

algorithm uses the technique of solving systems of linear equations which is

purely dependent on linear algebra.

Given a received pattern, the main aim of decoding process is to decide

what the transmitted code is. The decoder tries to find the error pattern e by

assuming code word received as C = r +e, to find e, the following formula is

used

H.r‘ = HC' + He‘

= 0 + He‘

H.r' = He'
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This product is called the syndrome and it helps to reveal the error

pattern in the received word If a single error has occurred during the

transmission, the error pattern will have single 1 in the bit position in which

error has occurred and zero in other positions.

There are many decoding algorithms available. But complexity is very

high so it is practically difficult to implement it. Most of the decoding

algorithms can correct up to (d-1)/2 error that occurred during the process of

communication. Various decoding methods include maximum likelihood

decoding, majority voting scheme. decoding using displacement scheme.

decoding using key equation etc.

4.4.2 Decoding algorithms

The algorithm that is used to decode a given code are called a decoding

algorithm. Various decoding algorithms are available. Each algorithm tries to

correct maximum number ol‘ errors. Driencourt [13 ] was the first person who

approached to correct Algebraic Geometric code _.but it could correct only very

few number of errors. Later Justesen, Elbrond Jensen, Havemose and Hohold

[14] found a generalization of the decoding algorithm developed by

Arimoto[l5] and Peterson for Reed Solomon codes to Algebraic Geometric

code over plane curves. Various decoding algorithms available include

decoding using key equation, list decoding, majority decoding, Duursma and

Breeklekamp-Massey algorithm [16]. Most of the algorithms can detect up to

(d-1)/2 errors .In this thesis a very few algorithms have been discussed and then

a 11 approach to utilize it in the cryptosystem using Algebraic Geometric code

on elliptic curves is made. It is done in such a way that maximum numbers of

errors can be detected and corrected. First we will start with a basic decoding

algorithm that can be modified and used in this thesis.
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a. S-V algorithm

It is one of the first methods of decoding Algebraic Geometric code. It

computes error locator, error locator polynomial and computation of error

values. It can also be called as error locator decoding. An error word is defined

as (e,...e,,). For an error word ei_ the point Pi is called an error location if ei ¢ 0_

An error locator exist for an error word e in linear vector space L(A) if and

only ift is the weight of e. Let A be a divisor with support distinct from D, if

dim (A) > t and it is defined as a function

9 = b] 0] ‘ . . . . ..+b5 8,  bl ()|(P1)+ . . . . ..'l'l)_; O\(P|) : 0

for all error P. . This can be formulated as equations of s unknowns. This

polynomial is called error locator polynomial.

The SV algorithm is Skorobogato-Vladut [l4]algorithm that can be

used for decoding a dual code C‘Q(D,G), with n = deg(D) and n > deg(G) >

2g—2. To define this algorithm we choose 3 divisors /\.B and C so that B C G

and A + C > D. Error correction capability ofthis code is L (d—1-g)/2)]. Let the

code C9(D,G) defined over a curve of genus g over a field Fq , Let 9. ________ __ Gk

be a basis of L(G).It can be defined by evaluation map at P as

9 : L(G) -)Fq

Let D be ofthe form D= P, + .... ..+ Pk_ Let basis of L(A), L(B) and

L(C) can be represented by

L(A) = span {91_62 ..... ..}

L(B) = span {M12 ........ ..}

L(C) = span { <p._ cp2_.........}

The decoding can be done as follows

1. Compute the syndrome S as follows
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W19, .21 w.6ll ./1, ................... ..
S :

w.0n .2.” W3" .3." ................... ..

= W.A.C.

If all syndromes are zero then the received word is the cord word.

2.Find a non-zero vector ( b .,b2. ....) in the null space of S.

9 = b 16. + b 393 +  is an error locator.

3. Find €1TOI' locations M such that M = { 1 S i S n l 8(Pi)=0}_

4. Find the error values e by solving the linear system

:1:M ‘~PI(PI)C| =W- (Pi­

Solving this linear equation we get errors occurred and the original

data can be obtained by C = W — e . Major draw back of S—V algorithm is that it

does not have full error correction capability ofcode.

b. Duursma Algorithm[17]

Let C be a code word C(X, D, G), based on the curve X of genus g and

let f= C + e be the received word, where wt(e) S t and deg G 2 2t + 2g — l.The

procedure for the decoding is as follows . Choose a divisor A with deg A = t

and support disjoint from one of D. Find G ' = G — (deg G + 2g +2t -1)Q and

A‘ = G'- A — (2g-1)Q. Choose basis {q)o_ (p1____ (p 3g+2..t)} of L(A + A')Q,

{\IIo..- W H} Of L(A+(38-1)Q) and {X02--~ X2g‘t-1} Of L(A ' +(-'38-1)Q),

indexed respectively by the ( A + Al), A and Al orders.

1. Syndrome matrix can be calculated as follows.

Sjj = \ui )5 . f. If the syndrome is zero no errors occurred.

2. Find the error locator
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Let u be the maximal order of the known rows. Look for a non-zero

solution of the linear system V lg;-u (LS = 0 where S is the i-th row of S. If a/_.

solution 0. exists, then Z .1:-u u,S,_= 0 is an error locator, go to step 5.

Let u be the maximal order of the known columns. Look for a non-zero

solution of the linear system  i._—--u [3,-Si = 0 where S; is the j—th column of S. If a

solution S, exists then is Z l';'_'ll B,,S,. = 0 an error locator: go to step 5.

3. Estimate additional syndromes

Assume that every entry of order s, is known. while no entry of order s

is known. For each pair (r, r-') with r + I" = 5, try to solve the linear systems

:i<rS,.v(l, = -5,. for It < r’

E/<w S,fii = —.S)," for I.’ < r

4. Majority voting

For each test entry Sn-u use the expressions of 1;/,. X ,.' in tenns of the

basis (/2,, and the known syndromes (,9 ,-. c for i < s, to calculate the vote (/J ,-. e.

The true value x i e is the vote that occurs most frequently. Using this value,

recalculate all the syndromes 1,11,. )( ,.' (all but the test entries that gave correct

votes). If an additional column or row is known, go to step 2, otherwise go to

step 3.

5. Find error locations: Using error locator (p, determine

M={P.e supp<D> I <p<P.)=0}

This is a set of error locations.

6. Error values can be calculated as follows

Z<p(P.)ei=<Pk. k forksu+2g+t— 1.
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Main difference between the Duursama and S-V algorithms is majority

voting. Because of that more errors can be corrected in Durrsama algorithm

then S-V algorithm.

c. List decoding of Algebraic Geometric code

List decoding of Algebraic Geometric code [18] can decode Algebraic

Geometric code beyond conventional error correction bound (d-1)/2. This

method involves two steps. factorization and interpolation of polynomials

over finite liclds. The basic result oflist decoding is as follows.

Theorem 4.1: Let C be an AG—code of block length n. dimension l<, Field Fq_

curve X of genus g. Then, for any positive integer b, C is (n-B-1. b)-decodable,

where

b := L (11-'r1)/'(b+l) + bu/2 + g — 1)_l and u=k+g—l.

The principle followed in list decoding is to compute a list of at most 11

code words ,one of them must be x

1. Interpolation step:- for a non zero polynomial H(T) = u bTb

+.....+u.T+un 5 K[T],where uj 5 L(F +(b-j)G, such that H(Pi,yi) =

Zbj-so uj(Pi)yH is zero for i = 1,...n.

2. Factorization step: Find all roots of H(T) in K. For each root p

compute xp= (p( P1, ,,,, _, p(P,,)), if xp is not defined or if distance between

x,, and y is larger than n- B-1, discard xp.

d. Displacement approach of decoding

This method uses a method of displacement [17] for efficiently

computing a nontrivial element in the kernel of a structured matrix. The

method can be briefly described as follows. Let X be a curve and L (aQ) be the



Chapter 4 86
vector space associated with the function field, Assume that decoding code is

of length 1. Let 5 = l_(n+1)/(l+1) + la/2 +g)l. Let (p ,, ___,(p,, t = B — g + 1, be the

elements of L([3Q) with strictly increasing pole orders at Q. Let (y. . ...y,,) be the

received word, the non-zero element in the kernel of the matrix can be found as

V:

«pm .... --(Pso(Pi) )’I‘~Pi(Pl) .... ..y.«p...,<P.) Yil<Pi(Pi) .... --yll(Ps0(Pl)

(p;(P3) .... .. (p50(P3) y3(pi(l’g) .... .. ygcp5u(Pg) yg ' (p ;(P3) .... .. y3' (p,.U(P3)

- (pI(Pi|) - - - - - - (p.~'U(Pn) yn(Pi(Pi1)- - - - )'n(P.~n(Pn) Yul (Pi(Pn) - - - - - - ynl (PS|l(Pll)

With the help of a diagonal matrix diag [cp]._,] and an upper shill matrix A we

can form a displacement matrix DV — VZ = GB, where G s Fq " X ‘" and matrix

B F F 1” X n. q .
e. Modified decoding algorithm for elliptic curves

Here we have seen various algorithms for decoding algorithms. Here is

a modified algorithm that can be used to detect maximum number of error [19,

20, 21]. Principles followed here is similar to S-V algorithm. The steps

involved in the process are as follows.

Let X be a curve, P be a set of points on curve, Q be the base point on

curve and D be the divisors on the curve and code is represented as (n, k,d )and

L(D) represent the linear vector space of the curve and L(D)=span{ cpl, cpzm (pk}.

All vector space rational functions are strictly based on the increasing pole

order values at Q.

1. Compute the syndrome matrix by using vector space L(A) and L(B) where

L(A) = span {WL wz .... .. Wm} and L(B)= Span {XL  Xm}

S=M.A.B

If S = 0 , no errors occurred.
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2.i=l

3. Compute error locator polynomial 9 = b.q).+. . . ..+ b,,, (pm such that

bl  +2" + bin (pm(P|) :0
bl (Pi (Pn)+"."'+ b... <p...(P.,> = 0 (4.2)

By solving equations (4.1) through (4.2) values of b....b.,, can be

obtained. If no solution exists compute i = i+l and repeat the process until a

solution till m + i = k.

5.Find the error locations E such that f€= { I S i S n I 9(l’i) = 0:

6. Find error values c, by solving

Z <p.<P;>e.=M. w. (4.3)
ieE

7. M=M —c.

Repeat the step 2 to 5 by incrementing in in equation (4.1) to k by l.

Ifwe do this we can extend (d—l)/2 to a maximum level.

4.5 Design of Secret Sharing algorithms

Secret sharing as discussed in the chapter 3 is the method of sharing a

secret among many users. The share can be recovered only by a predetermined

set of users. Here a secret sharing method is used in which secret is splited and

distributed among various users. The secret selected is depended on the curve

and algebraic code parameters. The process involves many steps. Main process

is finding a set of authorized users. It should be coordinated by a dealer or an

administrator. Secret should be shared only to the authorized users determined

by the dealer. Secret sharing involves three steps
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a. Secret splitting or set-up phase

This phase can also be called secret splitting phase. The steps involved

in the process are as follows. Since the cryptographic algorithm used here is

dependent on Agebraic Geometric code and elliptic curve, parameters should

be dependent on the elliptic curves. The steps are as follows.

i. Generate a curve E with a field size of sufficiently large prime p.

ii. Compute a base point for E and order n of the base point.

iii. Dealer generates a random number r with :1 limit to n.

iv. Split r to 11, r3....1‘,.,.

v. Generate a polynomial F(x) = r.x‘“ . rn<'"" + .... ..+ C (mod q) .

Where C is a constant generated by the dealer.

b. Secret distribution

'l‘his step involves distributing secret to in users. This is done with the

help of polynomial generated in secret set up phase.

i- Colllpute  —l loin :  — I loin

ii. Distribute values of f(i) to i "' user.

c. Secret reconstruction

Afier construction of secret, information is encrypted and at the

receiving end dealer collects the secret information from its authorized user.

Let a,, 33 .... ..‘aJ- be the secret infonnation and let it be represented in an array f

then

1) i)i=ltom.ri=ltom=fi=llom
_ -l

2) ri=ltom _ F i=1lom - fi=ltom­

3) Compute secret s = r1+ r2+. . . .+ r.,.+c.
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Thus secret is reconstructed and can be used to decrypt the infomiation

received.

4.6 A Digital Signature for the System

4.6.1 Introduction

Digital signature is the subset of electronic signatures that make use of

the concept of Cryptography. Digital signature tries to combine the signature in

real world taking into account properties of the electronic world. If electronic

mail system are to replace the existing paper mail system for transactions,

signing of message is necessary. It is a process of signing the document so that

later the problem of authentication of the documentation will not arise. It is an

analogue of handwritten signature. It was evolved from what is known as

electronic signature. Electronic signature can be defined as electronic sound or

process_. attached to or logically associated with a contract or other record and

executed or adopted by a person with the intent to sign the record. [2127 ]. The

signature doesn"t depend on identity of the signer (private key) but also the

information that is being transmitted. The properties that are provided and

assured by the use ofdigital signatures include

0 Authenticity: - Verifier after successful verification should be assured that

the Information was signed by the provider of the digital signature.

0 Integrity: - Both sender and the receiver of the signed message shall be

confident that a message has not been modified by an intruder.

0 Non-repudiation:—Signature can be shown to make them accepting the

ownership. There is a possibility that when a system got broken, the author

of the message deny the ownership ofthe message. This can be avoided by

making use of digital signature.



Chapter 4 90
The recipient of a signed message takes it as a proof of the message

originated from sender. A digital signature must be a message dependent, as

well as signer dependent. Digital signatures are created and verified by

cryptography. The process of creating a digital signature and verifying it,

accomplish the essential efforts and can be used for many legal purposes. The

authentication property described above in digital signature is of two types.

Signer authentication and Message authentication. [22, 23 ]

0 Signer authentication: - If a private and public key pair is associated with

an identified signer. and the digital signature attributes to the signer. The

signature cannot be forged. unless signer loses the control of the private

key.

0 Aflinnative act: - Creating a digital signature requires signing a private

key. This act can perfonn the ceremonial function of alerting the signer to

the fact that signer is perfonning transaction with legal sequences.

0 Message authentication: - The digital signature also identifies the signed

message typically with far greater certainty and precision than paper

signatures. Verification reveals only tampering, since the process involves

the process of hashing , which shows the message is same as signed.

The process used for digital signatures have undergone technological

performance test over a decade. Digital signatures are accepted in several

national and international standards and accepted by much cooperation, bank

and government agencies.

A general public key digital signature algorithm [25,26] involve the

following step

a. Key generation

b. Signature generation.

c. Signature verification
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The digital signature process can be diagrammatically described as

shown below.

H(m):Va(Sa(I 1011))

A - H(m)lSa —>U/aiiunn l—> B* 1Sender A‘s private key
public key

Fig 4.1 A Digital signature scheme

A message m is digitally signed and it is sent to receiver. The receiver

checks the signature and if matching accepted. Digital signatures use hash

function to do its processes. In case of long message. the signing and

verification process may be very time consuming. The idea is to sign smaller

amount of information without compromising the system security.

4.6.2 Cryptographic hash functions

A Cryptographic hash function that takes output of arbitrary length and

it convert it to fixed length. Cryptographic hash function produces digest

(finger print) from an electronic document usually much shorter than original

document. A hash function is usually a projection

H: x-)y where y is a finite set and x can but (doesn’t need to be) be a

finite set. Value x E X is called document message; value h(x) is called digest.

Value of H(x) can be used as substitute of original document x. Hash functions

can be based on various principles. It includes NP hard problems, modified

block ciphers or dedicated hash functions that can be designed or reused.

Cryptographic hash fimctions are functions which have many uses in
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cryptography. It can play an important role in proving the security of public

key signature schemes and /or public key encryption schemes and key

agreement protocols [27,28].

A hash function to be used in cryptography has to satisfy following

requirements.

0 Preimage resistance: - Given a hash value h, it is impossible in practice

to find a message m with H (m) =h.

0 Collision resistance: — It is impossible in practice to find message m

and nil within ;E 111' and H (m) = 11 (ml)

Currently, hash values of bit length N = 160 are considered to be

sufficient in general for a hash function to be cryptographically strong. Certain

hash functions are as follows

i Hash Algorithm Hash sum size(bits)

Table: 4.1 Hash algorithm and bit size

MD5 is an iterated hash function introduced by Ronald Rivest in 1991

as a successor to MD4 and become intemet standards RFC 1321, ensuring its

widespread occurrence in many contemporized applications and standard. SHA

(Secured Hash Algorithm) is a class of iterated hash functions. Various version

MD2 128
MD4 128
MD5 128
SHA-0 160
SHA-224 224
SHA-512 512

of SHA are available as specified in the above table.
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A modified version ofdigital signature is as follows

PUBLIC FILE \ k
‘A55-‘DER RI-Z(7El\'IiRR\\ l‘.

_,‘ \".1|id‘ I ' Invalid‘

Ch'l'“‘°l Signzmircll 3 A
V

‘-'—’lHa1shiiigl* V

. . .. Ommmm
1'7» Hasl1ing—».r—>Signing—’_v—'i—> "1 1 " " —. }‘ -»_\-_.\,em—),ing

1_
A

E

Fig 4.2[22] Functioning ofa signature system

Here the signature system is signed with the help otzi hashing function

and at the receiving end the signature is verilied and message accepted only if

it is a valid one.

4.6.3 Proposed system

In this section we will see how digital signature can be applied to

cryptosystem based on Algebraic Geometric curves and codes [24]. The

algorithm for key generation, signature generation and verification is as
follows.

4.6.3.1 Key Generation

Key generation is the process of generating key for the process of

signature generation. The parameters of elliptic curve. finite field and Base

point of the curve is necessary for the generation of public key. Private Key

involve a random integer that depend on the parameters of elliptic curve . The

procedure for the key generation is as follows.
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Each entity create a public key and a private key

i. User X select parameters [q, E, a, b] of the curve, q should be a large

prime field, E an elliptic curve, a and b are parameters of E.

ii. Compute a base point B for the curve B.

iii. Generate a random integer I such that 1< I < 0rd 3. A’s public key is

[E,Q = [B].

4. 6.3.2 Signature Generation

Si gnaturc generation involve selecting a random integer and computing

the signature using it. The generated signature is sent to the receiver along with

the message and key parameters. The signature generation involves usage of

hash function. Here in this procedure message is not sent to the hash function.

But the encoded infomiation is sent to the hash function. This is done to

increase the security ofthe system.

User X should do the following

i. Select a random integer k such that 1< k <ord 3.

ii. Compute C= m.G,
P = kB,
E = H(C)

iii. Compute s = k" [E — Qx( mod q)]

iv. User X send the pair [ P, S] to Y

4.6.3.3 Signature Verification

The receiver on other hand on receiving the infomiation transmitted,

verification is done. The information he got is accepted only if the verification

process is successful. To verify X’s signature on message rn, Y should do the

following.
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User Y should do the following:­

Given [ P, S]

ii.

iii.

iv.

Compute E=H(C)

Compute V1 = (S.P +B Qx) mod q.

Compute H(C ) and if(H(C) != E ) “invalid”.

V2 = B.H(C ) mod q.

Accept the signature if V] = = V2.

Proof: Received information contains signature S = k" [H( C ) — Q_\]mod q, .

E=H(C) P = kB. Q, is the x coordinate of Q .User Y will do the following.

V1= (BQx+ k" [k .B.H( c ) —kBQ_.] ) mod q i.e. Vl= B.H(C) mod q. V2 =

B.H(C ) mod q. IfVl = V2 . we can accept signature other wise reject it .

4.6.3.4 Security aspects of the Digital Signature Algorithm

The security ofthe system can be discussed as follows.

8. An adversary might attempt to forge A’s signature of message m by

k"(H(C) - Qx)

mod q. If elliptic curve desecrate logarithm problem is computationally

selecting random integer k and then detemiine s =

infeasible, the adversary can succeed with a success probability of 1/p

which is infeasible for a large prime no. So system can be accepted

only if we are using a large prime number. Since each message is

signed with a new random number finding k is infeasible.

To implement sign, hashing function is necessary otherwise the

adversary can easily find the signing parameters by mapping one
content to another.

Security is based on the selection of parameters also. Parameter

selection includes curve, size of field and private key selected. The
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field size should be sufficiently large and Order of base point P should

be divisible by a large prime.

4.7 Security issues of the Cryptosystem using Algebraic
Geometric Codes

Computers and electronic media are widely used for transferring

sensitive information, plays a vital role in the area of communication. There

comes the concept of cryptography where information‘s are encrypted and sent.

But there is a possibility that cryptzmalyst or an intruder try to break the system.

So even when we develop a cryptosystems, security ofthc cryptosystem is very

important. It means cryptosystem should not be prone to attacks. We are

concerned with security of a cryptosystem developed using Algebraic

Geometric codes. Here Algebraic Geometric code is developed by using

elliptic curve and there by certain concepts of Elliptic curve cryptography is

also used. Me-Eliece developed a Cryptosystem based on codes. Although it

was secured from all attacks, its key size was very large. Due to this reason it is

not used extensively. In this chapter, a study is done on the effect of various

attacks on the cryptosystem developed using the concepts of Algebraic

Geometric codes and elliptic curves.

4.7.1 Introduction

Security is the planning, implementation and enforcement of a series of

policies which can be transmitted via communication channels by guarding

against threats. Security of a cryptosystem is evaluated by amount of time

needed to break it. Here breaking means finding the private key used for

encryption and getting the information transmitted. The process of breaking the

system is also known as attack methods of the system. Amount of time required

to break a cryptosystem is a theoretical estimate of average time needed to

break a cryptosystem by a given attacking method.
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In this section we deal with how the attacks affect the performance of a

cryptosystem developed using algebraic geometric code. Also we can see how

to get optimized parameters for generation of cryptosystem developed using

Algebraic Geometric codes based on elliptic curve, where key parameters are

chosen from elliptic curves.

Above described cryptosystems involve key generation, encryption and

decryption. When we are developing a system using Algebraic Geometric code

we make use of generator matrix [5] and a private key which depends on a

random integer generated using the concepts of elliptic curve.

One another advantage of the cryptosystem described above is the

decoding. Once key is retrieved, the form of message is an Algebraic
Geometric code. The code can be decoded to find the errors that had occuned

during the process of transmission. lnfomiation is transmitted via
communication channel. Channels are always prone to errors due to noise and

other disturbances. So apart from an intruder, the information transmitted

should be protected from the channel errors also. By making use ofa decoding

algorithm we can detect up to (d-1)/2 errors, where d is the dimension of the

code transmitted.

Here this crypt analysis depends on two factors. First, cryptanalyst

should get the private key that depends on the parameters of the curve. The

second depends on the structure of the generator matrix developed.

4.7.2 Attacks on the cryptosystem

The security of the cryptosystem is computed by the amount of time

taken to break the system. The cryptanalysfs main aim is to find the key used

in the encryption algorithm. The method used to break the cryptosystem as

mentioned above is called attacking method.
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The algorithm discussed above uses concepts of Algebraic Geometric

code and Elliptic Curve cryptography. When attacks are taken into

consideration, main issue here is the private key generated which is dependent

on the elliptic curve. So we can say that the key concepts here are similar to

elliptic curve cryptography. Next section discusses various attacks common to

cryptosystem using algebraic geometric code and elliptic curve cryptography

and how these attacks affect the system. First the attack on Algebraic

Geometric code [29, 30] is discussed and in the next section elliptic curve

based attacks are considered.

a. Known partial plain text attack

Having partial knowledge of the plaintext drastically reduces the

computational cost of cryptosystem. For example, let m.,m_»....ni,, be the

message received and ifthe intruder knows 1n,,ni;...1nk, it is easy to reveal the

key and there by getting the information transmitted. provided, they know the

structure ol‘ generator matrix. Here is the advantage of usage of coding

concepts in cryptography. Even if the intruder know the partial message, it will

be impossible to lay his hands on the entire message. He needs to have

knowledge of the generator matrix used in the process.

b. Message resend attack

Let the information transmitted is the form c=amG, where, m is the

message transmitted and G is the generator matrix [2] Consider the situation

that the message is sent again. The crypt analyst who is trying to reveal the

message will now have

cl = amG

c2= BmG

Since each time the system is using a new random integer, attack is as

difficult as revealing a newly sent message.



7'5/6

c. Related message attack

messages sent. This is called related message condition. This is possible only if

the private key is known. When two cryptograins C I and C3 are combined itwill be T
F3l*?.‘féG-Q’

A NC|+C2 = am.G+ B11120

Since each time different key is generated, it is not possible to combine

the messages simply by knowing the relationship between messages.

(l. Information set decoding

This is a method by which once a cryptanalyst get the information

transmitted. he will try to get the message by applying any known decoding

algorithm by randomly choosing n, k parameters, i.e. subset of generator

matrix‘. Once he got the decoding information, he can again randomly apply

some private keys and he may succeed in getting message transmitted. The

average amount of work performed is proportional to the number of operation

required in decoding and generating key.Ol‘ the known general attacks (i.e., not

against specific codes etc.) this seems to have the lowest complexity. One tries

to recover the k information symbols as follows: The first step is to pick k of

the n coordinates randomly in the hope that none of the k is in error. We then

try to recover the message by solving the k X k linear system (binary or over

Fq). Let ck and zk denote the k columns picked from Gk', c and 2, respectively.

They have the following relationship

ck = m G 'k + zk.

If zk = 0 and Glk is non-singular, m can be recovered by m = ck G ‘k.

Even if zk ¢ O, m can be recovered by guessing zk among small Hamming
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weights [9] (this is called the generalized information-set-decoding (GISD)

attack). One iteration of the algorithm is as follows:

1. Permute the columns of the generator matrix randomly.

2. Apply Gaussian elimination on the rows of the matrix to obtain the

fomi G = (lk |A),with the corresponding permuted cipher text c = (C1 +

e1|c2 + e2).

3. Guess that the error el is of weight at most p and check whether the

error e = (e1|e2) is ofweight I.

Here, in this system mere decoding will not give the exact information

transmitted. Again we have get the secret key. Only then we can retrieve the

information transmitted.

e. Structural attack

Structural attack is the process of getting the structure of generator

matrix used in the process of encryption. Public key information includes the

curve and field size. From this, it is easy to generate the structure of Generator

matrix. Once we get the structure we can easily create generator matrix. But

here, by merely getting G , we cannot resolve the problem. It involves another

level i.e. solution to ECDLP. Once we succeed in that , we will get information

transmitted.

From the above discussions we can see that above mentioned attacks

has less effect on cryptosystems developed here.

4.7.3. Elliptic curve discrete logarithm problem

ECDLP[3] is elliptic curve discrete logarithm problem. This problem

involves finding at, from P= aB . There are many types of known attacks, like

pollard-rho .attack, Index-calculus attack, Pohig-helmann attack etc. Here we

will see how these attack is carried out on the security of the system.
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a. Pohig-Hellmann attack

Pohig-Hellmann attack [7] algorithm efficiently reduces the

computation of l=log PO to the computation of discrete logarithm in the prime

order sub—groups<p>. It follows that ECDLP in <p> is no longer than ECDLP

in its prime subgroups. It reduces the detennination of l to l, modulo pi“ for

each of the prime factors ofn. Hence in order to achieve the maximum level of

security n should be prime.

l E l] modpiel

l E I, iiiotlp,“

In order to avoid this attack, one should carefully choose elliptic curve

parameters so that order n of P is divisible by a large prime. To make order n

divisible by a large prime, lield size should be extremely large.

I). Polard-Rho attack

Main idea of Pollard-Rho[7] attack is to find distinct pairs (c' ,d') and

(c", d”) ofintegers modulo n such that c' P + d' Q = c” P + d” Q. Then

(cl-c”) 1>= ( d'—d") Q. (4.4)
Hence l= logpQ can be obtained by computing l= (c'—c”)/ (d'-d”).

Parallelized pollard’s rho attack is best lmown for ECDLP. By making use of

M processor ands run algorithm in each processor until any one processor

terminates.

Whenever we choose the parameters it should be in such a way that it

is infeasible to solve.
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c. Index-calculus attack algorithms

lndex calculus algorithms are powerful in computing discrete

logarithms in some groups including multiplicative group Fq* ofa finite field.

The Jacobean [7] Jc(Fq) of a hyper elliptic curve C of a high genus g defined

over a finite field Fq and the class group of an imaginary quadratic number

field. This process includes lifting a point to another. It is infeasible in the case

ofelliptic curve, so this method is a failure in ECDLP.

d. Isomorphism attack

Let E be an clliptic curve defined over a finite Fq and let P 1-: E (Fq)

have a prime order ii. Let G be a group order n, such that n is prime, <P> and G

are both cyclic and hence isomorphic [31] If one can efficiently compute

isomorphism

\|1 :< P>—> G (4.5)
Then ECDLP instances in <P> should be sufficiently reduced to

instances of the DLP in G namely, given a point P and Q 5 <P>. We have

l0gPQ:1Ogw(I)) l‘,l(Q)'

Isomorphism attacks[31-34] reduce the ECDLP to DLP in groups G for

which sub exponential time or faster algorithms are known. Isomorphic attacks

on prime field anomalies reduces ECDLP in an elliptic curve of order p defined

over the prime fields F p to the DLP in the additive integer modulo.

In the case gcd (n ,q)=1 the Weil and Tate pairing[7]attacks establishes

an isomorphism between <P> and a subgroup of order n of the multiplicative

group Fqk of some extension field Fqk. Weil descent attack attempts to reduce

ECDLP in an elliptic curve defined over binary field F5" to DLP in the

Jacobian of a hyper elliptic curve define over F2"'.Sub-exponential algorithms

are available for these attacks.
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In 1991 Menzes, Okamoto and Vanstone(MOV) [7] also showed that

ECDLP can be reduced to extension field of Fq. MOV is efficient only for

special class of curves called super singular curve. Anomalous curves are also

not secure curve. In anomalous curve also ECDLP can be easily converted into

DLP.

3000
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4000 g3000 l ,/d
2000 3 _,0.~“
1000 0

2.81E+14 7.21E+16 1.84E+19 1.21E+24 5.19E+33 3.40E+38 1.16E+77

Security Level

-4 Mc-Eliece I SA Cryptosystem AGC and elliptic curves

Fig 4.3 Security level vs bit size

The Fig 4.3 shows the security level of Mc-eliece system, RSA system

and the proposed system[3l-34]. The above figure shows that higher level of

security can be achieved for lower bits in the proposed system compared to

RSA and Mc-Eliece

It should be noted from the above discussion that the attack involves

revealing a single thing i.e. the users private key and is dependent on two

factors curve and field size. Itican be shown that choice of underlying curve,
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representation of elements in the field and field size play a prominent role in

the security of cryptosystem using elliptic curves.

First we will consider choosing of the curves. Curves can be selected

by using random method, complex multiplication method or Kobliz method [7]

When selecting curve for developing a cryptographic algorithm following

things should be noted.

0 The curve should not be an anomalous curve.

0 It should not be a super singular elliptic curve.

0 l\/lathematical operations can be easily perfoi'i11e(l on the curve

Thereby when we implement algorithm, care should be taken to avoid

curves ofabove mentioned properties [31].

The field also should be carefully chosen to avoid attacks. So while

selecting lield following things should be noted.

0 Field should be sufficiently large prime.

0 Order of base point P should be divisible by a large prime.

0 Compute gcd (n, q), Where n is the number of points on the curve and

q is the size of the field. Avoid field that satisfy gcd (n, q) = 1 because

Wiel and Tate pairing attacks can be easily done on the curve of that

size.

4.7.4 Conclusion

The above section shows security level of cryptosystem using

Algebraic Geometric code developed based Elliptic curve. Various attacks like

known partial plain text attack, message resend attack, Polard-rho attack,

Pohig-Hellman attack, Isomorphic attacks are seen. It is shown that by

carefully choosing the parameters we like field size and curve we can increase

the security level. Certain curves like anomalous curves, sub-field curves, and
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super singular curves should be avoided. Field size should be carefully chosen

and should be sufficiently large prime. There by carefully choosing the

parameters we can increase the security level of the system.
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5.1 Implementation

Implementation is all about the carrying out. execution, or practice ofa

plan, a method, or any design for doing something. Implementation is the

action that must follow any preliminary thinking in order for something to

actually happen. It encompasses all the processes involved in getting new

software or hardware operating properly in its environment, including

installation, configuration, and running, testing, and making necessary changes.

Here we are going to implement the above algorithms using

MATLAB.M/\TLAB, which stands for MA'l‘rix LABoratory[l], is a state-of­

the-art mathematical software package, which is used extensively in both

academic and industry. It is an interactive program for numerical computation

and data visualization, which along with its programming capabilities provides

a very useful tool for almost all areas of science and engineering. But unlike
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other mathematical packages, such as MAPLE or MATHEMATICA,

MAT LAB cannot perform symbolic manipulations without the use of

additional Toolboxes. It however remains one of the leading software packages

for numerical computation.

MATl-AB® [1] is a high—level language and interactive environment

that enables us to perform computationally intensive tasks faster than with

traditional programming languages such as C, C++, and FORTRAN. We can

use MATLAB in a wide range of applications, including signal and image

processing, communications. control design. test and measurement, financial

modeling and analysis, and computational biology. Add-on toolboxes

(collections of special-purpose MATLAB functions are available separately)

extend the MATLAB environment to solve particular classes of problems in

these application areas. MATLAB provides a number of features for

documenting and sharing your work. We can integrate our MATLAB code

with other languages and applications, and distribute our MATLAB algorithms

and applications.

Key Features of MATLAB are

- High-level language for technical computing.

0 Development environment for managing code, files, and data.

o Interactive tools for iterative exploration, design, and problem solving

Mathematical functions for linear algebra, statistics, Fourier analysis,

filtering, optimization, and numerical integration .

0 2-D and 3-D graphics functions for visualizing data.

0 Tools for building custom graphical user interfaces.

- Functions for integrating MATLAB based algorithms with extemal

applications and languages, such as C, C++, FORTRAN, Java, COM,

and Microsoft Excel.
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MATLAB provides a high-level language and development tools that

let helps us quickly develop and analyze your algorithms and applications

[2].The MATLAB language supports the vector and matrix operations that are

fundamental to engineering and scientific problems. It enables fast

development and execution. With the MATLAB language, we can program and

develop algorithms faster than with traditional languages because there is no

need to perform low—level administrative tasks, such as declaring variables,

specifying data types, and allocating memory. In many cases, MATLAB

eliminates the need for ‘for’ loops. As a result, one line of MATLAB code can

often replace several lines of C‘ or C++ code. At the same time, .Vl.»'\TI.AB

provides all the features of a traditional programming language, including

arithmetic operators. flow control, data structures, data types. ob_iect—oriented

programming (OOPS), and debugging features. MATLAB supports the entire

data analysis process, acquiring data from external devices and databases,

through preprocessing, visualization and numerical analysis, to produce

prcscnlati0n—quality output. The MATLAB product provides interactive tools

and command-line functions for data analysis operations [2].

5.2 Implementation of Cryptosystem using Algebraic
Geometric Code

Implementation process [4] include algorithms for

a. Parameter Generation

b. Key generation

c. Encryption

d. Decryption

e. Decoding

:1. Parameter generation
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Parameter generation is an important factor in developing an algorithm

based on Elliptic curve and Algebraic Geometric code. Parameters of an elliptic

curve is called domain parameters which include field size, a, b of a curve

E: y2= x3 + ax + b [3]. Two types of finite field are used in a cryptographic

application are Prime field and binary field. In this paper, elliptic curve over

prime field Fla is considered and domain parameters of curve include (P, a, b, B,

NB ,h) where P is the field size, a and b are parameters in the equation of curve,

B is the base point of the curve, N3 is the order of the base point and h is an

integer which is cofactor h = #E(F,,)/n [5][6][7]

Parameter generation can be done by random method or Koblii/.

random selection method. When we select a finite ficld, number ofelemcnts on

the field should be a large prime [8, 9]. This is to avoid attacks and to improve

the security of the system.

Function[p. a, b] =Domain pz1rametcrs(a, b)

l.p 6 l
2. if4 a-‘ + 27 b3 = 0

exit

else

3.p(- ECC_prime(a, b)

4.N époint _count(p ,a ,b)

5. if (is_ prime(N) )

return(p)

else

go to stepl

5.end

Fig 5.1 Domain parameters

b. Key generation algorithm
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This algorithm takes the domain parameters, computes the base point

and generates keys. Procedure is as follows

function[[3]=Genkey (p,a,b)

1.[xB,yB]=Genbasept(a,b,p);

2.m=Findorder(xb,yb];

3. [3=randint(l,l ,m);

4.End

Fig 5.2: Key generation

c. Encryption procedure

Message M is divided into smaller units 111., m3....m R and converted

into vector or linear set of integers. Encryption procedure includes creation of

generator matrix and converting it into an algebraic geometric code. The code

is multiplied by the key parameters. The procedure can be described as follows.

Funetion[CM.P] = l{i1cryption(p. a. b. message, [i)

1.[xp, yp] = Genbasept(a,b.p);

2.[X,Y]=points(a,b,p)

3 .[U]m= msg2int(message);

4-.[GlV1:llc\n = Genmatrix(X,Y,a,b,p);

5. s = findorder(xb,y.,);

6. 0. = randint(1,1,s);

7.[CT] = [U] * [GM];

8. y = (1 * 13;

9- lxk, Yk-l: SUCCd0b(Xb,)’b, Ya3:P);

l0.K =[xk,yk]

11. P = [x2, y2] = Succdob(x.,,y,,, a,a,p)

12. CT=[ K *[CM], P];

13.end
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Fig 5.3 Encryption

The algorithm is an overview of the encryption process using

MATLAB. Process involves functions for base point generation, creation of

generator matrix and elliptic curve scalar multiplication. Scalar multiplication

is done by successive doubling process.

c. Decryption procedure

Decryption procedure involves accepting the cipher text and converting

into original message .It involves taking cipher text and decrypt it using private

key and publicly available p, a, b.

Function[Message]=Decryption(CT. P)

l.Compute k = Succdob(x3,yg, [3.a,p))

2. [X,Y]=points(a.b,p)

3.[GiV1J k.\., =Gemnatrix(X,Y,a,b,p)

4.CM = CT/ k;

5.[U] = CM * pinv[GM];

6.[Message]=initomsg(U);

7.End

Fig 5.4. Decryption

The procedure given above contains fimctions of MATLAB. The

program was executed and result is as follows. The example here takes an input

field and other random parameters randomly. The A here is 31.

Encryption Decryption
INPUT:p=3l,a=1,b=1 INPUT:p=3l,a=l,b=1
(xbayb)= (9.10) (Xb1yb)=-(9510)



Implementation 1 1 5N = 34 N = 34r = 31 r = 31
Plain text: ecccryptography Cipher text: 79520 24836 45192
CipherText: 79520 24836 45192 58772 58772 72324 78680 77140 73752
72324 78680 77140 73752 23856 23856 80248 5871 81984 60984
80248 5871 81984 60984 78148, 19, 28 78148, 19, 28

Decrypted text: ecccryptography

Fig 5.5 A Simple Example

5.3. Performance analysis over various fields

The algorithm is implemented by using Mat lab for various field and

executed in an Intel Pentium processor. The system was tested for time

required for key generation, encryption E and decryption I). Five fields were

randomly chosen and are 13. 31, 83,127 und167. An elliptic curve E is of form

y2=x‘l+ax+b and is defined over a finite field F], and is represented as El, (21, b).

1 l.q=l3.a=l.b=l curveE.;(l,l)
Number of points 11: I 5. base point( 12.8)

Random key limit: 1 l
Key generation=0.0630 us

Encryption time=0.008667 us

Decryption time=0.0639 us

2. q=3l,a=l,b=l CurveE3.(l,l)
Number of points r1 =32:,base point(17,3l ):

Random key limit: 31

Key generation =0. 6090 us

Encryption time=0.02 us

Decryption time=0.082 us
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3.q=83,a=1,b=1 CurveEg3(1,1)
Number of points n =90:,base point( 1 2,9)

Random key limit: 89

Key generation =10. 14100 us

Encryption time=0.04264ps

Decryption time=0. 55 its

0 Encryption time=0.06233 us

4.q=127,a=l,b=l CurveE.37(l,1)
Number of points 11 =13l, base point(l 8,3):

Random key limit: 131

Key generation =34.1 us

Decryption time=O.63 ].lS

5.q=l(>7,a=1,b=l CurveEu.~.(1,1)
Number of points 11 =147, Base point (35,21)

Random key limit: 144

Key generation: 62.8280 us

Encryption time=0.25 us

Decryption time=0.85 us

Fig 5.6 Time taken over various field.

Performance analysis can be viewed by the following
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Fig 5.7: Graph showing time requirement for Key generation, Encryption and
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Fig 5.8: Graph showing Field size Vs Key size

From the above graphs we can see that computation time increases as

field size increases. Computational time is dependent on factors such as elliptic
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curve points, scalar multiplications, and point doubling and generator matrix

generation. Above mentioned operations are developed using MATLAB. From

these, we can also see that whenever field size increases, security level goes

high. So, it can be concluded that, performance and security of a Cryptosystem

using Algebraic Geometric code can be improved by selecting a field of

sufficiently large prime.

Here we have computed key generation, encryption, decryption and

key size for a curve. We can see that computational complexity increases with

field size. at the same time security level increases. Whenever we develop a

system it should be of higher security. To achieve that, we must have a field of

sulliciently large prime. Overhead in computation can be solved by making use

of processor of higher capacity.

5.4 Implementation of Cryptosystem using the concepts of

repetition codes

Implementation process is done by using MATLAB. Implementation

process includes algorithms for

a. Parameter setting

b. Key generation

c. Encryption

d. Decryption

e. Decoding

:1. Parameter Setting

Parameter generation is an important factor in developing an algorithm

based on Elliptic curve and Algebraic Geometric code. Parameters of an elliptic
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curve is called domain parameters which include field size, a, b of a curve

E: y2= x3 + ax + b. The domain parameters of curve include (P, a, b, B, NB , h) .

P is the field size, a and b are parameters in the equation of curve, B is the base

point of the curve, N, is the order of the base point and h is an integer which is

cofactor h=#E(Fp)/n[5,7].

Parameter generation [8, 9] can be done by random method or Kobliz

random selection method .When we select a field, number of elements on the

field should be a large prime. This is to avoid attacks and to improve the

security ofthe system.

Procedure for generation of curve and its parameters is same as

previous algorithm and can be generated using procedure in Fig 5.1 .

Here, only 3 main domain parameters are generated. Remaining

parameters are generated during the encryption process. Code parameters

include (11. k. d). where n is the number of points on the curve. K is the

dimension and d is the distance. K is selected according to the linear vector

space generated.

b. Key generation algorithm

This algorithm takes the domain parameters, computes the base point

and generates keys. Procedure is as follows

Function[B]=Genkey (p,a,b)

1 .[xB,yB]=Genbasept(a,b,p);

2.m=Findorder(xb,yb];

3. [3 =randint(1,1,m);

4.End

Fig 5.10: Key generation
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c. Encryption procedure

Encryption procedure includes creation of generator matrix and

conversion of message into points. Here, message is treated as an array of

single characters and convened into points. If the size of message is very large,

message can be grouped into convenient size and can be converted into points.

Function[CM,P]=Encryption(p, a, b, message, B)

E l.[xp, y,,]=Genbasept(a,b,p);

I 2 [xp, yp.n]=pcpoinIs(a,b.p).j

l 3.[x..,p. y.,.,.]==msg2points(message):

'-’l.GM=Genmatrix(x,,,p,y,,,l,,a,b.p):

UI . s=fi11do1'(lc1'(x1,,yh);

. (1 = randint(1,l,s);

.y= a*[3;
70 . [x,,, yp]: Succclob(x1,.y.,. y.a.p).T

9.l’=[xk, yt];

10. [xk, yk]= Succdob(xb,yh, a,a,p);

11~ Z=lXt, yk];

12. CM=[GM+ P];

13 Retum(CM,Z)

Fig 5.11: Encryption

The algorithm is an overview of the encryption process using MATAB.

Process involves functions for base point generation, creation of generator

matrix and elliptic curve scalar multiplication.

c. Decryption procedure

Decryption procedure involves accepting the cipher text and converting

into original message It involves converting output contents into points and

then into message.
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Function[Message]=Decryption(CM, Z,a, b, p)

l.Compute Q=Succd0b(Xk ,Yk, [3,a,p)

2.CM'=CM-Q

3.[Mx,M,.]=Cipher2point(CM1);

4.len = length(M);

5. fori= 1:l:len

6. Message[ I ]=point2msg(Mx[i], M,.fi]);
7. End

Fig 5.12 Decryption

e. Decoding Procedure

The algorithm is as follows

Function[ ]=Decodc(CM', Z)

1.Compute GM 1= Genrmatrixeval(CM I );

2.k=size(CM');

4.count=0;

5.for i=l:l:k

6. forj= 1:l:k

if(GM1( i _,j) = = GM1( i+1 ,j))

c0unt++;

end

7. if( count > k/2)

disp(‘accept ’ +GM1( i, j ));
else

disp(‘error in data’);

end

Fig 5.13 Decoding

The received message looks like a repetition code, here we are

comparing the entries and deciding whether to accept the message or not. Here,

we are assuming that the channel error will not effect all the repetitive
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information. Various function calls are given in above procedures. These

function call contains code to execute corresponding process. The program was

executed .The following table shows the output of the above mentioned

program for a small field.

Encryption Decryption

INPUT: p = 163, a=1, b=2 INPUT: p = 163, a=1, b=2

DH» 3/1»)=(35-3) (Mn Yb)=(7-5.3)
'Ng=87;N=l77,h=2 N.;=87;N=l77,h=2

r = 42 r = 42
Plain text: welcome Cipher text:
C‘iphcr'1'exl:

261 113 244 274 251 244 113 261 113 244 274 251 244 113
241 273 115 112 272 272 273 241 273 115 112 272 272 273
145 113 258 113 199 258 113 145 113 258 113 199 258 113
262 273 182 112 184 205 273 262 273 182 112 184 205 273
127 116 121 112 121 121 116 127 116 121 112 121 121 116

Decrypted text:

Welcome

Fig. 5.14: Encryption and Decryption process

Analysis of algorithm was done over various fields on Pentium IV

processor. Time taken over various fields during the process of encryption is as

follows
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FieldFq 127 163 192 223 321 521

T”“°(S.) 1.16 1.46 3.14 5.44 7.18 9.12
Encryption

T‘m°(S.) 2.12 2 4.32 4.523 9.12 12.186
Decryption

Table 5.1: Field size Vs Time for encryption and decryption

127163192223321521

Field

—4— Fncryption

-9- DE’°’>’P‘_i‘E

Fig 5.15 Encryption, Decryption time Vs Field

From Fig 5.15, we can see computing time increases with field size.

Size of key also increases with field size. Here the disadvantage is the size of

the cipher text. This can be overcome by the advantage of decoding process,

which helps detecting errors. An analysis has been done for the above

algorithm for various message lengths. The result of the analysis can be

represented in Fig 5.16 as follows.
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Message length vs time
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9LUt_L 3 -9- Time

Message length (in bytes)

Fig 5.16 Message length vs time

The result in Fig 5.16 shows that, increase in message size does not

alTeet the computation time. The program was executed for a field F 0,; over

various message sizes from 14 bytes to 1000 bytes and result show that, there is

not much variation in time, when the message size is increased.

The system was tested for the size of the output message. As indicated

earlier, outputs represent a repetition code here. So, as the size of the message

increases, the output size also increases. The graph below shows length of

cipher text vs message size in the above mentioned system.
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Memory space Vs Message length

8S

200003 15000
1% 10000 l—0—Memory(inE |___ bytes) ___
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Message length

Fig 5.17 Message time vs Message length

From the Fig 5.17 we can see that the memory requirement increases

as the message size increases.

5.5 Implementation of the secret sharing method

In this section implementation of the above discussed algorithm is

discussed. Implementation was done on MATLAB and various steps are as

follows.

a .Secret splitting

Function [s]=ssplit(a,b,p,n)

1 .[xb,yb]=Genebasepoint(a,b,p);

2.z=findorder(xa.y.,,p);

3 . [s]=secretplit(randint(1 ,1 ,z),m);

End

Fig 5.18 secret splitting
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The above procedure takes a random integer and splits it into 11 units as

per dealer’s requirements. Next procedure shows how the secret is distributed

among [1 LlSCI'S.

b. Secret distribution

Function[t]= distribute[s,m, Fn]

l .[Fn]=Generatepoly[s];

2.for i = 1 to m

3. Compute f( i ) = F" ( i );4. end }
End

Fig 5.19 Secret Distributing

Step 3 here computes shares of the i "‘ user and the dealer distribute F[i] to the

i "‘ user. F" is a polynomial generated with the help of the splitted shares.

c. Secret reconstruction

As specified earlier, this step is done at the receiving end. The process

is as follows. Dealers do this with the shares of information he got from his

authorized users.

Function[S]=Secretconstruct(A,F,,)

/* fis an array of shares a1....am*/

l.S=0;
2.fori : 1 to m

3. s,-= r. . F"
4.end

5.for j=1 to m

6. S = S + s;;
7..end

8.End

Fig 5.20 Secret reconstruction

The program was executed and result is as follows. The Function defined here
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are the coding function in MATLAB .The security can be assured only when

field size is large prime.

lnput : a=l, b= 1, n =6
Field p = 167.
Number of points n =l47,

Base point (3521)

Random key limit: 144

Secret key generated is 101
Secret shares to 5 users :f1=l28, f2= 121 ,f;= 142 ,f4=35, f5=l4l

Fig 5.21 An Example

5.6 Analysis of various curves in Cryptography

Cryptography can be delined as mathematical techniques related to the

process ofinformation security. In 1985 Koblitz and Miller [10, ll] introduced

concepts of curves in cryptography. They made use of elliptic curves and the

system is known as Elliptic Curve Cryptography. In this chapter we will have a

study of elliptic curve. hyper elliptic curve. super singular elliptic curve. Klien

quanie curve. We will see how and which of these curves are suitable for the

use in cryptography. Cryptography, as specified earlier is the science of

security which involves mathematical techniques for the process of encryption

and decryption. Koblitz and Miller [10, l 1] introduced the concept of the usage

of curves in Cryptography. They used the concept of elliptic curves in their

cryptography and is known as Elliptic Curve Cryptography. Here we will see

various curves that can be used in cryptography and properties of it.

a. Elliptic curves

An elliptic curve E is a curve defined by a nonsingular Weierstrass

equation [3]

3 2
E:y2+a,xy +a3xy = x _; azx +a4x . at,

where the following equations a.)=3x2 +2a2x+a4; 2y+a.x+a3=0 cannot be

satisfied simultaneously by any point (x,y) on the curve B. Elliptic curve that
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are used for the purpose of the cryptography are of the form y2=x3+ax+b. An

Elliptic curve is an abelian group with an identity 0. Certain properties of

elliptic curve are

1. Let P be a point at infinity 0, then define —P to be infinity. For any

point Q define O+Q to be Q. This serves as an additive identity of

group E(Fq).

2. The negative —P is a point with same x coordinate and different y
coordinate i.e.

if P(x. y) then —P is (x,-_v)

if Q= - P then P + Q = O

3. ll‘ P and Q are different coordinates then the line 1 = PQ intersects the

curve exactly at one or more point R.

4. 11‘ P = Q , Let 1 be the tangent line to the curve at P and let R the only

point that intersect line 1 with the curve then 21’ = -R

From the above said properties we can say that the points of elliptic

curves fomi an abelian group. Various methods are there for generation of

curve for use in Cryptography. They include complex multiplication, Kobltiz

method and random selection method.

Security [12] of ECC is dependent on Elliptic Curve Discrete

Logarithm problem. DLP in ECC can be defined as follows. Given a point

P 5 E (Fq) and point Q 2-: E (Fq) such that Q = lP. We have to find 1. Various

attacks are known till date include Pohig-Hellman, Index — Calculus method ,

Pollard—Rho method[3] .We can make our algorithm secure from all attacks by

choosing suitable parameters that can be used in the process of encryption and

decryption. Most of the attacks rely on the size of the group [Section 4.6].

Advantages of cryptography using elliptic curve include smaller key

size, attacks are less effective, reduced bandwidth, greater efficiency and

reduced or simple mathematical operations
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b. Hyper elliptic curves

The curve of the form y3+h(x) y =f(x) [13] is called Hyper elliptic

curve. Hyper elliptic curve are curves of genus g greater than one where as

elliptic curves are curves of genus 1. There exists a hyper elliptic curve whose

genus varies from 2 to infinity. For Hyper elliptic curves there are no natural

group law on the points on the curve as in the case of elliptic curve by which

one can do operations like point addition, scalar multiplication, point

subtraction etc. This is because of the fact that, points never from group. But in

order to use in cryptography we should make use of some arithmetic properties

ofcurve. Hence for hyper elliptic curve a group law is delined via the Jaeobian

variety of the cuwe over a finite field which fonns abelian divisors over the

divisors group.

The Jacobian of a [Iyper elliptic curve [14] C is the quotient group

j = D”/P where D“ is the set of divisors ol‘ degree zero and D is the set of

divisors of rational fuiiclioiis. Jacobian of genus g hyper elliptic curve will have

q~“ points. Kobltiz [13] proposed Picard group pic”(c/p) ol'a Hyper elliptic curve

as a further group that is suitable for Cryptographic applications. For genus S 4,

these curves are secure provided that group order is sufficiently large and that

one should avoid curve for which special attacks that are known. Forbenius

Automoiphism [14 ] in Hyper elliptic curve can be used to obtain fast

arithmetic (especially scalar multiplication). As specified earlier, points of

curve doesn’t form a group but it can be achieved by Forbenius endomorphism

which operates on divisor class in Mumford representation [14] by raising

coefficients of polynomial a and b to the q "' power.

If points are represented via normal basis over Fq, then computing q "'

power of a finite element just means a cyclic shift of representation. This

computation is performed by almost 2g cyclic shifts. In hyper elliptic curve

normal basis representation is more efficient than polynomial basis. In Kobltiz
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curve, Picard group of over Fq" comes along with an automorphism group of

order n and inversion and this can be used in crypt algorithms.

The DLP of Jac (F) (Jacobian of F) stated as follows. Give two divisors

D1 and D2 3 Jac (F) detemiine a smallest m such that D2 = mD1. Operation

involved in it is group addition and group doubling. Pollard—Rho method and

its variants [15] are important examples of algorithms for solving the DLP in

generic group with complexity better than O(n) in groups of order n

.Operations involved in ECC and HECC are entirely different.

c. Super singular curves

A super singular curve should satisfy following conditions Let q=p"

and let E be an elliptic curve over Fq. Suppose the characteristic polynomial of

Forbenius endomorphism P(x) = x2— tx + q so that #E (Fq) [number of points]

=q+l -t [16] then

i. The endomorphism ring 01'1"; (over algebraic closure of F (q) is non­

commutative.

ii. E has no points oforder p i.e. (E(F(q))={o}.

If C is a genus 2 curve over F2 the form y2+y=f(x) where f(x) is monic

polynomial of degree 5 then C is a super singular. The general format y" = f(x).

Security in super singular curve is dependent on DLP of divisor group. There

is sub exponential algorithm for solving DLP of Super singular curves. Frey­

Ruck [15] described how the Tate pairing can be used to map the discrete

logarithm problem on the divisor class group of a curve C over a finite field Fq

into multiplicative group Fqk of extension of base field. Menzes, Okamoto and

Vanstone [17] showed that the value of divisor class k is always 3 6. Because

of this attack can be easily done in the cryptosystem. These results show that

we should avoid it in cryptography. Selecting certain super singular curve with
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certain properties can avoid attacks. But selection itself is difficult. The super

singular curves that can be used in cryptography include-[17]

G=3 C: y} = x4 +x3 + ax3+x +a over F32 P(x) =x(' + 3x4+4x‘l+l2x2+2°

G=4 C: y3=x5+0t over F32 P(x) = xg-2x4+l6

d. Klien quartic curve

Klien quartic curve is a homogenous curve X: ax3y + by3x+cz3x which

can be considered over any field. This curve is a non—singular curve and genus

is 3. Here also Jacobian Jac(x) of curve x is a three dimensional abelian

variety, defined over a lield k = Fq. If coefficients and q are properly chosen.

the number of points of group Jac k(x) is prime which form cyclic group [18].

This property made it possible for cryptographic applications.

Security is similar to divisor DLP. Selection of curve is dependent on

certain parameters. so that its points form a cyclic group. It is dillicult to find

out such a curve.

Here we have discussed about various curves and how these curves can

be used in cryptography. Each and every curve has its own advantages and

disadvantages while using it in cryptography. One main advantage that is

common to all cryptosystem using curves compared to public key cryptosystem

is smaller key size. Among these cryptosystem elliptic curve is more secure

and has less key size, less computational overhead and less processing power.

Apart from these, selection of curve is also very important in Cryptography

which in turn depends on parameters. The security of cryptosystem using

curves is purely dependent on curve and field. Overall comparison is as shown

in the table below.
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Elliptic curve Hypereulpm . Super Klien quartic curvecurve Singular curve
Smooth Smooth Smooth .
projective curve projective curve projective Non-Singular curve.n . .,. defined over any field.— Fq over F3 curve over [-3
Points form an Jacobian forms an

Jacobean forms
J acobian forms an. . an abelian .abelian group abelian group. abelian group.

group.

Genus g—l 221 gal g‘r3
Polynomial

, basis
Normal basis Noniial basis Polynomial or normal

basis

Easy to find
curve suitable
for
cr_vptograpliy

Only certain
curves are suitable
for cryptography

Only certain
curves are
suitable for
cryptography

Few points forms a
cyclic group that
curves can be used in
cryptography

Ci'_vptogi'apliic
operation
depend on
points on curve

Cryptographic
operations depend
on divisors of the
points on curve

Cr_vptogi'aphic
operations
depend on
divisors of the
points on curve

Cryptographic
operations depend on
divisors of the points

on curve. But curve is
suitable for generation
of suitable codes in
algebraic geometry.

Security . _ Security .
depends on dlp Security depends depends on dlp SCCUFII)’. depends on
on points on dlp on divisors on divisors dlp on divisors

. . Cryptographic
include key divisor generation, mclude.dw1:or "“1.g9””‘“‘5 mclilde
generation key generation generation, ey divisor generation, lcey
encryption and encryption and generation, generation, encryption
decryption decryption encryption and and decryptiondecryption

Table 1.2 Comparison of various factors of curve
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6.1 Comparative Analysis

ln this thesis we have seen various public key cryptosystems.

eryptosystems using codes and cryptosystem based on algebraic geometric

code using elliptic curves. From this we can see that most of public key

Cryptosystein including lilliptic curve cryptography are secure. The

Cryptosystem based on the concepts of coding theory makes Lise generator

matrix as key, resulting in increased key size. Various studies done in previous

chapters, shows that to be secure field size should be a large prime. As field

size increases, sizes of generator matrix also increase. This shows that existing

Cryptosystem using Algebraic Geometric code cannot be effectively used

because of above mentioned problems. Again in the existing system,

encryption and decryption are done as part of encoding and decoding.

In the Cryptosystem developed here the concepts of key is based on

parameters of elliptic curve. Because of this the key size is very small

compared to other existing systems based on Algebraic Geometric code. The

process of encryption, encoding, decoding and decryption is done separately.

By doing this, we can ensure more security to the infomiation transmitted.

The table below shows a comparative analysis of ECC, existing Cryptosystem

using algebraic geometric code and the proposed cryptosystems. The security
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of the elliptic curve cryptosystems and the proposed systems are based on

discrete logarithm problem. So field size should be of at least 1024 bits in order

to have the DLP unfeasible to solve. The groups of points on elliptic curve are

also chosen in such a way that attacks likes index—calculus. Pollard —rho

methods are unfeasible to solve. The security level of the cryptosystem is based

on the number of operations required to resolve the problem in a reasonable

amount of time. That is if we take a field of 1024 the security level then

security level will be approximately 2 so .l Cryptosystems
Parameters  ECC Mc-Eliece Cr‘l_.pt0s“stem Using repetitionusing AGC codes

Fq : 1024Key 1024 xsize(bits) 163 512 163 163
Errcorrection - 50 280 250

Capability

S°°“"l.‘J“' >80  56 >30 >80lc\-'cl(b1ls) ­
Table: 6.1‘ Comparative studies over Fq: 1024

l Crvptosystem Cryptosystems
Parameters ECC Mc-Eliece “gin AGC Using repetitiong codes

Fq : 2048

. Key. 224 2048 x 1024 224 224
s1ze(b1ts)

Errcorrection - 100 E 500 5500
Capability
Securityleveubits) >112 80 >112 >112

Table: 6.2 Comparative studies over Fq : 2048

From the above table we can see that key size, error correction

capability for code generated using elliptic curve is far better than the code

generated using other curves and other algebraic geometric concepts. The

execution time will be high compared to ECC. The error detecting capability
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for the system developed using the concept of repetition code is very high

Concluding Remarks and some out looks

compared to other systems but bandwidth is comparatively high here. The

security of the system is inevitable and can be obtained by selecting curve and

field as mentioned in Chapter 4. The table below shows a comparative analysis

of cryptography and cryptosystem using Algebraic Geometric codes (AGC).

detection

P bl" K .
Parameters Cnlilptgcgraglllly AGC lll Cryptography

1 .Security Secured Secured
2.Reliability Not reliable Reliable
3"En-or Coniecuon and Not possible Possible

4.Key size Depends on the chosen
Cryptographic methods

Small key size

5.Amount of
Information transmitted

Less amount of
infonnation

Comparatively large
amount of information

6.Computation Less lligh

logarithm problem

7.Attacks Prone to attacks* Less prone to attacks
Depends on Elliptic
Curve Discrete

gsecumy Depends on discrete logarithm problem bustalso on structure,
function field and finite
field

Table: 6.3—Comparison— Public Key cryptography with AGC in cryptography

*A public key cryptosystems (Asymmetric crypto systems) uses two keys :

public key, which is known to the public, and private key which is known only

to the user. User A uses the received public key to encrypt its messages. Then

when the encrypted messages arrive, User B uses its private key t.o decrypt

them. The method followed above reduces the problem of symmetric key

cryptosystems in managing single key, but this unique feature of public key

encryption makes it mathematically more prone to attacks. This is because the

secret key generation procedure mainly follows integer factorization problem

or discrete logarithm problem. The intruder may try to attack the system to get

the private key with help of the public key

137
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6.2 Conclusion

Communication is the process of transmitting infonnation from one

place to another through a channel. The channel/medium can be cable, satellite,

wireless networks or optical fibers, which are highly susceptible to noise and

other disturbances, compromising the quality of information being transmitted.

Apart from this, there are other prominent factors which intentionally make the

channel unsecure for critical communication. Main aim of this thesis is to

generate a cryptosystem that can ensure not only information security but also

error detection and subsequent correction. This is possible with the help of

algebraic geometric code. "Algebraic Geometric Code and their relation to

Cryptography using Elliptic cuwcs“ generate two eryptosystems based on

algebraic geometric codes. These algorithms not only introduce security but

also preserve reliability ofinformation being transmitted.

A digital signature based on the concepts has been developed so as to

prove the authenticity of data received. The sharing of secret is also done so
that secret can be derived from a set ofautliorized users.

So we can conclude that secrecy and reliability of the information can

be achieved, with a smaller key size, at a lower cost.

6.3 Future Prospects

In previous chapters, the characteristics of the proposed algorithms

have been studied and compared using MATLAB simulation. But this

approach uses a general purpose processor programmed to work as a crypto

system compromising on overall efficiency. So in order to offload processing

complexity and to make the encryption/decryption process faster, an Elliptic

Curve Processor which uses hardwired multiplier & adder for handling elliptic

curve operations can be used (Field Programmable Gate Array —
FPGA/Application Specific Integrated Circuit—ASIC). This offloads
computational complexity from the processor to the proposed ASIC, which will

speed up overall performance, as it uses a specially made processor capable of



Concluding Remarks and some out [oaks 1 39

doing operations on elliptic functions effectively. The security of the system is

highly dependent on field size. As we increase the field size security can be

tremendously increased. But when we increase the field size, computational

complexity will also be increased. Here by offloading the computational

complexity to an elliptic curve processor, improved overall efficiency and high

level of information security can be achieved.

.........
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Appendix - A

I. Here are some graphs of curve developed using the MATLAB. The curve is

defined over a finite field Fq and of the form yl = X} + ax +b and is

represented as Eq(a,b).

The points in Em(1,1)120 I 1 I. r I —I... I I .I I I ‘ I 3'an " I '3 " ‘100" . 1 3 “ ;I I , Ix“ ‘I II ,. I30-, ‘II. I,‘ I I_"‘ I x" n I II‘ x ' x R:>-5U- II‘! I —. I. I‘ II ,3 K“!I ,,l I40"‘ "3' "‘ I .I_I II I " "J" I II20- - ' ". * '­I . It I I,‘ ,,n I I 3"“ I Ii.‘. IU 1 1 1 1 IU 2U 4U 60 80 ‘IUU
X

Fig.1 Number of points-144
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The points In E 12 1(17,1)W I I I I I I I.. u- ,
11:0 ' ‘ n ‘ ' ‘ . I . . I ‘
BU ' n In I an I in ­5 I I ‘

> 60- I = * I 2­
nt . ‘I I I I * I-'-ll] ’ I 1:. ‘ ‘

20 _ ‘ I I I I I ‘ I I ‘ _
in L I In I Ian "20 40 an 33 100 120

X

Fig 2 .\‘umbcr of points -122

From the below mentioned figures we can see that number of points of

the curve is not only dependent on the size of the field but also on the

parameters a and b. size of the field but also on the parameters a and b.

11. 1.Here is some of the sample MATLAB code for generation of curves and

certain operations done using MAT Lab in this thesis

/* This is a MATLAB function for generation of curve along with points. The

p is the field size, a and b are the parameters of the curve y2 = x3 + ax +b. The

function generates the curve generates the points along with number of points

on curve. It also plot the points on graph. */

function [points,n] = curvepoints (a, b, p)

points=zeros(1,1);



R1= zeros(3,l);
L1 = zer0s(3,l);
X = zcros(2,l);
Y = zeros(2,l);
for i=0: 1 :(p-1)
R1(i+l) = (i)"3 + a*(i) + b;
Rl(i+1) = rem(R1(i+1),p);
L1(i+l) = (i)"2;
L1(i+1) = rem(L1(i+1),p);
end
ii=1;
for z=0: 1 :(p-1)
I=find(R1==z);
J=find(l.l==z);
el = isempty(l);
c2 = isempty(J);
if(c1) == 0
if( e2) ==
n=length(l);
m=length(J);
for h=l :1 :n
for g=l zm
X(ii)=l(h)—l:
Y(ii)=.l(g)—l:
P=[X(ii),Y(ii)];
points(ii)=P;
ii=ii+1;
end, end ,end end end
n=length(X) + 1;
disp(n);
%Generation of curve as points on a graph%
M=plot(X,Y,'x');
z = [X,Y];
disp(' X Y‘);
disp(z);
set(h(1),'LineWidth',2);
xlabel('X','FontSize',14,'FontWeight', ’ regular‘);
y1abe1('Y','F 0ntSize', 1 4,'F ontWeight','regular');

II.2 function [x3,y3,m] = ECADD(x1,y1,x2,y2,a,p)
% This function performs Elliptic Curve addition over an elliptic curve yz = x3

+ ax + b .Here we are adding two points P,( x,,y1) and P;( xg,y2) to get a third

point P3( x3,y3) which is the sum of P1 and P2.
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%
ifx1==Inf
x3=x2; y3=y2;
return
end
if x2==Inf
x3=x1; y3=y1;
return
end
if x1==x2
ifyl==y2
ify1==O
disp1ay('X3 is infinity’)
x3=Inf;, y3=Inf;
rclurn
end
111 = sy1n( (3*(x1)'“2 + a)/(2*(y1)) );
n = 3*(x] )“2 - a;
d = 2*(y1);
in = mod( (n * inverse(d, p)) , p );%*Slope of the curve is generated *%
x3 = mod( (m"2 - x1 — x2) , p);

y} = mod( (m*(xl — x3) - yl) . p):
return
end
display('P3 is infinity’);
x3=Inf;, y3=Inf;
return
end

n = y2 - yl;
d = x2 - x1;
m = mod( (n* inverse(d, p)) , p);
x3 = mod( (m"2 - x1 - x2) , p);
y3 = mod( (m*(x1 - x3) - yl) , p)
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I. Hasse’s Theorem

Hasse’s theorem states that Let t = q+ 1 —#E(Fq ). Then

#E(Fq“)=q“ +1 —a‘‘ —B"

where 1 —tx + qx2 = (I —otx)(| —Bx).

II. Chinese remainder Theorem

Theorem 1: For a,m |:| Z such that ax = 1 mod in ifand only ifgcd(a,m) = 1.

Proof: There is a,x E! Z such that ax E 1 mod m 3 there are x,y Cl Z such

that ax-my=l .

Suppose mi , . . . m..i:| N are relatively prime in pairs, i.e. gcd (mi , mi) = l for

i #j. Let al, . . , ar '3 Z . Then, the system of r congruences is given

by

xEai (modmi)(l Eiir)
has a unique solution modulo M = mi X . . . X in, given by

x = 2&1 ai Mi yi mod M

where Mi = M/mi and Mi yi E 1 mod mi .

Proof: Note that Mi is the product of all mi where j =i.So if j ¢ithen Mi E

0 mod mi .Note also that ged(Mi , mi ) = 1, so by Theorem 1, Mi y i E 1 mod

mi has a solution yi . Thus, x = 231 a iMi yi E ai Mi yi E ai mod mi for all i, 1

S i S r. Therefore, x is a solution to the system of congruences.
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Ill Euler’s function

Euler’s function up : N —> N is defined as

(p(m)=#{keN |1SkSm, ged(k, m)= 1}

IV Schoof ’s Algorithm

In 1985, Schoof presented a detemiinistic algorithm that could compute

#E(Fq ) (its precise value; not a bound or a11 estimate) in O(1og q) bit

operations (where Fq is a finite field olicharacterislic = 2, 3)

1. Let 1. = 3. I3 = 5.1; = 7, . . . , lk be the k consecutive primes starting at 3,

where k is the largest integer such that

l'I§‘=1l,54\*‘rq set L = lk

2. Compute ‘ti (mod li ) forall i(15 ;'  lg ).

3. Use the Chinese Remainder Theorem to compute

T =E§"=1riMiyi mod M where M = l—I§‘=1l.,Mi= M/ Ii and My,- E 1 mod l.~.

Find a t that satisfies |t | 5 2 (Hasses theorem) i.e ift > 2*Jrq set t = t — M.

4. Compute #E(Fq) = q + 1 — t.

V Koblitz’s random Selection method

1. Randomly select three elements from Fq; Let them be x,y,a.

2. Set the value for b by computing b = y2 — (x3 + ax ) since curve equation

(1.5)isy2=x3+ax+b.
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3.Check that cubic on the right side of equation 1.2, so that is should not have

multiple roots, i.e. check that 4a} + 27b2 7'. 0.

If condition in step 3 is not met, return to step 1.

Else set P = (x, y) and let y2 = x3 + ax +b be our elliptic curve

V1. Koblitz’s construction algorithm

1. Randomly choose a large prime q.

lo Use Koblitz’s random selection method to find an elliptic curve E(Fq)

of the type defined in (2.4).

3. Use Sch0ol‘algorithm to compute #E(l"q).

4. Verify that #E(Fq) is a (large) prime.

5. If step 4 is not satisfied return to step 2.

If Koblit‘z algorithm is performed, then any point in E other than 0 would be

the generator of E and the l_’CDl.P over [3 will be intractable.
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