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ABSTRACT

"SPEECH SAMPLE ESTIMATION FROM COMPOSITE ZEROCROSSINGS

AND ENCODING VIA ADAPTIVE SWITCHING OF TRANSFORMS"

By

N.K.NARAYANAN

This thesis investigates the potential use of
zerocrossing information for speech sample estimation.
It provides 21 new method tn) estimate speech samples using
composite zerocrossings. A simple linear interpolation
technique is developed for this purpose. By using this
method the A/D converter can be avoided in a speech coder.
The newly proposed zerocrossing sampling theory is supported

with results of computer simulations using real speech
data.

The thesis also presents two methods for voiced/
unvoiced classification. One of these methods is based
on a distance measure which is a function of short time
zerocrossing rate and short time energy of the signal.
The other one is based on the attractor dimension and entropy
of the signal. Among these two methods the first one is

ii



simple and reguires only very few computations compared
to the other. This method is used imtea later chapter to
design an enhanced Adaptive Transform Coder.

The later part of the thesis addresses a few
problems in Adaptive Transform Coding and presents an
improved ATC. Transform coefficient with maximum amplitude
is considered as ‘side information’. This. enables more
accurate tfiiz assignment enui step—size computation. A new

bit reassignment scheme is also introduced in this work.
Finally, sum ATC which applies switching between luiscrete
Cosine Transform and Discrete Walsh-Hadamard Transform

for voiced and unvoiced speech segments respectively is
presented. Simulation results are provided to show the
improved performance of the coder.
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Chapter 1

INTRODUCTION

1.0 BACKGROUND

Digitization and coding of speech for economical

transmission and storage have long been of major engineering
concern. The fast evolution of digital hardware technology
in the last decade has had a great impact on speech research.
Digital speech is less sensitive to noise and can be
encripted and stored in computer compatible media. Current
trends for world-wide communications in the 19903 and beyond,

point to a proliferation of digital transmission as a domi­
nant means of communication. for voice and data. Digital
speech is also used in the newly emerging man to machine
and machine to man voice communication. This involves

intensive digital signal processing for the purpose of
voice identification, recognition and synthesis [N.S.Jayant
and Peter Noll, 1984], [L.R.Rabiner and R.W.Schaffer, 1978].

Another form of digital speech communication is voice-store­

and forward (voice mail), which is expected to be an integral
part of the future automated office.



Efficient representation of the speech signal
in terms of a compact sequence of binary digits (bits)
is the basic requirement common to all the above applications
of digital speech. The process of converting the analog
speech signal into a bit stream is referred to as speech
coding. A system that performs this job is called a speech
coder, and it is usually accompanied by a speech decoder,
which reconstructs the speech signal from its digital repre­
sentation. The combined speech coder and decoder is some­
times called 'speech codec'.

Speech coders are basically divided into two cate­
gories: waveform coders and voice coders (vocoders). The
aim of waveform coders is to preserve the shape of the
original waveform, that is, to minimize the distortion
between the original speech waveform and the reconstructed
one. Good quality waveform coders exist in the bit--rate
ranging from 16 kbits/s to 64 kbits/s.

Unlike waveform coders, vocoders do not preserve
the shape of the waveform. Rather, they are based on mimick­
ing the speech production model. For this purpose, speech
is modelled as an output of a linear filter driven by a
highly constrained excitation signal. The coder analyzes



the input speech, estimates and transmits the filter and
excitation parameters. The decoder retrieves these para~
meters and synthesizes a replica of the speech waveform.
Even though iflue reconstructed waveform may run; look like
the original, it sounds similar to the original, with a
distinct synthetic quality. However, the intelligibility
is preserved in this method. Vocoding quality is generally
regarded as inadequate for general purpose voice communi­
cation. isince vocoders preserve only 51 very small amount
of information they are able to compress speech into very
low bit rates. Commercial vocoders operate at 2400 bits/s.
.A fundamental problem :h1 speech coding iii to achieve the
minimum possible distortion for a given transmission rate.
An important parameter in solving this problem is the cost
of encoding or the coder complexity. Due to the advances
in digital technology and digital signal processing many
coding techniques evolved. ‘These range from. the oldest
and simplest one—-Pulse Code Modulation (PCM) which is
a low complexity coder operating at 56-64 kbits/s, to
Adaptive Predictive Coding (APC) and Adaptive Transform
Coding (A'1"C)~——which are medium and high complexity coders

operating at ]i3‘U3 32 kbits/s to give good speech quality
[J.L.Flanagan et al, 1979].



1 . 1 MOTIVATION

In all the coders mentioned above, a continuous
analog speech signal is to be converted to a discrete form.
This involves sampling in the’ time domain, quantization
in the amplitude domain and coding the resultant inform­
ation into digital form. In the conventional coding systems
this process is done using an A/D converter. To find a
simple digitizing method is a main motivation of this thesis.
To this end we investigate the potential use of zerocrossing
informations for speech sample estimation. The zerocrossing
based approach requires. no sampling of tflue signal while
A/D converter method relies on multilevel quantization
of samples taken at prescribed instants of time. with
simple digital circuits, it is easier to measure the timings
of zerocrossings. Some potential advantages of this approach
are that the inherent problems of an A/D converter such
as alignment, limited dynamic range and speed can be removed

and hardware associated ‘with {flue sampling circuitry can
be simplified.

Another main purpose of this study is to explore
the potential capability of Adaptive Transform Coding (ATC)

and to find efficient ATC systems for waveform coding.



In this work we propose to use a modified ATC coder to
achieve good quality of speech coding at 8 to 16 kbits/s.
The basic approach is to transmit the maximum amplitude
of the transform coefficient as side information so as
to obtain a better stepsize computation and to use a modified
bit reassignment scheme. In an later chapter xue propose
and study an Adaptive Switching Transform Coder (ASTC)
based on a simple voiced/unvoiced classification algorithm.
This system gives a notable improvement in performance
at the expense of a moderate increase in coder complexity.

.l.2 OUTLINE OF THE WORK AND MAIN RESULTS

The intent of chapter 2 is to establish a necessary
background for the following chapters. The former“ part
of the chapter contains a brief review of the state of
art of speech waveform coding. The later part gives a
brief survey of different methods for measuring the speech
quality. The objective measures like signal—to-noise ratio
(SNR), articulation index, log spectral distance, Itakura's
likelihood ratio, and Euclidean distance and subjective
tests like Diagnostic Rhyme Test (DRT), the Modified Rhyme

Test (MRT), the Diagnostic Acceptability Measure (DAM),
and Mean Opinion Score (MOS) are reviewed in this section.



Among these the SNR measure is used throughout the thesis
because of its simplicity in implementation.

Chapter 3 presents the use of zerocrossing inform—
ation for estimation of speech samples. In the first part
of the chapter we summarise the theory associated with
zerocrossing sampling method used to estimate the speech
signal. A simple linear interpolation formula for signal
estimation from composite zerocrossings is developed. The
results of computer simulation experiment, that verifies
this approach is presented in the later part.

In chapter 4 we study two methods for voiced/
unvoiced classification. The first CNN? is based cn1 short

time zerocrossing rate (STZCR) and short time energy (STE)
of speech signal and the second method is based on the
second order attractor dimension D and second order Kolmo—

2

gorov entropy K2 cuf speech signal. In the first method;
a distance measure is defined as the ratio of STZCR to
STE. If this distance is greater than a threshold value,
then the segment is classified as unvoiced and otherwise
as voiced. Verification of this approach is conducted
by manual classification.



We obtain the computed value of the D2 and K2
for voiced and unvoiced speech segments and observe that
these values anne larger for unvoiced speech. The method

developed for ‘voiced/unvoiced classification based on D2
and K requires larger computation time «compared tx) the2

previous one.

Based on the results obtained ix: the ;preceding
chapters, in chapter 5, we analyze the applicability of
zerocrossing information and the second order attractor
dimension and entropy for low bit rate coding. The esti­
mation method developed in chapter 3 can be used with exist­

ing waveform coders to reduce the system cost, by replacing
the A/D converter with simple digital circuits. Among
the two methods presented in chapter 4, for voiced/unvoiced
detection the zerocrossing based approach. is simple and
requires very few computations compared to that based on
the attractor dimension and entropy. This technique is
used in chapter 7 to design an Adaptive Switching Transform
Coder.

In chapter 6, we study a modified Adaptive Transform

Coder. ATC proposed by Zelinski and N011 is modified by



transmitting the maximum value of the transform coefficient
as side information for better computation of the step
size. Also a modified bit reassignment is applied. If
only one bit is available for a coefficient, that coefficient
ix; not coded and transmitted since it VHJJ. encode only
the sign information. Such bits are reassigned for the
coefficients in the lower frequency band. The ATC proposed
by Zelinski and Noll and the modified one are implemented
on a 3AT6 computer. Both DCT and DWHT are used in this
study. Performance of the coders are studied in detail
for data blocks of different lengths. The SNR performance
of DWHT ATC is very much lower than that of DCT ATC for

voiced speech. But for unvoiced speech the SNR of DCT
AITC is lesser than that of DWHT ATC, especially when the
coder is designed for bit rates below 16 kbits/s. This
causes tonal distortion in DCT ATC when designed at bit
rates below 16 kbits/s. Based on this result we propose
an adaptive switching of transform for better speech quality.

The algorithm for the implementation of Adaptive
Switching Transform Coder is presented in chapter 7. The
scheme is implemented on a 3AT6 computer. This scheme
proves useful in improving the speech quality at a bit
rate of 8 to 16 kbits/s.



Finally, chapter 8 concludes this work and suggests
a few directions for future research.



Chapter 2

REVIEW OF PREVIOUS WORK

2.1 REVIEW OF THE STATE OF THE ART OF WAVEFORM SPEECH

CODING

The purpose of this section is to give a summary
of the best results obtained in speech waveform encoding.
This is a <3ifficult task; as different researchers use
different fidelity criteria and different speech data.
One of the frequently used quality characterizations in
speech coding is based on commentary, toll, communication
and synthetic categories [J.L.Flanagan ea: al., 1979]. All
these terms are loosely defined ix: the literature. Toll
quality is typically defined as the quality comparable
to that of analog speech having bandwidth 200-3200 Hz,
a signal—to—noise ratio of 30 dB and less than 2.3% harmonic

distortion. For the definition of other qualities see
[J.L.Flanagan et al., 1979]. In literature the term "good
speech quality" is often considered equivalent to toll
quality.

Jayant in his review paper on speech waveform
coding compares ADPCM, log—PCM; and Adaptive Delta Modulation
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(ADM) using the signal-to-noise ratio (SNR) as criterion
[N.S.Jayant, 1974]. The best performance is achieved by
ADPCM at a bit rate of 16 kbits/s (i.e., 2 bits/sample).
The SNR obtained is around 11 dB. The performance of Pitch­

Adaptive DPCM is compared with that of regular ADPCM with

a three tap fixed predictor in [N.S.Jayant, 1977]. Both
these coders use adaptive quantization. The comparison
was done for four utterances, two male and two female,
at 16 kbits/s for ADPCM and 17 kbits/s for Pitch Adaptive
DPCM. The average results on the four utterances were
11.5 dB for ADPCM and 15.25 dB for Pitch Adaptive DPCM
(the performance of the latter system varied from 13.5
dB to 18 dB, the higher performances were obtained on
female utterances and the average on male utterances was
14 dB).

Crochiere, Webber and Flanagan studied the relative

performance of sub-band speech coding with standard ADPCM
at 16 kbits/s and ADM at 9.6 kbits/s [R.E.Crochiere et a1.:
1976]. At 16 kbits/s, although the SNR was practically
the same (11.1 dB for sub-band, 10.9 dB for ADPCM), 94%

of listeners preferred sub-band quality. At 9.6 kbits/s
the SNR for sub-band encoder was 9.9 dB as compared with
8.2 dB achieved by 10.3 kbits/s ADM.
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Flanagan et al. in a review paper on speech coding,
present the Adaptive Predictive Coding (APC), Adaptive Trans­
form Coding (ATC), the Phase Vocoder and the Voice Excited

Vocoder (VEV) ems ‘best’ systems. ‘All of these systems are
claimed to attain "toll quality" at 16 kbits/s and "communi­
cation quality" at 7.2 kbits/s [J.L.Flanagan et al., 1979].
All these systems are considered ‘high complexity coders
(relative complexity 50 on a scale where ADPCM has relative
Complexity 1: I@LI”Fflanagan et al., 1979]). There are only
a few objective signal-to-noise measurements reported for
such systems. There are some discrepancies between the
available objective measurements and the claim of subjectively
achieving 'toll' quality. For example, in [R.V.Cox and
R.E.Crochiere, 1981] a segmental SNR of 18.9 dB is reported
for an ATC system simulated in real time at 16 kbits/s when
the expected value of SNR for a 'toll' quality system would
be around 30 dB. Generally, these discrepancies are explained
by the fact that the segmental SNR (SEGSNR) does not exactly

reflect the subjective quality. We may also note that some
of these systems may hardly be considered as waveform coders

(for example, VEV uses parameter‘ extraction together saith
waveform coding).

Another category presented in the above review
paper contains Pitch Predictive ADPCM, sub—band coding,
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and ADPCM. Systems from this category achieve toll quality
at 24-32 kbits/s (3-4 bits/sample) and communication quality
at 9.6—l6 kbits/s (l.2—2 bit/sample). The relative complexity
of these systems is in the range 1-5 on the scale where
the complexity of ADPCM is 1.

Xydeas, Evci and Steele present the performance
of the ADPCM systems in which the predictor coefficients
are changed adaptively at each sample instant using gradient
techniques [C.S.Xydeas et a1., 1982]. They report that these
systems perform better than standard ADPCM, but at the expense

of complexity. The number of multiplications per sample
is of the order of 3n-5n, where n is the number of predictor
coefficients. The best achieved performance under the SEGSNR

criterion at a rate of 2 bits/sample (16 kbits/s) was
13.5 dB. The SEGSNR is considered to relate better to the
subjective quality of speech than the standard SNR. Depend­
ing on the system, a difference of around 1-2 dB may be
found between SNR and SEGSNR measured on the same system

with same speech data.

Anderson and Bodie investigated Tree and Trellis
encoding of speech. They" used a: search algorithm. which
pursues a fixed number of paths at each level throughout
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the code tree and a transversal code generator [J.B.Anderson
and J.B.Bodie, 1975]. The performance obtained was as high
as 21 dB at 2 bits/sample and 12 dB at 1 bit/sample. However,
these performances were obtained on a short utterance (2 sec.
of speech) and generally were not confirmed by later
researchers. Stewart et al. studied the design of tree
and trellis speech coders [L.C.Stewart, R.M.Gray and Y.Linde,

1982]. They classified the results as “inside the training
sequence" whenever the results were obtained on the speech
data used for encoder design and "outside the training
sequence" otherwise. The results obtained are 16 dB inside
and 13.5 dB outside the training sequence for a rate of
2 bits/sample and 12.2 dB inside and 8.7 dB outside for
a rate of 1 bit/sample. Fehn and N011 studied the perform­
ances of different tree and trellis encoding schemes at
a rate of 1 bit/sample [H.G.Fehn and P.Noll, 1982]. The
performances were compared with those of Adaptive Transform

Coding (ATC) as reported by R.Ze1inski and P.Noll [1977].
The SEGSNR obtained for tree and trellis encoding was 12 dB

as compared with 12.3-14.9 dB achieved tnz ATC (different
values for different speakers).

Waveform vector quantization of speech has been
studied by several researchers [H.Abut, R.M.Gray and
G.Rebol1ede, 1982], [R.M.Gray and H.Abut, 1982], [V.Cuperman
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and A.Gersho, 1982], [A.Gersho, T.Ramstad and I.Versvik,
1984]. For a: long training sequence (640,000 samples) the
signal~to~noise ratio inside the training sequence was found
to be 13.5 dB for 2 bits/sample and 9.7 dB for 1 bit/sample.
Outside the training sequence the corresponding results
were 12.7 dB and 8.8 dB. Using a shorter training sequence
(l28,000 samples) the performances inside the training
sequence increase by about 1 dB, but the performances outside
the training sequence decrease by about 0.5 dB.

A comparison of the performance achieved by the
known systems is very difficult since different authors
use different distortion criteria and different speech data.
Also, some researchers consider the ‘subjective quality‘
of speech as the only adequate criterion which is loosely
defined and difficult to compare (since ther results in ea
subjective test depend on the training of the team performing
the test; on the speech data used etc.).

To summarize, the performance cfif standard scalar
waveform coding systems are limited to a signal-—to—noise
ratio of about 15 (H3 at a rate of 2 tats/sample and 10 dB
at l bit/sample. High complexity encoding schemes such
as APC with tree encoding of the residual or ATC may achieve
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higher performance (18-20 dB at 2 bits/sample and 12 dB
at. 1 bit/sample). “Vector” quantization (dimension ‘upto 44
for 2 bits/sample and 8 for 1 bit/sample) achieves a perform­
ance of 12-14 dB at 2 bits/sample and 8-9 dB at 1 bit/sample
which is lower than the best scalar systems.

2.2 REVIEW OF THE STATE OF THE ART OF THE USE OF ZERO­
CROSSINGS IN SPEECH CODING

Licklider in 1946 measured the intelligibility
of speech after peak clipping at different levels [J.C.R.
Licklider, 1946}. For C) to 20 <fl3 peak—c1ipped speech he
obtained 96 per cent intelligibility. Between 20 to 50 dB
peak-clipped speech,fue obtained an intelligibility of about
70 per cent. But the most fascinating result Dr.Licklider
obtained was that the intelligibility remained constant
at about TN) per cent even with infinite clipping of speech

(Infinite clipping is the condition where the signal is
rectangular in shape, but crosses the axis at the same
portions as the original speech wave).

Licklider and Pollack later demonstrated the
results of their investigation upon the perception of speech
which had been distorted in various ways [J.C.R.Licklider
and I.Pol1ack; 1948]. They distorted the speech signal



17

by employing differentiation, integration, and infinite
clipping. About JIM) per cent intelligibility was obtained
for speech signal which is distorted by differentiation
only, and integration only; Differentiation and cflipping,
and differentiation, clipping and integration produced about
97 per cent intelligibility, whereas clipping, clipping
and integrating, and clipping and differentiating produced
about 70 per cent intelligibility. Integrating and clipping,
and integrating, clipping euui differentiating produced very
poor results.

The results demonstrated by Licklider and Pollack
have guided the attention of the investigators: 1) to explain
this perceptual phenomenon and EU to Iitilize this result
hi practical speech processing systems. These two issues
have been studied by many researchers. Morris provides a
review of much of this past work and gives new insights
into the role of zerocrossings in speech recognition and
processing [L.R.Morris, 1970, 1972].

Voelcker demonstrated that a waveform can be
completely represented by real and complex zeros [H.B.
Voelcker, 1966]. Haavik showed that repeated differentiation
converts complex zeros into real zeros (zerocrossings)



18

[S.Haavik, 1966]. Later on Morris demonstrated that Voelcker's

and Haavik's theories can be used to explain the high intelli­
gibility cfif clipped speech [L.R.Morris, 1970, 1972]. This
work provides a mathematical and theoretical explanation
of the high intelligibility of clipped and clipped different­
iated speech.

Licklider also performed. a study"which. provided
data about the number of bits per second necessary to
represent a clipped differentiated speech signal [J.C.R.
Licklider, 1950]. In this study, clipped differentiated
speech was time quantized over a range from about 1000 to
40,000 quanta/s. In viewing this experiment :h1 modern
technological terms, it can be considered as sampling the
clipped differentiated waveform at continuous rates from
1000 to 40,000 samples/s. Since each A/D sample must be
either a "0" or "1", this can be considered in representing
the clipped speech with 1000 to 40,000 bits/s. A conclusion
that can be arrived at from Licklider's results is that
clipped differentiated speech sampled ‘with ea 1 bit A/D
converter 2H3 approximately SK) per cent intelligible at bit
rates as low as 9 kbits/s.
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In a recent paper Niederjohn, Krutz and Brown
present the results of an experimental investigation that
provides an interesting perspective on the relative import­
ance of zerocrossing locations and zerocrossing intervals
for speech perception [R.J.Niederjghn et a1., 1987]. In
the experiments reported, the intelligibility degradation
of clipped filtered speech subjected to averaging and reorder­
ing cnf the zerocrossing interval sequence was studied. The
main conclusion drawn from this study is that the set of
zerocrossings of a speech waveform represents a near minimal

set of informational attributes ixx the sense tflmn: any
reordering cur averaging‘ of time zerocrossing intervals has
a significant detrimental effect upon speech intelligibility.

Kay and Sudhakar studied a zerocrossing based
spectrum analyzer in [S.M.Kay and R.Sudhakar, 1986]. A
reconstruction method suitable for the ‘recovery of aa low
frequency noisy sinusoid from its zerocrossings is presented
in this paper. It is also suitable for periodic band-limited
signal, which <xn1 be recovered within ea scale factor from
its zerocrossing sequence, using a sine wave product expan­
sion formula. In the case of a periodic signal which is
represented by an infinite product, the signal can only
be approximately recovered.
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To summarize, the infinitely clipped speech signals
still retain all time important aspects (If intelligibility
and even txa some extent recognizabilitya This is possible
only if the information in the zerocrossing can be extra­
polated to yield the original speech signal. Therefore
further investigations are necessary to reconstruct the
speech signal from their zerocrossings.

2.3 MEASUREMENT OF SPEECH QUALITY

Assessment of the relative performance of speech
coders is one of the most difficult tasks in speech coding.
It is rufl: completely understood tuna the human ear and the
brain process the speech signal. Because of this it has

not been possible‘ to quantify in a mathematical expression
what is meant by the words "speech quality". However, based
on the present day knowledge of speech understanding many
performance measurement methods have evolved. These are
mainly classified into two: objectiver measuremeht "using
mathematical expressions and subjective measures by listen­
ing tests. We will describe the objective measures like
signal—to—noise ratio (SNR), articulation index, log spectral
distance, Itakura‘s likelihood ratio, and Euclidean distance
and subjective tests like Diagnostic Rhyme Test (DRT), the
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Modified Rhyme Test (MRT), the Diagnostic"Acceptability
Measure (DAM), and Mean Opinion Score (M08) in this section.

2.3.1 Objective measures of speech quality

Speech coding systems are mainly classified into
two. The first one, called waveform coders, tries to pre­
serve the shape of the speech waveform. The second one:
usually called vocoders, is not concerned with the exact
shape cnf the waveform inn: the resulting speech sounds like
the original with a synthetic quality. In order to suit
these distinct types of coders we use two types of objective
measures. The signal—to—noise ratio (SNR) — related measures

are better suited for waveform coders, while spectral distance
measures are better suited for vocoders.

2.3.1.1 Signal~to—noise ratio (SNR)

Signal-to-noise ratio (SNR) is the most commonly
used objective Ineasure lfl wavefornl coders. Let IKU1) be
the original speech signal and Y{n) the corresponding coded
signal at the sampling instant n. Then the coding error
signal is given by

e(n) = X(n) — Y(n) (2.1)
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To find the SNR for a record of N samples, we
compute the original signal variance as,N N2 _ l E _ l_ 2 2ES - N [x(n) N x(n)] (2.2)n=l n=l
and the error signal variance asN N

E2 = 4% Z [e(n) - %- X e(n)]2 (2.3)e n=l n=l
The SNR is defined as the ratio of the original

signal variance to error signal variance:

i.e., SNR = -5 (2.4)
E e

It is expressed in dB as

SNR(dB) = 10 loglO(SNR) (2.5)

The speech signal is characterized hnr its time
varying nature. This results ix: some speech segments with
high energy and other segments with low energy. If the

error variance E: is more or less constant, the resulting
SNR will be high. But the perceptual effects of the noise
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in the regions of lower E2: will be more severe. To take
into account this fact, the performance of a coding system
is measured in terms of segmental SNR which is denoted as
SEGSNR. To compute the SEGSNR, we divide the speech signal

into segments of 64-256 sample length, and compute the
SNR(m) dB where n1== 1,2,...,M represents the block number.

Then the segmental SNR is defined by

3

SEGSNR = % Z} SNR(m) dB (2.6)
m=l

By averaging the SNRs of different segments as
in (2.6) the strong portions of the signal do not overwhelm
the SNR.

2.3.1.2 Articulation index

The articulation index (AI), originally used with
analog signals, is a method of assessing the speech quality.
To compute the AI, the signal is bandpass filtered into
20 bands as if! [N.S.Jayant and iP.Noll, 1984]. For each
band m, we compute the signal-to—noise ratio SNR(m) dB,
and from that we can obtain the articulation index

AI 2 ;_ 3 min(SNR(m)dB, 30) (2_7)2o m=l 3o
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The SNR value for each band is limited to a maximum of 30 dB.

The articulation index is analogous to SEGSNR, except that
the segmentation takes place in the frequency domain instead
of the time domain.

2.3.1.3 Log spectral distance

Blthe case of vocoders, only the magnitude of the
spectrum of speech is usually preserved. This is according
to the hypothesis that the human ear is not very sensitive
1x) the short—temn phase. As 51 result, the vocoder output
waveform can be quite different from the «original speech;
and still sound the same. Therefore it is no longer meaningful
to use the signal-to~noise ratio as a measure of reproduction
fidelity of vocoder outputs. Here, we have to use distance
metrics that are sensitive: to spectral differences. Log­
spectral distance, Itakura‘s likelihood ratio and the Eucli­
dean distances are such metrics.

The log spectral distance measures for vocoders
are often used in the context of the LPC method. In LPC,
the spectral envelope representing the vocal tract is given
by the expression G (2.8)
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where the inverse filter A(z) is given by

A(z) = 1 + alz“1 + ... + apz-p (2.9)

Usually, p = 10. The log—spectra1 distance between two LPC

models I-]l(ejw) and H2(ejm) is defined by

d 1/2 _gJ22“ (2.10)" jw 2 jw 2
d = [flJ°[ln|Hl(e )| -ln|H2(e )| |

The log—spectral distance is 21 reasonable measure tx> use
for the determination of quality if we assume that one of

the spectra H1 is the true representation of the speech
signal, while the other is an approximation whose goodness
we are testing.

2.3.1.4 Itakura's likelihood ratio

Let a be the coefficient vector and R be the auto~1 1
correlation matrix for the LPC vocal tract model H1. Also,
let a2, R2 be the corresponding quantities for H2. Then,
the likelihood ratio can be defined either as

(2.11)
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or
T_ 1dLR ~ T (2.12)
2

The log likelihood ratios are the logarithms of these express­
ions:

d = 10 log (d ) (2.13)LLR 10 LR

and are expressed in dB.

2.3.1.5 Euclidean distance

The Euclidean distance metric is defined as

2 %
P

d = [ 2 (LAR 21) 1LAR i — LAR (2.14)
i=1

1

Here LARli and LAR2i are the sets of log-area ratios corres~
ponding to H1 and H2. The log-area ratios, LARi are derived
from the reflection coefficients Ki according to the relation

LARi = ln 1_K (2.15)
2.3.2 Subjective measures

Subjective tests are performed by listening to
the coded speech. They are divided into two basic categories:
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one testing {flue intelligibility enui the other testing the
quality cMf_the coded speech (good intelligibility does not
necessarily mean good quality but the converse is true).
In the following we will discuss both categories.

2.3.2.1 Intelligibility tests

Diagnostic Rhyme Test (DRT) is tflua most widely
used intelligibility test in speech coding. In this scheme,
the listener' is presented with one word from ea pair‘ of
encoded words differing only in one phoneme and asked to
determine what word was spoken. A correct response from
the listener indicates that the coded speech is intelligible.
The DRT score in per cent is given by

P = 3%fl1oo (2.16)
where

R = number of right answers

W = number of wrong answers

T = total number of items involved.

Typical values of DRT range between 75 and 95. A "good"
system must have a DRT score of about 90.
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In DRT the ‘word pair‘ are so "chosen that they
differ only in one attribute of the first consonant. That
is, DRT is based on differences of initial consonants only,
and the listener is asked to select among pairs of words.

The Modified Rhyme Test (MRT) is another intelli­
gibility test. In this, the listener is presented with
one encoded word, and is asked to select his answer from
a list of six words rather than two words in DRT. Also
both groups of words that differ in beginning consonant
and ending consonant are used in MRT.

2.3.2.2 Quality tests

Subjective judging the quality of encoded speech
is an extremely difficult task. Tfimhs is because different
speech encoder systems introduce different types of distort­
ion, and different people have different preferences. It
is also probable that these preferences change over time.
These limitations should be kept in mind when considering
the different kinds of quality tests.

Diagnostic Acceptability Measure (DAM) is a highly

systematic approach to determining the speech quality. This
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requires well trained listener crews who are able to deter­
mine any drift in the individual performance.

In DAM, encoded sentences are taken from the
Harvard lira: of phonetically balanced sentences (e.g., "Add
the sum to the product of these three", "An icy wind racked
the beach" etc.). The listener is presented. with these
sentences and asked to rate the speech quality both in terms
of overall acceptability and in terms of the individual
characteristics (parametrically). The listener is asked
to evaluate the lflissing, Buzzing, Babbling, Rumbling' etc.
characteristics of the encoded speech, by giving a grade
between (D and. 100 txa each characteristics. Finally the
overall quality is judged by evaluating the grade given
to each characteristic.

Mean Opinion Score (M08) is another subjective
quality test. In MOS, the listener is asked to rate a system
on an absolute scale, usually ranging between 1. and 5.
The meaning of these grades are:

5. excellent

4. good

3. fair
2. poor
1. bad.
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The mean value of the grades rated by a number
of listeners is taken as the MOS.

To summarize, this section reviewed the objective
and subjective measures that are used to evaluate a speech
coding system. .Among these the objective measure based
on the signal-to-noise ratio (SNR) is used in this thesis
because of its simplicity in implementation.



Chapter 3

SPEECH SAMPLE ESTIMATION FROM ITS COMPOSITE

ZEROCROSSINGS

3.1 INTRODUCTION

In digital speech processing, a continuous analog
speech signal is to be converted to a discrete form suit­
able for processing in a digital computer. This involves
sampling in tflua time domain, quantizatbmn in the ampli~
tude domain and coding the result into digital form.
All these processes impose limitations on the speech
data obtained, and can give rise to various errors. In
a conventional speech processing system the above mentioned

processing is done using an A/D converter. In this chapter
we present a new method to estimate the speech samples
from zerocrossings.

A band limited signal can be represented by
the real and complex zeros of the signal [F.E‘..Bond and
C.R.Cahn, 1958], [H.B.Voelcker, 1966], [A.A.G.Requicha:
1980]. The zerocrossing based approach requires no sampl­

ing of the signal, while the A/D converter method relies
on multilevel quantization of samples taken at prescribed
instants of tflmmu With simple digital circuits; it is
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easier to measure the timings of zerocrossings. Some
potential advantages of this approach are that the in­
herent problems of an A/D converter such as alignment,
limited dynamic range and speed can be alleviated, and
the hardware associated xmhfli the sampling circuitry can
also be simplified.

Kay and Sudhakar [ASSP, 1986] proposed a method

suitable for the recovery of a low frequency noisy sinu­
soid from its zerocrossings. This is also suitable for
periodic band limited signal, which can be recovered
within a scale factor from its zerocrossing sequence:
using a sine wave product expansion formula [A.Seeky,
1970]. For aperiodic signals VfiUxfi1 are represented by
an infinite product, the signal can only be approximately
recovered.

The zerocrossings of a segment of speech are
the result txf a nonlinear operation, and hence analysis
is extremely complicated. Further, the statistical
aspects have not been investigated completely though
C.S.Sridhar attempted to study this problem from statisti­
cal angle [C.S.Sridhar, 1975]. Recently speech segments
are modelled using the information regarding zerocrossings
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and it is shown that this helps in extracting features
like voiced/unvoiced boundary [Babu P.Anto, N.K.Narayanan

and C.S.Sridhar, 1987].

In this chapter a simple new method is presented
for the reconstruction of speech signals from their
composite zerocrossings. To begin with,the theory asso­
ciated with zerocrossing sampling method used to estimate
the speech signal is presented. IA simple linear inter­
polation formula for signal estimation from composite
zerocrossings is derived. This is followed by the results
of a computer simulation experiment on the recovery of
speech signals from zerocrossings.

3.2 ZEROCROSSING SAMPLING THEORY

Consider a bandlimited signal S(t) with the
highest frequency value Wn. Ix cosine wave of frequency
equal to the highest frequency Wn, present in the signal
S(t) and of a larger amplitude than the maximum amplitude
of S(t), is added txa S(tJ so that ea composite signal
X(t) is obtained as

X(t) = S(t) + A cOS(2Tl Wnt) (3.1)

where A.) |s(t)|maX,
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It can be shown that X(t) has exactly one zero­
crossing in each of the sub-intervals of duration

(1/2Wn) = T i.e., if the signal is sampled at the NyquistSI

rate, then between adjacent samples there ‘will be one
zerocrossing.

From equation (3.1) we can write,

X(O) = S(0) + A > O,

ioeol  > O
and X(TS) S(Ts) + A cos (2fl WnTS)

S(TS) - A < 0. i.e., X(TS) < O.

When the composite signal X(t) is sampled at

its Nyquist rate; X(O) and X(TS) are two adjacent sample
values. Since X(t) changes sign, there must be an odd

number of zerocrossings of X(t) in the interval (0, TS).
Similarly, it can be shown that between any two conse­
cutive samples there will be an odd number of zerocrossings.

Since the signal X(t) is bandlimited to Wn, the maximum
number of zerocrossings in a duration of unit second is

zwn. Remember the composite signal X(t) is sampled at
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its Nyquist rate, i.e., sampling frequency fs == 2Wn.y
Therefore the above conditions. can‘ be satisfied only
if there is only one zerocrossing between adjacent samples

of X(t). Hence in a sequence of N §amp1es.{X(kTS)} there
will be (N—l) zerocrossings. Let to, tan t2,...,tN_2
be these zerocrossings. Now we can derive a linear inter­
polation formula for estimating the signal samples using
these zerocrossings.

According to the sampling theorem, for any band­
limited signal which is sampled at the Nyquist rate, the
reconstruction formula that provides perfect reconstruct­
ion of the signal is defined by the infinite sum of
weighted sample values as

W Sin[n(t—kT )/T ]X(t) = Z X(kTS) S S (3.2)k;_w n(t-kTs)/Ts

For an N periodic sequence the above formula reduces to

Sin[n(t-kTS)/TS] (3.3)N-1

X(t) ‘—' 2 X(kTS)kzo “(t-kTS)/TS

Now the zerocrossing time, tO,tl,t can be obtained2...
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by substituting X(t)”= O, in the above formula. Therefore,
the interpolation formula (3.3) will give (N-1) equations
representing the N~l zerocrossings as

N-1 .S [ (t —kT )/T 1
2 X(kTS) In N “ 5 S = 0 (3.4)
k=O n(tn—kTS)/TS

Where n OI1I2[oooN_2­

To obtain the values of the zerocrossing times

to,tl,t2,..., we have to solve N-l equations. For simpli­
city we can assume that the interpolation between two
adjacent samples is mainly contributed by these two samples
only, so that the terms with other sample values in (3.4)
can txa neglected. Now the interpolation formula for the

signal between X(nTS) and X((n+1)TS) becomes

n+1 .Sin[ (t -kT )/T ]g X(kTS) N n S S = 0 (3.5)k=n "(tn*kTs)/Ts

Simplifying this equation we can write

n s X(n)
s X(n)- X(n+l)
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Considering the alternate sign changes in signal amplitude,
we can write

Ts|X(n)|tn = i + nTS (3.6)
|X(n)|+|X(n+1)|

Equation (3.6) gives a relationship between the nth zero­
crossing time and the nth and (n+l)th sample magnitudes.

Putting t6 = tn—nTs in equation (3.6) and rearranging
we get

T —t’ 3.7|x(n+1)| = [x(n)|:—,’l ( )n

Using L357), assuming 21 suitable scale factor for XIO),
say unity, the consecutive signal magnitudes |X(l)|,
]X(2)|,..., can be calculated using the information regard­
ing zerocrossing time. Formula (3.7) can be obtained
by ea simple triangular interpolation method as discussed
below.

Consider tam) consecutive sample values X(n) and

X(n+1) of the composite signal. Let t; be the zerocrossing
distance of the nth zerocrossing from the rfifll sample,
so that
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In the Fig.3.l; |X(n)I and [X(n+l)| represent
the sample amplitudes. The point at which the line joining
the edges of the sample amplitude crosses the time axis
is taken as the zerocrossing.

|X(“)| th .
n zerocrossmg/6- #1r nwm:5” tn :1

IX(n+lH

I-——t,', —«»|F T =1

Fig. 3.1 Triangular Interpolation
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From the figure 3.1, using the theorem of similar
triangles we can write

Ts"tn _ |X(n+l)lt‘ _ X n)n

T —t'|x(n+1)| = |x(n)| :. ” (3.8)
D

Equations (3.7) and (3.8) are the same. (Hue sequence of
sample amplitude obtained by this formula, after multi­
plying the alternate sample by -1 gives the reconstructed
version of the sample values of the composite signal X(t).
Therefore we can write a triangular interpolation formula
(TIF) for the reconstruction of samples using Nyquist rate
zerocrossing as

T ~t'
X(n+l) = (—1)“+l |x(n)| st,“ (3.9)n

where n = O(l;21...N-2.

The true signal can be obtained from this by
subtracting the added sinusoid. Let X(n) and S(n), where
n = O,l:2;...N-1 be the Nyquist rate samples of the compo­
site signal and the original signal respectively, then
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we can write S(n) = X(n) -2; cos(2n WnTs), where A is the
amplitude of the added sinusoid.

3.3 SIMULATION EXPERIMENT AND RESULTS

Fig.3.2 shows the schematic representation of
the method. of the reconstruction cflf speech samples from
the zerocrossings. Speech signal :hs lowpass filtered to
bandlimit txb 4 kHz,and is normalized, so that the maximum
amplitude of the speech signal under study is unity. This
is summed with a sinusoid whose frequency is half of the

required sampling rate fs (here 4 kHz). The amplitude
of the sinusoid is taken as twice that of the maximum
amplitude of speech signal. The composite signal X(t)
is passed through the zerocrossing location extractor "to
find the zerocrossing location and is tfluN1 quantized. by
the zerocrossing location quantizer. The quantized zero~
crossing locations (ZCL) are used to reconstruct the compo­
site signal samp1es{X(n)}using the TIF (3.9). This sequence
{X(n)} after subtracting the amplitude of the added sinu­
soid (in the present case 2) gives the reconstructed version
of the speech sample sequence {S(n)}.
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Band—limited speech

Normalize

S (I)

I A Cos(2 11 wn t)
Summing Amplifier

X (t)
V

Zerocrossing Location Extraction
-.J

V

Zerocrossing Location Quantizer

i
Triangular Interpolation

X (n)

ACos(21zw T)n s
Difference Amplifier --I————-—

S(n) reconstructed speech

Fig. 3.2 Schematic block diagram for the method of reconstruction of the
speech samples from the zerocrossings.



42

3.3.1 Verification of the Zerocrossing Theory

Simulation experiments are conducted to verify
the triangular interpolation method developed :h1 the pre­
vious section. The speech data base used in this experiment
contains 45 sec. of speech spoken by two speakers; a male
and a female. The data base consists the following speech
material denoted as S1; S2,..., S9.

S1 An icy wind racked the beach.

S2 : The pipe began to rust while new.

53 : Cats and dogs hate each the other.

S4 : Oak is strong and also gives shade.

S5 : Thieves who rob friends deserve jail.

S6 : Open the crate but do not break the glass.

S7 : Add the sum to the product of these three.

S8 : Joe brought a young girl.

S9 : A lathe is a big tool.

These utterances were chosen since they are
phonetically well balanced: including voiced speech;
plosives, fricatives etc. The actual zerocrossing location
are determined by sampling the speech waveform at a very
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high rate than the Nyquist rate as in [J.C.R.Licklider,l950]
and [R.J.Niederjohn et al., 1987]. The speech waveform,
band limited to 4 kHz and digitized using a 12 bit A/D con­

verter at a sampling rate of 64 kHz is stored in the data
base of the computer.

Now the samples of the sinusoid of frequency
4 kHz at the same sampling rate of speech, i.e., 64 kHz
are generated in software using the formula

A COS ( 2 fix 4000 x k )64000

where k = 0,l,2,...etc. The amplitude of the sinusoid:
‘A’ is chosen to be equal to 2. By adding the normalized
speech sample and the sinusoid sample we obtained the samples

‘of the composite signal at a sampling rate of 64 kHz. Since
the amplitude of the sinusoid is chosen to be equal to 2,
the maximum amplitude cm? the composite signal is equal to
3 times that of original speech signal. Fig.3.3(a) repre­
sents a segment of the speech signal. Fig.3.3(b) represents
the 4 kHz sinusoid that is to be added with the speech seg­
ment in Fig.3.3(a). Fig.3.3(c) gives the resultant compo­
site signal. Fig.3.4(a), (b) and (c) represents the 64 kHz
sampled form of the signal in 3.3(a), (b) and (c) respectivel
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Fig.3.5 illustrates the zerocrossing locations
in the composite signal. The zerocrossing locations of
the band limited composite signal are determined by linear
interpolation between each successive pair of samples which
differ in sign (remember these sample pairs are not the
Nyquist rate samples of the composite signal that differ
in sign, which are to be estimated using the triangular
interpolation formula. The Nyquist rate samples of the
original composite signal aux; shown in Fdg.3.5 with arrow
heads). The linear interpolation is carried out to achieve
a greater accuracy in zerocrossing interval measurement
than that would be accomplished by simply choosing either
the sample location nearest to each zerocrossing, or the
middle point between two samples. Thus the original zero­
crossing locations (OZCL) are determined ‘within EH1 error
limit of 7.8125 micro second in the present experiment.

The zerocrossing locations shown in Fig.3.l (here­
after referred as pseudo zerocrossing locations (PZCL))
are obtained by linear interpolation between adjacent
Nyquist rate samples of the composite signal. This is
done for the sake of comparison between OZCL and PZCL.
The OZCL; PZCL and their difference, for a speech segment
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are listed in Table 3.1. The maximum difference is about
6 micro seconds. These are illustrated in the Fig.3.6.

Since the OZCL differ from the PZCL the estimated

sample values will suffer two types of errors, viz., error
due to interpolation and error due to ZCL quantization.

The estimated OZCL are quantized to different
number of bits. The Nyquist rate composite signal sequence
is estimated using the TIF with the quantized OZCL, by
assuming the amplitude of the first sample value as unity.
This sequence is then scaled to make the maximum amplitude
value as 3 which is the maximum amplitude value of the
original composite signal. By subtracting tflua amplitude
of the added sinusoid from the reconstructed composite
signal, the reconstructed speech signal sequence {S(n)}
is obtained. Figs.3.7(al,a2,...a7) represents the segments
of original speech signal and Figs.3.7(bl,b2,...,b7) repre­
sents the reconstructed speech signal using OZCL quantized
tn: 8 bits. It may be noted that the reconstructed speech
signal is distorted with high frequency noise. This is
studied by computing the power spectral densities (PSD)
of the cmiginal speech segment and tflua reconstructed one
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Table 3.1

Occurrence of zerocrossings from the last NYQUIST rate sample in micro seco

ZCL original psuedo difference ZCL original psuedo differenceNo ZCL time ZCL time between No ZCL time ZCL time between
(OZCL) (PZCL) 0ZCL&PZCL (OZCLJ (PZCL) OZCL&PZCL

1 67.53 70.13 -2.60 21 60.15 59.14 1.01
2 61.06 59.27 1.79 22 65.84 67.34 -1.50
3 62.36 62.16 0.20 23 59.16 57.20 1.96
4 63.94 64.27 -0.33 24 65.61 67.55 -1.94
5 59.89 58.08 1.81 25 58.72 58.16 0.56
6 66.25 67.24 -1.00 26 61.53 59.37 2.16
7 62.08 62.91 -0.82 27 71.44 77.70 -6.25
8 57.12 55.66 1.46 28 49.35 48.25 1.10
9 68.60 71.04 -2.45 29 62.73 63.26 -0.52
10 60.56 59.37 1.19 30 74.16 75.57 -1.42
11 59.90 59.21 0.69 31 53.98 49.66 4.32
12 65.58 66.46 -0.88 32 61.64 60.72 0.92
13 62.30 61.85 0.45 33 70.60 72.95 -2.34
14 60.36 59.72 0.64 34 56.21 54.44 1.77
15 65.02 66.13 -1.12 35 62.63 64.44 -1.81
16 61.15 60.82 0.32 36 63.27 64.03 -0.76
17 61.51 61.21 0.29 37 60.67 59.57 1.11
18 64.82 65.63 -0.80 38 66.79 68.09 -1.30
19 60.71 59.56 1.15 39 59.01 57.26 1.75
29 63.87 64.96 -1.99 49 61.06 59.95 1.11
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using FFT. Figs.3.8(a) and (b) are the PSDs of the original
and the reconstructed speech segment. The PSD plots indi­
cate that the TIF introduce high frequency noise in the
estimated speech. It may be noted that the major noise
components are» near the added sinusoidal frequency; On
examining a large number of reconstructed speech segments
it is understood that if the reconstructed speech is filtered
above 3750 Hz, major components of the noise introduced
by the TIF can be suppressed. Fig.3.8(c) represents the
PSD of the reconstructed speech lowpass filtered to 3750 Hz.
The reconstructed speech shown in Fig.3.7(bl,b2,...,b7)
are lowpass filtered to 3750 Hz and are shown in Figs.
3.7(cl,c2,...,c7) respectively. Figs.3.7(al,a2,...,a7)
and Figs.3.7(cl,c2,...,c7) illustrate that there is little
apparent loss of information by reconstructing the signal
using the TIF from the 8—bit quantized values of the zero­
crossings of the original signal plus the large-level sinu­
soid.

The perceptual quality of the estimated speech
using 8 bit quantized zerocrossing is examined by subjective
listening tests. This is carried out with sixteen listeners.

The original speech, zerocrossing estimated (un­
filtered) and zerocrossing estimated (filtered) are presented
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in that order to the listeners. They are asked to judge
the quality of the estimated speech (both unfiltered and
filtered) by comparing with the original on the basis of
its intelligibility, clarity, crispness, hoarseness and
warbling effect. The following description is a summary
of the subjective evaluation of the listeners.

The reconstructed speech (both unfiltered and
filtered) is fully intelligible» The tonal quality is
maintained in the filtered speech. The unfiltered estimated
speech has a warbling effect indicating the presence of
high frequency’ distortion. However, the intelligibility
is still perfect and the distortions are not very objection­
able. When the estimated speech is lowpass filtered to
3750 Hz, the quality is improved in the sense that the
warbling noise level is reduced considerably. The filtered
reconstructed speech has almost same level of quality as
that of the original speech.

In order to obtain the Mean Opinion Score (MOS),
the listeners are asked to rate the filtered reconstructed
speech on an absolute scale, ranging between 1 and 5 by
comparing with the original. The meaning of these grades
are:
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5 — excellent

4 - good
3 — fair

2 — poor

1 - bad

The mean value of the grades rated by the listeners,
the MOS is equal to 4.56, which is a sufficient score for
a. good communication. quality speech encoder. Therefore,
the 8 bit quantized zerocrossing based speech sample esti­
mation can be rated as having good communication quality.

3.3.2 Effect of zerocrossing Quantization

Performance of the zerocrossing based sample
estimation method using zerocrossings quantized to different
number of bits are compared in this section. A figure
of merit used very often to compare waveform coding system
is the signal-to—noise ratio (SNR). The SNR(dB) of the

reconstructed speech using zerocrossings quantized. to
different number of bits is calculated using the formula
(2.4) defined in Chapter 2. Table 3.2 lists the SNR values
for some segments of reconstructed speech using zerocrossings
quantized. to different number of loits. The SNR values
of the same reconstructed speech segments lowpass filtered



Seg.
NO.

19

11

12

13

14

15

16

17

18

19

29

21

22

23

24

25

SNR{dB) OF RECONSTRUCTED SPEECH USING ZCL QUANTIZED TO DIFFERENT BITS

4 bit 5 bit

9.58 9.63
9.28 9.35

-9.18 9.55
-3.94 1.34

-2.65 9.91

-2.64 1.29

-3.74 -9.16

-9.58 9.44

-9.53 9.44

9.91 9.13
-9.37 9.35

9.75 1.18
-9.17 9.96
~1.63 -9.39

-9.77 -9.78

-9.22 -9.12

-9.27 1.69

-1.75 -9.73

9.95 9.38

9.61 1.48
-9.37 9.91
-1.12 -9.89

-9.15 -9.96

-9.67 9.95

-2.25 1.16

6 bit 7 bit

2.33 2.16

9.97 6.53
1.53 4.91
1.98 5.55

9.59 1.87

2.98 3.17

9.98 5.13

9.89 8.23

1.19 1.77

9.59 4.24
1.73 3.96

1.69 4.41
9.39 9.91

~9.39 5.46
9.28 9.34

9.21 9.68

2.13 8.79

4.42 4.57

9.95 2.59

2.94 6.53
1.69 2.62
1.16 1.14
9.18 4.79
2.84 7.98

4.46 8.52
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Table 3.2

8 bit

6.71

3.94

19.84

6.47

2.28

7.29

19.51

9.94

2.67

4.25

4.46

6.12

2.95

6.29

3.29

19.53

5.44

4.61

7.89

4.49

1.92

6.52

7.66

8.25

9 bit

13.63

5.34

12.13

7.98

2.68

6.63

19.58

9.56

3.78

4.37

7.97

6.19

2.92

7.67

6.98

5.47

7.62

8.91

2.98

8.52

7.85

19bit 11bit

13.

5.

12.

41

33

11

.94

.51

.59

.54

.65

.69

.11

.74

.44

.96

.35

.63

.15

.84

.13

.61

.37

.41

.83

.66

.65

.44

12.69

5.39

11.96

7.26

2.64

11.25

4.57

6.78

7.14

3.92

7.54

6.78

4.79

9.79

6.99

5.76

7.59

8.33

9-99

8.89

12bit 13bit

12.

5.

12.

64

98

44

.62

.43

.98

.44

.99

.19

.64

.86

.45

.94

.92

.19

.81

.21

.91

.78

.94

.12

.63

.11

.38

.26

13.

5.

12.

94

96

89

.62

.45

.14

.32

.79

.66

.67

.96

.15

.77

.32

.94

.83

.54

.96

.77

.14

.99

.68

.19

.87

.15‘

14bit

12.91

5.18

-12.85

7.59

2.42

8.91

11.45

9.52

7.53

4.62

7.14

7.14

3.92

7.22

6.87

4.89

9.41

7.24

5.77

7.11

8.21

3.65

8.16

9.78

8.18
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SNR(dB) OF FILTERED RECONSTRUCTED SPEECH USING ZCL QUANTIZED T0 DIFFERENT BITS

Seq.
N0.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 '

25

4 bit 5 bit

1.85 10.06

2.41 8.57
4.54 5.24
2.31 10.07

1.21 5.71

3.76 8.48
6.00 10.92

3.35 7.31

1.66 2.71
4.25 7.32

1.28 5.08

6.63 7.47
3.21 8.37

1.90 8.69

3.59 5.60

2.29 4.60

7.41 12.40

2.48 4.62

3.26 6.31

4.28 10.81

2.72 7.37

3.62 3.86
3.38 7.01

7.53 12.09

2.60 9.12

6

14

15.

12

12.

12.

12.

13.

14

11.

11.

13.

13

11

15.

11.

bit 7 bit

.68

.06

.66

28

.73

.80

.92

.31

.20

.19

24

32

97

25

.90

.89

68

82

26

.60

.96

.42

64

59

17.33

17.91

15.75

17.04

15.21

18.52

19.06

12.66

10.67

14.85

13.78

14.71

15.70

16.85

15.95

11.90

15.34

12.44

12.71

19.08

13.95

13.54

12.87

19.34

12.98

8 bit

22.

24.

19

19

16.

17.

17.

12.

13

16.

16.

16.

17.

17.

18.

17.

15.

13.

14.

20.

15.

14.

12.

18.

13.

17

18

.89

.81

64

45

81

61

.94

78

61

63

81

66

39

20

97

22

76

47

37

04

40

32

33

9 bit 10bit

24.

23.

20.

21.

17.

19.

18.

12.

17.

15.

16.

16.

'18.

18.

18

13.

15.

13.

-15.

29.

13.

14.

13

19.

13.

39

76

04

39

09

96

64

27

46

86

48

48

02

97

.92

38

37

45

63

27

24

17

.05

96

48

24

24.

20.

21.

17.

18.

18.

12.

18.

15.

16

16.

18.

19.

18

18

15.

13.

15.

20

18.

14.

13.

20.

13.

.62

45

00

60

07

54

40

34

35

35

84

03

54

.57

.34

86

44

92

.66

18

06

19

81

35

11bit 12bit 13bit

24

24

19

21

16.

18

18.

12

18

16.

16

17.

18.

18

18.

18.

15.

13.

16.

20.

18.

13

13

22.

13

.81

.38

.77

.49

87

.70

47

.14

.87

24

.70

07

30

.92

83

84

83

44

20

27

89

.94

.14

07

.26

24.77

24.32

20.14

21.45

16.94

19.01

18.35

12.21

19.17

16.02

16.64

17.12

18.33

18.89

18.85

18.96

15.76

13.44

16.09

20.46

18.57

13.97

13.30

21.72

13.26

24.81

24.61

20.25

21.60

16.95

19.06

18.24

12.19

18.98

16.03

16.65

17.10

18.31

18.93

18.75

18.94

15.82

13.43

16.09

20.52

18.52

13.96

13.31

22.01

13.25

14bit

24.86

24.57

20.26

21.59

16.95

19.06

18.23

12.17

18.96

16.01

16.67

17.08

18.33

18.92

18.77

19.00

15.79

13.43

16.08

20.45

18.49

14.00

13.32

21.91

13.25
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to 3750 Hz are listed in Table 3.3. It may be noted that
there is a notable increase in SNR when the lowpass filter­
ing is performed. This confirms that the major noise compo­
nents introduced tnr the zerocrossing interpolation method
are in the frequency region above 3750 Hz. The SNR values
versus number of bits for zerocrossing quantization for
reconstructed speech segments (unfiltered and filtered)
are illustrated in Fig.3.9(l—24).

Let SNRzC(m) (dB),where m = l,2,...,M represents
the signal—to—noise ratio of time M segments, for each
particular number of quantization bits. Now we can define
the average SNR over a frame of speech containing M seg­
ments as

M

Z SNRZC(m) (dB)nel
SEGSNR =

3M4

The SEGSNR obtained using the speech data base for differ­

ent number of bits for zerocrossing quantization is shown in Table

3.4. The SEGSN comparison of reconstructed and filtered reconstructed

speech versus number of bits for zerocrossing quantization is illu­

strated in Fig.3.l0.
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SEGSNR comparison of reconstructed and
filtered reconstructed speech vs number

of bits for zerocrossing quantization
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The subjective quality tests performed in previous
section confirmed that the filtered reconstructed speech
using 8 bit quantized zerocrossings is having good communi­
cation quality. The experimental results also indicate
that the SNR values are almost same when more than 8 bits

are used for zerocrossing quantization. This is because
of the reason that the- quantization error 515 very’ small
compared tx> the interpolation error for these bit ranges.
Therefore the zerocrossing based speech sample estimation
method may kn; used as en1 alternative to the A/D converter
ummhod. By using this method, the cost of the digitizer
system can be considerably reduced, since simple digital
circuits are sufficient for the extraction of zerocrossings.

3.3.3 Effect of Signal Statistics

The applicability of the proposed method for
noisy speech signal is studied by adding zero mean Additive
White Gaussian Noise (AWGN) of different variance values

to the original speech and repeating the above experiment.
The SEGSNR obtained for the reconstructed signal for zero­
crossing quantized to different number of bits for the
signal (speech + AWGN) is listed in Table 3.5. The variance
of the AWGN is selected to get 40 dB; 30 dB, 10 dB: 3 dB
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and 0 dB SNR for speech signal, i,e_, the resulting signal
statistics is changed over a wide range. The performance
of the TIF for these signals is illustrated in Fig.3.ll.
It is noted that when the noise level is low, the SEGSNR
of’ the reconstructed speech is run: much affected. But
there is considerable reduction in SEGSNR when the noise

level is high.

3.3.4 Effect of the Amplitude of the Added sinusoid

In the earlier part of the study the amplitude
of the added high frequency sinusoid was equal to twice
the maximum amplitude of the original signal i.e.,

A = 2S(t)maX. And the SNR value of the reconstructed speech
signal was calculated changing the number of bits for quanti­
zation of the ZCL. In this section the effect of sinusoidal
amplitude on the SNR performance is studied.

Computer simulation experiment carried out in
this case is similar to that of the earlier case, except
that there is a provision to change the sinusoidal ampli­
tude. According to theory, the amplitude of the sinusoid
must be greater than the maximum amplitude of the signal.
In this study the signal used is normalized so that the
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maximum amplitude is unity. We set the initial value of”
the amplitude of the added sinusoid equal to l.lO in the
program. The SNR value for this amplitude is computed
and recorded. The amplitude of the sinusoid is then changed
by an increment of 0.10 and the reconstruction experiment
is repeated upto an amplitude equal to 4.00.

Figs.3.l2(i-iv) illustrate iflua SNR variation
of the reconstructed speech signal for different amplitudes
of the added sinusoidal signal. It may be noted that the
SNR is fluctuating randomly with sinusoidal amplitude about
a mean value. The variation :Ms large when lesser number
of bits are used for quantizing the ZCL.

We have statistically analysed this random fluct—
uation of the SNR vs. sinusoidal amplitude. This is studied
by testing the statistical distribution of the zerocrossing
quantization error as well as the reconstruction error.
For this,the simulation program is modified by incorporating
provisions to compute the mean, variance, standard deviation
and to test the chi—square goodness of fit for following
probability distribution functions. The distributions
tried are: (1) Normal, (2) Uniform, (3) Laplace, (4) Gamma,
and (5) Log-Normal.
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8NR(dB) OF RECONSTRUCTED SPEECH ‘FOR
DIFFERENT SINUSOIDAL AMPLITUDES

(eaa bite for ZCL quantization}

SNFl(dB)
0

segment 1

_10 1 1 _ I1 2 8 4
Amplitude of the added sinusoidal signal

(a) unfiltered (D) filtered

SNFl(dB)
0

segment ii

20 ­

10­

Amplitude of the added sinusoidal signal
(a} unfiltered (b) filtered

Fig. 3.12(i & ii)
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8NR(dB) OF HECONSTRUCTED SPEECH FOR
DIFFERENT SINUSOIDAL AMPLITUDES

(6&8 bite for ZCL quantization)

SNR(dB)
0

segment III

20'

0 ..

_1O __ L L1 2 :3 4
Amplitude of the added sinusoidal signal

la) unfiltered (b) filtered

SNFi(dB)0 T _ '“
augment. lv

20 ­

10 ­
0

O ..-10 ' '1 2 s 4
Amplitude of the added sinusoidal signal

ta) unfiltered (b) filtered

Fig. 3.12(J'.1'i 8: iv)
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HISTOGRAM STUDIES

Simulation study was performed to find the stati­
stical behaviour of the zerocrossing quantization error
and the reconstruction error using histogram and chi—square
methods.

The zerocrossing quantization error (ZCQE) is

recorded as ZCQE {eq , e , e ,...,e }Q Q Q1 2 3 N
where e = (t! — t! ),Q 1 lq
Here ti = ith zerocrossing time before quantization

t!
1q

. .th . .quantized value of 1 zerocrossing time.

The maximum and minimum values of the ZCQE is determined

and tfiua difference iii divided into W<' class intervals.

Then the number of eq 55 falling :h1 each class interval is-i
determined and the histogram is obtained. Fig.3.l3 is
the histogram obtained for the ZCQE for a speech segment.

In order to test the ‘goodness of fit‘ for differ­
ent distribution functions: the mean, variance and standard
deviations of the ZCQE are computed. The expected value
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of the relative frequency Ej of the ZCQE in each class j
for different distribution functions is computed and the

observed value of the relative frequency Oj in each class
is obtained directly from the histogram. The chi—square
value is computed using equation

k
2

2 _ 2‘. (E:.—-O.)7‘ “ Ei=1 3

Figs.3.l4(i-—iv) present the -X2 values for the
five distribution functions for which the ‘goodness of
fit‘ test is applied vs. the amplitude of the added high
frequency sinusoid. The result shows that the distribution
of the ZCQE is uniform (other distributions tried are
Gaussian, Laplace, Gamma, Log—norma1. These shows poor
fit on chi—square test).

A similar ‘goodness of fit‘ test is conducted
in the case of the reconstruction error, i.e., the noise
introduced by the zerocrossing location based sample esti­
mation method. Figs.3.l5(i—iv) present the‘7(2 values for
the five distribution functions for which the ‘goodness
of fit‘ test is applied vs. the amplitude of the added
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Fig. 3.11I(i 8: ii)
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Chi-square value for five distribution
functions versus sinusoidal smpiltude

(asrocrosslng quantization error)
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Fig. 3.1u(i°u & iv)
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Chi-square value for {Ive distribution
functions versus alnuooldal amplitude
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frequency sinusoid. Fig.3.l6 shows the histogram
ined for the reconstruction error.

It is seen that 1flue Gaussian distribution gives
best fit for the reconstruction error.

In summary,the statistical analysis of the random
viour of SNR gives the following results.

The distribution of the zerocrossing quantization error
is uniform.

Reconstruction error is with influenceGaussian no
on distribution of segments or number of bits.

Sinusoidal amplitude variation results in random change
in variance of quantization error.

Segment tn) segment there is slight difference ix: SNR
and quantization error variance.

CONCLUSIONS

In this chapter we project the use of composite
crossings in speech sample estimation. The zerocrossing
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based approach requires no sampling of the signal while
the conventional A/D converter method relies on multilevel
quantization of samples taken at prescribed instants of
time. with simple digital circuits it is easier to measure
the timings of zerocrossings. The proposed method uses
only a simple linear interpolation formula for the esti­
mation of speech samples from zerocrossings. The results
of the computer simulation study verifies that the recon­
structed speech is of good quality when the zerocrossing
location is quantized using 8 bits.



Chapter 4

VOICED/UNVOICED CLASSIFICATION

4.1 INTRODUCTION

At least two processes with significantly differ­
ent statistics are present in ea speech.‘waveform, namely
voiced and unvoiced processes. Voiced speech is generated
due to the vibration of the vocal cords by forcing air
through the glottis. It is a quasi-periodic waveform with
highly correlated samples and with high energy (/a/,/i/,
/I/,/e/,/'i&/,/'9/,/u/,/v/,/m/,/n/ etc. are some examples
of voiced speech). Unvoiced speech is noise-—like and of
low energy and low correlation. It is produced by exciting
the vocal tract by a steady air flow which becomes turbulent
in the region of a constriction in the vocal tract
(/f/,/6/,/s/,/sh/ etc. are some examples of unvoiced speech)
[L.R.Rabiner and R.W.Schafer; 1978].

The underlying process of speech production can
be modelled using a Markovian generating process with
different states for different segments of speech. Fig.4.l
represents a two state Markov model for the speech waveform,
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Fig.4.l A two state Markov model for speech
waveform.

with states ‘V’ for voiced and ‘UV’ for unvoiced waveform.
The transitions from one state to the other state can occur
at any instant. Therefore there is a finite probability
'p' of passing from the voiced state into the unvoiced
state and a probability 'q' of the opposite transition.
The generalization to a nmlti-state model is straight for­
ward and the experimental results are actually computed
for models with three states viz., voiced, unvoiced and
silent respectively.
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Fig.4.2 gives a binary tree classification scheme
for speech wavefonn proposed by Wiren and Stubbs [J.Wiren
and H.L.Stubbs, 1956].

It is evident that the further classification
of the speech signal will be perfect only if the voiced/
unvoiced decision is achieved correctly. This is a diffi­
cult problem in speech analysis. In this chapter we present
two methods ikn: voiced/unvoiced decision. The first one
is based on the short time zerocrossing rate and short
time energy of the signal and the second one is based on
the second order attractor dimension and second order
Kolmogorov entropy of speech signal.

4.2 ALGORITHM BASED ON SHORT-TIME ZEROCROSSING RATE AND

SHORT-TIME ENERGY

Many algorithms are available in the literature
for voiced/unvoiced detection. The main idea of all these
algorithms lJ3'tO find different features of speech signals
that can help in voiced/unvoiced decision. Atal and Rabiner
considered the voiced/unvoiced classification problem as
a pattern recognition problem [B.S.Atal and L.R.Rabiner,
1976]. They have considered five features like energy,
zerocrossing rate, correlation coefficient, L.P.C. predictor
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unvoiced F I

unvoiced
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Fig. 14.2 The binary classification scheme of Wiren and Stubbs [1956]



96

coefficients and predictor error energy for deciding the
speech segment as voiced or unvoiced. Rabiner and Sambur
proposed an L.P.C. distance measure for voiced-unvoiced­
silence detection [L.R.Rabiner and M.R.Sambur, 1979]. Knoor

presented another technique for voiced/unvoiced classifi­
cation by filtering the speech and comparing the rectified
filter outputs [S.Knoor, 1979]. In all these papers
mentioned above, the selection of features is mainly on
the basis of the knowledge acquired from various trials
and hence requires involved computation.

The distance measure that we present here for
voiced/unvoiced classification is a function of Short-Time
Zerocrossing Rate (STZCR) and Short-Time Energy (STE) of

speech segments. The facts that the STZCR is larger for
unvoiced speech than voiced speech and also; the STE: is
lesser for unvoiced speech compared to voiced speech are
made use of in defining this distance measure [V.Ramamoorthy
1980].

Let us consider a set A with voiced segments
as its elements and another set B with unvoiced segments
as elements. This is represented by Fig.4.3. Clearly
AnB = Q5: where Q5 represents the Null set.
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Fig.4.3.

Normally the distribution of both STZCR and STE
for voiced speech overlaps to a certain extent with that
for unvoiced speech [B.S.Atal and L.R.Rabiner, 1976],
[L.R.Rabiner and R.W.Schafer, 1978]. i.e., there can be
low-level voiced speech segments with STE: comparable to
that of unvoiced segments. Also there can be voiced
speech segments with STZCR comparable to that of unvoiced

segments. Therefore a detection procedure based either
only on STZCR or STE leads to large amount of error because

of the spread in the distribution of these features.

Let us assume that the STZCR of voiced segments
form a set C and that for unvoiced segments form another
set D. Because of the finite probability of ‘voiced and
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unvoiced segments having comparable STZCR values [L.R.
Rabiner and R.W.Schafer, 1978] we can represent C and
D using Fig.4.4 and clearly C r)D # ¢.

Fig.4.4.

Let x x2,...,x be the speech segments that1' n
fall in the shaded area of Fig.4.-4. Let these segments
form a set X, i.e., X ijsaa set whose elements are voiced
and unvoiced segments having comparable STZCR values.

Now let us also assume that the STE of voiced
segments form a set E and that for unvoiced segments form
another set F. Because of the finite probability of voiced
and unvoiced segments having comparable STE values, we
can represent E and F by Fig.4.5 and clearly E{WF # ¢.
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Fig.4.5.

Let yl, y2,..., yfil be» the speech segments that
fall in the shaded area of E‘ig.4.5 and Y be a set with
these segments as its elements, i.e., Y is a set whose
elements are voiced and unvoiced segments having comparable
STE values.

If STE of voiced and unvoiced segment have nearly
equal values, their STZCR cannot have comparable ‘values
because of their distinct features. Similarly if the
STZCR of a voiced and unvoiced segment have nearly equal

values, then their STE cannot have comparable values.
This characteristics lead to the assumption that,
X 1"] Y = (3. These principles are utilized in defining
the new distance measure as a function of STZCR and STE as

STZCR‘.§"fi3"' ‘4-1’
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Now let us form two more sets V and U with elements

as iflue values of I) for voiced and unvoiced segments
respectively. The numerical values of the elements of V
will be much less compared to those of the elements of U.
The probability of overlapping’ V with U is ‘very small
so that we can assume V'f\ U = D. This assumption clearly
enables us txb define a threshold value for D to classify
the voiced/unvoiced segments. i.e., voiced/unvoiced
classification can be performed by comparing the value
of D for a particular segment with a threshold value.
But because of the large dynamic range and the high speaker
dependence of speech signal, the value of the elements
of the sets V and U varies considerably. Hence a universal
constant threshold is not possible and requires an adaptive
threshold. This idea zhs illustrated :h1 Fig.4.6, where
OR represents the threshold boundary.

The threshold we use here is relative to the recent
most minimum value (RMMV) of D. The RMMV is defined as

the lowest value of I) observed in the most recent voiced
state (The number of segments n, considered in determining
the RMMV of D is 12). The effective value of this adaptive

threshold 'TD' can be obtained as

TD = k x (RMMV) of D,
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where 19 is aa constant. The value of }c is experimentally
found to be equal to 150 (The values of n and k are esti—
mated by trial and error method to minimize the error
in V/UV decision inside the speech data that is used in
the simulation experiment ix) train tflue algorithm. The
algorithm is validated using speech data outside the train­
ing data which will be discussed in the next section).
Decisions made from observing the crossing of this adaptive

threshold 'value- 'TD' are essentially independent (If the
signal dynamic range and type of speakers since the RMMV
is a speaker and speech dependent parameter.

In addition to the voiced/unvoiced classification
based on the value of D a preliminary test is carried
out on each segment of speech to classify the silence
based on the value of STE. For this a threshold STE level

‘TS’ is obtained from the background noise. If the STE
is less than this threshold, the segment is classified
as silent. The flow‘ chart of the detection algorithm
formed based on STZCR and STE is shown in Fig.4.7. The
initial value of T is determined by trial and error methodD

so that the first segment is classified correct.
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D
initialize TS. TD

compute STE

Y silence

No

compute STZCR. D

update TD

Y voiced

unvoiced

Fig. 1;] Flow chart of the v/uv detection algorithm based on STZCR and STE.
(The initial values of Ts and TD are experimentally obtained to be« -5
equal to 10 and 9 x 105 respectively)
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4.2.1 Simulation experiment and results

Two sets of speech samples are used in this simu­
lation experiment,——(i) for training the algorithm, and
(ii) for validating the algorithm.

The speech data used for training the algorithm
is of a sentence "An icy wind racked the beach" [N.S.Jayant,
private commn.] spoken by two speakers, a male and a
female. This is a 4 kHz band limited noise free signal
sampled at 8 kHz rate and quantized to l6 bits. The norma­
lized speech sequence is divided into 256 sample blocks
[total number of blocks = ll9]. These blocks are manually
classified into voiced, unvoiced and silent blocks by
plotting on a graphics VDU of the computer. The algorithm
is implemented on the PC using Turbo Pascal routines.
To compute the STZCR the number of zerocrossings in each
block of length 256 samples is found as 'zccount'. Now
the STZCR is computed using the formula

f x zccount
STZCR = round ( 256 )

where fs is the sampling rate.
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To find STE, the maximum amplitude value in the
speech material on test is found and the signal is norma­
lized. The variance of each block of length 256 Samples
of the normalized speech data is computed as STE.

Table 4.1 gives the computed values. of STZCR:
STE and D for few segments which are initially manually
classified jlflx) voiced—unvoiced znui silent segments. All
segments of the training sequence are correctly classified

150.by this detection algorithm when n = 12 and k
The validity of this algorithm is studied using a speech
data base outside the training sequence.

Several utterances spoken by a male and a female
speaker’ of duration 45 seconds are ‘used to create the
speech data base to validate the algorithm. They are
denoted by the letters Fl, M1 etc. as shown in the table
4.2. These sentences were chosen since they are phoneti­
calhg well balanced sentences. The speech waveform band
limited to 4 kHz and digitized using a 12 bit A/D converter
at a sampling rate of 8 kHz is stored in the data base.
Each CHE the utterances in Table 4.2 is divided into 256
sample blocks. Each of these blocks is assigned as voiced



106

Table 4.1 Computed values of STZCR, STE aumi D for voiced,
unvoiced and silent segments

Segment No. STZCR STE D
1 563 0.00969 5.81x104
2 2500 0.05011 5.00x104Voiced 43 1406 0.01457 9.65xlO
4 719 0.06408 1.12x104

1 4594 0.00031 1.5x107
2 4469 0.00024 1.89x107

Unvoiced 3 3844 0.00013 2.94x107
4 4500 0.00029 1.55x1o7

1 938 <10"5 4.47xlO8
2 1313 <10"5 4.75xlO8

Si1e”t 3 1531 <10'5 1.80x109
4 1250 <10‘5 2.10x109
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Table 4.2

Utterance Male Female
An icy wind racked the beach Ml F1
The pipe began to rust while new M2 F2
cats and dogs hate each the other M3 F3
Oak is strong and also gives shade M4 F4
Thieves who rob friends deserve jail M5 F5
Open the crate but do not break theglass M6 F6
Add the sum to the product of thesethree M7 F7
Joe brought a young girl M8 F8
A lathe is a big tool M9 F9



108

or unvoiced by -manual inspection of the waveform on the
VDU of the computer. V/UV detection is then carried
out using the algorithm and the results are compared with
that of manual classification. It is observed that among
the 1391 sample blocks, 38 sample blocks are wrongly classi—

fied. Therefore the measured total error probability
of the algorithm = x 100 = 2.73%.

To summarize, a simple time—domain algorithm

for \HqM;detection of speech is presented in this section.
The algorithm is aa simple threshold detection procedure.
An adaptive threshold is employed, as the algorithm takes
into account the dynamic range of the speech signal and
the type of speakers. This :hi turn reduces the «error
probability of this detection algorithm.

4.3 ALGORITHM BASED ON THE SECOND ORDER ATTRACTOR DIMENSION

AND SECOND ORDER KOLMOGOROV ENTROPY OF SPEECH SIGNALS

Recently much effort has been devoted to the
study of the chaotic or turbulent behaviour seen in physical
systems. There is a growing interest in the modelling
and explanation of apparently stochastic phenomena by
the deterministic mechanism: known. as strange attractors
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and deterministic chaos [H.Atmanspacher and H.Scheingraber,

1986], [R.H.T.Bates and A.R.Murch; 1987].

The dynamics of a system can be experimentally
studied by extracting two invariant parameters from the
experimental time series data [H.Atmanspacher and
H.Scheingraber, 1986]. They’ are: (1) {Hue dimension. of
the attractor cflf the system im1 phase space, and (2) The
K entropy which is connected with the evolution of the
system in phase space.

These invariants are» meant to be ‘temporal
invariants under constant boundary conditions. They may
change if some control parameter of the signal is varied.
Atmanspacher and Scheingraber [H.Atmanspacher and

H.Scheingraber, 1986] have reported a method to determine
these two invariants from the measurements of the time
series of 51 single variable of the system in the context
of 13m; study <xE dynamical instabilities ix: multimode CW

dye laser. The same method is extended to study the
nature of the attractor underlying the production of speech
signa1s.:h1 the following sections. Based CH1 the experi­
mental results a new distance measure is introduced for
voiced/unvoiced classification.



110

4.3.1 Estimation of dimensions and entropies from a
time series data

Consider a time series data sequence,

{X(n)} = [x(1), x(2),...,x(N)1 (4.2)

The extraction of the second order dimension and the
second order entropy from {X(n)} is possible using a
correlation integral [H.Atmanspacher and H.Scheingraber,
1986] which is defined as

N

l
C(r) = Lim N2 Z H(r—]Xi — Xjl) (4.3)

N-‘w i,j=l

where H is the Heaviside function, I-I(x) = O for x _<_ O

and H(x) == 1. for x :> O. The function.<3tr) counts the

number of pairs of points with a distance Ixi — Xjl smaller
than ‘r’. Therefore when the distance between all the
pairs of points is less than 'r' then C(r) = 1.

The method of estimating the second order attractor
dimension and the second order entropy using the correlation
integral (4.3) can be easily‘ realized, if VH9 construct
'd' additional data sets from tflue original time series
data sequence {X(n)} by introducing a time delay d At.
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For the uniformly sampled time series data; with sampling
period T: At = T. From the resulting data sets, 'd'
dimensional phase space cxum be constructed such that ‘d’
is greater than the dimension of the actual phase space.

If each data set contains (N+d) values spaced
by a time increment T; then the following data sets can
be obtained for various values of ‘d’,

x(1), x(2), . . . . . . . . . . . . ..X(N)

x(2), x(3), . . . . . . . . . . . . ..X(N+l)

i(d+1),x(a+2), . . . . . . . . . ..X(N+d)

This will yield N data vectors of the type;

X1 = [x(1) x(2) . . . . . . . . . . ..x(d+1)]T

x2 = [x(2) x(3) . . . . . . . . . . ..x(a+2)1T

xN = [X(N) X(N+l) . . . . . . . . ..X(N+d)]T

Or a vector set X1, X2,.....XN (4.4)
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Now, for each j we can take a point Xj from (4.4) and
determine the distance |xi — Xjl which is the usual Eucli­
dean norm. In this manner nae can determine the number

of pairs of points whose distance is smaller than a given
distance 'r”. Using this result we can directly compute
the~ correlation integral Cfirfi given km: (4.3). C(r) is
the basic quantity needed for the further determination
of the attractor.

The second order attractor dimension is defined
as;

D2 = Lim [log C(r)/log r] (4.5)I-90

When D2 is an integer the system is regular, and when it is fractal
the system is chaotic, while D -;d, the dimension of the constructed2

phase space, the system behaviour is stochastic.

Similar to the second order dimension D2, a second
order entropy K2 can be defined as

_ . . 1K2 — Lim Lim E log[Cd(r)/Cd+l(r)] (4.6)
r"*O,d‘*co

where the logarithms are to the base 2. Egg is the more
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sensitive parameter thanmD K = O characterises a regular2' 2
system and K2> 0, corresponds to a chaotic system while
K2-+¢n describes a completely stochastic system.

4.3.2 Simulation experiment

Turbo Pascal routines were implemented on a
3AT6 computer to compute C(r). Here too speech data blocks

of 256 samples that are manually classified into voiced/
unvoiced segments are used for simulation. Using the speech
data the correlation coefficients C(r) for several 'r'
with respect to each particular dimension ‘d’ is computed.
E‘ig.4.8 shows a log—log plot of C(r) vs. r. It may be
noted that with the increase in dimensions the slope at
the linear portions of these curves converge to a limiting
value. Fig.-4.9 shows the slope 'm' in the linear range
of the different curves vs. the dimension 'd‘. The limiting
value of the slope corresponds to the second order dimen­

sion D2 of the attractor.

Fig.4.l0 represents the plot showing mean value

of log[Cd(r)/Cd+1(r)] obtained from the linear range of
the curves ixa Fig.4.8, vs. ‘d9. The second order entropy

K2 is obtained as the product of the limiting value of
1O9[Cd(r)/C and (1/T). Now we can define a distanced+l(r)]
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Fig. 15.8 Log—Log plot of the correlation integral C(r) versus the
distance r for a speech segment.
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Fig. 14.9 The siope 'm' in the linear range of the different curves
(in Fig. 4.8 ) versus the dimension 'd'.
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Fig. l4.lO Mean vaiue of log [ Cd (r)/Cd” (r) ] as a function of d. obtained
from the linear range of the curves in Fig. 11.8
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measure known as the chaotic distance (DCH) as the product
of D2 and K2i.€.; D = D X K
Table 4.3 gives the values of the second order attractor

dimension D2, second order Kolmogorov entropy K2 and the
chaotic distance DCH for few segments of speech which are
manually classified into voiced and unvoiced segments. It
may be noted that there exists a large difference between

the values of DCH for voiced and unvoiced segment. There­
fore a decision threshold for DCH can be fixed for V/UV
classification by inspecting a large and, phonetically
balanced speech data base. For this the l5lO sample blocks
in the two sets of speech samples used in section 4.2.1
(idea, the training sequence and validating sequence) are
used. The values of I), I( and D for all the segments2 2 CH
are computed. A threshold Taxi is said txa be optimum if
the resulting detection procedure minimizes the number
of wrong classification. It is found that ndnimum number

of segments are wrongly classified when TCH = 27000. At
this threshold; the rnnmxmr of segments wrongly classified
was only 24; while the number was larger when the threshold
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Table 4.3

Segment No. D2 K2 DCH
1 6.10 2160 13176
2 5.03 1890 9507

Voiced 3 5.95 2010 11960
4 7.05 2350 16568
5 6.90 2270 15663

1 10.11 3752 37933
2 10.54 3870 40790

Unvoiced 3 9.65 3520 33968
4 11.32 3980 45054
5 10.68 3915 41812
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was either increased or decreased. Therefore the measured
24xlOO =1510 1.59%.total error probability of this algorithm =

In conclusion, for voiced/unvoiced classification
the time domain method of ‘measuring the newly proposed
distance measure can be efficiently used. The measured
accuracy of the former method is 97.22% while that of the
latter method is 98.41%. However the first method is
computationally simple and requires only lesser computation
time compared to the second.



Chapter 5

SELECTION OF ENCODER AND CLASSIFIER

5.1 INTRODUCTION

In chapter 3 we have introduced a new method
for estimating speech samples from their zerocrossings.
In chapter’ 4 we have presented two methods for voiced/
unvoiced classification. One of the methods was based
on the short time zerocrossing rate of speech signal. The
other method was based on two relatively new concepts in
theoretical physics—-attractor dimension and Kolmogorov
entropy. In this chapter we will evaluate the applicability
of zerocrossing information and the attractor dimension
and entropy for low bit rate coding based on the results
obtained in the previous chapters.

5.2 APPLICABILITY OF ZEROCROSSING INFORMATION FOR LOW

BIT RATE CODING

To use zerocrossing information for speech coding
is not a new idea. This is because the extraction of zero­
crossings is very easy and only simple digital circuits
are necessary for this. Many researchers have attempted
but not succeeded so far in this venture; to the best of

120
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our knowledge. The only result obtained favourably by
earlier researchers is the reconstruction of low frequency
noisy sinusoid from its composite zerocrossings by Kay
and Sudhakaru This Inethod is rmfl: suitable for speech
signals.

The method we have presented in chapter 3 for
reconstruction of speech signal from composite zerocrossings
is theoretically supported with a good deal of approxi­
mation. ID1 the reconstructed signal the shape of the ori­
ginal waveform is preserved, which is the essential chara—
cteristic of 51 waveform coder. However, the SNR obtained

for the reconstructed speech is poor compared to standard
PCM coding. But for higher number of bits for zerocrossing

quantization——8 bits and above the reconstructed
signal is of good quality. That is, we require an increased
number CHE bits for zerocrossing quantization for obtaining
reconstructed signal (Hf better quality. This means that
low bit rate coding of speech is not possible by the mere
use of zerocrossing informations.

However. the results of our study is useful for
improving time existing waveform coders. The zerocrossing
based sample reconstruction method developed and presented
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in earlier chapter can be used to design new types of low
complexity coders.

A different form of application of the zerocross~
ing information for speech coding is studied in chapter 4.
The main aim of this study was to explore the potentiality
of zerocrossing information for voiced/unvoiced classi­
fication. A simple time—domain algorithm that ‘utilizes
the zerocrossing informations for voiced/unvoiced detection
is developed and studied. This algorithm is ea simple
threshold detection procedure. An adaptive threshold that
takes into account the speaker dependency and the dynamic
range of speech signal is employed in this algorithm.

The voiced/unvoiced classification is very useful
in recognition and low bit rate coding. The voiced/unvoiced
classification algorithm developed in chapter 44 is used
to design an Adaptive Switching Transform Coder in chapter 7.

It is shown that the coder definitely improves the encoded
speech quality. Thus it is found that even though the
zerocrossing information is not directly useful for bit
rate reductiony it can. be used tn) improve the existing
waveform coders———both for reduced complexity and improved

quality.
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5.3 APPLICABILITY OF ATTRACTOR DIMENSION AND KOLMOGOROV

ENTROPY FOR LOW BIT RATE CODING

In chapter 4, we have studied the dynamical
instabilities and deterministic chaos with respect to speech
signal with the pmime aim txa utilize the results for low
bit rate coding. We have obtained the second order attractor
dimension D , second order Kolmogorov entropy K and the2 2
chaotic distance DCH for segments of speech; and found
that the values of DCH differ considerably for voiced and
unvoiced segments. This implies that we can conduct voiced/

unvoiced classification by extracting the parameter DCH
from the signal. And this knowledge can be used to improve
the quality of existing waveform coders as <discussed in
section 5.2. This method can also be utilized for extracting
invariant parameters that help recognition: but is beyond
the purpose of the present work.



Chapter 6

MODIFIED ADAPTIVE TRANSFORM CODER

6.1 INTRODUCTION

Transform coding is a ‘frequency domain‘ approach

like sub—band coding. The efficiency of a transform coding
system vnJJ_ depend CH1 the type <xf linear transform used
and the nature of bit allocation for quantizing the trans­
form coefficients. Most practical systems are based on
sub-optimal approaches for transform operation as well
as bit allocation. To achieve coding efficiency the trans­
form is chosen so that it decorrelates the input samples.
And also more bits are assigned to more important transform
coefficients and fewer bits to less important coefficients.
This is the basic idea in Adaptive Transform Coding.

A number of transformations can be used in trans­

form coding, such as Fourier Transform, Karhunen~Loeve
Transform (KLT), Discrete Cosine Transform (DCT), Discrete

Walsh—Hadamard Transform (DWHT) and others. KLT is an

optimal transform but the difficulties in determining the
statistical behaviour of speech makes it impractical.
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DCT is 2: sub~optimal transform zhi the sense that ii; is
asymptotically equivalent to KLT and is not a data dependent
transform. DWHT is simple to implement because it requires
only additions and subtractions.

In this chapter a modified adaptive transform
coding scheme is studied. Performance of the coder by
using both DCT and DWHT are evaluated.

The chapter starts vfiifir the description <xf DCT
and DWHT, followed by 1flua evaluation cxf the ‘theoretical
transform coding gain. The proposed modifications on the
adaptive transform coding scheme is presented next. Finally,
simulation results. are given which shows that time coder
achieves better performance due to these modifications.

6.2 DISCRETE COSINE TRANSFORM

The DCT of a data sequence {X(m)}, m = O,l,2,..,N-l
and its inverse are defined as

N-1

YC(k) =  2 W  [.<.2m.J2:..11g.k_=w],
m=0

k=0;l:2:...:N-1
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and
N

x(m) = )3 C(k)YC(k) cosr(2"‘+1)k"Jk
L‘ 2N

m = O]1y2(...;N—1

respectively where

1//2 for k H O

1, for k 1,2,...,N-1

YC(k), k = 0,l,2,...,N~l is the DCT sequence.

The set of basis:functions

1//2, cos[(2m+1)kn/2N] is a class of discrete
Chebyshev polynomials.

The DCT was originally proposed in [N.Ahmed,
T.Natarajan and KgR.Rao, 1974]. For any finite transform
size the DCT is always closer to the optimal KLT [M.Hamidi

and J.Pearl, 1976]. Various algorithms have been proposed
for the computation of DCT [N.Ahmed, T.Natarajan and K.R.Rao,

1974], [R.M.Hara1ick, 1976], [W.H.Chen, C.H.Smith and
S.C.Fralick, 1977], [M.J.Narasimha and A.M.Peterson, 1978],

[J.Makhoul, 1980]. In this work we implement the DCT opera­

tion by the algorithm proposed by N.Ahmed, T.Natarajan
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and K.R.Rao, since it enables a direct utilization of
available FFT routines. Essentially, the N—dimensional
data block is extended to a 2N block by either appending
N zeros to it or by concatenating the original block with
its mirror image. Then, a 2N DPT is performed on the
extended block and the DCT coefficients are extracted from

the first N components of the 2N transform block.

The DCT has been extensively used in image and
speech transform coding systems because of its effectiveness
in removing the correlation from highly correlated sources.
In conventional transform coding systems the decorrelation
process is the only task of the DCT and the efficiency
of the coder is directly proportional to the degree of
decorrelation, measured by the transform gain [N.S.Jayant
and P.Noll, 1984, chap.l2].

6.3 DISCRETE WALSH—HADAMARD TRANSFORM

The Walsh functions, named after J.L.Walsh, who
introduced them in 1923, are the basis functions for the
Walsh—Hadamard transform (WHT). They form a complete ortho­

gonal set over a unit interval and can be developed from
the Rademacher functions [D.F.Ei1liott and K.R.Rao, 1982].
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Because tflua Walsh functions are tdnary valued (il), their
generation EHK3 implementation zhs simple. Fast algorithms
have been developed based cni sparse: matrix factoring of
(WHT) matrices [Y.Tadokoro and T.Higuchi, 1979], [C.K.Yuen,

1975]. These algorithms, however, require cuflgr addition
(subtraction), as compared to the complex arithmetic opera­

tions (multiplication and/or addition) required for the
FFT. Uniform sampling of the Walsh function of any order­
ing results in the Walsh—Hadamard matrices of corresponding

order. The rows of these matrices represent the Walsh
functions in a unique manner. These matrices can be gene­
rated using the following recurrence relation:

Hh(k—l) H (k—1)

I-Ih(k) =

LHh(k—1) —[-1h(k—1)J , k=1,2,...,L

where Hh(0) = 1 and L = 1og2N.

For example, with k = 1, and k = 2 this yields1" ­1 1 1 1 1 1
H 1 = H (2) = l -1 1 -1hm l_l,h 1 1 -1 -1

1 -1 -1 1
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Let x == [X(O),X(l);...,X(N—l)] denote an
N—periodic data sequence of finite valued real numbers.
The discrete Walsh—Hadamard transform and its inverse,
respectively; can be defined as

Yw = (1/N)[Hh(L)] x and X = [Hh(L)]Yw

where the transform sequence is denoted as

Y: = [yw(o), yw(1), yw(2),..., Yw(N-1)]

The transform component Yw(m) represents the amplitude
of Walw(m,t) ix: a Walsh function series expansion for 1L
The first component Yw(O) is the average or mean of X,
and the succeeding components represent Walsh functions
of increasing sequence.

6.4 TRANSFORM CODING GAIN

The transform coding gain (G ) indicates theTC

objective improvement achieved by the transform in reducing
the number cfif coefficients required 133 completely specify
the» signal being’ transformed. The 'transforn1 coding «gain

GTC: Vfluni the transform coefficients Y(kJ, lc = 1,2,3,...,N
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are quantized independently is defined as [R.Zelinski and
P.Noll, 1977]

GTC = 1/N (6‘1)
2 . .where Y 1S the variance.

We have computed the G of Cosine and Walsh­TC

Hadamard transforms using the real speech data mentioned
in section 4.2.1. [The data base contains a male and female
utterance "An icy wind racked the beach". This is a
4 kHz band.limited noise free signal sampled at 8 kHz rate
and quantized to 16 bits]. Figs.6.1(a—e) shows a comparative

plot for theoretical GT for different data block lengthC

for both the transforms. It may be noted that the theoreti­

cal gain GTC differs for different sounds. Most of the
time the GTC for DCT is better than that for DWHT. Few
instants are noted for which the Walsh—Hadamard transform

gives better GTC than cosine transform.

6.5 ADAPTIVE TRANSFORM CODING (ATC)

The basic block schematic diagram of the Adaptive
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Transform Coder (ATC) proposed by Zelinski and N011 [1979]

is shown in IFig.6.2. The input speech is lmaffered into
successive blocks of :size bl = 128-256 each. This input
block {X(n)} is transformed imnxa {Y(n)}. The transformed
coefficients Y(n) are then adaptively quantized and trans­
mitted to the receiver At the receiver they are decoded
and inverse transformed into blocks {§(n)}. These blocks
are then used to synthesize the output speech signal by
a concatenation of the blocks.

A major concern in designing a good ATC coder is
the adaptation of the bit allocation and the quantizer step­
size to the changing statistics; of the transform coeffi­
cients. It is well-known that the distribution of the trans­
form coefficient variances is a crucial factor in determin­
ing the transform gain and hence, the coder’ performance.
The potential transform gain can only’ be realized. if an
accurate description of the variance distribution is avail­
able to both the transmitter and the receiver. This however,

requires a significant amount of side—information whose
information rate depends on how well the variance patterns
are coded. To reduce the side information rate, the designers
of conventional ATC's have usually chosen to transmit only
a rather crude description of the variance patterns, thereby
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losing the fine structure of the variance spectrum‘ and,
inevitably, a good part of the transform gain [Yair Shoham,
1985].

Various techniques have been tried in order to
efficiently code the spectral side information [R.E.Crochiere
and 1J.M.Tribolet, 1979], [J.M.Tribolet emua R.E. Crochiere;
1980], [R.Zelinski and P.Noll, 1977], [R.Zelinski and P.Noll,
1979], and [R.V.Cox and R.E.Crochiere, 1981]. In all these
schemes the total number of bits for each frame is the same,
but the distribution of the bits to the transform coeffi­
cients changes from frame to frame according to the changing
speech statistics. If R is the number of the total avail­
able bits tx> be distributed to the transform coefficients,
then tflua best bit assignment rule is given by the equation
[J.Huang and P.Schuitheiss, 1963],

N-1R 1 A2 1 A2
R(n) = g + 5 [lO92Y (n) ~ E 5 1092(Y (n})]

n=O

bits/sample (6.2)

where §(n) iii the estimated variance cu? the kth transform
coefficient. An estimate cm? the transform coefficient is
transmitted as "side information" which is used by the trans­
mitter and receiver for step—size adaptation and bit allo­
cation.



6.5.1 Spectral Parameterization

Since speech is a quasi-stationary process the
spectral variance are not known apriori and must therefore,
be estimated, encoded, and transmitted to the receiver.
This information about the spectral variance is often referred
to as "side information".

One of the basic adaptation techniques for transform
coding of speech proposed by Zelinski and Noll [1977] is
illustrated if} Fig.6.3. The spectrum cnf the speech signal
is represented by a reduced set of (typically 16 to 24)
equally spaced samples of the spectral estimate. These
samples are computmd by a local averaging of the logarithm
of the square of N/L coefficients around 51 sample coeffi­
cient (The variable I. represents tine number cxf transform
coefficients we would like to transmit as "side information").
The sample values are quantized and encoded for transmission

to the receiver‘ as side information. These quantities
represent the estimate of some of the Y(k). The rest of
the Y(k) are computed from these values by interpolation,
as shown in Fig.6.3(c). They are also decoded and used
in the transmitter so that the step—size and bit allocation
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computation is ‘exactly duplicated in the transmitter‘ and
receiver. The encoding of the side information requires
approximately 2 kbits/s.

This simple algorithm has been referred to as
"non-speech specific" since it does not take into account
the dynamical properties of speech production. This adapt­
ation technique is however quite appropriate for speech
transmission at or above 16 kbits/s, since there are enough
bits to allow accurate representation of the fine structure
of the spectrum. But it becomes increasingly more difficult
to accurately encode the fine structure at rates below
16 kbits/s. Therefore the signal is degraded with distort­
ion at these bit rates.

J.M.Tribolet and R.E.Crochiere [1978] proposed
a more appropriate algorithm for lower bit rates. This is
a more complex, "speech specific" adaptation algorithm which
utilizes the traditional model of speech production to
predict the spectral coefficients. This algorithm is based
on eni all pole model of the flnment structure of speech and
a pitch model to represent the fine structure (pitch stria­
tion) irl the speech spectrum. The resulting algorithm is
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referred to ans a. "vocoder—driven" adaptation strategy' due
to the close relationship of this spectral estimate to a
vocoder model. A similar technique is txa extract a homo­
morphic representathmi of the spectrum, extract the pitch,
and then, synthesize an estimate for the spectrum [R.V.Cox
and R.E.Crochiere, 1981].

These complex "speech specific" techniques have
been shown to improve the ATC performance at bit rates from
9.6 tx> 16 kbdts/s. However, the spectral estimates some­
times poorly represent the original spectrum due to inadequate
formant tracking and pitch estimation.

Another major drawback of this speech specific
ATC is its high computational complexity. In the present
work our aim is to improve the simple algorithm proposed
by’ Zelinski and bkflj. without introducing rmnfli complexity.
The remaining part of this chapter concentrates on this
point.

6.5.2 Description of the Proposed Modification
A. Maximum amplitude of the transform coefficient as a

side information

In the side information extraction process, the
estimated coefficients are obtained by locally averaging
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the logarithms of the square of the transform coefficients.
The remaining coefficients are obtained by linear interpola­
tion. This will give only an approximation about the spectral
envelope. The linear smoothing is used based on the assumpt­
ion that speech spectrum 'varies slowly. But often this
is not true» Some of the speech transform coefficients
may be very much predominant compared to its neighbours
as illustrated ix: Fig.6.4- (Fig.6.4 is aa DCT spectrum cxf
a speech segment of length 256). When locally' averaged,
the identity of such coefficients is lost and they are never
faithfully recovered. at the receiver. This causes error
in step size computation in both transmitter and receiver.
This causes deterioration in the ATC performance.

As a solution to this problem the maximum amplitude
of the transform coefficient is also considered as a side
informatbmi. The step size is computed using this maximum
amplitude both in transmitter and receiver. The steps
involved in this modified scheme is as follows.

1. The logarithm of the square» of ‘transform coefficients
is computed, and they are grouped in sets of N/L and
averaged together. (L is the number of side information
coefficients).
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2. The rest of the coefficients are estimated by linear
interpolation as in Fig.6.3(c).

3. Using equation (6.2) the number cfif bits.iavailable for
quantization of each coefficient are computed.

4. The maximum value of the number of bits assigned is
obtained as b .max

5. The maximum value of transform coefficients is obtained
as Y .max

6. Step size is computed as Z38 - max
2 max

(One bit used for sign information is subtracted from bmax).

This modified scheme enables recovery of the transform coeffi­
cients with higher* power valuesq more accurately. Along
with the ‘L’ averaged coefficients, the maximum amplitude
coefficient is also transmitted to the receiver as ‘side
information‘ so that in the receiver, the step size comput­
ation is exactly duplicated as in the transmitter.
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B. Modified bit assignment

The optimum bit assignment scheme is given by the
equation (6.2) as

N—lR 1 A2 1 A2 .
R(n) = E + 5 [log2 Y (n) — E Z log2 Y (n)] (bits/sample)

n=OA2 . . th .and Y (n) are the bits assigned to n coeffi­where R(n), %,
cient, the average bits available per sample and the estimated
and quantized variance of the nth transform coefficient
respectively. Generally the computed value of R(n) is not
an integer. Also some <xE the R(n)'s (xvi be negative. It
is meaningless that the bits assigned is noninteger and
negative. ‘Various sub—optimal solutions txa this problem
have been studied by S.Krishnan and K.K.Paliwal [l987].
The bit assignment with ‘largest variance first‘ is reported
to provide better SNR performance in their study. However
this method require involved computation. A computationally
simple and efficient bit reassignment method is proposed
here. Firstly, if the number of bits assigned to a coeffi­
cient is less than zero, then ii: is reassigned ans zero.
If only one bit is available for a coefficient, that coeffi­
cient: is not coded and transmitted since ix; will encode
only the sign information. Such bits are reassigned one
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in time lower frequency”band.

The steps involved in this scheme may be written mathemati­
cally as follows.

6.6

If R(n) < 0, then R(n)r = O: (1 S n 3 N)

If 0 < R(n) 3 1 then R(n)r = 0 and
N

bit balance = X R(i),(R(i) = 0 if R(i) > 1).
i=1

R(n)r == R(n) -+ l for (l :3 n 5 bitbalance). Here R(n)r
and bitbalance are respectively the reassigned bits and
the sum of bits that falls between 0 and 1.

EXPERIMENTAL RESULTS

This section describes 21 computer simulation study
of the ATC coder described in the previous section.

The coders simulated are of the following types.

Type 1: ATC coder proposed by Zelinski and N011, without
bit reassignment.

Type 2: ATC coder proposed by Zelinski and Noll, with modi­
fied bit reassignment.
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Type 3: Type ]. modified tnr 'maxhmmn amplitude coefficient
as side information‘.

Type 4: Type 3 with modified bit reassignment.

All the four types are simulated and studied with
different data block length (64, 128 and 256) and different
bit rates (8, 9.6. 12, lib 2&4, 32 kbits/s). Both DCT and
DWHT are used in the simulation.

All the simulation programs are developed in Turbo
Pascal and implemented on an IBM PC/AT. The coder performance
are measured in terms of SNR value.

6.6.1 Comparison of the coder performance

The speech signal is characterized by its time
varying nature. To take into account this fact, the perform­
ance of a coding system is measured in terms of segmental
SNR which is denoted as SEGSNR. To compute the SEGSNR we

divide the speech signal into segments of 64-256 sample
length, and compute the SNR(m) dB where m = l,2,...,M for
each block of a particular block length. Then the segmental
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SNR is defined by

SEGSNR = % Z} SNR(m) dB.
I!

l---‘m

Fig.6.5(a) and (b) represent the» SEGSNR of the
four types of ATC coders simulated with data segment length
of 256 samples each vs. bit rate for two speakers, a male
and a female (mentioned in section 4.2.1). It may be noted
that type 11 gives better performance compared tn) the other
three. In the SEGSNR sense, the DCT based ATC is far super­
ior compared to DWHT based one. There is a slight difference
in performance for the two speakers (male and female).

Fig.6.6(a) and (b) give a comparison of the SEGSNR
of the coder type 4 for different data block length (64,
128 and 256) vs. bit rate. When DCT is used, the 128 segment
length gives better performance compared to 256 and 64 seg—

ment sizes. When DWHT is used, 64 segment size performs
better compared to tflma other two. The SEGSNR obtained at
16 kbits/s using DCT was 14.42 dB for male speech and
17.8 dB for female speech at 128 segment length.
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Figs.6.7, 6.8, 6.9 enni 6.10 present the variation
of the signal to noise ratio from segment to segment obtained
by the ATC coder of type 1, 2, 3 and 4 respectively over
a bit zxnxa of 8, 16 and 32 kbits/s (simulation was carried
out at tfii; rates 9.6, 12 znui 24 kbits/s also) respectively
for a frame of speech containing 58 consecutive~ segments

of 256 samples each at 8 kHz sampling frequency. The conti­
nuous line represents the performance of the coder simulated
using DCT and the broken line that using DWHT. At 32 kbits/s
bit rate the SNR cflflxfir AW: is much better than DWHT ATC,

for almost all the segments, for the four types of coders.
For some segments the SNR of DCT ATC falls considerably;
especially when the coder is designed for bit rates below
16 kbits/s. These segments are identified as unvoiced seg­
ments. (Fig.6.ll (a) and (b) represents the waveform of
two such segments, segment 13 and 14). It. may kxe noted
that efir lower bit rates the DWHT ATC gives better SNR for
these segments of speech. .Amomg the four types of coders
the type 4 performs better even at a bit rate of 8 kbits/s.
Figs.6.12, 6.13 and 6.14 illustrate the comparison of the
coded voiced ‘waveform. using’ DCT‘ ATC and DWHT .ATC, while

Figs.6.l5, 6.16 and 6.17 illustrate the comparison of the
coded unvoiced waveform "using DCT .ATC euui DWH1‘ ATC (both

for the type 4 coder) at a bit rate of 8 kbits/S.
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The main conclusion from these experiments is that
the incorporation of the maximum amplitude transform coeffi­

cient as the side information and the modified bit reassign­
ment method into an ATC scheme helps to achieve a better
performance due ix) more efficient quantizathmi of the side
information and the data.

To summarize, this chapter presents the design
method of a modified Adaptive Transform Coder. The results
of ea computer simulation study (M3 the modified coder with
DWHT and DCT applied to coding of speech waveforms are pre­

sented. Experimental results show that, the modified coder
performs better significantly even at a bit rate of 8 kbits/s.
Further ii; is seen that the DWHT will give better SNR for
unvoiced speech segments than ‘DCT. Based <m1 this :result
an adaptive switching of transform is used for better speech
quality which is discussed in the next chapter.

As a final remark, we have not tried to subjectively
improve the performance of the coder by known techniques
like block overlapping, noise shaping, post filtering etc.
The main focus of this study was on the effectiveness of
the proposed modifications as measured by a simple objective
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criterion like the SNR. Those techniques may be added to
the proposed system to improve the subjective quality of
the coded speech.



Chapter 7

ADAPTIVE SWITCHING TRANSFORM CODER

7.1 INTRODUCTION

In the previous chapter we discussed a relatively
simple modification of time ATC scheme proposed by Zelinski

and Noll. This chapter is devoted to a more sophisticated
coding scheme in which the V/UV notion is used in combination

with the earlier coding scheme to enhance the already esta­
blished waveform coding method.

The modified coder‘ in the previous chapter“was
studied using DCT and DWHT. fmue SNR of DWHT ATC was very

much lower than DCT ATC for voiced speech. But for unvoiced

speech the SNR of DCT ATC falls below that of DWI-IT ATC:

especially when the coder was designed for a bit rate below
16 kbits/s. ‘Therefore better’ speech. quality 515 possible
by way of an adaptive switching of transforms by performing
V/UV tests on speech segments. These techniques have shown
improvements in the ATC performance at bit rates ranging
from 8 to 16 kbits/s.

The chapter starts with a general description
of the coder's main building blocks: the transform used
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and the V/UV decision algorithm. Finally simulation results
are given for E3 to 32 kbits/s coders, which show that the
proposed coder indeed performs better than the conventional
ATC systems.

7.2 DESCRIPTION OF THE ASTC CODER

The basic block diagram of the Adaptive Switching

Transform Coder (ASTC) is shown in Fig.7.l. The input speech

is segmented into successive blocks of size K = 256 data
each. These blocks are stored in the buffer. The processor
first computes the short time zerocrossing rate (STZCR)
and short time energy (STE) of each input block X and deter—

mines whether the region is a voiced or an unvoiced segment.
If voiced, the input block X undergoes a discrete cosine
transform (DCT), which results zhn the» corresponding lolock
Y in the DCT domain. And if the input block is an unvoiced
segment, then it undergoes a discrete Walsh-Hadamard transform

(DWHT). .At the next stage, the Maxamp detector finds the
maximum amplitude of tflma transform coefficients. Maximum
amplitude of the transform coefficient and DCT/DWHT decision

are transmitted as side information together with the spectral
information. The kfllz assignment and step size computation
are performed as «discussed in chapter 6. The quantized
and encoded block /3‘? at the Quantizer output and the side
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information are multiplexed and transmitted to the channel.
At the receiver this is demultiplexed and decoded into

AThe decoder output is then inverse transformed to get X,
the final output block.

7.2.1 Selection of transforms

The selection of transforms for the coder is
based on the results of the previous chapter. The modified
ATC coder in chapter 6 gives better SNR performance for
voiced speech when EKHT is used. For unvoiced speech DWHT

gave better SNR performance at bit rates below 16 kbits/s.
Our aim in designing the present coder is to improve the
speech quality at lower bit rates——i.e., below 16 kbits/s.
The experimental results of the previous chapter point that
DCT and DWHT are suitable to serve this purpose. The descri­

ption of DCT and DWHT are given in sections 6.2 and 6.3
respectively.

7.2.2 Voiced/unvoiced classifier

In chapter 4, VH3 have presented two methods for

voiced/unvoiced classification. The first ‘one, based on
the short-time zerocrossing rate and short time energy of
speech signal, is used here. The flow chart of the voiced/
unvoiced classification algorithm used in the ASTC is shown
in Fig.7.2.
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INITIALIZATION
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Y voiced

N
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Fig. 7.2 Flow chart of the V/UV classification algorithm
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The working of this algorithm is very simple
and can be explained as follows. In the 'INITIALIZATION'
process the algorithm chooses the initial values of the
silence threshold TS and the V/UV decision threshold TD.
(The initial values of TS and T are experimentally obtainedD

to be equal to 10-5 and 9x105 respectively for the present
data base). The block length is selected as N = 256.

Normalized speech data is segmented to consecutive

blocks of 256 samples each. The processor first computes
the short time energy CHE each segment and compares it with

the silence threshold Ts. If the STE is less than TS, then
the segment is classified ens silent segment. If STE is
greater than Ts, then the short time zerocrossing rate is
computed and hence the corresponding value of D is obtained.

The processor then updates the threshold value TD as 150 times
the recent most minimum value (RMMV) of D. i.e.,TD==15o;;RMMV.

If the D value for a particular segment exceeds TD; then
the segment is classified as unvoiced and otherwise as voiced.

7.3 THE DESIGN PROCEDURE FOR THE ADAPTIVE SWITCHING

TRANSFORM CODING ALGORITHM

The complete design procedure for tfima adaptive
switching transform coding (ASTC) algorithm can be summarized
as follows.
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l. Classify the given segment into voiced/unvoiced
silent segment.

2. If the segment is voiced, select the DCT.

3. If the segment is unvoiced, select the DWHT.

4. If the segment is silent then no transform.

5. Perform the Modified Adaptive Transform Coding

(MATC) .

For perfect decoding of the transmitted data at
the receiver, the voiced/unvoiced/silent decision information
is also considered as ‘side information‘. The flow chart
of the ASTC design algorithm is shown in Fig.7.3.

7.4 EXPERIMENTAL RESULTS

This section describes the results of computer
simulation of the .ASTC coder developed in ‘the jprevious
sections.

The ‘ASTC coder shown in Fig.7.l is simulated on
ea 3AT6 computer with Turbo Pascal routines (the implement­
ation details are discussed in section 7.2). Performance
of the coder was evaluated using the two sets of speech
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Fig. 7-3 Flow chart of the ASTC design algorithm
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data base used in section 4.2.1. The total duration of
this speech material is about 49 seconds. The speech material
consisted of phonetically balanced sentences spoken by a
male and a female speaker.

The coder is designed at six different bit rates.
8, 9.6, 12, 16, 24 and 32 kbits/s. The measured performance
criteria are the SNR and the segmental SNR (SEGSNR) as defined

in chapter 2 with segment size of 256 samples. Both the
SNR and the SEGSNR are measured in the time domain, by cal­

culating the distortion between the original and the coded
speech segments.

Tables 7.1 and 7.2 present the SNR results for
unvoiced segments, obtained using DCT based MATC and ASTC

coders respectively. It may Ina noted that time SNR values
of the unvoiced segments are increased tar values ranging
from 1.10 dB to 7.85 dB for the ASTC coder -with respect
to the MATC coder at E1 bit rate of 8 kbits/s. The SEGSNR
results for all the speech material of 49 seconds duration;
using the two coders MATC and ASTC are summarized in Table
7.3. About 0.7 dB increase in SEGSNR is noted at bit rate
ranging from 8 133 16 kbits/s. The time dependence of the
SNR values of the ASTC coder at 9.6 kbits/s is shown in
Fig.7.4u The dotted line represents tflua SNR performance
of the MATC coder.
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Table 7.1 The SNR dB obtained for some UV segments using
MATC coder for different bit rates

Unvoiced Bit ratesegment in 8 9.6 12 16 24 32No. kbits/s

1 0.4 0.4 0.53 2.14 5.37 6.91
2 2.31 2.31 2.38 2.51 4.95 11.03
3 E; 0.77 1.63 2.88 3.85 7.80 13.74
4 :3 O O 1.46 7.05 8.65 11.46
5 E 1 59 2.78 3.86 4.80 7.81 12.95
6 4.53 6.16 7.62 7.62 9.04 14.55
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Table 7.2 The SNR dB obtained for the same UV segments (table 7.1)
using ASTC coder for different bit rates

Unvoiced Bit ratesegment in 8 9.6 12 16 24 32No. kbits/s

1 8.25 9.30 11.15 9.76 12.39 16.30
2 7.36 8.28 8.88 9.67 11.27 12.08
3 ,3 8.06 8.41 10.56 10.65 10.97 15.77

CD4 IS 7.72 8.50 7.90 8.65 11.41 12.61
5 g 5.45 6.07 6.96 8.69 10.41 11.216 5.63 6.80 8.44 11.94 14.51 16.70
7 6.14 10.20 11.73 9.88 14.52 16.05



Table 7.3 Segmental — SNR in dB for MATC and ASTC coders
at different bit rates

Coder Bit ratetype in 8 9.6 12 16 24 32
kbits/s

3-EMATC ~« 9.24 10.59 12.34 14.28 17.83 22.31

ASTC 9.95 11.38 13.10 14.96 18.21 22.59
SEGSNR
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Fig. 7.”: Time dependence of the SNR values of the ASTC coder at 9.6 kbits/s
(dotted line represents the SNR perforhwance of the MATC coder).
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The perceptual quality of the coded speech at
9.6 kbits/s encoding rate using MATC and ASTC is examined
and compared by subjective listening tests. This is carried
out with sixteen listeners. The nine sentences, each spoken
by a male and a female, given in table 4.2, are examined.

The original speech, MATC coded speech. and ASTC

coded speech are presented to the listeners in that order.
The test was blind for the listeners, as they did not know
whether the material was MATC coded speech or ASTC coded

speech. They are asked to evaluate the quality of the coded
speech by comparing with the original on the basis of its
clarity, crispness, hoarseness and warbling effect. They
are also asked to give their preference in comparing the
MATC coded speech with the ASTC coded speech.

To obtain the Mean Opinion Score (MOS), the listeners

are asked to rate both the coded speech on an absolute scale,
ranging between 1 and 5 by comparing with the original.
The meaning of these grades are

5. excellent

4. good
3. fair
2. poor
1. bad.
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The MOS rated for _the MATC coded speech was 4.38

while that for ASTC coded speech was 4.62. Thus the
9.6 kbits/s coded speech using both the coders sounds very

close» to toll quality. All. the ‘listeners preferred the
ASTC coded speech over the MATC coded speech. This is also

indicated by the higher value of MOS rated for the ASTC
coded speech.

The results (Hi this simulation experiment indicate
that an improvement in performance can be obtained by using
the simple V/UV classifier and thereby adaptively switching
for DCT and DWHT. Of course, this performance can be further

improved by using a more complex classifier which would
observe other parameters in addition to STZCR and STE. This
approach could be extended to the point where a different
transform is used for each acoustic class of speech sounds:
fricativesv nasals, plossives, etc. But this vdjj. surely
enhance the coder complexity in a considerable dimension.
The development of such a classifier would be of interest
to speech recognition research and its beyond tine purpose
of the present work.

To summarize, the use of the adaptive switching
transform coder, based on a simple V/UV classification
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algorithm gives a notable improvement in performance at
the expense of a moderate increase in -coder complexity.
The focus of this study is on the effectiveness of the ASTC
coder as measured by the objective criterion like the signal
to noise ratio. Therefore, we avoided using techniques
which. might prevent accurate determination of tflue contri­
bution of the ASTC coder alone. Such techniques like block
overlapping, noise shaping, post—filtering etc. may be added
to the ASTC system to improve the subjective quality of
the coded speech.



Chapter 8

CONC LUS IONS

In this work, we have introduced a new technique
for estimating speech samples from their zerocrossings.
This technique is particularly useful for designing low
complexity digital communication systems. The conventional
A/D converter circuitry for digitizing the analog speech
signal can be replaced with simple digital circuits. This
will enable the reduction of the cost of digital communication
systems.

In addition txb the use of zerocrossing information
for speech sample estimation, we have studied its use for
speech signal classification. A simple time domain algorithm
that uses a distance measure based on zerocrossing rate
and energy is developed. A nice feature of this algorithm
is that it takes into account the dynamic range and speaker
dependency of speech signal. This algorithm is used to
design an enhanced Adaptive Transform Coder in this thesis.

The investigations cu: the attractor dimension and
entropy of speech signal also provided another new method
for speech signal cflassification. The knowledge about the

182
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attractor dimension and entropy can be utilized in recog­
nition purpose. It is proposed to carry on further research
with the intent of finding efficient set of these features
for speech recognition. It is also of interest to investi­
gate their use in other pattern recognition areas.

The new coding scheme, Adaptive Switching Transform

Coder presented in chapter 7 is the result of the investi­
gations to improve the performance of conventional Adaptive
Transform Coding systems. This scheme uses the Discrete
Cosine Transform to encode voiced speech and Discrete Walsh­

Hadamard Transform for unvoiced speech. A notable improve­
ment in the performance on the conventional Adaptive Trans—

form Coding system is achieved in this work. An increase
in SNR value ranging from 1.10 dB to 7.85 dB is obtained
for unvoiced speech segments. This enables a reduction
in the tonal distortion present ill conventional Adaptive
Transform Coding systems at bit rates below 16 kbits/s.
This system performs well even at 8 kbits/s. In this coder
the improvement in SNR is obtained by using the simple voiced

unvoiced classifier developed in chapter 4 and thereby
adaptively switching between Discrete Cosine Transform and
Discreter Walsh—Hadamard Transfornu Further research ‘work

may be conducted to improve this performance~ by ‘using a
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more complex classifier which would observe other parameters

in addition to the short-time zerocrossing rate and short
time energy of speech signal. Different transforms can
be used for each acoustic class of speech sounds. The
development of the above mentioned classifier would be of
interest to speech recognition research also.
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APPENDIX I

PASCAL PROGRAMS DEVELOPED

Zerocrossing detection routines

TIF implementation

SNR (dB) computation

FFT computation

Histogram plotting

Signal plotting
FFT plotting

Gaussian noise generation

Chi—square test

Second order attractor dimension and entropy

computation

STZCR and STE computation and V/UV classification

DCT (using 2N point FFT) computation

DWHT computation

ATC implementation

ASTC implementation
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Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

APPENDIX II

Speech waveforms of the utterances in Table 4.2
(a) (b)— male, female)

An icy wind racked the beach

The pipe began to rust while new

Cats and dogs hate each the other

Oak is strong and also gives shade

Thieves who rob friends deserve jail

Open the crate but do not break the glass

Add the sum to the product of these three

Joe brought a young girl

A lathe is a big tool.
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