FLUID MECHANICS-NON-LINEAR WAVES

STUDIES ON KORTEWEG-DE VRIES EQUATIONS

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BY
N. NIRMALA ANTHERJANAM

STATRABETS

This thesis contains no material which has been accepted for the award of any other Degree or Diploma in any University and, to the beat of my knowledge and belief, it contains no material previously published by any other person, except where due reference is made in the text of the thesis.

N, vermala Athejoinan
(H.NIRMALA ANTHERTANAM)

CERTIFICATE

This is to certify that this thesis entitled " STUDIES ON KORTEWEGDE VRIES RQUATIONS" that is being submitted by Smt.H.Nirmala Antherjanam, for the award of the Degree of Dootor of Philosophy in Mathematics to the Cochin University of Science and Fechnology, Cochin 682 022, is a record of bonafide research work carried aut by her under my supervision and guidance. The results embodied in this thesis have not been submitted to any other Institute or University for the award of any other degree or diploma.

(Dr. M.J ATHAVED AN)

Cochin 682022
10th December ' 87

CONTENTS

PageACENOWLEDGEMENT
CHAPTER- I INTRODUCTION
1.1 LINEAR AND MONLINEAR WAVES IN FLUIDS 1
(a) Hyperbolic Waves 3
(b) Dispersive Waves 4
1.2 KORTEWEG-De VRIES EQUATION AND WATER WAFES 6
1.3 SCOPE OF THE RHRSIS 19
CHAPTLR- II WAVE INTERACTION ON WATER OF VARTABLE DEPTH
2.1 INTRODUCTION 21
2.2 THRBE-WAVE INTERACTION 24
2.3 THE DERIVATIVE-EXPANSI ON METHOD 25
2.4 APPLICATION OF THE DKRIVATIVR- EXPANSION METHOD TO WAVE INTERACTIONS 27
2.5 DI SCUSSI ON 35
CHAPTER-III A VARIABLE COEFFICIENTS KORTEWEGDE VRIES EQUATION
3.1 INIRODUCTION 37
3.2 KdV TYPE EQUATIONS WITH VARIABLE COEFFICIENTS 37
3.3 INTEGRABLE AND NON-INTEGRABLE STSTRMS 42
3.4 A KdV EqUATION WITH VARIABLE COBFFICIENTS. 46

CHAPTR-IV	aUTO-BÄCKLUND TRANSFORMATIONS, LAX PAIRS AND PAINLETE PROPERTY OF A VARIABLE COEFFICIENTS KORTEWEG-De VRIES bqUation	-•	
4.1	INTRODUCTION		48
4.2	IAX PAIRS, AUTO-BÄCKLUND TRaNSPORMATIONS AND PAINLEVÉ PROPERTY OF PARTIAL DIFPERENTIAL EQUATIOHS		48
$4 \cdot 3$	PAINLEVÉ PROPERTY OF VARIABLE COEFPICIBNTS KdV BqUATION	.	52
4.4	DISCUSSION		61
CHAPTER- V	SIMILARITY ANAIYSIS AND EXACT SOLUTION of a ${ }^{\text {a }}$ ARIABLE COEFFICIENTS KORTEWEG-De VRIES BQUATION		
5.1	INTRODUCTI ON	-•	63
5.2	LIE GROUPS, LIE ALGEBRAS AND SIMILARITY SOLUTIONS	-•	63
5.3	SIMILARITY TRANSFORMATIONS OF A PDE	-	65
5.4	SIMILARITY TRANSFORMATION ABD IIE ALGEBRA OF VARIABLE COEFFICIBEIS KdV EQUATION	-•	69
5.5	SIMILARITY SOLOTIONS	-•	71
5.6	SELF SIMILAR SOLUTI ON	-	74
5.7	DISCUSSI ON	-•	76
CHAPTER-VI	COMPLETELY INTEGRABLE KORTEWEG-DE VRI RS bQUation wIth variable cobfficients		
6.1	INTRODUCTION	-	77
6.2	EXCEPTIONALITY AND EQUIVALENCE	-	78
6.3	VARIABLE COEPFICIENTS KdV EqUAFION	-	80
6.4	DISCUSSION	-•	82
6.5	CONCLUSION	-•	82
	REFERENCBS	-•	85

Abstract

I am indebted to Dr.M. Jathavedan, Lecturer, Department of Mathematics and Statistics, Cochin University of Science and Technology, Cochin 682022 for his guidance, encouragements, suggestions and co-operation which enabled me to complete this work.

My thanks are due to Prof. T. Thrivikraman, Head of the Department of Mathematics and Statistics, Cochin University of Science and Technology, Cochin-22 for his advice and inspiration throughout this work.

I express my gratitude to all teachers and members in the other staff of the department of Mathematics and Statistics for their help during the course of the preparation of this thesds. I also thank Sri.Joseph Kuttikal for the neat typing work and all other sincere help rendered.

I shall always remember with pleasure the help and comperation extended by my colleagues during the preparation of this thesis.

I express my sincere gratitude to
Dr.B.V. Baby, Department of Mathematics, Pharata Mata College, Cochin 682021 for sharing his valuable ideas with me which helped me to a great extent to complete this work. I am also expressing my sincere gratitude to Dr . S.Iu. Sakovich, Institute of Physics, BeSSR Academy of Sciences, 220602, Minsk, U.S.S.R. for the keen interest he expressed in my work.

I extend my sincere thanks to Prof. T.K.Ramakrishnan Nair, the Principal, my colleagues and non-teaching staff and particularly to Prof. K.R. Raman Kartha, Head of the Department of Mathematics and Statistics, Sree Sankara Vidyapeetom College, Valayanchirangara 683556 , Perumbavoor for their encouragement during the course of this work.

Finally, I place on record my gratitude to my husband for his inspiration during the preparation of this theais.

Chapter-1

INTRODUCMION

1.1. LINBAR ADD MONLIMEAR WAVBS IN FLULDS

Abstract

Wave motion is so wide a subject that any definition will not be sufficient to give a clear picture of the nature of the subject. Iet various definitions are given to the subject. The concept of wave includes the cases of a clearly identifiable disturbance-either localized or non-localized- that propagatesin space with increasing time, a timedependent disturbance throughout space that may or may not be repetitive in nature and which frequently has no persistent geometrical feature that can be said to propagate, and even periodic behaviour in space independent of time. The propagation of an acoustic pulse in a solid, the behaviour of a random pattern of waves on the surface of water and the undular pattern of sand bars in an estuary are respectively, physical examples of the above three categories. A basic definition that can be given to a wave is that it is any recognizable signal that is trasferred from one part of the medium to another with a recognizable velocity of propagation, which covers the whole range of wave phenomena. The signal may be any

feature of the disturbance, such as a maximum or an abxupt change in some quantity provided that it can be clearly recognised and its location at any time can be detemined. The signal may distort, change its magnitude, and change its velocity provided it is still recognizable. Also, different features are important in different types of waves. Though sufficient to our purpose, clearly this definition does not include the third category mentioned above.

Although the basic understanding of weves is provided by the important results from linear theory, most of the theories in physics are nonlinear. Evolution of physical systems are often described by nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs) depending on whether the system is discrete or continuous. The theory of nonlinear differential equations have gained much from the development in the study of wave propagations.

By nonlinear effects on waves we mean any feature of real wave motions which cannot be reproduced in a linear anolysis, ie: in an analysis neglecting the squares of the disturbances. In the case of nonlinear differential equations one cannot often obtain the general solutians because superposition principle is no longer valid in these cases.

Consequently the initial and boundary-value problems associated with nonlinear PDEs are very difficult to handie in a general way. Some specific problems have been tackled from time to time by methods apecifically suited to the individual problems.

The role of nonlinearity is to produce progressively more and more deformation in the wave profile as 't' (time) increasea, After some time ($t>$), a physically meaningful solution is the one in which contains a moving jump discontinuity; a socalled weak solution.

Different types of waves can be broadly classified into two main classes, (a) Hyperbolic and (b)Dispersive.
(a) Hyperbolic Waves

Waves formulated mathematically in terms of hyperbolic PDBs are called hyperbolic waves. The most suited governing equation in the case of time dependent wave propagation is a hyperbolic PDE which may be linear or nonlinear.

Monlinearity in waves manifest itself in a variety of waves, and in the case of waves governed by hyperbolic
equations, possibly the most frequently arising is the evclution of discontinuous solutions from arbitrarily well behaved initial data.

(b) Dispersive Waves

The nonhyperbolic wave motions are grouped largely into a main class called dispersive. This class arises from the linear theory. In a medium in which the velocity of progresaive waves of small amplitude varies with the Wavelength, a disturbance of arbitrary form, which may be regarded as composed of superposed trains of waves of all wavelengths, changes shape as it progresses because the different component wave trains travel with different speeds.

Because of the linearity of the goveming equations, the field quantities associated with linear waves may be resolved into Fourier components. Let us consider for simplicity, one-dimensional plane waves. In this case the governing equations have elementary solutions in the form of sinusoidal wave trains a exp $[i(k x-\omega t)]$, where ' x ' denotes a one-dimensional space coordinate, ' t ' the time, ' a ' the amplitude, ' k ' the wave number and ' ω ' the angular frequency.

The phase velocity V_{p} defined by $V_{p}=\omega / k$ represents the speed of propagation of geometrical features of a wave and the group velocity V_{g} defined by $V_{g}=\partial \omega / \partial k$ represents the speed of propagation of the energy of the wave or its analogue. In general, both phase velocity and group velocity are functions of ' k ' and are not equal, so that the waves of different lengths travel with different group velocities and the disturbance will be spread over a certain length which increases with time. The system is then said to be dispersive. The relation between ' ω ' and ' k ' is known as the dispersion relation. The role of dispersion is often to take a general disturbance and cause different sinusoidal components of it to be found, at some subsequent instant, at different places. All gravity waves in fluids are dispersive. If ' ω ' is a complex function of a. real ' k ' and $\operatorname{Im}(\omega)<0$, the system is called dissipative.

Unlike the case of linear systems, it is to be noted that a precise definition of dispersion has not yet been established for nonlinear systems. In many cases, however, we can obtain corresponding equations of a linear dispersive system by linearizing the governing equations which are originally nonlinear. In these cases we can

Abstract

consider the dispersion of nonlinear waves. We shall say that the system is dispersive if its linearized form is dispersive in the sense of linear waves. The main nonlinear effect is not the difference in functional form, rother it is the appearance of amplitude dependence in the dispersion relation. Effect of nonlinearity is the steepening of a wave profile and that of the dispersion is the spreading of it by reducing the steepening. A consequence of this is the possible existence of solitary waves, when the two effects are balanced. The nonlinearity of the water wave problem arises from the dynamic and free surface condition.

1.2. KORTEWEG-DE VRIES EQUATION AND WATER WAVES

The simplest model equation describing a nonlinear dispersive non-dissipative phenomenon is the celebrated Korteweg-de Vries (KdV) equation

$$
\begin{equation*}
u_{t}-6 u u_{x}+u_{x x x}=0 \tag{1.2.1}
\end{equation*}
$$

This equation represents physical phenomena artsing aut of a balance between a weak nonlinearity and weak dispersion and describes the unidirectional propagation of
small but finite amplitude waves in a nonlinear dispersive medium. Korteweg and de Vries (1895) derived the equation from the Euler equation as an approximation to the NavierStokes equation assuming that waves being considered have an amplitude which is small and a wavelength which is large when compared to the undisturbed depth. Additionally, they recognized the importance of presuming the Stokes number ' S ' ($S=a \lambda^{2} / h^{3}$ where ' a ' is the typical wave amplitude, ' λ ' is the length-scale of the waves and ' h ' is the depth) to be neither too large nor too small. The KdV equation is also justifiable as a model for long waves in many physical systems. Because of the range of its potential applications, and because of its very interesting mathematical properties, this equation has been the object of prolific study in the last two decades.

Long waves, which propagate on the free surface of a horizontal layer of fluid with finite depths are known as gravity waves. It is assumed usually that the fluid is inviscid and incompressible. The two-dimensional irrotational motion of such a fluid is described by the hamionic equation

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0 \tag{1.2.2}
\end{equation*}
$$

for the velocity potential $\varphi(x, y, t)$, where ' x ' and ' y ' are the horizontal and vertical co-ordinates. We shall consider the disturbance of the liquid to be amall; ie. we shall assume that all the derivatives $\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}$ and $\frac{\partial \varphi}{\partial t}$ of the velocity potential and the displacement of the free surface are sufficiently amall that we may neglect the squares of these displacements and their products without introducing any aigniflcant error into the solution. Under these conditions, we can reduce the problem of the disturbance on the free liquid surface to a boundary-value problem for Laplace's equation (1.2.2). Applying an appropriate perturbation method the original hamonic equation for the velocity potential subject to ncnlinear boundary conditions can be reduced to the KdV equation.

The most important property of the KdV equation is that it admits steady progressive wave solutions called solitary waves. Solitary wave is a long wave of small amplitude travelling without change of form. The first recorded observation of a solitary vave was made in 1834 by the naval architect Sir John Scott Russell (1844, 1845). While riding on horseback along the banks of a canal, he noted the motion of a simple hump of water without change of shape and he followed it for a long distance. He
made a careful study of this observed phenomenon and the outcome was reported in 1844, and published in 1845.

Stokes' (1849) investigations in water waves are the starting points for the nonlinear theory of dispersive waves. He discovered the crucial results that periodic wave trains are possible in nonlinear systems and that the dispersion relation involves the amplitude. The dependence on amplitude produces important qualitative changes in the behaviour and introduces new phenomena. He concluded that solitary waves cannot exist. Airy's shallow water theory [Airy (1845)] also does not give the possibility of the existence of solitary waves.

Russell's solitary wave may be regarded as the limiting case of Stokes' oscillatory waves of permanent type, the wavelength being considerably large compared With the depth of the canal, so that the widely separated elevations are independent of one another. But Stokes' theory fails when the wavelength much exceeds the depth and hence it cannot unravel the physical causes leading to the formation of solitary waves.

The speed of propagation of a solitary wave is proportional to its amplitude. Like Burger's shock wave,
the KdV solitary wave is also invariant with respect to a Gaillean transformation. Relative to their respective Values at infinity, a translation and scaling of amplitude of a solitary wave will transform it into another solitary wave. It is remarkable that all solitary waves are similar in this sense.

Boussinesq (1872) and Rayleigh (1876) analyzed mathematically the phenomenon of solitary wavea. They could derive approximate results for the shape and velocity of such waves. Rayleigh considered the solitary wave in an Bulerian frame of reference moving at a velocity that brings the wave to rest. Boussinesq's equations include waves moving to both left and right. Going a step beyond Boussinesq's theory, Korteweg and de Vries restricted attention to waves moving to the right only. They modified Rayleigh's theory and derived periodic cnoidal waves. Further they deduced Rayleigh's solitary waves as the limiting case of their cnoidal waves for long wave lengths. Both the solitary waves and the periodic waves described by the KdV equation are found as solutions of constant shape moving with constant velocity.

Solitary waves continued to attract attention in the ensuing decades. References of some works in this
direction are given by Weinstein (1926), Lamb (1932) and Stoker (1957). Weinstein developed a systematic theory for determining the velocity of the solitary wave. The works of Keulegan and Patterson (1940) and of Ursell (1953) deserve special mentions. Lavrentieff (1954) and Friedrichs and Hyers (1954) gave rigorous proofs that the Buler equations possess solitary wave solutions of small amplitudes. This result has been refined by Beale (1977). Later Amick and Toland (1979) have shown that the Suler equations have solitary wave solutions of all amplitudes, upto and including a solitary wave of greatest height.

The significance of Kd equation as a basic equation of mathematical physics was brought out in 1960 when Gardner and Morikawa derived the LXV equation as a model for waves in a cold collisionless plasma [Gardner and Morikawa (1960)].

In the famous FPU problew, Fermi, Pasta and Ulam (1955,1974) studied a one-dimensional lattice of many equal mass particles with weak nonlinear nearest-neighbouring interactions. In computer studies it was observed that for smooth initial conditions, the evolving wave form returned almost to its initial state after many (linear) oscillation periods. This phenomenon is known as FPU
recurrence. The current interest in the $\mathbb{K} d V$ equation stems from a numerical experiment by Zabusky and Kruskal in which they observed that the solution of XdV equation may exhibit PPU recurrence. It is found that a smooth initial profile evolving under the KdV, developed into a train of solitary waves. The most remarkable thing they noticed vos that after interaction two such waves emerged unaffected in shape with amplitude and velocity and suffered only phase shifts. Further the interaction was clean in the sense that no residual disturbance was created. This particle-like behaviour led to these special solitary waves being named 'Solitong' [Zabusky and Kruskal (1965)]. Lax (1968) showed that the soliton is not an approdimation but can be derived exactly.

The particle-like behaviour of solitons is of sreat importance in applications. Let us consider a pilse carrying a bit of information with it. If the pulse suffers heavy dissd pation, it may not reach the destination at all. Similarly, if the pulse suffers a significant dispersion, on reaching the destination it may be so spread out and blurred that the information may be totally unintelligible. However, if the pulse travels as a soliton, it can carry the information over long distance without
being distorted and without suffering any significant loss in its intensity.

The physical relation between linear theory and soliton theories is the following: If the waves are infiritesimal, the linear theory gives a complete description of their evolution. If the waves have gimall but finite amplitude, then the linear theory breaks down after a finite time and nonlinear corrections are needed to extend the range of validity of the theory to a long time scale. Typically, soliton theories provide the nonlinear corrections to render the linear theory valid on a longer time scale. There is a short time scale on which the linear theory applies, followed by a longer time scale on which the soliton theory applies, perchaps followed by an even longer time scale on which something else applies.

Hany related evolution equations, each of which represents a balance between some form of dispersion (or variation of dispersion in the case of wave-packet evolution) and weak nonlinearity in an appropriate reference frame, have since been found to have properties analogous to those of the KdV equation. Thus there exists an impressive number of rather distinct physical systems
for which the KdV equation, or a near relative, has been derived as a model for wave propagation. Some publications regarding this equation are the review articles by Jeffrey and Kakutani (1972), Scott, Chu and Mc Laughlin (1973) and Benjamin (1974).

A major development in the thecry of differential equations is the inverse scattering method by Gardner et al. (1967, 1974). An exact solution for KdV equation was obtained by this method and is aaymptotically dominated by solitons. In fact the proof of solition property of the KdV equation is one of the triumphs of inverse acattering method for solving PDEs [Miura (1974)].
spart from the inverse scattering method there are other mathematical methods and results originating from the study of KdV equation. These have led to applications ranging from 'practical' problems of wave propagation to rether 'pure' topics in algebraic geometry. For a discussion of these, we refer to Dubrovin, Matveev and Movikov(1976). The interest in the study of KdV equations and resulting discoveries have its impact in the study of nonlinear wave propagations in water also.

A theory related to the stability of solitary waves has been developed by Benjamin (1972) which is improved by Bona (1975) in order to treat the full nonlinear problem whout linearization, and a precise formulation and proof of stability for the solutions of the KdV equation is given with more general assumptions concerning the initial data. It is shown by Berrymen and James (1976) that the KdV soliton is stable whereas the Boussinesq solitary wave is unstable to infinitesimal perturbations.

It is to be noted that the KaV equation, inspite of its fame and popularity has not remained unchallenged as a model equation describing the behaviour of (long) water wavea in a channel [Peregrine (1966)]. Benjamin, Bona and Mahony (1972) have proposed an alternative model

$$
\begin{equation*}
u_{t}+u_{x}+u u_{x}-u_{x x t}=0 \tag{1.2.3}
\end{equation*}
$$

which they call a regulaxized KdV equation. An exact relation between equation (1.2.3) and the KdV equation

$$
\begin{equation*}
u_{t}+u_{x}+u u_{x}+u_{x x x}=0 \tag{1.2.4}
\end{equation*}
$$

exists [Bona and Smith (1975)] in the sense that for the
same initial data both equations have unique smooth solutions. But the solitary wave solution of the Benjamin-Bona-Mahony (BEM) equation (1.2.3) may not be a soliton due to the behaviour after interaction with other such vaves [Jeffrey (1979)]. The initial boundary-value problem

$$
\begin{align*}
& u_{t}+u_{x}+u u_{x}-u_{x x} t=0, \\
& u(x, 0)=g(x) \tag{1.2.5}\\
& u(0, t)=h(t) \text { for } x, t \geq 0
\end{align*}
$$

has been analyzed and shown to be well-posed by Bona and Bryant (1973). Specific examples of other sorts of model equation for long waves are given by Bona and Smith(1976) and Bona and Dougalis (1980). Sachs (1984) has investigated the justification of XdV approximation in the case of soliton water waves.

Numerical computations of solitary waves deserve particular mention. Zabusky and Galvin (1971) in their experimental studies have shown that the EdV-like evolution equation

$$
\begin{equation*}
u_{t}+u u_{z}+\delta^{2} u_{x x x}=0 \tag{1.2.6}
\end{equation*}
$$

of shallow water waves is very accurate even for large
nonlinearities and found nontrivial amounts of energy in wave numbers $k>0.5$. Longuet-Higgins and Fenton (1974) made extensive numerical calculations and found that speed, mass, momentum and potential and kinetic energes for waves of amplitude less than the maximum have the maxdmum Vilue so that they do not increase monotonicelly with the Wave amplitude. This reault has been conflmed by ByattSrith and Longuet-Higgins (1976) indicating that the highest and lowest wave profiles intersect at points near the wave crest. Some other numerical results are given by Jeffrey (1979), Knickerbocker and Newell (1980) and Rene (1983).

Bampi and Morro (1979) attempted to shed some light on the physical approximations that are at the basis of the KdV equation. The work of Bona (1983) presented the mathematical details of a rigorous justification of possible experiments to determine the applicability of the KdV equation when nonlinear and dispersive effects are of comparable small order. In such experiments it is assumed that unidirectional waves are generated at one and of the medium in question and then allowed to propagate into an initially undiaturbed medium beyond the wave maker.

Miles (1980) has given extensive review of the research works which led to the development of the KdV equotion. He has also given detailed analysis of the woriss in this field [Miles (1981a)]. Another review of the works on the KdV equation is by Cercignoni (1977) which gives a historical introduction and a derivation of the KdV equation. The solitary wave solution and conservation laws are also discussed. The existence of infinitely many consertation laws is proved suggesting a Hemiltonian form for the equation. More accounts of the soliton theary and the KdV equation have been given by Faddev and Zakharov (1971), Karpman (1975), Miura (1976a, 1977, 1978), Kakutani and Ono (1978), Johnson (1980), Miles (1981 b), Konno and Jeffrey (1983) and Peregrine (1985).

It is worth mentioning that though the KdV equation was first derived in the context of water waves, the recent revival of the interest in its studies were due to developmenta in other branches of physics. The knowledge available concerning $\mathbb{K} d V$ equation was first employed in the study of water waves by Madsen and Mei (1969). But it was Johnson (1980) who first noted the close relation between KdV ecuation and water waves. Starting from the basic equations
of hydrodynamics he has derived forr KdV equations: two expressed in cartesian co-ordinates and two in plane polars. Using elementary transformations, he has shown that for a certain class of solutions, only two of them are relevant.

1.3. SCOPE OF THE THESIS

The following chapters contain some results relative to KaV equations. The equations being studies are more ceneral than the equation (1.2.1). As can be noted the equation (1.2.1) has constant coefficients. The equations that are studied in the thesis have coefficients which are not constants. In chapter-II we stady the interaction of Waves on water of variable depth uaing derivativemexpansion metrod. Johnson's (1973a) KdV equation is used for this puxpose.

The celebrated KdV equation has constant coefficients while there are systems governed by KdV type equations with Variable coefficients, Johnson's equation being one of them. wuch equations are discussed in chapter-III. AKdV equation with variable coefficients is introduced. The concepts of integrability and Painlevé property (PP) are also discussed.

In the remaining chapters we study the integrability of our model equation.

Using the PP of the PDEs, the auto-Bäcklund transformation (ABT) and Lax pairs (LPs) for this equation are obtained in chapter-IV. LP criterion enables to find some new models of variable coefficients KdV equation that can represent non-soliton dynamical systems also. Thia can explain the wave breaking phenomenon in variable depth shallow water. In chapter-V similarity transformation for this system is investigated and exact solution in a particular case is obtained. The Ablowitz-Ramani-Segur (ARS) conjecture is used to identify the integrability of the system. In the last chapter we confirin the results already obtained in chapters-IV and V using the concepts of exceptionality and equivalence.

Chapt er-II

WAVE INTERACTION ON WATER OF VARIABLE DEPTH

2.1. INTRODUCTION

Wave interaction has been a subject of much interest in continuum mechanics and many of the theoretical predictions on it have been verified by experinents. Interactions between short and long waves have been investigated by means of the coupled equations for a single monochromatic wave and a long wave [Nishikawa et al.(1974), Kawahara, Sugimoto and Kakutani (1975), and Benney (1976, 1977)]. Zakharov (1972) has studied the interaction and the statistics of many localized waves in connection with Langmuir turbulence and Miles (1977a) has discussed the general interaction of two oblique solitary waves using two-dimensional XdV equation. Interactions associated with the parametric end points of the singular regime for two solitary waves have been investigated by Miles (1977b). A survey of results on the problem of soliton interactions in two-dimensions has been given by Freeman (1980).

Numerical studies of solitary wave interactions have been conducted by sluh (1980) and Bona, Pritchard
and Scott (1980). Seabra-Santos et al. (1987) in their numerical and experimental study have described the deformation and fission of a barotropic solitary wave passing over a shelf or an obstacle.

Under certain conditions the interaction between short and long wavee are especially important. Kawahara, Suginoto and Kakutani (1975) have found that a short wave and a long wave can exchange energy in a resonant mamer, if the group velocity of the short wave is close to the phase velocity of the long wave. Johnson (2982) has studied the steady oblique interaction of a large and a small solitary wave on the surface of water of constant depth. The phase-shifts of a large and a small solitary wave are obtained assuming that such a two-wave interaction is possible [Johnson (1983)].

Hearly all the investigations of the nonlinear interaction of random dispersive waves are based on asymptotic equations derived by means of suitable approxinations. In terms of a systematic perturbation Kawahara and Jeffrey (1979) have derived several asymptotic kinematic equations for a wave system composed of an ensemble of many monochromatic waves having a continuous spectrum together with a long wave. They have applied the method
of multiple scales to the Boussinesq equation. As the introduction of multiple scale concept can simplify the order estimation that is necessary in a perturbation anclysis, it can systematize the wave packet formalism [Jeffrey and Kawahara (1979)].

In a study by Grimshaw (1979) a slowly varying solitary wave is constructed as an asymptotic solution of a variable coefficients KdV equation. Then the amplitude and phase of the wave to the second order in the perturbation parameter are determined using a multiple scale method. The energy loss of such solitary Waves is predicted from a two-time scale expansion [Ko and Kuehl (1982)].

It has been pointed out by Kawahara (1973) that the derivativeexpansion method can be applied, in a systematic way, to the analysis of weak nonlinear dispersive waves in uniform media. The weak nonlinear selfinteractions of capillary gravity waves [Kawahara (1975a)] and the far-field modulation of stationary water waves [Kakutani and Michihiro (1976)] have been studied using the method. The derivative expansion that avoids the secularity incorporates partial sums, in the sense that the perturbation solution so obtained is not a simple
power series solution [Jeffrey and Kawahara (1981)]. This method is also applicable to problems of wave propagation in non homogeneous media [Kawahara (1975b)].
2.2. THREB-WAVE INTARACTION

Let us now consider the resonant interaction among different wave modes. Two primary components of vave numbers k_{1} and k_{2} and frequencies ω_{1} and ω_{2} give rise to an interaction term with the magnitudes of the nave numbers lying within the limits $\left|k_{1}+k_{2}\right|$ and $\left|k_{1}-k_{2}\right|$. Phillips (1960) has show that a resonance is possible if the interaction frequencies $\omega_{1}+\omega_{2}$ and c) $-\omega_{2}$ correspond to wave numbers lying within that renge. Further it has been pointed out [Phillips(1977)] that exchange of energy among wave modes is analogous to the resonance of a forced linear oscillator. For threewave interactions the energy exchange is signiflcant only when the conditions
and

$$
\begin{equation*}
k_{1}+k_{2} \pm k_{3}=0 \tag{2.2.1}
\end{equation*}
$$

$$
\dot{\omega}_{1} \pm \omega_{2} \pm \omega_{3}=0
$$

are satisfied or nearly satisfied simultaneously.
2.3. THE DERIVATIVE-EXPANST ON MBTHOD

$$
\begin{align*}
& \text { We consider the equation } \\
& L(\partial / \partial x, \partial / \partial t)=n(\partial / \partial x, \partial / \partial t)[u(x, t)]^{2} \tag{2.3.1}
\end{align*}
$$

where $L(\partial / \partial x, \partial / \partial t)$ and $N\left(\partial / \partial x_{0} \partial / \partial t\right)$ are differential operators involving spatial and temporal derivatives.

In the derivative-expansion method, the notion of independent variables ' x ' and ' t ' is extended to include a multitude of independent variables like $x_{n}=\sigma^{n} x$ and $t_{n}=\sigma^{n} t(n=1,2, \ldots, M)$ proportional to the original variables, o being a suitable small parameter. Accordingly, the dependent variable $u(x, t)$ must be regarded as a function of these extended independent variables.

$$
u\left(x_{0}, x_{1}, \ldots, x_{M} ; t_{0}, t_{1}, \ldots, t_{M}\right)
$$

and is expanded to an asymptotic series in terms of σ by writing

$$
\begin{align*}
& u\left(x_{0}, \ldots, x_{M}, t_{0}, \ldots, t_{M} ; \sigma\right) \\
= & \sum_{m=1}^{M} \sigma^{m} u_{m}\left(x_{0}, \ldots, x_{M}, t_{0}, \ldots, t_{M}\right)+o\left(\sigma^{M+1}\right) . \tag{2.3.3}
\end{align*}
$$

The derivative operators $\partial / \partial x$ and $\partial / \partial t$ are considered to be of the form

$$
\begin{align*}
& \frac{\partial}{\partial x} \equiv \sum_{n=0}^{M} \sigma^{n} \partial / \partial x_{n} \\
& \frac{\partial}{\partial t} \equiv \sum_{n=0}^{M} \delta^{n} \partial / \partial t_{n} \tag{2.3.4b}
\end{align*}
$$

Hence this name for the method.

Introducing the expansions (2.3.4) into the operators I and N, we obtain

$$
\begin{align*}
I\left(\partial / \partial x_{0} \partial / \partial t\right) \equiv & \sum_{n=0}^{M} \sigma^{n} I_{n}\left(\partial / \partial x_{0}, \ldots, \partial / \partial x_{M}\right. \\
& \left.\partial / \partial t_{0}, \ldots, \partial / \partial t_{M}\right)+0\left(\sigma^{M+1}\right), \tag{2.3.5a}
\end{align*}
$$

$N\left(\partial / \partial x_{0} \partial / \partial t\right) \equiv \sum_{n=0}^{M} \sigma^{n} H_{n}\left(\partial / \partial x_{0}, \ldots, \partial / \partial x_{M}\right.$,

$$
\begin{equation*}
\left.\partial / \partial t_{0}, \ldots, \partial / \partial t_{M}\right)+0\left(\sigma^{M+1}\right) \tag{2.3.5b}
\end{equation*}
$$

Substituting (2.3.3) and (2.3.5) into equation (2.3.1), and equating coefficients of like powers of σ,
we obtain a set of equations fram which it is possible to determine the u_{n} successively. Each perturbed dependent quantity u_{n} is to be determined so as to be bounded (non-secular) at each stage of the perturbation.

In this chapter we apply the derivative-expansion method to the atudy of waves on water of variable depths. The KaV equation derived by Johnson (1973a) is used.
2.4. APPLICATION OF THE DERIVATIVE-EXPANSION METHOD TO WAVE INTERACTIOKS.

Here we start with Johnson's (1973a) equation

$$
\begin{equation*}
2 h^{\frac{1}{\mathbf{2}}} u_{, I}+\frac{1}{\frac{h}{1}} \frac{\mathbf{n}^{\frac{1}{2}}}{} u+\frac{3}{n} u^{u_{0}}{ }_{0}+\frac{\mathbb{K}_{n}}{3} u_{\bullet \xi \xi \xi}=0 \tag{2.4.1}
\end{equation*}
$$

where suffix indicates differentiation with respect to the corresponding variable, $h=h(x)$ is the local depth and K is a constant.

The transformation

$$
\begin{equation*}
u=n^{-\frac{1}{4}} n \tag{2.4.2}
\end{equation*}
$$

reduces the equation (2.4.1) to a KdV equation with

variable coefficients

$$
\eta_{\cdot x}+\frac{3}{2} d^{7} \eta_{0 \xi}+\frac{1}{6} x^{-2} n^{\eta}, \xi \xi \xi=0
$$

$$
\text { where } \quad d=h^{-\frac{1}{4}}
$$

Since X is a time-like variable and ξ a spacelike variable we write equation (2.4.3) as

$$
\begin{equation*}
d^{2} \eta, t+\frac{3}{2} d^{9} \eta \eta_{, x}+\frac{1}{6} K \eta, x x x=0 \tag{2.4.4}
\end{equation*}
$$

We apply the derivative expansion method to the above equation. The variables ' η ' and ' d ' are regarded as functions of multiple scales and then expanded into asymptotic series as

$$
\begin{equation*}
\eta=\sigma \eta_{1}+\sigma^{2} \eta_{2}+\sigma^{3} \eta_{3}+\cdots \tag{2.4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
d=d_{0}+\sigma d_{1}+\sigma^{2} d_{2}+\ldots \tag{2.4.6}
\end{equation*}
$$

The partial derivatives with respect to 't' and ' x ' are also expended using equations (2.3.4a, b).

Substituting in equation (2.4.4) for η, d,
$\frac{\partial}{\partial t}$ and $\frac{\partial}{\partial x}$ using equations (2.4.5), (2.4.6) and $(2.3 .4 a, b)$ and collecting terms of $O(\sigma), O\left(\sigma^{2}\right)$ etc.
we get the following set of equations:

$$
\begin{array}{ll}
0(\sigma): & L_{0} \eta_{1}=0 \\
0\left(\sigma^{2}\right): & L_{0} \eta_{2}+L_{1} \eta_{1}=N_{0}\left[\eta_{1}\right] \\
O\left(\sigma^{3}\right): & L_{0} \eta_{3}+L_{1} \eta_{2}+L_{2} \eta_{1}= \\
& H_{0}\left[2 \eta_{1} \eta_{2}\right]+N_{1}\left[\eta_{1}^{2}\right] \tag{2.4.7c}
\end{array}
$$

and

$$
\begin{align*}
0\left(\sigma^{4}\right): & L_{0} n_{4}+L_{1} \eta_{3}+L_{2} \eta_{2}+L_{3} \eta_{1}= \\
⿴_{0}\left[n_{2}\right. & \left.+2 \eta_{1} n_{3}\right]+y_{1}\left[2 \eta_{1} n_{2}\right] \\
& +H_{2}\left[\eta_{1}^{2}\right] . \tag{2.4.7d}
\end{align*}
$$

where the operators $I_{j}, H_{j}(j=0,1,2, \ldots)$ are defined by

$$
\begin{align*}
& I_{0}=d_{0}^{2} \frac{\partial}{\partial t_{0}}+\frac{3}{6} \frac{\partial^{3}}{\partial x_{0}^{3}}, \tag{2.4.8a}\\
& I_{1}=d_{0}^{2} \frac{\partial}{\partial t_{1}}+2 d_{0} d_{1} \frac{\partial}{\partial t_{0}}+\frac{1}{2} \mathbf{x} \frac{\partial^{3}}{\partial x_{0}^{2} \partial x_{1}}, \text { (2.4.8a) }
\end{align*}
$$

$$
\begin{align*}
& I_{2}=d_{0}^{2} \frac{\partial}{\partial t_{2}}+2 d_{0} d_{1} \frac{\partial}{\partial t_{1}}+\left(d_{1}^{2}+2 d_{0} d_{2}\right) \frac{\partial}{\partial t_{0}} \\
& +\frac{1}{2} E\left(\frac{\partial^{3}}{\partial x_{0} \partial x_{1}^{2}}+\frac{3}{\partial x_{0}^{2} \partial x_{2}}\right), \tag{2.4.8c}\\
& I_{3}=d_{0}^{2} \frac{\partial}{\partial t_{3}}+2 d_{0} d_{1} \frac{\partial}{\partial t_{2}}+\left(d_{1}^{2}+2 d_{0} d_{2}\right) \frac{\partial}{\partial t_{1}}+ \\
& \left(2 d_{0} d_{3}+2 d_{1} d_{2}\right) \frac{\partial}{\partial t_{0}}+\frac{1}{6} \mathbf{Y}\left(\frac{\partial^{3}}{\partial x_{1}^{3}}+3 \frac{\partial^{3}}{\partial x_{0}^{2} \partial x_{3}}\right)(2.4 .8 \mathrm{~d}) \\
& y_{0}=-\frac{3}{4} d_{0}^{9} \frac{\partial}{\partial x_{0}}, \tag{2.4.9a}\\
& N_{1}=-\frac{3}{4}\left(d_{0}^{9} \frac{\partial}{\partial x_{1}}+9 d_{0}^{8} d_{1} \frac{\partial}{\partial x_{0}}\right), \quad \text { and } \tag{2.4.9b}\\
& H_{2}=-\frac{3}{4}\left[d_{0}^{9} \frac{\partial}{\partial x_{2}}+9 d_{0}^{8} d_{1} \frac{\partial}{\partial x_{1}}+\right. \\
& \left.\left(9 d_{0}^{8} d_{2}+36 d_{0}^{7} d_{1}^{2}\right) \frac{\partial}{\partial x_{0}}\right] \tag{2.4.9c}
\end{align*}
$$

Though equation (2.4.4) is nonlinear, equation (2.4.7a) is a linear homogeneous equation in η_{1}. Solving this and substituting in (2.4.7b) we get a linear nonhomogeneous equation in η_{2}. In the same way equations (2.4.7c) and (2.4.7d) are also linear nonhomogeneous equations.

Following Kawahara and Jeffrey (1979) we consider the nonlinear interaction between a long wave and an ensemble of ahort waves. For this purpose, to the lowest order of approximation, we consider the Inear superposition of wave trains together with a long wave component. Thus, we consider a solution of (2.4.7a) in terms of the Fourier transform

$$
\begin{align*}
\eta_{1}=\int_{-\infty}^{\infty} & A_{1}\left(k ; x_{1}, t_{1}, \ldots\right) \exp \left[i\left(k x_{0}-\alpha t_{0}\right)\right] d k \\
& +B_{1}\left(x_{1}, t_{1}, \ldots\right), \tag{2.4.10}
\end{align*}
$$

where $A_{1}(k)$ represents a slowly varying complex amplitude with the wave number k and B_{1} is a slowly varying real function representing the long wave component. The reality of η_{1} is assured by the condition

$$
\begin{equation*}
A_{1}^{*}(k)=\Lambda_{1}(-k) \text {. } \tag{2.4.11}
\end{equation*}
$$

Where the asterisk denotes complex conjugation. The dispersion relation satisfled by the linearized equation (2.4.7a) is

$$
\begin{equation*}
D(x, i))=i \omega d_{0}^{2}+\frac{1}{6} i \Delta x^{3}=0 \tag{2.4.12a}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega(k)=-\frac{1}{6} \frac{k}{d_{0}^{2}} k^{3} \tag{2.4.12b}
\end{equation*}
$$

The dispersion relations (2.4.12) admit the three-wave interaction process

$$
\omega\left(k^{\prime}\right)+\omega\left(k^{\prime \prime}\right)=\omega(k) \text { for } k^{\prime}+k^{\prime \prime}=k
$$

Introducing equation (2.4.10) into equation (2.4.7b) we obtain,
$L_{0} \eta_{2}=\int_{-\infty}^{\infty}\left\{-d_{0}^{2}\left(\frac{\partial}{\partial t_{1}}+\nabla_{g} \frac{\partial}{\partial x_{1}}\right)+2 i \omega d_{0} d_{1}-\right.$

$$
\begin{gather*}
\left.\frac{31}{2} d_{0}^{9} k B_{1}\right\} A_{1}(k) \exp \left[i\left(k x_{0}-\omega t_{0}\right)\right] d k- \\
\frac{3 i}{4} d_{0}^{9} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(k^{\prime}+k^{\prime \prime}\right) A_{1}\left(k^{\prime}\right) A_{1}\left(k^{\prime \prime}\right) \\
\exp \left\{1\left[\left(k^{\prime}+k^{n \prime}\right) x_{0}-\left(\omega^{\prime}+\omega^{\prime \prime}\right) t_{0}\right]\right\} d k^{\prime} d k^{\prime \prime} \\
-d_{0}^{2} \frac{\partial B_{1}}{\partial t_{1}} \tag{2.4.13}
\end{gather*}
$$

where ∇_{g} denotes the group velocity and $\omega^{\prime}=\omega\left(k^{\prime}\right)$ and $\omega^{\prime \prime}=\omega\left(\mathrm{kn}^{n}\right)$. Because of three-wave interaction.
the second term on the right hand side of equation (2.4.13) also contains a secular term. The condition for non secularity is

$$
\begin{array}{r}
\left\{\frac{\partial}{\partial t_{1}}+\eta_{g} \frac{\partial}{\partial x_{1}}-2 m \frac{d_{1}}{d_{0}}+\frac{3 i}{2} d_{0}^{7} k B_{1}\right\} A_{1}(k)+ \\
\frac{3 i}{4} d_{0}^{7} k \int_{-\infty}^{\infty} A_{1}\left(k^{\prime}\right) A_{1}\left(k-k^{\prime}\right) d k^{\prime}=0 \tag{2.4.14}
\end{array}
$$

and

$$
\begin{equation*}
\frac{\partial B_{1}}{\partial t_{1}}=0 \tag{2.4.15}
\end{equation*}
$$

If we assume that $\eta_{1}=0$ and start with the solution

$$
\eta_{2}=\int_{-\infty}^{\infty} A_{2}(k) \exp \left[i\left(k x_{0}-\omega t_{0}\right)\right] d k+B_{2}, \quad \text { (2.4.16) }
$$

where $A_{2}(k)$ and B_{2} are defined similar to A_{1} and B_{1}, we can set, without loss of generality,

$$
\begin{equation*}
\eta_{3}=\eta_{5}=\ldots=0 \tag{2.4.17}
\end{equation*}
$$

Then we obtain the non-secularity conditions

$$
\begin{align*}
& {\left[-d_{0}^{2}\left(\frac{\partial}{\partial t_{2}}+\nabla_{g} \frac{\partial}{\partial x_{2}}\right)+2 d_{0} d_{1} \nabla_{g} \frac{\partial}{\partial x_{1}}+\right.} \\
& i\left(2 d_{0} d_{2}-3 d_{1}^{2}\right)+\frac{1}{2} i d_{0}^{2} \frac{d V_{g}}{d k^{2}} \frac{\partial^{2}}{\partial x_{1}^{2}}- \\
& \left.\frac{31}{2} d_{0}^{9} k B_{2}\right] A_{2}(k)-\frac{31}{4} k d_{0}^{9} \\
& \int_{-\infty}^{\infty} A_{2}\left(k^{\prime}\right) A_{2}\left(k-k^{\prime}\right) d k^{\prime}=0 \tag{2.4.18}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial B_{2}}{\partial t_{2}}+\frac{2 d_{1}}{d_{0}}\left(\frac{\partial B_{2}}{\partial t_{1}}\right)=0 \tag{2.4.19}
\end{equation*}
$$

Equation (2.4.14) can be rewritten as

$$
\begin{align*}
& \left(\frac{\partial}{\partial t_{1}}+\nabla_{g} \frac{\partial}{\partial x_{1}}\right)\left|A_{1}(k)\right|^{2}= \\
& \frac{3}{2} d_{0}^{7} k \operatorname{Im} \int_{-\infty}^{\infty} A_{1}^{*}(k) A_{1}\left(k^{\prime}\right) A_{1}\left(k^{\prime}-k^{\prime}\right) d k^{\prime}
\end{align*}
$$

This is an equation for the three-wave interaction. Integrating equation (2.4.20) with respect to k, we get

$$
\begin{align*}
\frac{\partial N}{\partial t_{1}}+ & \frac{\partial}{\partial x_{1}}\{N V\} \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{3}{2} d_{0}^{7} k \operatorname{Im} \Lambda_{1}^{*}(k) A_{1}\left(k^{\prime}\right) \\
& A_{1}\left(k-k^{\prime}\right) d k d k^{\prime}, \tag{2.4.21}
\end{align*}
$$

where

$$
H=\int_{-\infty}^{\infty}\left|\Delta_{1}(k)\right|^{2} d k
$$

and

$$
\begin{equation*}
V=\frac{1}{N} \int_{-\infty}^{\infty} \nabla_{g}\left|A_{1}(k)\right|^{2} d k . \tag{2.4.22}
\end{equation*}
$$

The process can be continued further to the cases in which the non-linearities are of higher order in σ.

2.5. DISCUSSIOM

The perturbation methods can be applied in the stoudy of a wide range of physical phenomena. The guiding
principle for obtaining asymptotic equations is merely the non-secularity of the perturbation.

Johnson's equation is valid for waves propagating over surface of water of variable depth. The depth is varying slowly on the same scale as the initial arplitude of the motion.

The solitary wave solutions of the equation(2.4.1) do not behave as solitons. Johnson has shown that if there is a sudden decrease in the depth, so that a shelf is formed, a solitary wave may break up into a finite number of soiitons and if the depth increases, a solitary wave may degenerate into a cnoidal ware.

Ippen and Xulin (1954) has pointed out that a solitary wave cannot maintain the same total energy and volume in water of variable depth. Here, we have seen that the condition for three-wave interaction is satisfled. Since the right hand side of equation (2.4.21) does not Venish, not only there is energy transfer betveen different wave numbers due to the three-wave interaction, but the total energy of the short waves also is not conserved. This is in agreement with the observations made by Ippen and Kulin.

Chaptex-III

A VARIABLE COEFFICIEMTS KORTEWEG-DE VRIES EOUATION

3.1. INTRODUCTION

In this chapter we introduce a KdV equation With variable coefficients. First we give an account of different KdV-type equations which amise in the study of water waves.
3.2. KAV TYPE EQUATIONS WITH VARIABLE COEFFICIENTS

Equation (2.4.1) that we have investigated in the previous chapter is an example of a KdV equation with variable coefficients.

It is well-known that the waves reaching a shore can be considered as solitary waves gince they are well separated. Thus the development of a solitary wave over a region of varying depth is of great practical importance. Notable contributions in this direction are due to Ippen and Kulin (1970) and the numertcal studies of Peregrine (1967) and Madsen and Mei (1969). But it is rather surprising that except in the work of

Madsen and Mei no attempts were made to make use of the knowledge available concerning the KdV equation. Johnson's (1973a) work was perhaps the first serious attempt to fill this gap. It is to be mentioned that Grimshaw (1970) has considered the problem of waves on water of slowly varying depth, investigating the condition for solution to be a solitary wave with slowly varying coefficients.

Let us discuss Johnson's problem of a solitany Wave moving on to a shelf. We consider a small emplitude motion defined by the amplitude parameter ε. The depth is allowed to vary slowly on the same scale E. The far-field (distance $O\left(\varepsilon^{-1}\right)$) approximation then incorporates the effects of changing depth and the near-field first approximation is unaltered since the depth approaches a constant as $\varepsilon \rightarrow 0$. If we assume that the nonlinear and dispersive effects are of the same ordex, the resulting equation has tems depending on the depth, nonlinearity and dispersion, all being of order unity and can be watten in terms of the farfield distance comordinate

$$
\begin{equation*}
X=\varepsilon X \tag{2.2.1a}
\end{equation*}
$$

and the appropriate characteristic co-ordinate

$$
\begin{equation*}
\xi=\int_{0}^{x} d^{-\frac{1}{2}}(\varepsilon x) d x-t=0(1) \tag{3.2.1b}
\end{equation*}
$$

Where ' x ' and ' t ' are the original (non-dimensional) space and time variables respectively. When the attenuation factor $\cdot d^{-1 / 4}$, is removed the final equation takes the form

$$
\begin{align*}
& u_{x}+d^{-\frac{7}{4}} u u_{\xi}+d^{\frac{1}{2}} u_{\xi \xi \xi}=0 \\
& d=d(x) \tag{3.2.2}
\end{align*}
$$

where $u(\xi, X)$ is proportional to the elevation of the wave. It is to be noted that in (3.2.2) the region of changing depth $(\mathrm{d}=0(1), \mathrm{X}=0(1)$) and the 'period' $(\xi=O(1))$ of the wave are of the same order of magnitude. However, in the original non-dimensional variables the region of changing depth is extended (having length of $O\left(\varepsilon^{-1}\right), \varepsilon \longrightarrow 0$) and the 'wave length' is still $O(1)$. The change in depth need not be sudden even as a function of the far-field co-ordinate X . In fact, it may occur asymptotically rapidly or slowly. Also it was proved that if a solitary wave moves over the uniform depth ($\mathrm{d}=1$) without changing shape before reaching the shelf.
it breaks up into a finite number of solitons (n) on the shelf provided

$$
\begin{equation*}
d_{0}=\left[\frac{1}{2} n(n+1)\right]^{-\frac{4}{9}} \tag{3.2.3}
\end{equation*}
$$

Where ' d_{0} ' is the depth of the shell and ' n ' is an integer $(\mathrm{n} \geqslant 1)$. In a subsequent paper [Johnson(1972)] this result was confirmed and some numerical solutions of (3.2.2) for various shelf depths were presented. But the problem of ultra-slowly varying depth $(\varepsilon \rightarrow 0)$ was not examined. An approach suitable for dealing with such problems was developed by Johnson (1973b) and an asymptotic solution to $(3.2 .2)$ as $c \longrightarrow 0$, with a solitary-wave initial condition was constructed.

Evolution of a wave should be detemined according to the relative importance of non-linearity, dispersion and nonhomogeneity. Problems involving small and slowly varying nonhomogeneities, in a sense that a perturbation method in terms of a small parameter is applicable, lead to equations with slowly varying coefficients [Kakutani (1971) and Jeffrey and Kawahara (1982)]. Kakutani has shown that a modification of the KdV equation can describe shallew-water wave propagation
over gently slopping bottoms. The generalized KdV equation derived by Jeffrey and Kawahara

$$
\begin{equation*}
\frac{\partial B}{\partial t_{3}}+c \frac{\partial B}{\partial x_{3}}+\mu \frac{\partial^{3} B}{\partial \otimes^{3}}+\gamma B \frac{\partial B}{\partial D}+\delta B=0, \tag{3.2.4}
\end{equation*}
$$

where $\theta=k\left(x_{2}, t_{2}, \ldots\right) x_{1}-\Omega\left(x_{2}, t_{2}, \ldots\right) t_{1}$ is a phase variable, μ, γ and δ are functions of slow variables x_{3} and t_{3}, B is a real function covers the result obtained by Kakutani. Another modification of the IdV equation Was given by Grimshaw (1978).

$$
\begin{equation*}
\eta_{x}+\delta \gamma^{-1} \eta_{\xi}-c_{1} c_{0}^{-4} \eta_{\xi \xi \xi}=0 \tag{3.2.5}
\end{equation*}
$$

Where $X=\varepsilon^{3} X$ (ε is a measure of weak dispersion),
$\xi_{i}=\varepsilon^{-2} \int_{0}^{X} c_{0}\left(X^{\prime}\right)^{-1} d x^{\prime}-\varepsilon t, \eta=\gamma \eta^{(0)}\left(\eta^{(0)}\right.$ is the height of the interface), γ is an appropriate 'Green's Iaw' factor, and δ, c_{0}, c_{1} are functions of X.

The amplitude of a solitary wave in a channel of gradually varyjing depth would vary inversely as depth [files (1980)]. A balance between geometry of depth and geometry of waves can be thought to exist
[Brugarino and Pantano (1981)]. Approximate solutions of variable coefficients KdV equation for onedimensional waves over a bottom of variable depth show how the wave hape changes as it moves into shallower water [Cramer et al. (1985)]. Some other works related to this are due to Peregrine (1968), Clements and Rogers (2975), Kawahara (1976), Miles (1979) and Watanabe and Yajima (1984).
3.3. IRTEGRABLE AND HON-INTEGRABLE STSTEMS

One of the important developments in mathematical physics was the discovery of inverse scattering transform (IST) method whereby the initial-value problem for a nonlinear wave system can be solved exactly through a succession of linear calculations. This method can be viewed as a generalization of Fourier analysis in the sense that it provides the exact solution to certain nonlinear evolution equations, just as the Fourier transform does for certain linear evolution equations. For any dynamical system, there exist true connections between solvability and integrability conditions. Nonlinear evolution equations which are exactly solvable by IST are said to satisfy the integrability condition. The term "integrable" is more
commonly referred to as "completely integrable" but this latter term has very different connotations in the study of Hamiltonian systems, which motivates our choice of the former. The existence theorem on the solution of ODEs indicate that the integrability of the dynamical system cannot influence the local character Of the solution, as long as the analytic region is concerned. Thus the integrability is usuaily discussed in connection with the global or long time behaviour of the solution.

The existence of infinitely many conservation laws, the existence of multi-soliton solutions and solvability by inverse scattering are closely related. Miura, Gardner and Kruskal (1968) have discovered the existence of infinite sequence of explicit conservation laws for the KaV equation. The existence of infinite number of conserved quantities clearly added confidence that explicit solutions would be found.

Let us first consider the integrability of a system of ODEs. The solutions of a system of ODEs are regarded as (analytic) functions of a complex (time) variable 't'. The movable" singularities [Ince(1956),

Gille (1976)] of the solution are the singularities of the solution (as a function of complex t) whose location depends on the initial conditions, and are hence, movable (fixed singularities occur at points where the coefficients of the equation are singular). The system is said to possess the PP when all the movable singularities are single-valued (simple poles). When the system possesses PP it is integrable [Tabor and Weiss (1981)].

It was Iowalevskaya (1889) who first used PP to completely integrate a dynamical system of physical significance. It was shown that when the system is integrable there exists a converging power series expansion of solution in the neighbourhood of the singularities. With respect to the value of the Kowalevakaya exponents one can prove the existence of a number of first integrale that make the system integrable or non integrable. With a widely growing interest in dynamical systems and non-linear evolution equations in the 1970's these classical results were revived in a somewhat unexpected way.

The connection between ODEs of the Painlevé
type and the integrable PDEs has been pointed out by Ablowitz et al.(1977). Ablowitz, Ramani and Segur (1978, 1980 a,b) have conjectured that PDEs solvable by IST are closely connected with the six types of Painlevé equations (PI-P VI) [Ince (1956)]. Also, if the similarity reduced equation is any one of the six Painlevé equations then the given PDE is integrable and the respective dynamical system is fully deterministic, otherwise chaotic [Bountis (1985)]. The works of Jimbo, Kruskal and Miwa (1982), Welss, Tabor and Carnevale (1983), Weiss (1983, 1984), Chudnovsky and Chudnovsky, and Tabor (1983); Ramani, Dorizzi and Grammaticos (1983) ; and Steeb et al. (1983) led to a conjecture that the integrability is related to the PF for PDEs also. A given $P D E$ is said to be integrable if it possesses the PP or can be transformed to a PDF of Painlevé type. We shall note here that the last statement assumes a definition of PP in the case of PDEs. This will be discussed in the following chapters. Steeb and Grauel (1984) in their " Singular Point Analysis" for PDEs demonstrated that the KadomstevPetviashvili ($\mathbb{K}-\mathrm{P}$) equation has the PP.
3.4. A KdV EQUATION WITH VARI ABLE COEFFICIENTS

> We introduce a variable coefficients KdV
equation

$$
\begin{equation*}
u_{, t}+\alpha t^{n} u u_{, x}+\beta t^{m} u_{, x x x}=0 \tag{3.4.1}
\end{equation*}
$$

Where α and β are constant parameters and n and m axe real numbers. The celebrated KdV equation is obtained when $n=m=0$. For $\alpha=3 / 2, \beta=1 / 6$ and $m=0, n=1 / 2$, we can transform (3.4.1) to the welllnown purely concentric KdV equation.

$$
\begin{equation*}
2 v, t+v / t+3 \nabla v_{\cdot x}+\frac{1}{3} v_{, x x x}=0 \tag{3.4.2}
\end{equation*}
$$

through a nonlinear transformation

$$
\begin{equation*}
u=v \sqrt{t} \tag{3.4.3}
\end{equation*}
$$

Equation (3.4.2) is studied by several authors [Calogero and Degasperis (1978 a,b). Nakumara (1980). Steeb et al. (1983), and Knickerbocker and Newell (1985)]. Some soliton like solutions of (3.4.2) in terms of Airy functions have also been developed.

Such equations like (3.4.1) is particularly significant in the study of the development of a steady solitary wave as it enters a region where the bottom is no longer level [Maxon and Viecelli (1974), Miles(1978) and Johnson and Thompson (1978)].

In terms of the transformation

$$
\begin{equation*}
u=\frac{12 \beta}{\alpha} t^{m-n}(\log F)_{2 x} \tag{3.4.4}
\end{equation*}
$$

equation (3.4.1) can be rewritten into the bilinear form

$$
\begin{align*}
& \frac{m-n}{t} F F_{, x}+F\left(F_{, t}+\beta t^{m} F, x x x_{x}\right. \\
& F_{, x}\left(F_{, t}+\beta t^{m} F_{, x x x}\right)+3 \beta t^{m}\left(F^{2}, x x-F_{, x} F_{, x x x}\right)=0 \tag{3.4.5}
\end{align*}
$$

we shall note that for $m=n$, equation (3.4.5) reduces to a bilinear equation which can be exactly solved by using a kind of perturbation method [Whitham (1974)] as in the case of KdV equation with constant coefficients. But the method fails when $m \neq n$.

The following chapters are devoted to study the integrability of equation (3.4.1).

Chapter-IV

AUTO-BÄCKIUHD TRANSFORMATIONS, LAX PAIRS AND PAINLEVÉ PROPERTY OF A VARIABLE COBEFICIENTS KORTEWEG-DE VRIES BQUATIOI

4.1. INTRODUCTION

In this chapter we discuss the Painlevé analysis of KdV equation with variable coefficients. The PP is used to identify the values of 'm' and ' n " in equation (3.4.1) for which the system is integrable. We have found these parameter values using a property of LPs obtained from the Painleve analysis. The possible ABT is also developed, when the system is integrable.

4.2. LAX PAIRS, AUTO-BÄCKLUND TRANSFORMATIONS AND PAINLEVÉ PROPERTI OF PARTIAL DIFFERENTIAL EQUATIONS.

Lax (1968) has obtained the following criterion

Some reaults of this chapter find place in a paper published in the Journal of Mathematical Physics 27(11) November 1986, pp. 2640-2643.
for the integrability of an equation of the form

$$
\begin{equation*}
u, t=K(u) \tag{4.2.1}
\end{equation*}
$$

Suppose B is some space of functions such that to each 't', $u(t)$ belongs to B. Again let to each $u \varepsilon B$, we can associate a self adjoint operator I over some Hilbert space with the property that as 'u' changes according to the equation (4.2.1), $I(t)$ remain unitarily equivalent. Then eigen values of I constitute a set of integrals of equation (4.2.1).

Since L is unitarily equivalent there exists a one parameter family of unitary operators $U(t)$ such that $U(t)^{-1} L(t) U(t)$ is independent of ' t ' and $U(t)$ satisfies an equation of the form

$$
U_{, t}=B U_{p}
$$

where $B(t)$ is antisymetric. This leads to an equation of the form

$$
\begin{equation*}
L_{, t}=[B, L] \tag{4.2.3}
\end{equation*}
$$

Thus the problem of integrability reduces ultimately to
the existence of an antisymmetric solution $B(t)$ to equation (4.2.3). Equation (4.2.3) is called a LP representation and L and B are called LPs.

The existence of Bäcklund tromsformations (BTs) is another important characteristic feature of solvable nonlinear equations [Miura (1976b)]. These transformations were introduced oxiginally as generalizations of contact transformations and in particular in studies of the geometry of surfaces. BI is a transformation between solutions of solvable differential equations. The basic idea can be stated for second order PDEs for which the BTs vere originally derived. Given such a second order equation the BT consists of a pair of first order FDEs relating a solution of the given equation to another solution of the same equation or to a solution of another second order equation. Transformations which relate solutions of the same equation are called ABPs. Using this transformation new solution of an equation can be derived from a given solution. For a third order PDE the BT consists of an equation of first order of Riccati form plus an equation of second order.
of IST solutions. The pair of linear equations that are introduced in the course of effecting the solution by the inverse method are transformable to the BTs that are now known to be associated with certain of the evolution equations. Conversely, the BTs for the above mentioned evolution equations each contains an equation with Riccati-type nonlineamity. If these Riccati-type equations are replaced by a pair of first order equations one finds that the regulting equations are of the type firgt introduced by Zakharov and Shabat (1972) in their application of the inverse method to the nonlinear Schrodinger equation. There is no general procedure for inding the Brs [Porsyth (1959). Wahlquist and Batabrook (1973). Lamb (1974). Chen (1974), Dodd et al. (1982) and Hlavaty (1983)].

Ward (1984) has extended the study of PP, well known in the context of ODRs, to PDEs: A system of PDEs in n independent variables are considered in the complex domain, the coefficients being analytic on c^{n}. If S is an analytic noncharactexistic complex hypersurface in C^{n}, then the PDE which is analytic on S is mereomorphic on c^{n}.

A weaker form of the PP was suggested by Weiss, Tabor and Carnevale (1983) while studying the Lorentz Series expansion of single valued solutions Of a PDE in the neighbourhood of a movable singularity: Let a solution $u\left(x_{1}, \ldots, x_{n}\right)$ of a PDE be represented in some domain of c^{n} as

$$
\begin{equation*}
u=\sum_{j=0}^{\infty} u_{j} \phi^{j-\alpha}, \tag{4.2.4}
\end{equation*}
$$

Where α is a positive integer, φ is a function determining an analytic manifold

$$
\begin{equation*}
\varphi\left(x_{1}, \ldots, x_{n}\right)=0 \tag{4.2.5}
\end{equation*}
$$

in $C^{\text {n }}$, along which the poles of ' u ' occur, and ' φ ' and $u_{j}\left(x_{1}, \ldots, x_{n}\right)$ are analytic functions in a neighbourhood of the manifold $\varphi=0$. If the expansion (4.2.4) satisfies the given PDE and contains as many arbitrary functions as it should (in a general solution of the PDE) due to the Cauchy-Kovalesvakaya theorem, then this PDE is considered to have the PP.
4.3. PATALEVÉ PROPERTI OF VARIABLE CORFFICIENIS KdV
EQUATIOR gQUATIOA

The equation (3.4.1) has the PP when its solutions
$u(x, t)$ are "single valued" about the movable singularity manifolds, determined from the singularity analysis of the Lorentz series expansion,

$$
\begin{equation*}
u(x, t)=\varphi^{\eta}(x, t) \sum_{j=0}^{\infty} u_{j}(x, t) \varphi^{j}(x, t), \tag{4.3.1}
\end{equation*}
$$

where $\varphi(x, t)$ and $u_{j}(x, t)$ are analytic functions in a neighbourhood of the manifold

$$
\begin{equation*}
\varphi(x, t)=0 \tag{4.3.2}
\end{equation*}
$$

and η is an integer to be determined. Substituting (4.3.1) in equation (3.4.1), a leading-order terms analysis uniquely determines the possible values of η. The resulting series expanse on of (3.4.1) gives the required ABT and IP for the IST.

The leading -order terms analysis gives the value $\eta=-2$. The recursion relations for $u_{j}(x, t)$ are found to be

$$
\begin{aligned}
u_{j-3, t} & +(j-4) u_{j-2} 甲, t \\
& +\alpha t^{n} \sum_{k=0}^{j} u_{j-k}\left(u_{k-1, x}+(k-2) u_{k} \varphi, x\right)
\end{aligned}
$$

$$
\begin{align*}
& +\beta t^{\text {m }}\left\{u_{j-3, x x x}+3(j-4) u_{j-2, x x} \varphi_{, x}\right. \\
& +3(j-3)(j-4) u_{j-1, x} \varphi_{, x^{2}}^{2} \\
& +3(j-4) u_{j-2, x} \varphi_{, x x}+(j-2)(j-3)(j-4) u_{j} \varphi_{, x} x^{3} \\
& \left.+3(j-3)(j-4) u_{j-1} \varphi_{, x} \varphi_{, x x}+(j-4) u_{j-2} \varphi_{, x x x}\right\} \\
& =0,
\end{align*}
$$

where

$$
\begin{equation*}
\varphi_{, x}=\frac{\partial \varphi}{\partial x}, u_{j, x}=\frac{\partial u_{j}(x, t)}{\partial x}, \text { etc. } \tag{4.3.4}
\end{equation*}
$$

Collecting terms involving u_{j}, it is readily found that

$$
\begin{aligned}
& \beta t^{\text {m }} \varphi, x^{3}(j-6)(j-4)(j+1) u_{j} \\
& \quad=F\left(u_{j-1}, \ldots, u_{0}, \varphi, t, \varphi, x, \ldots\right),(4.3 .5)
\end{aligned}
$$

$$
\text { for } J=0,1,2, \ldots .
$$

We note that the recursion relations (4.3.5) are not defined when $j=-1,4$ and 6. These values of 'j' are called the "resonances" of the recursion relation and, corresponding to these values of ' j ', we can insert arbitrary functions of x and t instead of $u_{j}(x, t)$ into the series expansion (4.3.1). But for $j=-1$, the series expansion (4.3.1) is not defined and so the admissible values of resonances are $j=4$ and $j=6$ only.

Putting $j=0,1,2, \ldots$ in (4.3.3), we get

$$
\begin{equation*}
j=0, \quad u_{0}=-(12 \beta / \alpha) t^{m-n} \varphi, x^{2} \tag{4.3.6}
\end{equation*}
$$

$$
\begin{equation*}
j=1, \quad u_{1}=(12 \beta / \alpha) t^{m-n} \varphi, \ldots x \tag{4.3.7}
\end{equation*}
$$

$$
j=2,\left(t^{-n} / \alpha\right) \varphi, x \varphi_{, t}+u_{2} \varphi, x
$$

$$
-(3 \beta / \alpha) t^{m-n} \varphi, 2 x^{2}
$$

$$
\begin{equation*}
+(4 \beta / \alpha) t^{m-n} \varphi_{, x} \varphi, x x x=0 \tag{4.3.8}
\end{equation*}
$$

$$
j=3, \quad\left(t^{-n} / \alpha\right) \varphi, x t+(m-n)\left(t^{-n-1} / \alpha\right) \varphi, x
$$

$$
+u_{2} \varphi, x x-u_{3} \varphi, x^{2}
$$

$$
\begin{equation*}
+\left(\beta t^{m-n} / \alpha\right) \varphi_{, x \times x x}=0 \tag{4.3.9}
\end{equation*}
$$

and for $\mathrm{ja4}$ we get

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left\{\frac{t^{-n}}{\alpha} \varphi, x t+(m-n) \frac{t^{-n-1}}{\alpha} \varphi, x\right. \\
& \left.+u_{2} \varphi, x x-u_{3} \varphi, x^{2}+\left(\beta t^{m-n} / \alpha\right) \varphi, x \operatorname{cxx}\right\}=0, \quad(4.3 .10)
\end{aligned}
$$

which is a compatibility condition. The compatibility condition at $j=6$ involves extensive calculations.

When we assign $u_{4}=u_{6}=0$ and $u_{3}=0$, we can find that

$$
u_{j}=0, \text { for all } j \geq 3
$$

provided u_{2} is a solution of (3.4.1), which implies that

$$
u_{2, t}+\alpha t^{n} u_{2} u_{2, x}+\beta t^{m} u_{2, x x x}=0
$$

From equation (4.3.1) and equations (4.3.6)-(4.3.12), we get

$$
u_{0}=-(12 \beta / \alpha) t^{m-n} \varphi, x^{2}
$$

$$
\begin{align*}
& u_{1}=(12 \beta / \alpha) t^{m-n} \varphi, x x^{\prime} \tag{4.3.14}\\
& \left(t^{-n} / \alpha\right) \varphi, x \varphi_{, t}+u_{2} \varphi, x^{2}-(3 \beta / \alpha) t^{m-n} \varphi, x x^{2} \\
& +(4 \beta / \alpha) t^{\min } \varphi_{, x} \varphi_{, 1 \times x}=0, \tag{4.3.15}\\
& \left(t^{-n} / \alpha\right) \varphi_{, x t}+[(m-n) / \alpha] t^{-n-1} \varphi_{, x}+u_{2} \varphi, x x \\
& +(\beta / \alpha) t^{m-1} \varphi_{, 1 \times x x}=0 \text {. } \tag{4.3.16}\\
& u_{2, t}+\alpha t^{n} u_{2} u_{2, x}+\beta t^{m} u_{2, x x x}=0 \tag{4.3.17}
\end{align*}
$$

and

$$
\begin{equation*}
u_{j}=0, \text { for } j \geq 3 \tag{4.3.18}
\end{equation*}
$$

Substituting from equations (4.3.13) to (4.3.18) in equation (4.3.1) we get

$$
u(x, t)=\frac{-12 \beta}{\alpha} t^{m-n} \frac{\varphi, x^{2}}{\varphi^{2}}+\frac{12 \beta}{\alpha} t^{m-n} \frac{\varphi, x I}{\varphi}+u_{2} \text { (4.3.19) }
$$

or

$$
u(x, t)=\frac{12 \beta}{\alpha} t^{m-n} \frac{\partial^{2}}{\partial x^{2}}(\log \varphi)+u_{2}
$$

where $u(x, t)$ and u_{2} exact solutions of (3.4.1) and (4.3.12) respectively.

Bquations (4.3.13)-(4.3.20) define the $A B T$ for the variable coefficients KdV equation (3.4.1) provided (4.3.15) and (4.3.16) are consistent. If any one of the solutions $u_{2}(x, t)$ is known then another solution $u(x, t)$ of equation (3.4.1) can be determined using the ABT. The consistency of equations (4.3.15) and (4.3.16) can be verified by uaing a property of the LPs.

The LiPs are obtained from the equations (4.3.15) and (4.3.16) by using a transformation

$$
\begin{equation*}
\varphi_{, x}=V^{2} \tag{4.3.21}
\end{equation*}
$$

Substituting (4.3.21) in (4.3.16) yields

$$
\begin{align*}
& \frac{t^{-n}}{\alpha} \nabla_{, t}+\frac{(m-n)_{t}}{2 \alpha} t^{n-1} V+u_{2} V_{, x}+ \\
& \frac{\beta}{\alpha} t^{m-n} V_{, x x x}+\frac{3 \beta}{\alpha} t^{m-n} V_{, x} \frac{\nabla, x x}{V}=0 . \tag{4.3.22}
\end{align*}
$$

Equation (4.3.15) is also transformed into

$$
\frac{t^{-n}}{\alpha} \nabla_{, t}+u_{2} \nabla_{, x}+\frac{1}{2} u_{2, x} \nabla+\frac{48}{a} t^{m-n} v_{, x x x}=0 \quad \text { (4.3.23) }
$$

Eliminating ∇,t from equations (4.3.22) and (4.2.23) we get

$$
\frac{m-n}{2 \alpha} t^{-n-1}-\frac{1}{2} u_{2, x}-\frac{3 \beta}{\alpha} t^{m-n}\left(\frac{\nabla}{\frac{x x}{V}}\right), x=0 \cdot(4.3 .24)
$$

Integration of equation (4.3.24) with respect to x gives us

$$
\frac{\beta}{\alpha} t^{m-n} \frac{\nabla}{V}+\frac{1}{6} u_{2}-\frac{(m-n)}{6 \alpha} x t^{-n-1}=\lambda(t) \quad \text { (4.3.25) }
$$

or

$$
\begin{align*}
& f(t)\left\{\frac{\beta}{\alpha} t^{m-n} D+\frac{1}{6} u_{2}-\frac{(m-n)}{6 \alpha} x t^{-n-1}\right\} V \\
& =f(t) \lambda(t) V \tag{4.3.26}
\end{align*}
$$

Whus we get the linear eigen value problem

$$
\begin{equation*}
L V=\mu V \tag{4.3.27}
\end{equation*}
$$

where $\mu=f(t) \quad \lambda(t)$ and L is a linear operator
defined by

$$
\begin{equation*}
L=f(t)\left\{\frac{\beta}{\alpha} t^{m-n} D^{2}+\frac{1}{6} u_{2}-\frac{m-n}{6 \alpha} x t-n-1\right] . \tag{4.3.28}
\end{equation*}
$$

From equation (4.3.23) we get

$$
\begin{equation*}
V_{, t}=-\alpha t^{n}\left\{(4 \beta / \alpha) t^{m-n} D^{3}+u_{2} D+\frac{1}{2} u_{2}, x\right\} V \tag{4.3.29}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla, t=-B V \tag{4.3.30}
\end{equation*}
$$

Where the operator B is defined by

$$
B=\alpha t^{n}\left\{(4 \beta / \alpha) t^{m-n} D^{3}+u_{2} D+\frac{1}{2} u_{2, x}\right\}
$$

Equations (4.3.28) and (4.3.31) define the LPs, L and B. However, equation (4.3.30) implies that the eigen function V is in time evolution so that

$$
L_{, t}=I B-E L
$$

The $L_{, t}$ in (4.3.32) denotes the derivative with respect to both the explicit time dependence of I and the implicit dependence through $u_{2}(x, t)$.

From equetions (4.3.27) and (4.3.30) we get the following results for which equation (4.3.32) holds:
(i) $m=n, \quad f(t)=c$,
(ii) $m=2 n+1, f(t)=c t^{n+1}$,
where C is an arbitrary constant. For all other values of m and n the LPs are not consistent and hence the ABT exists only for the values of m and n defined in equations (4.3.33) and (4.3.34). Equation (4.3.33) implies that m and n can be both zero together and then the respective I and B are the well-known LPs of the constant coefficients KaV equation.

The above study shows that the variable coefficients KdV equation (3.4.1) is IST solvable and has PP whenever $m=n$ or $m=2 n+1$ and these properties are independent of the constant parameters α and β. For all other values of n and n, the system is non-integrable.
4.4. DISCUSSION

The variable coefficients KdV equation (3.4.1) that we have introduced is a now member in the families of integrable as well as non-integrable PDEs depending
on the coefficients. The PP analysis leads to the $A B R$ and LPs when it is integrable. The operator identity (4.3.32) of the LPs reveals that the system (3.4.1) can be integrable when $m=n$ and $m=2 n+1$ only, whereas for 011 other values of m and n, the system (3.4.1) is nonintegrable. The soliton solutions are the products of IST solvable class of nonlinear PDEs [Helleman(1980): irdlough, Caudrey and Gibbs (1980)]. Above study shows that the variable coefficients Kdv equation (3.4.1) has soliton not always, but in two special cases only. Hence, in general, a solitary wave solution of (3.4.1) need not be a soliton, and so, it need not be collisionally stable always.

The existence of infinite number of conservation laws are considered as a necessary condition for the existonce of soliton solutions of IST solvable equations [Bullough, Caudrey and Gibbs (1980)]. Here we are able to sive two of these members for general ' m ' and ' n '.

$$
\begin{equation*}
u_{, t}+\left((\alpha / 2) t^{n} u^{2}+\beta t^{m} u_{, x x}\right)_{, x}=0 \tag{4.4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{2} u^{2}\right), t+\left(\frac{\alpha}{3} t^{n} u^{3}-\frac{\beta}{2} t^{m} u, x^{2}+\beta t^{m} u n, x x^{m}\right), x x^{m}=0 \tag{4.4.2}
\end{equation*}
$$

The higher order conserved quantities are not so direct.

Chapter-V

SIMILARITY AHALYSIS AND EXACT SOLUTION OF A VARIABLB COEFFICIENTS KOREREWEG-DE VRIES EQUATION
5.1. INTRODUCTION

One of the most important methods for developing exact solutions of PDEs is that of reducing the number of veriables exploiting continuous symmetries of the system. The solutions obtained by this procedure are generally called similarity solutions. This method has been widely used in the past for developing solutions as well as for the test of PF of various systems [Shen and Ames (1974), and Lakshmanan and Kallappan (1983)].
5.2. LIB GROUPS, LIE ALGEBRAS AND SIMIIARITY SOLUTIONS

Sophus Lie has widely investigated systems of PDES that are invariant under transformation groups called Lie groups. A Lie group is a topological group in wich there exists some neighbourhood N_{o} of the identity that can be mapped homeomorphically onto an open bounded subset of the real Buclidean space B_{n} for some n . Knowing the

Some results of this chaper find place in a paper published in the Journal of Mathematical Physics 27(11), November 1986 pp 2644-2646.
group of transformation the most general PDE invariant under the group can be constructed.

Given a Lie group G it is possible to construct a corresponding Lie algebra \mathscr{L} [Sudarshan and Mukunda(1974) and Olver (1986)] in some neighbourhood of the identity. A Lie algebra \mathcal{L} is a finite (n) dimensional real vector space in which a Lie bracket is defined which is linear, antisymmetric and satisfies Jacobi identity. For any m-porameter Lie group the infinitesimal operators form an a -dimensional lie algebra.

A similarity solution is a solution obtained from group invariance. This integration procedure is based on the invariance of the differential equation under a continuous group of symmetries. The invariance of a first order differential equation under a group leads to the construction of an integrating factor and a reduction to quadrature. When a PDE is invariant under a transformation group, it is possible to find similarity solutions of the equation and its independent variables can be reduced by one. Knowing a symmetry group of a system of differential equations, we can construct new solutions of the system from known ones. Also new nonlinear PDEs reducible to the Painlevé equations
can be derived through special transformations constructed by similarity variables of well-known one-dimensional soliton equations [Kawamoto (1983)]. Group invariant solutions have been used to describe the asymptotic behaviour of much more general solutions to systems of PDEs.

In chapter-IV we have analysed the existence of $A B I S$, $L P s$ and the PP of the KdV equation with vaxiable coefficients. In this chapter we are reporting some similarity solutions and in a particular case an exact solution of the equation using the standard similayty method.
5.3. SIMILARITY TRANSFORMAMIONS OF A PDE

We shall give the essential details [Bluman and Cole (1974)] of the Lie continuous point group similarity transformation method to reduce the number of independent Variables of a PDE,

$$
F\left(x, t, u, u_{t}, u_{x}, u_{x x}, \ldots\right)=0
$$

under a family of one-parameter infinitesimal continuous point group transformations

$$
\begin{align*}
& x=x+\varepsilon X(x, t, u)+O\left(\varepsilon^{2}\right), \\
& t=t+\varepsilon T(x, t, u)+O\left(\varepsilon^{2}\right), \tag{5.3.3}\\
& u=u+\varepsilon U(x, t, u)+O\left(\varepsilon^{2}\right) \tag{5.3.4}
\end{align*}
$$

Here X, T and U are the infinitesimals of the variables
x, t and u, respectively, and ε is an infinitesimal parameter. The derivatives of u are also transformed according to

$$
\begin{align*}
& u_{x}=u_{x}+\varepsilon\left[U_{x}\right]+O\left(\varepsilon^{2}\right), \tag{5.3.5}\\
& u_{t}=u_{t}+\varepsilon\left[U_{t}\right]+O\left(\varepsilon^{2}\right), \\
& u_{x x}=u_{x x x}+\varepsilon\left[U_{x x x}\right]+O\left(\varepsilon^{2}\right), \tag{5.3.7}
\end{align*}
$$

where $\left[U_{x}\right],\left[U_{t}\right]$ and $\left[U_{x x x}\right]$ are the infinitesimal s of the transformations of derivatives u_{x}, u_{t} and $u_{x x x}$. These are called the first and third extensions depending on the order of the derivative term. These extengions" [Bluman and Cole (1974)] are given by

$$
\begin{align*}
{\left[U_{x}\right]=} & U_{x}+\left(U_{u}-x_{x}\right) u_{x}-I_{x} u_{t} \\
- & X_{u} u_{x}^{2}-I_{u} u_{x} u_{t} \tag{5.3.8}\\
{\left[U_{t}\right]=} & U_{t}+\left(U_{u^{\prime}}-T_{t}\right) u_{t}-X_{t} u_{x}- \\
& I_{u} u_{t}^{2}-I_{u} u_{x} u_{t}, \tag{5.3.9}
\end{align*}
$$

and

$$
\begin{aligned}
{\left[U_{x x x}\right]=} & U_{x x x}+\left(3 U_{x x x}-x_{x x x}\right) u_{x}-T_{x x x} u_{t} \\
& +3\left(U_{x u u^{-x_{x x u}}}\right) u_{x}-3 T_{x x u} u_{x} u_{t} \\
& +\left(U_{u u u}-3 x_{x u u}\right) u_{x}{ }^{3}+3\left(U_{x u}-x_{x x}\right) u_{x x}
\end{aligned}
$$

$-3 T_{x x} u_{x t}-3 T_{x u u} u_{x}{ }^{2} u_{t}+3\left(U_{u x u}-3 X_{x u}\right) u_{x} u_{x x}$

$$
-3 T_{x u} u_{t} u_{x x}-6 T_{x u} u_{x t} u_{x}-3 T_{x} u_{x x t}
$$

$$
+\left(U_{u}-3 X_{x}\right) u_{x x x}-X_{u v u} u_{x}^{4}-6 X_{u u} u_{x}^{2} u_{x x}
$$

$$
-3 T_{u u} u_{x} u_{x t}-T_{u u u} u_{x}^{3} u_{t}-3 x_{u} u_{x x}{ }^{2}
$$

$$
-3 T_{u} u_{x} u_{x x t}-3 T_{u} u_{x x} u_{x t}-3 T_{u x} u_{x} u_{t} u_{x x}
$$

$$
-4 x_{u} u_{x} u_{x x x}-T_{u} u_{t} u_{x x x}
$$

The invariance requirement of (5.3.1) under the set of transformations (5.3.2)-(5.3.10) leads to the invariant surface condition

$$
\begin{align*}
T \frac{\partial F}{\partial t} & +X \frac{\partial F}{\partial x}+U \frac{\partial F}{\partial u}+\left[U_{x}\right] \frac{\partial F}{\partial u_{X}} \\
& +\left[U_{t}\right] \frac{\partial F}{\partial u_{t}}+\left[U_{x x x}\right] \frac{\partial F}{\partial u_{x x X}}=0 \tag{5.3.21}
\end{align*}
$$

On solving (5.3.11), the infinitesimals X, T and U can be uniquely determined, which give the similarity group under which the system (5.3.1) is invariant. By the infinitesimal
tronsformations (5.3.2)-(5.3.4) we have

$$
\begin{align*}
u(x+\varepsilon X & \left.+O\left(\varepsilon^{2}\right) \cdot t+\varepsilon I+O\left(\varepsilon^{2}\right)\right) \\
& =u+\varepsilon U+O\left(\varepsilon^{2}\right) \tag{5.3.12}
\end{align*}
$$

On expanding and equating the $O(\varepsilon)$ terms on either aide of (5.3.12) we get

$$
\begin{equation*}
T \frac{d u}{d t}+\mathbf{I} \frac{d u}{d x}-U=0 \tag{5.3.13}
\end{equation*}
$$

The solutions of (5.3.13) are obtained by Lagrange's condition

$$
\frac{d t}{T}=\frac{d x}{X}=\frac{d u}{V}
$$

Equations (5.3.14) give the solution

$$
\begin{align*}
& x=x\left(t, c_{1}, c_{2}\right), \tag{5.3.15}\\
& u=u\left(t, c_{1}, c_{2}\right), \tag{5.3.16}
\end{align*}
$$

where c_{1}, c_{2} are arbitrary integration constants. The constant c_{1} plays the role of an independent variable called the similarity variable σ and c_{2} that of a dependent voriable called the similarity solution $f(\sigma)$ such that

$$
\begin{equation*}
u(x, t)=f(\sigma) \tag{5.3.17}
\end{equation*}
$$

Substituting (5.3.17) in the original equation (5.3.1) the resultant equation is an ODE involving only the derivatives with respect to the aimilarity variable σ.
5.4. SIMILARITY TRANSFORMATION AND LIF ALGEBRA OF VARIABLE COEFFICIENIS KdV RQUATION

Under the family of infinitesimal transformations (5.3.2)-(5.3.4) the variable coefficients KdV equation (3.4.1) yields

$$
\begin{align*}
{\left[U_{t}\right] } & +\alpha t^{n}\left(u_{x} U+u\left[U_{x}\right]\right)+\alpha n t^{n-1} u u_{x} T \\
& +\beta t^{m}\left[U_{x x x}\right]+\beta m t^{m-1} u_{x x x} T=0 \tag{5.4.1}
\end{align*}
$$

On substituting the expressions for the extensions from (5.3.8)-(5.3.10) and solving for the infinitesimals X, T and U we get the constraint equations

$$
\begin{gather*}
-X_{t}+\alpha t^{n}\left(U_{+} u\left(U_{u}-X_{x}\right)\right)+n \alpha t^{n-1} u T=0, \tag{5.4.2}\\
U_{t}+\alpha t^{n} u U_{x}+\beta t^{m} U_{x x x}=0, \tag{5.4.3}
\end{gather*}
$$

$$
\begin{align*}
& t U_{u}-3 t X_{x}+m T=0, \tag{5.4.4}\\
& U_{u}-T_{t}=0, U_{x u}-X_{x x}=0, U_{u u}-3 X_{u x}=0, \tag{5.4.5}\\
& I_{x}=T_{u}=X_{u}=0
\end{align*}
$$

The constraints (5.4.2)-(5.4.6) can be uniquely solved. Then we get the following solutions for X, T and U.
(i) when m and n are arbitrary,

$$
\begin{align*}
& \mathbf{Y}=0 \tag{5.4.7}\\
& \mathbf{X}=a\left[\alpha t^{n+1} /(n+1)\right]+b \tag{5.4.8}\\
& U=a \tag{5.4.9}
\end{align*}
$$

For the fIle algebra,

$$
\begin{align*}
& a_{1}=\frac{a t^{n+1}}{n+1} \frac{\partial}{\partial x}+\frac{\partial}{\partial u} \tag{5.4.10}\\
& G_{2}=\frac{\partial}{\partial x} \tag{5.4.21}\\
& {\left[G_{1}, G_{2}\right]=0} \tag{5.4.12}
\end{align*}
$$

(ii) when $m=3 n+5$,

$$
\begin{equation*}
T=t_{0} \tag{5.4.13}
\end{equation*}
$$

$$
\begin{align*}
& x=(2+n) x+a\left[\alpha t^{n+1} /(n+1)\right]+b, \tag{5.4.14}\\
& 0=u+a . \tag{5.4.15}
\end{align*}
$$

The lie algebra is the same as in the last case [(5.4.10)-(5.4.12)].
(iii) when $m=-2$ and $n=-\frac{3}{2}$,

$$
\begin{align*}
& T=t^{\frac{1}{2}} \tag{5.4.16}\\
& x=-\left(x t^{-\frac{1}{2}} / 2\right)-2 a \alpha t t^{-\frac{1}{2}}+b, \tag{5.4.17}\\
& D=\left(u t^{-\frac{1}{2}} / 2\right)+(x / 4 \alpha)+a . \tag{5.4.18}
\end{align*}
$$

The Lie algebra is same as in (5.4.10)-(5.4.12) with $n=-\frac{3}{2}$.

In all the above cases $[(5.4 .7)-(5.4 .18)]$, a and b are arbitraxy integration constants.
5.5. SIMILARITY SOLUTIONS

Using (5.3.14) and (5.3.17) we can find the similarity variables, similarity reduced equations, and similarity solutions for the above three cases [(5.4.7)(5.4.18)].

The set of infigitesimals (5.4.7)-(5.4.9) gives the similarity variable

$$
\begin{equation*}
\sigma_{1}=t \tag{5.5.1}
\end{equation*}
$$

and the similarity reduced equation

$$
\frac{d f_{1}}{d \sigma_{1}}+\frac{(n+1) a \alpha \sigma_{1}^{n}}{a \alpha t^{n+1}+(n+1) b} f_{1}=0
$$

The corresponding similarity solution is

$$
u(x, t)=\left[(n+1) a x / a a t^{n+1}+(n+1) b\right]+f_{1}
$$

Equetions (5.5.2) and (5.5.3) give an exact solution of the variable coefficients KdV equation (3.4.1)

$$
u(x, t)=[a(n+1) x+0]\left[a \alpha t^{n+1}+b(n+1)\right] \quad \text { (5.5.4) }
$$

The solution (5.5.4) is not so useful as the third derivative With respect to the variable x vanishes.

The set of infinitesimals (5.4.13)-(5.4.15) yields the similarity variable

$$
\begin{equation*}
\sigma_{2}=\frac{x}{t^{n+2}}+\frac{a \alpha}{(n+1) t}+\frac{b}{(n+2) t^{n+2}} \tag{5.5.5}
\end{equation*}
$$

The corresponding similarity reduced equation is

$$
\begin{equation*}
\frac{\beta d^{3} f_{2}}{d \sigma_{2}^{3}}+\alpha f_{2} \quad \frac{d f_{2}}{d \sigma_{2}}+f_{2}-(n+2) \sigma_{2} \quad \frac{d f_{2}}{d \sigma_{2}}=0 \tag{5.5.6}
\end{equation*}
$$

and the similarity solution 1s

$$
\begin{equation*}
u(x, t)=t f_{2}\left(\sigma_{2}\right)-a . \tag{5.5.7}
\end{equation*}
$$

When $n=-3$, equation (5.5.6) can be reduced to a secondorder equation by integration with respect to σ_{2}. This yields

$$
\begin{equation*}
\beta \frac{d^{2} f_{2}}{d \sigma_{2}^{2}}+\frac{\alpha}{2} f_{2}^{2}+\sigma_{2} f_{2}=\text { const. } \tag{5.5.8}
\end{equation*}
$$

Equation (5.5.8) is not easily solvable. From equation (5.4.16)-(5.4.18) we get the similarity variable

$$
\begin{equation*}
\sigma_{3}=x t^{\frac{1}{2}}+4 a \alpha t^{\frac{1}{2}}-b t \tag{5.5.9}
\end{equation*}
$$

The corresponding similarity reduced equation is

$$
\beta \frac{d^{3} I_{3}}{d \sigma_{3}{ }^{3}}+a \alpha f_{3} \frac{d f_{3}}{d \sigma_{3}}+\frac{b}{2 \alpha}=0
$$

and the similarity solution is

$$
\begin{equation*}
u(x, t)=-\sigma_{3} / 2 \alpha+b t / 2 \alpha+t^{\frac{1}{2}} f_{3}\left(\sigma_{3}\right) \tag{5.5.11}
\end{equation*}
$$

Bquation (5.5.10) can be exactly solved for the case $\mathrm{b}=0$. This gives the following solution of the variable coefficients KaV equation (3.4.1) for $m=-2, n=\frac{-3}{2}:$

$$
u(x, t)=\frac{-(4 \alpha+x) t^{\frac{1}{2}}}{2 \alpha}+\frac{4 t^{\frac{1}{2}}}{\left[(\sqrt{-\alpha / 3 \beta})(x+4 a \alpha) t^{\frac{1}{2}}+c\right]^{2}}
$$

The exact solution (5.5.12) is real valued only when $\alpha<0$ or $\beta<0$ and not both simultaneously negative. The solution (5.5.12) has no characteristics of a stable configuration like "soliton" [scott, Chu and Mc Laughlin (1973)].
5.6. SELF-SIMILAR SOLUTION

The self-similar solution c an be developed for the variable coefficients KdV equation (3.4.1) using the dimensional analysis. The self-similar transformation is very
much identical to the similarity transformations; nevertheless self-similar solutions are not always obtainable by similarity procedure.

For the variable coefficients KdV equation (3.4.1) we get the self-similar transformation

$$
\begin{equation*}
u(x, t)=t^{(m-3 n-2) / 3} F(\eta) \tag{5.6.1}
\end{equation*}
$$

where $\eta(x, t)$ is the self-similar variable

$$
\begin{equation*}
\eta(x, t)=x t^{-(m+1) / 3} \tag{5.6.2}
\end{equation*}
$$

Equation (5.6.1) yields the following self-aimilarity reduced ODF, on substituting in (3.4.1):

$$
\begin{equation*}
\beta \frac{d^{3} F}{d \eta^{3}}+\alpha F \frac{d F}{d \eta}-\left(\frac{m+1}{3}\right) \eta \frac{d F}{d \eta}+\frac{m-3 n-2}{3} F=0 \tag{5.6.3}
\end{equation*}
$$

Unfortunately equation (5.6.3) cannot be easily solved for any values of m and n.
5.7. DI SUUSSION

Using the well-known Ablowitz-Ramani-Segur (ARS) conjecture [Ablowitz, Ramani and Segur (1978, 1980a,b), Ablowitz and Segur (1981)] one can study the PP of a iDe by reducing it to an ODE, using similarity or self siriilar transformations. Bquation (5.5.2) is linear and so it is clearly Painlevétype. For $n=-3$, the equation (5.5.8) is not a Painlevé-type equation whereas (5.5.10) cen be integrated once and reduced to Painlevé-type. This equation (5.5.15) can be reduced to a second-order equetion for $n=-1$, but it is not Painlevétype.

The exact solution (5.5.12) that we developed has no smooth property of a soliton solution, which indicates that the system has decaying solutions other than soliton solutions when coefficients of Kdy equati on are variables.

Chapter-VI

COMPLETELY INTEGRABLE KORTEWEG-DE VRIER EQUATI ON WITH VARI ABLE COBPFICIENPS

6.1. IATRODUCTION

Ward (1984) has pointed out the apparent defect in the Painlevé test for PDEs suggested by Weiss et al. (1983). For example the expansion (4.2.4) could, a priori, miss some essential singularities which may lead to erroneous conclusions. Even for ODEs it often requires a great deal of work to show that the expansion gives only poles.

The Painlevé analysis of PDEs by means of the expansion (4.2.4) is similar to that for ODRs. In the case of ODEs the coefficients u_{j} in (4.2.4) are constants and it is required that the recursion relations do not determine ' k ' constants where ' k ' is the order of the ODE. Then the expansion (4.2.4) can be considered as a general solution. In the case of PDEs u_{j} in (4.2.4) are functions of ' n ' variables and according to Cauchy-Kovalewskaya theorem, expansion (4.2.4) determines the general solution if ve introduce two arbitrary functions φ and u_{p} of $n-1$
variables. But it is impossible to guarantee that the arbitrariness will be left after the process of summation and the expansion (4.2.4) will remain the general solution.

Doktorov and Sakovich (1985) while studying the nonlinear Klein-Fock-Gordon PDE observed that the Painlevé analysis of Weiss, Tabor and Carnevale (1983) holds good in the case of no resonances at all (φ is an arbitrary function of n variables) or with one resonance (it could even be fixed) and the compatibility condition for φ be an equation of oxder $k \geq 2$, rather than an identity, (its solution φ will contain 'k' arbitraxy functions of $n-1$ Voriables). Thus both the 'correct number of resonances' in the expansion (4.2.4) and the requirement for compatibility conditions to be satisfied identically are additional postulates in the case of PDEs.

In this chapter we check the integrability of (3.4.1) by showing the equivalence of (3.4.1) to KdV and cylindrical KdV (cKdV) equations whose integrabilities are known.

6.2. EXCBPTIONALITY ARD RQUIVALENCE

Existence of infinite number of nontrivial conserved
densities is associated with the complete integrability of a dynamical aystem. This property is called exceptionality by Abellanas and Galindo (1981).

Two evolution equations

$$
\begin{equation*}
u_{t}=k\left(x, t, u, u_{x}, \cdots\right) \tag{6.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime} t^{\prime}=x^{\prime}\left(x^{\prime}, t^{\prime}, u^{\prime}, u^{\prime} x^{\prime}, \ldots\right) \tag{6.2.2}
\end{equation*}
$$

are called equivalent if there exists an invertible transfomation

$$
\begin{align*}
& x^{\prime}=s_{1}(t) x+s_{2}(t), \tag{6.2.3}\\
&=s_{3}(t), \tag{6.2.4}\\
& t^{\prime} \tag{6.2.5}\\
& u^{\prime}\left(x^{\prime}, t^{\prime}\right)=s_{4}(t) u(x, t)+r(x, t),
\end{align*}
$$

which takes a solution $u(x, t)$ of equation (6.2.1) into a solution $u^{\prime}\left(x^{\prime}, t^{\prime}\right)$ of equation (6.2.2.)

Abellanas and Galindo (1985) have shown that corresponding to an exceptional non-autonomous "low" of the type

$$
\begin{equation*}
u_{t}=u_{x x x}+f\left(t, u_{,} u_{x}\right), f(t, 0,0)=0 \tag{6.2.3}
\end{equation*}
$$

there exists an autonomous exceptional "flow" equivelent to it.
6.3. VARIABLE COEFFICIENTS KdV EQUATION

Let us make the transformation

$$
\begin{align*}
(t, x, u) & \longrightarrow(\tau, x, v) \\
& =t(\tau) \tag{6.3.1}\\
t & =x, \\
u(x, t) & =v(x, \tau) a(\tau),
\end{align*}
$$

Where $a(\tau)$ and $t(\tau)$ are to be determined so that the transformed equation is exceptional. Equation (3.4.1)
is transformed into

$$
\begin{equation*}
\nabla_{\tau}+\frac{a_{\tau}}{a} \cdot \nabla+t^{n_{t}} \tau_{\tau} \cdot \alpha \nabla_{x}+t^{m} t_{\tau} \cdot \beta \nabla_{\tau X x}=0 . \tag{6.3.2}
\end{equation*}
$$

Let us choose the transformation (6.3.1) requiring that

$$
t_{\tau} t^{n} a=1
$$

and

$$
\begin{equation*}
t_{\tau} t^{m}=1 \tag{6.3.3}
\end{equation*}
$$

Then the following cases arise.
(a) When $m \neq-1$

$$
\begin{aligned}
& t=[(m+1)(\tau+c)]^{\frac{1}{m+1}}, \\
& a=[(m+1)(\tau+c)]^{\frac{m-n}{m+1}},
\end{aligned}
$$

$$
\text { where } c=\text { constant } ; \text { let } c=0
$$

(b) When $m=-1$

$$
\begin{aligned}
& t=c e^{t}, \\
& a=\left(c e^{t}\right)^{-(n+1)} \\
& \quad \text { where } c=\text { constant } \neq 0 ; \text { let, } c=1 .
\end{aligned}
$$

Then for $m=n \neq-1$ we make use of the transformation (a) and obtain

$$
\begin{equation*}
\nabla_{x}+\alpha \nabla \nabla_{x}+\beta v_{x x x}=0, \tag{6.3.4}
\end{equation*}
$$

Which is the KdV equation.

When $m=n=2 n+1=-1$ making use of the transformation (b) we again obtain the KdV equation. When $m=2 n+1 \neq-1$ by making use of (a) we get the cKdV equation

$$
\begin{equation*}
\nabla_{x}+\frac{\nabla}{2 \tau}+\alpha \nabla_{x}+\beta \nabla_{x x x}=0 \tag{6.3.5}
\end{equation*}
$$

It is a simple exercise to show that the transformations are equivalence transformations.
6.4. DISCUSSION

We have show that in the cases $m=n$ and $m=2 n+1$ the KCV equation (3.4.1) with variable coefficients is equivalent to the pKdV or cKdV equations which are known to be completely integrable. Therefore in these cases the equation is integrable confirming the resulta already obtained in chapter-IV.
6.5. CONCLUSION

In this thesis we have presented qualitative studies of certain KdV equations with variable coefficients. The well-known KdV equation is a model for waves propagating on the surface of shallow water of constant depth. This model is considered as fitting into waves reaching the shore.

Renewed attempts have led to the derivation of KdV type ecuations in which the coefficients are not constants. Johnson's equation is one such equation. We have used this model to study the interaction of waves. It has been found that three-wave interaction is possible, there is transfer of energy between the waves and the energy is not conserved during interaction.

As has been pointed out in chapter-III, the study of $\mathrm{K} d V$ equations with variable coefficients is relevant in the context of water waves. In order to study such equations from the point of view of integrability, we have introduced a model equation in chapter-III. This model is studied in chapters IV, V and VI. In chapters IV and V. we have used the concept of PP in the analysis. We have been able to find the cases in which the equation represents integrable systems. The conclusions are confirmed in the last chapter by showing that in the case of integrability the equations are closely related to the nell-known pKdV and cKdV equations.

We have not obtained general solution of the model equation. It will be interesting to find the soliton solutions of the equation when it is IST solvable. Another interesting
problem is that of finding the solution of the model equation for general m and n and then studying the time evolution for various values of m and n. Suck a study may shed some light on the possible connection between movable singularity, the $P P$ and the soliton stability of perticuler solutions of a nonlinear PDE.

1. Abclienas,I and Gelindo, A.
2. abelinas,I and Golindo, A.
3. Abioritz, M.J.,

Kow. D.J. Newell A.C and iogur,H.
4. Ablovitz, M.J., Remeni, A., and segur, H.
5. idblotitz, MoJ, Remai, A. and Bencer H.
6. Ablowitz, HoJ., Romani, A. and Sergrin H.
7. Ablovita, N.J. anc egur, H .
(2980b) A conrection between nonlinear evolution equations and orcinary differential equations of Painlevé type-II, J.Weth. Phys. 21, 1006-1015.
(1981) Conserved densities for nonlinear evolution equations-II, Odd order case, J.math. Fhys. 22, 445-448.
(1985) On non-autonomous KdV flows, Phys.Lett. 108A, 123-125.
(1977) Exact linearization of Foinlevé transcendent, Fhys.Kev.Lett. 38, 1103-1106.
(1978) Non-linear evolution equations and ordinery differential equations of Fainlevé type, Lett. al. Nuovo Cim. 23, 333-338.
(1980a) A connection between nonilivear evolution equations and ordinary differential equations of Painlevé type I, J. Fi .th. Thys. 21, 715-721,
(1981) Solitons and the inverse scattering transform, SIAN Stud.Appl. Wiath. (SIA., Yhiladelphia.)
8. Airy, G.B.
(1845) Tides and Waves, Sec. 392, Encyc. Metropolitena 5 , 241-396.
9. Amick, C.J. and Toland, J.F.
10. Bampi, F and Morro, A.

On finite amplitude solitary water waves, Mathematics Research Center, University of Wisconsin Report No.2012, Archive for Rational Mechanics and Analysis, (in press).
(1979) Korteweg-de Vries equation and non-linear waves, Lett. Fuovo Cim.26(2), 61-63.
11. Beale, J.T.
(1977) The existence of solitary water waves, Comm. Pure Appl.Math. 30, 373-389.
12. Benjamin, T.B.
(1972) The stability of solitary vaves, Proc.Roy.Soc. (London) Ser . A. 328, 153-183.
13. Benjamin, T.B.

Lectures on nonlinear wave motion, in nonlinear wave motion (A.C.Newell, Ed.) , Lectures in Appl.Math.Vol. 15. Amer.Math. Soc., Providence, R.I.
14. Benjamin, T.B., Bona J.I. and Mghony, J.J.
(1972) Model equations for long waves in nonlinear dispersive systems, Phil.Trens.Roy.Soc.London, A.272, 47-78.

15． 3 Mn ． $\mathrm{L} . \mathrm{J}$ ．

16．Boney，D．J．

17．Bean，an，J．G．

18．BlWめn，G．M
and Cole，J．D．

19．亡ัに，J．

20．BัПの，J．士．

21．Bora J．I．and isryant，PoJ．
（1976）Significant interaction between small and large scale surface vaves，stud．April． Wath．55，93－106．
（1977）A general theory for inter－ actions between short and long waves，stud．Appl．Fath． 56，81－94．
（1976）Stability of solitary waves in shallow water，Phys． Fluids，19（6），771－777．
（1974）Similarity methods for differential equations， Springer，Berlin．
（1975）On the stability theory of solitary waves，Proc．Roy． Soc．Lond on．Ser．A 344（1638）， 363－374．
（1983）The Korteweg－de Vries equation， posed in a quarter plane， SI Alf J．Math．Anal．14（6），1056－ 1106.
（1973）A mathenatical model for long waves generated by wave makers in nonline ar di spersive system，Proc．Camb．Fhil．Soc． 73．391－405．
22. Bona, J.L., and
Dougailis, V.A.
(1980) An initial-and boundaryvalue problem for a model equation for propagation of long waves. J.Math.Anal. Appl.75, 503-522.
23. Bona, J.I.
(1980) Solitary wave interactions, Phys.Fluids 23(3), 438-441.
Pritchard, W.G. and scott, L.R.
24. Bona, J.I. and Smith, R.
(1975) The initial-value problem for the Xorteweg-de Vries equation, Phil.Trens. Roy. Soc. Lond on, A. 278, 555-604.
25. Bona, J.I. and
Smith, R.
(1976) A model for the two-way propagation of water waves in a channel, Math. Proc. Camp. Phil. Soc.79,167-182.
26. Bountis, T.C.
(1985) Singularities and dyamical systems, Math. Stud. No. 103. Bd.S.K. Penevmatikos, HorthHolland, New York.
27. Boussinesq, M.J.
(1872)

Théorie des ondes et des remous qui se propagent le long d^{\prime} un canal rectangulaire horizontal. en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J.Math. Pures Appl. Ser.2(17) 55-108.
20. smacisino, T. and suntno, \boldsymbol{H}.
(1981) Imo dimensional solutions in shallow water of variable denth, Phy.Lett. 86 A(${ }^{\prime}$), 472-479.
(1980) Topics in current physics solitons, Ed. by R.K.Bulloukn and P.J. Caudrey, Springes. hew York.
(2976) On the speed and proftile of steep solitary waves, Proc. Hoy.Soc.Lond. A. 350, 175-189.
(1973a) Solutior by the spectraltransform method of a nonlinear evolution equation includirg as a special case the cylindrical Korteweg-de Vries equation, Lett. iuovo Cim. 23, 150-154.
(1978b) Conservation laws for a nonlinear evolution equation that includes as a special case of the cylindrical Kortoweg-de Vries equation, Lett. Muovo Cim. 23, 155-160.
(1977) Solitons: Theory and applicetion, Riv.Hucvo Cim.(2), 7(4),429-469.
34. Chm. II. ${ }^{\text {H. }}$
(1974) Gevercl derivetion of Bäcklund transformations from inverse scattering problems, Fhys. Rev.Lett. 33, 925-928.
35. Chucnovsky, D.V.
Chudnovsky, G.V. and
Tabor, M.
36. Climents, D.I and Rogers, C .
37. Craner, M.S.-

Nguyen, S.H..
Bownan, M.E. and Mc Cown, B.E.
38. Dode, R.K, Eilbeck, J.C., Gibbon, J.D. and Morris, H.C.
39. Doktorov, E.C. and Sakovich, S.Iu.
(1985)
(1982)

Solitons and nonlinear wave equations, Academic Press, London, New York.

Painlevé teat and integrability of nonlinear Klein-Fock-Gordon equations, J.Phys.A.Math.Gen. 18, 3327-3334.
(1976) Nonlinear equations of Korteweg-de Vries type. Finite-zone linear operators and abelian variates; Russian Math. Surveys, 31, 59-146.

41.	Fociceev, L., end Zalimeor, L.D.	(1971)	Kortewes-de Vries equation as completely integrable Hamiltonian system, Funkeionial Anal. Priloz̆er, 5, 18-27.
	$\begin{aligned} & \text { Ferin, E., } \\ & \text { Peste, J. and } \\ & \text { virn, S. } \end{aligned}$	(1955)	Studies of nonline ar problems I., Nonlinear wave motion.
43.		(1974)	Lectures in Appl. Math. Ed. A.C.Newell, Amer. Math. Soc. Yrovidence R.I., 15. 143-156.
44.	wozatith, A.R.	(1959)	Theory of differential equations, Vol.6, reprinted, Dover, New York. Chapter 21.
45.		(1980)	Soliton interactions in twodimensions, Adv. in Appl. Nech. 2C, 1-37.
46.	Ini etahs, K. C. one uecoss, D.ti.	(1954)	The existence of solitary veves, Comi. Fure Appl. Nath. 7, 517-550.
47.		(1967)	A method for solving the Korteweg-de V ries equations, Phys.Rev.Iett. 19, 1095-1097.

48. Gardner, C.S., | Greene, J.M., |
| :--- |
| Kruskai, M.D. and |
| Miura, R.M. |
49. Gardner, C.S. and
Morikawa, G.K.
50. Grimshaw, R.
51. Grinshaw, R.
52. Grimshaw, R.
53. Hellenan, R.H.G.
54. Hille, E.
(1970) The solitary wave in water of variable depth. J.Fluid Mech. 42, Part 2, 639-656.
(1978) Long nonlinear intemal waves in channels of arbitrary crosssection, J.Fluid Mech. 86, 415-431.
(1979) Slowly varying solitary waves I. Korteweg-de Vries Equation, Proc.Roy.Soc. London 368 A , No.1734. 359-375.
(1980) Fundamental problems in statistical mechanics, Vol. 5 North-Holland, Amsterdam.
(1974) Korteweg-de Vries equation and generalizations VI. Methods for exact solution, Comm. Pure Appl.Math. 27, 97-133.
(1960) Similazity in the asymptotic behaviour of collisian-free plasma and water waves, New York University, Courant Institute of Mathematics and Science Report - MYO - 9082.

Ordinary differential equations in the complex plane, Wiley Interscience, New York.

55.	Hlavaty, L.	(1983)	On the uniqueness of Bäcklund transformations for KdV equations, Czechoslovab, J. Phys. 33B(10). 1049-1059.
56.	Ince, E.L.	(1956)	Ordinary differential equations, Dover.
57.	Ipen, A.T. and Kulin, G.	(1954)	The shoaling and breaking of the solitary wave, Proc. 5th Conference on Coast al Engineeming, 27-47.
58.	Ipen, A.T. and Kulin, G.	(1970)	Hydrodynamics. Lamb. Tech. Rep.No. 15.
59.	Jeffrey, A.	(1979)	Some aspects of the mathematical modelling of long nonline ar Waves, Arch. Mech. Archiwum Mechanike Stosowanej, 31(4), 559-574, Warszawa.
60.	Jeffrey, A and Kakuteni	(1972)	Weak nonlinear dispersive waves: a discussi on centered around the Korteweg-de Vries equation, SIAM Review 14(4), 582-643.
61.	Jeffrey, A. and Kavehara, T.	(1979)	Multiple scale Fourier trane formation: an application to nonlinear dispersive waves, Wave Motion 1, 249-258.

62. Jeffrey, A and Katrohara, T.
63. Jefirey, A and Kawahara, T.
64. Jimbo, M.,

Kruskal, M.D., anc IIiwa, T.
65. Johnson, R.S.
(1981) A note on the multiple scale Fourier transform, Nonlinear analysis, Theory, methods and applications. 5(12) 1331-1340.
(1982) Asymptotic methods in nonlinear wave theory, BostonLondon, Pitman advanced publishing program. Melbourne,
(1982) Painlevé test for the selfdual Yang-Mills equation, Phys.Lett. 92A, 59-60.
(1972) Some numerical solutions of a variable-coefficient Korteweg-de Vries equation (with applications to solitary wave development on a shelf), J.Fluid Mech. 54(1), 81-91.
66. Johnson, R.S.
(1973a) On the development of a solitary wave moving over an uneven bottom, Camb. Phil. Soc. Proc. 73, 183-203.
67. Johnson, R.S.
(1973b) On an asymptotic solution of the Korteweg-de Vmies equation with slowly varying coefficients, J.Fluid Mech. 60(4). 813-824.
68. Johnson, R.S.
(1980) Water waves and Korteweg-de Vries equations, J. Fluid Mech.97.(4), 701-719.
69. Johnson, R.S.
(1982) On the oblique interaction of a large and small solitany wave, J.Fluid Mech. 120. 49-70.
70. Johnson, R.S.
(1983) On the phase-shifts due to the interaction of a large and a small solitary wave, Phys.Lett. 94(1), 7-11.
71. Johnson, R.S. and Thoripson. S.
(1978) A solution of the inverse scattering problem f or the Kadomtsev-Petviashvili equation by the method of separation of variables, Phys.Lett. 66A, 279-281.
72. Kakatani, T.
(1971) Effect of an uneven bot tom on gravity waves, J. Phys. Soc. Japan, 30(1) 272-276.
73. Kakutani, T. and Michihiro, K.
(1976) Nonlinear modulation of stationary water vaver, J.Fhys.Soc.Japan, 41(5), 1792-1799.
74. Kalcutani, T. and Ono, H.
(1978) Note on obliquely propagating nonlinear Alfvén wave, J. Phys.Soc.Japan. 45, 333-335.

| 75. Karpman, V.I. (1975) | Nonlinear waves in dispersive
 media, Pergamon, New Iork. |
| :--- | :--- | :--- |
| 76. Kawahara, T. | |

(1983) Derivation of nonlinear partial differential equations reducible to the Painleve equations, J.Phys.Soc. Japan, 52(12). 4059-4065.
83. Keulegan, G.H. and
Patterson, G.W.
(1940) Mathematical theory of imrotational translation waves, J.Res.Natl.Bur.Stand. 24 . 47-101,
84. Knickerbocker, C.J. anc liewell. A.C.
(1980) Shelves and the Korteweg-de Vries Equation, J.Fluid Mech. 98(4), 803-818.
85. Knickerbocker, C.J. and Newell, A.C.

Reflections from solitary waves in channels of decreasing depth. J.Fluid.Mech. 153. 1-16.
86. Ko, K. and Kueh1, H.H. (1982)

Energy loss of Korteweg-de Vries solitary wave in a slowly varying medium. Phys.Fluids 25(9), 1686-1688.
87. Konno, K. and Jeffrey, A.

Some remarkable properties of two loop soliton solutions, J.Phy. Soc.Japan 52(1), 1-3.
88. Korieweg, D.G. and de Vries

On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves, Philos. Mag. 39, 422-443.
89. Kowalevskaya, S.
90. Lakshmanan, M and Kaliappan, P.
91. Lamb, H.
92. Lomb, G.I.(J r.)
93. Lavientief, M.A.
94. Iax, P.D.
95. Longuet-Higgims M.S. and Fenton, J.D.
(1983) Lie transformations, nonlinear evolution equations and Painlevé forms, J.Math. Phys. 24. 795-806.
(1974) Bäcklund transformations for certain nonlinear evolution equations, J.Math. Phys. 15(12). 2157-2165.
(1954) On the theory of long waves, and a contribution to the theory of long waves, Amer. Math. Soc. Transl. No.102. Amer.Math.Soc.Prov. R.I.
(1968) Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, 467-490.
(1889) Mémoire sur un cas particulier de la rotation d'un corps solide autour d'un point fixe; Acta Math. 12, 177-232.

Hydrodynamics, Camb. Univ. Press, 6th Bdition, Sec. 252.
-1. най <
(1974) On the mass, mozentum, energy and circulation of a solitary wave II, Proc. Roy. Soc. Iond. A. 340, 471-493.

96.	Macisen O.S. and Mei, C.C.	(1969)	The transformation of a solltary wave over an umeven bot tom, J.Fluid.Mech.39, 781-791.
			$\frac{{ }^{\top}{ }^{\top}+217 \cdot 2 \cdot 2}{N / R}$
97.	Maxon, S. and Viecelli, J.	(1974)	Spherical solitons, Phys.Rev.Lett. 32, 4-6.
98.	Miles, J.w.	(1977a)	Obliquely interacting solitary waves, J. Fluid. Mech.79, 157-169.
99.	Miles, J.W.	(1977b)	Resonantly interacting solitary waves, J. Fluid. Mech.79, Part-1, 171-179.
100.	Miles, J.W.	(1978)	An axisymmetric Boussinesq wave, J.Fluid. Mech.84. 181-191.
101.	Miles, J.W.	(1979)	On the IXV equation for a gradually varying channel. J. Fluid Mech. 91, 181-190.
102.	Miles, J.w.	(1980)	Solitary Waves, Ann.Rev. Fluid Mech. 12, 11-43.
103.	Miles, J.w.	(1981a)	The Korteweg-de Vries equation: a historical easay, J.Fluid.Mech.106. 131-147.

104.	Miles, J.W.	(1981b)	On the internal solitary waves II, Tellus, 33, 397-401.
105.	Miuma, R.M.	(1974)	The Kortewegrde Vries equation: a model equation for nonlinear dispersive waves, In Leibovich and Seebass, 212-234.
106.	Miure, R.M.	(1976a)	The Korteweg-de Vries equation, A survey of results, SI AM. Rev.18, 412-459.
107.	Miura, R.M. ed.	(1976b)	Bäcklund transformations, the inverse scat tering method, Solitons and their applications, Lecture Notes in Mathematics, Vol.515, Springer-Verlag, Berlin.
108.	Wiuca, R.M.	(1977)	Solitons, The inverse scattering method and J. Scott Russell'a observations of water waves, Geofluid dymamical wave mathematics, Research contributions, CBMS/NSF Regional Res. Conf. in Math. Sci., Applied Math. Group, University of Washington, Seattle.
109.	Miusa, R.M.	(1978)	An introduction to solitons and the inverse-scattering method via the Korteweg-de Vries equation, Solitons in action, Eds. Lonngren, K and Scott. A., Acedemic Press. Inc. 1-19.

110. Miura, R.M.,
Gardner, C.S.
and Kruskal, M.D.
111. Nalumara, A.
112. Nichikawa, K.. Hojo, H , Mima, K_{H}, and Ikezi, H.
113. Olver, F.J.
114. Peregrine, D.H.
(1966) Calculations of the development of an undular bore. J. Fluid Mech. 25, 321-330.
(1967) Long waves on a beach.
J.Fluid Mech. 27. 815-827.
115. Perecrine, D.H.
(1968) Korteweg-de Vries equation ond generalizations II. Bxistence of conservation laws and constants of motion. J.Math. Phys.9, 1204-1209.
(1980) Bäcklund transformations of the cylindrical KaV equation, J. Phys.Soc., Japan 49, 23802386.
(1974) Coupled nonlinear electronplasma and ion-acoustic waves, Phys.Rev.Lett. 33, 148-151.
(1986) Applications of Lie groups to dif ferential equations, Springer-Verlag, Hew York, Berlin.
116. Peregrine, D.H.
(1968) Long waves in a uniform channel of arbitrary crass-section. J. Fluid Mec. 32, 353-365.
117. Peregrine, D.H.
(1985) Water waves and their development in spaee and time, a review lecture: Delivered to the Roy. Soc. Report IO. AM-85-03.
118. Phillips, O.M.
(1960) On the dynamics of unsteady gravity waves of finite amplitude. J.Fluid. Mech.9, Part 1, 193-217.
119. Philifps, O.M.
(1977) The dynamics of the upper ocean, 2nd Bdition, Camb. University Press, Cambridge.
120. Ramani, A., Dorizzi, B., and
Gramaticos, B.
121. Rayleigh, L.
(1876) On Waves, Phil.Mag. 1 , 257-279, Sci.Pap.1, 251-271.
122. Rene, V.D.
(1983) Fumerical computations of solutions to the KdV equation in double Chebyshev Series, Z. Angew, Math.Phys. 34(1). 118-123.
123. Russell, J.s.
(1844) Report on Waves, Adv.Sci. 311-390.
124. Russell, J.S.
(1845) In 14th Meeting of the British Association, John Mumray. Lond on.

125.	Sachs, R.I.	(1984)	A justification of the KdV approximation to first order in the case of N-Soliton water waves in a canal. SIAM J.Math.Anal.15(3),468-489.
126.	```Scott, A.C., Chu, F.Y.F. and Mc Laughlin, D.W.```	(1973)	The soliton: a new concept in applied science, Proc. IEEE. 61(10), 1443-1483.
127.	Seabra-Santos, F.J., Renoluard, D.P., and Temperville. A.M.	(1987)	Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle, J.Fluid.Mech. 176, 177-134.
128.	Shen, H and Ames, W.F.	(1974)	On invariant solutions of the Korteweg-de Vries equation. Phys.Iett. 49A, 313-314.
129.	Sluh, L.Y.	(1980)	Soliton-like interaction governed by the generalized KdV equation, Wave motion 2(3). 197-206.
130.	Steeb, W.H., and Grauel, A.	(1984)	Soliton equations in (2+1) dimensions and the Painlevé property, J.Phys.Soc.Japan, $53(6) 1901-1903$.
131.	$\begin{aligned} & \text { Steeb, W.H., } \\ & \text { Kloke, M., } \\ & \text { Spieker, B.M., } \\ & \text { and Oevel, } \end{aligned}$	(1983)	Cylindrical Korteweg-de Vries equations and Painlevé property, J.Phys. 16A, L447-I 450.

| 132. Stoker, J.J. | (1957)Water Waves, New York,
 Interscience. |
| :--- | :--- | :--- |
| 133. Stokes, G.G. | |

140.	Weinstein, A.	(1926)	Sur la vitessa de propagation de $l^{\prime \prime}$ onde solitaire, Acad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rendiconti Ser. 6(3) 463-468.
141.	Weiss, J.	(1983)	The Painlevé property for partial differential equations II Bäcklund transformation, Lax pairs and the Schwarzian derivative, J.Math. Phys. 24(6) 1405-1413.
142.	Weiss, J.	(1984)	```On classes of integrable systems and the Painleve property, J.Math.Phys.25(1), 13-24.```
143.	Weiss, J., Tabor, M. and Cemevale, G.J.	(1983)	The Painlevé property for partial differential equations, J.Math.Phys. 24(3), 522-526.
144.	Whitham, G.B.	(1974)	Linear and nonlinear waves, Wiley-Interscience, New York, Sec. 17.2.
145.	Zabusky, N.J., and Galvin, C.J.	(1971)	Shallow-water waves, The Korteweg-de Vries equation and solitons, J.Fluid Mech. 47(4) 811-824.

146. Zabusky, M.J. and Kruskal, M.D.
(1965) Interaction of solitons in a collisionless plasma and the recurrence of initial state, Phys.Rev.Lett. 15, 240-243.
(1972) Collapse of Langmuir waves, Sov. Phys.JETP, 35, 908-914.
(1972) Exact theory of two-dimensional shelf-focussing and onedimensianal seli-modulation of waves in nonlinear media, Sov.Phys. JBTP 34, 62-69.
