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ABSTRACT

Median Filtering: Structure, Analysis and Application

Median filtering is a simple digital non—linear signal
smoothing operation in which median of the samples in a sliding
window replaces the sample at the middle of the window. The
resulting filtered sequence tends to follow polynomial
trends in the original sample sequence. Median filter preserves
signal edges while filtering out impulses. Due to this property,
median filtering is finding applications in many areas of image
and speech processing. Though median filtering is simple to
realise digitally, its properties are not easily analysed with
standard analysis techniques,

In this thesis. a new method of characterising Median
filters through a matrix operator is introduced. From this a new
parameter ‘column sum‘ which gives several features of the signal
is extracted The column sum distribution leads to a tree
structure from which root paths and state diagrams are evaluated.
Theory is developed to get the exact number of passes to reach a
root sequence for any given sample sequence.

In addition, two new filters, Fast Convergence Median Filter
Interpolation Median Filter are introduced. These two filters are
applied in image processing and the results are presented.
Theoretical analysis of Median filter on deterministic signals
is carried out in frequency domain.

The median filter realisation in terms of minimum hardware
(’ror on-line processing is described. In addition, a VLSI



design structure with unit delay is presented» Median filtering
is applied in the area of constant false alarm processor, image
processing and speech processing and the results are discussedu

In ‘conclusion the median matrix and column sum enable one
to extract several interesting properties. FCMF and IMF are very
useful in on—line image processing and feature extraction. The
ranked operation filter design and its application to underwater

._ .

Jtarget detection is a very useful algorithm.



Chapter —.I

INTRODUCTION

One of the objectives in digital signal processing is to
design a device or an algorithm to process a sequence of numbers
so that the resulting sequence has certain prescribed properties
The device or algorithm is called a digital filter. A digital
filter can be classified as linear or nonlinear_ Linear filter
has many properties which simplify the analysis of the same
This has allowed a rich theory for design and implementation of

linear filters to be developed An operator @(J is said to be
linear if (D{a X + b Y) = a. Q (X) + b, d)(Y) for any real
numbers a and b and inputs X and Y.

Exploiting the superposition property has led to the
development of many mathematical tools which simplify the design

and analysis of linear filters. For instance a linear system can
be represented as the convolution of the input signal with the
impulse response of the system. A linear filter representation
can be transformed from one domain to another domain that is,
time domain to frequency domain or vice-versa. Fourier transform
techniques are effective for designing filters when the wanted
signal and the unwanted noise are spectrally separate. In short
the design techniques for linear filters are well developed and
documented;

For some applications, however, linear smoothers are not
totally adequate due to the nature of the data being smoothed
Added to this the it requires precise definition of filtering*
and the object to be filtered. Fig l 1 shows three examples of
data sequences which are to be smoothed Here a linear filter



is defined by a sliding window across the input signal, At each
position of the window the filter output is determined by some
mathematical function operating exclusively on the values in the
window In this case averaging of samples in a window is carried
out. -The examples shown in fig.l.l exhibit a weakness of a
linear smoother for window width 3 V This simple averaging
smoother shows some of the short-comings of linear filters for
the examples illustrated. In the first example where an impulse
noise like component is superimposed on the signal, the signal
displays sharp discontinuities. Such discontinuities contain
much high—frequency energy and are spectrally indistinguishable
from noisy component A linear smoother would therefore smear
out the sharp changes in the data as well as filter out the
noise In Image processing steps are often taken to mark the
sharp edges Whenever linear filters are resorted to for such
applications it simply changes it into a ramp. Similarly the
ramp in the image is blurred. The smeared, blurred output data
is not acceptable in many applications. The 'desired‘ output
shown in fig 1 l is based on what human eye prefers to see in
images This forces one to look for a filter other than a linear
filter

To meet the -desired* output shown in fig.l.l one must
contemplate using some type of nonlinear smoothing algorithm
which is capable of preserving sharp discontinuities in the data
and is still able to filter out noise superimposed on the data,
Although such an ideal non—linear smoothing algorithm does not
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exist at present a method proposed by Tukey [l,6] can be shown
to have approximately the desired propertiesi Tukey introduced
the median as a robust sliding window filter for smoothing data
Despite the known properties of median as an estimator in
statistics the mathematics necessary to analyse the effects of
median filters on realistic signals are not simple extensions
of the existing theory [l,6,9,l3,26,27].

Median filters find wide acceptance in the field of image
processing and speech processing because of their simple
implementation in real time [l0,l4,2l]. As an introduction to
the performance of median operator it may be noticed that the
"desired" output in fig l-l can be derived from a median filter
of window size 3 samples The median filter with window size
three removes impulses while allowing the edges and ramps to pass
unaltered Here the only consideration in median filter
selection is the desired window size. In view of these
properties median filters have been effectively used in the
reduction of high frequency and impulsive noise in digital images
[3,7,l6,23,24]. Other applications include the smoothing of
noise pitch contours in speech signals [2 4] and data compression
using root signal properties [5].

The implementation of a median filter requires a simple
non—linear operation Let the sampled signal be of length L and
a window of width (2K+l) points slide across the signal (K an
integer) The filter output at each window position replaces the
window center sample by the median sample of the window The
start and end effects are accounted for by appending K samples at

1 4
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both the beginning and the end of the sequence as shown in
fig l 2i Thus the basic operation of a median filter is to rank
the samples in the window and pick out the ‘middle value as
filter output. Median filter is insensitive to spiky noise
provided the spike or impulse samples are less than or equal
to K for (2K+l) window width It preserves monotonic step
edges. These are some of the desired properties in image
processing, Median filter finds a place in image processing
since it does not blur sharp edges as a linear low pass filter
does.

Though median filtering application is increasing for the
last decade the necessary mathematical tool for analysis is
lacking, Hence the topic ‘Median filter structure, Analysis and
Applications is relevant to the current area of research. A
survey of the work done todate in median filters in analysis and
realisation is presented in Chapter II.

This thesis provides methods of characterising median
filters and extracting certain properties of the signals. To
this end the median operation is expressed in terms of certain
matrix transformation and then several properties that depend on
the trend (slope change over) of the signal are extracted,
Gallagher and Wise [17] have given the bound for the maximum
number of passes to reach a root sequence. The number of passes
to reach the root sequence is precisely defined and proved
These results are discussed and presented in Chapter IIIJ

Chapter IV presents another new area of work in median
filtering, An approximation to the running median namely Fast

1.6



Convergence Median Filter (FCMF) is described, In order to
improve the FCMF results further_ a method of Interpolation
Median Filter (IMF) is developed? FCMF and IMF are compared in
performance and implementation with the running median filter“
The edge preservation is demonstrated for images with and without
noise and compared with (1) Seperable median filter (2) Moving
average filter

Frequency domain analysis is carried out in Chapter V. The
analysis is restricted to deterministic signals. In all the
cases the median filter acts as a SPECTRUM SUBTRACTOR.

Median filtering realisation for on—line processing and
certain promising applications are presented in Chapter VIQ
Median filtering realisation is based on minimum hardware with
flexibility to change the window size or to get ranked operation
filter without any hardware changes. In addition to this, a
possible direct implementation of median filtering technique in
VLSI is presented

Finally the thesis is concluded by applying median filtering
technique in a Constant False Alarm Rate (CFAR) processor, image

processing and speech processingi In CFAR‘ processor running
median normalisation is introduced to reduce the variance and is

compared with cell averaging algorithm [28, 29, 33]. (In Image
processing a relationship between correlation of input and output
of median filter is exploited to provide a method of extracting
hidden contours The median filtering is applied to extract the
speech formant number and formant frequency



Chapter II
PRELIMINARIES

Tukey proposed a_ non—linear method of signal smoothing
exploiting the median property. This non-linearity is different
from the nonlinearities of classical electronics. The nonlinear
smoother such as running median satisfies

Smooth ( A f(k)) = )\Smooth (f(k))  (2.1)
for all real A , while conventional nonlinearities often satisfy

output ( A.f(t)) = A_linear (f(t)) + A2 Quadratic (f(t))
+ )5‘ Cubic (f(t) +   (2.2)

where linear, quadratic, cubic etc are homogeneous of the degree
indicated. A conventional nonlinearity satisfying

output ( A.f(t)) = A Output (f(t) . . . . . . .. (2.3)
has only odd terms in equation (2.2) and cannot satisfy the
remainder of equation (2.1) without reducing it to the linear
term alone. Thus- equations (2.1) and (2.2) define very
different kinds of limited nonlinearities.
The Median:

The term median has several connotations depending on the

context of its use. The median of L numbers,L being odd/of x(n)
is the (ELJQ h-th largest or smallest number (x(n) are all2

real).
When the numbers x(n) are samples taken from a population,

then it is called the Sample Median. David [27], Kendall and
Stuart [31] brought out its importance and application
in Order Statistics. Another use of median in
statistics is the Expected Median. Let F(x)Abe the c.d.f. of a
random variable x. Then the expected median Y is the value which



satisfies F(Y)=G.5. When length of the input sequence x is
(H)

large compared to window (2K+l) (K an integer) then the output
sequence {Y } of {X } is obtained such that Y is the median ofi i i
(2K+l) elements of the window centered at X . That is

i

Y = Median ( x ... X ... X ) .... (2.4)i (i~K) i (i+k)
where i ZK. Such a sequence obtained from x(n) is called

Running Median ( ¢ ). The output (p{X(n)} is always 2K
samples shorter due to start and end effects of the window. In
order to preserve the length of the sequence, the output sequence

is appended with K samples at the start as well as at the end.
One way is to append the sequence with K samples at the beginning

and at the end with the first and the last samples of the
sequence x(n), respectively. Another useful way is to append the

median sequence y. with the first and last median samples. The
latter has the advantage of order preserving or order reversing
transformation which will be discussed in Chapter III.
2.1 One Dimensional Median Filters

The median of L samples X , X .... X arranged in ascendingl 2 L
or descending order, for L odd, is the central sample. For L
even it is the mean of the two central samples. For L even
other definitions can be found in literature. In our discussion
it is always assumed that the sequence length is odd. The median
Y of { X } is expressed as

i

Y = ¢}(X , X ... ... X ) where $ is the median operator.0 l L
2.2



Example: Let the sample sequence be (3,7,l,@,5;2,9). The median
is 3, whereas the mean value is 3.8571428. It is clear from this
that the median is always a subset of the input sequence whereas
the mean is not necessarily so
Definition: The median is the central sample of ranked {X } . If

l
{X } is arranged in ascending or decending order,

I
i.e. X < ... < X 3 ... 5 xl-K " " l l+k
then median (X ... X ... X ) = x ... (2.5)1-k, l l+k I

In filtering application the median of the sequence replaces
the central sample. In applications of median filtering to
speech and images: a window (2K+l) is moved along the samples.
The window is moved along the sampled values of the signal
(or images) from left to right and the median of the samples
within the window is computed. The median value computed for
this window position replaces its_central sample. As the window
slides from left to right one new sample enters the window as the
oldest comes Out of the window and the median is obtained for the

entire set of input samples. The median obtained like this IS
called Running Median or Moving Median. In general the running
median can be expressed for (2K+l) window as

Y = Q ac .... x ,.... x )1 (1-k) 1 (i+k)
TWO DIMENSIONAL MEDIAN FILTER:

Digital pictures can be represented by row X column pixels
where each pixel is represented by a number equivalent to its
grey level.Conventionally a rectangular (or square NXN) window is

2.3



used in two dimensional median filtering. The intensity at every
point in the image is replaced by the median of the intensities
of the points contained in the NXN window centered at the point.
A two dimensional median filter of NXN window on a picture

2

{X , i j E Z } is definedij

Y = (Dix }= Cl>{xi:r_p. ‘liq. p, q window}ij ij 2i,j 5 2 . . . . . .. (2.6)
Fig.2.l illustrates a two dimensional median filtering operation
by using a filter window (3X3) moving from left to right till the
processing matrix 2 covers all the pixels. The two dimensional
window is moved from left to right and the median sample
replaces the window central sample at every position. When the
window reaches extreme right, it is brought back to the beginning
and pushed down by one row. This process is repeated for the
entire pixel matrix. The start and end delay of the window is
compensated by (l) appending the first and the last median
samples or (2) the input samples as such for the delay or (3) a
smaller window in the border.

1|-ulw

@003 $733"

0!

4¢flbtit

Big. 2.1 Filter Window (3 x 3)
Different shapes of windows can be used viz. line segment,

cross, square, tilted square, circle etc. A window is so chosen
that number of elements within it is always odd and symmetry is

2.4
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maintained in both the axes with respect to its center. Some of
the window shapes are shown in fig. 2.2.

All these windows have wide application [16,18] in image
processing. The line segments shown in fig. 2.2(a) and (b) are
useful for one dimensional processing. Huang et.al [ll] and
Narendra [16] have applied a variant of the median filter — the
separable median filter,for image noise smoothing. The separable
median filter is a two dimensional non linear filter derived from

successive applications of one dimensional median filter of size
(2K+l), applied first along the rows and then along the columns
of an image (or vice—versa). The windows{2K+l) applied for
separable median filters are one dimensional windows. The major
advantages of the separable formulation are : faster computer
realisation and simple real time hardware implementation.
2.2 Properties of running median.

Running median has several good properties which makesit a
strong candidate for a smoother. Rabiner et. al. [2] and
Tyan [8,l8] have pointed out some of its deterministic
properties.
(i) Scaling

Median { cc x } = 0C Median { x } ... (2.7)(n) (n)
where 0C is a real constant. Further
Median {oc-H4 } =r ac + Median {X } ... (2.8)(H) (0)
(ii) Median Filtering is time invariant

2.6



(iii) Median filtering does not smear out sharp discontinuity as
long as the duration of a discontinuity does not exceed a
critical value. This is not true for linear filtering.
(iv) Median filtering in general does not obey superposition
property i.e.

Median { a. x + b. x };£= a. Median {X } +l(n) 2(n) l(n)
b. Median {X } ..... (2.9)

2(n)

wnere a and b are constants and x , x are two inputl(n) 2(n)
sequences.

Tyan [l8] has brought out some interesting deterministic
properties from equation (2.4).

Property 1: If X 3 .. 5 X 5 ... <Xunau­—K 0 K
then median (X .....X ....... X ) = X—K fl K 9
Property 2 : If g(x) is monotonic, then
median (g(x ) ..... g(x )) = g [median (X ......x )1 2K+l l 2K+l

With the definition of median from equation (2.4) and from
property 1 it can be seen that a ‘monotonic sequence‘, i.e. a
sequence such that Xn 5 Xm for all ngm is "invariant" to a median
filter of arbitrary window length. Monotonic sequences/low order
polynomials are the simplest invariant (fixed) points of median
filters and generalisations of these constitute more important
class of invariant points (roots).

Scaling the signal does not affect median filtersi
performance. This property will be more useful in processing
two dimensional data.

207



As mentioned in the preceeding paragraph, monotonic
sequences are fixed points of median filters of arbitrary window
length; however the requirement of monotonicity is unnecessarily
restrictive. Since the median filter is of fixed window length,
the monotonicity can be relaxed. Tyan was the first to point out
their importance and to deduce many important theorems about
their properties under median filtering.

A sequence {xn} is locally monotonic of length m (abbr.
LOMO (m)) if and only if {Xn, Xn+l ... Xn+m—l} is monotonic for a

given n.

A LOMO (m) sequence is also LOMO(p) provided p gm. If
there is any change in the trend, then a LOMO(m) sequence must
stay constant for atleast m—l samples.

The following two theorems reveal the importance of locally
monotonic functions:

Theorem 2.1: A LOMO(m) sequence is invariant to running

median filter of window (2k+l) for all K provided K5 m-2.
This implies Q {X } = {X }.

n(2K-I-1) n

Theorem 2.2: If {X } is a fixed point of G and if there isn (2K+l)
monotonic segment {X , X .... X ) of length (K+l), then {X }p p+l p+k n
is LOMO (K+2).

The preceeding two theorems state that if a fixed point
2K+l is smooth enough for a segment of length (K+l), then it is
smooth over the whole length (i.e. LOMO (K+2)).

2.8



Theorem 2.3: If {X } is a fixed point (subject to appended
n

values at the edges same as input signal of (D ) and if it is
2K+l

‘Inowhere LOMO (K+l), then {X } is a bivalued sequence i.e. {X 3n n
can take on only two values alternatively.

Tyan has classified the fixed points into two groups. The
fixed points defined in theorem 2.2 and theorem 2.3 are called
Type I and Type II fixed points respectively. Gallagher and Wise
[l7] have defined input sequence structures. These signal
sequence structure definitions are used for median filtering
structure and analysis in Chapter III. For a finite sample {X }
of length L quantised to q levels, different signal structurgs
definitions are:

(l) A CONSTANT NEIGHBORHOOD is a region of at least (K+l)

consecutive points all of which are identically valued points.
(ii) An EDGE is a monotonic region between two constant
neighborhoods of different values. The connecting monotonic
region cannot contain any constant neighborhood.

(iii) An IMPULSE is a set of K or less points whose values are
different from the surrounding regions which are identically
valued constant neighborhoods.

(iv) An OSCILLATION is a sequence of points which is not part of
a constant neighborhood, an edge or an impulse.
(v) A Root is an ‘invariant’ signal which is not modified by
median filtering (Fixed points).



To illustrate the preceeding definitions, an example is
shown in fig.2.3. Let the window be 3 (i.e. K=l). In this
sequence, at length 4 an edge which is separated by two

4 4 4 3 l l 6 3 3 3 3.5 2 5 2 5 2 Input sequence
[]443113333 335252121 MFoutput

Fig. 2.3
neighborhoods of different values is present. At length 7 an
impulse is present. Beyond length ll, the input sequence
contains only oscillations. The start and end of the output
sequence is.marked as E] which are the appended samples. The
window is sliding over the input sequence and the median sample
for the window replaces the central sample of the window. The
output sequence obtained in this manner will have 2K samples less
than the input sequence. The reason for this is due to the start
and end effects of a window on the input sequence. The output
sample do not alter upto the length 7 The reason for this is
that MF will not alter a neighborhood or an edge of an input
sequence. At the input sequence length 7, there is an impulse.
This impulse is wiped out in the output. The trend of the input
sequence following sample 12 is changing alternatively. This
signal is oscillatory. This portion of the signal is the one
which undergoes changes in median filtering. In such cases also
it is possible to get an invariant output (Root) by repeated
passage through a median filter. This can be seen in the
following example for window 3(K=l).

2.19



4 4 4 3 1 1 6 3 3 3 3 5 2 5 2 5 2 INPUT SEQUENCE
(a)

443ll3333335252 FIRSTPASS
(b)

[_Z_]443113333333522sEcoNDpAss
(C)

443ii3333333322 THIRDPASS
(Ci)
Fig. 2.4

It can be observed in fig. 2.4(b) to 2.4(d) that the oscillatory
portion of the signal undergoes changes for each pass. The
beginning and the end values of the oscillation/trend change over
point is reduced by forming neighborhoods on both the side of the
oscillations. Thus after the third pass, the oscillation ceases
and’ becomes neighborhoods only. This signal is invariant to
further median filtering and is called a ‘ROOT’.

In Fig.2.4(a) the start and end samples of oscillation viz.
13 and l8 are 5 and 2, respectively. This part of the signal has
become two neighborhoods after three passes. However, if the
start and the end sample values are same it is possible to get
only one neighborhood for the entire length of the oscillatory
sequence. The root signal sequence is not unique. It is a
function of window size. Consider the input sequence given in
fig.2.4(a) for window size 5 (K=2). In fig.2.5 it is shown
that two successive

4 4 4 3 1 1 6 3 3 3 3 5 2 5 2 5 2 INPUT SEQUENCE
4 3 3 3 3 3 3 3 3 3 3 5 2 [2 FIRST PASS
[E 4 3 3 3 3 3 3 3 3 3 3 3 2 sacomo PASS

Fig. 2.5 ME Output for window size 5
2.11



passes of the signal produces a root sequence. Here it is to be
noted that the neighborhood portion of the signal sequence for a
window 3 (<=l) is oscillatory for window 5 (K=2). In the first
pass the number of trend changeover points is reduced to 3 from
9. The second pass output is an invariant (Root) signal and it
is having extended neighborhoods. The root Signal sequence is
changing as the window size changes. But the root sequence of
larger window MF is always a subset of root sequence of a smaller
window ME. The following theorems are presented as a result of
the preceeding discussion.
Theorem 2.4 : Given a q level sequence of length L, the
necessary and sufficient condition for the signal to be invariant
under MF is that the extended signal consist only of
neighborhoods.

Theorem 2.5 : Given a q level sequence of x(n), the root sets
R ,(where R is ME output for the ith pass) are nested such thati i

R §;R Q; ... g;R = x ..... (2.19)1 i-l G (n)
Gallagher and Wise [17] proved that successive median

filtering (i.e. the filtered output is itself again filtered
through the same filter) eventually reduces the original signal
to a root signal. Given a non-root signal of length L, it will
become a root after a maximum of l/2 (L-2) passes for L even and

1/2 (L~l) passes for n odd. In this analysis, it is to be noted
that they have only stated the bound for the maximum number of
passes to arrive at a root signal. Further work to arrive at the
exact number of passes for a root sequence is given in Chapterlll.

2.12



Arce and Gallagher [20] developed a theory for the root
signal sets of median filters and obtained a tree structure for
the root signal set for binary signals. The tree structure for
the MP of window size 5 is shown in fig.2.6. The root signal can
be built with the first bit as either 3 or l and several
possible combination of subsequent bits lead to ‘allowable
root paths‘. Such allowable root paths are shown in the tree
diagram, the root paths themselves branching into a subtree. From
a close look at this tree structure, one can observe that
sections of the tree repeat themselves as the tree propagates.
This observation leads to the concept of the existence of
discrete states. Four different states can be identified and they
are:

State A: Two successive digits with values zero (0,6). The
next digit can take any value 6 or l.
State B: Two successive digits where the first has value 0 and
the second value of l (6,1). The next digit can only be a l.
State C: Two successive digits where the first has value l and
the second of 2 (1,6). The next digit can only be a 0.
State D: Two successive digits with value 1 (l,l). The next
digit can take any value G or l.

Fig.2.6 shows how these states propagates as the signal
lengths increase. Each state will generate other states as can
be seen in the state diagram (fig.2.7). The number of roots for a
given sequence length 1 can be written from the state diagram as
(Ref. fig.2.7).

R(l+l) = 2A(l) + 2D(l) + B(l)+C(l) ...... (2.ll)
2.13
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The use of such a tree representation provides a pleasing
approach to define the states of the model. However when a
signal is quantised to 'q' levels it is not feasible to draw
trees for even relatively short signals. Fitch et. al. [25] have
developed a general state description for the root signal set
without using trees. This model is unrestricted in terms of
window size and number of signal quantisation levels. The result
is complete and yields an exact system of equations for finding
the number of root signals associated with any median filter.
2.3 Methods of median filtering:

Median filtering gaining momentum in digital signal
processing is not only due to its ability to preserve sharp edges
while acting as smoother but its simplicity in realisation.
Since the introduction of ‘Median Filtering’ by Tukey, several
on-line and off—line median filtering methods have been proposed
both inhardware and software. These methods may be classified as:

1. Selection network method

2. Radix method

3. Histogram method

The selection networks [10,11] are a special class of
sorting networks and are arrangements of comparators for finding
the largest element of a given set. An efficient hardware
realisation technique developed by Shamos [10] is shown in
fig.2.8. Let the MF window size be 3. First A and B are compared
and the larger of ‘A and B‘ placed on the top line, while the
smaller of ‘A and B’ is placed on the middle line. Next the
smaller of ‘A and B is compared with C'.Again the larger value is
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placed on the top line of the two being compared. The last
comparison is made between the larger of ‘A and B‘ and the larger
of ‘C and smaller of A and B'.This median operator requires three
comparisons and the median sample always appear on the middle
line. This approach can be applied to five point window as shown
in fig.2.9. This needs seven comparisons to achieve the median
with an overall time delay of five samples. When the size of
window exceeds 7 this method becomes complex. Also a structure
either in terms of minimum comparison or in terms of minimum
delay is not available.

The Radix method of Ataman et. al. [14] is based on the
binary representation of the elements in set { X } and

i
subsequently recognizing the various bits in the word. Let thei i i
binary representation of X be (b b. .... b ) and that ofi l 2 L
median ¢(x ) be (/L1‘,A..|2 . . . . - . . .  pt ). The algorithm fori
determining the median starts by dividing the elements of the set

(X t lii in) into two groups. The first group contains all those
1

i
elements of the set for which b is one and the second group the

l
i

the rest of the elements. If a majority of b , i = l, ... n
1

are equal to 1(0), then p1 = 1(0). This determines the first bit
(most significant bit) of the median. If in =1, then the mediani
Q is an element of the set of those elements which have b = l,

l
i

say set S(b = 1). Let the cardinality of this set be C. If all
1
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b = 1 i.e. S (b = 1) = {xi, 13 i <n } then obviouslyl 1
¢ is also the median of the set S (b = 1). If some b1 1

i
then Q is the (K+1)th largest element of S(b = 1) when 2K+l

1

II
E») §

ll C3

i
If a majority of b = Q, then the median ® is an element of the

1
i

set S(b = G) and is the ((K+l)—C)th largest element of this
1

set. Assuming without loss of generality that the median
1

Q is an element of the set S(b = 1) the algorithm proceeds
1

i
by operating on set S(b = 1) and subdividing the set based on

1
i

b = being 1 or U. The Search procedure leads to a tree structure.
2

The method given by Huang et. al [11] is based on the
histogram of elements in the set {X , i=1, 2. .... n }. Let

i

h (a) be the number of elements such that x = a and let 5 (u);n i n
be Bh F» ; hn(0)Me

n+1
2

then go is the median. LE fink») is greater or less than
By definition Bn( q_xn ) = ————— —- . If Bnk3::n+1 n+1
——- ,then on is decremented or incremented by 1 until [3n((..>):——— .pm

A

The first two methods are suitable for on—line filtering
while the last one is essentially for off-line filtering. It can
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be seen from fig. 2.8 the minimum number of comparisons for the
selection network method for a 3 point and 5 point window are 3
and 7 respectively. However, the number of comparisons and the
complexity increase rapidly with increasing window size. Further
work done in this area is discussed in detail in Chapter VI.

Speed and complexity of the radix and the histogram
methods do not depend on window size but on the word—length L of

each sample. Worst case running time of the histogram method
grows exponentially with L, while that of the radix method is
proportional to L. These two methods are suitable for software
realisation.

2.4 Median filtering applications:
The median filtering has been applied to speech signals and

image processing. As indicated in 2.1 median filtering preserves
sharp discontinuities in the signal and hence may be used for
applications where the signal in addition to having high
frequency contents is corrupted by high frequency noise.
However, MF may fail to provide sufficient smoothing of
undesirable noise like components. To overcome this Rabiner at.
al. [2] suggested the use of a combination of linear and median
smootners. The smoothing algorithm arrangement is shown in
fig.2.l0. The input can be written as X = s {x } + r{x }(H) (D) (H)
where s indicates the smooth part and r the rough part of
x . Then with reference to the fig.2.lfi the output

(D)

Y = s {x } and Z = X — y = r(x ). Thus additional(D) (D) (U) (H) (N) (H)
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smoothing of Z yields a correction term which is added back to
(H)

y to give w , the second approximation to s(x ). Thus(I1) (:1) (I1)
W satisfies the relation

(H)

W = S{x }+ s{r(x )}  (2-12)(0) (H) (H)
The delays shown in the fig.2.lG are necessary to compensate for
tne inherent delays in filtering. Rabiner et al. suggest the use
of a 3 point median filter and a 3 point Hanning window. They
have also compared the performance of linear smoothers, "median
smoothers and a combination of median and linear smoothers.

In speech processing, measurement and processing errors
introduce single or double point discontinuities and as such
median filters are particularly suited for the removal of such
errors.Rabiner has demonstrated the superiority of a combination
of smootners in the processing of speech intensity data and pitch
period contours. Further work in this area is discussed in
Chapter VI. Jayant [4] has shown the use of ME in communication.

Bit errors in DPCM cause propagating distortion in the decoded
waveform. The error is essentially impulsive and a median
filter squelches the impulse without smearing the speech
waveform. Steele and Goodman [5] have further explored the
application of MP in smoothing transmission error in linear PCM.

The application of median filtering to image processing is
discussed by several authors [3,4,7,23]. Narendra [l6 ] has
considered processing images by separable filters rather than two
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dimensional filters. He shows that the performance of smoothing
of the separable filter is identical to that of a square window
filter. He also notes that a separable filter yields a slightly
greater variance than its two dimensional. MF filter. Further
work on median interpolation for images are discussed in detail
in Chapter IV. The MP application in picture processing for
feature extraction is dealt in Chapter VI.
2.5 Conclusions:

In digital signal processing, median filtering offers an
alternative to linear filters in some special areas. If the
signal contains high frequency component then MF performs better
than linear filters in preserving discontinuities in the input.
This property of MP is found attractive in speech and image
processing. Speech and image contain a large amount of data.
Smoothing of such data in real time requires more processing
time. Median filter do not involve any arithmetic operation and
hence have a large potential for high speed application.



Chapter — III
STRUCTURE AND ANALYSIS

Digital filters are characterised by difference equation.
Various structures and response of the filter structures
(frequency and phase) can be derived from these difference
equations. Unf0rtunately,being non—linear, median filters are not
amenable to this standard analysis technique. when a random
signal is used as input, the MF makes the output distribution
difficult to calculate and comprehend [19]. It is difficult, if
not impossible, to find the output sequence of a MP for any given
random signal without actually performing the median operation.
In the succeeding part of this chapter a new method of median
filter characterisation through matrix operaters is introduced.
From this a new parameter ‘COLUMN SUM’ is extracted. Several
features of the signal are deduced from the column sum. Before
describing certain structural properties, Median Filtering Window
selection and their effect on deterministic signals are
discussed.

3.1 MP window selection:

Monotonic sequences and neighborhoods are invariant under

median operator of any window size. On the other hand, a sequence
containing only oscillations (bivalued) is altered by a median
filter reducing the number of oscillation with each pass until
the two neighborhoods are fully extended on either side. Median
filtering is of very little use for smoothing these signals,
whatever be the window size. However, if we consider an input
sequence with spiky noise or ‘salt and pepper noise‘, median



filtering is quite efficient. Unlike linear filters, median
filter retains sharp discontinuities normally without smearing.
If at all smearing occurs. it is a function of window size and
also of duration of discontinuity in the input sequence.

To illustrate the window size effect, let us consider an
input sequence shown in fig. 3.1

XXX XXXXX
XXXX XXXXXXX XXXXX

Fig. 3.1

The input samples exhibits sharp discontinuties at sample
numbers n=5,8,l5 and 20. When this signal is passed through MF
filters of window 3 and 5, the output is unaltered. The sharp
discontinuities at n=5 and n=8 vanish when the sequence is passed
through 7 point window. The discontinuities at n=l5 and n=20 are
unaltered. The discontinuity samples between 5 and 8 form
a neighborhood ((K+l) samples) for a window of size 5 i.e. K=2.
When the window size is increased i.e. K=3, this portion is no
longer a neighborhood since it is less than 4 samples.
Similarly, sample numbers between 14 and 20 form a neighborhood

upto window sizes of 9 (K24). This portion will be smoothed out

by a median filtering window 13 and above (K25). Thus while
choosing a median filter one needs to decide the discontinuities
to be preserved for a given input sequence. Thus the window size
and the input sampling rate determine‘ the removal of impulses in
the input sample sequence. In general, if the discontinuities of
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m samples and above are to be preserved in MP (the median
filtering), K must be less than m.
Effect of window size on deterministic signals:

Let {x(n)} be the signal sample sequence of a triangular
waveform shown in fig. 3.2. The signal is sampled to get two
samples in a period. The effect of median filter for 3 point
window (K=l) can be seen in fig. 3.2(b). The MF output is the
same as the input signal except for one sample delay (180 degree
phase delay). The 5 point median filter on the same input
sequence does not change the signal except for introducing a
delay of one period. (Fig. 3.2(c)). This delay is obvious
because of start and end effect of ME. To see the effect of
number of samples per cycle, let the number of samples per cycle
be increased to say 4 samples. Now one can see the effect of
median filtering for K=l and K=2 window size. The input—output
waveforms are shown in fig. 3.3. The 3 point median filter
output has completely destroyed the periodicity of the input
sequence. The output is just a D.C. The MF output for 5 point
window also produces a similar DC output.

(<1) Input sequence

F (b‘) Ml: output (p(=1)

(C3 Ml’ output (K=2)
Fig. 3.2
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Let the sampling frequency be further increased as for the
input sequence shown in fig. 3.4. Here the number of samples in
a half period T/2 >(2K+l) for both 3 point and 5 point window.
The effect of median filter is shown in fig. 3.4(b) and 3.4(c).
In both cases, the slope change over point or signal trend change
over point is flattened and a median filter acts as a limiter.

The conclusion from the preceeding discussion is that the
input sampling frequency determines the MF output for a fixed
window size. The ME smooths out the impulse, slope change over
points and oscillation by extending neighborhoods. Finally the
extent of smoothing is determined by the window size.

3.2 MP viewed as Transformation:

Locally monotonic functions are invariant under median
filtering. Due to this reason they have an important place in
median filtering. Tyan [ 8 ] was the first to point out their
importance and to deduce many important theorems about their
properties under median filtering. In the present discussion,
a locally monotonic (LOMO) sequence is used to define order
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preserving/order reversing transformations. Such transformations
are useful in exploring some of the properties of a median“
3.2.1 Order-preserving and order~reversing transformation

Let Z = T{x } where T is a transformation. If fori 1
every x 5 x Z <Z then T is an order preserving transformation.1 3 ii
If on the other hand, if Z >Z for X <x then T is an orderi j i j
reversing transformation. Let .Q be the set of all order­
preserving or order—reversing transformations. Then T€f1
Theorem 3.1

Running median G) and order—preserving transformation T are
commutative

i.e. (1) {T{xp }} = T{ d){x H  (3.1)n n
Proof:

Let T be order—preserving and {Z } = T{x } and Y= (D{x }n n r
Let W be a (2K+1) window at the r—th position in the- r
RM. Then by the definition of the median, there are K
elements greater than or equal to Y in the window W .

r
Let Y=X Then 2 = (1){z}J j I
where Z = T{x J x €-W as by the definition of T, if x 3 xr r r r 1 j
then Z SZ . Hence we havei j
z = (1){z}= (D{T{x}} XEW .. , . _ . ..... (3.2)j i i i i
and by definition Z

n



z=T{x}=T{q){x}},xEw . . . . .  (3.3)j j r r r
Equations (3.1), (3.2) and (3.3) hold for all i. The
inequalities in the above proof will be reversed for order
reversing transformations.

Monotonic sequence being a fixed point (root) of a median we
have:

Theorem 3.2

The running median operator is an order preserving
transformation on any monotonic sequence.
Proof:

Let T be an operator on x for order transformation
n

Z = T {x )R 1'1
Z is the transformed sequence and is said to be order preserving

n

only when

Z < Z < .... < Z i=9,l,2,3 ....n n+1 n+i
Let (D be the running median operator for a window W on the
input sequence.

CD{'Z } = (D{'i‘{X }}n n
th

By the definition of median, it is (K+l) largest or smallest
element of Z . For a monotonic sequence the output is the same

n
as the input sequence. Therefore the median filter output of
the order-transformed sequence is always the central sample‘
In running median, the window W is sliding on the input, and
the output follows tne input. Thus the RM is an order preserving
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transformation for monotonic sequences.
Theorem 3.3

Any sequence transformed to order preserving or order
reversing transformation is also a root sequence of the median
filter.
Proof:

Let Z = T{x } and ® {Z } = R where R is a root signal.n n n n n
From theorem 3.2 (D is an order—preserving operator.

Therefore

as all the sequences undergoing order—preserving transformation
are root signals for running median.

From the above theorems and the discussions the following
can be concluded.With TED I

(a) If T and T ED. . then so are T .T and T .T ,l 2 l 2 2 l
(b) If {X } is LOMO(m), then so is Z =T{x }.n n n

It is possible to generate a new LOMO(m) sequence from a
known LOMO(m) using the statements (a) and (b). Some examples
are listed as follows:
(i) Z = T{x } a x + b where a and b are real constants,n n n

P
x where p.¢ 0 and either all X > G or alln n n n}...a. }_.I. N ll -Z!

H‘-.
>4

\-r~V

II



(iii) Let both x and y be monotonic sequences with the samen n
trend then Z =a x + b y is also a monotonic sequence of then n n
same trend when a,b > o and of opposite trend when a,b < 0pl 92 pr(iv) Z = T {x } = a x + a x + ... + a x + c where alln n l n 2 n r n
p and a have the same sign (a might be of different signi i i
from p ). Also not all a can be zero and all x are eitheri i n
non negative or non—positive.

3.3 Characterisation of Median Filtering:
Though application of median filtering in signal processing

has received considerable attention, a rigorous method of
characterising ‘median’ is still not available. Here an attempt
is made to characterise median by a ‘Matrix’ operation. In the
sequel a three point median (K=l) is considered. By definition,
median is the middle value of the ranked three input samples.
Ranking is possible only when all the three input samples are
available. A delay of 2 samples is unavoidable with a window
size 3 (K=l) median filter. The median output corresponds to

th
(K+l) sample. Therefore the running median output at i may
have a maximum of iK sample displacement. The structure of a
median filter using delays and coefficients is shown in fig. 3.5,
a structure similar to that of a digital filter. The salient
features of MP vis—a—vis those of digital filters are :
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(i) MF filter response delay is 2K unit samples for a (2K+l)
window whereas digital filter responds for every bounded input.
(ii) The coefficients a, b and c in ME are either 1 or 6 .
Further only one of them can be non—zero at any sample instant,

whereas in digital filters these coefficients are real with
their values determined by the desired filter response.
(iii) The signal flow graph of median filter is the same as that
of digital filter with the structure of fig. 3.5.

X(n) -1

The input-output relationship of a ME can now be written as

y = a X + b X + c x ..... (3.4)(H) (H) (H-1) (H-2)
where x is the input, y the output while a, b and C are co­(r1) (r1)
efficients (either 0 or l). Equation (3.4) may be written as

y(n) = [x(n) x(n—l) x(n—2)] . a . . . . . . . . . . . . .. (3.5)
bC n = 1,2 L

At any instant n only one of a, b, c is 1, the other two being
3.10



zero placing in evidence the median of the specific window. The
specific values of a, b, c depend on the signal. For instance
%or a monotonic sequence ‘a’ and ’c‘ are 0 while b=l. This
characterisation leads to a possibility of expressing the median
filter in terms of linear operation. Equation (345) can be
generalised to get output matrix Y ,that is

(D)_ .7 _. ._ _. ,_
y“ 342 . . . y1(1...2) x1 X2 x3 (11 a2....a(l-2)
ym y22 . . . Y2(l--2) x2 x3 x‘ b1‘ b2...b(l—2), . = _ . .  C1 C2 c(l—2)‘ ...“(3.6)
Yu-2>1 Vu-2)2 - -- Vu-2)u-2) "a-2>"a-1) "(DJ

[Yw] -— [*1 ° [W]where [ X ] is a (L—2) x 3 matrix. Row of X consists of
signal samples that fall in a (2K+1) window.[W] is a 3x(L—2)
weight matrix which has only one non zero entry in a column that
corresponds to the median sample for the window. The output
Y is a (L-2}x(L—2) matrix . Finally the median vector Y is

(D)

given by

Y = Diag [Y ] . . . . .. (3.7)
n

It can be observed that each column of Y is the input
n

signal vector in natural order or cyclically rotated a maximum
of 2K times. An example is given to illustrate this.( see
Fig.3.6 )



3 5 2 G 1 3 2 6 6 4 3 l 2 Signal Sequence
Window

3521 F35252353552iS 2 G — 5 2 G 2 G 5 2 5 2 2 G
2 G l l 0 0 0 0 l G 1 0 G G 2 G l G 1 2 G 2 G 0 1Q 1 3 0 1 9 1 G G l G l 1 G :: 0 l 3 l 3 0 l 0 1 1 3
l 3 2 L0 9 1 0 1 6 0 0 0 G 1 l 3 2 3 2 l 3 l 3 3 23 2 6 3 2 6 2 6 3 2 3 2 2 62 6 6 2 6 6 6 6 2 6 2 6 6 66 6 4 6 6 4 6 4 6 6 6 6 6 46 4 3 6 4 3 4 3 6 4 6 4 4 34 3 l 4 3 1 3 l 4 3 4 3 3 1L312‘ 3l2l23l3ll2_‘[X] [W] = [Y]

n

Y = D ; 3y 2; lg lg 25 33 3} 6] 63 4; 3; 21B
Fig. 3.6

It may be noted the matrix Y is always a square matrix. For. n
certain types of signal Y can be directly written. For Root

n
signals, periodic signals and bivalued signals Y can be directly

{'1

written by inspection. When the input signal vector is monotonic,
it undergoes one rotation whereas the signal vector containing
neighborhood appear without any rotation in the "output square
matrix Y .

n
general

However, no clear cut rule emerges for writing this
for a signal. The matrix W is modified in order to
extract several properties of a median filter.
3.4 Median Matrix

The usefulness of the transformation matrix is improved by
modifying W, the weighting matrix. This is achieved by padding
the matrix with suitable number of zeros so that it becomes a
(L—2K) x L matrix. This matrix is called the Median Matrix M.
This M matrix has only one sentry of l per row. This
transformation matrix represents the mapping of the input into

3v12



output. The median extraction operation using M matrix can be
written as

Y = M E .... .... (3.8)
where Y is the output column vector and §.is the input column
vector, while M is the Median Matrix. An important parameter of
M that can be used to extract some properties of the signal is
the ‘COLUMN SUM‘. The column sum can be defined as the additive

value of each column of M matrix. The column sum indicates the

input samples that appear at the MF output along with the number
of times each sample appears at the output. It can also be
used to indicate the trend of a signal The example in Fig.3.?
illustrates the Median matrix and the Column sum. M can be seen
to be a banded matrix The column entries of W become the row

entries of M along the band shown. It is obvious that each row
of this matrix has only one entry of l and each column can
contain a maximum of three ls for K=l. Similar matrices can be
obtained for other values of K­

3 5 2 U l, 3 2 6 6 4 3 l 2 Input sequence
(a)

Median Matrix M =

QQGIGQGIQQQS QQQQQGJSJQ GQQQQQQ

FA’

E H 9 N }_J 0­ H m> G H H a H

1

Column Sum = 1

Fig 3 7 (a) Input sequence (b) Median matrix M
and column sum
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The sum of the elements in any column S_ and the sum of the
column sums CS have many interesting properties. These can be
used for extracting signal properties. These properties of the
column sums and C8 are listed in the following:
(1) For a given input sequence of length L, the summation of the
column sums (CS) is equal to (L—2K)

L

i.e. cs = 2:5 s = (L—2K) ; . . . . . . . . . .. (3.9)‘=1 i th
where S is the column sum of the i column.

1

(2) For a given window (2K+l) the column sum 8 lies between 0
i

and (2K+l)

i,e. O :_S < (2K+l) ..... (3.19)i

(3) Sum of any two successive sums cannot exceed (2K+2)

s 5 as + s ) 5 (2K+2) (3.11)i 1+1
(4) Sum of n successive column sums cannot exceed (2K+n)

ni.e. jgg s _g (2K+n) . (3.12)i:1
(5) A given value of column sum S repeats a maximum of [L/S ]i 1
times in a sequence of length L where [ ] indicates the integer
part.

(6) The number of successive appearances (SR) of a given S‘ isgiven by 1
SR = [(2K+l)/(S_ - 1)} — 1 JflaOO°D (3.13)

(7) There can not be (2K+l) successive S"s equal to zero2K+m 1
ice. :§E' S =#~ 0 . . . . . . . . . . . . .. (3.14)

1

i=m



Proof:

For a sequence length of L, there are (L-2K) window
positions each representing a row in M matrix. Each row is
extracting one sample from the input sequence as median for that
instant i hence there is only one entry of l per row, Each
column sum Sp therefore maps the number of l‘s in that
particular column. Thus the number of 1's mapping onto the total
column sum is equal to the number of l‘s present in the M matrix.
As per the definition of M matrix (L-2K) x (L-2K) this number is
equal to (L-2K) Here the start and end effect of window are not
considered

No: of l s in each row = 1.
Total No. l*s in L rows = L

No. of rows contributing to each column sum = 2K+l

Therefore the maximum no; of 1's adding to produce S‘ = 2K+l.
No of rows contributing to two successive column sums = 2K +2

Therefore the maximum no of l‘s adding to the two successive

S_’s = 2K+2
1

No; of rows contributing to n successive column sums = (2K+n)

Therefore maximum no. of S“s for n successive column
sum = (2K+n) 1
Thus the properties (1) to (4) are satisfied with the preceeding
arguments“

Property (5) can be established by the succeeding argument
In the signal sequence,number of segments equal to the window
size (2K+l) is L/(2K+l),



From property (2) S £(2K+l)
i

Therefore the number of times column sum S can repeat in the
i

sequence is: L/S . Thus the property (5) is satisfied. The
i

property (6) is derived using property (2) and (4).
Given a window (2K+l) at any instant i, the median sample

is necessarily at i or i:K. Therefore the weighting is within
the window (2K+l) Hence (2K+l) successive S cannot be equal to
zero, Thus the property (7) is proved 1

Some of these properties are trivially obvious while the
others are not so obvious. Property (1) merely places in
evidence the fact that the input and output sequences are of the
same length. Property (2) limits the number of times a particular
sample can repeat at the output The maximum of this
understandably limited to the window width since a sample goes
out of reckoning beyond one window width. Property (3), not so
obvious is also a direct consequence of the fact that a sample
goes out of reckoning after 1 window width Property (4) is an
extension of property (3) to a general case of n columns, This
property is useful in determining the number of different
patterns possible for the column sums. Property (5) is a
consequence of properties (1) through (4) and the total number of
times a sample can repeat. Property (6) is the constraint
imposed by the properties (2) and (4) .As it is obvious that the
median sample must be within the window segment property (7)
follows.

From the properties of the CS some useful conclusions
La.) 16



can be drawn as to the possible patterns of column sums, or
indirectly the pattern of sample repetitions. It can be shown
that the number of different column sum patterns for any length
can be calculated from these properties. For example, there are
4, 16, 64 and 256 possible combinations of column sums out of
which only 4, 13, 39 and 114 are valid for lengths 1, 2, 3 and 4,
respectively This may be generalised for a (2K+l) window and n
successive columns“

For a given n the valid combinations V are
V(n) = (2K+2)n — IC(n) where IC is the total invalid

combinations. The total number of combinations for a given n is
given by (2K+2)n The invalid combinations are of two types
viz (1) invalids due to tree propagation which is equal to
(2K+2) IC(n-l) (2) invalids arising out of properties (3) and
(7) at the current n IC (n). Therefore

IC(n) = (2K+2) IC(§—l) + IC (n).

Another property of the colugn sum viz. property (7) leads
to invalid combinations. From the structure it can be seen that

for K=l this is simply 3n—3 for all n33. The valid combinations

arising out of the property (4) that is i:§S_ 5 2K+n can easily
be calculated using combinatorial arithmetic? However, a very
interesting recursive relation is exhibited by these numbers.
This relationship for K=l is given by

IC(n) = 3V (n—2) for all n23.
That is the invalid combinations for a given n is (2K+l) times
the valid combinations for the (n—2) columns. Or, in general for

th
a (2K+l) window the number of invalid combinations at the n
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column is given by

\2K—l)
IV = (2K+l) V(n-2K) for all nZ2K+l.

The result is tabulated in Table III 1 for 3 point and 5 point
windows A tree structure can be defined for the propagation
paths of the column sum from these column sum properties. This
will be discussed in the Section 3.6.

Table III 1

""§.wI§.5;;§I;;'2"3 """""""" "l’""uI:I;é;;";I;;’2"E """"""""" ""
Q-T'""W '''''' '“V""7""'T""'f"T”"J”'”""““F """"" ""T '''''' "”‘"""'7‘oiumn Total valid Invalid Column Total Valid Invalid

(n) Combin. combin. combin. (n) combin. combin. combin._
1 """"" 'Z""F”?4' """" Ti """"" ‘E """ ‘%'"'T"E ””””””2 l6 l3 3 2 36 26 163 64 39 25 3 216 100 ll6

ii__-_-i___.3§_‘i_____iEf__i___E.‘f3-___--‘f__i ttttt _E3‘:‘f ____ _i3.§E__JL.._....?:’E_.J

3.4.1 Signal properties from column sum:
Several properties of the signal can be deduced from the

column sum. Once the input sequence and K are specified, the S_si

have a structure“ The column sum can therefore be used to find
some properties of signals
1, The pattern of the column sum indicates the trend of the
signal
2. A periodic column sum pattern indicates the presence of a
periodic signalh This is shown in fig. 3.8.

here that the period is half that of the input,
3# 18

It may be noted
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3. Trend change over points are indicated in the column sum.

S.=@ preceeded by a non zero digit indicates the presence of
maximum or minimum in the signal This is evident from fig.3.8.
4. The column sum pattern may change with successive passes for
non root signals. However, for a root it does not change.

A few examples are presented here to illustrate the
applicability and usefulness of these properties,
Case 1: A monotonic sequence,

Let x(n) = 6, l, 3, 5, 6; 7, 9, 19, ll, l2 and
let K=l. The median matrix M can be written as

F9199000099901009000009919900900009199000[M]= 000091090900000019090000990100
L0000090010

and [S ] = G 1 1 1 1 1 l l l Gi .
It may be noted that the first and last S '5 are 0 while the

1

rest are l‘s. This 1s the column sum pattern for all monotonic
sequences



Case Ii: Bivalued signal
Let X(n) = 3, 7, 3, 7, 3, 7, 3, 7; 3, 7 and K=1. Its median
matrix and the corresponding S ‘s are_ —l i‘igcaawwgacaa

9 1 G G 0 Q 0 0 0 0
G 0 1 0 Q G G G 0 G

[M] = 0 G G 1 Q G G G 0 0
G G 0 Q 1 G 9 0 G G
9 G G 0 @ l G G 6 G
U G 9 9 G 0 1 0 G G
U 0 Q 0 Q 0 G 1 9 Gi_ ....

[S J = 1 l l l 1 1 l 1 G 0
1

Thus it is a sequence of l‘s followed by a pair of 0's. All
bivalued sequences show this pattern on the first pass because
the weighting coefficient a=l and b=c=@ for all input signal
vector X as per the equation (3.5),
Case III: Periodic sequence:
Let x(n) = 9,1,2 3,2 1 G,l,2,3,2,l,@,l,3,5,6,7,®,l,3,5,6,7,@
and K=l. This signal sequence shows two periodic segments. One
of them is symmetric around its half period and the other is not.
The column sum obtained from the median matrix M is

[S ] = 0,1,2,9,1,2,8,l,2,G,l,2,0,l,l,1,2,@,G,2,l,l,2,@,@

It is clear that the column sum [S'} is also periodic. When the
1

sequence has symmetry around its half period, the column sum
periodicity is twice that of the input sequence whereas for
others it is the same as that of the input sequence. Further the
column sum sequence at which S ='G is an indication of signal
maxima or minima which is being flatened in median_ filtering.
This is evident in €ig.3.9.
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Case IV: A random sequence:

Consider a random sequence x(n). Let K=l.
x(n) = 3,6 A 5 l 4 2 l G 5.6 3,3 7 5 2,6
Median output

{Y} =,4,5,4,4,2,2,1,1,.5,5,3..3,5,5,5,
The column sum can be obtained from median matrix as

0 G 2,1,9 l,2,2,G,2,G,2,G,0,3,G,0

On examining it can be seen that S‘ pattern is also random.
The zeros in the column is invariably ; trend changeover point
(maximum/minimum) in the input sequence. This is clear from
fig.3.lG.
3.5 Root Analysis

An input sequence invariant under median filtering with a
given K is called root sequence. Tyan has grouped the input
sequence into two groups Root sequences such as (a) monotonic
function (b) step function (c) stair case signals etc. are
grouped as Type I signals. Median filtering is of very little use
for a signal containing only oscillations between two levels.
Such signals are called bivalued signals and grouped as Type II.
Gallagher and Wise have not given the exact number of passes
required for any given sequence to reach a root (see Chapter
II). They have stated only the maximum number of passes to arrive
at a root signal. However, it is possible to arrive at the
exact number of passes by investigating the structure of the
input sequence. It is to be recalled from the discussion in
Chapter II that median filtering reduces the oscillation from
both ends The number of oscillations in the sequence is the one
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which primarily decides the number of passes to reach a root
sequence In other words it depends on the number of times the
trend (slope) changes in the sequence. Let this be T. Then the
number of passes to reach at a root sequence is given by

T . . . . . . . . .. (3.15)R = ——
2K

where [ ] indicates the integer part.
Proof:

Case I: No neighborhood. Let T be number of trend change over
points in the input sequence and let there be no neighborhood.
For each pass of the signal the MF filter reduces the trends by
2K Then the number of trend changeovers after first pass T1 =
T-2Kv After second pass T2 = T1 - 2K or = T — 4K.

Let the trend changeover T becomes zero after n passes
T=T-.n2K

H

Equating T = 9 we get n = T/2K.
n

i.e- the No, of passes to reach a root sequence R
R = T/2K

Case II: The input sequence consists of neighborhood, monotonic
functions and oscillation.

Let T be the number of trend changeovers and P be the number of
neighborhoods and monotonic sequences. Though neighborhoods and

monotonic sequences are invariant signals, their presence
increases the number of trend changeover points in the sequence.
When there are P neighborhoods/monotonic sequences, the trend
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changeover by this neighborhood can be (P~1). Therefore equation
(3.15) becomes

T — (P—l)R = . . . . . .. (3.l5(a))
In the example given in Fig.3.11 the number of changes in

trend T=ll The number of neighborhoods P=4 for window K=1.
Then the number of passes

11 — (4-1)R = --——-«a--— = 4
2

9 G 1 1 0-0 1 1 G l G 1 0 1 0 1

(a) Input sequence
(J@110QJl11ll11111

(b) Root sequence after IV passes for K=l.
Q 0 0 010 1 1 1 1 1 1 1 1 l 1

(c) Root sequence after II passes for K=2.
Fig.3.11

For the same input sequence, the neighborhoods for K=1 have
become oscillation to K=2. The trend changeover points in the
input sequence remains unchanged for any window size. Therefore
using equation (3.15), the number of passes required for the
sequence to converge to a root is

Thus the equations (3.15) and (3.l5(a)) give the exact number of
passes to arrive at a root using only the number of trend
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changeover points and neighborhoods for a given K,

It is easy to see that the following statements regarding
root sequence are true.
Statement 1: The algebraic sum of two root sequences of window K
is ‘also a root for the same window provided the roots are of the
same trend,

Example: Let y and Y be two monotonically increasingl(n) 2(n)
independent root sequence for K=l.
y = 1 5 7 11, 12, 15, 19, 20
l(n)

Y = 4, 5, 8, 11, 12, 15, 16, 17
2(n)

Let Y be the algebaric sum of Y and Y(n) l(n) 2(n)
i.e. Y = 5, 10, 15, 22, 24, 30, 35 37

(n)

(D [Y] = D,w_, 15, 22, 24, 30, 35, C] for K=l.
n

Thus the algebraic sum of two monotonic sequences of the same
trend is also a root/monotonic.
Statement 2:

Concatenation _of two independent roots for a given window
yields a root sequence after the second pass through the same ME,
independent of the trends of the original sequences.
Example: Let Y be the concatenated sequence of Y and Y(n) l(n) 2(n)
which are independent root sequences for ME window K=l.

Y

l(n)
l,2,4,5,8,9,l0,l2

K} II 9,8,7,5,3,2,1,0
2(n)
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where Y and Y are monotonic sequences but of oppositel(n) 2(n)
trend.

Y = l;2,4,5,8,9,l@, 12, 9,8,7.5,3,2,l,G
(D)

The MP output of window K=l after the first pass is given by

(pm }= CJ,2,4,5.8,9,ia,w,9.8,7,5,3,2,1,CJ
(H)

The second pass output

= D,2.4,5,8,9_,,l0,l0,9,8,7,5,3,2,l,D
This is a root sequence»

Root properties do not change for some of the arithmetic
operations. The following are valid arithmetic operations on
root sequences

(1) If {Y } is a root O<[Y' } is also a root where oc is an (n)
constant.

(ii) If Y and Y are root sequences of the same trend thenl(n) 2(n)
a linear combination CK {Y } + B {Y } is also a root, wheren 2(n)
aiand p are constants with the same sign,
(iii) The product or division of two root sequences of
corresponding samples is also a root provided the trends are the
same for both.

(iv) Unlike arithmetic operation logical operation on root
sequences do not yield a root
3.6 Tree structure of column sum:

As per the properties of the column sum, the maximum number

of possible combinations and valid combinations for column
numbers 1 through 4 is listed in Table III.l for window K=l and
K=2¢ It may be noticed that the number of valid combinations
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increases rapidly as the number n increases. This growth
may be represented in a tree structure. A tree structure is
developed using the column sum properties. This is shown in
fig 3.12 for K=l. The branches which are not permitted are
marked X in the tree diagram

It may be recalled from the discussions in the preceeding
section 3.5 that it is possible to deduce some of the signal
structure like monotonic, neighborhood, periodicity of a signal_
maximum/minimum etc. It may also be noted that the column sum
values take a definite pattern for invariant signals and do not
depend on the input sequence quantisation level. This method
gives an elegant tree structure. Fitch et. al [25] worked on the
actual signal to evaluate the root paths. The number of root
.paths are very high for a given length of sequence n though the
input sequence structure are the same. To illustrate this let us
consider a sequence length n=2. Arce has shown that there are 4
possible roots for binary signal (00, 01, 10, ll). Fitch has
shown that there are about 16 possible root paths for 4 level
Signal (99. 01, G2 03 10 ll, 12, 13 20, 21, 22, 23; 30, 31,
32; 33). In the column sum method, only the number of root
structures are identified rather than its actual values. Hence
there are only three possible root paths viz. 01, 18, 11. The
root paths corresponding to binary and 4 level signals are:
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Fig.3.12 Tree diagram (K21)
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Root paths (CS method) 91 19 11
Binary signal 91 19 99, 11
4 level signal 91 92.93 l9,29,21 99 11,12 13 23 39,31,32 22,33

Similarly this can be extended for other values of h.
To generate a root signal,the initial column sum value can

be either 9 or 1 for i=1 due to start effect and also the
weighting coefficients of the signals can be either 199 or 919.
For i=2 the root path generation is decided by the first digit
of S_. when it is 9 the second digit can take only value 1 (91)
since the rest of the weightings leads to non root paths. If the
first digit is 1, the second may take either 9 or 1 (19,11). The
start effect continues to impose restriction on S until i=2K
for (2K+l) window Thus there are three possible combination
for i=2.

The root path generation for i=3 can be identified by
looking into the first two S ‘s. The third S corresponds to a1 i
monotonic sequence whereas 912 corresponds to a combination of
monotonic and neighborhood signal. When the S is 19, the third

i
may take 1 (191) for root path. This corresponds to a input
sequence havingneighborhood followed by monotonic sequence. If
the first two digit of S s are 11; the third S may be either 9i i
or 1 i.e. 111 or 119. The S (111) corresponds to a neighborhood

i
and (119) may correspond to a neighborhood followed bv a.L

monotonic sequence. Thus there are 5 possible root paths for
i=3. Thus the root path can be traced in the tree diagram using
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the weighting matrix corresponding to the root signals.
The generation of root signal paths for any length of signal

can also be represented as state diagram as shown in fig.3.l3.
The states are defined as follows:

State A: Two successive digits with values 1 (1,1). The next
digit can take value either 0 or 1.
State B: Two successive digits with value 1 (l,l). The next digit
can take value 1.

State C: Two successive digits where the first has value 1 and
the second value of 0 (1 G). The next digit can be either l or 2.
State D: Two successive digits where the first has value 0 and
the second value of 2 (0 2). The next digit can take value 1.

State A generates state B either through E or 1, state B
generates state B in addition to state C; state C generates state
B and state D; state D generates two states, state C and state A.
Referring to fig.3.l3, from our discussion the following
recursive relationship can be deduced.

A

Fig.3.l3

A(i+l) = D(i)
B(i+l) = B(i)+A(i)+C(i)
C(i+l) = B(i) + D(i)D(1+1) = C(i) ..... (3.16)



Now referring to tree structure in fig. (3 3) and selecting
length i, it is possible to get the total number of states, The
number of root combination to any length of sequence can be
calculated using equation (3.l6). Combining all the states
mentioned in this equation the number of roots at any length can
be written as

R(i) = A(i) + B(i) + C(i) + D(i) and
R(i+l) = A(i+1) + B(i+l) + C(i+l) + D(i+l) (3ul7}

Replacing equation (3.16) in (3417) the number of root paths can
be found as

R(i+l) = A(i)+2B(i)+2C(i)+2D(i) . . . . . ... (3.18)
With appropriate initial conditions A=l, B=C=0 and D=l, the

number of roots for general signal and K=l can be found using the
expression (3-18). A few of these are listed in Table III.2

Table III.2; Window size = 3
H _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ _;______-_;______1
Column A(i+l) B(i+l) C(i+l) D(i+l) No. of Roots Roots(i) Root for binary for

classes sequence 4 level
seqn.

r- — - - - - - * - - - — — - - - ~ ~ — - - - - - - — — - - - — — — - - - - ~ - - - — ~ — - - ~ - — ~ — — — — ~ - - - - — - - — ~ -­1 l G G l 2 2 42 l l l 0 3 4 l63 G 3 l l 5 6 364 l 4 4 l l@ 10 945 l 9 5 4 19 16 2366 4 l5 l4 5 38 26 6G27 5 33 29 14 72 42 1528
8 14 58 47 20 139 68 3882

L ______________________________________________________________ __



For comparison the values obtained by Arce [29] for binary
signals and Fitch [25] for 4 level quantised signal are also
shown. The number of root paths for binary signal is the minimum
for all sequence lengths. On the other hand multilevel sequence
of the same length have the maximum number of root paths. The
root paths using the column sum is the minimum for any sequence
of arbitrary length and levels- This is because the multilevel
sequence including its trend etc are represented in column sum by
its MF window level, This is the major advantage for drawing the
tree structure.
3 7 Summary and conclusion:

Median filters, being non—linear are not amenable to the
elegant approaches of linear filters — convolution and transform
analysis, With the input—output characterisation by the wieghting
matrix one can construct the output square matrix Y directly
for certain class of signals. The maximum number of nrotations
in any column of square matrix is (2K+l). However, this matrix
is of limited use in further analysis. Onf the other hand the
median matrix M lends itself for further analysis. The column
sum parameter of M indeed characterises the filter by indicating
the signal samples that appear at the output and the number of
times this happens. For a given wihdow size the limits on column
sum, their repetitions and the number of possible combinations of
the column sum are all signal dependent and characterise the
signal. Periodicity and spikes are reflected in the column sum.
Further the column sum and their combinations lend themselves to
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a tree structure slmilar to that given by Arce [29]. The root
paths and the number of roots generated from this tree structure
are more accurate than those of [20] and Fitch [25].



Chapter — IV

INTERPOLATION

Median filtering realisation algorithms are available in
both hardware [16,16] and software [14]. In both the methods,
sorting to rank the input sequence takes most of the time.
In running median operation maximum time is taken for sorting and

selection operation for each position of the window. As already
Q

discussed in Chapter II, any sequence will become a root
sequence under iterated median operation. The maximum number of

such iteration is 1/2 (L—2) for sequence of length L. It has been
proved in Chapter III that when the input sequence trend and

structure [17] are known, the exact number of passes to get a

root sequence R is given by R = [hi—:-£E:E:] . In general,
atleast a few iterated operations on aifiinput sequence may be
required.

To reduce the running median computation time Tukey [6]
suggested a method of determining an approximation to a median.
Here the data string is arranged in blocks of 3 and the 3 point
medians of the blocks are initially determined. An approximation
to the 9 point median, the "Ninther", is obtained by considering
three 3-point medians. For example the data string (3,l,3,2,
G,l,4,2,7) yields a 3 point median string of (3,l,4) and a
ninther (Median of median) is 3 which is only an approximation to
the median of the 9 elements. The exact median of the sequence
is 2. It can be easily seen that if the data string is
monotonically increasing or decreasing then the ninther will
yield the exact median. If this method is implemented, the
computation time and hardware requirement are reduced. The time



delay can be further reduced by employing parallel processing.
The present work to be described in this chapter is based on
Tukey‘s idea.

4.1 Interpolated median filter.
It has been discussed in Chapter II that the number of

comparators required to implement ME in hardware increases as the

window size increases. This increase is nearly exponential as
K increases. Even for a 3 point median filter,as is often used in
picture processing,at least three comparators are required with a
system delay of three samples. It was pointed out by Tukey [6]
that an approximation to the true running median may serve an
useful purpose. He proposed the use of median of a median by

2

taking W sample sequence with a window size W.
The ‘median of a median‘ method needs atleast (L+l) times

2

filtering for every L length sequence block. On the other
hand, in the method suggested here, the median is picked for
each window. This median sample replaces the entire window
sequence. The window is moved to the next block of new data for
median computation, with the median sample replacing each block
of window sequences. Thus the output is made of a sequence of
neighborhoods. Such a sequence does not undergo any changes in
further filtering. The output so obtained is called Fast
Convergence Median Filter (FCMF). The output obtained in FCMF is

Ia root sequence and needs only one pass which results in a box
car approximation to the original sequence. This is the fastest
converging sequence with minimum computation time both in
hardware or software methods of realisation. An example
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to illustrate the smoothing action of ninther, Fast convergence
median and running median is given in fig. 4.1.

6 2 5 3 Q 4 l 3 2
(a) input sequence

3 3 3 3 3 3 3 3 3
(b) Ninther output

5 5 5 3 3 3 2 2 2
(C) East convergence median (3 point window)

5 5 3 3 3 l 3 2 2
(d) Running median (3 point window)

Fig. 4.1

The output of ninther is a simple DC term. The FCMF smooths

out certain finer variations of the signal which are not filtered
out by running median. The filtered output waveform is shown in
fig. 4.2.

A better approximation than the ninther and
FCMF is possible. It has been noticed that the FCMF
introduces a neighborhood equal to the window block. A sharp
discontinuity can exist between neighborhoods thus introdudng
quantisation noise. Further the variance of the median is 57%
larger than that of the mean (linear filter) for Gaussian white
noise (as discussed in Chapter II). A better approximation is to
introduce a monotonic region (linear) between the median window
segments. Similar to neighborhood, a monotonic region is also a
root and it will not alter the segment median in any way.
This is called a Interpolated Median Filter (IMF) and is
implemented as follows:
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The median of each segment corresponding to a window size
(2K+l) is evaluated (J ). In addition, the difference between

i
successive segment medians is also evaluated. Let this
difference be d . The median samples (J ) replace its centeri i
element of the specific window segment. The samples in
between two successive segments of medians are now evaluated
using d . There are 2K samples to be generated in between two

i
known segment medians. These samples are linearly interpolated, , . - dfi .between the values J and J . A step size or ————— —~ 1Si (i+l) (2K+l)
added or subtracted from the median segment value J to obtain

i

the next sample. Thus the region between true median samples
are filled by linear interpolation. This procedure is for all
segments to obtain an output sequence. The median output obtained

like this with linear interpolation is called Interpolated Median
Filter (IMF).To illustrate the IMF an example is shown in fig.4.3.
It is clear that as against the box car approximation of FCMF, we
now have a linear approximation to the true median output.
Possibly other type of interpolation are feasible but to
limit the amount of computation only a linear interpolation is
attempted in this work.

The comparison between output waveforms of FCMF and IMF is

shown in fig. 4.3. The input signal is a random sequence and
consists of signal regions which are roots as also segments which
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are not roots. The closeness of the output sequence of IMF to
the true RM as well as the FCMF is evident. However, it can also
be noticed that for portions of the signal which show oscillatory
(bivalued) tendencies, there is very little to choose among the
median filters mentioned. This is understandable since the
number of passes for such segments to become roots depend on the

number of oscillations [l7] and approximating these bivalued
sequences by a root made up of either neighborhood or monotonic
is equally incorrect. A qualitative picture of the performance
of all these filter emerges only if the mean square errors (MSE)
are compared as is done in the next section.
4.2 Performance Evaluation:

The, performance of the FCMF and IMF is evaluated by
comparing the mean square error (MSE) of these two filters with
that of the running median. For the purpose of a evaluation a
3-point window is considered. A 3-point running median of a
signal sequence of length L serves as the reference. The mean
square error between (1) the RM and the FCMF output sequence and

(2) the RM and the IMF output sequence are computed. The signal
considered for this purpose is general though to study the effect
of the operations in more detail it is made up of regions clearly
representing roots, oscillations etc. (fig. 4.3)

The MSE is calculated and presented in Table IV.A. It can be
noticed that the MSE of the IMF is always better than that of the
fast convergence median filter. In other words the IMF is a
better approximation to the running median than the FCMF. Due to
the basic nonlinear nature an analytical evaluation of the M85
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or even its bounds is not possible. For a composite signal with
roots, monotonic and neighborhood regions with oscillations etc.
it can be shown that the MSE of IMF is always lower than that of
the FCMF. As a further comparison hardware implementation of
Tukey‘s ninther, FCMF and IMF are considered.

Table IV.A
Window Size: 3

Mean Square Errorw
No ————————————————— -­FCMF IMF

—..-......-1 — — — — — — — — — — _ — _ — _ — — — .—..­I 1.066 6.947
2 2.166 1.796
3 1.166 6.720

4.3 Implementation

In this section hardware implementationsof FCMF and IMF
are compared with that of Running Median. The discussion is
restricted to window size 3. The arithmatic operations involved
in these are defined first and then compared with the running
median.

A sequence length L is segmented to window size 3 yielding
L/3 segments. Median operation is performed on these segments.

These operations involve comparisons which in turn introduce
delays for each segment. The median obtained for each segment
replaces the entire segment samples as a block. Thus the output
consists of L/3 segments of neighborhoods of length equal to
the window block. Thus the output obtained in this manner does
not undergo any change in repeated passing of MP.
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For IMF, the sequence length L is divided into L/(2K+l)
segments as in the case of FCMF.The median of each window segment

is extracted by comparison method; The median sample replaces the

central elements of each window segment. The difference between
successive segment median sample is computed (di). The missing

th
2K samples between the i and (i+l) segment median samples
are to be approximated. These samples are linearly interpolated
with a step size of di/(2K+l). This step size is added or

Table IV.B
__________________________________ __i_____-________.____________
S No. Operation 1 Running Median FCMF IMF

F—---d ----------- --j --------------- --< ------------- --+ ----------- -­
1 Comparison (L—2K)XNo. of L/(2K+l)x L/(2K+l)x

comparators in No. of com- No. of com­
window (2K+l) parators in parators ina window a window

(2K+l) (2K+l)
2 Arithmetic Nil Nil One divi­

sion and 3
addition
per segment

3 Delays (L—2)xNo. of L/(2K+l)x L/(2K+l)xdelays in No.of delays No. of de­
window(2K+l) in window lays in(2K+l) window

{2K+l)+
delay dueto Arith­
meticJ J J operationL ____________ __4 _ _ _ _ _ _ _ _ _ _ __

subtracted successively with tne segment median sample to fill
the 2K samples. The arithmetic operations involved are addition
and division. For window size 3, it is required to interpolate
2 samples which need one division and three addition/subtractions.

4.9



The number of operations and savings in hardware and
computation time with respect to those of the running median
is given in Table IV.B. There is considerable saving of
computation time for both FCMF and IMF methods The
computation time saving for both FCMF and IMF is (2K+l) times
that of the running median. Since this saving is proportional to
window size, for large windows the saving is appreciable.
4.4 Image processing

Application of median filtering to picture and image
processing is discussed in [3 4 l0 l6 23].These filters can be
either two dimensional filters or seperable median filters as
discussed in chapter II. Narendra has shown that both
filters perform alike and a separable median filter is more
efficient in terms of realisation. As it has been noticed in the
preceeding section, FCMF introduces neighborhoods of length
equal to the window block while tne IMF introduces a
monotonically increasing or decreasing region. The latter is
similar to a linear smoother between each window block. In this

section separable filter image processing is introduced for
FCMF/IMF and their performances are compared. The performuiwes of

a separable Fast Convergence Median Filter (SFCMF) and a
Separable Interpolated Median Filter (SIM?) are assessed by
evaluating the MSE with respect to a Separable Median Filter
(SMF} In this context, certain exanples are considered which
include different types of signal segments like roots,
oscillations random parts etc shown in fig. 4.3. Such a
signal is passed through the FCMF as well as IMF and the MSE is
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evaluated with the true RM output as the reference. The results
are listed in Table IV.A. The MSE of IMF is always less than the
FCMF because of its better approximation to median filter. The
SFCMF and SIM? implementation to picture/image processing is now
described.

Let the image consist of MXN pixels corrupted by noise. In
processing this image a sliding two dimensional window covering
odd number of picture elements is passed across the picture from
left to right and at every instant the central pixel is replaced
by the median of the pixels in the window. The output of this
filter depends on the window shape. Narendra has considered
processing images by a separable filter using one dimensional
windows. In separable filter,first the rows of the picture matrix
are processed by one dimensional window and then the columns by
the same window.

The separable filter implementation algorithm of FCMF and
IMF for image processing is as follows .A line segment window is
applied on each row of the image. The row elements are segmented
to the size of the window. The median element replaces the
entire window segment at the output. The output so obtained
gives a new set of MXN output elements. Now, the same line
segment window is applied on column segments of the image. The
output so obtained is called separable Fast Convergence Filter.
The difference between the SMF and SFCMF is that in the former

the window slides on the pixels while in the latter a complete
window segment is filled with new picture elements. Thus it is

bx.‘possible to reduce the processing time by two thirds for a
4.11



point window. At the end of each row/column processing if any odd
number of elements are left, then these elements can be processed
by a smaller window size if possible or the same elements may be
filled in the output as such.

The IMF implemented with one dimensional window for
processing images is called SIMF. The performance of the SFCMF
and SIMF is studied by applying this technique to a picture wi h
and without noise. An image of 32x32 pixels shown in fig. 4.4.a
is used for performance evaluation. The output of SMF, SFCMF,
SIMF and Moving Average are shown in fig. 4.4 (c) —- (f). The
picture is free from noise and it has been found that the first
three filters (SMF, SFCMF and SIMF) are preserving the sharp
discontinuities of the picture. These filter behaviour is
studied on the same image corrupted by (i) white noise (ii)
Gaussian noise. In all cases only a window of 3 is
considered. The MSE computation results are shown in the Table
1V.C. It can be noticed that SIMF is Consistantly better in MSE
sense than the other for both types of noises.

Table IV. C Window Size: 3
1 ’ ‘ ' ‘ “ "‘l ' ‘ ‘ ’ ” ‘ ‘ ‘ ” ' "'*"r ‘ ‘ “ - ' * ‘ ‘ ’ * ' ‘ ” ' ' ‘ ‘ ‘ ‘ ‘ * ' ' ‘ ‘ ‘ ’ “ “ ‘ ' ‘ ‘ * ‘ ' " “ ‘ ‘ ’ - ""'Mean Square Error TS No. Filter -------------------------------------- -—~White noise Gaussian Noise
L ______________________________________________________________ __­

1 FCMF 666.8937 522.4179
2 SIMF 479.6123 515.8125
3 MA 521.1719 597.3899

______ -.L__.___.___-___L_______.___________.____L_________-__._..___._____...

The processed image is shown in Eig.4.5 and Fig. 4.6 for
white noise and Gaussian noise. The SIMF picture quality is
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Fig.4.4 (From L to R bottom) (a) Image (b)Seperablp M3‘,
(From L to R top) (c) FCMF (d) IMF (e) Moving Aw!rP~Je­



ofiig 4.5 (From L to R ) (a) Image (b) Image with white noise
(c) SMF ( From L to R top) (d) FCMF (e) IMF (f) Moving
Average



Fig 4.15 (From L to R bottom ) (a) Image (b) Image with
gaussian noise (c) SMF From L to R top ) (d) FCMF (e) IMF (f)
(f) Moving Average



identical to that of SMF. Further SIMF preserves constant
intensity regions well while retaining the edges. This is not
true for SFCMF, SMF and MA. Another feature of SIMF is that at
the corners and sharp edges its behaviour is different from both
2D and separable filters. The SMF converts a region of
fluctuating grey levels to two smears of black while the SIMF
preserves more number of grey levels in the same region. In other
words the SIMF improves contrast in the picture. Thus the SIMF
is a better approximation to the available 2D or separable
filter techniques.
4.5 Conclusion:

FCMF and IMF filtering techniques have distinct
advantage in picture and image processing. These two methods
are simple to realise both in terms of time and hardware. The
processed picture quality is comparable in terms of MSE and
contrast. This is evident from fig. 4.5 and fig. 4.6 for white
and Gaussian noises, respectively.



Chapter V

FRQQEENCY DOMAIN ANALYSIS

Though median filters have been applied for speech and
picture processing, it has not been possible to define their
characteristics in frequency domain because of their non—linear
nature. However attempts have been made to categorise their
-behaviour. Justusson [9,18] considered a harmonic signal and
evaluated the variance which is expanded as a Fourier Series. He
established that the median filtered version of this signal has
the same covariance as that of a continuous time process.
Further, he proved that the spectral response of median filters
is the same as that of moving averages. Vellman [ 15 ] has
conducted extensive simulation studies and his results are quite
similar to those of Justusson. The difference between the
analysis of Justusson and Vellman is that Vellman treats MF as
one of the nonlinearities he considered, while Justusson treats
only MF. Vellman finds the power transferred by the MF from
fundamental to its harmonies and presents the result in terms of
sidelobe levels. By concatanating two different order MFS
Tyan [8,l8] has shown that the sidelobe level can be further
reduced­ Y =(p  (x))  (5.1)n .2 4 n
where ¢g and ._¢2_ are even numbered 4 and 2 point running
medians, respectively, has lower sidelobe levels.

The frequency domain characteristics in these works do not
truly represent the frequency response in the conventional sense.



For example fig. 5.1 shows Justusson's simulation result rather
than an analysis as he considers only a harmonic signal. The
same is the case with the results of Vellman and Tyan. It is
also obvious that it is not possible to define a ‘Frequency
response function‘ for a median filter similar to that of a
linear filter. However, alternate characterisation is possible
by observing these. The output of a median filter is basically a
subset of the input sequence and hence DFT of the output
sequence can be related to that of the input sequence. In this
chapter after introducing step response, impulse response etc as
done by Justusson, analysis proceeds to present methods of
determining the relationship between the input and output DFTS.
It is shown that in a few cases it is possible to obtain DFT of
the output sequence by simple arithmetic,

5.1 IMPULSE, STEP RESPONSES

Digital filters like most linear systems are described in
terms of their impulse, step or frequency response and these are
all interrelated.

Median filtering eliminates impulses for all K. Hence it
can be seen that impulse response of a median filter is-zero.

n
€% x where Q is the running median for(n) K n KLet y

a given K. This can be written as mentioned in-Chapter III in
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terms of weighting matrix for K=l.i.e. y = x x x a(n) 1 2 3 ’ 1
a

2
a

33 _ ..
or y = E a X ..... (5.2)(n) . i i

[=1

when the input 1S (5 (n)

Y(n) = h(n) = 6
To define the step response of a MF, let x = l for all n

n

Output y = ¢ (X ) = l for all n because X is a neighborhood(n) K n n
for all K. Therefore the step response of ME for any K is UNITY.

5.2 FREQUENCY RESPONSE:

Let g be a sequence of length L. On passing through a
median filger of window (2K+l), the median filter removes the
spiky noise less than K samples wide and preserves other sharp
edges. Both the spiky noise.and sharp edges are high frequency
components. The effect of MF on deterministic signal for
different period is analysed in time domain in Chapter III. The
subsequent discussion is to characterise the median filtering
effect in frequency domain.

Let x(n) be the input sequence passed through a (2K+l)
window Median Filter and the output sequence be x (n). Now x(n)

m
can be written as

[x(n)] = {x (n)] + [x (n)]  (5.3)m 1'.“
5.4



where all the vectors are of length L. Here the vector x (n)
r

is obtained from [x(n)] amd [X (n)]. The output vector x (n)"m m
is interpreted as the smooth part of the signal x(n) made up of
samples which pass through the MF without any change or at worst
replaced by another sample of x(n), if any trend change over is
present, in the same window and [X (n)] is interpreted as the
rough part of the signal. The rough part of the vector takes
zero values where the input signal is smooth and non zero at the
trend change over points and impulses.
Example: Let x(n) be the signal vector and its trend be changing
every third sample.
The input [x(n)] = X x X x X x X X X x ... X

H C] X >4 C! X >4 CI X X D ;MF Output [X (n)] .m l 2 4 5 7 8 (n)
[X (n)] [x(n)] - [X (n)]r m

where E] indicafihg the trend change over is being replaced by its
neighbouring samples in the same window. It is to be noted that
the rough and smooth parts defined here are different from those
defined by Rabiner et. al. [2]. In frequency domain the DFT
coefficients of [X(n)], [X (n)] and [X (n)] are computed andm r
compared. By linearity of DFT it can be seen that

DFT [x(n)] = DFT [X (n)] + DFT [X (n)]m r
or

X (f) X (f) -F X (f) Orn m rll

X (f) X (f) -— X (f) ..... (5.4)m I] I
5.5
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second brackets respectively. The subscript pi of X is the
periodicity at which the trend changes for i = 0,1,2 ......
Further the subscript pi is split into odd and even for the sake
of convenience. That is

X = C + (X + X ) .... (5.7)G 0 pi even pi odd
= C + (P + Q )0 G 0 AThe corresponding X (f) DFT coefficient of median filter

m

output is 1 lX (f) = C + (X + X ). ..... (5.8)m0 0 pi even pi odd
For the signal under consideration it can be seen that the
maximum and minimum samples are being replaced by preceeding and

succeeding samples respectively. Therefore
X = x
pi even (p+1) i even
X = X
pi odd (p~l) i odd

Now, the DFT coefficient for median output can be written as
X (f) = C + (A + B ) wherem@ 0 0 Q
A = (X + X + X ) andG 0 6 12
B = (X + X + X )G 3 9 15

The DFT coefficient X (f) may be written as
1 W 2U

X (r) -(J-+ (x + X e +x e +x e +1 1 9 3 6 9
-1%’-12 -i’—§'~‘5X + x e12 15



where c is the complex number due to the computation of
invariant part of the input signal. The variable part of the
samples are grouped in the bracket term. Further this can be
split into two portions namely signal minimum and signal maximum

as follows _jnr —jlE42_’ . (5.9)
ZTT, ...J ..2T}.r_15N

* fig?++ x 0
3
Q ) where P and Q are complex and

_,'U
u

t''\ x + x G) + X
\_p4

-2n3 - _°__. ""—‘ -]“""9 ] N ‘5(x3e ” + x9e " + x e )Q1

The DFT coefficients of MF output X (f) is

X (f) = C + (A + B ) ....... (5.10)
where

‘'21!’ _'2_"_J 5 ' J N 12

similarly it is possible to write
X (f) = C + P + Q .....(5.1l)(N-1) (N-1) (N-1) (N—1)

The corresponding coefficient of ME output is
x (f) = c + A + 13 ...(5._.12)m(N-l) (N-l) (N-l) (N-l)

The coefficient ratio



So far the discussion is restricted to a specific signal
(triangular wave).The same argument of maxima/minima change: over
points in ME output is _applicable to all periodic signals.
It is interesting to see the MF output for periodic signals in
frequency domain. It is observed that

X (f)
mk

———— —- = a constant ratio
X (f)

k

In order to place this in evidence a few specific
illustrations are considered.

Case 1:

Let the input sequence x(n) of a triangular wave be
3 1 2 1 G 1 2 1 U 1 2 1 0 1 2 1

The corresponding MF output for window 3 (K=l) is
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The output is a step function (D.C shift). The frequency response
is an impulse function. The input output frequency response is
shown in fig. 5.3.
Case II(a) :

A symmetric triangular wave x(n) is given by
@123 21:31 2321 @123

The MP output X (n) for Window size 3 (K=l) is
m

1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2

The rough part of the input sequence x (n)=x(n) — x (n)r m
5.19
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That is
-1 0 0 1 G 0 -1 Q G l 0 0 -1 0 0 1

The frequency responses of x(n), x (n) and x (n) are shown inm r
fig.5.4. The DFT coefficient
X (f) = (x + x + x + X + X + X + x + X + X + x )G 1 2 4 5 7 8 10 ll 13 14

(x + x + x ) + (x + x + x ) = 15 + (fl+9)G 6 l2 3 9 15
X (f) = 15 + (3+6)

m0

The ratio X (f)
mfi

_ _ _ _ ....._ :: ]_
X (f)

L _j 22.5 —} 1.5 -] 90 -jnz-5 -j1S='I.S -.]180 -1225X(+).-. xe +xe +xe +x'e +xe +xe +xe +1 1. _ 1-2 _ ‘I. 5 1 8 10
-1147-5 -j292.-5 -1315 J‘ -j135 ..,'27o _ _x e +xes +xe ‘+5:-'. (x +x.e + x e )+ '11 13 1:. ° 5

..j675 -1202-5 _j337.S L(x e + x e " + x ‘e )

II
(-o.9sas- jo-1.272,) + [0+(1-I678-]'0-1.7525!

xg (f),_. (-0-9686- jo-4274) +[(o-273+ j0'.293).+(0.76s2‘ jo-3172)]rn1

X (f)mu =
X1Ef)
Similar computation of DFT coefficients yield

X (f) X (f X (f)1112 _-5 , [n3 -. W115 ..
x,(f) " X3(f) ' ’ °" X15 (f)
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The DFT coefficient ratio is 6.5 except for the D.C. term. The MF
has- wiped out the maxima and minima samples replacing them by
the adjacent samples. This has resulted in a neighborhood in the
output.The sum of samples at the input and the My output are'tne
same. This yields a ratio of X (f) to X (f) as unity.m0 0
Case II(b):

In this example, the number of samples in a period is
maintained the same as in the case II(a) except non-uniform step
is introduced. The input sequence is as follows:

0 l 4 5 4 l 0 l 4 5 4 1 G 1 4 5
The MP output of window size 3 (K=l) is144 41114441 114
The difference between the input and output of the MP is given by

-1 G G 1 0 0 -l 0 0 l 0 0 —l G G 1
The frequency response plot of X(n), X (n) and X (n) is given in

r

fig.5.5. It is to be noted that the ratio X (f) and X (f) ism0 0
unity and the ratio of the other DFT coefficients are

ml m2 ml5......__ : _..._- 2 : __....._ =X X Xl 2 15
It is to be noted from fig.5.4 and fig.5.5 that the median

filter acts as a spectrum subtracting filter. Though the
analysis is carried out for periodic signal for simplicity, it
is applicable to all class of signals.
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Case III:

The number of samples in a period is increased for a
symmetric triangular wave. The signal sequence MF output
sequence and the rough part of median filter are given in
fig.5.6.

0 I 2 3 4 5 4 3 2 1 0 1 2 3 4 5
(a)

l l 2 3 4 4 4 3 2 l l 1 2 3 4 4
(b)

— I 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1
(C)

Fig. 5.6 (a) Input Sequence, (b) MF Output of window size 3,
(c) the difference of (a) - (b)

It may be noted from fig. 5.6(c) that the sequence has
values other than zero only when there is a change in signal
trend. The frequency domain plot is given in fig. 5.7. The DFT
coefficient ratio of the sequence is
1, 0.8032, 0.8153, 0.8487, 1.00, 0.2789, 0.6132, 0.6572, 0.0

The variation in the ratio is because of change in A and Bk k
values due to ME operation as shown in equation 5.13. Thus the
frequency response of a median filter is definable mathematically
and easy to visualise for deterministic Signals using DFT
algorithm.

5.3 Conclusion:

For median filters, it is difficult to
define a transfer function, and hence in general frequency
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domain descriptions_ are incomplete. It is difficult to
categorise them as low pass, high pass etc. However, MF exhibits
certain other interesting albeit signal dependent frequency
domain properties.

For instance, for all class of signals it operates as a
"spectrum subtraction filter". For yet another class of signals
the DFT coefficients bear a constant ratio thus leading one to
conclude that it can operate as a "spectrum subtractor"
and/or"spectrum scaler" depending on the input signal. For
random signals, MF exhibits its true nonlinear characteristics
and defies categorisation in the sense that one does for linear
filters. However, the spectrum ratio output seems to be
decomposable into polynomials. it is hence suggested that the
frequency domain characteristics of ME is basically one of two
classes; (1) spectrum arithmetic operation and (2) spectrum
distortion.
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Chapter VI

REALISATION AND APPLICATIONS

Median filtering amounts to producing at the output a sample
chosen from amongst the input sample x(n), so that smaller and
greater values of input occur with equal frequency. Extraction
of median requires sorting the samples and hence comparisons are
needed. Special algorithms are required to speed up this
operation so that online processing can be employed. In
Chapter II, some of the available algorithms were discussed.
Those methods, in general, are not optimum either in terms of
hardware or delay and no clear cut general structures are
available for a window (2K+l). Added to these there is neither

th
flexibility for the window size nor for n ranked operation.
In this chapter two new algorithms are presented; one in terms of
minimum hardware and the other in terms of minimum delay
suitable for VLSI implementation. The latter part of this chapter
is devoted to applications of median filtering to underwater
target detection as a Ranked CFAR processor, to picture
processing for feature extraction and to speech processing for
separting. the voiced and unvoiced signal and to formant number
prediction. The results are discussed in detail.
A. Hardware realisation
6.l Comparator Method:

Hardware and software algorithms for median have already
been discussed in Chapter II. The new algorithm suggested here
requires only (2K+2) comparators to find (2K+l) point median.
This algorithm has the flexibility of changing the window size
which is generally difficult in hardware realisation. Once the



median filter is built for a specified window, it has the
provision to process data for smaller windows. Besides this ntn
ranked (non—median) operation is also possible. The proposed
hardware structure can efficiently work with no change in
hardware and with a nominal alteration in the external

'h
interconnections for different window sizes and nt ranked
operation.

Detailed hardware realisation for a 5 point (K=2) RM is
shown in Fig. 6.1. There are (2K+l) buffers for a given K.
Initially the first (2K+l) data of an input sequence x is
strobed. The Median Counter M(C) is initialised to zero% All

the buffers contents are compared simultaneously with
M(C). The comparator outputs,((Buffer)=M(C)) coincidences are
brought out as address to a read only memory. The memory output
gives the number of buffers which are equal to M(C) at any
instant of M(C) clock. The present output of the memory is added
with that of the past for every clock period M(C) until
SUMZ(K+l). When the SUMZ(K+l), the clock M(C) is inhibited.
This ensures that the median value of the window sample
corresponds to the M(C) count.

The data are inputted to the filter and strobed in latches in
modulo (2K+l). In this operation the latest data are overwritten
on the oldest data. This algorithm is independant of the
input structure. That is,any combinations of neighborhoods, edges,
impulses, oscillations etc. The only constraint is that the
data update interval time Tdzq Tc, where q is the quantisation
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level of the input sequence and Tc is the median counter clock
period. The MF flow chart is given in Eig.6.2.

The hardware for a 5 point median can be easily converted to
that of a 3 point window. The necessary external changes are in
the buffer to store the data in mod 3 form and Sum comparator
value (K+1). Secondly for the nth ranked non median operation the

sum comparator value can be adjusted as per the requirement.
The MP hardware described shows flexibility in choosing

the window size and the ranked operation. This flexibility
is not available in any of the present hardware algorithms
[10,11]. The selection network [16] fails to give a hardware
structure for the window size beyond 7. Further, selection
network is neither optimised to minimum hardware nor minimum
delay. The method presented here has the minimum hardware. This

method can outperform software median filter [14] when x
is represented in smaller number of bits. A comparison betweenl
the selection network and the present method is shown in
Table VI.A.

Table VI.A

Selection network Present method
Window Size —————————————————————————————————————— --3 ———————— -­(2K+l) Comparators Delays Comparators Delays3 3 3 4 variable5 7 S 6 "7 ll 9 8 "

(2K+1) L Not available Not available (2K+2) variablejk



6.2 VLSI Implementation:

The comparator method described in Fig. 6.1 though reduces
the hardware does not reduce the comparison time inspite of its
flexibility in obtaining the running median for different
windows. In practical on~line applications, the delay in sorting
the sequence is much more important than the hardware complexity.
In this section MF realisation with unit delay is described. Let

the input sequence 1 be quantised to b bits. It is
necessary to compare (20 -1) levels to obtain the median. A
method is described here to realise the median filter.

The median is the mid value of the input samples when they
are ranked. Let the input sample be represented in b bits and a
moving window (2K+1) be selected. Initially (2K+l) samples are
latched and fed to the input port A of the comparators. The
data to be compared are fed to B port of the comparator. Since
the input data are represented in b bits, it may take any
of the 2b possible levels. The B inputs of the
comparators is also represented in b bits and their value
thresholded to (2b-l) distinctive levels. Let these be

i
represented by T

The output y at position m of a MF with a
(m)

window (2K+l) 1S

q’ i
y = E 1‘ (mm =: d) x ... X ... x(In) -,= (hm-k) (tn) (rn+k)

b
where q = 2 . The input sequence is compared with all the

i
thresholded values T . The comparator output AZB is passed
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through a combinational logic to check whether the largest (K+l)
samples are equal to or greater than the threshold level. T‘e
summed output of the thresholded branches gives the true median
value. A block diagram of this structure is shown in fig. 6.3.

The input samples are latched either by shift registers or
latches. The input sample data are latched in modulo (2K+l) so
that only the earliest data are replaced by the latest entry.
These (2K+1) samples are compared with all possible q levels.
A comparator has two input ports and an output port. The input
sample is fed to the A input of comparator while the B input is
the thresholded level to compare the input sequences. All the
(2K+l) comparator outputs AZB are passed through a combinational
logic circuit to get the majority output (@ or 1). The
combinational logic circuit may be realised with standard logic
gates or a ROM. The output of the combinational logic (1 bit)
is summed using standard adders. The output gives the median
of the input sequence at any position m. It may be noted
that there are (q-1) identical blocks with the same A inputs.
The B input is progressively increased from l to q. This
method is suitable for VLSI implementation because all branches
of q are identical. It is possible to modify the structure for
nth ranked operation. This will be useful for spatial
normalisation like underwater target detection [35] where the

operation needs higher degrees of freedom in choosing the
normalisation algorithm to suit the environment. The ntn
ranked operation can be obtained with slight change in the
combinational logic or in the ROM table.
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Major advantages of the threshold decomposition
structure are: (l) Fastest on—line ME (2) Flexibility of

tn
realising n ranked operation (3) Filter designed for a given
window can be easily modified for lower order window (4)
structure has (q—l) identical blocks and easily implementable
in VLSI.

B. Median Filtering for underwater target detection
Noise in the ocean is a superposition of anisotropic noise

field due to rough surface and of an isotropic noise field in the
absence of radiation from the surface. Detection process is
complicated due to the details of the interference environment
not being known. From the incoming signal a target "present or
absent " decision is to be made by comparing each range cell
voltage to a fixed threshold. This threshold value is a function
of interference and receiver noise. The design of constant false
alarm rate (CFAR) processor is achieved only if proper threshold
value can be set for each range cell.

The detection process is simplified if the p.d.f‘s of
signal and noise are known. In many cases we do not have
complete apriori knowledge of these two. Hence detection of
signal usually involves comparison of statistics based on the
ratio of probability density function of signal plus noise and
noise only conditions. Added to this underwater noise is not
stationary. In order to overcome these, normalisation preceeds
detection process. Once normalisation is carried out, the
detection perofrmance should depend only on signal to noise ratio
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irrespective of the environmental changes and of signal or
noise levels in the medium.
6.3 Ranked CFAR Processor:

Unknown level CFAR processing through cell averaging has
been suggested by Weiss, Hansen, Trunk and Nitzberg [28—33].
Here it is necessary to estimate the possible interference noise
power for each range cell.
This estimation r is achieved by considering K neighboring cells

K

on either side (window size 2K+1)s This estimate is" A  (6.2)= E ri i=l .... L1 —K
Every time the window is moved by one cell, r is reestimated.

ki

For each position of i, the difference (r — r ) is computed.' i ki
This is the required normalised input to set detection threshold.
The normalised output variance is always lower than the input
signal variance and tends to match the actual signal variance as

the window size increases. As K increases the r1_ tendsKl
asymptotically to an unbiased estimate.

A running median CFAR processor is shown in fig.6.4. The
input to the delay line is in natural order. The median scanner
quickly finds the median for a given window size. This can be
done either in hardware [10,34] or in software [14]. Median
output is now taken as an estimate of noise power. Variance with
different window sizes are computed and shown in

2.fig.6.5. It is observed that the median output variance 0“ 15
M
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always larger than the variance of the sample mean for gaussian
noise. That is

22 2 ¢_.0”“ = C ———— —— ..... (6.3)M K (2K+l)
where C >l. Cadwell [26] proposed an approximation for the

K

value C .
K

(4-W) 1
C 4.1.7.. 1-—————+0 —-———;  (6.4)x 2 2(2K+1) (zK+1)

2

It is observed that 5" reduces at a faster rate upto the
M

window size of 7 and then gradually decreases thereafter.

Performance curve:

The normalised variance power versus window size is shown in

fig.6.6 for running median and moving average. Simulation was
carried out for radiated noise of the target with interference
noise having normal distribution. It was observed that the
running median and the moving cell average methods behave in a
similar fashion as the window size increases. The normalising
voltage is an estimate of noise variance and the error of this
estimator decreases as the samples in the estimator increases.

The running median is slightly inferior to the moving
average (MA) for a given window size. The variance is
minimum only when it is computed with respect to its mean. The
variance for any other value will be always higher. The

th
performance of the running median can be improved by taking m
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ranked window sample instead of median sample. The ocean noise
being an increasing function of sea-state. The noise estimate can

th
be adapted for median or n ranked (say K or K+l ranked sample)
operation when the medium is rough or SNR is low. Curves that
give the probability of detection versus signal to noise ratio
for an unknown level CFAR processor implemented by cell averaging

and median filtering are shown in fig.6.7. These detection
-6

curves are for a false alarm probability 5X10 and window size
five.

The running median normalisation provides a higher degree of

freedom to choose the spatial normalistion from time to time.
The improvement in performance is appreciable under weak SNR.
Further this algorithm suits on—line implementation since it
does not involve any complexity either in software or hardware.
C. Picture Processing.

Median filters have been used in picture processing mainly
for impulse noise removal [ 3 ] and to some extent for the
removal of salt and pepper noise [ 7 ]. Two dimensional median
filters have been used for picture processing [11] and
seperable MFs have been shown to have some advantages [16]
for such cases. Tyan and Justusson [18] have proposed
various 2D median windows for picture processing. These
windows are basically symmetric around some prescribed axes and
have been proved to reduce the image variance [ll]. Narendra
has established that the performance of a median filter is
better than that of a linear smoother.
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Applications other than smoothing are possible. If we
consider the basic structure of a median filter, the output
samples are a subset of the input samples with trend changeover
(maxima/minima) samples being eliminated. In the place of such
samples, the median filter substitutes one of the samples
within a window. Thus seperable median filters perform
identical to other types of 2D filters [7,ll]. In general the
output sequence has as many samples at the output that are
correlated as those that are replaced, i.e. the output sequence
retains the correlation continuity. This can be usefully
exploited in picture processing.

If we consider a picture whose pixel values are available as
a sequence of samples any hidden contours can possibly be
brought out by obtaining the correlation function of the output
sequence of a median filter. Further, the change in trend of
correlation function yields information regarding the trend of
the signal contours. An example of a picture ‘Girl with hat on‘
is taken for this study. The picture is available in digitised
form.

6.4 Feature extraction
If we consider a one dimensional running median output for

each line of the picture, it can be seen that the line
corresponding to equal luminance show uniform values of
correlation. However, for a line encompassing the boundaries of
objects with different luminance, the correlation
varies (fig. 6.8). For unfiltered picture there may be
fluctuations in the correlation. Since median filtering
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preserves edges and removes spikes, the correlation shows
distinct regions of monotonic rise or fall.

A 3 point running median output is obtained for each line in
this analysis.

3

Y1(n) : ¢ { x(1,]"]—1)!x(1,n) ’ x(1vn4-1)}32 - '= X X
Y;.;(") (I) xmm-1): min) <a2.n+” (6 5)

To obtain the correlation line by line, spectrum of each line is
obtained for both MF output and input. The correlation in
frequency domain is given byi i* iZ (f) = X (f) . Y (f) ..... (6.6)i th i
where X (f) is the spectrum of the i input line and Y (f) that

th
of the i output line (* indicates complex conjugate).The pattern
of the boundaries of different objects show different slopes in
the correlation curves. The results of the correlation
function for different lines of the picture is shown in a series
of curves in fig.6.8. The picture lines 1 to ll are of uniform
luminance representing only a background. Similarly lines 29
onwards also show only a uniform background being the image of a

single object; The intervening lines carry details of face, eye,
and the side obscured by the edge of the hat.

The interesting result is the manner in which the
correlation curve varies from line 13 to line 26. Line 13 is a
‘V’ shaped correlation curve. The dip occurs at a point
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approximately in the middle. The dip flattens out in line 14
indicating the onset of a different and a new object in this
region. Line 15 shows the formation of an upward cusp in this
dip, This decorrelation clearly indicates that an obscuring
object is forming. Line 16 shows further strengthening of this
cusp. This is followed by line 17 showing a symetrical flatening
of both the top of the cusp and the peak correlation of the
adjoining regions. Line 18 completes the definition of this
second object by starting to show a decrease in the value of the
correlation to be followed by a complete flattening of the curve
to line 19. That is, the presence of a different object between
vertical position 14 to 18 and horizontal 13 to 22 is highlighted
by the correlation of the median filtered output.

If the changes in the slopes of the correlation are plotted
for these lines as in fig.6.9 with arrows indicating the trend
instead of the actual values, the existence of the obscuring
object as well the hidden object contour can be very clearly
interpreted.

It is possible to define and extract features from pictures
by studying the correlation functions of the median filtered
versions. It is easy to see that any change in the trend of the
correlation indicates the existence of a unique feature. However
this can be concluded only after inspecting the one dimensional

median filtered output line by line. When 2D filter is employed
the uniqueness of the feature may be lost if the window is not
small enough. The conclusions drawn from one dimensional output
are applicable to 2D images also since MF's are seperable. Thus
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he number of features that are present in a picture can be found
y counting the number of trend changes in the median filtered
ine by line correlation function. Extraction of the actual
eatures is slightly more complicated. For this, it is
mcessary to go back to part of the original image which is
bmarcated by regions of change in correlation and reproduce
those portions as unique features. However, if these features
are repeated elsewhere in the_ same picture with a different
value of correlation, then this method does not indicate the
sameness and would classify them as a different features.

Now that it is well known that the Fourier spectrum is a
good measure of features, the effect of median filtering on the
FFT of the picture was studied. Fig.6.l0 shows the plot of error

in FFT and correlation for lines l6, l7 and 18 of the_ picture.
The monotonic regions in correlation correspond to large error in
the EFT. This error resembles a damped sine wave, whereas the
region potentially capable of representing features (random
fluctuations in the EFT) should show negligible error. This is
clearly indicated in fig. 6.lG(a), (b) and (C). Thus the
correlation function of the MF output serves as an indication to
the existence of hidden contours. It is possible to use
correlation technique-to identify the existence of features
in an image.
D. Speech Processing:

It is well known thafi the pitch period of speech can be
estimated by first center clipping the samples and then
examining the auto correlation function. When speech is passed
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through a ME, a good number of the samples remain unchanged. Thus
most of the characteristics of the auto correlation
function are preserved. Using this fact the autocorrelation
function of median filtered speech samples were examined.

The speech data is made up of segments consisting voiced,
unvoiced and boundary between unvoiced and voiced sounds. The
Fourier transform of the MF output when compared with the input
signal presents some interesting results. The MF effect on
unvoiced signal is studied first. Fig.6.ll(a) shows a typical
unvoiced portion in frequency domain. The input signal shows
strong line component at 2KHz, 2.25KHz, 2.5KHz and 2.75KHz.
The MF output does not show these components at all. That is
the ME output destroys all dominant frequency components.

The boundary portion containing voiced and unvoiced portion
of the signal is passed through the ME. The MP output spectrum
removes the unvoiced component while retaining the 250Hz
component belonging to the voiced sound. This is evident from
the fig.6.ll(b). The HF retains all the voiced frequency
components as shown in fig. 6.ll(c) for voiced segment.

When the speech signal is corrupted by Gaussian noise, the
frequency domain plot is given in fig.6.l2. The MP output still
retains all the dominant line components of voiced sound. This
indicates the retention of certain characteristic frequencies
which may be formant frequencies. The MSE between the input
and output spectrum shows a related behaviour. The MSE is very
small for voiced portions while it is high for unvoiced portions.
Since there is a marked difference between the MSE's for voiced
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and unvoiced portions, this can be used as a measure of
determining the voiced/unvoiced boundaries and regions.
Correlation function plots for these regions show that the voiced
signal is strongly correlated whereas it is not so for unvoiced
signal.

6.5 Conclusion and discussion
The hardware realisation of Mf with minimum hardware has a

good potential in constant false alarm rate receiver. This is
mainly due to two reasons viz. (1) flexibility in changing the
window size (2) ranked order filter. The VLSI implementations
have additional applications in speech and Image processing. The
unit delay time in selection and sorting of samples is also
attractive for image processing applications.

The running median normalisation for an unknown level CFAR

processor is found useful for weak signal detection. The weak
th

signal detection capability is enhanced by choosing n ranked
output for spatial normalisation. The implementation does not
involve any complexity either in software or hardware. The
correlation method of HF for feature extraction in image
processing, identification of voiced, unvoiced sound and
extraction of formant number is encouraging.



Chapter VII

CONCLUSIONS

Detection of edges in images, filtering techniques for
preserving sharp discontinuities in signals and reducing
computation are some of the attributes one looks for in
techniques of Image and Signal processing. As discussed in
Chapter II, MF seems to provide possible answers for these
requirements. However due to their inherent non—linear nature,
straight forward analysis of median filters like linear filters
have not been possiblei This thesis has attempted such an
analysis from several angles.

To provide a frame—work for analysing MF the chapters III
and V introduced certain new concepts in ME viz.
transformation matrix, Median Matrix and Column sum. The approach

using the weighting matrix, modified weighting matrix and
ultimately the median matrix is entirely new and is not based on
any work previously reported in MESH It has been established
that a median matrix operation can be defined for ME and that
for a class of signals (monotonic, periodic etc.) the median
matrix can be written by inspection. The MP output for these
class of signals can also be written down by inspection, which
inturn means that this algorithm can give the MF output without
actually performing any comparison. Attempt to extend this to
general class of signals has not succeeded. One reason is the
difficulty of codifying statistical properties of the input into
coefficients of the weighting matrixc This area is open for
further work and quite possibly, approximations to the exact
median matrix can be derived by relating the position and



distribution of l*s in the [M] to the probability distribution
function of the signal,

An entirely new concept — namely the column sum of [M] has
been defined While indicating the number of times a
particular sample maps onto the output, this parameter proves to
be of interest for the study of signal properties. Further
indications as to the number of roots and root paths possible are
also indicated by the pattern of column sums. The results
presented represent the analytical elegance of this new concept.
It has not been possible to relate this to the design of MFS or,
in general, to performance specifications of MES. It should be
noted at_tnis stage that otners[20 25] also have evaluated the
number of roots for a MF They have neither established any
relationship between roots and the design of MP nor "have
specified the use of roots in the analysis of ME. The results
presented in this thesis differ from those of the rest both in
the approach and valuesi In this approach as explained in
Chapter 111, each root is described in terms of the sample that
are being repeatedly mapped onto the output and not the sample
values themselves. The determination of the number of roots
itself has proved to be a good exercise in combinatorial
arithmetic and provided the surprising result that the number of

th
invalid paths at the n column is simply (2K+l) times the

rd
number of valid paths at the (n-3) column.

Based on the analysis provided for column sum and the tree
diagram for the signal state description has been attempted for
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the column sum patterns. The results are interesting to the
extent that a behaviour similar to that of binary signal states
is exhibited by the column sums It has not been possible to
see why sample values as well as their appearance numbers at the
MF output should behave in similar fashion. It is felt that
there is some scope for further analytical work in this area

While analysing the column sum patterns, it has been
observed that the state description and the table for evaluation
of valid paths and roots bear a strong resemblence to the methods
used in logic circuit design. Though the results presented in
this work are complete as far as the objectives are concerned, it
would be very useful to extend the method of prime implicants to
this problem, particularly when cases of very long column lengths
and large window widths are concerned.

Two new methods namely Fast Convergence Median Filter and

Interpolated Median filters are defined. The results show that
these two filters are very powerful for on—line image/picture
processing. It has been shown in Chapter IV that there is
considerable savings in computation due to their simplicity while
processing the images. Further the performance is on par with
seperable median filter and better than averaging filter for both
white and Gaussian noises

Very few authors have tried to analyse the ME in frequency
domain for the reason that MF is non—linear. The work in Chapter

V is an attempt to characterise certain class of MFS in frequency
domain. The approach used here is unique in that the difference



between the input-output sample contribution to DFT and the
effect of periodicity on the MF output have been studied. The
results are not complete in several aspects and it has not been
possible to generalise the input—output relationship in the
frequency domain. On the contrary it is felt that an approach
through sample number, similar to wave number, may lead to
analysis methods more useful for the design of MES;

On the practical side, improved realisation of MP has been
presented in this work. It has also been shown that VLSI
implementation of the MF will lead to more efficient systems.
While discussing nth ranked order realistion, which will prove
very useful for sonar applications, it is felt that FCMF and IMF
may prove useful under certain conditions. The results are
presented in Chapter VI.

As mentioned elsewhere in the thesis, the output of the MF
contains only samples of the input and no new samples are
generatedi This essentially means that the output and input are
correlated to the extent determined by the behaviour of trend
changes in the signal. This has led the author to investigate
the relationship between the correlation function and the MF
filtering‘ This approach is a useful application in Image
Processing and possibly in Pattern Recognition. Similarly its
usefulness in Speech Processing is also demonstrated,

Concluding the thesis, ME input—output characterisation has
been defined and modified to get median matrix which is useful to
extract several properties of a input sequence. Characterisation

7.4



of ME in

attempted“ Concepts of
their application to image processing has
simple and flexible ME filter hardware
applied to underwater target detection,

FCMF and IMF have been introduced

has been

the frequency domain for deterministic signals has been
and

been discussed. A
developed and
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