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PREFACE

The subject matter of this report is the work done by
the author in the Department of Physics of Cochin University
during 1979 - 1981.

The present thesis deals with the theoretical investi­

gations on the effect of anisotropy on various properties of
magnetically doped superconductors described by fihiba — Rusinov
model.

Chapter 1 is introductory. It contains a brief account

of the current status of theory of superconductivity. In’
chapter 2 we give the formulation of the problem. Chapter 2.1
gives the BCS theory. The effect of magnetic impurities in
superconductors as described by A8 theory is given in
chapter 2.2A and that described by SR model is discussed in
chapter 2.28. Chapter 2.2c deals with Kondo effect. In
chapter 2.3 the anisotropy problem is reviewed. Our
calculations, results and discussions are given in chapter 3.
Chapter 3.1 deals with Josephson tunnel effect. In chapter

3.2 the thermodynamic critical field H62 is described.
Chtpter 3.3 deals with the density of states. The ultrasonic
attenuation coefficient and ufitlear spin relaxation are
given in chapter 3.4 and 3.5 respectively. In chapter 3.6
we give the upper critical field calculations and chapter 3.?



deals with the response function. The Kondo effect is given
in chapter 3.8. In chapter 4 we give the sumary of our
results.

A part of these investigations has been presented in
the form of the following papers.

1. K.Ba1akrishna Warier and C.Purushothaman

Solid State Communications Vol.3? No.12

pp 1001 - 1004 (1981)

2. K.Ba1akrishna Warier and C.Purushothaman,
occctptcd.

Solid State Communications (cemmunieated)

3. K.Ba1akrishna Warier and C.Purushothaman,

Pape; presented at the 51st Annual Session
of National Academy of Sciences, India

(Cochin) 1981.

ii



ACKNOWLEDGEMENTS

The investigations given in this thesis have been
conducted under the able and inspiring guidance of
Dr. C.Purushothaman, Department of Physics, University
of Cochin. The author is grateful to him for persistent
interest, profound insight, and invaluable guidance.

I wish to thank Dr. A.D.S.Nagi, Department of Physics,
University of Waterloo, Ontario, Canada for introducing
me to the subject.

The author wishes to record his hearty thanks to
Dr. K.Sathianandan, Head of the Department of Physics,

University of Cochin for his encouragement and valuable
help.

I am grateful to the University of Cochin for the
award of'a research fellowship.

I am thankful to the Nair Service Society for granting
me leave for higher studies.

I wish to thank the staff at the computer centre at
Cochin and Trivandrum for providing me with necessary

facilities for computation.

Finally I wish to express my deep appreciation to my
wife and children for their encouragement all these years.

K.BALAKRISHNA WARIER

iii



SYNOPSIS

The thesis deals with studies on several properties of
anisotropic superconductors containing paramagnetic impurities
in Shiba - Rusinov model. In the SR model, the Kondo effect

is neglected. This effect essentially arises while considering
the scattering of a conduction electron from a magnetic impurity
exactly if (i) the exchange coupling between the electron and
the impurity spins is antiferromagnetic and (ii) the non­
commutativity of the spin operators is taken into account.
The appearance of the impurity band within the BCS energy gap
is one of the most significant results of the SR model.
Further, the position of the local level 8 (for a single
isolated impurity and for s—wave scattering of the conduction
electron) is independent of temperature. Under various appro­
ximations the parameter EL can be related to temperature T

and the Kondo temperature TK of the system. This relation is
valid under the following approximations (i) the electron
energies are near the Fermi surface (ii) the impurity concen­

tration is very low and (iii) the temperature is near Tc. In
the limited impurity concentration and the temperature ranges,

the present calculations can be used to understand some aspects
of the Kondo effect in an anisotropic superconductor. Anisotropy
is introduced into the problem by assuming a separable form
for the effective electron - electron matrix element [1].

iv



The tunnelling phenomenon has been developed into one of

the most sensitive techniques for studying the properties of
metals and dilute alloys in the normal and superconducting
states. A study of the Josephson tunnelling can be a very
sensitive probe for the effect of impurities in anisotropic
superconductors that constitute the junction.

Considering a junction with two identical superconductors
the Josephson current for an anisotropic superconductor
described by Shiba - Rusinov model, containing paramagnetic
impurities has been calculated by an extension of the theory
of Nagi and Upadhyaya [2]. The slope K* of Josephson current

against temperature T near Tc has been computed and shown to
agree with the isotropic - limit.

The thermodynamic critical field He for a bulk specimen
of unit volume has been dervied for an anisotropic impurity­
doped superconductor on the basis of calculations of John R.
Clem [3].

The density of states N(m) of quasi-particle excitations
for isotropic superconductors was obtained by Chaba and Nagi [4].
An effort has been made to include anisotropy into the problem.

The Ultrasonic attenuation coefficient and nuclear spin
relaxation rate for a magnetically doped superconductor was
investigated by Shukla and Nagi [5]. The behaviour of ultra­
sonic attenuation coefficient and nuclear spin relaxation rate

for anisotropic superconductor for temperature near Tc has been



estimated. Expressions for these quantities for the two limiting
cases of low and high impurity concentrations has been obtained.

The Upper critical field HCQ for an anisotropic super­
conductor doped with paramagnetic impurities was investigated
for very low and very high impurity concentrations. The

slope of the upper critical field against T/Tc at Tc is derived.
The response function (electromagnetic property) to a

weak transverse field for an isotropic superconductor described
by SR model has been studied. The calculations are done in a
similar line with Skalski et al [6]. In the limit of m>>a
the equation obtained agrees with equation (16) of K.Maki [7].
In the limit of w9»o the equation reduces to that of Chaba [8].

The computer programme for the calculations has been given
in the appendix.
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CHAPTER I

INTRODUCTION

Investigations on the effects of magnetic impurities in
superconductors provide information regarding the interaction
between magnetic spins and conduction electrons in metals.
Gapless superconductivity was first proposed in the original
work of Abrikosov and Gor'kov (AG) [1] on the effect of magnetic

impurities on superconductivity. In this theory the intera­
ction between individual spins and the electrons is treated
by perturbation theory. The results of the theory for variety
of phenomena have been reviewed by Maki [2].

The work of AG has been succeeded by extensions of the
theory to take into account the interactions between the
individual impurity spins and the conduction electron
beyond perturbation theory. In normal metals this extension
leads to an understanding of the Kondo effect. A treatment
of the thermodynamic properties of superconductors that takes

some account of the Kondo effect has been given by Muller­
Hartmann and Zittartz [3]. It has not yet been fully
compared with experimental results.

An extension of the theory of AG has been provided by
Shiba [4] and Rusinow (SR) [5]. In this theory the impurity
spins are treated classically, but their interaction with the
electrons is calculated exactly. One striking new qualitative



feature of the model is the existence of bound states in the
energy gap.

The presence of impurities in a superconductor has an
interesting influence upon the effects of anisotropy of the
superconducting energy gap. An important result of the
addition of ordinary non-magnetic chemical or physical
impurities is the reduction or ‘washing out‘ of the anisotropy
of the energy. Such a reduction of the anisotropy has been
observed in specific heat, nuclear spin-lattice relaxation,
tunneling, infrared absorption, and surface resistance
experiments [6].

AG found first of all that the transition temperature
decreases sharply with increasing impurity concentration.
Furthermore, there exists a region of concentration where the
gap in the excitation energy spectrum is zero even though the
substance is still a superconductor in the sense of having
pair correlations and a non-zero transition temperature. In
contrast to the case of non-magnetic impurities, paramagnetic
impurities give rise to a real life time effect. Beause of
the spin-exchange scattering. the life time of a pair state
is no longer infinite and this results in a rapid decrease
in the ordering and therefore in the transition temperature.
The problem of a superconductor containing paramagnetic im­

purities is very similar to the problem of an ordinary impure



superconductor in the presence of an external current or
magnetic field [7].

The existence of a finite energy gap between the ground
state energy and the lowest excited states of a superconducting
metal plays an inportant role in the theory of superconductivity.
The BCS theory was the first to show that the superconducting
state at finite temperature could be described in terms of
individual particle-like excitations having_ energy gap. The
energy of one of these quasi particles is given by

1/22 2= Z32,, map + p) I
where Ep is the energy measured from the Fermi level, of :3
Bloch electron having a wave vector p, and wherell is aP

quantity called the gap parameter. The minimum quasiparticle

energy for a given p attained when éfp = O. is equal toZ5p.
In a pure single crystal the energy gap parameter Asp depends
upon the direction of p with respect to the crystal axes and
may be regarded as a basic physical property.

The lowest order corrections arising from anisotropy
which are proportional to the angular average of the square of
the deviation of the gap parameter from its average value, are
most conveniently expressed in terms of the mean squared
anisotropy defined as

2 2 2<a>=-<(A -<A>)/<A>p pay av pav



Pokrovskii theoretically obtained the effects of anisotropy
upon the critical field at low temperatures and upon the
specific heat jump at the critical temperature. Supercon­
ducting tunneling experiments have recently been used to
obtain information about anisotropy of the energy.

The Josephson tunnel effect in isotropic superconducting
alloys described by Anderson model has been investigated by
Nagi and Upadhyaya [9]. The influence of magnetic impurities
on Josephson current was studied by Kulik [10], Nagi and Lo

[11] and Lo and Nagi [12].

In the SR model the normalized position of local states
within the BCS energy gap with a single impurity, is independent
of temperature and the sign of exchange interaction.

The effect of anisotropy on the order parameter and ther­
modynamic critical field for pure superconductors was inves­
tigated by Clem [13] in the AG model. The effect of gap
anisotropy in superconductors containing paramagnetic impu­
rities with local states within the energy gap has been
investigated by the present author[l4].

For a transition metal atom, the spins are due to 3d
electrons, which are not so deep inside the atom with such
atoms as impurities in superconductors the magnetic electrons
would react strongly with the conduction electrons of the

host material and the AG theory would not be appropriate to



the problem. The applicability of the SH model is understand
the behaviour of the 3d magnetic impurities in superconductors
was first brought out by Chaba and Nagi [15] who used this
model to explain the tunneling conductance curves for super­
conducting quench—condensed Pbmn film observed by Woolf and

Rief [16].

Dick and Reif [17] have measured the real part 0, of
the conductivity of rare earth impurities like Gd in Pb and
transition metal impurities like Mn in Pb by measuring the
infrared radiations absorbed by a film of the above alloys.
In the above measurements, it is found that the experimental
results in the case of rare earth impurities agree with the
theoretical ones derived from the AG theory. But in the case
of transition metal impurities, the agreement is not satis­
factory as the observed effects in this case are more pronoun­
ced than those predicted by the AG theory. In the case of
rare earth impurities, the localized spin is due to the
coupling between the electrons and the impurities may be weak
and the Born approximation, as used by AG, may be valid. In
the case of transition metal impurities the spin of the
impurities is due to the d — electrons. In this case the
coupling between the electrons and magnetic impurities may
not be weak and hence, the Born approximation may not be
justified.



The effect_of gap anisotropy in superconductors with non­
magnetic impurities was investigated by Markowitz and Kadanoff
[18] and Brink and zuckermann [19] and Fulde [20]. The
effect of gap anisotropy in pure and impure superconductors
was investigated by Clem [8,21]. The effect of resonance
scattering on anisotropic superconductors was studied by
Zuckermann and Singh [22]. In the present thesis, I have
investigated the effect of gap anisotropy on magnetically
doped superconductors described by the SR model. The Kondo

effect has been included in the problem.



CHAPTER II

FORMULATION OF THE PROBLEM.

2.1 Bardeen - Cooper - Schrieffer Theory.
Bardeen — Cooper — Schrieffer (B08) [23] in 1957 gave a

successful microscopic theory of superconductivity. The theory
is based on Cooper's [24] idea that in metals an attractive
interaction between two fermions in-the Fermi sea leads to the

appearance of a bound state, now called a Cooper pair. The
momenta and the spins of the two members of the pair are

(fi,5,4) and (4h,§’@), where 5 is the wave -vector. As was
shown by Frohlich [25]. in metals, under certain conditions,
the electron - phonon interaction indeed provides an attractive
interaction for electrons near the Fermi surface. The BCS

theory was formulated in terms of Green's function by Gor'kov
[26] and is described in detail in several books-[27] - [31].
Below we give a short summary.

Consider a system of interacting fermions interacting by
an attractive spin - independent, contact type two body
interaction,

V(§i—-3') = -g o(f>‘<’-_\:), which is brought about indirectly by
the electron ~ phonon interaction. Here g is the strength of
the electron - electron intraction. The hamiltonian of the
system in second quantized form is [31].

H = f d3X‘f’;:(§.t) ["'V2/2m] k{Ja(§')t)

-9/2 f d3xV;(§.t)~Pg(§,t) (Hfl(’)_(’,t_) *1Ja(§,t) .. (2.1)

where \|J(.§.t) and 'y+(«>§.t) respectively are the single electron



annihilation and creation operators, éft denote position and
time. a and E are spin indices and the energies are measured
from the Fermi energy. The summation over the repeated spin

indices is implied. (we use energy units '5 = KB = 1
throughout this thesis.)

The electron zeroetemperature Green's function is defined
by

5(§t,>_£'t') = —i<T[ ‘\J4_(‘)_('t) g;:(§'t')]> ..(2.2)
where T is Wick’s time - ordering operator ‘fl%(§t) and tg:(§:t')
respectively, annihilate and create an electron at position 33
and time t, with spin4~, and the bracket <-—-—> denotes the

quantum mechanical expectation value of the operators. We
use Heisen erg picture. In this picture the field operator
is governed by the following equation of motion.

1(o/at) *#a(§.t> = [\4Ja(x.t).HJ ..(2.3 )
where [ , ] denote the poisson bracket.

Using equations (2.1). (2.2) and (2.3) we get

(16/bt - V2/2m) 5(3Et,}£'o) = o3(§ - 35') b(t)

+ :g<r[~r;<g.t>va<3g.t>

‘\”1~(,’f,"°) H’;(X,o)]> ..(2.4)
On the right hand side (r.h.s) of equation (2.4) one has

an average consisting of four field operators. Using x=x,t
such an average is factorized in the following way.



<T[“t’a("1)‘1";3(":2)‘\’:("3)'*)$("4)]> 3

<T[\‘Ja(x1)‘1J3(x4)]> <r[kyB(x2)t,)j(x3)]>
_<r[qJa(xl)tp‘;(x3)]> <I[tyB(x2)qJ‘g(x4>]>

+<r[\ya(xl>W(x2>J> <rw‘;<x3>wg(x4)]> (2.5)
The first two terms on the r.h.s of equation (2.5) are the

usual Hartree - Fock terms which also come in the factorization

appropriate for a normal metal. As one is interested in the
deviations from normal metals, these terms are usually hgnored.
For handiling the last term on the r.h.S of equation (2.5).
Gor‘kov introduced the following Green's function [29]

IIF(x,x') —i<r[u)a(xl)xyB(x2)]> ..(:>..z.)
-i<T[H’:(x3)H)g(x4)]> ..(2.7)!!?(x,x')

and the zero - temperature order parameter of a pure superconduc­
tor,

A<o.o) = - g <ty¢<x>q>&(x>> ..(2.a)
Equation (2.4) can now be easily rewritten in terms of

A (0,0) and F.
For a homogeneous superconductor, it is more convenient

to work with the Fourier transformed Green's functions

a(E3w)a F(k.w) and E(k,m). In terms of these, equation
(2.4) reduces to

[w —£k] f2'(15.w> = 1 + A(o.o> F((k.m) ..(2.9)
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where ER -= k2/2m.

Now one writes the equation of motion of E(Xt,§ft').
does the Gor'kov factorization on the r.h.s and takes the
Fourier transform to obtain

[w +€k1 %<_z5.w> = 4~I‘(o.o> 5qg.w> (2.10)
where A*(0,0) is the complex conjugate of A(0,0). Taking
£§(o,o) to be real, equation (2.9) and (2.10) give

E(}5,w) (w +gk)/(L02 — Efi) (2.11)
F<5_.w> A.(o.0)/(m2 - 12,3) (2.12)

where Ek -= \{[€_E +|A(O,O)\2] and is called the excitation
energy of a quasi — particle in a superconductor.

The density of single particle states in a superconductor
can be calculated from the imaginary part of the Green's
function by using the relation

Ns(w) = - (1/n) Im g E(E,m) (2.13)
and one finds.

N50») w/‘;’[w2 --A2(0,0)] for Lu) A(o,0)

NS(w) = o for m < g;(o,o) 2.14)
Thus in a pure superconductor there are no single partcle

states for energies less than the gap energy [§(0,0).

For finite temperature calculations, one introduces the
Green's functions [31]
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E(x.t wt’) = - <'r'[w><.*t) tp;(x:t')] (2.15)A! ~ ¢* n
where ‘B = it, is the imaginary time and T is the Wick's
operator which orders imaginary times. The bracket <....> now
indicates the averaging of the operators in the Grand — cano­
nical ensemble. The Gor'kov function F, E and the order parame­
ter are defined in a similar way.

Usually one goes from the zero - temperature to the

finite temperature results by replacing w to iwn with
mm = n T (2n + 1) where T is the temperature and n is an
integer. At the same time one replaces f dm/2n-—% iTZ ,

n
where E indicates the sum over n. Now

E(5,wn) = [ imn +€k]/[ —a§ — si] (2.16)
i-‘(}_<_,wn) = -A(o,T)/[ mi + sf] -.- F(k,wn) (2.17)

and

A<o.r> = -g<\gr<x><,J‘<x>> = g F(X 1*. X12) (2.18)
with T" -.—. ‘C + 0*

Equations (2.17) and (2.18) give the self consistency
equation for the order paramater

A(o,I) = g T g E A(o,1)/[ mi +g§ +A2(O’T)] (Z19)

The sum over '1; can be replaced by

E -9 N(0)fdik where M0) —--= mkf/2-a2 is the density
of single electron states of one spin at the Fermi surface( kf
is the Fermi momentum and m is the electron mass).

The" equation (2.19) can be integrated to give
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[3(cnr) = g N(0) 2nT z 1/v[1 + ui O] (2120)0.n>,
where Un'o = wn/ZX(0.T)

m
D

at T = 0 K, the 2nT Z is replaced by'f dmn andn 3 0 0
equation (2.20) gives

1/gN(O) -"=[1/A(0,03ZDdwn/V'[1 + U?‘

U-‘D/A (090)

“ £ dU/V[1 + U2]

1
O

: s1nh‘1[mD/z3(o,o)] (2.21)
In the BCS theory one assumes gN(O) < < 1 then

equation (2.21) gives

Z§(0.0) C: 2 wD exp [ -1/gN(O)] 2.22)
At T = Tco , ( the transition temperature of a pure

metal) the order parameter vanishes. For temperature near

Too , A(O,'I') is very small and one can expand equation (2.20)
in powers of Z§(0,T) to obtain

A(0,T) = gN(O) 21tT E O [A(0,T)/urn -(1/2) A3(O,T)/w:...]n >, (2.23)

At T = Tco equation (2.23) gives‘ mo/2nTc0
1/gN(O) = 2nTco 2 [ 1/wn]“:0

= 1n[ 2ywD/nTcO] (2.24)
where y = 1.781 and we have used the mathematical identity
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wn/2“Tco

2“Tn3> O [1/wn] = ln[2ywD/flT] (2.25)
2

using equations (2.23) - (2.25) one can calculate Z3 (O,T)

near Too. Then

1n[T/T =[1/4] \52(1/2) [A(0.T)/2nT]2 (2-26)co]

wherexpn(z) is the poly—gamma function [32].
Expanding near Tco equation (2.26) gives

[52(o,T) = - [ienzrio/u?(1/2)]( 1 - T/TCO) (2.27)

2.2 Effect of Magnetic Impurities in superconductors.
A. Abrikosov - Gor'kov Theory.

A very successful theory for low concentration of magnetic
impurities in a superconductor was given by Abrikosov and
Gor'kov [1]. Their work indicates that in the magnetic
impurity problem, the energy gap and the order parameter are
not identical and furthermore the existence of the order
parameter ( or the formation of cooper pairs) is the only
criterion for superconductivity. These authors predicted the
phenomenon of gapless superconductivity which has been

experimentally verfied[IW].

AG theory is formulated in terms of the Green's functions
in much the same manner as the BCS theory. The hamiltonian is
composed of the BCS model hamiltonian plus an extra term which

characterizes electron and the spin of an impurity atom.
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AG have made the following assumptions, (i) the interaction
between a conduction electron spin and an impurity spin is
assumed weak and the lowest order Born approximation is used

in treating the interaction, (ii) the impurities are assumed to
be randomly distributed in the sample, and (iii) the impurity
concentration is assumed to be low enough so that the impurity­
impurity interaction is negligible.

The hamiltonian used by AG is

H = I d3X*(;(3g.t) [ -V2/2m]\Pa(3_<,.t)

—<g/2) g d3xv;(3g.t)c,2f;(5.t)L,JB(3§.t)t,Ja(x.t>
+ § f d xQ:(§,t) vaB(§ - Rn)VB(X,t) (2.28)

where the first two terms are the usual BCS terms and the

last term describes the electron impurity scattering. one has

x/aB(__>_<’ - Rn) = V195 - Rn) ow + v2(§ — Rn) §.(oaB/2) (2.29)

where V1 and V2 respectively are the non—magnetic and the

magnetic scattering potentials. ‘g is impurity spin and ad8

denote Pauli matrices.

It is convenient to introduce a 4 x 4 matrix temperature­
Green’s function (2) defined by

?s'<x.x'> = -<'r[q2<x>uy*(x->)>
where

‘rq4<x>7

‘f(x) =  and Vqx) i [v«;x)1y‘;(x)3)?(x)qi(x)]"()
.LVtx‘-Iv
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with x = (X,‘[‘) ,) "C = it
In this notation, the BCS Green's function is written as

'é°(r,wn) = [mnqoo -§kf’3oO -n(o,I)t’2o2]"1 (230)

where (1 , o. ( 1 = 1,2,3) are Pauli spin matrices operating1

on the ordinary spin and the electron - hole spin states and

(0 , do are unit matrices. A matrix like (202 means
_ 0 -io yF202 _ 2io2 0

Using the hamiltonian given in equation (2.28), treating
the scattering within the lowest Born approximation and
averaging over a random distribution of low concentration of
magnetic impurities, AG obtain [1], [2].

E(f'wn) " [iffn "£pF3 *9nf2 ‘’2]'1 (231)
where Sn and 4}“ are the renormalized frequency and the
order parameter respectively, and are given by

= wn + <1/2't‘>,s.~»,./vtsi +4>i1 <2.s2>
en = + (1/2f01)9‘n/V[:’a;?\ +133] (2.33)I 1

The quantities'C and T: are the scattering life times and
are defined by

1/1:
d

an 1/*C1 = 2nCiN(o)[vf - [s(s+1)/4]v§]

2nCiN(0)[VE + [s(s+1)/4]v§]



16

where C. is the impurity concentration, V1 is the interaction1

potential due to non~magnetic impurities, and V2 is the
interaction potential due to magnetic impurities. Defining

Un = wh/{in equation (2.32) and (2.33) can be combined to give

an/A =-— unu -(a/.a><1/vi[1+u§])] (2.34)
where

a = 1/‘[35 = (1/2)[1/rt)‘ - 1/1;“ ]
:(u/2) Ci N(O)s(s+1)V§

It may be noted that in equation (2.34) the deviation
from BCS value arises when a is different from zero.

In the 4 x 4 matrix Green's function formulation, the
order parameter is given by [3].

A<ci.r> = - gr g; f d3k/<2u>3 Tr[(1°2 G<n<.w>]

: gN(O) 2nTn>g 1/V21 + ui] (2.35)

B. The Shiba - Rusinov (SR) model.

Shiba [4] and Rusinov [5] have generalized the AG theory
to the when the scattering of a conduction electron from a
magnetic impurity is strong. Following Shiba [4], first we
may use the one particle Green's function for the alloy.

The scattering of a conduction electron from a magnetic
impurity is described by the so called s - d exchange
interaction hamiltonian.
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Hsd = - (J/2)krk‘ [(a+(k}Pa(k’),b - a+(k)&a(k")“) 82+ * ' 2.36+ a (k)+a(ko)*s_ + a (k)La(k )4\S+] ( )
where J is the strength of the exchange interaction (which is
assumed to be constant) S2, S_, 3+ are the components of the
spin operator associated with the impurity.

Using the above hamiltonian and considering only one
magnetic impurity, the 4x4 matrix Green's function is given by

G(k9k'aw) 3 ao(£rw) O,(,k. + ?3°(1<.u>) t(w) <'3°(}_g'.w) (2.37)

where we have averaged over the directions of the spin, E0 is
given by equation (2.30), w is real frequency and t(w) is the
non-spin-flip part of the scattering amplitude given by [4]

t(m) It [<Js/2)2F<w>3{1 - [JsF(w)/2121" ‘2°38’

E a°(§,w). In writing equation (2.38), one
IIwith F(w)

has used the so—ca11ed ‘classical limit‘: J-9 0, 5-) °°,
JS = finite.

for \co\< [X(O,T)
-1/2

F(w) = -1=No[w + A(0,T) ?202][A2(O,'r) - «:21 (2.39)
Using equation (2.38)and (2.39) one notes that t(w) has

poles at

(w/ A(o.T)] = 1 [(98/A(O!T)] = 1 2

: ¢[1 - (JSaN0/2)2][1 + (JSnNo/2)2]'1 (u.4o )
when (Jsuwo/2)2 < < 1, 3-) 1. when (JS1tNo/2)2 = 1 ) g = o,
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when (JSnNo/2)2 > > 1 ,f¢)-1. The magnitude of 2 lies '
between 0 and 1. The pole in t(w) signifies a bound state

and O 5‘£\$ 1 means that the bound state lies within the
BCS gap at A(O,T). For the finite impurity concentration
problem, one assumes that the magnetic impurities are randomly
distributed in the superconductor and that their concentration
is low enough so that the impurity e impurity interaction is
negligible. Then the thermal Green's function, averaged
over the positions and the spin direction of the impurities
is given by

[<3(}3.w,,)1"1 =- [c3°(k.w,,)]"1 - L(k.wn) (2.41)
where L(k,wn) is the self energv. we assume L(k,wn) is” cv
independent of K , then __ _ .\

L(Wn) = Ci[(JS/2)2F(Wn)][1 ‘ [J$F(wn)/2J2] (2.421

where Ci is impurity concentration and E(wn) should be obtained
self consistently by

Eu.) = 2 a(k,w)k n
one finds that

a(k,wn) = [icon ..s,k +.19nP1o2]""1 (2.43)
where

w = w +1‘[u v[1+u211/[22 2n n ‘ n n + un] (2.44)
9,, = A(E.T) +I;V[1 + vi]/[£2 + Ufil (2.45)
T,’ -- [Ci/2uN(0)](1 -E) (2.46)
FL = [ -Ci/2nN(0)]g (1 — 2;) (2.47)
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and U“ =  (2.48)
equations (2.44) and (2.45) can be combined to give

Lon/A(<":,T)= un[1 - (a/A (e'.mv[1 + ufil/[$3 + ufill (2.49)

where C! = T’ 1 --r2 = [Ci/21!N(0)](1. -5.2) (2-50)
Physically, the quantity [1/a] represents the time it

takes for a conduction electron spin to flip during scattering
from the impurity. Rusinov [5] has shown that

g =.- cos( c’; - o; ) (2.51)
where O: are the s - wave («Q = 0) phase shifts of an electron
of spin t (1/2) scattering from a magnetic impurity. Thus
the spin-flip scattering of the conduction electron plays a
crucial role in the SR model.

It may be noted that the results of the Abrikosov ­
Gor'kov approximation can be recovered from the above

equations by the following argument. In the AG theory the
interaction between the conduction electron spin and impurity

spin is weak and the approximation [(1/2)JSuNo]2 << 1. is
valid. Then equation (2.40) gives (1 -E?)-§»4[(l/2)JSuNo]2.
Substituting this in equation (2.50) gives aAG. Then taking
3 -> 1 in equation (2.49) gives [un]AG in the limit of
large 5.
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C. Kondo Effect.

It was discovered that at low temperatures the resistivity
versus temperature plot for a normal metal with low concentra­
tion of transition metal impurities exhibited a ‘resistance
minimum’. Kondo [33] has provided explanations for this
phenomenon. Using the s - d exchange interaction hamiltonian

given in equation (2.36), Kondo showed that to the third order
in J, the resistivity contributed by the scattering of the
conduction electron from a low concentration of magnetic

impurities is given by

Pspin = ci€n[1 + (323/£I_.) log(T)] (2.52)
where

P“ .-. 31cmJ2S(S+l)/2e2€F (2.53)
'2' is the number of conduction electrons per atom, €F is the
Fermi energy, 'e' and ’m' are the electronic charge and mass

respectively and C1 is the impurity concentration.

Equation (2.52) contains a singular term involving 1og(T)
which increases towards low temperature, if J is negative.
I“ that 0339 eqUation'(2.52) added to the phonon contribution
to resistivity gives the total resistivity which shows a
resistance minimum.

Because of the presence of the singular term in equation
(2,52), the Kondo effect has attracted considerable theoretical
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attention. For normal metals theories has been proposed by

by Abrikosov [34], Suhl [35] and Nagaoka [36]. These theories
are reviewed by Kondo [33].

Nagaoka [36] gave the Green's function approach for the
Kondo effect in normal metals. He used retarded double-time
Green's functions [37] which are defined by

(A/B>t = - 1 <[ A(t),B(0) ]+> for t > o= o for t < 0 (2.54)

where <.....> denotes the statistical average, A and B are
Fermi operators in Heisenberg representation, and [A,B]+

means AB + BA. The Green's functions involved (for a local
spin 8 = 1/2) are

r. .(w) = (C . S + C , S \ C+> (2.56)kk  Z k ‘O "‘ ‘(Ir
using s - d exchange hamiltonian given in equation (2.36) and
after some approximations, Nagaoka showed that

Gkkt(“)) """' (1/27t)[bkkI/(03 "8k) + 13(0))/[(03 '* £k)('~° -fi<I)]
(2.57)

where t(w) is the spin - independent part of the scattering
t - matrix.

Hamann [38] showed that

t(w) = [1/2n1N(o)][1 - X/VIX2 + n2s(s+1)]] (2.53)
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with

x = X(w,T) = 1n[(w + 17)/11K] (2.59)
TK = D.exp[(1 — s(s + 1)(ny/2)2)/y] (2.60)
Y = JN(0)

In the above equation, D is the cut-off energy of the

order of Fermi energy and TR is called the Kondo temperature.
For high temperature T >> TK, t(o) has a term which goes as
log(T). For T-9»O, t(0) is found to be a well behaved.

The theory of Kondo effect in superconductors is extremely
complicated [39], [40]. However under certain approximations,
the Kondo effect can be incorporated in the SR model.

The quantity on = [Ci/2nN(O)](l --2,2) which plays a
very crucial role in the SR model can be related to the spin­
dependent part T: of the scattering t - matrix in a normal
metal by

on = Ci[2nN(o)s(s +1)\I§2] (2.61)
Further, the spin-independent and spin—dependent parts of

the t - matrix are related by

Im the) =- - M‘-‘(O)[\t(w)\2 + "[‘(w)‘2 s(s +1)] (2.62)
using equations (2.38) and (2.61) one gets

uN(O)S(S + 1)¥D(m)l2; [1/4nN(O)][1 - x/v[x2+u2s(s+1)]]
(2.63)
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equation (2.59) gives

x(o,r) = ln[T/TK], 2
then equation (2.63) gives  (Ow ­

For temperatures near TC, the superconducting gap is small
and a may be calculated by using’C(0) in equation (2-61)o Then
combining with equation (2,50), one gets

$2 = 12/xr[1;2 + n2S(S + 1)] (2.64)(C, =
More accurate treatment [40] gives

E, = “if-’F[’E2 + 1r2S(S + 1)] (2-65)
2.3 The Anisotropy Problem.

In a pure superconductor the effective electron — electron
interaction via phonons, which is responsible for pairing,
depends upon the directions of electronic momenta relative to
the crystal axes and the electrons take maximum advantage of
this anisotropy in forming pairs. This anisotropy is neglected
in the B08 formalism. when non - magnetic impurities are added
to the superconductor, the scattering of electrons from
impurities will smear the electronic states over the Fermi
surface and this gives a reduction in the transition temperature.
Now, if magnetic impurities are added, the transition temperature
is further decreased because of the depairing caused by spin­
flip scattering.
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A general electron - electron interaction may be written
as

Hint = [1/Vol] ' I 2 <pi pg 9 plp2>p1'p2'P1'P2'°1'°2* + (2.66)O aPi°1 a Pé°2 ap2°2 ap1°1p1+p2.pi+p§

where Vol. is the volume of the system. The part of this
interaction responsible for superconductivity couples pairs of
particles with opposite momenta, involving

9 = < p:~p[g|p. ~p> (2-67)pp’ ‘V ‘” “ ’”
lbs!

The anisotropy can be included by assuming a separable potential

[41] and assuming gee, with

geg, -_— gt: 0 pL(cosG)L(-E O ;}’(/cose-)

= g[l + E p(cosG)][l + ‘; p(cos9)]= 1 1. £==1- l’
= g[ 1 + a(QJ][ 1 + a(£§] (2.68)

where.fL and {}’are unit vectors along the directions of p

and p’ respectively and 3§cos0) is Legendre polynomial.‘V

The quantities aQgJ describes the anisotropy of the interaction
[13]. They are chosen so that their average

<a> = fail/(4a) acg) = 0 (2.69)
ibut <a2> # 0. Further'a' is assumed sufficient] small so
that averages of higher powers of'a' are negligi Le.
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The present author described the scattering of conduction
electrons from a low concentration of magnetic impurities
exactly by using the SR model, as given below.

Now, the single - electron Green's function for the alloy,
averaged over the positions and spin directions of a low
concentration of randomly distributed non - magnetic and
magnetic impurities is given by [14]

Emu“) = [13n(,-;_z)f3-q‘ + 15n(.g.) (’1o2]"1 (2.70)
with

E»',,<,«:,x> = «an +r1 f [cud/41:] u,,<.».:>vn + ufinnn/:e3+u§m.~>3

+F3f [d(.n:)/42:] Un(.'a)/[‘z.2 + U§(-r\.'.)] (2.71)
and

Znw - A (ci.r.a)+r2J[a,.:/4») VII +z:,‘§<4.~>1/[22+u'*,j(,.'_>J

+F3 f [d..;/41:] mm + u§(;.'.)] (2.72)
where T’3 = CixN(O)VE
V1 being the non - magnetic scattering potential. Further
A.(Ci,T,Q) denotes the temperature and the impurity dependent
anisotropic order parameter given by

A (Ci.T.0-) == gN(O)21:T[1 a(rL)]
n

[1 + a(,{)]/[1 + u§(,g)]l/2 (2.73)

urns

f[dl{/4u]­
0



CHAPTER III

3. Calculations, Results and discussions.
3.1 Josephson tunnel effect.

Consider a Josephson tunnel junction consisting of
two impure anisotropic superconductors which are

separated by a thin oxide layer (insulator). when the
superconductors are different the Josephson current
can be calculated only numerically. However, for a
junction made up of two identical superconductors, one
can do analytic calculations. Further, all important
properties of the Josephson effect are still manifested
in this case. For such a junction, the amplitude of the
Josephson current at a temperature T can be written as

Js(E:',T,n.) = aN‘1(2n'r) “ego f d4?’ [1 + ufi(_r;’)]"3.(3.1)

RN is the normal — state resistance of the
junction and

un<«z> = w(«z>/‘A 041)

w(JL) and Al(Jl) are given in equations (2.71)

and (2-72). Near Tc A (-0.) is small and Un(—n.) is
large. Hence equation (3.1) can be rewritten as. ... _ 0° / ,

J5(c.r.xx> = RN1(2uT) ":0 f Sig: [1/u§(xz>J ...(3.2)

We condiser terms containing ()2 only. We have

26
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shown in ref [14] that

1/u(41) = L + a(xL) M (3.3)
where

L = [A /(to + a)] + (A3/2)[a(2g2 — 1)/(w+a)4]
(3.4)

and

M -= [A/(w+e)] +[(A3/2><2 2 - 1>r,3]/[<we)2<«»+a>2J
(3.5)

Substituting equation (3.3), (3.4) and (3.5) in equation
(3.1) we obtain

Js(5,T,.O.) = [(2-:t'I')/RN] °§O [[A2/(w+cz)2] + <a2>A2/n:
(w+B)2]

=[A"‘/(2n-mu)1[t,3(u/2>+<a/(2m)> +

<a2>ty'((1/2)+(a/(2m)) (3.6)
Hence

Js(5,T,11) A2(5.T. ) B2(E.r)/(2«:'rRN) (3.7)
Where _ I

B2(C.T) ==qfi((1/2)+(a/(2nT))) +<a2>1f’((l/2)+(,»an2T))

Also we know that [14] that

-1n(T/Tco) = B°(5.T) + Bl(c',T)A2(5,r,n.)/(8n2r2)
(3.8)
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Near Tc equation (3.8) can be expanded to give

A 2(&',1-,;;_) = [8«n;2'1”E/B1(E,T)][1+Tc%:I.Bo(E,T)\][l-T/Tc]
Tc (3.9)

where

30(6):) = [1+<a2>]'1{[t,J?(1/2)+f) «$971/2)]
+ <a2>[qJ°((1/2)+a) -!{J (1/2)]} (3.10)

2
a§E,r) = [1 + <a2>]'1[bo(E.r) + <a > b1(5.T)] (3.11)

2 _
b (6 1) = -(1/2) \y2((1/2) +r> — {J25 1) ‘P3(”/2”’)° ’ 6 (3.12)
b1(<'f.T) = [3/(o —r>1w1<(1/2)+r> -«,»‘((1/2)+o)]

-[Ci/4n2N(o)'r][v§ + (1 -£)(2 £2 - 1)] x
[1/<a— r>12[n,a1(<1/2) + 9) + yltu/2>+o>]

--2[1/(o-r)]3[ o°<u/2>+o> -s,;°<<1/2>+ ml
(3.13)

1/(k + z)n+1
«Elm;

n = _ n+1 gV (2) ( 1) 1'1];

f as a/21:1 = E (TOO/T) (1 -9,?)

o as 5/2»: = E (Tco/T) (1 - £;+'\7§)

For small impurity concentration and T :3 Tc

A2(E,r,.n.) = [81t2T§/B1(5,'l‘c)(1 - T/Tc) x
E 1 - (a/2nrc><,»1(<1/2) +r>1 ~~(3.14)
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for a pure superconductor the Josephson current is obtained
88

JS(O,T,-O.) = A2(o,r)¢v1(1/2)[1 + <a2>]/RN(2nT) (3.15)
The normalized Josephson tunneling current can be given by

= I  (é’.'r)/ A (o.I>]2[1/ VH1/2)[1+<a2>]]<
[.|,1((1/2) +r) +<a2>[q,1((1/2)+o)­

.’,1<u/2) + F )1] (3.16)
where

[ A(5.I)/ A <o.m2 = [Tc/Tc0]‘°‘[B1(0.?)/B1(5.T)](1-T/Tc) x
[1-4.9356160/'rc[1— 32 + <a2) x

[23 8+ Vim/(1 - I/Ice) (3.17)
For small impurity concentration and for T53 Tc-- __ - 2

B1(C,'I'c) — 8.414 — 32.47 C (Too/Tc) ( 1 -2 )

+ <a2>[42.O‘7 — E (TOO/Tc) 16.235[15 - 85-5 :2

— 2,-:_3 + 10 Tzfj] (3.18)
The zero temperature order parameter for a pure

superconductor .Z3(0,0) can be obtained as [8]

1 3 N(O)V((l + a(_Q))2 f dip tanh (BEP/2))

2 m0 as 25p= N(0)V<(l + a(-0.)) f p >0
E

2 + 412 PE = flip P J



1 . [1 . <.2>1 1n[2uD/A (0p)) - (3/2)<a2>..(3.21)
N(5)V

A(o,o) = 2..D[1 + <a2>[(1/N(O)V) .. (3/2)]] exp[-1/(N(O)V]
(3.22)

From equation (2.10) of Clem [8] we obtain

g§(o.o) = 3.528(TCo/2)[l - 1.5 <a2>] (3.23)
Combining equations (3.14) and (3.23) one gets

£3 (5}r,xz) 32u2T§-(1 T/Tc)[1 - 4.935{;]‘L 2 ‘ (3.24)
45 (°v°) B1(E,r)rfo(3.s2s)2(1 - 3 <a2>)

For pure superconductor on finds

A2(o.T.—a) 2
= 3.016 [1 — 2 <a >](1 - T/Tc) (3.25)

A2(0.0)

Equation (3.25) is in agreement with equation (2.14) of

Clem [8] in the limit of T5: Tc. Figure 1. shows the
variation of A,(5,T,.n.)/ A (0,'l‘) with T/Tc near Tc.
Significant deviation of the normalized order parameter
from that without anisotropy is observed.

From equation (3.8) and (3.14) we find the slope of

Js(E,T,JL) against temperature at Tc. This slope depends
on the magnetic moment of the impurity. We define
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the slope of JS(5,T,J1) against temperature as

* [(o/or)Js(63.4-)-(o/or)Js(o.T.n.)]/é'(e~/e>T)Js(0.T.a}_
c—)0 ‘* he -— T00)/CT“,

(3.26)

while writing the above equation we have used

Bo(5,Tc) = ln(Tc0/TC)

Following the same procedure as given in Ref. [42] we obtain
the slope of J (E,T,JL) against temperature at T ass C

K* = 1.691 - 0.78l[1 +32 + <a2>/(2(1+‘c;)) x
(5 -2 - 1032 - 10 93)] (3.27)

In the isotropic limit (<a2> = 0) our equation (3.27)
is in agreement with equation (27) of Nagi and Upadhyaya [42].
The effect of anisotropy on K* is represented in Figure 2.

Here we note that when (a2) = 0.01 the effect of

anisotropy is to reduce K* for E, 3 0.54 and increases K*
for ‘Q, >, 0.54. Our result shows a significant deviation from
previous calculations.
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3.2 Thermodynamic Critical Field.

In this section the thermodynamic critical field for an
anisotropic superconductor with local states within the gap
will be derived. The critical field density for a bulk
specimen is calculated from the relation

H§(<':',r,.n.) =.— am=N__S(5,T,n) .. (3.28)

where FN_S(5,T,J1) is the difference in the Helmholtz free
energy density of the alloy in the normal and superconducting

phase. We have [43] lg‘

FN_S(5.T.xx) ef o(,§1)z>?(5.I9
0

II

[N(O)/2] a1(E,r,x;) o?(E,T) ..(3.29)

The critical field is obtained as

H§(E!-rt-(1) = [N(O)Bl(-C-,T,..0.) a4(6,T)]/(21tT§) (3.30)

and _.2 4
HC(E,I,.I\.)| Bl(é,I,.n3' A(E,T) Tco= (3.31)

_H,,(0.r.Aj Bl(0,T,n‘)] mom 1-C
Near Tc and for low impurity concentration equation (3.30)
can be Simplified further. In the limit of E->0 and £.—= 1
(AG approximation) we have

2
Hc<o.r»n)

8uyTc
o.713o6[ 1.4<a2>][ 1 - (1/re) 12 (3.32)
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where Y = [2N(O)/(3n2)] (in energy units)

Near Tc , [1 - (T/Tc)]2 is very small. Hence equation
(3.32) is in agreement with equation (2.25) of J.R.C1em [8]
in the appropriate limit. Figure 3 represents the normalized

thermodynamic critical field versus T/Tc.
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3.3 Density of States,

It is customary to work with the density of states in
K - space, but here it is much more convenient to consider the
density of states for single particle excitations, N(w) in
w - space. The reason is this: because of collision broade­
ning, the energy of a given momentum state is spread through­

out a region in K -- space whose width in K - space is Fl/vI_..
On the other hand, the energy w is conserved in each collision
so that there is no broadening. We there fore calculate the
density of states N(w) as[46],

d k
N(w) - -f(',‘:;3 -if-— Im Gn(k,uH-in)

,,,13k _,a_ _.._i'n' +21
.3 -f(§;331tIml1J-_£ --A2

X

an M0) Re u/H02-1] (3.33)
where Im stands for the_imaginary part and Re for real part.
Here N(0) is the density of states at the Fermi surface. The
path of integration can be deformed so that one encircles the
positive real axis in a negative sense. 3 and  are given
bY Gquflti-OTIS C13‘) and (131), Anisotropy can be introduced

into the problem by assuming

U = A«+ a(J1).B (3.34)
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Hence

_, d:x(A {{L).B)f[1-§A+a(1&).B)%J
(0 . w H”. K A352 - (A-+a(-n.).B}2] (3.35)

.. mm-<A+a< ).B)2]
A . A +9.1‘ 4'7]-:£2 (A+a(.fl»).B)2] (3.36)

expanding in terms of a(J1) we get, by equating the isotropicpart 2
AOA - u +, (t i-fi2)°A -I;.(£‘§"ELi5£;‘l (3.37)Or 2
A _, (w/A.) _Er2_r1)/dc] 1‘: if ) (3.33)

Equating the anisotropic part we obtain
2

BoHEl""A

Uting equation (3.)$)we obtain,

a - - my/[1+[((w/4 03.»/r<r2 -Vl).A]] (3.40)

A and B can be determined from the above equations
(3.38) and (3.40). Hence using equation (3.33) N(m)/N(O)
is calculated. The results of these numerical computations
are shown in the f1gure(L8?, where N(w)/N(0) is plotted
against w/£l(5}T). The asymptotic curve is N(w)/N(O) =1,

achieved when w/A (5,'1')-+ 0°. We have takeni as 0.6 and



36

the diiferent curves currespond to different impurity conu
centrations. when a single impurity is added, a level is
introduced at m[A,(5,T) = 0.6 ( ie inside the BCS energy
gap) but for (co/A (5,T) > 1, N(w) consists of two separate
parts, one inside and one outside the BCS energy gap. We
may note that the present N(w) is very much different from
the one obtained in the AG theory (C€*l). We observed that
the density of states of single particle excitation is great
for (co/A (5,_T)) < 1 and small for (cu/A (5,T)) > 1 for
anisotropic superconductor.



37

3.4 Ultrasonic attenuation coefficient.

As an extension to the theory of Shukla and Nagi [44],
the anisotropic effect on the ultrasonic attenuation coeffici­
ent for a magnetically doped superconductor is derived in this
section.

The normalized value of the longitudinal ultrasonic

attenuation coefficient (as/aN) near Tc ‘is obtained as

[as/aN] = 1- " [A2(EvT9"n-)/(8T52'1;2)][(2111:/Q) ‘§Jl((-1/2)+

(a/2nT)) -y?((1/2)+(a/2uT))] (3.41)2 "' .Where [3 (C5T,J1) is given by equation (3.9)

when (a/2uT) >> 1 (high impurity concentration)

~,;1((1/2)+(a/2m) = <2“:/a) (3.42)
and

s.y2((1/2)+(a/2nI)) = - [2-uT/a]2 (3.43)
U81fl9 equations (3-4?) and (3.43) equation (3.41) can be
written as

[as/«NJ == 1 - [A2(E,T,_a)/a2] (3.44)
The °1‘d91‘ Parameter A(5,‘l’,.n.) can be rewritten by

considering various quantities near Tc.
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The transition temperature for an impure anisotropic
superconductor can be written as [14]

T3 = (6a2/u2)[ 1 + <a2>(a2/B2)]'l[1n(nTco/27¢)

+ <a2> 1n(nTc°/2yfi)] (3.45)
Also

1n(T/TOO) = - [(a?(E,T,J1)Bl(E,T)/(8u2T2))] — B0(5,T)

(3.46)

where

B°(6,I) = [ 1 + <a2>]‘1[ ln(4y{’) + (n2T2/6a2)

+ (a2) [ 1n(4yo) + (u2T2/6B2)]] (3.47)

B1(5,T) is given by equation (3.12). bo(E,T) for large
impurity concentration can be given by

b°(E,I) -(1/2)[21t‘I‘c/a]2 - (a/emI)(2 82-1)(21t'l‘c/a)3
2(5 .. 4 ;_ )(21tTc)2/6a2 (3.48)

Near Tc polygamma function can be expanded as
F

\y1((1/2)+f) = \yl((1/2)+ P‘) -I-(T - Tc) ~~+o2((1/2)+ t")%T’
(3.49)

P

%'l" =" Po/Tc
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Hence

.1,1((1/2)+r) .—. ‘1l((1/2)-I-Pc)+(1 - r/Tc) Pc~3<u/2>+r,_>
(3.509

ln(Tc°/T) = 1n(Tc°/Tc) + (1 - I/Tc) (3.51)

Bo(E,Tc) = wu/2)+ re) -W1/2) +<a2>[v((1/2)+oc)

-v((1/2)+ (’c)] (3.52)
bl(5,‘I‘c) = (3/cove) - [E(1- 2) (222-1>(rco/rc>1

[[1/<o- r >21[(oc+ re)/ac f’c][T/T61]

-[2/(cc-— f’c)3][1noc - ln (C11 (3.53)

Using equations (3.45) and (3.46) it can be shown that

1n(T/TOO) = - [z12(E,r,41)B1(E,I)/8n2T2] +[1+<a2>]'lx

[(n2T§/6a2)[l+<a2>(a2/62)] - (n2T2/6a2)

-<a2>(n2T2/6fi2)] — ln(Tco/Tc)

— (a2) 1n(Tco/Tc) (3.54)
Equations (3.46) - (3.53) give

A 2(6,'r,.n.) =(81t2‘l'2/[bo(&,‘l‘)+<a2>b1(E,T)]) x

[(u2r§/6a2) - (n2T2/6a2)

+ <a2>[(u2T§/652) ~ (n2T2/6B2)]] (3.55)
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For isotropic case (<a2> = 0) equation (3.55) will be reduced
to

g3?(6,r,x1) = [8u2T26a2/(5—A»&2)(2uT)2] x

[(n2TE/6a2) — (u2T2/6a2)]

3 (2n2T§/(5-4 g?))[1 — (1/16)?) (3.56)
Equation (3.56) is in agreement with equation (3.11)

of Shukla and Nagi [44].
Combining equations (3.44) and (3.55), (3.45) we get

2 2 ~ 2 - "
[as/aN] 1 - [8n TC/[bo(C,T)+<a >bl(C,T)]] x

[[n2TE/6] - («Q12/6) +<a2>[(n2TE/6) - (u2T2/6)]x(a/s)2 (3.57)
In the case when <a2> = 0 equation (3.57) can be written as

[as/«N1 = 1 --mu - <r/ref] 1n[1tTco/2va]]/(5 - 49.2)
(3.58)

Equation (3.58) is in agreement with equation (3.13)

of Shukla and Nagi [44]. The initial slope at Tc is
given by

c‘ = §1(as/aN)l = [snzrfi/a2][bo€5.I)+<a2>b1(5;r)]'1x
T-9VT

C [(32/6a2) + <a2>(u2/6B2)]
(3.59)
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It can be shown that in the isotropic limit equation (3.59)
will be reduced to equation (3.14) of Shukla and Nagi [44].

CZG is obtained by putting E;= 1 in equation (3.59).2 .. .­
c;G = 24[1 + (a >4[1 - (bl(C,Tc)/bo(C,Tc))] x

< 32) 2
1n[(nTco/2va)[nTco/276] ]/[1 + <a >4] (3.60)

For lagge impurity concentration

9; — [5-4 £2]"l[1‘+ <a2>[(l+€)2 -(l+.£)2x
CAG

(b1(5,T)/bo(5,T))]][l+4<a2>][1+<a2>(1+£)2]"l

[1+4<a2>[1 - (bl(E,rc)/b°(5,Ic)]“1
(3.61 )

‘Q: =--- 1 when 5 -= 1
CAG

-- 0.283 ,, Q -= 0.6 (3.62)
=  ’, E

It was observed that when £_= 0.6 % change in C*/C*AG

= 0.936 and when ff= O, % change in C*/C* = 2,245AG

when (G/2fiT) <<1 (low impurity concentration equation (3.41)
can be shown to be
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[as/aN] .-= 1 - [A2(5.r)/8u2T2][(2nr/a)[»,;1(1/2)

+ ((1/21tT)\.)2(l/2) + (a/2nr)2(1/2)v3(1/2)]

-sy2(1/2) - (oz/21:T) np3(1/2)] (3.63)

Also

A2(5,I) .-= -[81t2T2/B1(E.T)][B0(EpT) + 1n(T/TOO)
(3¢64)

Where

B°(5,r) = [>»,}(1/'2) + <a2> to -F] .,}(1/2)

= 4A(2) [ f+ <a2>(o —f)]
b (5.1) = 8A(3) - 32A(4) (a/2ur)(1+2?) (3-65)0

b1<E':'.r) =- < 9/6) <,23(1/2)(2s.2-1) +48[7«<s)

—37\(4)(o+r)] - (3.66)
Hence A2(5,T) is obtained as

A2(5.T) -—- - [8u2T2/B1(5.T)][47\(2)[ l’+<a"><o-(>1

+ 1n(T/Tco)] (3.67)
If we put

A(T) --= 1n(T/Tco) + 47\(2)[ f + <a2>(.a.f)]
Using above equations the normalized ultrasonic attenuation
coefficient is given as
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[as/«N1 = 1+(l/B1(5:T))[(21tT/CHI)\pl(1/2)

- (a/2m~v3(1/2>JA<r>

.—_ 1+(A("r)/Bl(T)[(2uI/a)4?\ (2)

- (a/21tT)967\(4)] (3.68)
[as/aN] = 1 +[8s:TA(I)9\(2)/(B1(E,I)a)]

[ 1 - (cc/21t'l')2247\(4)/)\(2)] (3.69)

Since (a/2uT) << 1 the second term in the bracket can be
neglected. Hence equation (3.69) is in agreement with equa­

tion (3.16) of Shukla and Nagi[44]. But A(T) and Bl(E,T)
are different because of anisotropy.

The slope of the normalized ultrasonic attenuation
coefficient is obtained as

as _ Qfi;(_I_'_)lc =-. [4?\(2)/(a/2urc)B1(c,Tc)] an (3.70)
I—s~TC

°%-£—T-3 = 1 - [4)\(2)/21t'l'c][a + <a2>(B - a)] (3.71)

0* = [81t'l'c7\ (2)[1 - (47\(2)/21tTc)[a +<a2>(fi-a)]] x

[1+<a2>](1/a)[87\(3) .. 32x(4)(a/2uIc)(1+s,2)

+ <a2>Ha/6)(2£2-1)\V3(1/2)/(1+€,) +48[7\(:a)

-37\(4)(o=+ f’)]]"1 (3.72)
It can be shown that in the isotropic limit equation (3.72)
‘reduces to equation (3.20) of Shukla and Nagi[44].
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c;G = [1+<a2>](4?\(2)/f)[1-47\(2)[ r+<a2><a-rm x

[e7\(3) - 64?\(4) (’ + <a2>[48[?s(3) ­

37«(4)(o+!’ )]]]"1 (3-73)
Hence from equation (3.72) and (3.73) [C*/C26] Can

be derived.

++ we , 2
[c /CAG] = [8.416 - o4.96;:+ <a >[5o.49 .. 227.27f: J] x

[8.416 — 32.48 Pc(1+ 2) +<a2>[5O.49 ­

146.1fc[(2-+2)/(1+2)] - 16.24 f:(2e_2.-1)/(1+a)]"1

(3.74)
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3.5 Nuclear Spin Relaxation.

In this section the behaviour of the normalized value of

unclear spin relaxation rate [RS/RN] near Tc will be discussed.
In this limit one obtains

{R5/RN] = 1 + {A2<E.r)/en2r2J[<2nr/a)«,;1(u/2) + (a/2-m)
+ 3512 ((1/2) + (a/21t'I‘))] (3.75)

For high impurity concentration (a/2uT) >> 1 , the
above equation gives

[as/RN] «.= 1 + [A2<E.r>/8%-21[<1/32> + 3(-1/[#2)]

= 1 -- [A2(5,T)/a2] (3.76)
The initial slope of RS/RN can be shown to be of the same
form as C* in equation (3.72)

POI (a/2nT) << 1 ( low impurity concentration) we get

[R5/RN] == 1 - [47\(2)/f][A(T)/B1(5,T)][1 - 16 ?\ (3)/7\(2)j{|
(3.77)

The initial slope of [Rs/RN] against T/Tc near Tc is

T->'l'c

3* , ..[42\(2)/ Bl(5.Tc)][l-(16 A (3)/?s(2)]
[1 - 4M2)If‘+ <a2>(a—a)]] (3.78)
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The isotropic limit result can be obtained from equation
(3.78) and found to agree with Shukla and Nagi's result [45].

[S*/SXG] = 1 - 3.86 (1 -32) + (a2) 7 72D(? -3)
(3.79)

where

o -= - [(5/e><rco/rc>(1 -i)(2$_2 - 1>»,»3(1/2)

+ 48[7\(3) -— 3)\(4) (o +f )1
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3.6 Upper Critical Field. Hc2(T)
The Upper critical field for a superconductor with

anisotropic coupling will be discussed in this section. If
the magnetic impurities have randomly oriented spins, we
have for an anisotropic superconductor [45]

-1n[T/Tco] = H1[(1/2) +(a/2uT) + (DeHc2(T)/2nT)]

-V(1/2) .. <a2>[qJ[(1/2)+(a/2xT)+

(D9Hc2(T)/21t'I')] - [(1/2) +(1/(1+£)[

(a/2uT) + (DeHc2(T)/2nT)]] (3.80)

where D is the diffusion constant given by
2

D ‘ qirvr/3

Then we can write

90 =91 +9“

9; = (1/2flT)(1/t2)

9“ = (1/2uT) DeH:2(r)

we know when T = T Hc2(T) = 0. Hence equation (3.80)C 9
reduces to

-1n[Tc/Tco] =‘V((1/2)+(a/2uTc)) -‘V(1/2)

+ <a2>[‘v((1/2)+(a/2urc(1+to m
--%’((1/2) +(a/2uTc))] (3.81)
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since near Tc , A is small and A2 can be neglected.

For small impurity concentration ((a/2nT) << 1)

-lntc == (a/2nI)\1.o1(1/2) + <a2>[(a/21tTc(l_+£))|1J1(1/2)

-(a/zurcwlu/2)] -(3.82)
F = (a/2m -= C(l-£2)/to

to = Tc/Tco

-m;c = (C(l-2,2)/tc)qJ1(1/2) +<a2>[(C(1-£2)/tc(1+i))

vlu/2) - ((C(1-5.2)/tc))v1(1/2)] (3.83)
that is

-12‘: lntc = 4.935 C (1-2) [ 1 +i(1 -. <a2>)] (3.84)

considering the BCS case ((a/2uT) = O) as T-é-0,

F“ '>> 1 we get

- 1n[T/Tco] = 1n[4yDeHc2(T)/2uT)] +<a2>[ln((1/(l+€J)]

(3.85)that is 2o (a >
4yDeHc2(O)/2nTc° = (1-+€,) (82) C

? O ( )/ ( 1 +2.) Hc2('1')= DeH T 21tT = 0“red °2 41t Hc2(O)
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Equation (3.803 will be reduced to

-lntr/rec] -«V ((1/2) + 91 +?Hred C d) - W1/2)U 9 '

+ <a2>w(u/2)+(ei/<1+z)) +f’H >red

- ‘V ((1/2) +91 +(’H )] (3.86)red

For small impurity concentration and upper critical field,
equation (3.80) can be written for large T

-1.“ = [(c<1- :2)/t) +(’H d + <a2>(<u/<1+2)))re

[<c(1- :2)/t) +(’H d1 - [(c<1- £2)/t)re

+?H 1]] 4.935 (3.87)red

For small T we obtain

-1... .-= ln[4v((’i +(’H )1 + <32>[ln((1/(1+f.))]red

(3.88)

that is we get the reduced upper critical field as‘V (1 - <a2>)
hc2('1') = 1 - 4YC(l --€)(1 +£) (3.89)

Differentiate equation (3.80) with respect to T we obtain

1 d[P.'+Fé*]
- (1/T) —.- «(J ((1/2) +f’1 + f’Hred) dT +<a >[qJ1((1/2)

(((’1+€H)/(1+2 )) -Ly1((1/2)+I’1 +(=H)] ST‘ 91* (H)
(3.90)



where

:T(fi +?H) = —(a/2nT) + DeH;2(T)/2nT
2-DeHc2(T)/2flT (3091)

d
where Hé2(T) = 'aTHc2(T)

For T~€>Tc , Hc2(T)-§ 0. then equation (3.91) will be
reduced to

.. [1/Tc] = .+,1((1/2)+ Fe)[DeH::2(TC)/2nTC)-fc/Tc]

+<a2>[.V1((1/2) + {>c/(1+z ))[(DeH(':2(T)/21:TC)

.. (C/-re] - qJl((l/2)+ rc)[(neH;2<r>/2urc)

.4;/1:61] (3.92)
For pure superconductors C->0, Tc-r TOO. equation

(3.93) reduces to

-[1/TOO] = [DeHé2(Tc°)/2nTco]gv1(1/2) (3.93)

from which we obtain

DeHé2(Tc°) = -1.27 (3.94)
Using equation (3.94) equation (3.92) can be.given by

-1 = -r;o1(<1/2) +Pc> -<a2>.,}<(1/2>+< i’c/(1+£))f’c

+<a2>gVl((1/2)+f;) C - 0.2026 Ké2(Tc)

[«.V1((1/2) +:°c>) +<a2>[ qJ1((1/2)+(f/(1+£))-- ¢(<1/2>+s;>
(3.95)
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where

,, Hc2(Tc)‘ 2
h°2(Tc) Hc2(Tco)

For small impurity concentration ((a/2uT) << 1)

we get

'E;;2(rc) = [1 — PC 4.935]/P (3.96)
where

P = 1 - 3.4094 €c[ 1 + (<a2>£_(1+£))]

and for large impurity concentration ((a/2nT) >> 1) we
obtain

’h’(':2(Tc) = -4.935<a2>?c£/[.1+s_<a2>] (3.97)

The upper critical field Hc2(T) of PhMO6S8 was
measured in a temperature region from 1.3K to superconducting

transition temperature Tc by Kiichi Okuda et al [47].

The broad transition observed in the poly crystalline

sample may partly be attributed to the anisotropic Hc2(T)
in this compound. Recent measurements of Hc2(T) on single
crystal by Decroux et al [48] showed that this compound has

an anisotropy of about 20% with the maximum Hc2(T) where
the field is perpendicular to the ternary axis.
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W.Biberacher et a1.[49] measured the upper critical field

Hc2(T) in Nb3S4. The observed large anisotropy of Hc2(T)
in Nb3S4. Our graph connecting-hé2(T) versus Tc/Tco is
comparable with the corresponding graps of Jun Takeuchi et al.

[50] and Guertin et al [51]. ‘;c2(T) versus T/Too can be
compared with the graph of Nagaoka [52].
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3.7 Response Function.

In this section we derive the response function to a
weak transverse field for an isotropic superconductor
described by SR model. The calculations are done in a similar
line with Skalski [46]. Dick and Reif [17] have measured the

real part 01, of the conductivity of rare earth impurities
like Gd in Pb and transition metal impurities like Mn in Pb
by measuring the infrared radiation absorbed by a film of
the above alloys.

In the above measurements, it was found that the
experimental results in the case of rare earth impurities
agree with the theoretical ones derived from the AG theory.
But in the case of transition metal impurities, the
agreement is not satisfactory. The observed effects in this
case are more pronounced than those predicted by the AG

theory. In the case of rare earth impurities, the localized
spin is due to the inner f - electrons and, hence, the
coupling between the electrons and the impurities may be
weak and the Born approximation, as used by AG, may be valid.
In the case of transition metal impurities the spin of the
impurities is die to the d - electrons. In this case, the
coupling between the electron and magnetic impurities may

not be weak, hencethe Born approximation may not be justified.
So here we make an attempt to derive the response to a weak
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transverse magnetic field for an isotropic superconductor
described by_gR model ,where the coupling between the electron
and the impurities is strong.

The Green's function §kp,wn) of the superconducting
alloy, averaged over the positions and the spin directions
of the impurities, is given by [4,5]

é<p.mn> = é°<p.mn> + cié°<p.wn> £<p.p-.wn> 6<p.wn> .. (3.98)

where §°(p,wn) is the Green's function of the pure supercon­
ductor. Ci is the impurity concentration and L(p,p',mn)
is the exact vertex part. Further

é.°(p,wn) = [mugs - 2p + iA(O,T)Flo2]"l (3.99)
to“ = -(2n + 1) ‘KT and {P = (p2/2m) - EF

where E? is the Fermi emergy, oi and.fi are the Pauli
matrices operating on the ordinary spin states and on the
space composed of electron and hole states respectively,
while A (O,T) is the ter;;perature dependent order parameter
of the pure superconductor. The vertex part is related to
the interaction Q(p,p') between the electron and the impurity
by the relation [5]

I:(p.p'.wn) = \}(p.p') + 2' {'(p.p')C"3(p1.wn) f.(pl.p'.wn)p,_. ___ __where i Va5(p'p') 0
V(P9p') 2 t 0 vi 'L “((9 .p)



55

and

V(p.p') = U(p.p') + J(p.p') §-g (3.100)
where U(p,p?) referee to the potential scattering, J(p,p')

is the strength of the exchange interaction, § is the spin
of the impurity and 3 denotes the pauli matrices.

Using the above equations, and neglecting Kondo effect
Rusinov [5] has calculated the Green's function for a

superconducting alloy. According to him §Ip,wn) may be
written as

§(p,wn) as [15nf’3 - ip + 13ni’1 cr2]'1 (3.101)
where

an = Din 4' (TIC1/mpo) E (22-+ l)(sin2b+ + sin?b') x

unnufi + 1][u§ + co.2(o‘* — o")]"'1

D>2 a
+ (21:01/mpo) E (2€+ 1) sinb+.sino'.

cos(b+ - b')V[U§ + 1][U§+cos2(b+-a‘)]"1

while

Un = En/25“. and €n'= cos(§?-QE)
Various physical quantiee can be calculated in a closed

form When 9.2 0 ( isotropic scattering). Hence we get
A!

(On = (on + F1 [UnV'[l'i-Ufi] [Ufi + £2].-1 (3.102)
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Z 3 A +1’ U V[1+u2][u2+g,2]"1 (3.103)n 2 n n n o.2 2 + ­
30 an cos (60-00)

We investigate the effect of magnetic impurities on the
electrodynamic properties of superconductors in SR.model.
As a first problem we calculate the response function.

The response to a weak transverse field is described in
terms of the wave-number and frequency-dependent kernel

Q(q,qo) (q - wave number and qo frequency).

J(q.q°) - 0(q.qo) A(q.qo) (3.104)
where A(q,qo) . q c O

we expect that most samples of the alloys will have

short mean free paths so that we can assume an essentially
local relation between field and current, and therefore
have neglected the dependence of the response function on
the wave number q. Hence

o<o.qo> = ago-+ 1<(0.qo) (3,105)
a” .. Ne2‘'C/m , T = 1/2r2

Following the calculations of Skalski [46] the zero-temperature
response function is obtained as

K(o.q°) == (N31/zmcgf aw u/mi -- will

if _1<%_§g:o+w_ +A+A___ + «E -11:]2 2 (3.106)
(2 ‘W ' *°+>(22 +43 .. .3)
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The second integration can be performed and can be shown

to be equal to maf - wf><AE - wf)1"1[v<Af - mi) + Y(A_2_ - w_?_,J‘1

Hence from equation (3.106) we get --I2 1-( )[V(2-)(2-1)]
K(0,qo) ...E£f dw 1 1+U‘§U' 9* 1 20"’2mc c: [A+v(u+ — 1) +A__v(u_ - 1)]+00 00 (3.107)

Near Tc f dw ‘-9 2nTZ_m n=O
Finite temperature response function (near Tc) is obtained

2 m [u+u_-1] J
K(O,q°) -.= (Ne /mc)(21tT)n:O[l - v(Uf+1)(U§1)] x

[A+v(uf+1) +4_v(uE+1)]"1 (3.108)

where

8+ .-= as + (q/2) +T1[vuf + 1]U+/[uf +32] (3.109)

and 71+ = A ~~+I'2[v<u3+1>J/[vii +123 (3.110)~ 2 2 7“
v9_ - w--(q/2) +T’1[U_V(U__+1)]/[U__+£)] (3.111)

§_ - A +r2[v(u?_+1)]/[uf + 9.2] (3.112)

U+ ' &L/';

U___ = 'u3’_/Z{_

Near Tc equations (3.110) and (3.112) become
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Equation (3.108) reduces to
[U+U_ — 1]

K(0,q°) = (Ne2/mcr;)(2nT)n:O[ 1 - [V(Uf+1)(UE+1)] ] X

ttcufm/<u3+e2>1 + t<uE+1>/<uE+ g2m"1
(3.113)

Near Tc)[1 is small and U will be very large. 50 we can
expand various quanties as following

U2 + 1—:——~_— = - 2 2 9 . )
U3 +2? 1 ti /u+) + (1/u+) (3 114

Equation (3.113) can be shown to be

:<(o.q°) = (~e2/mcer2><2m 3? <1/4)[[<1/uf) + (1/of)n=0

+(2/(U+u_)) + (q;2-2)[(1/ufU_) + (1/U+Uf)1

+<e2-<3/2>><1/ufuE> + (<23-<5/4)) x

[(1/uf) + (1/uf)]] (3.115)
But U+ and U_ are obtained from Ref. [53] as given below

[1/U+] -= [A/(w++a)] + [<2é’-ma A3/<2<m++a)“>

[1/U_] = [A/(w_+a)] + [(922-1)a A3/(2(w__+a)4)

[1/U+U_,] = A2[(u>+(q/2)+a)(co-(q/2)+a)]"1+(2£2-1)az§‘ x

[2<w+<q/2>+a)4<w-(q/2)+a)1'1+(22?-1)a¢? x

[2(«»(q/2>+a>(w-tq/2)+a)“J"1
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where we use

w+ = w + (Q/2)

w_ = w - (q/2)

% Q = A2[oo+(q/2)+a]"2 '+ aA4(2&2-l)[w+(q/2)+a]_5
U-P

[1/UE] = ¢32[m-(q/2)+a]-2 + aAf(2E?-1)[w-(Q/2)+a]-5

[1/ufufil = aft<w+(q/2>+a)2<w-(q/2>+a>21"1

[1/ufu_J = aft<w+<q/2>+a>3<w-(q/2)+a)1‘1

[1/U+Uf] = aft(w+(q/2)+a)(w-(q/2)+a)3]’1
After doing partial fraction and converting sum into polygama
function equation (3.115) becomes

K(0.q°) = [oNnI/2C][(A2/(21:I)2)[ L.Jl((1/2)+f’+q/41:1)

+\Jl((1/2)+P-C1/4nT)] - [(212-1)PA4/(24(21:I)4)

[tg9((l/2)+(?+q/4nT) + g?(<1/2)+ F-q/4ur)1

+( A2/omtty < <1/2>+ F+q/4m - kw (1/2>+ f -q/4m]

+<22?-1>ns4[(1/<q32flr>)[L,1(<1/2>+E’-q/4nr>

-L,;1((1/2)+¢>+q/4nT)] + (1/2q2(21tT)2) x

[\22( (1/2)+ l°+q/41:1) + Kr/2( (1/2)+ F-q/4nT)]

contd.



+(l/6q(21cT)3)[‘+J3( (1/2)+ f -cz/4nT)— ~P3( (1/2)+ f’+q/4vtD]]

432-2) o.4[<1/q3m[q2<<1/2>+ r-»-q/am ­

xy ((1/2>+f -q/4m] .. (1/q2(21tT)2)[‘1-’ 1( (1/2)+ f+q/4m

+Lp1((1/2)+f’-q/4nT)]-(1/2q(2nT)3) x

W2< (1/2)+ f-q/4m — «,J2((1/2>+ ti’ +q/4nT)]

+<e?-<3/2)>[(2A4/q3(2m)[q1(<1/2)+T-q/4m

..tp((1/2)+f+q/41tT)] +(a4/q2(2svr)2[‘+’1((1/2)+ F+q/41:1‘)

+w¢1((1/2)+{’-q/4nT)]] +(Q?-(5/4)A5/6(2nT)4) x

[*1J3( (1/2)+ ?+q/41:?) +Lp3( (1/2)+ P --q/4n1)]]
(3.116)

where

ON == Ne2/2m\'2

For small qo we get
3. .

I<(0.qo) =C__%Jj [A2kgl((1/2.) +f) 4-(A2/l2)(q/21tT)2\‘) U/2*?)u

-(A4/(2nr)2>[(2-22>/e)\+:3(<1/2) +r)

+(222-1)i"‘4!“((1/2) +{’)/24]] (3.117)

as qo-9 0 equation (3.117) agrees with equation (9) of
K.Maki[54] when to >> a.

Q(0.q) = oNq + K(0.q)

and from Skalski [46] the conductivity is given by
Re o(0.q) + ilm o(0.q) = (C/iq) K(0.q) (3.118)
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3.8 Kondo Effect in the Problem

In the Shiba - husinov model, the Kondo effect is
neglectd. The effect is essentially arises while consider­
ing the scattering of a conduction electron from a magnetic
impurity exactly if, (i) the exchange coupling between the
electron and the impurity spins is antiferromagnetic and
(ii) the non-commutativity of the spin operators is taken

into account. The role of the Kondo effect in superconductors
is considerably clarified by the work of Muller — Hartmann
and Zittartz [3]. Within certain approximations one can
include the Kondo effect in the SR model by assuming that

depends on 19 = ln[TK/T] , where T is the KondoK

temperature). These approximations are (1) the electron
energy is near the Fermi energy (ii) the temperature T is

near the transition temperature T; and (iii) the impurity
concentration is very low. The actual relation between
and is more complicated but several authors have used
the simpler relation

2_ '2 2 ­5 = 1J2[ J4 + 1: s(s+1)] 1

Where 5- is the impurity spin. We take L, = ln[TK/TC]

‘Q = ln[TK/TCO] + ln[TC0/Tc]

Taking S = 1/2 we get2 2
2 = 0.1351 ln (TC/TK) 4

[ 0.1351 ln2(TC/TK) + 1 ]
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We have calculated the slope K* of the Josephson current

versus T/Tc, K* of the Josephson current versus Tc/Too for
various values of TK/Tcoand are tabulated in the tables.

We have also observed that. 8,15 anisotropic. We
have tabulated the different values of the local states

within the gap Q; for <a2> = O and <a2> = 0.05. We
observed significant change in 3 due to anisotropy.



CHAPTER 4

SUMMARY

I have investigated the effect of gap anisotropy on the
Josephson current for an impure superconductor described
by SR model. It is observed that as the impurity concentra­
tion is increased; the Josephson current gradually decreased
and finally goes to zero for a particular value of the
impurity concentration. For a given impurity concentration
if we increase *E_ the Josephson current also increases. The
values of the normalized Josephson current for various values
of impurity concentration and for two values of the local

states within the gap- fii are given in Table 1. Figure 1
shows the nature of variation of the normalized Josephson

current with T/Tc for ‘E, = 0.95. We noticed that when
5': 0.2, the effect of anisotropy is to decrease Josephson
current. As we increase the impurity concentration the
Josephson current will be increased due to anisotropy.

When TK/Tco > 1 as we increase (T/Tco) we found that
the percentage change in the slope of Josephson current

‘I’

versus (T/Too), fig gradually decreases where as when (TK/Tco)
is less that one the above quantity incrrases as we increase
(r/rec).

The slope of Josephson current versus (Tc/Tco), K‘ is
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tabulated for various values of TK/Tco. For (TK/TC0) > 1»
as more and more impurities are added, the effect of anisotro­
py is to increase the percentage change in K* due to

anisotropy. For (TK/Too) < 1, increase of impurity will
decrease the percentage change in K* due to anisotropy.

when (a2) = 0.01, K* = 0.16 giving a 24.03% deviation

from previous calculations. Kzb = 0.129 (for i.= 1 and
(a2) = 0). As the strength of interaction increases
( £’< 1) the effect of anisotropy on A3(5,T), Hc(5,T,J1)
and Js(5,T,J1J is small, but if the strength of interaction
decreases {€/! 1) the effect of anisotropy is more prominent.
For a given value of z’, for small impurity concentrattion,
the effect of anisotropy is to increase.Z5(5,T), Hc(5,T,J1)
and Js(E,T,41J but for large impurity concentrations the
effect of anisotropy is to reduce the above quantities.

I have calculated the anisotropic density of electronic
states, [N(w)/N(O)]. Outside BUS energy gap (wfid > 1)
density of states will be decreased due to anisotropy and
inside BCS energy gap (w[A < 1) it is increased for

anisotropic superconductors.

For a given impurity concentration as we increase the
strength of interaction (decrease 2.) we observe that the
percentage change in the normalized slope of ultrasonic

attenuation coefficient (c*/CXG) will be more.
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1%’

The normalized upper critical field hC2(T) increases
due to anisotropy as we increase the impurity concentration.
For a given impurity concentration as we increase the strength
of interaction, anisotropy will increase the percentage change

:nT.c2(r).

The normalized slope of upper critical field versus
(V

T/T , hé2(T) also behaves the same way as’hc2(T) withc

anisotropy.

I have observed that the local states within the BCS

energy gap E_, is anisotropic.

The response to a weak transverse electromagnetic
field is studied for an isotropic superconductor. The
response function agrees with equation (16) of K.Maki [54].

In the limit ofcz-9’0, the equation (3.117) reduces to that
of Chaba [55]. 0

The Kondo effect of some of our problems is also
investigated.
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APPENDIX

Computer Programme”

SUBROUTINE FOR COMPLEX DIGAMMA FUNCTION

COMPLES FUNCTION DIGAM*l6(Z)

IMPLICIT COMPLEX*l6(A-H,O-Z)

REAL*8 TEST.CDABS,DIGAM?YTEST

axmsusxou B(6)

PI=3.141592653589793

B(l)=8.33333333333333D—2

s(2).—8.33333333333333o—2

B(3)-3.96825396825397D«3

B(4)--4.16666666666667D-3

B(5)-7.575757575757576D-3

B(6)--2.109279609279600-2

v-2

YTEST-DIMAG(Z)

IF(YTEST.LT.0.00D0)V=DCONG(Z)

TEST §CDABS(Z)

H=o.ooo

IF(TEST.GE.7.0DO) Go to 3
IVuTEST

Nn6-IV

H=1.0DO/V

IF (N.EQ.0) GO TO 2

DO 1 In1,N
V8V+1;OD0
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R=1.0DO/(V*V)

O1OAw=cOLOO(v)—O.5/v—R*(R(1)+R*(R(2)+R*(B(3)+R*(R(4)+R*

*(B(5)+R*(B(6)+R*B(1))))))-H

IF(YTEST.LT.O.DO) DIGAM =DCONJG(DIGAM)

RETURN

END

FORTRAN

FORTRAN STARTED

PROGRAM COCHIN

COMPLES A.B.Y.Z

R=O.55

:=O.O3

DO 12 1=1,2

C=o.O

D0 13 J=1,2
x=2

DO 14 K=l,2O

A=(1.O,1.O)

DO 15 L=l,5OO

=X+T*A*CSQRT(1.0-A**2)/(R*R-A*A)

Z=A-Y

IF((ABS(REAL(Z)).LE.0.001).AND.(ABS(AIMAG(Z)).LE.0.00l))

GO TO 8

A=Y

CONTINUE

CONTINUE

B=-A*(1.D+(R*(x-A)/((R+1.O)*A)))



10

17

14

L20

13

21

12

WRITE(8.lO) A,Y,B

FORMAT(l5X,2E12.5,2E12.5,2El2.5)

A=A*A+C*B*B

D=REAL(CSQRT(A/(A—1)))

wRITE(8.17)x,D

FORMAT(15Z,F6.2,5X,F8.4)

x=x—o.1

CONTINUE

WRITE(8.20) C

FORMAT(l5X,F8.4)

C=C+0.05

CONTINUE

wRITE(8.21) T

FORMAT(l5X,F8.4)

T=0.15

CONTINUE

STOP"

END

IMPLICIT COMPLEX*l6(A-H,0-Z)

REAL*8 DRFAL,DIMAG

z=(1.o,o.0)
DO 10 J=1,2

A=DIGAM(Z)

B=TIGAM(Z)

=PGI(Z)

D=PGII(Z)

E=PGII(Z)

PRINT?0.DREAL(A).DIMAG(A),DnEAL(B),DIMAG(B),DREAL(C),
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20

10

16

10

14

*DIMAG(C),DREAL(D),DIMAG(D),DREAL(E),DIMAG(E)

FORMAT('O',1OF10.7)

Z=(1.6,l.9)
CONTINUE

sror
END

SUBROUTINE FOR COMPLEX DIGAMhA FUNCTION

TC/TCO vs CBAR = FOR ANISOTROPIC supenconnucroa

IMFLICIT REAL*8(A—H,O-Z)

E=O.6DO

D0 15 K=l.2

A=0.0DO

DO 14 I=1,2
c=o.o0o

LDO 10 L=1,1O

Z=T(E,A,C)

IF(Z .LE. 0.0100) GO TO 9

PRINT16,E,A,Z,C

FORMAT('O',F4.2,4X,F4.2,4X,F5.3,4X,F4.2)
CONTINUE

A=A+0.05DO

CONTINUE

C=C+0.03D0

CONTINUE

E=O.95DO

STOP

END
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SUBROUTINE FOR TC

REAL FUNCTION T*8(E,A,C)

IMPLICIT REAL*8(A-H,O-Z)

PSI=—1.96351002602143DO

TC=l.0DO

D0 8 K=l,50O

TI=TC

Q=C*(l.0B0-E)/TC

P=C*(1.0DOE**2)/TC

x=o.5Do+P

Y=0.5DO+Q

F=DIGAM(X)

G=DIGAM(Y)

TC=DEXP((PSI-F+A*(PSI-G))/(l.OD0+A))

IF(DABS(TC-TI) .LE. l.OD-8*TI) GO TO 7
CONTINUE

T=TC

RETURN

END

SUBROUTINE FOR TIGMA

REAL FUNCTION TIGMA*8(Z)

IMPLICIT REAL*8(A—H,0—Z)

TIGMA=0.0DO

DO 8 K=1,5OO

I=K-1

TIGMA=TIGMA+1.0D0/(Z+1)**2

CONTINUE

I=50O
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TIGMA=TIGNA+(1.0UO/(l.ODO/(1+Z))+(1.0DO/2.0DO)*(1.0DO/

(l+Z)**2)

RETURN

END

APPROXIMATE FORMULA FOR 16111

IMPLICIT REAL*8(A—H,O-Z)

DIMENSIONB(7)

Z=l.05DO

B(1)=-6.0DO

3(2):-12.000
B(3)=-lC.0DO

B(4)=7.0d0

3(5):-12.000
B(6)=33.0DO

B(7)=~13o.oDo

PGII=B(1)/Z**4+B(2)/Z**5+B(3)/Z**6+B(4)/Z**8+B(5)/Z**1O

*+B(6)/Z**11+B(7)/Z**14

PRINT,PGIII

srop

END



Table

1.

LIST or TABLES

F?) q;£3

The normalized order parameter ZX(€,T)/(l(O,T}

normalized thermodynamic critical field

HC(E,T,IL)/HC(O,T,J1) and the normalized
Josephson current JS(E,T,IL)/Js(O,T,f1) with

92, = o.o, o.95 and <a2> = o , <a‘> = o.o5
for different values of impurity concentrations. 79

The Slope of JS(C,T,JL) near Tc for TK/TCO = 1e
and (a2) = O, <aZ> = 0.05. The percentage
change is also given. 80
The slope of JS(E,T,fL) near TC for TK/TOO: 1/1o
and (a2) = 0, (a2) = 0.05. The percentagechange is also given. 81
The slope of JS(5,T,1L) near TC for TK/Too: 64
and <a2> = O, <a2> = 0.05. The percentage

change is also given. 52
The slope of JS(5,T,r1) near Tc for TK/Tco=l/64
and <a2> = 0, (a2) = 0.05. The percentage
change is also given. 33
The slope of JS(5,T,11) for various values of
TC/Tco with and without anisotropy for
TK/Too = 16 are given. 84

76



Table Page
7. The slope of JS(5,T,;L) for various values of

Tc/TCO with and without anisotropy for
TK/Tco = 1/16 are given. 85

8. The slope of Js(C,T,IL) for various values of
Tc/Tco with and without anisotropy for
TK/Too = 64 are given. 86

9. The slope of Js(C,T,1z) for various values of
Tc/TOO with and without anisotropy for
TK/Tco = 1/64 are given. 87

10. The normalized density of_states N(w)/N(O) for
various values of w/A are given for two values

of ex‘/A and for <a2> == 0, (a2) = 0.05. 88
11. The normalized slope of ultrasonic attenustion

coefficient C*/CR6 for various values are
tabulated for different impurity concentration
3 = 0.95. <a2> = o, <a2> = 0.05. 89

1?. The nonmalized slope of ultrasonic attenuation

coefficient C*/C36 for various values are
tabulated for different impurity concentration
E, = 0.8. <a2> = 0, (a2) = 0.05. 90

13. The normalized slope of ultrasonic attenuation

coefficient C*/C26 for various values are
tabulated for different impurity concentration.2 23 = 0.6. <a > = o, (a > = 0.05. 91

14. The normalized upper critical fieldfihc2(T)
for 8 =0.95, <a2> »= 0. (a2) = o.o5. 92
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15.

16.

17.

18.

19.

20.

21.

22.

23.

The normalized upper critical field hc2(T)

The normalized upper critical fieldfhc2(T)
for 5; = 0.5, (a2) = 0, (a2) = 0.05.
The normalized value of the slope of upper

critical field 'E;:2(I) for 5 = 0.95,
(a2) = 0, (a2) = 0.05.
The normalized value of the slope of upper

critical field ’hé2(T) for £_= 0.8
2(a > 0, <a2> = 0.05.II

The normalized value of the slope of upper

critical field °Eé2(T) for’ €,= 0.6
2(a > = 0, (a2) = 0.05.

The local states within the gap E} for

TK/Tco = 16 and for various impurity con­
centrations. <a2> = 0, <a2> = 0.05.
The local states within the gap i for
TK/Tco = 1/16 and for various impurity cone

0, (a2) = 0.05.centrations. <a2>

The local states within the gap E for
TK/T = 64 and for various impurity con­co

centrations. (a2) = 0, <a2> = 0.05.
E; for

and for various impurity con­
centrations. <a2> = 0, (a2) = 0.05.

The local states within the gap

TK/Tco = 1/64.
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-. f%{%%%%_ HC(5,T,fi) JS(§,T'}i)r c Hc(O,T,fi) 4 1C’ 2 ’2“  2‘ 2 % i2£Q'T’{;).<a >=O <a >=0.05 <a >= 0 (a >=-40.05 <8 >=O <3 >=-‘£3.05

0.00 1.000 1.000 0 1.000 1.000  1.000 1.000 J
0.02 0.740 0.737 1 0.569 0.561 0.522 0.516
0.04 0.582 0.580 0.366 0.357 0.305 0.300

0.6 0.06%O.468 0.469 0.246 0.240 0.183 0.182
[ 0.08 0.378 0.385 0.167 0.163 0.169 0.110

0.10 0.302 0.317 0.169 0.107 0.061 0.064
0.12 0.230 0.258 0.063 0.063 1 0.003 0.003

0.0 1.000 1.000 1.000 1.000 1.000 1.000
% 0.1 1.0.791 0.754  0.644 0.571 0.604 0.538
10.95 0.2 0.649 0.625 0.447 0.385 0.390 0.346
1 0.3 90.546 0.550 .0.326 0.283 %0.263 0.247

0.4 0.464 0.523 0.242 0.225 0.179 0.201

Table 1



TK/Tco = 16
K*T/TOO Q 2 2<a >=O <a >-0.05 % change

0.90 0.727 0.498 0.553 11.02
0.91 0.725 0.499 0.553 10.90
0.92 0.724 0.501 0.555 10.77
0.93 0.722 0.502 0.556 10.66
0.94 0.721 0.503 0.556 10.59
0.95. 0.720 0.505 0.558 10.46
0.96 0.718 0.506 0.558 10.35
0.97 0.717 0.508 0.560 10.22
0.98 0.716 0.509 0.561 10.12
0.99 0.715 0.511 0.562 10.00
1.00 0.714 0.512 0.563 9.88

Table 2
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TK/Too = 1/16I M K?
T/T°° £4 <a2>=O <a2>=0.05 % change

0.90 0.700 0.527 0.574 8.79
0.91 0.702 0.526 0.573 8.90
0.92 0.703 0.524 0.571 9.01
0.93 0.704 0.523 0.570 9.13
0.94 0.706 0521 0.569 9.24

0.95 0.707 0.520 0.568 9.35
0.96 0.708 0.518 0.567. 9.47
0.97 0.710 0.516 0.566 9.58
0.98 0.711 0.515 0.565 9.69
0.99 0.713 0.514 0.564 9.79
1.00 0.714 0.513 0.563 9.87

Table 3
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/T K
T C0 E’ <a2>=O <a2>~O.O5 % change

0.90 0.843 0.355 0.450 26.75
0.91 0.842 0.356 0.450 26.607
0.92 0.842 0.356 0.451 26.53
0.93 0.841 0357 0.451 26.40
0.94 0.840 0.359 0.452 26.16
0.95 ‘0.84O 0.359 0.453 26.05
0.96 0.839 0.360 0.454 25.93
0.97 0.839 0.361 0.454 25.81
0.98 0.838 0.362 0.455 25.70
0.99 0.837 0.363 0.455 25.58
1.00 30.837 0.363 0.456 25.47

Table 4



TK/Too = 1/64

T/T
co Q;

-I’

K
2<a >=0 <a >=0,05 % change72

0.90 0.830
0.91 0.831
0.92 0.832
0.93 40.832
0.94 0.833
0.95 0.834
0.96 0.834
0.97° 0.835
0.98 0.835
0.99 0.836
1.00 0.839

0.372

0.370

0.370

0.369

0.368

0.367

0.366

0.366

0.365

0.364

0.363

0.462

0.461

0.460

0.460

0.459

0.459

0.458

0.458

0.457

0.456

0.456

24.25

24.46

24.57

24.68

24.79

24.91

25.02

25.13

25.24

25.35

25.52

Table 5
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TK/TOO = 16

‘X’

<a2>=0T§:;§:O.O5 <a2>=O <a2>=O.g5 % change

1.000 1.000 0.512 0.563 9.89
0.771 0.747 0.477 0.535 12.17
0.570 0.531  0.441 0.566 14.84
0.402 0.356 0.405 0.477 17.81
0.269 0.224 0.369 0.450 21.82
0.172 0.134 0.336 0.424 26.20
0.108 0.078 0.308 0.403 30.86
0.068 0.046 0.284 0.387 36.13
0.043 0.028 0.265 0.374 40.95
0.028 0.18 0.250 0.364 45.50

Table 6

84



Tc/Too

<a2>=0 <a2>=0.05 <a2>=0 <a2>=0.05 % change

1.000 1.000 0.513 0.563 +9.86
0.796 0.800 0.545 0.586 +7.54
0.655 0.660 0.577 0.60? +5.28
0.553 0.558 0.605 0.62? +3.69
0.475 0.481 0.631 0.645 +2.29
0.416 0.421 0.655 0.662 +1.07
0.368 0.373 0.677 0.678 +0.09
0.330 0.335 0.698 0.691 -1.00
0.299 0.303 0.716 0.704 ~1.69
0.272 0.276 0.734 0.716 -2.41
0.250 0.254 0.749 0.726 -3.04
0.135 0.137 0.852 0.793 -6.96
0.092 0.093 0.895 0.814 -9.01
.0.000 0.000 0.910 0.812 -10.73

Table 7
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CO

T}/T66 £7
<a2>=O <a2>=O.05 <a2>=0 <a2>=O.05 2 change

1.000 1.000 0.363 0.456 25.40
0.856 0.827 0.351 0.445 26.70
0.721 0.674 0.340 0.435 28.20
0.595 0.538 0.327 0.425 29.85
0.480 0.417 0.313 0.414 32.10
0.376 0.312 0.300 0.403 34.30
0.285 0.224 0.286 0.392 36.97
0.210 0.154 0.273 0.382 39.69
0.15 0.102 0.260 0.371 42.67

Table 8



TK/Too = 1/64

Tc/Tco K*
<a2>=O <a2>=0.05 <a2>=0 <a2>=0.O5 % change

1.000 1.000 0.363 0.456 +25.44
L 0.796 0.800 0.382 0.469 +22.70
0.655 0.661 0.400 0.481 +20.27
0.553 0.559 0.416 0.493 +18.45
0.475 0.482 0.432 0.504 +16.75
0.416 0.422 0.447 0.515 +15.2l
0.368 0.374 0.462 0.525 +13.70
0.330 0.336 0.475 0.535 +l2.50
0.299 0.304 0.488 0.544 +1l.55
0.272 0.277 0.501 0.553 +10.30
0.250 0.255 0.513 0.561 + 9.42
0.135 0.138 0.632 0.629 - 0.53
0.092 0.094 0.677 0.676 - 0.12
0.000 0.000 0.910 0.812 -10.73

Table 9
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a/A =.- 0.03

N(w)/N(O)
wflg

(a2): 0 (a2): 0.05 % change

2.00 1.155 1.146 -0.788
1.90 1.176 1.165 '—0.901
1.80 1.202 1.190 -1.039
1.70 1.236 1.221 -1.229
1.60 1.281 1.262 -1.491
1.50 1.341 1.316 -1.849
1.40 1.428 1.394 —2.374
1.30 1.563 1.512 -3.256
1.20 1.806 1.717 -4.955
1.10 2.397 2.168 m9.373
0.70 0.175 0.185 +0.059
0.60 0.197 0.206. +0.044
0.50 0.175 0.181 +0.034
0.40 0.119 0.123 +0.028
0.30 0.001 0.001 0.000

Table 10
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8 =3
E c*/6:6

<a2>=0 <a2>=0.05 % change

0.0 1.000 1.000 0.000
0.1 0.996 0.997 0.096
0.2 0.990 0.993 0.283
0.3 0.982 0.987 0.468
0.4 0.9720 0.979 0.813
0.5 0.953 0.967 1.511
0.6 0.917 0.946 3.151
0.7 0.814 0.898 10.375

Table 11



fir.-.o.e

E . 0*/C16 %
<a2>=0 <a2>=0.05 % change

0.00 1.000 1.000 0.000
0.03 0.988 0.995 0.658
0.06 0.960 0.970 1.031
0.09 0.929 0.947 1.992
0.12 0.881 0.914 3.690
0.15 0.802 0.860 7.226
0.18 0.638 0.759 18.96

Table 12



E = 0.6
“-1? -lb- C /CC AG

<a2>=O <a2>=O.O5 x change

0.00 1.000 1.000 0.000
0.02 0.964 0.973 1.354
0.04 0.914 0.936 2.352
0.06 0.843 0.901 6.907
0.08 0.729 0.800 9.739
0.10 0.518 0.653 26.000

Table 13
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92

g =3 0.95

E Tc/T00 F R602”)
<aQ>=0 <a2>=0.O5 <a2>=0 <a2>=0.05 % change

0.0 1.000 1.000 1.000 1.000 0.00
0.1 0.952 0.953 0.930 0.933 0.20.
0.2 0.902 0.905 0.861 0.065 0.47
0.3 0.052 0.056 0.791 0.790 0.09
0.4 0.001 0.006 0.721 0.731 1.39
0.5 0.740 0.755 0.652 0.663 1.69
0.6 0.695 0.703 0.502 0.596 2.41
0.7 0.639 0.649 0.512 0.520 3.13
0.0 0.502 0.594 0.443 0.461 4.06
0.9 0.522 0.536 0.373 0.394 5.63
1.0 0.460 0.476 0.304 0.326 7.24
1.1 0.392 0.413 0.234 0.259 10.60
1.2 0.319 0.344 0.164 0.192 17.07
1.3 0.233 0.266 0.095 0.124 30.53

Table 14



g; = 0.0

E r¢7rc° 'fi;§IT7”
<a2>=0 <a2>=0.O5 <a2>=O <a2>=0.O5 x change

0.00 1.000 1.000 1.000 1.000 0.00
0.03 0.946 0.947 0.923 0.925 0.22
0.06 0.092 0.094 0.046 0.050 0.47
0.09 0.036 0.039 0.769 0.775 0.70
0.12 0.770 0.704 0.691 0.700 1.30
0.15 0.720 0.726 0.614 0.625 1.79
0.10 0.659 0.660 0.537 0.551 2.61
0.21 0.596 0.607 0.460 0.476 3.40
0.24 0.531 0.543 0.303 0.401 4.70
0.27 0.462 0.477 0.306 0.326 6.54
0.30 0.307 0.405 0.229 0.251 9.61
0.33 0.304 0.320 0.151 0.176 16.56
0.36 0.205 0.230 0.074 0.101 36.49

Table 15
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ii = 0.6

E 2 Tc/Tog 2 2hc2(t)<8 >=0 <a >=0.05 <a >=O (a >=0.05 % change

0.00 1.000 1.000 1.000 1.000 .0.00
0.02 0.936 0.937 0.909 0.911 0.22
0.04 0.871 0.873 0.817 0.821 0.49
0.06 0.804 0.808 0.726 0.732 0.83
0.08 0.735 0.740 0.634 0.643 1.42
0.10 0.664 0.671. 0.543 0.553 1.84
0.12 0.589 0.598 0.451 0.464 2.88
0.14 0.511 0.522 0.360 0.375 4.17
0.16 0.426 0.440 0.269 0.286 6.32
0.18 0.333 0.351 0.177 0.196 10.73
0.20 0.221 0.247 0.086 0.107 24.42

Table 16
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E .-. 0.95

_ A .l.réT'n V T'<':2(Tc)
C <a2>=0‘:aé;=0.05 <a2>=O <a2>=0.O5 % change

0.0 1.000 1.000 1.000 1.000 0.0004
0.1 0.952 0.953 0.984 0.985- 0.090

70.2 0.902 0.905 0.964 0.966 0.207
90.3 0.852 0.856 0.941 0.944 0.351
0.4 0.801 0.806 0.911 0.916 0.560
_0.5 0.748 0.755 0.872 0.880 0.860
‘0.6 0.695 0.703 0.820 0.831 1.330
0.7 0.639 0.649 0.744 0.760 2.220
0.8 0.582 0.594 0.624 0.650 4.250

70.9 0.522 0.536 0 399 0.449 12.370

Table 17
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{L = 0.8

E. Tc/Too 'E02(Tc)
<a2>=0 <a2>=0.05 <a2>=0 <a2>= 0.05 % change

0.00 1.000 1.000 1.000 1.000 0.000
0.03 0.946 0.947 ‘O.982 0.983 0.108

. 0.06 0.892 0.894 0.960 0.962 0.254
40.09 0.836 0.839 0.932 0.935 0.367
0.12 0.778 0.784 0.896 0.902 0.732
0.15 0.720 0.726 0.846 0.856 1.114
0.18 0.659 0.668 0.774 0.789 1.932
0.21 0.596 0.607 0.659 0.683 3.671
0.24 0.531 0.543 0.443 0.485 9.550

Table 18
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€=-0.6

‘E Tc/T00 ‘E02(Tc)
<a2>=0 <a2>=0.05 <a2>uO <a2>a0.O5 % change

0.00 1.000 1.000 1.000 1.00 0.000
0.02 0.936 0.937 0.978 0.979 0.095
0.04 0.871 0.873 ‘0.950 0.952 0.219
0.06_ 0.804 0.808 0.913 0.917 0.421
0.08 0.735 0.740 0.861 0.867 0.732
0.10 0.664 0.671 0.781 0.792 1.352
0.12 0.589 0.598 0.642 0.661 3.000
0.14 0.511 0.522 0.335 0.379 13.07’

Table 19
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TK/T = 16C0

5 Tc/Tco 8 % change in Q,
<a2>=0 <a2>=O.05 <a2>=O <a2>w0.05

0.0 1.000 1.000 0.714 0.714 0.00 ‘
0.1 0.771 0.747 0.744 0.748 0.48

0.2 0.570 0.531 0.775 0.781 0.77
0.3 0.402 0.356 0.804 0.813 1.12

0.4 0.269 0.224 0.832 0.843 1.32
0.5 0.172 0.134 0.857 0.869 1.35‘
0.6 0.108 0.078 0.878 0.890 1.37*
0.7 0.068 0.046 0.895 0.907 1.33
0.8 0.043 0.028 0.909 0.919 1.10
0.9 0.028 0.018 0.919 0.928 1.02

Table 20



61.99-4~

TRITCO = 1/16Tc/Tco 5 ’
<a2>=O <a2>=O.O5 <32>=0 <a2>=0.O5 % change ‘

1.000 1.000 0.714 0.714 0.000
0.796 0.800 0.683 0.684 0.0012
0.555 0.660 0.654 0.655 0.0015
0.553 0.558 0.625 0.627 0.0032
0.475 0.481 0.598 0.600 0.0033
0.416 0.421 0572 0.574 0.0035
0.368 0.373 0.546 0.549 0.0055
0.330 0.335 0.522 0.525 0.0057
0.299 0.303 0.499 0.502 0.0060
0.272 0.276 0.476 0.479 0.0067
0.250 0.254 0.454 0.458 0.0088
0.135 0.137 0.272 0.277 0.0183
0.092 0.093 0.141 0.145 0.0248
0.069 0.070 0.036 0.042 0.1556

Table 21



TK/Tco u 64"' fc/Tco 8C 2 9‘ 7 2(a >=0 (a >=0.05 <a >=0 <a >==0.05 7. change

0.0 1.000 1.000 0.837 0.837 0.000
0.1 0.856 0.827 0.846 0.848 0.236
0.2 0.721 0.674 0.855 0.858 0.351
0.3 0.595 0.538 0.864 0.869 0.579
0.4 0.480 0.417 0.874 0.880 0.686
0.5 0.376 0.312 0.884 0.890 0.679
0.6 0.285 0.224 0.894 0.901 0.783
0.7 0.210 0.154 0.903 0.912 0.997
0.8 0.150 0.102 0.912 0.921 0.987

Table 22
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TK/Tco = 1/64

Tc/T00 E
<a2>=0 (a2)-0.05 <a2>=O <a2>-0.05 % change

1.000 1.000 0.037 0.037 0.0000
0.790 0.000 0.022 0.023 0.0007
0.553 0.559 0.795 0.796 0.0012
0.475 0.402 0.702 0.703 0.0010
0.416 w0.422 0.770 0.771 0.0016
0.360 0.374 0.750 0.759 0.0019
0.330 0.336 0.746 0.740 0.0027
0.299 0.34 0.735 0.737 0.0029
0.272 0.277 0.724 0.726 0.0033
0.250 0.255 0.714 0.716 0.0034
0.135 0.130 0.621 0.625 0.0004
0.092 0.094 0.546 0.551 0.0092
0.069 0.071 0.479 0.406 0.0140
0.056 0.057 0.425 0.430 0.0100

Table 23
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The normalized Josephson current Js(C,T,41)/

Js(0,‘rI',.n.) versus T/Tc forfi = 0.95. Curves
1 and 2 are for E = 0.2 and curves 3 and 4
are for 5 = 0.4 <a2> = O for curves 1 and 3

2and (a > = 0.05 for curves 2 and 4. 104

The normalized order paramete-rA(C,T)/A (O,’l')

versus T/Tc for €= 0.95. Curves 1 and 2
are for E = 0.2 and curves 3 and 4 are for 5 =30

2E u 0.4. <a > = O for curves 1 and 3 and <

<a2> = 0.05 for curves 2 and 4. 105
The parameter K* against E_ . Full curve
is for (a2) .20 and broken curve is for(32) = 0.01 106
The normalized thermodynamic critical field

Hc(C,T,Ix)/Hc(O,T,rLJ versus T/Tc for
E -..—. 0.95. Curves 1 and 2 are for c -.-.- 0.2

and curves 3 and 4 are for E’: 0.4.2 2(a > as O for curves 1 and 3 and <a >=0.05

for curves 2 and 4. 107
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Figure P399
7. The normalized density of states N(w)/N(0)

versus oz/A . for to < A . for curve 1
(1/4 = 0.03 and for curve 2) a/A = 0.15
For curves la and 2a <a2> = 0 and for
curves lb and 2b (a2) = 0.05. 110
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For curve 1, (a2) a 0 and for curve 2(a2) = 0.05. 111

9. The normalized upper critical field’hc2(T)
versus 5. 8.: 0.95. For broken curve
(a2) = 0 and for full curve (a2) = 0.05. 112

10. The normalized upper critical field 3162(1)
versus 5. €.= 0.6. For broken curve
<a2> = 0 and for full curve <a2> = 0.05. 113

11. The normalized value of the slope of upper

critical f1e1d’}'w(T) versus 5. in 0.95.
For broken curvec2<a ) = O and for full curve<a2> = 0.05. 114

12. The normalized value of the slope of upper cri­

tical fie1d'E;:2(I) versus 6. i_=-. 0.6. For
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13. The normalized value of the slope of upper criu

tical field’hé2(T) versus TC/Too. f‘: 0.6. For
broken curve (a2) = O and for full curve<a2> = 0.05. 115
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