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PREFACE

Nonlinear phenomena have become one of the most important

subjects of research. This is because Na.tIn'(,-. ol't<-n reveals her Hly.’s‘l.('l'l(,'S in

terms of nonlinear processes. Nonlinear systems model almost all pllysical

phenomena. In the nonlinear paradigm, an initial change in one variable

does not produce a proportional change in the resultant variable. ie., cause

and effect cannot be related by a mere proportionality constant. 'l‘l1ey are

usually represented using nonlinear equations.

A dynamical system is defined by a collection of configura­

tional coordinates and equations of motion obeyed by them. Given such

equations of motion, one would like to solve them so that the dynamical

variables at any time may be determined as a. function of the initial variables

and time. \'Vhen a dynamical system has nonlinear equations of motion, the

dynamic inertia of the system becomes dependent on the configuration. If it

happens that this dynamic inertia tends to vanish, these are points of maxi­

mum fluctuation where e‘. en a small change in the configuration can cause a

substantial change in the outcome. This type of dynamical systems are en­

cou_ntered in a large number of disciplines such as physical sciences, chemical

sciences, engineering sciences, biological sciences etc., in the context of both

fundamental and applied mechanics.

The discovery of nonlinear integrable field models continues

to create immense excitement. One of the most fundamental, important and



fascinating problems in the investigation of nonlinear dynamical system is to

give a general criterion which decides the integrability. The link comes from

the description by nonlinear evolution equations whose solutions represent

the propagation of waves with a permanent prolile; solitons.

Usually typical dynamical systems are non integrable. But

few systems of practical interest are integrable. The soliton concept is a

sophisticated mathematical construct based on the integrability of a class ol'

nonlinear differential equations. An important feature in the clevelopment.

of the theory of solitons and of complete integrability has been the interplay

between mathematics and physics. Every integrable system has a lo11g list

of special properties that hold for integrable equations and only for them.

Actually there is no specific definition for integrability that is suitable [or all

(iil.S(‘S.

There exist several integrable partial clillerential equations( pdes)

which can be derived using physically meaningful asymptotic teclmiques

from a very large class of pdes. It has been established that many 110n­

linear wa.ve equations have solutions of the soliton type and the theory of

solitons has found applications in many areas of science. Among these,

well-known equations are Korteweg de-Vries(KdV), modified KclV, Nonlin­

ear Schr6dinger(NLS), sine Gordon(SG) etc..These are completely integrable

systems. Since a small change in the governing nonlinear prle may cause the

destruction of the integrability of the system, it is interesting to study the



effect of small perturbations in these equations. This is the motivation of the

present work.

The first chapter of the thesis gives a general intro<lm'tion

to the integrable systems and their importance. Various methods for the

detection of integrability are also given. The second chapter deals with the

integrability of a perturbed NLS equation. the main integrability detecting

tools considered are Painleve analysis and generalized Lax method.

Nonlinear wave propagation through a. 2D lattice is studied

in the third chapter. For three cases, the Kadotsev-Petviashvili(Kl’) equa­

tion, modified KP equation, and an integro—differential equation are obtained

using the reductive perturbation method. The integrability study of these

three equations is done in the fourth chapter using Lax method a11d Painleve

analysis. The fifth cl1apter deals witl1 the integrability of another perturh<,-(I

NLS equation.

Papers published/communicated

(1) On the Integ1‘abz'lz'ty properties of a. pertvurbed NLSE,Cha0s,

Solitons and Fractals, 9(11)(l998)18651874

(2)On the wave Propagation through a 21) lattice, Chaos, Solitons

and Fractals (Accepted for publication)
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Chapter 1

General introduction

1 .1 Introduction

The mathematical theory of nonlinear processes and their application

has grown considerably during the past two decades. Most of the wave

motions are represenl.c(l ma.tl|e1na.i,i(ta.lly by nonlim-ar rlillir-renti;1.l <-qua lions.

With the advent of new ideas and methods, new results and applications,

studies are continually being added to the Central subjects of fluid meclranics,

plasma physics, solid mechanics, nonlinear optics and nonlinear systems and

circuits; these are themselves developing remarkably and coalesci11g[l—4]. ll.

is becoming more and more desirable for applied matlxematicians,pl1ysi(:is1,s

and engineering scientists to study nonlinear phenomena as a. whole.

Nonlinear ordinary and pn.rl.ial (lill‘<‘rential equations play a

central role in almost all physical theories. The concept of solitons and the



inverse scattering technique (IST) method for exact solutions of some nonlin­

ear partial differential equations (pde), including some of physical interest,

have had far reaching influence and consequences in various bran(:h<-.s of math­

ematics, physics and engineering[5—7]. The most interesting and important

development is the progress that has been made in the study of nonlinear

pdes by means of the method developed by the group of scholars (:en1.er(-d

around Martin Kruskal in the 1960s[5]. ln the recent years, these ideas ha.\=e

really taken hold and important further progress has been made.

Nonlinear integrable systems were discovered as early as the

18th century. At that time only a few were known and with no real under­

standing of their characteristics and solutions. Now, however, it is (:orre(‘t to

say that it is impossible to over estimate their importance i11 the development

of all areas of science. Problems with unexpected structure often turn out to

be related to integrable systems.

The recent revival of the subject of complete integrability,

starting with the solution of the KdV equation by inverse spectral methods

had led to many new systems[1]. The standard soliton equations are consid­

ered to be completely integrable since they are highly idealised. But when we

consider real situations, an arbitrarily small change in an integrable equation



can destroy its integrability.

The first step towards the explanation of the relationship be­

tween the analytical structure of a system and its integrability is al.l.rilmI,r-«I

to the Russian mathematician S.Kovalevskaya[8]. Her work focussed on tI1e

study of the motion of a rigid body with a fixed point from an analysis of

the singularities of the solutions. Then, Korteveg and de Vries made an

important contribution to water wave problems and discovered a nonlinear

model equation for the unidirectional propagation of long surface waves in a.

uniform rectangular channel and the equation is now known as KdV equa­

tion[9]. Modern developments in the theory and application of KdV solitary

waves began with the famous work by Fer1ni,Pasta and Ulam on their numer­

ical study of discrete nonlinear mass strings[7]. They studied the behaviour

of certain equations, which are primarily linear but in which nonlinearity is

added as a perturbation. They believed that a smooth initial state would

eventually relax to an equipartition of energy over all modes, the energy in

each mode was shown to be almost periodic in time with no loss of energy

to higher modes as time increases. This remarkable fact has become known

as Fermi-Pasta —Ulam (FPU) recurrence [)llCIl()lIl(‘.Il()ll.

For a decade, the FPU problem remained as one unrelated



to solitary waves. The word ‘soliton’ first appeared in the work of Zabusky

and Kruskal[10]. They studied the KdV equation as a model FPU problem

and reconfirmed the recurrence phenomenon. The ino:~:t l'(‘.lll2L['i(}l.l)l(‘ ol>s<-r­

vation was that these pulses retain their identities even after their nonlinear

interaction. Their preservation of shape and resemblance to particles led to

the name ‘soliton’ However, these solitons were not to be regarded as new

particles—like excitations that the system possessed by virtue of its nonlinear

nature.

After the introduction of concept of solitons,Gardner, Greene,

Kruskal and Miura[11,12] developed a method for exact solution of the ini­

tial value problem for the KdV equations r('s0rl.ing to the ideas of (lir(-('1. aml

inverse scattering. This method is one of the basic tools to study Nonlinear

Evolution Equations(NLEE). It provides a procedure for explicitly obtaining

the pure soliton solutions and qualitative information concerning the gen­

eral solutions. A rigorous mathernatical approach suitable for dealing with

nonlinear problems was set up by Lax[13]. This method has been further

developed, extended and applied by Zakharov and Shabat[14] to solve the so

called nonlinear Schrodinger Equation (NLSE) which is of special importanrr-.

in many branches of physics. The solution of the NLS equation possesses



several remarkable properties which include the concept of envelope solitons,

modulational instability and recurrence[l5].

/\ddil.ionally, it was (lis<'.ov<-rv<| that |.||r‘r(‘ (Exist Nl.l')|')s in (‘ll I)

dimensions and integro-differential equations which are solvable by inverse

scattering[1]. Lakshmanan and Sahadevan[l6] l1a.ve given a succint exposition

of nonlinear dynamics from the point of view of integrability and Painleve(P)

analysis with many standard examples and applied the method to two,ll1r<e.-e

and N—dimensional quadratic anharmonic oscillator.

1.2 Integrable systems and solitons

Much attention has been focussed on the classification of dynam­

ical systems as integrable and nonintegrable ones. Toda lattice described by

a Hamiltonian function with N degrees of freedom is a well-known example

of a classical integrable system. In the 2N dimensional phase space, there

are N first integrals and there is a Lax r(~.pr<~.scntation. In the licld tht-ory,

the KdV equation in (1+1) dimension is an integrable system.The initial

value problem of this equation can be solved with the help of the lST. More­

over, there is an infinite number of conservation laws. In the Quantum Field

Theory, the best known example of integrable system is the quantum 11onlin—



ear Schrodinger equation[2]. This system can be solved with the help of lS'l‘.

However, most dynamical systems are nonintegrable. In Classical Mechanics,

we find among these nonintcgrable systmns tl|o.s<t with ('|m.ut.i(: l)(‘lI5l.Vl()l'.

A most remarkable property of integrable systems is the exis­

tence of special type of solutions called ”solitons” They are localised waves

that travel without much change in shape. Actually the word ”soliton” refers

to solitary travelling waves which preserve their identities even after a colli­

sion.

Solitons exist everywhere. They are found in the sky as (len­

sity waves in spiral galaxies, as red spots in the atmosphere of Jupiter and

they exist iii the ocean as waves bombarding oilwells[l7]. They exist in

smaller natural and laboratory systems such as plasmas, molecular systems,

laser pulses propagating in solids, superfluid He, superconducting Josephson

junction magnetic system, structural phase transitions, polymers, fluid flows,

elementary particles and in liquid crystals[l  Apart from the ubiquitous ex­

istence, the importance of solitary waves lies in their interesting properties

as nonlinear waves.

By definition, solitons are special solutions of some nonlinear

partial differential equation. Historically Scott—Russell[19] first observed a11d



reported the phenomenon of the so—called solitary wave in the early 1840s.

This was a wave of finite amplitude having a symmetrical form with a single

hump which propagates at a uniform v('.lo(:il.y without (‘hangeol form. ltiissr-ll

discovered from his experiments, one of the most important relations between

the speed c of the solitary wave and its maximum amplitude 7] above the free

surface of water of finite depth h in the form

c"'=g(h+7I) (1.1)
where g is the acceleration due to gravity

Later on, inspired by this work, Boussinesq and l{ayleigh[20,21] in­

dependently proved the existence of the Russell solitary wave. It was Boussi—

nesq who deduced the equation governing two dimensional irrotational [lows

if an inviscid liquid in a uniform rectangular channel into a nonlinea.r model

equation of the form,

3 U? 1
U” = C(2)(Uzz + §(}—:I + 5/fit/mi) (1.2)

where co is the speed of the shallow water waves. This equation admits the

solution,

3

/1

7
>aU(a:, t) = 1]S€C/L2( )i'($ :l: ct) (1.3)1

IQ

for solitary waves travelling in positive or negative direction. Landmarks in

*1



the evolution of the subject were the proposal by Korteweg de Vries[9], of an

equation incorporating both nonlinear and dispersive effects for the propaga­

tion of waves in shallow water. Later, Zabusky and Krusl<al[l0] revealed the

existence of wave like excitations in sl1allow water which Inaintained a stable

shape in the course of their propagation and emerged from collisions un­

changed. Because of their particle like character, those solutions were named

solitons by them.

There are other equations besides KdV whose solutions are

isospectral potentials for the Schrodinger equation[22,23]. A rigorous mathe­

matical approach suitable for dealing with such problems was set up by Lax.

Using Lax’s technique Zakharov and Shabat introduced a linear scattering

problem to solve the so called NLSE, which is of special importance in many

branches of Physics. Later, Ablowitz. Kaup, Newell and Segur[24], tried

successfully the same ideas on the sine-Gordon equation.

The recent revival ol‘ the subject. of complete integrability,

starting with the resolution of the KdV equation by inverse spectral methods

has led to many new systems which have the additional property of being

solvable in terms of quadratures. Soliton solutions are considered to be the

most remarkable property of the integrable systems. Nonlinear evolution



equations (NLEE) having soliton solutions share many special properties

such as an infinite sequence of conservation laws, Lie—Bacl<lund symmetries,

multisoliton solutions, Backlund transformations and rctlurttitm to orrlinary

differential equations of Painleve—type['25—28]. Furthermore, these equations

may be obtained via compatibility of two associated linear operators, in

other words, they can be put in the Lax’s form[29]. All this suggests that

the equations are exactly solvable.

TllCl‘(3 are both continuous and (lis(:r<ttv versions of the l.l1<-ory

of integrable systems[30]. In the continuous case one has to study either

system of ordinary differential equations, or partial differential equations.

Here the tools include finite dimensional differential geometry, Lie algebras

and Painleve test(P-test) for ordinary differential equations a11d infinite

dimensional differential geometry, loop algebras, and generalized P—tc.st

for partial differential equations. The typical examples are Korteweg de­

Vrics(l\dV), Kadoints(:v—l’ctviashvili(Kl’) and Nonlinear S(:ln'o<Iing'(rr(NLS)

equations. In the discrete case, there appear discretized operators which are

either differential-difference operators or difference operators[31]. Our int.er—

est lies in the integrability study of continuous systems which are r'epr'esmil,<—:(l

using partial differential equations.



At the centre of the theory of integrable systems lies the notion

of Lax pair describing the isospectral deformation of a linear operator usually

(lopending on a parameter. A Lax pair [l.,M] is such that the l,in1<*(-.volul.ion

of the Lax operator  = [L,1\4] is equivalent to the given nonlinear system.

The study of the associated linear problem Lu’) = Au’) can be carried out by

various methods.

Another important approach to integrable systems is the

l’ainlcve analysis. The I’-test, lirst us(-.(l by Sophie Kovalewsl<ia[8] in ll(‘I‘

classification of the integrable rigid body motion, is now recognised as a test

for deciding the integrability of nonlinear systems.

Soliton bearing equations such as sine-Gordon, KdV, NLSE

etc are familiar to mathematicians because of the remarkable complete in­

tegrability of the I—Iamiltonia.n systems from which they derive. Also tllese

equations appear as approximate model descriptions of a vast and diverse ar­

ray of physical pl1ci1or11e11a[32,33]. llowewar, realistic applications in various

fields such as condensed matter physics, engineering etc demand the inclusion

of various perturbations leading to problems beyond those. of pure iI1t(‘g1‘nl>lv

systems. This is the motivation of the present work. In this work, we try t.o

study the integrability of some nonlinear partial dill'erential equations using

10



Inainly Lax method and Painleve analysis.

1.3 Methods for solving integrable equa­
tions

1.3.1 Inverse scattering method

This method was introduced by Gardner, Greene, l’\'rusl<al and

Miura[1l,12] to solve the KdV equation by proposing that the time evolution

of the function U(x,t) could be studied through the properties of the quantum

mechanical problem. i.e., For a given initial condition U(.1.', 0), find the bound

state energy levels and wavefunctions of the Schrodinger equation in which

U(:r, 0) is the potential. This is the direct scattering problem. As U evolves

or deforms as a function of t, the associated quantum mechanical properties

termed the scattering data: will also evolve. Then the scattering at a later

time t could be found and this can be used to reconstruct the potential

I/(at, t). This is ('.a.l|od inverse s(ia.l.l.t'riug Im'thm|(lSl\*l). l)in.grmnn.l,i<'a.|ly thr­

ISM can be represented as follows:

_. IScattering data at t=0l _, [Scatterigg data at tl _, U(x,t)

11



First consider the differential equation

1/vM—(U—/\)1,b=0 (1.4)

This is the tirne—independent Schrodinger equation of quantum

mechanics where 1/) is the wave function, U is the potential and /\ represents

energy levels. The variablet only plays the role of a parameter. This equa­

tion then will admit a corresponding set of discrete eigenvalues, /\,1 = K:

(n=1,2,...,n.) corresponding to negative energy bound states with ass()(:iate<l

eigenfunctions 1,b,,(:c) given by

¢’n,:c:: = (U0(-T) 'l' K-:)¢‘n

The bound state eigen functions are required to be square integrable and

normalized to unity. i.e., f |  |2d:r = 1

From the property u -9 0 as I 1: |—> oo, the function belonging to ,\,1 > 0

takes the form,

Ibn ~ Cn(t)e:cp(n,,z)

for z —> oo. At positive energy, the Schrodinger equation for U0(.1t) exhibits

a Continuous spectrum and we choose A as a. constant K2 For A = R2 > (J,the

solution for equation (1.4), for large values of | :2 |, is a linear combination of

12



ea:p(:l:ik:z:), satisfying the given boundary condition:

1b = e:cp(—ik:t) + b(rc)e:z:p(irc:c), .1“. —> +00, (1.6)

1,!) = a(K,)e:z:p(—irs:r), :1: ——+ -00, (1.7)

The coefficients of transmission a(rc) and reflection b(I~:) can be

shown to satisfy | a I2 + I b |2 = 1.

Since the spectrum for /\ > 0 is continous, A can be chosen so

that A; = 0. Then substituting (1.6) and (1.7) in (1.4) yield the integration

constants D = 0, and c = 4i/c3 and two equations which easily give

a(*<,t) = a(K,0)

b(h:,t) = b(K.,0)e.rp(rc3it)

Now, the scattering data a, b, cn and An are suflicient to allow the

reconstruction of U at any time t. Let 1i'(:c,y) for y 2 0 be the solution of

the Gel’fa11d-Levitan equation[34]

K(a;,y)+B(1:+y)+[OoK(a:,z)B(y+2)dz =0 (1.8)

with

B(() = 2i7rb(r-;)ea:1)(ircg‘)drc + Z: C:€.”L‘p(I€,,C) (1.9)

13



Then

U(:r,t)=2a£$K(:1:,:c) (1.10)
Thus the evolution of U(x,t) is obtained from the explicit dependence on

time of b(rc) and C”.

The procedure for ISM can be summarised as follows:

(1)map the initial data 5' = b(r;,U),C,l(0) and )\,l(n. =

(2)compute the time evolution of the scattering data as

indicated above;

(3)solve the Gel’fand —Levitan equation and calculate U(x,t).

La.x[l3]stimulatodaniinporl.a.nt<|(2v<-lupint-ntandaxlclt-<lnm.|.|1—

ematical understanding to the inverse method. Subsequently, Zakharov and

Shabat[l4] showed that the NLSE which arises as a centrally important equa­

tion in fluid dynamics, nonlinear optics.,. etc could be solved by similar

methods. Shortly after this, a procedure was developed by which KdV, NLS,

mKdV, SG and indeed a class of nonlinear evolution equations could be

solved[1].

14



1.3.2 Lax method and its generalization

Since 1967, when Gardner, Green, Kruskal and Miura (GGKi\'I)[l 1]

integrated the KdV equation thereby discovering the ISM, numerous at­

tempts have been made to extend the range of application of this method. In

1968, Lax put forward a simplified argument for the basic result of GGKM

and at the same time suggested the lirst method of .'~:(‘£l.l'(‘.lllllg for intr-grn.|;|r­

equations. It was by this method that the many parts in the Kd\»’ family

integrable by the IST were discovered.

Given the two differential operators

_j T
L- am,+L

and
271+]M 8= 577$ + lower degree3

(IV is skew symmetric) such that there is a one parameter family of unitary

operators U satisfying

U; :
and Lis unitary equivalent to U, ie,

U:1(t)IJ(!r)(,-Ar(i')

is independent of t, then Lax suggests:

15



(1) the eigenvalues A of L are integrals of motion, and

(2)the relation

3
.é;(U-11,11) :0 (1.11)

implies

L,=[M,L] (1.12)
with

U, = MU

3 Since L, = Ug, the o erator e uation 1.12 is an evolutionP q
equation

U, = mu)

in which K(U) is a functional of U.

Lax proved that the initial data U(x,0) determine the solu­

tion of such nonlinear evolution equations uniquely. The representation of

nonlinear evolution equations in the ‘Laxpair’ form L, = [M, L] remains the

most powerful technique for developing analytical solutions of such equations.

Such a representation guarantees the constancy of the eigenvalue spectrum.

Following the work ol‘ Lax, the remarl<a|)l(- papers by 7121­

kharov and Shabat created much of soliton theory as we now know it. Using

16



Lax’s technique, they introduced a linear scattering problem and developed

a method to obtain soliton solutions for the NLS equation. Another gen­

eralisation of the IST was also made by Ablowitz, Kaup, Newell and SC­

gur(AKNS)[24]. Here the eigenvalue takes complex values in general, be­

cause, L and M are not self—adj0int. In the case of ZS scheme, the eigenvalue

does not appear explicitly at any stage. In the first place both AKNS and

ZS schemes incorporate the same form of matrix 1\/larchen1<o equation. l1ow­

ever, the delinitions of the two 17 functions diller significantly. In fact. the

definition of F in the ZS scheme via the linear partial differential equation is

often more useful in practice. This can be explained as follows.

Let F(x,z) and Ki(:c, 2) be NXN matrices where

K+(:c,z)=0, 2<a: (1.13)

K_(:r,z)=0, z>:r (1.14)
and let  be an N—vector. The integral operators .11.‘ and Ji on 1/; are

defined by

Jp(1,[)) = _: I7'(.1:,2)1,l)(z)dz (1.15)

Ji(z,L') =  I\"i(:r,z)1/)(z)dz (1.16)
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Here Jp and Ji are related by the operator identity

(I+J+)(I+Jp)=I+J_ (1.17)

This identity operating on 1,1), becomes

/_ °°<1a'm,y>+F<w,y)+ / °°(1\’(w»z)F(y.2))¢‘(2)dz= 0 (1.18)

That is,

K(:1:,y)+ F(a:,y) + /F K(.r,z)F(_1/,2)rlz = 0 (1.19)

which is the Gel’fand-Levitan—Merchenko equation in the ISM

We shall now relate F and Ki (in t and y) by introducing

appropriate (linear) differential operator A0 on 1,/2(:r, t, y) which has only con­

stant coellicients and which commutes with integral operator Jp. i.e.,

[A0.JFl =AOJF—J}7‘Ao=0

Further, introducing an associated differential operator, A which is defined

by the operator identity

We choose two pairs of operators0 8 ‘
Ag,” = 10,5 — M0, A5,” = 15% + L0 (1.22)
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and 3 0(1): __ (2): _ _‘jA Iaat M, A I/3ay+L (123)
where a and fl are constants and L0, Mu, L, and M are diI["crcntial operators

in :1: only. Here Lo and MD are comprised of constant coeliicients and so Ag”

and A32) commute. Also, both Ag” and A82) are to commute with the same

operator J+, i.e.,

ms", JF] = 0

and

ma”, Jr] = 0

The operators Aware defined according to the equation(1.23)

with the same J+, i.e.,

AW] + 1+) = (1 + J+)A§;" (1.24)

Now , let us examine the operation,

IN”. AW! + -1+) = A<"A”><I + M ~ (I are .I+)A<2w"
= AW + J+)A£f’ — Mu + mat"
= (I + J+)A§:’A§f’ — A§f’A5"(I + J»

= (I + J+)[A3". ASE’)

(1.25)

However, A81) and A82) are so chosen that they commute with one another,

hence we arrive at

[A<1>,A<?’] = 0 (1.26)
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Now, introducing the choice given in equation (1.23), we get3 3 3 3 ­
(Iaa—M)(Ifl6—y+L)—(Ifi5Q+L)(Ia5Z—1tI)—O (1.21)

which simplifies to 3L 3M ‘
Oat“-I-,BEy'+[L,1M]—U (1.28)

This is the generalisation of the Lax pairs of two auxiliary vari­

ables, the Lax equation is recovered if fl = 0, and or = 1. This equation

represents the system of nonlinear evolution equations that can be solved by

ZS scheme. The variable coefficients which arise in the operators L and M

constitute the functions which satisfy the system of evolution equations.

Accordingly if it is possible to find the linear operators L and

M, satisfying for a given equation u, = K(u), the initial value problem for u

may be solved as follows.

(1)Direct problem: Solve the eigenvalue problem Lqfi = /\(b for a

given U(x,0) and obtain the scattering data. at t=O,

(2)Time evolution of scattering data; in terms of equation igbt = M¢,

and the asymptotic form of [M as | :5 |—> oo, calculate the time evolution of

the scattering data.

(3) Inverse problem: Determine U(x,t) from a knowledge of the

scattering data for L.
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Although this formulation is quite general, it is rather difficult

to find appropriate operators L and M and to solve explicitly the inverse

problem for L.

1 .3.3 Painleve analysis

Another important approach to find integrable equations is the

so called singularity analysis or P—analysis of the solutions in the complex

plane[8]. With the recent developements in soliton equations, this analysis

has received much attention a11d now ma.ny of the integrable dyna.mical sys­

tems are associated with the so called I’—property, in that they are free from

movable critical points/manifolds.

The clasification of first order and second order nonlinear ordi­

nary differential equations(ODE), which are free from movable critical points,

was achieved through the works of Fuchs, Painleve and his co—workers[35] in

the last century.

S.Kovalewskaya investigated the integrable cases of rigid body

motion around a fixed point under the influence of gravity through the sin­

gularity structure analysis[8]. Kovalewskaya’s work was completely new and

also addressed to uniquely determining the parameter values for which the

only movable singularies of the solutions on the complex plane were poles.
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It was the French mathematician Paul Painleve[36] who, fol­

lowing the ideas of Fuchs, Kovalewskaya and others, completely classified

first order equations and studied second order <:qual..ions. He found 50 typ(:s

of second order equations whose only movable singularities were ordinary

poles. This special analytical property now carries his name and is known

as Painleve Property (PP). Of these 50 types of equations, 44 can be inte­

grated in terms of known functions such as trignometric functions, Elliptic

functions etc. The other six, inspite of having nu‘romorpl1i('. solutions, do

not have algebraic integrals that allow one to reduce the equation to quadra­

tures. These are now known as Painleve transcendcnts. It has been found

that P—transcendents ofte11 appear in similarity reduction of equations with

solutions. Also, a certain relationship seems to exist between equation with

the PP and Isomonodromy Transformation of certain linear equations.

The validity of P-analysis as a suitable procedure for detecting

the integrability of an equation may lie Iurrc cvcnthough there is no (l(‘llIlltiV(.‘

proof of why the singularity analysis for an equation turns out to be a test

of integrability.

Although the P—equatio11s are integrable in principle, their in­

tegration could not be performed with the methods available at that time.
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Several attempts have been made to extend P—analysis results to higher or­

der equations. After the introduction of IST, Ablowitz, Ramani and Segur

(ARS)[37] developed an algorithm to determine whether an ordinary differen­

tial equation had the PP. An ODE is said to have the PP if the only movable

singularities of its solutions are poles. The ARS algorithm is a method for

determining the nature of the singularities of the solutions of a.n ODE on

the basis of an analysis of their local properties. The study of similarity

reductions of PDES that can be solved by lS'.l', led Ablowitz ltamani and Se­

gur to formulate the ARS conjecture: ” Every ordinary differential equation

that can be obtained as the similarity reduction of a PDE solvable by IST

has the PP up to a smooth change of variable” This conjecture provides

a necessary condition for checking whether a PDE is integrable or not. To

check that a PDE has PP using the Al{S conjecture, one must find all the

possible similarity reductions and check that all the resulting ODES do have

the Pl’, eventhough one has to make transformations of varia|)les.Owing to

the huge number of reductions to ODES shown by some equations, the ARS

conjecture becomes tedious. Also the number of symmetries shown by the

original equation decreases during these reductions. Again, it is not clear

which transformations of variables are permitted while checking whether the
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corresponding ODE is of P-type.

These limitations of this method suggest that it would be in­

teresting to have a direct method that would allow one to study whether the

PDES under study are integrable. VVeiss, Tabor and Carnevale[38] introduced

the P—property for PDES, or Painleve PDE test, as a method of applying the

Painleve ODE test directly to a given PDE without having to reduce it to

an ODE. A PDE is said to possess the l’—property if solutions of the PDE

are ”single—valued” in the neighbourhood of the non-characteristic, movable

singularity manifolds. VVTC proposed this method by seeking a solution of

a given PDE in the form of a Laurent series.

U(Z1,22,...,zn) = Ulz) = <15"”(Z):)Uj(z)<I5"(Z) (1-39)J:

where U,-(z), j=0,1,2,... are analytic functions of z = (z1,z2,...,zn) with

Uo(z) 75 O in the neighbourhood of a non-characteristic, movable singular­

ity manifold defined by ¢5(z) = 0 where 45(2) is an analytic function of

z1,z2.,...,z,, Substituting (1.29) i11to the given equation and equating cof­

ficients of like powers of gb determines p and defines reccursion relations for

U”, for n21, of the function,

(n — fi1)(n — B2)...(n — fiN)Un = F,,(Uo, U1, ..., Un_1, 45(2)), (1.30)
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where N is the order of the equation, for son1e function F”. This defines Un

unless n = fij for somej ,1 3  3 N. n = fl1,fl2,... fly are the resonances.

For each positive integer resonance there is a compatibility condition (ie, F5

= 0) which must be identically satisfied for the pole to have a solution of

the form (1) and then U,g(z) is an arbitrary function(co1nmonly n = -1, is

a resonance and it is usually associated to the singularity manifold defined

by d) = 0, being arbitrary). Recently tliere have been studies into the role

of negative resonances, suggesting that they are important[39]. The main

three steps involving in the P—analysis of PDES are (1) determination of the

leading order behaviours (2) identification of the powers at which arbitrary

functions can enter into the Laurent series called resonance and  verifying

that at the resonance values, suflicient number of arbitrary functions exist

without the introduction of movable critical manifolds. The remarkable fea­

ture of P-analysis is that a natural connection exists between the P—property

and linearization properties, Lax pairs, Iiacklund l.ransl'orinations, lIll.(‘gl'£L­

bility[36] etc.

1.3.4 Hirota method

In 1971 Hirota[40] introduced a new direct method for construct­

ing multisoliton solution to integrable nonlinear evolution equations. The



idea was to make a transformation into new variables, so that in these new

variables multisoliton solutions appear in a particularly simple form. Hi­

rota’s method is actually a summation technique, eflectively based on the

Pade approximation. In this method, a dependent variable is replaced by a

fractional form say, G/F and this equation to be satisfied by G and F are

obtained in bilinear form. Power series solutions for G and F are then sought

to provide a Pade approximation to the original quantity.

The Hirota’s bilinear formalism has played a. crucial role in

the study of integrable systems[41-43]. The integrable PDES that appear in

some particle physics problems are not usually in the best form for further

analysis. For constructing soliton solutions, Hirota’s bilinear form is the best

form and soliton solutions appear as polynomials of simple exponentials only

in the corresponding new variables.

In order to write given nonlinear equation iii the bilinear form,

the first stop is to l.r.'rns['or1n this c-qunti<m into :1. form tli.':.t is q1i.'u|i'uti('

in the dependent variables.In doing this, one should note that the leading

derivative should go together with the nonlinear term, and in particular,

have the same number of derivatives. Usually, the transformation to a new
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dependent variable is in the form[44],

U=3:w

where U, = K(u) represents the nonlinear PDE.Equations of this form can

usually be bilinearized by introducing a new dependent variable whose nat­

ural degree would be zero, eg: logF or  The common form of this trans­

formation is U = 23§logF. Then substituting in the given equation results in

an equation in F

In addition to being quadratic in the dependent variables, an equa­

tion in the bilinear form must satisfy a condition that the derivatives should

only appear in combinations that can be expressed using Hirota’s D-operator,

which is defined by,

Dzf-9 = (321 — 3z2)nf($1)9(~”'32)

The D-operator, operates on a product of two functions such that

Drf-.9 : frg _ fgr

DxDtf-g = fgrt _ fzrgt _ ftgr + fgxt

The D-operator has some useful properties which help to find out the

solution of the equation, expressed in the bilinear form, easily.
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In order to find the solutio11 of tl1is equation, consider a whole cla.ss

of bilinear equations of the form

P(l),,1)y,...)l9'.I3'=0 (1.31)
where P is a polynomial in the Hirota partial derivative D. We may assume

that P is even, because the odd terms cancel due to the antisymmetry of the

D operator.

The multisoliton solutions are obtained by finite perturbation ex­

pansion around the vaccuum F = 1,

F=1+ef1+cf2+e3f3+ (1.32)
j with e as an expansion parameter.

For 1 soliton solution(lSS), only one term is needed. i.e., If

we substitute F = 1 + (if; in equation (1.31), we get

P(D,,..,)(1.1+ e1.f1+ <-;f1.1+ 811.11): 0 (1.33)

Collecting the terms ol order 6‘, we get

P(6,,8y,...)f1= 0 (1.34)
The soliton solution corresponds to the exponential solution of (1.34). Usu­

ally we take

f1 = e", (1.35)



7; =p:1:+gy+ +constant (1.36)

and then (1.34) becomes the dispersion relation on the parameters p,q,...

1-’(p,q,...)=0 (1.37)
The order 62 term vanishes because

P(l))c”.e" = c2”1’(p — p) = 0 (1.38)

by the vacuum condition P(0,0,  = 0.

The two soliton solution (235) is built from two ISS. One

chooses the combination

F = 1 + em + c”’ + /l,ge'“+’” (1.39)

Substituting this in the given equation, we get the 2SS and also

A” : "PlP1‘P2)P(P1+P2l (1.40)
Thus, we were able to construct a 2SS for a huge class of equations, whose

bilinear form is of the type(1.31). ln particular, this includes many non­

integrable systems also. Here the only condition is that the parameter p,- are

only required to satisfy the dispersion relation. This extends to N soliton

solution.
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This method turned out to be very effective and was quickly

shown to give N soliton solutions to the KdV, mKdV, SG and NLS equa­

tions. It is also suitable for obtaining several types of special solutions of

many nonlinear evolution equations. Moreover,it has been used for the study

of algebraic structure of evolution equations and extension of integra.ble sys­

tems.

The disadvantage of this method is that the process of bilin­

earization is far from being algorithmic. It is also dillicult to find beforehand

how many new independent or dependent variables are needed for bilineariza—

tion. Recently there have been some indications that singularity analysis can

be used to find the transformation since the number of dependent variables

seems to be related to the number of singular rnanil'ol(ls[45].

The IST method is more powerful since it can handle general

initial conditions and at the same time more complicated. If one just wants

to find soliton solutions, Ilirota’s niethod is the f;i,sl,(5st in producing 1‘(rsI1ll.s.

1.3.5 Backliind transformations

Backliind transformations were organised in 18803 from the work

ol‘ Lic and Backliinrl for the study of surfaces in dillcrcntial gcometry['1()'._-'17].

They arose as a generalization of contact transformations. That is, transfor­
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mations that take surfaces with a common tangent at a point in one space

into surfaces in another space, which also have a common tangent at the cor­

responding point. A Backlund transformation is essentially defined as being

a system of equations relating the solutions of a given equation, either to

another solution of the same equation or to a solution of another equation.

This can be illustrated as follows. Consider two uncoupled

partial differential equations in two input variables 1: and t, for two functions

u and v; such that P(u) = 0 and  = () where P and Q are two operators,

which are in general nonlinear. Let R; = 0 be a pair of relations,

R,-(u,v,u,,v,_.,ut,v,, ...;$,t) = 0

between the two functions u and 12. Then Ii, = U is a Backliind transfor­

mation, if it is integrable for 12 when P(u) = 0 and if the resulting v is a

solution of  = 0, and vice versa. If P = Q so that u and v satisfy the

same equation, then R; = 0 is called an auto—Bacl<liind transformation.

One of the simplest auto-Backltind transformations is the pair,

Uz=V:, Ut=_‘/1:
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the Cauchy-Riemann relation for Laplace’s equation,

U“. + Uyy = 0, V” + Vyy = 0.

Thus», if V(;r,y) = :53}, then U(:c,y) can be determined from U, = .73, Uy = —y

and so U(;r,y) = % (332 yz) is another solution of Laplace’s equation.

Another example is the SG equation which ca11 be written as

04,, = sin0 (l.4l)
with the transformation C = %(x + t), 1; = %(x 1;). The BT for this case is

found to be . 1 7
91_( = 2a 3l17.[§(t9 + 00)] + 90‘ (1.42)

9-3410 010 (M21,, — aszn. 2( — 0) — 0”, .- .)
where a is a constant. Assuming 00 = 0, one obtains

91 = 4 tan-1[ea,~p(aq + 3)] (1.44)

By considering

we get the soliton solutions,

[z — ct — $0]

0 = 4tan~1(e:cp [1 _ (91%
) (1.45)
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[——(:r — ct — :rg)]

[1_C2]% ) (1.46)9 = 4tan’1(ea:p

In short, the BT method enables one to find a new solution from

a given one. When applied repeatedly, the BT equation gives the breather

and the N-solutions of the SG equation. It can also be applied to the l’\'dV

and other equations[46]. The difficulty is in finding P a.nd

1.4 Complete integrability

The word ”integrabilit_y" actually comes from ”intcgral” which

is closely connected with differential equations. The integrable systems with

finite degrees of freedom could be best described by integrable nonlinear

ordinary differential equations. Systems exhibiting regular and periorlic be­

haviour having analytic solution with infinite degrees of freedom could be

expressed in terms of partial differential equations (pdes). The nonlinearity

inherent in most classical equations of motion makes the question of stability

and the prediction of long term behaviour diflicult[-'18].

According to Poincare, integrating a differential equation

means finding the general solution in terms of finite expression, possibly

multivalued in a finite numbers of functions. 'l‘|ie word finite imlicatr­

that integrability is related to a global rather than loca.l knowledge of the
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solution. The properties and behaviors of integrable dynamical systems are

typical. But in generic families of dynamical systems, the integrable ones

are rare. Also an arbitrary small change in an int(‘gra.l)le systeln (tan destroy

its integrability still, some structure of the integrable systems persists under

perturbations. In fact, at the beginning of this century, only a few integrable

dynamical systems were discovered a.nd their importance was mainly owing

to their mathematical beauty. Segur[/19] points out that ”if a given problem

can be app1'0xi111a.te(l l)y an integrable lll()(l(‘l, then it. is likely that it ("an also

be approximated to the same accuracy by a model that is not integrable"

But, Calegero[50] argues that a limiting procedure applied to a large class

of nonlinear pdes leads to a universal equation which is integrable. If this

limiting procedure is physically reasonable, this guarantees the wide applica­

bility of the integrable equations. One expects integrable equations to play a

non—negligible role in the description of realistic physical systems, eventhough

they are expected to describe some limiting .'1symp|.oti<‘ situ21.l.ion.

The term integrability indicates the existence of integrals of

motion. Complete integrability means that these integrals exist in sufficient

number. For the complete integrability of a Hamiltonian system with 71

degrees of freedom[48], there exists n. first integrals in involution ie, the
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vanishing Poisson bracket allows the construction of n integrals F1, F2, .... ., F"

including Hamiltonian itself.

um 121 s 0,i=1,.....,n, ] =1,....,11. (lit/17)
In the case PDES, Mussette summerises the meaning of C0111­

plete integrability as[51]

(1) either the nonlinear pde can be related to a linear

pde by an explicit linear transformation

(2) or the equation passes the l’-test and possesses l’­

property for pdes

(3) or the equation possesses solitary waves, N—soliton

solutions for arbitrary N, an infinite number of conservation laws, etc.

(4) or the equation satisfies the ARS conjecture on the

relationship of all its relations to ODES without movable critical points.

Pa.rtial integrability means that some of the above listed properties

are not satisfied but the equation possesses explicit analytic solutions such

as degenerate solitary waves, N soliton solutions with N bounded, etc.

Another approach to the detection of integrability is through

the numerical study of the behaviour of the solutions in real time. The nu­

merically detected chaos is a clear indication of the nonintegrability of the
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given system. But it is not true that nonintegrable systems do not necessarily

exhibit large scale chaos. Hence chaos may appear even in the simulation of

an integrable system; if one is careless with numerical implimcntation. ll<-nu:

we can conclude that there is no particular definition, that is universally ac­

cepted, for complete integrability.
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Chapter 2

Integrability studies on a
perturbed NLSE

2.1 Introduction

Among tl1e important class oi" nonlinear integrable systcnis, the

well known nonlinear Schrodinger equation plays a significant role in t|1vtlu:­

ory of envelope of wave trains in which no dissipation occurs[5‘2,-'1]. The wide

applicability is due to the presence of the special type of stable solitary wave

solutions, called envelope solitons. For example, in optics, these solitons are

expected to be suitable information carriers in optical [iber communication

systems[53—54]. Solitons themselves can form a nonlinear superposition but

do not mix their energies; i.e., the interaction of solitons in any integrable

system is elastic. This may be due to the [act that the associated equations

possess an infinite number of conserved quantities. The simple l'orn1ofNLSE
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is

BU” + 7U I U I2 = iv,

where [3 and '7 are constants. Here | U [2 represents the potential which has

the effect of trapping the wave energy which otherwise tends to spread due

to dispersion. At some values of the pulse width, the spreading effect due to

nonlinearity balances and a stationary pulse can be formed.

NLSE has two types of soliton solutions, namely bright solitons

which arise when the dispersion and the cubic nonlinear coefficients have

identical signs, and dark solitons, which occur when the two coefficients

take opposite signs.

The simple cubic NLSE belongs to the class of integrable sys­

tems and can be solved by lST[l—3]. Grimshaw has investigated the slowly

varying solitary wave solution of the variable coeflicient NLSI3[55]. Since a

small variation in the guiding equation can destroy the integrability of the

given system and can affect the solitary wave solution, it is important to

study the NLSE with difierent perturbations[-56-68]. It has been shown that

the interaction of solitons described by noni11tegrable equation leads to addi­

tional radiation being emitted lrom the impact area of the soliton radiation.

However, the rate of radiation and the details of interaction between the
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soliton like solutions in the nonintegrable systems is still an open question.

An important field of research today is the propagation of so­

lutions of NLSE in fiber, which has experimentally proved to be an vfficivnf

way of pulse compression. The theoretical model assumed lossless fibers.

Since the real fibers have finite losses, it is difficult to apply soliton propa.ga—

tion in practical long distance systems. The first experimental observation

of solitons in optical fibers was made in l980[69,70]. Now, of the research

laboratories around the world, solitons are proving the key to r<~p<:al.<-r|<-ss

transoceanic optical fiber cables. An array of nonlinear wave guides seems to

be a unique system for observation of the competition between rionlinearity

and disorder[7l]. Taking into account these facts, in this work we perform

a11 analytical investgation of the influence of 11onli11earity on the process of

e11velope soliton propagation.

The perturbed NLSE under study is of the form,

i1',+ T” + 2| 7' |21‘ = 1'17 (2.1)

where 7' is the complex field envelope. This equation is assumed to represent

a small perturbing influence on the propagating soliton through a. non—ideal

anomalously dispersive single mode optical fiber. VVith an appropriate choice

of F, the complex term iF can represent this perturbing influence. The per­
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turbation is responsible for the generation of a background field, which is su­

perimposed on the soliton pulses. Depending on the nature of perturbation,

this can exhibit quite c01npli('ate(l l‘en.1.ures. \Ne l.n.kt- a genmnl [)(‘l'tIll'l)il.l.i()ll

in nonlinearity; i e, F = ief(:1:,t)| r |2r where f is a real valued function

and carry out the integrability studies using Painleve a11d Lax methods. We

also try to find the nature of the solution of this equation when the function

f depends only on time. Over the large transoceanic distances with signal

levels large enough to dominate over the amplified spontaneous emission,

it is impossible to avoid Kerr nonlinearity, which can lead to serious signal

distortions. Recently, Burtsev etal [72] studied the interaction of the funda­

mental soliton with a localized inhonrogeneity in nonlinearity represented by

6—function. They found that when the input is a fundamental soliton, the

amplitude of the output soliton rapidly decreases with increase in inhon1o—

geneity strength and at a critical point, it bifurcates. The present study also

reveals similar results and can be considered to be a generalization of the 6

function perturbation.

In this chapter, we study the integrability property of the per­

turbed NLSE

ir,+7‘u+2| r |2r= —€f(:r,t)|7' |2r (‘[\J [O
\_z
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In the first section,we use the Painleve method. Here we assume a Laurent.

series solution and carry out the analysis. This method is actually a natural

g(‘ncralization of the exploration of ('riti('a| singular points a.ss()(‘ia|.(‘rl with

solution of an ordinary differential equation in the complex plane With

the perturbing term sf] 7' I27‘, the NLSE is found to pass the Painleve test

irrespective of whether f depends on 1‘. and t or only on t. We obtain a

Backliind transformation also for the equation. The next section deals with

the Lax integrability of the nonlinear system. It is found to have Lax pairs

when f is both 1: and t dependent subject to a certain condition. But. when

f is time dependent only, Lax integrability fails. In the third s(:('ti()n, we

try to find the solution of the equation using direct integration This can

be done only if f is independent of :1: and depends only on t We also

study its variation with perturbation strength graphically. Discussions and

conclusions are presented in the final section.

2.2 Painleve analysis

Painleve analysis is considered to be the most powerful method for

identifying integrable systems This method can be applied to systems

of ordinary and partial differential equations alike. Here we use the WTC
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method[38] for pdes Painleve pde test—in which there is no need to reduce

the pde to an ode. As explained in the first chapter, a pde is said to possess

the Painlcve property if the solutions. of the pde are singlcvalurrd in the

neighbourhood of a non-charecteristic movable singularity manifold. Before

applying the P-test, we seek a solution of the given equation in the form of

a Laiirent series:

Um) = 46“ Z:0Uj¢>j (2.3)
where qfi and U are analytic functions of :1: and t.

The major difference between the Painleve analysis of odes and

pdes is that the singularities of the latter, in general, are not isolated as

the solutions are functions of several complex variables, but rather he on

manifolds determined by the condition;

¢(:c, t) = 0

'.|.‘lius if U(.T,t) is a solution of the pde,

U¢+K(U)=0 (2.4)
then we require that, in the neighbourhood of the manifold

q5(:I:,t) = 0, ( .[Q in
\J
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U0 aé Oand ,Uj = U(:c,t) and Q5 = q$(1t,t) are analytic functions of LL‘ and t

and a is an integer.

The VVTC formalism is important l)<~r'nuso. it ran lrszul to (‘on

11ectio11 with solitons and other integrability properties. Also there exists a

natural con11ectio11 between the P—propcrl.y and the linearization property,

Lax pairs , Backliind transformations, etc.

In order to apply the P-test to equation (2.2), we rewrite it in

terms of the two complex valued functions U and V defined by U = r and

V = r‘ Then we have,

z'U,+U,,,,+2U2V(1+ef)=0 (2.6)

and

—iV,+Vm+2V2U(1+5f)=0 (.KO *1
\_/

Now we seek solutions of equations (2.6) and (2.7) in the Laurent series forin:

U(:r,t) = 43°’ 2:0 U,-qsi (2.8)

V(x,t) = <25” 2;. W (2.9)
To simplify the calculations, we use the Kruskal ansat.7.[3()]: d>(:I:, I.) :

:1: + ¢v(t), where 1,b(t) is an arbitrary analytic function and U, and  are
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analytic functions such that U0 = 0 and V0 = 0 in the neighbourhood of the

non—characteristic movable singularity manifold gZ5(:I:, t) = 0.

Assuming leading orders to he of the form U = M, d)" and V :

V0455 we find , from equations (2.6) and (2.7), by balancing the d0rnina.nt

terms, that oz = [3 = -1 and

UOVO = (1—J:i€f—) (2.10)
In order to find the resonances, i e, the power at which the arbitrary

functions enter into the generalized Laurent expansion, we expand

U(:r,t) = 2:01},-¢9"‘ (2.11)

V(:z,t)=):]°_:0r/jqsf-1 (2.12)
and use them in equations (2.6) and (2.7), retaining leading order terms

alone. Detailed calculations give the following resonance equation:

j(j+1)(j— am’ — 4) = 0 (2.13)

and so the resonant values arej = -1,0,3 and 4.

To probe the existence of sufficient number of arbitrary functions,

we substitute the Laiirent series solutions given by the equations (2.11) and

(2.12) into equations (2.6) and (2.7) and find the following by collecting the

coefficients of different powers of q’):
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g2S‘3 We get equation (2.10) which means that U0 or H, is

arbitrary for tl1e arbitrary selection of functions.

q5‘2:

U1 = -71% ¢~t (2.14)
V1 = $14, ¢, (2.15)

42“:

U; = 11—2Uo ¢-}’ + 616 + (U0 2,, + 2V0IJ(,,) (2.16)

V2 = 11—2Vo 1% —  + (VOL/0, + 2U0Vot) (2-17)

Similarly,collecting the coefficients of qfio, we obtain

U0 V0
4

1 . . , ‘
UOV3 + WJU3 = §(1VoU1c+ U2i‘iJ1/11- — 2V2Uo7l’:) (Z-18)

Ib,3Uo%
UOV3 + V003 = %(—iU0V1t+V2Uo1+"e— - 2U2vm) (2.19)

Substituting the values of U], H, U2 and V2 in equations (2.18)

and (2.19), we can show that the rhs are also equal which means that U3 or

V3 is arbitrary. Proceeding further to coefiicient of qfl‘, we found that U4 or

V4 is arbitrary.This procedure admits a straightforward extension to higher

orders.



It is possible to construct. the Ba.cl<liind t1‘ansfo1'1nation(Bil‘)

and Hirota bilinear form from the singular expansion obtained for the pde.

That is, by truncating the Laiircnt expansions (2.11) and (2.12) up to the

constant level term, we can formally write the BT as

T‘ = U = Uu(]5_] + U1,
T,_=V=V0¢_1+V1 (2.20)

I11 order to derive the Hirota bilinear form, we consider the vacuum solution

in the above equations. Then we have

7‘ : L’l0ql)_la

r* = l/045-1

This suggests us to take the bilinear transl'01'mation in the l'orn1,

7": 2
f

and

-1 62
1+5f 55]“)rr'=|r|2=(

Here g is a real function and 45 is a complex function. Under these transfor­

mations,equation (2.2) can be linearized as,

(z'D,+D,,2)f._q=0 (2.21)
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where the operator D is defined as a 8 . ,
D;"D£‘f(w,t)~g(w’.t’) l:=:I.z=w= ('a6;‘£)m(5t-—5?)"j(:c,t).g(:c’,t) |I:,,,,=¢.

(2.22)

Equation (2.21) is the bilinear form of the cubic NLSE. The only difference

is in the transformation.

Thus the solution ( U V ) of equation (2.2) admits the required

number of arbitrary functions without the introduction of movable critical

manifolds, and hence the (1+1) dimensional NLSE (2.2) is found to pass the

P—test and it is expected to be integrable.

2.3 The Lax method

In the Lax method we consider two operators L and M, wliere

L is the operator of the spectral problem and Ill, the operator governing the

associated time evolution of the eigenfunctions such that

Lzp = A1,/.» (2.23)
1,b,=M¢~, (2.24)

where the subscript t denotes the differentiation with respect to time. Then

the equation

L: + [L, /W] = 0 (2.25)
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with A, = O is called Lax’s equation. Here [L, M] = L11/I — ML

If a nonlinear pde arises as the compatibility condition of two such

operators L and M , then equation (2.25) is callt-rl l.n.x’s iwpressentn.1.ion and

L and M constitute a Lax pair

The more general version of the Lax representation is given by the
o

equation (1.28).

Here we take a = 1 and [3 = 1 and we get

Lt — M, + [L,M] = 0 (2.26)

Here we shall confine ourselves to the case where L and JW are 2 x 2 matrices

and L is a linear function of x\. By the proper cl1ice of: L and 111, we can

construct dillerent integrable equations. Here, we shall assuine that L(;1:, l)

is of the form,

L=z',\((1)   (2.27)
where q and r are complex valued functions of 3: and t. We shall so choose

the matrix M(/\) that Equation (2.24) is reduced to certain pde in q and 1'.
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IV is chosen as follows ,

_ .2 1 0 . 0 q) (0 q,,)_.(7‘q 0 >_. (frq 0 >11/I-22/\(0 _1>+22)\(r 0 + _TI 0 z 0 _1_q za 0 _f7_q
(2.28)

where f(z,t) is a real function. Substituting Equations (2.27) and (2.28)

in Equation (2.26) and solving, we find that Equation (2.26) is equivalent to

the system of equations;

ir,+1“”+2r2q(1+5f)=0 (2.29)

iqe+qz.-. —2q27'(1+ef)=0 ("3-30)

setting q = r* we get,

1:1-,+r,_., +2 | 1- 1’:-(I 4 cf) 0 (2.31)

and for r = q*,

iq. + qu — 2| q |’q(1 + sf) = 0 (232)

provided

%W = 0 (2.33)
The existence of Lax pairs indicates that the system given by Equations

(2.31) and (2.32) maybe integrable. Wlu-.n 5 = U, tlu-.s<: <:qual.ions r(:(lu('(: [,0

simple cubic NLSE without any perturbation.
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2.4 Solutions of perturbed NLSE

Let

r=¢5(:r) carp (ikt) (2.334)
be a solution of equa.tion(2.31). The direct integration method will be now

to find the solution of the equation with the perturbing coefficient depending

only on time.

Substituting equation(2.34) in equation(2.31) we get,

¢u = kgb _ ¢3(1+ sf) (2.35)

On integration, this gives1 2 2 4 r - ­
Ztfix = ktb — (15 (1 +  + (_:on,.<I.(I.nf,. (2..l())

Applying the boundary condition that q’) va.nishes at infinity, the constant in

(2.33) can be dropped. On solving this we find,

I 2k
¢5= 1+6f.9cc/1.\/§Z(:n—:r(,) (2.37)

Therefore,

r(:r,t) = 2k e:I:p(ikt)sech\/fi(:c — :30) (2.33)
1 + sf

Comparing this with the solution of simple cubic NLSE:

(](:lZ, t) = \/.‘§Er=.arp(1fls:I,).s-(-r-/I\/fit): — .-yr”) (2.30)
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we can see that the amplitude of the wave given in equation (2.38) depends

on the strength of the perturbation, i e, as the value of f(t) increases, the

a.mplitude decreases [fig.2(a)] an eflicci, which is m<pe<:tr-.rl l)e('.a.nsr- the (‘X­

istence of soliton solution in a nonlinear dynamical system is sensitive to

perturbations. The variation of the soliton wave form with different values

of the strength of the perturbations is shown ir1 the graphs. Fig. 2(b) repre­

sents the soliton wave form when 6 = 0.005. This remains unchanged upto

8 z 0.1. If we again increase the value of 5, slight changes begin to ()(?(‘llI‘ in

the profile and at 5 2 0.6, the splitting of the wave becomes pronounced, as

shown in fig.2(c). Fig.2(d) clearly shows the effect of perturbation at 5 R’ 1.

Beyond this value , small radiations arise on either side of the wave.

2.5 Conclusion

In this work, we considered a cubic nonlinear Schrodinger equa­

tion with a perturbation in nonlincarity. V\/lien the perturbation strengl.h is

zero, this equation reduces to simple cubic NLSE. With the perturbation,

this equation represents the propagation of an optical soliton through a fiber

with negative group velocity dispersion and positive Kerr coefficient. The

perturbing term may represent a change in rcl'1'a.ctive index due to some



external disturbance.

Since the simple NLSE is a completely integrable system, it

is interesting to check whether it retains its int.egral)ility property under the

perturbation. This equation is found to pass the Painleve criteria, irrespec­

tive of whether the perturbing function f is both space and time dependent

or depending only on time. Hence we can conclude that the system is into­

grable in the Painleve sense.The Lax method gave a different result. When

the function f depends on both time and space, this equation is found to

posses Lax pair. But when f is independent of space and depends only on

time, it is found that the equation does not have a Lax pair. This means

that the system may be integrable in the Lax sense only when f is both time

and space dependent. But the perturliation depending only 011 time is of

importance in the real cases. For example, in the case of propagation of opti­

cal solitons through fibers the refractive index of the fiber may be influenced

by the change of temperature, pressurc,.. etc which may (l(3[)(tll(l only on

time. It is found that the amplitude of the soliton herein, obtained by direct

integration, decreases with increase in perturbation strength. The graphical

studies reveal that beyond a critical value of the perturbation strength, the

waveform undergoes deformation and splits into pulses. This illustrates the
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Fig.2(a). Variation of r(x,r) w.r.to x and I for different values of 6
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Fig. 2(b) The variation of r(x.t) with resnect tox and t for 5 =0. 005

F ig.2(c) Variation of r(x,t) with respect tox and t for £=0.6



Fig.2(d) Variation of r(x,t) with respect tox and t for £=1.005



influence of the inhomogeneous nonlinearity interacting with the soliton. For

small value of the parameter 5 this is not significant, but above a critical

value it asserts itself. This proves the non inl.(~gral»ility 0|‘ the s_ysl.mi| with

f(t) , as we obtained in the Lax method.

At least in the context of the perturbed NLSE we studied,

it appears that the Lax method is a more refined indicator of integrability

than the Painleve approach. We accordingly, conjecture that a fully into­

grable system will be simultaneously Painleve and Lax integrable under all

circumstances, a criterion that is violated in the prosmlt case.
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Chapter 3

Wave propagation through a
2D lattice

3.1 Introduction

The study of solitons on discrete lattices dates back to the early

(lays of soliton thcory[3] and is of great pliysical imporl.an('(-. 'l‘hr- inosl.

important. studies are on the effect of anisotropies and nonhomogeneities in

the media on wave propagation[73]. Using lasers, it has been shown that the

heat flow in solids is closely related to the {low of solitons. Davydov[7~'1], by

using some rules of solid state physics, had shown that the idea. of soliton

propagation is essential in the study of the chemical changes taking place

in long protein molecules—which is the basis for the understanding of muscle

cont1'acl.ion.

Generally, the relevant nonlinear equations which model these
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lattices cannot be solved analytically. Consequently, one looks for possi­

ble pulse soliton solutions in the continuum or longwavelength approxima­

tion. Only when this approach is not w0rkal)lc., one has to use nInncricn.l

approaches or simulations. Nevertheless, there exist some lattice models for

which the governing equations can be solved exactly[76]. The Fermi—Pasta­

Ulam[77] problem together with the explanation of Zabusky and Kruskal can

be considered to be the origin of lattice solitons. Zabusky[78,79] first showed

that the continuum limit of FPU lattice was the KdV equation. This led to

the discovery of lattice solitons. The most remarkable model for the study

of lattice solitons is the Toda chain[80]. With nearest neighbour interaction,

Toda chain happens to be the only integrable nonlinear morlcl. lts applica­

tions in (lillicrent lields like wave propagation in nerve systems, ladder circuit,

chemical reaction in atoms and molecules and ecological systems make it very

important and interesting from a physical point of view[8l,8‘2]. The general

solution to the initial value problem of the Toda lattice has been lound[83].

Recently, it has been found that, by considering the weak non­

linear case, it is possible to reduce a large number of one dimensional nonlin­

ear systems to integrable ones. Some physically interesting cases in plasma

physics, solid state physics etc.l1ave been reduced to the well known simple
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model equations such as Burger’s and KdV equations using weak nonlinear

approxima.tion(WNA)[84—85].

The weak nonlinear approximation rests mainly on two assI1mp—

tio11s:

(1) the amplitude of the wave is small but finite, and

(2) the wave is a long wave or a modulation of a monochro­

matic wave.

As far as these two conditions are satisfied, this method is

applicable to inhomogeneous systems including random systems. For such a

system, it is desirable to have a consistent method to treat the weak nonlinear

phenomena. It is found that the reductive perturbation method(ltl’M)[86,87]

is very useful for carrying out weak nonlinear approxiination. lt takes into

account a competition between nonlinearity and dispersion in a systematic

manner. Various cases of nonlinear dynamics in fluids, nonlinear lattices and

plasmas are reduced to soliton equations by RPM[88,89]. Then it becomes

easy to study the waves analytically and explain the observation of soliton

phenomena. If a time-dependent and homogeneous perturbation is added to

the nonlinear system, we also obtain soliton systems[85]

Iizuka etal.[90] studied the propagation of nonlinear waves
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through an inhomogeneous lattice. They considered a one dimensional sys­

tem and reduced the equation of motion to the known equations, Korteweg

de-Vries(KdV), modified KdV and nonlinear Schr6dinger(_Nl.S) equations,

for diiferent perturbations using WNA. In this chapter, we extend our stud­

ies to a two dimensional lattice and investigate the propagation of nonlinear

waves using the continuum approximation. Such models are associated with

rather important problems in physics. The continuum approximation to

latfice problenisis used in naany contexts because: (1) conthiuuin approx­

imation is easier for analytical as well as numerical study than its discrete

counterpart, and (2) results can be conveniently related to the discrete ver­

sion in many cases. This approach is regarded as an extension of the RPM

and it is extremely useful in describing wave propagation in inlioniogcnemis

media. Here we study the wave propagation through a 2D lattice for three

spechfl cases quadrafic nonhneadty,cubkznonhnearfiy and both ofthese

together.In each case,the equatkniofrnotknireducesto diflerentrnanhnear

equafions. For quadrafic nonhneafity,uw:getthe weh know11I(adonmsev­

Petviashvili(KP) equation and for cubic nonlinea.rity, modified KP equation.

When both of them are applied together, we arrive at an integro—differential

equation.
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3.2 Reductive perturbation method(RPM)

In the study of the asymptotic behaviour of nonlinear dispersive

waves, Gardner and Moril<awa[87] introduced the scale tl"d.llSf01‘lll2ll.l0IlS

C = e°(:r — At)

7'=€fit

This transformation is called the Gardner—l\/Iorikawa transformation, and

may be derived from the linearized asymptotic behaviour of long waves. Tlicy

combined this transformation with a perturbation expansion of the depen­

dent variables so as to describe the asymptotic nonlinear behaviour. In that

process they arrived at the KdV equation as a single tra.(:l.al)le equation rl<‘­

scribing the asymptotic behaviour of a wave.

The perturbation method has been developed and formulated

in a general way by Taniuti and his c0llaborators[88,89] a11d this method is

now known as Reductive Perturbation Method(RPM) This method was first

established for the reduction of a fairly general nonlinear system to a single

tractable nonlinear equation.
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3.3 Formulation of the problem

We consider a nonlinear lattice where the masses of the particles

are not equal. The force due to the spring between two adjacent particles is

assumed to be

F=K(A+aA2+fiA3+ .... ..) (3.1)

where A is the elongation of the spring and K is the spring constant.

171,- be the mass and a.~ be the displacement of the 2'” particle. 'l‘l1en the equa­

tion of motion for the 2'” particle is

m,- d',~ = K[a,-+1— a,- + a(a,-+1— (1.,-)2 +/3(a,-+1—— a,-3 +  (3 2)
K[a,- — (1,'_1 -l‘ O/((1; — a,~_1)2 -l- /3(a,~ — Cl1'_1)'}  .

VVC assume that the inl1oniog(*n(:ity is small and does not (l(‘[)('ll(l

explicitly on time. Let us suppose that

m,- = 7ii,(l + p) (3.3)

p = €p1-l- 52,02 + (3.4)
where fiz is the average mass and p1 , p2,... are functions of the lattice site

i. Let the lattice spacings be h in the In direction and k in the y direction.

llence a,- = a,-(:r,y,t)
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The following three wave motions will be considered sepa­

rately:

(a) Slowly varying in .13, y and t for quadratic nonlinear­

ity,ie, a #0,[3= 0

(b) Slowly varying in .1‘, y and t for cubic nonlinearity,

ie, a = 0, [3 > 0

(C) Slowly varying in ac, y and t for quadratic nonlinearity

along with cubic nonlinearity, ie, 01 > 0, [3 > O

The continuum case is physically acceptable when the wave­

length is very large compared to the spacing of particles in a lattice, ie the

wave is so smooth that one can make the Taylor expansion on a,-+1. Since

we are interested in wave propagation through a 2D lattice, we may expand

a,-+1 in a Taylor series for two variables:

1

a,-+1 = a,- + ha, + kay + §[h2au + Qkhazay + k2ayy] +

where*a,, ay,...etc are corresponding derivatives of a,­

Case (a):Quadratic nonlinearity ( a gé 0, /3 = 0)

For H = 0, eqn(3.2) bccmncs,

177.;(i; = I\'[a.-+1—(l,-+(Y((1.,'+1 —(1..-)2-l—...—((I.;—rI,i__.)—(v((I.;—r1;_I)?  (3,6)
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From eqs (3.3), (3.4), (3.5)and(3.6), we have,

1 + d} = I_—( hga.-,3: + kga + flhkary + 2ah.3a,a,,,P m yy
4

+2alLk2a,_.ay,, + 2akIz2aya,,, + 2al:”ayayy + 1—L2‘(lzrrI +  (3.7)

Now we introduce a. change of independent variables .1, y and t

into 7], ( and T:

n = its ~ vt> (3 8)
C: $3] (3.9)

63

Here 1; is the velocity of sound given by v = /z.\/I57. Again,

a(w,y,t> = f§¢<n,<,r) (3.11)

Using eqs(3.8),(3.9),(3.10),an(l(3.11) along with eqn(3.4) in e([n(3.7),

we arrive at

_€3v2 755v 5
(1+ 5P1 + 52:02 + ----)(W¢nn + gvfin — i¢rr)

_ 5 -63(—¢ 15¢ — > (W)731 I10 W /Ia (C  H H

Equating coeflicients of equal povvcrs of 5 on either side of tin­

equation;
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5 7?; = P
which gives l.ho v<:Io(‘il.y 1:.

64 /)1¢nn = 2452145 1 1 1
5 ‘/72¢nn + Emf = ‘$76 + §¢n¢nn _ 591517721171

Again applying the change of variables;

X=7]+12[p2(‘r)d‘r, T=T, Y=y

and

U(X»Y»7') = rJ5n(7I.C»T)

Then the equation(3.15) reduces to

5a)?(UT — GUUX + UXXX) = —l2Uyy

OI‘

UTX — 6Ux2 — 6UUXx + UXXXX +12Uyy = 0

(3.13)

(3.16)

(3.18)

(3.19)

Hence , for quadratic nonlinearity, we reduced the equation of motion into

the 2 dimensional form of I\'dV equation (now known as KP equation).
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Case (b): Cubic nonlinearity (a = 0,,6 > 0)

In this case, the equation of motion becomes

7n.,-11;‘ = I\'[a,-+1—a;+/3(a;+1—a;)3+...—((L;—a,_,)—/i((L;——u,_1)3—....] (3.20)

We define a(:r,y, t) as;

a(x,y,t) = fi¢<n,c.r) (3.21)
Using the the same transformations (3.8),(3.9) and (3.10) the equation of

motion becomes,

K
(1 + p)a;.' = E[h2a,,, + lc2ayy + Zhkazy + 3fi/fiaiau + 3/3h2k2a;‘:a,,, + 3/31:2/z2rI,:a_,,_,,

/4
+3,3k4a§a,,_,, + —l£§a,,.,,, +(i/'3/1.3k(I3,(z,,, + Gfl/i7/l3(I.:(l,_,_.y -|— ..(I].22)

Substituting (3.4) along with (3.21), and equating powers of 5 on

either side , we get, for 54

m’_
P2¢nn — E

1 1
¢(( + T§¢nnn + '1_2¢12,¢nn (3-23)

Again introducing the change of variables as in the previous case,

we arrive at,

63X-(—UT - Uxxx — 6U2Ux) = IQU}/y (3.24)
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01'

Um + Uxxxx + 6U’Uxx +12L/U} + —12Uw = 0 (3-25)

This equation is called modified Kl’ <:qun.|,ion.

Case (c): Quadratic nonlinearity along with cubic nonlinearity

(a>0, fl>0)

In this Case, the equation of motion bcconics

m,-a;-' = K[a,-+1—a,-+oz(a,-+1—a;)2+fi(a;+1—a;)3...—(a;—a;_1)—a(a;—a;_1)2—fl(a;

(11.26)

VVe define a(.1:,y,t) as;

a(m.y,t> = /1¢<n,c,~r> (3.27)

where A is a constant. Using the the same tremsforn1a.tions (3.8),(3.9) and

(3.10) the equation of motion becomes,

K
(1 + p)a;' = n7l[/fa” + kzayy + 2/zkary + 3/3/Wain”

I,"

+2ahk2a,ay,, + 2()k]l2(l.y(1.rI + 2ak3aya,,_,, + —l'—é(:,,._”,

‘i‘3/3/L2.l.‘.2(l:(l1-I + 3/3k2]I,2(I.:_(l.,,_,,

a1”, + UH/Luktaiary + (5[3k/z.3a:(zIy +  (3.28)
_ , /1.‘

+3,5k'a§ayy + E
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Substituting (3.4) along with (3.27) in (3.28), and equati11g pow­

ers of 5 on either side , we get, for E4

<15,” 1 ‘ ,
E = ¢C( ‘l’ E¢5nnnn ‘l’ ¢z27¢nn + 2¢’(¢5nn ('3-29)P2¢nn ‘

Again introducing the change of variables as in the previous case,

we arrive at,

6
8X

6
(UX —12UXXX —12U2UX)—12Uyy = 2/lL«’y(./X + 24W / U«lX (330)

This equation represents an integro—difl'erential equation. This can be iden­

tified as a modified form of KP equation with the terms on the right hand

side representing perturbations. This means that the sysl,<rin l)(}(‘()IlI(‘S ln()r(­

perturbed as we apply the quadratic and cubic nonlinearities together.

3.4 Conclusion

In this chapter, we have performed the problem ol nonlinear wave

propagation through a two dimensional lattice with nonuniform mass distri­

bution. We have considered weak nonlinear approximation for (a) quadratic.

nonlinearity,  cubic nonlinearity and ((‘)qua,(lI'z1.t.i(' nonlin<~arit_y along with

cubic nonlinearity. Using RPM we reduced the equations of motion into



three nonlinear equations for the three diiierent cases. We derived I{ado111t.—

sev Petviashvili(KP) equation, modified KP and an integro—difFerential equa­

l.ion respectively for these three cases. The question oFi11l,(~gm|)i|il.y of th(.‘s('

equations is examined in the next chapter.
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Chapter 4

Integrability studies on KP
equations

4.1 Introduction

The mathematical structure of the theory of solitons is well es­

tal)lishe(l in one (limensional lll(‘(ll£l. To .1 ln.rge extr-nI,, l.lIi.H' has l)(-(‘H clum­

in the case of two dimensional media also[9l—93]. The theory of solitons in

three and higher dimensional media is still far from being understood; its

construction may require basically new ideas on no11linear processes. All

soliton equations, in whatever guise they appear, have a common property

that makes them all the same creature, namely, the integrable dynamical

system.As explained earlier, the properties and behaviours of integrable dy­

namical systems are atypical[94]. The most important inl.egra|>|(- <-qualions

in (1+1)dimensi0n which model equations related to real world are the KclV
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and NLS equations. They are universal models describing one dimensional

propagation of weakly nonlinear waves in weak and strong dispersion regimes

repectivelyjust like the harmonic oscillator in the universal des('ripl.irm of mo­

tion around a stable equilibrium position. Their importance leads scientists

to study these equations in two dimensions.

Ablowitz, Fokas and otl1ers[95] have carried out intense re­

searches in understanding nonlinear dispersive waves in higher dimensions.

The Kadomtsev—Petviashvili(KP)[96] and Davey— Stewartson( DS)[97] are some

of the well studied (2+1) dimensional equations which are natural general­

izations of the (1+1) dimensional KdV and NLS equations respectively[l-fl].

Naturally, these (2+l) dimensional equations are richer in structure, where

boundary conditions play a crucial role.

In the case of NLSE type equations, Caloger0[98] explained

how this type of equations can be extended to yield universal equations of

N-wave interaction type, which of course, turn out to be widely applicable

and generally integrable. According to him, the integrable equations may

be obtained from very large classes of nonlinear evolution equations, by a

procedure that is asymptotically exact ir1 the limit of weak nonlinearity. In

the absence of nonlinear effects, the amplitude of the solution would be a
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constant. By introducing appropriate scale variables to account for the space

and time variation of the amplitude, it is found that in these variables, the

amplitude generally evolves according l.o an (‘quation lwlonging to a group

of universal evolution PDES of NLS type. The important point is that the

derivation of these evolution equations from the original nonlinear evolution

equation is exact(in an asymptotic sense, as the parameter E that controls the

weakness of nonlinearity vanishes). For this to happen, it is sufficient that

the very large class of evolution equations from which they are obtainable

contains just one integrable equation.

4.2 KP equation and its importance

'l,'he most important step in tlw study of higher (lilIl(3llSi()llil,l (:qun«

tions is the discovery of the Lax pair of a (2+1) dimensional partial differen­

tial equation of physical interest— the KP equation. That is, when we consider

a single spatial variable 1, then the Lax equation is

L,=[L,M] (4.1)
But when L contains derivatives with respect to several variables then the

Lax representation is radically dillerent. llence a generalisation of this is
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applied with

L = a— — M (4.2)
where M is an ordinary dillcrciitial operator in x.'l'hcn equation (4.1) can be

written as

[a5"—y—M,5";—A]=0 or [U,V]=(J (4.3)_. 3 _
wl1ereU—cx5—g—MandV—§;—/1

This gives the general form of the consistency relation for Lax pairs in

(2+1) dimensions. As an example, let us take

M - 62 1 1—m—U(93».'Jai) ( l33 8 I,
A: —4a—$—3 —6uE—3uI+3ozw (/1.))

Then (4.3) reduces to the system

1.0, = uy (4.6)
u, — 6uu, — um, — 3a2uyy = 0 (4.7)

which is equivalent to the equation

8

%(UTX—6UUX +UxXx):EUyy =0 (4.8)

This is the generalized KdV equation for the two dimensional case and is

known a as the KP equation because Kadonitsev and Petviashvili[96] showerl
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that the equations govern slowly varying waves in dispersive media. The

equation with +sign (a2 = —1) arises in the study of plasmas and so in the

modulation of long weakly nonlinear water waves which propagate nearly

in one dimension(i.e, nearly in a vertical plane). The equation with —sign

(02 = +1) arises in acoustics and lattice dynamics. Researches into physical,

earth and life sciences have led to the discovery of hundreds more nonlinear

evolution equations. Of these, only a few are known to have solit.on solutions.

4.3 Painleve analysis (WTC Method)

In order to check the integrability of the obtained equations, we

use the Painleve method(P—test) for partial (liff<~rential equations[8]. As ex­

plained earlier, this method consists of determining the presence or abs<:m:<­

of movable, noncharacteristic, critical singular manifolds. When the sys­

tem is free from movable critical manifolds, the P—pr0perty holds, suggesting

P-integrability. Main steps involved in the I’-analysis of pdes are:  l)etor—

mination of leading order behaviours, (ii) identification of powers at which

arbitrary functions can enter into the Laiirent series called resonances, (iii)

verifying that at the resonance values, sufficient number of arbitrary func­

tions exist without the introduction of movable critical manifolds. In the



following, this method is applied to different systems;

4.3.1 (a) The KP equation

The equation is

(UT + Uxxx — 5UUX)X +12U}"Y = 0 (4-9)

In the leading order analysis, we take the first term in the Laurent

series

U = <15“ 2:0 U,-qsi

as the solution of the equation (4.9). ie, Let

U = I,.*o¢° (4.10)
Substituting this in eq11(/1.9) and equating the leading order terms , we get,

oz: -2 and U0 =2q5§,

For obtaining the resonan(:e values, we take

to -_
U = §j,_=0LI,-¢J 2 (4.11)

Again, substituting in equation(4.9) and equating leading order terms, we

get,

<j+1)(j~4)<j—s)(j~6) = 0 (4.12)
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ie, the resonances are at = -1, 4, 5 and 6.

These values ofj correspond to points where arbitrary func­

tions of(X,Y,T) are introduced into the expansion Ilcrej = —l corrcspomls

to the arbitrary singularity manifold (¢(X, Y,T) = 0). To prove the arbi­

=0trariness of other values, we subtitute the Laurent series U = Z?’ Uj ¢'>j‘2 in

the equation(4.9). From the recursion relations we find that,

J =0, U.,=2¢§ (4.13)
] = 1, U1: 0 (4.14)

j= 2, Um} — ¢T¢x — §»= (41.5)

j= 3, U1: 615w + (fixr ('1-1(5)
_ 62 V 2 7 2 _ , -v1-4, ——aX2<¢m+¢y+t2¢X)—0 (4.10

By eqn(4.15), U4 is arbitrary.

j = 5, again U5 is arbitrary if the compatibility condition

aaT;(¢xT + 45w — U2¢§r) = 0 (4-18)

By eqn(4.15), this is so.

Similarly, forj = 6, we obtain U6 as arbitrary.



By the above considerations, the KP equation is found to pass

the P-test and hence it is integrable in the P—sense.

4.3.2 (b) The mKP equation

Here the equation is

(UT + Uxxx — 6U2U_x)X —12U,.»,» = 0 (4.19)

As in the previous case, for the leading order analysis, we take the

first term in the Laiirent series

cx 0° ,7, '
as 2,10 W

as the solution of the equation (4.19). i.e.,

U = I./0¢"' (4.20)
Substituting this in eqn(4.l9) and equating the leading order terms , we get,

a=—1andU0=q5x

For obtaining the 1'<.-.sonan(:e values, we take

_ °° . i-1 , -)U_Z].=0U,¢ (1.-1)
Again , substituting in equation(4.l9) and equating leading order" tonns, we

get.

(j+1)(i- 3)(j -4)(J' - 4) = 0 ('1-22)
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ie, the resonances are at j = -1, 3 and 4,

These values ofj correspond to points where arbitrary func­

tions of (X,Y,T) are introduced into the expansion Since those values do not

give suflicient number of arbitrary functions. we can say that the equation is

not integrable in the Painleve sense.

4.3.3 The perturbed mKP equation

The equation is

a 2 , a , _ V
a—X(Ux —12UXXX -120 UX) — 12U,/Y _ 240,4/X + 24a—Y / odx (4.23)

Due to the presence of the integral term, it is not possible to apply the P­

analysis on this equation and hence it does not belong to the integrable class.

It has been proved that a perturbed nonlinear equation is integrable when

the perturbation is homogeneous. From the equation itself, it is clear that

the perturbation is inhomogeneous, which means that it is nonintegrable.

4.4 Lax method

In the section 4.2 we have introduced the Lax pair for the Kl’

equation from which we derived the integrable KP equation[5]. It is possible



to find the Lax pair for the KP hierarchy. This can be done by generalizing

the evolution operator V keeping the .sp(r('.l.ral operator‘ U same. The gent.-ral

form of V is accordingly taken to be

a 62171-l-1
V — 5 +5

an an
+27"a$2m+1 n=1[u% axnul — B

Now substituting this equation along with eqn (4.4) in eqn (4.3), we get the

KP hierarchy. For m = 1, the system reduces to the lirst member in the Kl’

hierarchy which is the same equation given by (4.8). For m = 2, we get the

second member in the KP hierachy, namely,

6
glut — 31¢,” + urn“. + 3uu1 + 3uu,, — auyrnl = 3a2uyy (4.25)

Thus, by assigning different values for TIL, it is possible to find (lillvrttnl, mom­

bers of the KP hierarchy.

In the case of mKP equation(4.19) obtained in the case of

quadratic nonlinearity, and the intcgro—dillerential equation(4.23) 0l)l.<"LlIl(.‘(l

when both cubic and quadratic nonlinearities are considered, we could not

find any Lax pair. The non existence of Lax pairs clearly indicates the

nonintegrability of the corresponding syste1n(in the Lax sense).



4.5 Solitary wave solutions

Solutions of the KP equation and mKP equation can be found

using the travelling wave method. /\ccordingly, we assume the solution of

the equation(4.9) as

U(X,Y,T) =  (4.26)
where

g: X + Y — cT (4.27)
Now we substitute this in equation (4.9), we get,

0

a—E(-Cf: - Gffc + face) + 131%: = 0 (4-23)

On intogra.tion, we ol)tn.in,

(‘fife — 5ffc + f££E)+12f€+ /1 = 0 (4-29)

where A is the constant of integration. Integrating again with respect to 6,

we get,

—cf—3f’+f:e+12f+Af+B=0 (4.30)

Multiplying with f5 and integrating again, we finally arrive at,

<m2=2(’—3+(§—6—§>r2—Bf—c) (4.31)
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OI‘

df5-: = 3 (4.32)
° /\/2(%+(§—6—%)f2-Bf-C)

If (‘.qII(/1.29) is (l(‘.lilI(‘(l on tlw in|init<- rlolnnin, zmtl ;npp|_ying l.lu­

boundary condition f, f5, f5§...—> 0 as 5 -+ 4. oo, then it is easy to deduce

from eqn(4.30), (4.31) and (4.32) that all constants of integration are zero.

In this case, the quadrature (4.32) reduces todf / .g_g0=/f (4.33)
which leads to the solution-1 1

f(€) = Ttc -12Jscch’(§\/(c —12)<s~eo)) (M1)

or - -1 1
U(X, Y,T) = 7(c — 12)sec/12(-2-‘/(c —12)({—{0)) (4.35)

where £ = X + Y — cT This gives the soliton solution of the KP equation.

The time evolution of this equation is as in(li(:ert(~.(l in lignrv (/l.|

We use the same method to find the solution of the mKP equation. For

this, we substitute eqn(4.26) in eqn(4.19). Then we get,

%—cf: — 6% + feed + 121:: = 0 (4.36)



On integration, we obtain,

(—Cfc — 5f2fe + fc:e)+12f: + A = 0 (4-37)

where A is the constant of integration. Integrating again with respect to 5,

we get,

—cf—2f3+fee+12f+Af+B=0 (4.38)

Multiplying with f5 and integrating again, we finally arrive at,

(fg)2=(f"+(c—12-/1)f’—2Bf—2C)=0 (4.39)

Again, by using the boundary conditions as in the previous case, the con­

stants of integration can be neglected. Hence, we finally arrive at the equa­

tion,

df:—:o= j—— M»/ f \flf2+(c—12)) 40)
which gives the solution

f(€) = -(C —12)S<3C/l( ('3 -1‘-3)(€-€o)) (4-41)

Thus we arrived at the solitary wave solution of the mKP equation The

evolution of this solution for different times is sketched in figure (4.2).

Now, in the case of pertubed mKP equation, we could not

find any steady state solution using the travelling wave method. This may
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be because of the presence of the additional term which represents an inho­

mogeneous perturbation. Hence we can conclude that the system represented

by this equation shows chaotic behaviour.

4.6 Conclusion

In this chapter we considered the KP equation which is a two

di1ne11sio11al version of KdV equation. We have carried out integrability stud­

ies on the KP equation along with the modified KP and integr0—dillerential

equation using Painleve method and Lax method. In chapter 3, we ob­

tained these equations by considering weak nonlinear approximation lor

quadratic n0nlinearity,(b) cubic nonlinearity and (c)quadratic nonlinearity

along with cubic nonlinearity. The Kl’ equation is found to pass l’—t(-st

and hence it is integrable in the Painleve sense. i.e., the equation passes

the P-test. The Lax pair for this equation is also l<nown(given). Since this

equation passes both the integrability criteria, it can be concluded that the

system represented by this equation is completely integrable. For the lI'1l/\.P

equation, we did not get sufficient number of resonances and hence this equa­

tion is not completely integrable in the P-sense. The non existence of Lax

pairs proves its nonintegrability. We derived the steady state solutions of
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The Evolution of solitary wave solution of KP equation at different time

Fig. 4.1(b)

Fig. 4.1(c)



Fig. 4.2(a)

Fig. 4.2(c)

Evolution of solitary wave solution of mKP equation at different time



the KP and mKP equations. But in the case of the third equation, which

is a form of modified KP equation with perturbation, we could not find any

Lax pair and the P—analysis cannot be applied to it. Also, there is no stearly

state solution for this equation. Hence we can conclude that the system with

quadratic nonlinearity is completely integrable while the system with cubic

nonlinearity is partially integrable(in the P—sense). When the quadratic and

cubic nonliearities act together, the system is not integrable and may become

chaotic. As it is known, nonlinearity in evolution equations may cause quite

different behaviours, from chaos to regular motion.
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Chapter 5

Nonlinear quintic Schrodinger
equation

5.1 Introduction

Even if the possibility of elletttive optical connnunication through

fibres in the form of solitons was theoretically predicted by Hasegawa[99],

the experimental observation was done only after ten years. During the last

twenty years optical solitons have been discovered and investigated in a large

number of different systen1s and more results and discoveries are still to come.

As explained in cliapter 2, the Nonlinear Scl1r('3(ling(-r equa­

tion[NLSE] plays a11 important role in both experimental and theoretical

studies in optical fiber communication. Soliton solutions of NLSE arises in

nature because the nonlinearity exactly balances the pulse broadening due

to dispersion and they are usually called envelope solito11s. Several model

82



equations, obtained by slowly varying envelope approximation, are close t.o

integrable equations[100]. As a consequence, many nonlinear optical effects

in both passive and active media are presently controlled by the spectral

theory of solitons.

In terms of complex amplitude U(;L‘,t), the nonlinear cubic

Schrodinger equation(NLCSE) may be expressed as

z'U¢+7UI,+6|U|’U=0 (5.1)

where 'y and 6 are constants. Here the second term originates from the group

velocity dispersion(GVD). GVD occurs because the group velocity is differ­

ent for different frequencies in the signal. The third term in equat.ion(5.l)

originates from the nonlinear effect, due l.o the fact that the wavelength de­

pends upon the inensity of the wave. In NLCSE, it is the Kerr effect that

provides the nonlinearity property in an optical fiber. It produces a change

in refractive index of the fiber material. This is due to the deformation of the

electron orbits in glass molecules by electric field of the incident radiation.

The Kerr coefficient changes the refractive index from no to no + 112 | E I2.

The change 112 | E |2 is very small for a relatively large electric field but such

a small nonlinear effect is sufficient to compensate the small group velocity

dispersion. Thus the negative GVD along with the nonlinear change in re­
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fractive index provides necessary a11d sullicient condition for optical solitons

to be propagated in an optical fiber.

5.2 The Nonlinear quintic Schrodinger equa­
tion

The nonlinear Quintic Schrodinger equation (NLQSE) is obtained

by modifying the NLCSE by concidering the dillerent orders of nonlinear

response of the material of the fiber to electromagnetic radiation. Here we

consider the fifth order nonlinearity term in the electrical susceptibility of

the medium in developing modified NLSE. The first step towards this was

taken by Pushkarov etal[10l]., and later by Cowan cta.l[lU2]. They considered

the ellect of quintic term appearing along with the conventional NLCSIC.

They have obtained the solutions of this nonlinear cubic—quintic Schrodinger

equa.tion(NLCQSE). This equation is derived by taking the fourth order in

the expansion of the refractive index of an isotropic medium given by

n = no +712 | E I2 +714 I E I"

In general, the coefficients 712 and 114 can be positive or negative depending

on the medium and frequency selected. The NLCQSE is of the form;

iU,+7U.-,I+6|U|’U+6|U|“U=0 (5.2)
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The solitary wave solution to this equation has been obtained as

C1ewp(ikt)U(:L‘,t) = e———
C2cosh\/C—11: +1

where C1 = \/2k, C2 = \/1+ 481::

Cowan etal.,[102] have tested the stability of this solution using numerical

methods.

Molianacliandrari etal.,[1U3](levelopcd a nonlinear S(‘ln'('3<ling(-r

equation in which there is only the quintic term as nonlinearity and hence the

equation is called nonlinear Quintic Schrodinger Equation(NLQSE). While

deriving NLQSE, it is assumed that the refractve index 11,; is absent and only

714 is active. This may be achieved by doping a fiber with appropriate ma­

terials. The solutions to this NLQSE an-. louml l.o p0ss(:s.'~: soliton lmlmvior

They also studied the stability of this solution using variation method and it

is found to be advantageous over the solutions to the conventional NLC/SE.

The form of the solutions of the NLCSE and NLQSE are given in the fig­

ure(5.1). Since the pulse width of the soliton solution of NLQSE is less than

that of NLCSE, the solution of NLQSE is more stable. We have studied the

integrability of NLQSE along the lines reported in the next section.



5.3 Integrability
5.3.1 Painleve analysis

The equation under study is

iUz+’YUu+6|UI4U=0 (5.4)

Before taking the solution in the form of Laurent series, let us split the above

equation into two separate equations. For this, let U = q and U‘ = 1). Then

the equation becomes

iq: + “rqu + 6q3p2 = 0 (5-5)

- ip: + ‘rpm + <5p3q2 = 0 (515)

Now, taking the solutions of these equations in the form

<1 = ¢°E}‘=oUj¢j (5-7)

P = <Z5fi§3}‘=oU:‘¢j (5-8)

Inorder to find the leading orders, we consider only the first terms in the

solutions and substituting that in the equations(5.5) and (5.6) we get a =

fl = -% and p3q3 = -3}?

To get the resonant values, we substitute equatio11s(5.7) and

(5.8) with a = —% in (5.5) and (5.6). Equating the leading order terms it is
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found that the resonances are at j = —l, 0,2 and 3 irrespective of the values

of 7 and 6. As explained earlier, the resonances at  = —1 and j = 0 imply

the fact that 1/)(t) is arbitrary and that there is only one equation defining

U0 and V0 (ie., either U0 or V0 is arbitrary).

Arbitrary analysis atj = 1 gives the values of U1 and V1 as

U1 = -iUo¢5z

VI = Zil/()G.l’t

Similarly,j = 2 and  = 3 leads to the arbitrariness of U; or V2 and U3 and

V3. Hence the NLQSE is found to be integrable in the Painleve sense.

It is also possible to find the bilinear form of the NLQSE. For

this, we take U = -}1 where f is a real function a11d g is a complex function.

Substituting in the equation (5.4) we get

. 2 1 2 g3g*2
z(D¢ + D$)g.f + §DIg.f + F = 0 (5.9)

This gives the bilinear form of NLQSE.

5.3.2 Lax method

The Lax method requires that if a given nonlinear equation be written in

terms of two linear operators U and V, then the compatibility condition for
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them is the equation;

U¢—V,+[U,V]=0 (5.10)
which leads to the original nonlinear oqua.l.ion.

Here also we shall confine ourselves to the case where U and V are 2 X 2

matrices and U is a linear function of A, and assume U(z,t) to be of the

form,

U=z')\([1) _01)+z(2  (5.11)
where q and r are complex valued functions of :1: and t. We shall so choose

the matrix V(A) that equation (2.10) is reduced to certain pde in q and 1". V

is chosen as follows ,

. 1 0 . 0 0 I .6 2 0 _
v=2m2(0 _1)+2z)\<T g)+7(_rI %)—z§(’g _7_q2) (5.12)

Substituting equations (5.11) and (5.12) in equation (5.10) and solving, we

find that equation (5.10) is equivalent to the system of equations;

in + 7?” + 5r3q2 = 0 (5.13)

iq: + vqn — 6q31‘2 = 0 (5-1-11)

Setting q = 7"‘ we get,

ir,+*y7‘za:+6|r|4r=0 (5.15)
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and for r = q‘,

iq. + vqu — 6| q I"q = 0 (5.16)

provided 4 2= 0 (5.17)
3.1

The existence of Lax pairs indicates that the system given by equations (5.15)

and (5.16) may be integrable. VVhen we consider the cubic term also, the U

operator remains the same but the V operator changes and is given as

_ .2 l 0 . 0 q) ( U q1.>__é(1‘q 0 )_.é(1'q2V ‘ 2” <0 —1>+2” <1‘ 0 +7 —r, 0 ’2 0 —rq Z2 0
(5.18)

Substituting the values of U and V in the compatibility condition we arrive

at the NLCQSE

z'Uz+7Uu+6|U|2U+6|U|“U=0 (5.19)

5.4 Conclusion

In this chapter we considered the nonlinear quintic Schrodinger

equation in which the cubic nonlinearity is absent and only the ellcct of

quintic nonlinearity is dominant. The single soliton solution, already given

in [103], shows that it is more stable than that of simple NLCSE. The inte­

grability studies of this equation using P-analysis show that this equation is
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Fig 5.1 Solitary wave forms of NLCSE and NLQSE
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integrable in the P—sense. Even if the a value is a fraction, \ve could prove

the arbitrariness of the resonant values using the Kruskal ansa.tz[30]. But

the Lax method imposes some conditions for the existence of Lax pairs. The

integrability studies reveal the integrability properties depend on the order

of nonlinearity and may be destroyed when the effect of higher order terms

increases.
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