TIME DEPENDENT SOLUTIONS FOR SOME QUEUEING AND INVENTORY MODELS

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

T. P. MADHUSOODANAN

CERTIFICATE

Certified that the work reported in

the present thesis is based on the bonafide work done by Sri.T.P.Madhusoodanan under my guidance in the Department of Mathematics and Statistics, Cochin University of Science and Technology, and has not been incluced in any other thesis submitted previously for the award of any degree.

A. KRISHNAMOORTHY

Research Guide
Professor of Applied Mathematics
Department of Mathematics and
Statistics
Cochin University of Science and Technology Cochin 682022.

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University and, to the best of my knowledge and belief, it contains no material previously published by any other person, except where due reference is made in the text of the thesis.

T.P. MADHUSOODANAN

ACKNOWL ED GEMENT

I wish to express my gratitude to
Professor A. Krishnamoorthy for his guidance and suggestions and to Professor T.Thrivikraman, Head of the Department for his advice and inspiration throughout the work. Also, I wish to express my sincere thanks to Mr.M.J.Jacob, for his help, suggestions and criticisms. I also thank all my friends for their help and co-operation and Mr. Jose for his excellent typing. Finally, I thank Cochin University for extending financial support.

CONTENTS

Page-•
Chapter 1. INTRODUCTION 1
1.1 Queueing theory 2
1.2 Inventory theory 11
1.3 Notations 15
1.4 Renewal theory 16
1.5 Summary of the work included in the thesis 20
Chapter 2. A FINITE CAPACITY $M / G^{a, b} / I$ QUEUEING SYSTEM 26
2.1 Introduction 26
2.2 Description of the model 27
2.3 Basic results 28
2.4 Transient probabilities of the system size 33
2.5 Virtual waiting time in the queue 35
Chapter 3. aN M/G/l QUEUE WITH GROUP ARRIVaLS aND VAGATIONS TO THE SERYR 37
3.1 Introduction 37
3.2 Basic results 40
3.3 System size probabilities 44
3.4 Virtual waiting time in the queue 47
Chapter 4. A FINITE CAPACITY $M / G / \beth$ QUEUEING SYSTEM WITH BUL. SERVICE AND VACATIONS TO THE SERVER 50
4.1 Introduction 50
4.2 Basic results 53
4.3 The system size probabilities 60
4.4 Virtual waiting time in the queue 62
Chapter 5. A FINITE CAPACITY $M / G^{B} / I$ VACAII ON SYSTEM WITH BERNOULLI SCHEDULRS 70
5.1 Introduction 70
5.2 Basic results 73
5.3 The system size sprobabilities 78
5.4 Virtual waiting time in the queue 82
Chapter 6. AN (s, S) INVENTORY SYSTRM WITH RANDOM REPLENI SHMENTT 85
6.1 Introduction 85
6.2 The model 87
6.3 Transition probabilities 89
6.4 Main results 91
6.5 Inventory carrying cost and cumulative profit 95
6.6 The model with zero lead time 98
6.7 an optimization problem 104

Chapter 1

INTRODTCMION

Tine objective of this thesis is to study the time depandent behaviove of some complex queueing axd inventory models. It contains a detziled analyeie of the basic stochestic processes uncerlying thesc models. In the thoory of queves, snalysis of time deponaent behaviour is an erea very little developed compared to steady state theory. fine dependerce seems certainiy worth stadying from an application peint of view, but unfortunately, the enalytic difficultes are considerable. Glosed form solutions are complicated even for such simple medels as $M / M / 1$. Outside $M / M / 1$, time dependent solutions have been found only in special cases and involve most often dauble transforms which provide very little insigit into the behaviour of the queueing systems thempelves. In invertory theory also there (is) not much results available giving the time dependent solution of the system size probabilities. Our emphasis is on explicit results free from all types of trensforms and the rethod used may be of special interest to a wide ∇ ariets of probleas haring regeneretive etructure.

In this thesis we consider different queueing models with Poisson arrivals, general service, with and without vacations to the server and derive transient solutions for all the models. Also we study some (s, S) invertory systems under the assumptions of random lead times, random quantity replenizined, bulk demands and vaceticrs to the server. In the following chapters we ensiyse each of these models. Rach chapter contains a self introduction and some important references. In that senge, each chapter is self contained. In this chapter we eive a brief general introduction to the subject and some re?ated topice.

1.1 QuRUBIG FHBORY

The question may arise whether after about 80 years of research in queneing theory, it is still possible to make a substantial contribution to the theory and to come up with one new results. To account for our pesitive answer to this question, and to place the present wory in its proper context, we first give a short historical gurvey of the origin and development of queueing theory and subsequently discuss the current state of affairs.

Historically; Johannsen's Maiting Fimes a.ã
Number of Calls" (an article pablished in 1907 and
reprinted in Post Office Electrical Kngineers Journal, Condon, October 1910) seems to be the first paper in the subject. But the method used in this paper is not mathematically exact and therefore, from the point cf view of exact treatment, the paper that has historic importance is A.H. Erlang's "The theory of Probabilities and Teiephone Conversations ${ }^{\prime \prime}$, published in 1909. In this paper, he lays the foundation for the place of Pcisson (and herics exponential) distribution in concestion the ory. His papers written in the nert 20 years contain some of the most important concepts and techniques. Tkit irclucie the roticz of statistical equilibrium, the method of writing down Haiance of tate equations (later called Chapmen-Folanogorof Qquation). Erlang delay probability and the phase method of Firlang.

Until 1940, the majority of the contribution to queueing theory was made by people actire in the fiela of telephone traffic problems. After the Secone World War, the field of operations research repidiy developed and queueing applications were al so found in proauction planning, inventory control and mainterance problems. In this period, much theoreticelly oriented research on queueing problems were done.

In the fifties and sixties, the theory reached a very high mathematical level (see Cohen (1969) and Takacs (1962)). Advanced mathematical techniques like transform methocis, Weiner Hopf decomposition and function theoretic tocls were developed and refined. This research resulted in a number of elegant mathematical solutions.

In particular, noting the inadequacy of the equilibrium theory in many queue situations, Pollaczek in 1934 began investigations of the behaviour of the sy stem during a finite interval. Since then he has done considerable work in the analytical behavioural study of queueing eycterz. The trend towards the analytical study of the basic stochastic processes of the aystem has continued, and queueing theory has proved to be fertile field for researchers whe wanted to do fundamental research on atochastic processes involving mathematical models.

The processes involved are not aimple and for the time dependent analysis, more sophisticated mathematical procedures are necessary. For instance, for the queue with Poisson arrivals and exponential service times, under statistical equilibrium, the balance of state equations are simple and the limiting distribution of the queue size is obtained by recursive argments and induction. Fit for the time dependent solution, the use of transforms is necessary.

The time dependent solution was firet given by Bailey (1954b) and Ledermana and Reuter (1954). While Bailey used the metrod of ecmeratizg functions for the differential equations, ieceman and Router usec apectral theory for their solution.

To axajpe the care of M/G/1 queues, Kexemil (1953) nas used the wethed of reconerataon pointe cue to Faine The
 Was alreaç useã in hoyrstom's thacie ix 1942. It ig extencively discussec in the book my Gaezeryo fex Evelenso (1968).

The study of bulk queues is considered to be orianated with the piomeering work of Bailey (1954a). In a Tey the tudy of bolk queree may be said to have begur with Erlang' investigation of $K / H_{k} /$; for its solution continns implicitly the solation of the model $H^{k} / K / \mathcal{I}$. Eailey etudted the stationary behavicur ce ε gingie gezver guede bevine simple Poieson infut, interaittentiy areilele gerter ena service in batches of fized naximur size. The xecuits of this study are given in texa of probebility generatine functions, 4 eviluation of wion requires determinne the zeroes of a pelyrovial. This etucia wes folloned by a series of pepers invoiving the treatment of queueing processes with group arrivals or katel service. Gaver (1959) seeme to
be the first to take ap specifically queues involving group arrivals. For more details on bulk queues, cle may refer to Mechi (1984). For a detailed treatrent of queueing syetems and for forther references, one cen refer any one of the stoneand bocks on tie aubject lite, Sasty (1961), Taracs (1962), Cohen (1969), Frebhu (1965, 1980), Gnendenko and Kovereniso (1968), Cooper (1972), Grcss and Harris (1974), Eleinrock (1975) and AsIusec: (1987).
 of time cepordent behaviour of aneveine r.etems fe thet
 $K / G / 1$ and $E_{i k} / G / 1$ models. Also the influence of his study of virtual waiting time process has been tremendous in the development of queuting theory. For more details, one mey refer to Takaca (1902).

Queueine systere in winch the serpice procens is subject to interruptions resultine from wackeduzed breakdovis of servers, schecived off periods, errivai of cugtomers With pre-emptive or nox-pre emptive priorities or tine server worining on primary and secondery customers arise naturally. The impact of these aervice interrnptions on the performance of a queueing system wil depend on the specific interaction between the interruption process and the service process.

Queueing models with interruptions and their connection to priority models were first studied by White and Christie (1958), who considered the case with exponential service, on-time and off-time distributions. Their results were extended by Gaver (1962), Keilson (1962), Avi-Itahak and Haor (1962) and Thiruvengadam (1963) to models with general service time and off-time distributions but exponential on-tiaes. When the on periods are not exponential, the problem became very difficult and one such model is etudied by Federgruen and Green (1986). A detailed analysis of single server queueing system with server failure is given in Gedenko and K (valenko (1968).

Another variation of the interruption model is the vacation model. In this the queueing system incurs a startup delay whenever an idie period ends or the server takes vacation periods. The vacation model includes server working on primary and secondary customers also. Analysis of queueing systems with vacations to the server is motivated by the study of cyelic queues and Miller (1964) was the first to study such a system. Miller analysed a system in which the server goes for a vacation (a 'rest period') of random length whenever it becomes idle. He also considered a system in which the server behaves normally but the first customer arriving to an empty system has a special service time. These types of systems and similar ones were also
examined ty Welsch (1954), Avi-Itzhak, Maxwell ard Miller (1965), Cooper (2970), Pakes (1973), Lemoine (1973), Levy end Yechati (1975), Eeymen (IS77), Ven der Doys Schouten (1978), Shantinumer (1980, 1982) and Sckoil ad Eieinnoct (ISミ3).

Ail the above mocele (having rest pexioae, sct-un tine, starter, intemuftions etc.) cen be jointly ofnec as varation moden. Wrile the queuc with interraption had procrptive patority for vacation, other types of yucatans have Ieest macrity fircag all work with vacation tesex an the systom is empty. Vatiatione of vacation monejs ane availabie with single and multiple vacations and exhevetive anả nco-exhaustive service disciplines.

When the systell becomes empty, server starts a vacation eard the eerver beeps on teking vacations whin, on retura from a pacation, et least ore custorem ie paesta. This is calied a multuple vacation gyster. The semertaitig exactly cre vacation et the end of each busy perica, is called a single vacation system. We say that a vacation model kas tie property of exhaustive service in case ersi time the server becomes available, he works in a cortinuos mamer uritil the system bevomes empty. Systers with a vacation period beginning after every service completion, (or after an vacation period if the queue is empty) is
known as the single service discipline. There is another non-exhaustive service discipline which is a generalization of both exhaustive and aingle service disciplines known as the Bernoulli schedule diacipline defined as follows. After each service completion, the server takes a vacation with probability p and starts a new service with probability l-p. If the system is empty, after a service completion or vacation completion, server always takes a vacation and after any vacation if customers are present server resumes service.

Vacation systems with exhaustive service ciscip sie are anaiysed by several authore. See for example, Levy and Yechiali (1975), Heymen (1977), Courtois (1980), Shantikumar (1980), Scholl and Kleinrock (1983), Lee (1984), Fuhrmann (1984), Doshi (1985), Servi (1986a), Levy and Kleinrock (1986) and Keilsom and Servi (1986b). Systems without exhaustive service discipline are considered by Ali and Neuts (1984), Heuts and Ramalhoto (1984), Fukrmanir and Cooper (1985), Keilson and Servi (1986 b,c) and Servi (1986 a). The case of Bernoulli schedule discipline is introduced by Keils on and Servi (1986a) and further studied by Servi (1986b).

The main results in the vacation systems is the delay analysis by decomposition. The 'stochastic decomposition property' of $M / G / 1$ queueing system with vacation says
that the (stationary) number of customers present in the system at a random poirt in time is distributed as the sum of two independent random variables. One is the (stationary) number of customers presentin the corresponding eianderd $M / G / I$ queue (i.e. without vacation) at a rendom point in time and the other is the number 0 o arrivels in the forward recurrence tiee of vacation period. For mere cetails on queueing eystems witi vacations one maj refer to Doent (ig86).

AII the above modela estures the existence of
 quene Jemgt ext matine time distribution. Some aspeots of the preric beineiour of $M / G / 1$ queues with Vacations is stuíaed by Keilson and Servi (1985c). The time depen dent solution for a finite capacity $N / G / I$ queueing eystem with vacatione to the gerver is given by Jecob end Rrisknamoctay (i987). They have introducea a raw wettod namely tine convciution product of aztrices, whose glements are the trarisition probebility density funcisons, to arrive at the solution. Using renewsi theoretic ergments, they have given erplicit expessions for the time depercent systein size probabilities at arbitrany epoons ard also the probebility distribution of the v-tual waiting tire in the queue a^{+}tivo.t. Tire dependent solution for e firite capacity M/Gob/1 queueing system witil ∇ acatione to the
server is given by Jacob and Madhusoodanan (1988), using the theory of regenerative processes. In this thesis we extend these results to a number of variations of the M/G/I queve.
2.2. INTENTORY THEORY

By invertory, we mean the measured amount of some itens which varies in quentity over time in response to ε ' demarit twasss, which operates to divinish the stock, and a '二ypendament' process, wich operates to increase it. Tisc IIf the demend is not subject to control, but the timing trie megnitude of the refienistment can be regulated.

Tine real need for anelysis of an inventory system Was first recognized in industries that had a combination of producition schedulirg problems and incentory problems. Thstis, eftuations where items were produced in lote and then stcree at a factory warehonce. The earliest derivation Of what is often calied the " simple lot aize formule" was obteirec by Ford Herris in 2915. The same formula have be en developed, independently by many researchers since tiven. It is eften referred to as "Wilson's formula", siree it was derived by R.H.Wilson as an insegral part of an inventory control scheme.

During World War II, a useful stochastic model Was developed as the Christmas tree model. Shortly thereafter, a stochastic version of the simple lot size model was developed by Whitin, whose book published in 1953 was the first book in English which dealt in any detail with stochastic inventory models. The paper by the economists, Arrow, Harris and Marschak (1951) was one of the first to provide a rigorous mathematical analysis of a simple type of inventory model. It was followed by the often quoted and rather abstract papers by the mathematicians Droretzky, Kiefer and Wolfowitz (1952, 1953). Since then a number of papers by mathematicians have appeared.

A valuable reviev of the problems in probability theory of storage systems is given by Gani (1957). A systematic account of probabilistic treatment in the study of inventory gystems using renewal theoretic arguments is given by Arrow, Karlin and Scarf (1958). Hadley and Whitin (1963) deals with the application of mathematical models to practical situations. The cost analysis of different inventory systems is given by Haddor (1966). Tijms (1972) gives a detailed anelysis of inventory systems under (s, s) policy. A practical treatment of the (s, s) inventory systems can be found in the recent books by Silver and Peterson (1985) and Tijms (1986).

Gaver (1959) analyses the case of an (B, s)
inventory system with compound Poisson demand and random lead times. Some aspects of (s, S) inventory system with arbitrary interarrival time of demands and random lead times is discussed by Finch (1961). Veinott (1966) gives a detailed review of the status of mathematical inventory theory upto 1965. Gross and Harris (1971) and Gross, Harris and Lechner (1971) deal with one for one ordering inventory policies with state dependent lead times.

Sivazlian (1974) considers an (s,S) inventory system with arbitrary interarrival time of demands and zero lead time and Srinivasan (1979) extended these results to allow the lead time to follow arbitrany distribution. The case of an (s, s) inventory system with bulk demands and constant lead time is analysed by Sahin (1979). Also Sahin (1983) discussed the problem of an (s, S) inventory system with compound renewal demand and random lead times and he obtained the binomial moments of the inventory deficit.

A continucus review (s, S) inventory system in random enviromment is analysed by Feldman (1978). Richards (1979) analyses an (s,S) inventory system with compound Poisson demand. Ligorithms for a continuous review (s, S) inventory system in which the demand is according to a versatile Markovian point process is given
by Ramaswami (1981). An Inventory system with two ordering levels and random leac times is anslysed by Thangaraj and Ramanarayenen (1965). Approzimation for the single-product productiom-ineentory problemwith compound Poisson demand ard two peszible producion rates where the product is costinuously added to inveriory is given by Do Kok, Tifxs ard Van der Duyn Schouter(is84). Using Markov decision $\mathfrak{G r i f t}$ wceezes, Hordijk and Van cer Dryn Sckouten (1986) examinez the ctimelity of (5, S) poiscy in a continuous review inventog road with constant lead
 corpousd Poisgon process ont e ontinucus detexmindetio process.

An important varietion of the inventory problein is the perishable comrodity inventory gygtem. For details of the work in this area, one mry refer to the ereellent survey given by timitias (1982). TVe continuous zeriek perishable inventory system cen ie icentified with queusing aystems with impatient oustowezs es fiewed ky Earfi and Perry (1983, 1984).

In the case of randm arg tixes, the concept of vacstions to the server cuming dy perod is introduced in inventory systems by Daniel and Ramanarayersi (I987 a,b).

Usha, Ramanarayanen and Jacob (1987) analyses the case of finite backlog of demands and vacations to the server. Several other models with vacations to the server, bulk dexinces, varrine ordexixg levels ete. cen be founci in Jacob (1507).
1.3. hOTATIOKS

Fere we introance the followin noteticras thet era frequenty used in tixa thesis.

* eveotes tre convcintion opezetor.

$$
2^{n n}(x) \text { 2enctos tre n-fca ocavantson of } f(x) \text { ven }
$$

PGe a distribution furction $P(x), \bar{P}(x)=1-\bar{F}(x)$, the sumbivaz probevilaty.

Fon ne define the convolution of two matuess serone.

 are Eiren be

$$
c_{i j}(t)=\int_{0}^{t} \sum_{k=1}^{n} a_{i k}(u) b_{k j}(t-i) N_{u}
$$

For a square matrix $\mathbb{A}(x)$ of order m, let $\mathbb{A}^{* 0}(x)$ be the identity matrix of order n and for $n \geqslant 1$, let $A^{* n}(x)$ be the n-fold convolution of $h(x)$ with itself.
1.4 RENEWAL MEEORY

Renewal processes are the simplest regerryative stochastic processes. To define renewal process, let $\left\{X_{n}, n=1,2, \ldots\right\}$ be a sequence of non-negative independent random variables. Assume that $\operatorname{Pr}\left\{X_{\mathrm{I}_{2}}=0\right\}<1$, end that tine recon raxitbles are iaenticelly districuteà with dictumbutton function $F($.$) . Since Z_{n}$ is rom-necetive, it follows that $E X_{n}$ exists.
$\pm \epsilon t$

$$
s_{0}=0, \quad s_{n}=x_{1}+x_{2}+\ldots+z_{n} \text { for } n \geqslant 1,
$$ End. Let $F_{n}(x)=\operatorname{Pr}\left\{S_{n} \leq x\right\}$ be the distribution function CP S_{n}

Siree X_{i} 's ere i.1.d., $F_{n}(x)=F^{* n}(x)$.

Define the random variable

$$
N(t)=\operatorname{Sup}\left\{n \mid S_{n} \leqslant t\right\}
$$

The process $\{(t), t \geqslant 0\}$ is celled a renewal process.

If for some $n, S_{n}=t$, then the nth renewal is said to occur at t; S_{n} gives the time of the nth renewal and is called the nth renewal epoch. The randon variable $X(t)$ gives the number of renewals in the interval $(0, t]$.

The function $M(t)=\mathbb{B}[N(t)]$ is called the renewal function of the process with distribution function F. It is easy to see that

$$
N(t) \geqslant n \Longleftrightarrow S_{n} \leqslant t
$$

Thus the distribution of $\mathbb{N}^{(}(t)$ ie given by

$$
\operatorname{Pr}\{N(t)=n\}=F^{* n}(t)-F^{* n+1}(t)
$$

and the expected number of renewals is given by

$$
M(t)=\sum_{n=1}^{\infty} F^{* n}(t)
$$

Its derivative

$$
m(t)=\frac{d M(t)}{d t}=\sum_{n=1}^{\infty} f^{* n}(t)
$$

is the renewal density function, assuming the density function $f(t)$ exists. To better understand the meaning of $m(t)$, let us consider the increment of $M(t)$.

$$
\begin{aligned}
\delta M(t) & =M(t+\delta t)-M(t) \\
& =\sum_{n=1}^{\infty}\left[F^{* n}(t+\delta t)-F^{* n}(t)\right] \\
& =\sum_{n=I}^{\infty} \operatorname{Er}\left\{t<S_{n} \leqslant t+\delta t\right\}
\end{aligned}
$$

On the other kind, we have for $\delta t \rightarrow 0$, $\operatorname{Pr}\{$ more then care reared point in $(t, t+\delta t)\} \rightarrow O(\delta t)$

For $\delta t \rightarrow 0$, we get

$$
\begin{aligned}
\delta N(t) & =\operatorname{Pr}\left\{S_{1} \text { or } S_{2} \text { or } S_{3} \text { or ... lias } i n(t, t+\delta t)\right\} \\
& \rightarrow m(t) \delta t
\end{aligned}
$$

This interpretation of renewal density is important in practical applications.

Now, suppose that the first interocourence time y_{2} has a distribution G winch is different from the common distribution F of the remaining interoccumence times X_{2}, X_{3}, X_{4}, \cdots.

As before let us define

$$
S_{0}=0, \quad S_{n}=\sum_{i=1}^{n} X_{i}
$$

and

$$
N_{D}(t)=\sup \left\{n \mid S_{n} \leq t\right\}
$$

The stcehastic process $\left\{\mathrm{N}_{\mathrm{D}}(\mathrm{t}), \mathrm{t} \geqslant \mathrm{C}\right\}$ is called e Delayed or Mocitifed renewel procers.

Eere we have

$$
F x\left\{N_{D}(t)=n\right\}=G \times F^{* 2-1}(t)-G * F^{* I}(t)
$$

so thet the mocified mexevg function ie

$$
\begin{aligned}
F_{\mathrm{D}}(t) & =E\left[\sum_{D}(\dot{t})\right] \\
& =\sum_{\mathrm{n}=0}^{\infty} G \pi F^{F n}(t)
\end{aligned}
$$

The medificd reneral density function is glven r.

$$
\begin{aligned}
x_{i}(t) & =M_{D}^{\prime}(t) \\
& =\sum_{r=0}^{\infty} s^{* f^{* n}}(t)
\end{aligned}
$$

under the adcitional assumptions that tive afafity twovone $E^{\prime}(x)=G^{\prime}(x)$ end $f(x)=F^{\prime}(x)$ exists.

How, consider a stockastic frocess $\{\bar{A}(t), t \geqslant c\}$ ith state space $\{0,1,2, \cdots\}$, havirg the frepexte inst tase
exist time points at which the process (probabilistically) restarts itself. That is, suppose that with probability one, there exists a time T_{1}, such that the continuation of the process beyond T_{1} is a probabilistic replica of the whole process starting at 0. Note that this property implies the existence of further times T_{2}, T_{3}, \ldots, having the same property as \mathbb{T}_{1}. Such a stochastic process is known as a regenerative process.

From the above, it follows that $\left\{T_{1}, T_{2}, \cdots\right\}$ forms a renewal process; and we shall say that a cycle is completed every time a renewal occurs. It is easy to see that a renewal process is regenerative, and T_{1} represents the time of the first renewal.

For details on renewal theory, one may refer to Cox (1962), Feller (1983), Ross (1970) on Cinlar (1975). 1.5. SUNMARY OF THE WORK INCLUDED IN TEE TEEGIS

In this thesis we study the time dependent behaviour of some complex queueing and inventory models. In our analysis, renewal theory plays an importent role. In each model, icentifying the regeneration points and using matriz convolutions, we obtain the required transition probability density functions.

The thesis is divided into seven chapters. In the second chapter, we consider a finite capacity general bulk service queueing system. The arrival of customers is according to a homogeneous Poisson process and the service times are generally distributed independent random variables whose distribution depends on the size of the batch being served. Customers are served in batches according to the general buik service rule (See Jeuts (1967)). Using renewal theoretic arguments we derive the probability density function of the busy period and the time dependent system size probabilities at arbitrary time points. Also we derive the probability distribution of the virtual waiting time in the queve at any time t.

The next chapter is devoted to the study of an infinite capacity $M^{X} / G / 1$ queueing system with vacations to the server. The arrival of customers is according to a compound Poisson process and service is done one by one with service time following a general distribution. Under exhaustive service discipline, server takes vacations for a randam period having a general distribution. The server keeps on taking vacations until on return from a vacation, at least one customer is present. Here also we derive the probability density function of the busy period, time dependent system size probabilities at arbitrary epochs
and the probability distribution for the virtual wai ting time in the queue, using renewal theoretic arguments.

A finite capacity $M / G^{a, b} / 1$ queueing system with vacations to the server is analysed in chapter four. The general bulk service rule is modified to allow the arriving customers to enter for service, if the maximum service capacity is not attained, without altering the service time. Even if service of a batch is in procress with less than 'b' customers, all the arrivals may not be interested to join for partial service. So we assume that an arriving customer enter for partial service with probability p and Wait for full service with probability l-p, till the service capacity is attained. Server goes for vacation whenever he finds less than 'a' custoners in the system and this is a multiple vacation. The vacation periods are independent and identically distributed random variables following a general distribution. Using the theory of regenerative processes, explicit expressions for the busy period, the time dependent system size probabilities and the probability distribution of the virtual waiting time are derived.

In chapter five, we consider a finite capacity $M / G^{B} / 1 \quad$ vacation system with Bernoulli schedules. The arrival of customers is according to a homogeneous Poisson process and the service is in batches of maximum capacity B.

The service times are generally distributed random variables which depend upon the size of the batch being served. The Bernoulli vacation model is defined as follows. After each service completion the server starts a new service, if a customer is present, with probability p and takes a vacation with probability l-p. If the system is empty after a service campletion or a vacation completion, the server alvajs takes a vacation. The decision about taking a vacation after each service completion or vacation completion are independent. If the server finds at least one castomer upon return from a vacation, he starts service of the batch. Also the vacations are independent and identically distributed random variables following a general distribution. Here also we derive explicit expressions for the probability density function of a busy period, time dependent system size probabilities and the probability distribution of the virtual waiting time in the queue, using the theory of regenerative processes.

In the next two chapters, we analyse some continuous review (s, S) inventory systems with random lead times. Chapter six is devoted to the stady of a single item (s, s) inventory system in which the quantity repleniahed is random. The demand is for one unit at a time and the
interarrival time of demands and lead times are independent sequences of independent and identically distributed random variables following general distributions. Whenever the inventory level drops to a, an order is placed for s-a units. However, the quantity replenished is a random variable that can assume values s+1, S-s. Explicit expressions for the probability mass function of the stock level at arbitrary epochs are derived, using renewal theoretic arguments. An expression for the total cost over a period of time of length t is obtained. Then we congider the special case of zero lead time and derive the time dependent as well as the stationary distribution of the inventory level. Using this, the associated optimization problem is discussed in detail. Finally, some numerical examples are given.

In the last chapter, we consider an (s,s) inventory system with random lead times depending on the aize of the order. The time between successive demands and quantities demanded at these points are independent sequences of independent and identically distributed random variables following general distributions. Whenever the inventory level falls to or below s, an order is placed to fill the inventory. The lead times are also independent ramom variablee following general distributions. Whenever the inventory becomes dry, the server goes
for a vacation for a random length of time which follows a general distribution. Using the theory of regenerative process, we derive explint expressions for the inventory level probabilities at arbitrary epochs.

Chapter 2

A FTMITR GAPACITY $M / G^{a, b} / 1$ QUSUSTIG STSTEM

2.1. IMTPODUCMION

The study of bulk queues is considered to be originatsd with the pioneaning work of Bailey (1954a). He studied the stationaxg behaviour of a single sezfer queue with Poisson input, intermittently available server and service in batohes of fixed maximum size. This motivated several authors to study queueing systems with group arrivals or batoh service. A queueing system with general bulk service male was fiext nonsideved by Meuts (1067). He considered a queueins system with Poisson input, general service time and semvice in batchos of mininum size a and maximu size b.

In the literature of queueing theory, very little worl has been done in the case of transient solution of non-Poisson queues. Recently, Jacob and Krishnamoorthy(1987) considered this problem and have given explicit expressions for the time dependent system size probabilities of an M; G/I queaeing system with vacations to the server. They have also computed the distribution of virtual waiting time in the queue at arbitrary time points.

Results given in this chapter find place in a paper accepted for publication in 'Naval Research Logistics'.

In this chapter, we give the time dependent system size probabilities for the finite capacity $M / G^{a, b} / \mathcal{l}$ queveing system at arbitrary epochs using renewal theoretic arguments. In section 2.2 , we give the description of the model. The basic results regarding the transition probability density fanctions and the renewal function are given in Section 2.3. Here, we also derive the probability density function of an idle period and busy period. In section 2.4, we derive explicit expressions for the system size probabilities at arbitrary epochs. In the last section, we give the probability distribution of the virtual waiting time in the queue at any time point t.

2.2 DESCRIPPION OF TAE MODEL

The arrival of customers into the systen is according to a homogeneous Poisson process with rate μ. The successive service times are independent random varlables, following general distributions, depeading on the aize of the batch being served. Iet $G_{i}($.$) denote the distribution$ function of the service time when 1 is the batch size, which has a density function $g_{1}($.$) . There is only one server and$ the service is in batches according to the general bulk service rule. That is, a minimum of 'a' customers are needed to start a service and a marimum of 'b' customera c an be
served at a time, where ' a ' and ' b ' are positive integers. We also assume that the queueing system has a waiting room of finite capacity ' b ', so that the service starts with all the customers waiting for service at that time.

Let us assume that there are $r(a \leqslant r \leqslant b)$ customers present in the waiting room at time zero, when the process starts. All the \mathbf{r} customers enter for service at time zero itself. At the time of completion of service of these r units, if the number of customers in the waiting room is. less than a, the server has to wait until there are a customers, whereupon all a enter for service. If there are a or more in the waiting room, on completion of a service, all the customers present are taken for service. The process continuea in this fashion. Also we assume that, all the arrivals that takes place when the waiting room is full are lost. It is very easy to see that the time points at which the server starts service after an idle period will be renewal points.
2.3. BASIC RESULTS

For $j=0,1, \ldots, b-1$, let $\mu_{j}(x)$ denote the probability that there are exactly j arrivals during the interval $(0, x]$ and let $\mu_{b}(x)$ denote the probability that there are at least b arrivals in the interval ($0, x$].

Then for $j=0,1, \ldots, b-1$, we have

$$
\mu_{j}(x)=\frac{e^{-\mu x}(\mu x)^{j}}{j!}
$$

and

$$
\begin{equation*}
\mu_{b}(x)=\sum_{j=b}^{\infty} \frac{e^{-\mu x}(\mu x)^{j}}{j!} \tag{2.1}
\end{equation*}
$$

Now, we are in a position to find out the probability density function of an idle period, conditional on the system size at the service completion point. This is the time interval for (a-i) arrivals, if there are 1 units present in the system at time zero. This is given by the sum of ($a-i$) independent and identically distributed exponential variates and its diatribution is Erlang of order (a-i)
with density function given by

$$
B_{a-i}(x)=\frac{\mu^{a-1} x^{a-i-1}}{\Gamma(a-i)} e^{-\mu x} \text { for } i=0,1, \ldots, a-1 \quad \text { (2.2) }
$$

where Γ is the gamma function.

For $a \leqslant i \leqslant b, 0 \leqslant j \leqslant b$, let $f_{i j}(x) d x$ be the probability that starting at time zero, the service of a batch of size i units is over in the interval $(x, x+d x)$ and there are j accepted arrivals during the interval $(0, x]$.

Then,

$$
\begin{equation*}
f_{i j}(x)=g_{i}(x) \mu_{j}(x) \tag{2.3}
\end{equation*}
$$

Now, for $1=a, a+1, \ldots, b$

$$
\underline{f}_{i}(x)=\left(f_{i a}(x), f_{i(a+l)}(x), \ldots, f_{i b}(x)\right)
$$

is a row vector of order (b-a+1).

Also we define two matrices F and G as follows.

$$
\begin{aligned}
& \mathbb{F}(x)=\left[\begin{array}{ccc}
f_{a a}(x) & \cdots & f_{a b}(x) \\
\vdots & & \\
f_{b a}(x) & \cdots & f_{b b}(x)
\end{array}\right] \\
& G(x)=\left[\begin{array}{ccc}
f_{a o}(x) & \cdots & f_{a(a-1)}(x) \\
\vdots & & \\
f_{b o}(x) & \cdots & f_{b(a-1)}(x)
\end{array}\right]
\end{aligned}
$$

Here, F is a square matrix of order $(b-a+1)$ and G is a matrix of order (b-a+1) x a.

Then, $\left(\underline{f}_{i} * \sum_{n=0}^{\infty} \mathbb{F}_{0}^{* n}\right)(x)$ will be a row vector of order $(b-a+1)$
and $\quad\left(\underline{f}_{i} * \sum_{n=0}^{\infty} \mathbb{F}^{* n} * G\right)(x)$ will be a row vector of order a.

In both these cases, che vector f_{i} is convoluted with the column vectors of the matrices

$$
\sum_{n=0}^{\infty} F^{* n} \text { and }\left(\sum_{n=0}^{\infty} F^{* n} * G\right) \text { respectively } y .
$$

For

$$
\eta=a, a+l, \ldots, b, \text { let }
$$

$$
\begin{equation*}
M_{i}^{\eta}(x)=(\eta-a+1) \text { th coordinate of }\left(\underline{f}_{i} * \sum_{n=0}^{\infty} F^{* n}\right)(x) \tag{2.4}
\end{equation*}
$$

and for $\eta=0,1, \ldots$, a- 1 , let

$$
\begin{equation*}
K_{i}^{\eta_{\prime}}(x)=(\eta+1) \text { th coordinat } 3 \text { of }\left(\underline{f}_{i} * \sum_{n=0}^{\infty} \mathbb{F}^{* n} * G\right)(x) \tag{2.5}
\end{equation*}
$$

Now we can find out the probability density function of a busy period. For $i=r, a$ and $\eta=0,1, \ldots, a-1$, let z_{i}^{η} be the length of a busy period beginning with i units and ending with η units left. Let us denote the probability density function of z_{i}^{η} by $F_{i}^{\eta}($.$) . Then for i=r, a$ and $\eta=0,1, \ldots, a-1$,

$$
\begin{equation*}
F_{i}^{\eta}(x)=K_{i}^{\eta}(x)+f_{i \eta}(x) \tag{2.6}
\end{equation*}
$$

The renewal points of the process are those time points at which the service starts after an idle period. Let Z be the time between two such consecutive renewal points. Then the probability density function of Z is given by

$$
\begin{equation*}
k(t)=\int_{0}^{t} \sum_{\eta=0}^{a-1} F_{a}^{\eta}(u) E_{a-\eta}(t-u) d u \tag{2.7}
\end{equation*}
$$

Let X be the length of the initial busy cycle (i.e., the sum of the initial busy period and idle period). . Then the probability density function of X is given by

$$
\begin{equation*}
h(t)=\int_{0}^{t} \sum_{\eta=0}^{a-1} F_{r}^{\eta}(u) B_{a-\eta}(t-u) d u \tag{2.8}
\end{equation*}
$$

Then the renewal density function of the delayed renewal process is given by

$$
\begin{equation*}
M(u)=\sum_{n=0}^{\infty}\left(h * k^{* n}\right)(u) \tag{2.9}
\end{equation*}
$$

It should be noted that the probability density function of an idle period, conditional on the initial state of the system, is given by equation (2.2) and the probability density function of a busy period, conditional on the final state of the system, is given by equation (2.6).

Now, the state space of the process is given by

$$
S=\{(i, j) \mid a \leq i \leq b, 0 \leq j \leq b\} \cup\{(0, j) \mid 0 \leq j \leq a-1\}
$$

When $a \leqslant 1 \leq b, 0 \leq j \leq b,(i, j)$ represents the state that a batch of size i units is being served and there are j units in the waiting room. For $j=0,1, \ldots, a-1,(0, j)$ denote the state that there are j units in the waiting room and the server is idle.

2.4. TRANSIBNT PROBABIIITIBS OF THE SYSTEM SITF

Let $P_{i j}(t)$ be the probability that the system is in the state (i, j) at time t. Then by considering all mutually exclusive and exhaustive cases, we can write the following relations. By our assumption, the first busy period is started with the service of runits.

For $j=0,1, \ldots . ., a-1$, we have
$P_{o j}(t)=\int_{0}^{t} \sum_{i=0}^{j} F_{r}^{i}(u) \mu_{j-i}(t-u) d u$
$+\int_{0}^{t} M(u) \int_{u}^{t} \sum_{i=0}^{j} F_{a}^{i}(\nabla-u) \mu_{j-i}(t-\nabla) d v d u$

For $j=0,1, \ldots, b$, we have

$$
\begin{aligned}
P_{r j}(t)= & {\left[I-G_{r}(t)\right] \mu_{j}(t) } \\
& +\int_{0}^{t} M_{r}^{r}(u)\left[I-G_{r}(t-u)\right] \mu_{j}(t-u) d u \\
& \left.+\int_{0}^{t} M_{(}^{\prime} u\right) \int_{u}^{t} M_{a}^{r}(\nabla-u)\left[I-G_{r}(t-\nabla)\right] \mu_{j}(t-\nabla) d v d u \quad(2 . I I)
\end{aligned}
$$

For $j=0,1, \ldots$, b, we have

$$
\begin{align*}
P_{a j}(t)= & \int_{0}^{t} M_{r}^{a}(u)\left[1-G_{a}(t-u)\right] \mu_{j}(t-u) d u \\
& +\int_{0}^{t} M(u)\left[1-G_{a}(t-u)\right] \mu_{j}(t-u) d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} M_{a}^{a}(v-u)\left[1-G_{a}(t-\nabla)\right] \mu_{j}(t-\nabla) d \nabla d u \tag{2.12}
\end{align*}
$$

Fon $i=a+1, a+2, \ldots, r-1, r+1, \ldots, b$ and $j=0,1, \ldots, b$, we have

$$
\begin{align*}
P_{i j}(t)= & \int_{0}^{t} M_{r}^{i}(u)\left[1-G_{i}(t-u)\right] \mu_{j}(t-u) d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} M_{a}^{i}(\nabla-u)\left[1-G_{i}(t-\nabla)\right] \mu_{j}(t-v) d \nabla d u \tag{2.13}
\end{align*}
$$

2.5. virtual waiting tims in the quive

The virtual waiting time in the quaue at tima t is derined as the waiting time of a unit in the qusue $1: 2$ it were to arrive at time t (see Takacs (1962) for detailis). Let W_{t} be the virtual waiting time in the queua at time \pm. The probability distribution of W_{t} is computed hers, conditional on the state of the system at tina t. miss is surficisat because, we have already computad the syzian size probabilities and hence this will give us the explicit expressions for the virtual waiting time at time t. It should be noted that even if the waiting room is full, the virtual customer can join the queue and enter for the next service along with the waiting customers.

If consider the following cases seperataly.
Qage (i): The state is ($1, j$) at time $t, a \leqslant i \leqslant b, a-1 \leqslant j \leqslant j$ so that the server is working.

When

$$
\begin{aligned}
\operatorname{Pr}\left\{W_{t} \leq x\right\}= & \int_{0}^{t} M_{r}^{i}(u) G_{i}(t+x-u) d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} M_{a}^{i}(v-u) G_{1}(t+x-v) d v d u
\end{aligned}
$$

Case (ii): The state is (i, j) at time $t, a \leqslant i \leqslant b$,

$$
0 \leqslant j \leqslant a-2
$$

Then

$$
\begin{align*}
\operatorname{Pr}\left\{W_{t} \leqslant x\right\}= & \int_{0}^{t} M_{r}^{1}(u) G_{i}(t+x-u) \sum_{k=a-j-1}^{b} \mu_{k}(t+x-u) d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} M_{a}^{i}(v-u) G_{i}(t+x-v) \\
& x \quad \sum_{k=a-j-1}^{b} \mu_{k}(t+x-v) d v d u \tag{2.15}
\end{align*}
$$

Case (iii): The state is ($0, j$) at time $t, 0 \leq j \leq a-1$, so that the server is idle.

Then

$$
\begin{equation*}
\operatorname{Pr}\left\{w_{t} \leqslant x\right\}=\sum_{k=a-j-1}^{b} \mu_{k}(x) \tag{2.16}
\end{equation*}
$$

Chapter 3

AN $M / G / I$ QUEUE WITH GROUP ARRIVALS AND

VACATIONS TO THB SERVER

3.1. INTRODUCTION

Several authors have analysed the case of $M / G / 1$ queueing system with bulk arrivals. Gaver (1959) seems to be the first to take up queues with bulk arrivals. In a way, the study of bulk queues may be said to have begun with Erlang's investigation of the model $M / \mathrm{E}_{\mathrm{k}} / \mathrm{l}$; for its solution contains implicitly the solution of the model $M^{k} / M / 1$, a Poisson queue where arrivals are in groups of size k. Gaver considers the case of a queueing system with compound Poisson input and general service time and finds transform of the steady state queue length distribution. Bhat (1968) analyses this system in detail in his monograph. Chaudhry (1979) discusses limiting queue size distribution at three different epochs; randomepoch, epoch just before an arrival and epoch just after a departure, using supplementary variable technique.

In all the queueing models referred to above, an idle server remains alert awaiting a new arrival and will commence service immediately upon the customer's arrival.

The effect of vacation periods in queueing models is studied by several authors. Scholl and Kleinrock(1983) analyses an $M / G / l$ queueing system with vacations to the server. Assuming steady state exists, Fuhrmann and Cooper (1985) shows that for a class of $M / G / 1$ queueing system with generalized vacations to the server, the 'decomposition property' holds. An M/G/l model in which the server is required to search for customers is analysed by Neuts and Ramalhoto (1984). Keilson and Servi (1986b) analyses the case of blocking probability for $M / G / I$ vacation system with occupancy level dependent schedules. For more details on queueing systems with vacations to the server, one may refer to Doshi (1936).

All the above mentioned articles analyse the case of steady state distribution. Jacob and Krishnamoorthy (1987) using renewal theoretic arguments gives transient solution for a finite capacity $M / G / 1$ queueing system with vacations to the server. Time dependent solution for a finite capacity $M / G^{a, b} / 1$ queueing system with vacations to the server is given by Jacob and Madhusoodanan (1988). In this chapter, we extend these results to an infinite capacity $M / G / 1$ queueing system with group arrivals and vacations to the server.

Here we consider a service facility with only
one server. Customers arrive in groups of size $\left\{G_{n}\right\}$ ($n=1,2, \ldots$) with distribution

$$
\begin{equation*}
\operatorname{Pr}\left\{G_{n}=j\right\}=p_{j}, \quad j=1,2, \ldots \tag{3.1}
\end{equation*}
$$

These group arrivals occur according to a Poisson process with paraneter μ. Service is one by one and the service times are independent and identically distributed random Variables with distribution function $G($.$) having density$ function $g($.$) . Whenever the system becomes empty, server$ goes for vacation for a random length of time. Vacation periods are independent and identically distributed random variables with distribution function $H($.$) having density$ function $h($.$) .$

Let us suppose that, at time zero the system starts with 'a' (>0) units in the waiting room. The servar takes all the 'a' units to the service station and serves them one by one. When all the ' a ' units are served, server goes back to the waiting room. If there is at least one unit waiting, server takes all of them to the service station and starts service. If there is nobody waiting for service, server goes for vacation for a random duration. On completion of this vacation, if there is at least one unit present in the
system server starts serving them. On the otherhand, if there is no unit in the waiting room, the server extends his vacation for one more period having the same probability distribution. This process is continued until there is at least one unit in the system waiting for service. According to the terminology of Doshi (1986), this vacation is known as multiple vacation. Since the server serves the customers in a continuous manner until all the customers are exhausted, the service discipline is exhaustive. Thus we have an $M^{\mathbf{X}} / G / l$ multiple vacation system with exhaustive service discipline.
3.2. BASIC RESUTS

$$
\text { Let } A(t) \text { denote the number of arrivals during }(0, t] \text {. }
$$

Let $\quad \varphi(z)=\sum_{i=1}^{\infty} p_{i} z^{i}$ with $0<\varphi^{\prime}(1)<\infty$
and $\quad p_{j}^{(k)}=$ the coefficient of z^{j} in $[\varphi(z)]^{k}$
This says that $p_{j}(k)$ is the k-fold convolution of $\left\{p_{j}\right\}$ with itself
and

$$
\begin{aligned}
p_{j}^{(0)} & =0 \text { for } j>0 \\
& =1 \text { for } j=0
\end{aligned}
$$

Therefore, for $\mathrm{j}=0,1,2, \ldots$

$$
\begin{align*}
\mu_{j}(t) & =\operatorname{Pr}\{A(t)=j\} \\
& =\sum_{k=0}^{j} \frac{e^{-\mu t}(\mu t)^{j}}{j!} p_{j}^{(k)} \tag{3.2}
\end{align*}
$$

For $1=1,2, \ldots, j=0,1,2, \ldots$, we define the transition probability density functions as follows. Let $f_{i j}(x) d x$ be the probability that starting at time zero, the service of i units is over in the interval $(x, x+d x)$ and there are j arrivals during the interval ($0, \mathrm{x}$].

So we get

$$
\begin{equation*}
f_{i j}(x)=g^{* i}(x) \mu_{j}(x) \tag{3.3}
\end{equation*}
$$

Let us define an infinite vector

$$
\begin{aligned}
& f_{i}(x)=\left(f_{i 1}(x), f_{12}(x), \ldots\right) \text { for } 1=1,2, \ldots \\
& \underline{f}_{0}(x)=\left(f_{10}(x), f_{20}(x), \ldots\right)^{T}
\end{aligned}
$$

and

Now we can define a matrix F given by

$$
F(x)=\left[\begin{array}{ccc}
f_{11}(x) & f_{12}(x) & \ldots \\
f_{22}(x) & f_{22}(x) & \ldots \\
\cdots & \ldots & \ldots \\
\cdots & \ldots & \ldots
\end{array}\right]
$$

For $i=1,2, \ldots,\left(\underline{f}_{1} * \sum_{n=0}^{\infty} F_{0}^{* n}\right)(x)$ will be a row vector of infinite order, where the vector f_{i} is convoluted with the columns of the matrix $\sum_{n=0}^{\infty} F_{0}^{* n}$. Now for $1, \eta=1,2, \ldots$, let

$$
M_{i}^{\eta}(x)=\eta \text { th coordinate of the vector }\left(\underline{f}_{1} * \sum_{n=0}^{\infty} F^{* n}\right)(x)(3.4)
$$

Also let,

$$
\begin{equation*}
K_{i}(x)=\left(\underline{f}_{i} * \sum_{n=0}^{\infty} F_{0}^{* n} \underline{f}_{0}\right)(x) \tag{3.5}
\end{equation*}
$$

Now we can find out the probability distribution of a busy period. Let $F_{i}(x)$ denote the probability density function of a busy period initiated by 1 customers.

Then for $i=1,2, \ldots$ we have

$$
\begin{equation*}
F_{1}(x)=f_{10}(x)+K_{1}(x) \tag{3.6}
\end{equation*}
$$

For $j=1,2, \ldots$, let $b_{j}(x) d x$ be the probability that after a busy period, server goes for vacation at time zero and after one or more vacations, the next busy period starts in the interval ($x, x+d x$) when there are j units present in the system.

Then for $\mathrm{j}=1,2, \ldots$,

$$
\begin{equation*}
b_{j}(x)=\int_{0}^{x} \sum_{m=0}^{\infty} h^{* m}(u) \mu_{0}(u) h(x-u) \mu_{j}(x-u) d u \tag{3.7}
\end{equation*}
$$

The renewal points of the process are those time points at which the server goes for vacation after a busy period. Let Z be the time between two such renewal points. Then the probability density function of Z is given by

$$
\begin{equation*}
k(t)=\int_{0}^{t} \sum_{j=1}^{\infty} b_{j}(u) F_{j}(t-u) d u \tag{3.8}
\end{equation*}
$$

Then the renewal density function of the delayed renewal process is given by

$$
\begin{equation*}
M(u)=\sum_{n=0}^{\infty}\left(F_{a^{*}} k^{* n}\right)(u) \tag{3.9}
\end{equation*}
$$

In the next section, we derive explicit expressions for the
time dependent system size probabilities at arbitrary epochs.

3.3. SYSTEM SIZE PROBABILITIES

$$
\text { Let } P_{i}(t) \text { denote the probability that at time } t,
$$ there are 1 customers in the system including the one being served. Considering all the mutually exclusive and exhaustive cases, we have the following equations.

$$
P_{0}(t)=\int_{0}^{t} M(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(v-u)[1-H(t-v)] \mu_{0}(t-\nabla) d v d u(3.10)
$$

For $i=1,2$, a, we have

$$
\begin{aligned}
P_{i}(t) & =\sum_{j=1}^{i}\left[G^{* a-j}(t)-G^{* a-j+1}(t)\right] \mu_{i-j}(t) \\
& +\int_{0}^{t} \sum_{k=1}^{i-1} M_{a}^{k}(u) \sum_{j=1}^{k}\left[G^{* k-j}(t-u)-G^{* k-j+1}(t-u)\right] \\
& x \mu_{i-j}(t-u) d u \\
& +\int_{0}^{t} \sum_{k=1}^{\infty} M_{a}^{k}(u) \sum_{j=1}^{i}\left[G^{* k-j}(t-u)-G^{* k-j+1}(t-u)\right] \\
& x \mu_{i-j}(t-u) d u
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{k=1}^{i-1} b_{k}(\nabla-u) \sum_{j=1}^{k}\left[G^{* k-j}(t-\nabla)-G^{* k-j+1}(t-\nabla)\right] \\
& x \mu_{i-j}(t-v) d v d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{k=1}^{\infty} b_{k}(v-u) \sum_{j=1}^{i}\left[G^{* k-j}(t-v)-G^{* k-j+1}(t-v)\right] \\
& x \mu_{i-j}(t-v) d v d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{\gamma=1}^{\infty} b_{\gamma}(v-u) \int_{v}^{t} \sum_{k=1}^{i-1} M_{\gamma}^{k}(w-v) \\
& x \sum_{j=1}^{k}\left[G^{* k-j}(t-w)-G^{* k-j+1}(t-w)\right] \mu_{i-j}(t-w) d w d v d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{\gamma=1}^{\infty} b_{\gamma}(v-u) \int_{v}^{t} \sum_{k=1}^{\infty} M_{\gamma}^{k}(w-v) \\
& x \sum_{j=1}^{i}\left[G^{k-j}(t-w)-G{ }^{k-j+1}(t-w)\right] \mu_{i-j}(t-w) d w d v d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* \mathbb{H}}(v-u) \mu_{0}(v-u)[1-H(t-\nabla)] \\
& \text { x } \mu_{i}(t-\nabla) d v d u \tag{3.11}
\end{align*}
$$

For $i=a+1, a+2, \ldots$. , we have

$$
\begin{aligned}
& P_{i}(t)=\sum_{j=1}^{a}\left[G^{* a-j}(t)-G^{* a-j+1}(t)\right] \mu_{i-j}(t) \\
& +\int_{0}^{t} \sum_{k=1}^{i-1} M_{a}^{k}(u) \sum_{j=1}^{k}\left[G^{* k-j}(t-u)-G^{* k-j+1}(t-u)\right] \\
& \times \quad \mu_{i-j}(t-u) d u \\
& +\int_{0}^{t} \sum_{k=1}^{\infty} M_{a}^{k}(u) \sum_{j=1}^{i}\left[G^{* k-j}(t-u)-G^{* k-j+1}(t-u)\right] \\
& x \quad \mu_{i-j}(t-u) d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{k=1}^{i-1} b_{k}(\nabla-u) \sum_{j=1}^{k}\left[G^{* k-j}(t-\nabla)-G^{* k-j+1}(t-\nabla)\right] \\
& \times \quad \mu_{i-j}(t-v) d v d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{k=i}^{\infty} b_{k}(\nabla-u) \sum_{j=1}^{i}\left[G^{* k-j}(t-\nabla)-G^{* k-j+l}(t-\nabla)\right] \\
& x \quad \mu_{1-j}(t-v) d v d u
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{\gamma=1}^{\infty} b_{\gamma}(\nabla-u) \int_{\nabla}^{t} \sum_{k=1}^{i-1} M_{\gamma}^{k}(w-v) \\
& x \sum_{j=1}^{k}\left[G^{* k-j}(t-w)-G^{* k-j+1}(t-w)\right] \mu_{i-j}(t-w) d w d v d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{\gamma=1}^{\infty} b_{\gamma}(\nabla-u) \int_{v}^{t} \sum_{k=1}^{\infty} M_{\gamma}^{k}(w-\nabla) \\
& x \sum_{j=1}^{i}\left[G^{* k-j}(t-w)-G^{* k-j+1}(t-w)\right] \mu_{i-j}(t-w) d w d \nabla d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(\nabla-u) \mu_{0}(\nabla-u)[1-H(t-\nabla)] \mu_{i}(t-v) d v d u \tag{3.12}
\end{align*}
$$

3.4 VIRTUAL WAITING TIME IN THE QUEUE

The virtual waiting time in the queue at time t is defined as the weiting time of a customer in the queue if it were to arrive at time t. Let W_{t} be the virtual waiting time at time t. Here we compute the probability distribution of W_{t} conditional on the state of the system at time t and it is enough because the system size probabilities are know. Here we assume that service is in the order of their arrivals.

We consider the following cases seperately.

Case (i): At time t, there are 1 , $i=1,2$, ... units in the system and the server is working.

Then
$\operatorname{Pr}\left\{W_{t} \leqslant x\right\}=\int_{0}^{t} \sum_{j=0}^{i-1} \sum_{k=i-j}^{\infty} M_{a}^{k}(u) \mu_{j}(t-u) G^{* k+j}(t+x-u) d u$

$$
+\int_{0}^{t} M(u) \int_{u}^{t} \sum_{\gamma=1}^{\infty} b_{\gamma}(\nabla-u) \int_{v}^{t} \sum_{j=0}^{i-1} \sum_{k=i-j}^{\infty} M_{\gamma}^{k}(w-v)
$$

$$
\begin{equation*}
x \quad \mu_{j}(t-w) G^{* k+j}(t+x-w) d w d v d u \tag{3.13}
\end{equation*}
$$

Case (ii): At time t, there are $1, i=1,2$, ..., units in the system and the server is on vacation.

Then

$$
\begin{align*}
& \operatorname{Pr}\left\{W_{t} \leqslant x\right\}=\int_{0}^{t} M(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(v-u) \mu_{0}(v-u) \\
& x \int_{t}^{t+x} h(w-v) G^{* i}(t+x-w) d w d v d u \tag{3.14}
\end{align*}
$$

Case (iii): At time t, the system is empty and the server is on vacation.

Then

$$
\begin{equation*}
\operatorname{Pr}\left\{W_{t} \leqslant x\right\}=\int_{0}^{t} M(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(v-u)[H(t+x-v)-H(t-v)] d \nabla d u \tag{3.15}
\end{equation*}
$$

Remaxk:

The queueing system $M^{Y} / G / I$ without vacations to the server can be obtained as a special case of this model by taking the vacation period distribution as the distribution of the idle period. That is, the same exponential distribution of the interarrival time of customers.

Chapter 4

A FINITE CAPACITY M/G/I QUEUEING SYSTEM WITH
 BULK SERVICE AND VACATIONS TO THE SERVER

4.1. INTRODUCTION

In this chapter we consider an $M / G / 1$ queueing system with bulk service and server going for vacation whenever there is less than a prespecified number of customers in the system. The general buik service rule [see Neuts (1967)] is modified to allow the arriving customers to enter for service without altering the service time of the batch being served. This type of procedure is usually adopted in the case of entrance to cinema hall etc. When at least a prespecifled number of customers are available, show starts and the arriving customers are allowed to enter the hall if it is not full (this number may be found out by considering the cost associated with one show so that the profit is increased by the entrance of new arrivals). Arrival of these customers will not alter the service time. But among the arriving customers, some may need full service and they wait until the next show begins. The server is allowed to take vacations whenever the system size is less than
the minimum number of units needed to start a service.

Motivated by the study of cyclic service queues, an extensive study has been made on single server queueing systems with vacations to the server. Courtois (1980) analyses a finite capacity $M / G / 1$ queueing system with delays. Under exhaustive service discipline, Lee (1984) analyses a finite capacity $M / G / 1$ queveing system with vacations to the server and Scholl and Kleinrock (1983) analyse an infinite capacity $M / G / l$ queue with vacations. The case of non-exhaustive service disciplines are analysed by Neuts and Ramalhoto (1984) and Fuhrmann and Cooper(1985). Keilson and servi (1986b) obtain the blocking probability of an M/G/l vacation system with occupancy level dependent schedules. For a detailed survey on $v a c a t i o n ~ s y s t e m s$, one may refer to Doshi (1986).

All the papers mentioned above deal with the sicuation where steady state exists. In this chapter, we extend the results of last two chapters to obtain the time dependent solution for the modified $M / G^{a, b} / l$ queueing system with vacations to the server. The model is described as follows. Customers arrive to the system according to a homogeneous Poisson process of rate μ. The customers are served in batches according to the general bulk service rule.

That is, a minimum of 'a' customers are needed to start a service and a maximum of ' b ' customers can be served at a time. Service times are independent and identically distributed random variables having distribution function $G($.$) and density function g($.$) . The system is having a$ waiting room of finite capacity 'b', so that each service is started with all the units that are waiting for service at that time.

Whenever the size of the batch being served is less than 'b', the arriving units are allowed to enter for service until it reaches the maximum capacity 'b'. This service rule is known as general bulk service with accessible batches. Let p be the probability that an arriving customer enter for partial service and let (l-p) be the probability that he waits until the next service begins. Any time immediately after a service, if the server finds at least 'a' customers waiting, he takes all of them for service. If he finds less than 'a' customers in the system, he goes for vacation for a random length of time having probability distribution function $H($.$) and$ density function $h($.$) . If the server returns from a$ vacation to find less than 'a' customers in the waiting room, he begins another vacation independent of the previaus vacation and having the same probability distribution.

Now, let us assume that when the service room is full, all the arriving customers enter the waiting room. When the waiting room is full all the new arrivals are lost even if the service room is not full. Also, all the arrivals that are taking place when the server is under vacation enter the waiting room until it is full. Finally, we assume that the systen starts with $r(a \leq r \leq b)$ units waiting in the system at time zero.
4.2. basic results

For $j=0,1,2, \ldots$, let $\mu_{j}(x)$ be the probability that there are exactly j arrivals during an interval of length x.

Then

$$
\begin{equation*}
\mu_{j}(x)=\frac{e^{-\mu \mathbf{x}}(\mu \mathbf{x})^{j}}{j!} \tag{4.1}
\end{equation*}
$$

For $a \leqslant 1 \leqslant b$ and $0 \leqslant j \leqslant b$, let $f_{i j}(x) d x$ be the probability that starting with i units at time zero, the service of a batch is over in the interval ($x, x+d x)$ and there are j units waiting in the system at this service completion point.

Then for $a \leqslant 1 \leqslant b-1$ and $0 \leqslant j \leqslant b-1$, we have

$$
\begin{align*}
f_{i j}(x)= & g(x)\left\{\begin{array}{c}
\sum_{k=0}^{b-i-1} \mu_{j+k}(x)\binom{j+k}{k} p^{k}(1-p)^{j} \\
\\
\end{array}+\sum_{\gamma=0}^{j} \mu_{b-i+j}(x)\binom{\gamma+b-i}{b-i} \quad p^{b-i}(1-p)^{\gamma}\right\}
\end{align*}
$$

For $a \leqslant i \leqslant b-1$, we have

$$
\begin{align*}
f_{i b}(x)= & g(x)\left\{\begin{array}{c}
b-1-1 \\
\sum_{k=0}^{\infty} \sum_{j=b+k}^{\infty} \mu_{j}(x)\binom{b+k-1}{k} p^{k}(1-p)^{b} \\
\end{array}+\sum_{\gamma=0}^{b} \sum_{j=2 b-i}^{\infty} \mu_{j}(x)\binom{\gamma+b-i}{b-i} p^{b-i}(1-p)^{\gamma}\right\}
\end{align*}
$$

For $0 \leqslant j \leqslant b-l$, we have

$$
\begin{equation*}
f_{b j}(x)=g(x) \mu_{j}(x) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{b b}(x)=g(x) \sum_{j=b}^{\infty} \mu_{j}(x) \tag{4.5}
\end{equation*}
$$

For $a \leqslant i \leqslant b$ and $0 \leqslant j \leqslant b$, let $h_{i j}(x) d x$ be the probability that starting at time zero, service of a batch is not over
in ($0, x$], there are 1 units in the service room and j units in the waiting room at time x.

Then for $a \leqslant i \leqslant b-1$ and $0 \leqslant j \leqslant b-1$, we have

$$
h_{i j}(x)=[1-G(x)] \sum_{k=a}^{i} \mu_{j+i-k}(x)\binom{j+i-k}{i-k} p^{i-k}(1-p)^{j} \text { (4.6) }
$$

for $a \leqslant i \leqslant b-1$, we have

$$
\begin{equation*}
h_{i b}(x)=[1-G(x)] \sum_{k=a}^{i} \sum_{j=b+i-k}^{\infty} \mu_{j}(x)\binom{b+1-k-1}{i-k} p^{i-k}(1-p)^{b} \tag{4.7}
\end{equation*}
$$

For $0 \leqslant j \leqslant b-1$, we have

$$
\begin{align*}
h_{b j}(x)=[1-G(x)]\{ & \sum_{k=a}^{b-1} \sum_{\gamma=0}^{j} \mu_{j+b-k}(x)\binom{\gamma+b-k}{b-k} p^{b-k} \\
& \left.x(1-p)^{\gamma}+\mu_{j}(x)\right\} \tag{4.8}
\end{align*}
$$

and

$$
\begin{align*}
& h_{b b}(x)=[1-G(x)]\left\{\sum_{k=a}^{b-1} \sum_{j=2 b-k}^{\infty} \sum_{\gamma=0}^{b-1} \mu_{j}(x)\right. \\
& \left.x\binom{b-k+\gamma}{b-k} p^{b-k}(1-p)^{\gamma}+\sum_{j=b}^{\infty} \mu_{j}(x)\right\} \tag{4.9}
\end{align*}
$$

Now for $a \leqslant i \leqslant b$, let

$$
\underline{f}_{i}(x)=\left(f_{i a}(x), \ldots, f_{i b}(x)\right)
$$

It is a vector of order (b-a+l).

Let F be a square matrix of order (b-a+1) given by

$$
F(x)=\left[\begin{array}{ccc}
f_{a a}(x) & \cdots & f_{a b}(x) \\
\vdots & & \\
f_{b a}(x) & \cdots & f_{b b}(x)
\end{array}\right]
$$

and G a matrix of order ($b-a+1$) x a given by

$$
G(x)=\left[\begin{array}{ccc}
f_{a 0}(x) & \cdots & f_{a(a-1)}(x) \\
\vdots & & \\
f_{b o}(x) & \cdots & f_{b(a-1)}(x)
\end{array}\right]
$$

Then for $a \leqslant i \leqslant b,\left(f_{i} * \sum_{n=0}^{\infty} F_{0}^{* n}\right)(x)$ will be a vector of order (b-a+1) and
$\left(f_{i} * \sum_{n=0}^{\infty} F^{* n} \#\right)(x)$ will be a vector of order a.

For $a \leq i, \eta \leq b$, let

$$
\begin{equation*}
M_{i}^{\eta}(x)=(\eta-a+1) \text { th coordinate of }\left(f_{i} * \sum_{n=0}^{\infty} F_{0}^{* n}\right)(x) \tag{4.10}
\end{equation*}
$$

and for $a \leqslant i \leqslant b$ and $0 \leqslant \eta \leqslant a-1$, let

$$
\begin{equation*}
K_{i}^{\eta}(x)=(\eta+1) \text { th coordinate of }\left(f_{i} \sum_{n=0}^{\infty} F_{0}^{* n} G\right)(x) \tag{4.11}
\end{equation*}
$$

Thus we obtain the probability density function of a busy period starting with i units and ending with η units left, as

$$
\begin{equation*}
F_{i}^{\eta}(x)=f_{i \eta}(x)+K_{i}^{\eta}(x) \text { for } a \leq 1 \leq b \text { and } 0 \leq \eta \leq a-1 \tag{4.12}
\end{equation*}
$$

For $0 \leqslant i \leqslant a-1$ and $a \leqslant j \leqslant b$, let $c_{i j}(x) d x$ be the probability that after a busy period, the server goes for vacation at time zero when there are 1 units waiting and after one or more vacations, the next busy period starts in the interval $(x, x+d x)$ with j units in the system.

Then for $0 \leqslant 1 \leqslant a-1$ and $a \leqslant j \leqslant b-1$, we have

$$
\begin{equation*}
c_{i j}(x)=\int_{0}^{x} \sum_{m=0}^{\infty} h^{* m}(u) \sum_{k=0}^{a-1-1} \mu_{k}(u) h(x-u) \mu_{j-k-1}(x-u) d u \tag{4.13}
\end{equation*}
$$

and

$$
\begin{gather*}
c_{i b}(x)=\int_{0}^{x} \sum_{m=0}^{\infty} h^{* m}(u) \sum_{k=0}^{a-i-1} \mu_{k}(u) h(x-u) \\
x \sum_{j=b-k-i}^{\infty} \mu_{j}(x-u) d u \tag{4.14}
\end{gather*}
$$

Now we look at the time points at which the busy periods starts and the time between two such consecutive points is called a busy cycle.

For $a \leq 1, k \leq b$, let $d_{i k}(x) d x$ be the probability that a busy period is started at time zero with i units in the system and the next busy period is started in the interval ($x, x+d x$) with k units in the system.

Then the probability density function of this busy cycle is given by

$$
\begin{equation*}
d_{i k}(x)=\int_{0}^{x} \sum_{\eta=0}^{a-1} F_{i}^{\eta}(u) c_{\eta k}(x-u) d u \tag{4.15}
\end{equation*}
$$

Now we define a vector of order (b-a+1) as

$$
\underline{d}_{r}(x)=\left(d_{r a}(x), \ldots, d_{r b}(x)\right)
$$

and a square matrix \mathbb{D} of order $(b-a+1)$ as

$$
D(x)=\left[\begin{array}{ccc}
d_{a a}(x) & \ldots & d_{a b}(x) \\
\vdots & & \\
d_{b a}(x) & \ldots & d_{b b}(x)
\end{array}\right]
$$

Then $\left(\underline{d}_{r} * \sum_{n=0}^{\infty} \mathbb{D}^{* n}\right)(x)$ will be a vector of $\alpha r \operatorname{der}(b-a+1)$.

For $a \leq \eta \leq b$, let

$$
D_{\eta}(x)=(\eta-a+1) \text { th coordinate of }\left(\underline{a}_{r} * \sum_{n=0}^{\infty} \mathbb{D}^{* n}\right)(x)(4.16)
$$

The state space of the system is given by

$$
S=\{(i, j) \mid a \leq i \leq b, 0 \leq j \leq b\} \cup\{(0, j) \mid 0 \leq j \leq b\}
$$

For $a \leq i \leq b$ and $0 \leq j \leq b,(i, j)$ denotes the state that a batch of i units is being served and there are j units Waiting at that time. For $0 \leqslant j \leqslant b,(0, j)$ denotes the state that server is under vacation and there are j units waiting in the system.

4.3. THB SYSTEM SIZE PROBABILITIES

$$
\text { For } i=0, a, a+1, \ldots, b \text { and } j=0,1, \ldots, b,
$$

let $P_{i j}(t)$ be the probability that the state of the system is (i, j) at time t. Considering all the mutually exclusive cases, the following relations $c a n$ be obtained. Note that the first busy period starts with r units.

Then for $r \leqslant i \leqslant b$ and $0 \leqslant j \leqslant b$, we have

$$
\begin{aligned}
P_{i j}(t)= & h_{i j}(t)+\int_{0}^{t} \sum_{\eta=a}^{i} M_{r}^{\eta}(u) h_{i j}(t-u) d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{i} D_{\eta}(u) h_{i j}(t-u) d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{k=a}^{i} M_{\eta}^{k}(v-u) h_{i j}(t-v) d v d u \quad \text { (4.17) }
\end{aligned}
$$

For $a \leq i \leq r-1$ and $0 \leqslant j \leqslant b$, we have

$$
\begin{align*}
P_{i j}(t)= & \int_{0}^{t} \sum_{\eta=a}^{i} M_{r}^{\eta}(u) h_{i j}(t-u) d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{i} D_{\eta}(u) h_{i j}(t-u) d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{k=a}^{i} M_{\eta}^{k}(v-u) h_{i j}(t-v) d v d u \tag{4.18}
\end{align*}
$$

For $0 \leqslant j \leqslant a-1$, we have

$$
\begin{align*}
P_{o j}(t)= & \int_{0}^{t} \sum_{k=0}^{j} F_{r}^{k}(u) \mu_{j-k}(t-u) d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{k=0}^{j} F_{\eta}^{k}(\nabla-u) \mu_{j-k}(t-\nabla) d \nabla d u \tag{4.19}
\end{align*}
$$

For $a \leqslant j \leqslant b-1$, we have

$$
\begin{align*}
& P_{o j}(t)=\int_{0}^{t} \sum_{\eta=0}^{a-1} F_{r}^{\eta}(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(v-u) \sum_{k=0}^{a-\eta-1} \mu_{k}(v-u) \\
& x[1-\exists(t-v)] \mu_{j-k-\eta}(\hbar-\nabla) d v d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{i=0}^{a-1} F_{\eta}^{i}(\nabla-u) \\
& x \int_{\nabla}^{t} \sum_{m=0}^{\infty} h^{*(q}(n-\nabla) \sum_{k=0}^{a-j-1} \mu_{\Sigma}(w-\nabla) \\
& x[1-H(t-w)] \mu_{j-k-i}(t-w) d w d v d u \tag{4.20}
\end{align*}
$$

Finally,

$$
\begin{align*}
& P_{o b}(t)= \int_{0}^{t} \sum_{i=0}^{a-1} F_{r}^{i}(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(v-u) \sum_{k=0}^{a-i-1} \mu_{k}(\nabla-u) \\
& x[1-H(t-v)] \sum_{j=b-k-i}^{\infty} \mu_{j}(t-v) d v d u \\
&+\int_{0}^{t} \sum_{\eta=a}^{b} \sum_{\eta}(u) \int_{u}^{t} \sum_{i=0}^{a-1} F_{\eta}^{i}(v-u) \int_{v}^{t} \sum_{m=0}^{\infty} h^{* m}(w-v) \\
& \quad \sum_{k=0}^{a-1-1} \mu_{k}(w-v)[1-H(t-w)] \\
& x \sum_{j=b-i-i}^{\infty} \mu_{j}(t-w) d w d v d u \tag{4.21}
\end{align*}
$$

4.4 TIRTUAL WAITING TIME IN MTE QUSUE

The virtual wai ing time in ... queve at tine t is defined as the length of time a (virtual) customer arriving at time t has to wait before starting his service. Let W_{L} be the virtual waiting time in the queue at time t. The probability distribution of W_{t} is computed here, conditional on the state of the system at time t. It should be noted that, we have already computed the system size probabilities
and hence this will give us the explicit expressions for the virtual waiting time in the queue at time t. Further, it is to be noted that even if the waiting room is full, the virtual customer can join the queue and enter for the next service along with the wafting custumers.

We consider the following cases seperately.

Case (i): The state of the system is (i,j) at time t, $a \leqslant i<b$ and $a-1 \leqslant j<b$, so that the server is working.

Then

$$
\begin{align*}
\operatorname{Pr}\left\{W_{t} \leq x\right\}= & p+(1-p) \int_{0}^{t} \sum_{\eta=a}^{i} M_{r}^{\eta}(u) \int_{t}^{t+x} \sum_{k=j}^{b} f_{n k}(z-u) d z d u \\
& +(1-p) \int_{0}^{t} \sum_{\eta=a}^{i} D_{\eta}(u) \int_{t}^{t+x} \sum_{k=j}^{b} f_{\eta i r}(z-u) d z d u \\
& +(1-p) \int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{\gamma=a}^{i} M_{\eta}^{\gamma}(v-u) \\
& x \int_{t}^{t+x} \sum_{k=j}^{b} f_{\eta k}(z-v) d z d v d u \tag{4.22}
\end{align*}
$$

Case (ii): The state is (b, j) at time $t, a-1 \leq j \leq b$, server is working.

Then

$$
\begin{align*}
\operatorname{Pr}\left\{w_{t} \leq x\right\}= & \int_{0}^{t} \sum_{\eta=a}^{b} M_{r}^{\eta}(u) \int_{t}^{t+x} \sum_{k=j}^{b} f_{\eta k}(z-u) d z d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{t}^{t+x} \sum_{k=j}^{b} f_{\eta k}(z-u) d z d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{\gamma=a}^{b} M_{\eta}^{\gamma}(\nabla-u) \\
& x \int_{t}^{t+x} \sum_{k=j}^{b} f_{\gamma k}(z-\nabla) d z d v d u \tag{4.23}
\end{align*}
$$

Sase (iii): The state is (ib) at time $t, a \leqslant i<b$. Server is working

Then

$$
\begin{aligned}
\operatorname{Pr}\left\{W_{t} \leqslant x\right\}= & \int_{0}^{t} \sum_{\eta=a}^{i} M_{r}^{\eta}(u) \int_{t}^{t+x} f_{\eta b}(z-u) d z d u \\
& +\int_{0}^{t} \sum_{n=a}^{i} D_{\eta}(u) \int_{t}^{t+x} f_{\eta b}(z-u) d z d u
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{k=a}^{i} M_{\eta}^{k}(v-u) \\
& \quad x \int_{t}^{t+x} f_{k b}(z-\nabla) d z d v d u \tag{4.24}
\end{align*}
$$

Case (iv): The state is (in) at time $t, a \leq i<b$, $0 \leqslant j \leq a-2$. Server is working.

Then

$$
\begin{aligned}
& \operatorname{Pr}\left\{W_{t} \leq x\right\}=p+(1-p) \int_{0}^{t} \sum_{\eta=a}^{i} M_{r}^{\eta}(u) \int_{t}^{t+x} \sum_{k=a}^{b} f_{\eta k}(z-u) d z d u \\
& +(1-p) \int_{0}^{t} \sum_{\eta=a}^{i} D_{\eta}(u) \int_{t}^{t+x} \sum_{k=a}^{b} f_{\eta k}(z-u) d z d u \\
& +(1-p) \int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{\gamma=a}^{i} M_{\eta}^{\gamma}(v-u) \\
& x \int_{t}^{t+x} \sum_{k=a}^{b} f_{\gamma k}(z-u) d z d \nabla d u \\
& +(1-p) \int_{0}^{t} \sum_{\eta=a}^{1} M_{r}^{\eta}(u) \int_{t}^{t+x} \sum_{k=j+1}^{a-1} f_{\eta k}(\nabla-u) \\
& x \int_{v}^{t+x} \sum_{m=0}^{\infty} h^{* \mathbb{I}}(w-\nabla) \sum_{l=0}^{a-k-1} \mu_{l}(w-\nabla) \\
& \text { x } H(t+x-w) \sum_{\gamma=a-k-l}^{\infty} \mu_{\gamma}(t+x-w) d w d v d u
\end{aligned}
$$

$$
\begin{align*}
& +(1-p) \int_{0}^{t} \sum_{\eta=a}^{i} D_{\eta}(u) \int_{t}^{t+x} \sum_{k=j+1}^{a-1} f_{\eta k}(\nabla-u) \\
& x \int_{v}^{t+x} \sum_{m=0}^{\infty} h^{* m}(w-\nabla) \sum_{l=0}^{a-k-1} \mu_{l}(w-\nabla) \\
& \pm H(t+x-w) \sum_{\gamma=a-k-l}^{\infty} \mu_{\gamma}(t+x-w) d w d v d u \\
& +(1-p) \int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{r=a}^{1} M_{\eta}^{r}(v-u) \int_{t}^{t+x} \sum_{k=j+1}^{a-1} f_{r k}(w-\nabla) \\
& x \int_{w}^{t+x} \sum_{m=0}^{\infty} h^{* m}(y-w) \sum_{l=0}^{a-k-1} \mu_{l}(y-w) H(t+x-y) \\
& x \sum_{\gamma=a-k-1}^{\infty} \mu_{\gamma}(t+x-y) d y d w d v d u \tag{4.25}
\end{align*}
$$

Case (v): The state is (b, j) at time $t, 0 \leqslant j \leqslant a-2$.

Then

$$
\begin{aligned}
\operatorname{Pr}\left\{W_{t} \leq x\right\}= & \int_{0}^{t} \sum_{\eta=a}^{b} M_{r}^{\eta}(u) \int_{t}^{t+x} \sum_{k=a}^{b} f_{\eta k}(z-u) d z d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{t}^{t+x} \sum_{k=a}^{b} f_{\eta k}(z-u) d z d u
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{\gamma=a}^{b} M_{\eta}^{\gamma}(v-u) \\
& x \int_{t}^{t+x} \sum_{k=a}^{b} f_{\gamma k}(z-v) d z d v d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} M_{r}^{\eta}(u) \int_{t}^{t+x} \sum_{k=j+1}^{a-1} f_{\eta k}(v-u) \\
& x \int_{v}^{t+x} \sum_{m=0}^{\infty} h^{* m}(w-v) \sum_{i=0}^{a-k-1} \mu_{i}(w-v) \\
& \text { x } H(t+x-w) \sum_{\gamma=a-k-i}^{\infty} \mu_{\gamma}(t+x-w) d w d v d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{t}^{t+x} \sum_{k=j+1}^{a-1} f_{\eta k}(v-u) \\
& x \int_{v}^{t+x} \sum_{m=0}^{\infty} h^{* m}(w-v) \sum_{i=0}^{a-k-1} \mu_{i}(w-v) \\
& x H(t+x-w) \sum_{\gamma=a-k-i}^{\infty} \mu_{\gamma}(t+x-w) d w d v d v
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{l=a}^{b} M_{\eta}^{l}(\nabla-u) \int_{t}^{t+x} \sum_{k=j+1}^{a-1} f_{l k}(w-v) \\
& x \int_{w}^{t+x} \sum_{m=0}^{\infty} h^{* m}(y-w) \sum_{i=0}^{a-k-1} \mu_{i}(y-w) \\
& \quad \times H(t+x-y) \sum_{\gamma=3-k-i}^{\infty} \mu_{\gamma}(t+x-y) d y d w d \nabla d u \quad \tag{4.26}
\end{align*}
$$

Case ($\nabla \mathrm{i}$): The state is $(0, j$) at time $t, a-1 \leqslant j \leqslant b$. Server is under vacation.

Then

$$
\begin{aligned}
\operatorname{Pr}\left\{W_{t} \leq x\right\}= & \int_{0}^{t} \sum_{\eta=0}^{a-1} F_{r}^{\eta}(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(v-u) \sum_{i=0}^{a-\eta-1} \mu_{i}(v-u) \\
& x[H(t+x-v)-H(t-v)] d v d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{k=0}^{a-1} F_{\eta}^{k}(v-u) \int_{\nabla}^{t} \sum_{m=0}^{\infty} h^{* m}(w-v) \\
& x \sum_{i=0}^{a-k-1} \mu_{i}(w-v)[H(t+x-w)-H(t-w)] d w d v d u
\end{aligned}
$$

Case(vii): The state is $(0, j)$ at time $t, 0 \leq j \leq a-2$. Server is under vacation.

Then

$$
\begin{align*}
& \operatorname{Pr}\left\{W_{t} \leq x\right\}=\int_{0}^{t} \sum_{\eta=0}^{a-1} F_{r}^{\eta}(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(\nabla-u) \sum_{i=0}^{a-\eta-1} \mu_{i}(v-u) \\
& x[H(t+x-\nabla)-H(t-\nabla)] \sum_{k=a-j-\eta}^{\infty} \mu_{k}(t+\bar{x}-\nabla) d v d u \\
& +\int_{0}^{t} \sum_{\eta=a}^{b} D_{\eta}(u) \int_{u}^{t} \sum_{\gamma=0}^{a-1} F_{\eta}^{\gamma}(v-u) \int_{v}^{t} \sum_{m=0}^{\infty} h^{* m}(w-v) \\
& x \quad \sum_{i=0}^{a-\gamma-1} \mu_{i}(w-\nabla)[H(t+x-w)-H(t-w)] \\
& x \sum_{k=a-i-\gamma}^{\infty} \mu_{k}(t+x-w) d w d v d u \tag{4.28}
\end{align*}
$$

Remark

If we take $p=0$ in the $a b o v e$ analysis, we will get the usual $M ; G^{a, b} / 1$ queueing system with vacations $\tau \sim$ vile server. If we take $p=1$, we wll get the case of $M / G / 1$ bulk service system with accessible batches in which all the arrivals join for service until the capacity is attained.

Chapter 5

A FINITE CAPACITY M/GB/I VAGATION SYSTEM

WITH BERNOULTI SCEBAULES

5.1. INTRODUCTION

Queueing systems with vacations to the server huye been studied by several authors. Levy and Yechiali (1975), Courtois (1980), Scholl and Kleinrock(1983), Lee (1984), Fuhrmann (1984) and Doshi (1985) analysed the case of vacation models with exhaustive service, in which each time the server becomes ivailable, he works in a continuous manner untii the system becomes empty. The case of vacation queveing models without exhaustive service have been considered by Neuts and Ramalhoto (1984), Finmann and Cooper (1985) and Keilson and Servi (1986b). An excellent survey on queueing systems with vacations to the server has been given by Doshi (1986).

The case of Bernoulli schedules in vacation systems is first analjsed by Keilson and Servi (1986a). Using oscillating random walk, they have proved that for a GI/G/l vacation system with Bernoulli schedules, the decomposition property' holds for the ergodic waiting time. Servi(1986b)
analysed the average delay in $M / G / l$ cyclic service queue with Bernoulli schedules.

In all the queueing models referred to above, the existence of stationary distribution is assumed. Under exhaustive service discipline, Jacob and Krishnamoorthy(1987) gives the transient solution for a finite capacity $M / G / 1$ queueing system with vacations to the server, using renewal theoretic arguments. The case of a finite capacity $\mathrm{M} / \mathrm{G}^{\mathrm{a}, \mathrm{b}} / 1$ queueing system with ∇ acations to the server is analysed by Jacob and Madhusoodanan (1988).

Here we consider a single server queueing model in which customers arrive at a counter according to a homogeneous Poisson process of rate μ. They are served in batches with maximum size B and minimum size l. Service times are independent random variables having distribution function $G_{i}($.$) , if i is the size of the batch being serfed$ and let $g_{i}($.$) be the corresponding probability density$ function. The waiting room is of finite capacity B, so that each service starts with all the units that are waiting for service at that time. All the arrivals that are taking place when the waiting room is full are lost.

Server gees for vacation whenever the system

 becomes empty and this vacation is called 'compulsory Jacation'. Winen a batci has just been seryed out and other custoners are present, server goes for vacation according to Bernoulli schedu?. That is, the sorver accepts the next batch with probability p and commences a vacation with probability l-p. Hence there are two types of vacations. One is the vacation started with probability one when the system is empty, which is repeated until there is at least one customer present on retarm from a vacation (according to the terminology of Doshi (1986), this is a multiple vacation). The other is the vacation started with probability I-p, yinere the sfstom is not empty and this vacation peraod cennct be exterded foz more than one period (i.0., thie is a singie ∇ acation). In any case, on sompletion ot a vacation, if customera ane rresent, service io rosured The vacation periods are independent and iaentically distuibuted random variables having general distribution with distribution function $H($.$) ani lensity function h($.$) .$ Setting p=o, we obtain the single service discipline in which a vacation rexiod begins after every service completion or after any vacation if the queue is empty. If we set $p=1$, we get the exhaustive service discipline. Thusthe single service discipline and exhaustive service discipline are special cases of Bernoulli schedule vacation system.
5.2. BASIC RESULTS

Let us suppose that at time zero, service starts with 'a' units ($1 \leqslant 2 \leqslant B$) in the system.

Now for $j=0,1, \ldots, B-1$, let $\mu_{j}(x)$ denote the probability that there are exactly j arrivals during the interval ($0, x$] and let $\mu_{B}(x)$ denote the probability that there are at least B arrivals during the interval ($0, \mathrm{x}$].

Then for $j=0,1, \ldots, B-1$, we have

$$
\mu_{j}(x)=\frac{e^{-\mu x}(\mu x)^{j}}{j!}
$$

and

$$
\begin{equation*}
\mu_{B}(x)=\sum_{j=B}^{\infty} \frac{e^{-\mu x}(\mu x)^{j}}{j!} \tag{5.1}
\end{equation*}
$$

For $l \leq i \leq B$ and $0 \leq j \leq B$, let $f_{i j}(x) d x$ be the probability that at time zero, the service of a batch of size 1 units is over in the interval $(x, x+d x)$ and there are j accepted arrivals during the interval $(0, x]$.

Then

$$
\begin{equation*}
f_{i j}(x)=g_{i}(x) \mu_{j}(x) \tag{5.2}
\end{equation*}
$$

Now we can define the transition probabilities as follows.

For $I \leqslant j, k \leqslant B$, let $h_{j k}(x) d x$ be the probability that service of a batch of size j is started at time zero, the service of the next batch of size k units is started in the interval ($x, x+d x$) given that on completion of service of the first batch, the waiting room was not empty.

Then for $l \leqslant j \leqslant B$ and $l \leqslant k<B$, we have

$$
h_{j k}(x)=f_{j k}(x) p+\int_{0}^{x} \sum_{i=1}^{k} f_{j i}(u)(1-p) h(x-u) \mu_{k-i}(x-u) d u
$$

and for $l \leq j \leq 3$, we have

$$
\begin{gather*}
h_{j B}(x)=f_{j B}(x) p+\int_{0}^{x} \sum_{i=1}^{B} f_{j 1}(u)(1-p) h(x-u) \\
x \sum_{k=B-i}^{B} \mu_{k}(x-u) d u \tag{5.3}
\end{gather*}
$$

For $1 \leqslant 1 \leqslant B$, defins a vector of order B given by

$$
\underline{h}_{i}(x)=\left(h_{i 1}(x), h_{i 2}(x), \ldots, h_{i B}(x)\right)
$$

and another vector of order B given by

$$
\underline{f}_{0}(x)=\left(f_{10}(x), f_{20}(x), \ldots, f_{B 0}(x)\right)^{T}
$$

where T denotes transpose.

Define a square matrix n of order B given by

$$
H(x)=\left[\begin{array}{ccc}
h_{11}(x) & \cdots & h_{1 B}(x) \\
\vdots & & \\
h_{B 1}(x) & \cdots & h_{B B}(x)
\end{array}\right]
$$

Then for $1 \leqslant i \leqslant B,\left(\underline{h}_{i} * \sum_{n=0}^{\infty} \|_{0}^{* n}\right)(x)$ will be a vector of order B.

For $\eta=1,2, \ldots, B$, let

$$
\begin{equation*}
M_{i}^{\eta}(x)=\eta \text { th coordinate of }\left(\underline{h}_{i} * \sum_{n=0}^{\infty} \not H^{* n}\right)(x) \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{i}(x)=\left(\underline{h}_{i} * \sum_{n=0}^{\infty} \not H^{* n} \underline{f}_{0}\right)(x) \tag{5.5}
\end{equation*}
$$

For this queueing system, we define busy period as the length of time from the instant at which the server starts service after a compulscry vacation until the server starts the next compulsory vacation. The time between the starting points of two consecutive busy periods is called a busy cycle.

Thus we obtain the probability density function of a busy period generated by i customers, $l \leqslant i \leqslant B$, as

$$
\begin{equation*}
F_{i}(x)=f_{i o}(x)+K_{i}(x) \tag{5.6}
\end{equation*}
$$

Now we look at the time points at which the busy periods start and obtain the probability density function of the time between two such consecutive points. That is, the probability density function of a busy cycle.

For $1 \leqslant 1, j \leqslant B$, let $d_{i j}(x) d x$ be the probability that a busy period is started at time zero with i units in the system and the next busy period is started in the interval ($x, x+d x$) with j units in the system.

Then

$$
\begin{array}{r}
d_{i j}(x)=\int_{0}^{x} F_{i}(x) \int_{u}^{x} \sum_{m=0}^{\infty} h^{* m}(v-u) \mu_{0}(v-u) \\
x h(x-v) \mu_{j}(x-v) d v d u \tag{5.7}
\end{array}
$$

Now define a vector of order B given by

$$
\underline{d}_{a}(x)=\left(d_{a l}(x), \ldots, d_{a B}(x)\right)
$$

and a square matrix D of order B given by

$$
D(x)=\left[\begin{array}{ccc}
d_{11}(x) & \cdots & d_{1 B}(x) \\
\vdots & & \\
d_{B 1}(x) & \cdots & d_{B B}(x)
\end{array}\right]
$$

Then $\left(\underline{d}_{a} * \sum_{n=0}^{\infty} \mathbb{D}^{* n}\right)(x)$ will be a vector of order B. For $1 \leqslant \eta \leqslant B$, let

$$
\begin{equation*}
D_{\eta}(x)=\eta \text { th coordinate of }\left(\underline{d}_{a} \sum_{n=0}^{\infty} \mathbb{D}^{* n}\right)(x) \tag{5.8}
\end{equation*}
$$

Finally, the state space of the system is given by

$$
S=\{(i, j) \mid 0 \leq i, j \leq B\}
$$

For $1 \leqslant i \leqslant B$ and $0 \leqslant j \leqslant B$, the state (i, j) denotes that a batch of 1 units is being served and there are j units waiting at that time. Also for $0 \leqslant j \leqslant B,(0, j)$ denotes the state that the server is under vacation and there are j units waiting.

5.3. THA SYSTEM SIZE PROBABILITISS

$$
\text { For } 0 \leqslant i, j \leqslant B \text {, we can define } P_{i j}(t) \text { as the }
$$ probability that the state of the system is (i,j) at time t. Note that the first busy period is started With the service of 'a' units. Considering all the mutually exclusive and exnaustive cases, the following relations can be cobtained.

For $0 \leqslant j \leqslant B$, we have
$P_{a j}(t)=\left[1-G_{a}(t)\right] \mu_{j}(t)$
$+\int_{0}^{t} M_{a}^{a_{1}}(u)\left[I-G_{a}(t-u)\right] \mu_{j}(t-u) d u$
$+\int_{0}^{t} D_{a}(i)\left[I-G_{a}(t-u)\right] \mu_{j}(t-u) d u$
$+\int_{0}^{t} \sum_{n_{i}=1}^{B} D_{\eta}(u) \int_{u}^{t} M_{\eta}^{a}(\nabla-u)\left[1-G_{a}(t-\nabla)\right]$
x $\mu_{j}(t-v) d v d u$

For $i=1,2, \ldots, a-1, a+1, \ldots, B$ and $0 \leqslant j \leqslant B$, we have $P_{i j}(t)=\int_{0}^{t} M_{a}^{i}(u)\left[1-G_{i}(t-u)\right] \mu_{j}(t-u) d u$

$$
\begin{align*}
& +\int_{0}^{t} D_{i}(u)\left[1-G_{i}(t-u)\right] \mu_{j}(t-u) d u \\
& +\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} M_{\eta}^{i}(\nabla-u)\left[1-G_{i}(t-v)\right] \\
& \quad x \mu_{j}(t-\nabla) d v d u \tag{5.10}
\end{align*}
$$

Also,

$$
\begin{aligned}
& P_{O B}(t)= \int_{0}^{t} \sum_{k=1}^{B} f_{a k}(u)(1-p)[1-H(t-u)] \sum_{i=B-k}^{B} \mu_{i}(t-u) d u \\
&+\int_{0}^{t} \sum_{\eta=1}^{B} M_{a}^{\eta}(u) \int_{u}^{t} \sum_{k=1}^{B} f_{\eta k}(v-u)(1-p)[1-H(t-v)] \\
&\left.+\int_{0}^{t} \sum_{i=B-k^{\prime}}^{B} \sum_{\eta=1}^{B} D_{\eta}(t-v)\right)_{u}^{t} \sum_{k=1}^{B} f_{\eta k}(v-u)(1-p)[1-H(t-\nabla)] \\
&+\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} \sum_{j=1}^{B} M_{\eta}^{j}(v-u) \int_{\nabla}^{t} \sum_{k=1}^{B} f_{j k}(w-v)(1-p) \\
& \sum_{i=B-k}^{B} \mu_{i}(t-v) d v d u \\
&
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{t} F_{a}(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(v-u) \mu_{0}(v-u) \\
& x[I-H(t-v)] \mu_{B}(t-v) d v d u \\
& -\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} F_{\eta}(v-u) \int_{v}^{t} \sum_{m=0}^{\infty} h^{* m}(w-v) \mu_{0}(w-v) \\
& \quad x[I-H(t-w)] \mu_{B}(t-w) d w d v d u \tag{5.11}
\end{align*}
$$

For $\mathrm{j}=\mathrm{l}, 2, \ldots, \mathrm{~B}-1$, we have
$P_{o j}(t)=\int_{0}^{t} \sum_{k=1}^{j} f_{a k}(u)(1-p)[1-H(t-u)] \mu_{j-k}(t-u) d u$
$+\int_{0}^{t} \sum_{\eta=1}^{B} M_{a}^{\eta}(u) \int_{u}^{t} \sum_{k=1}^{j} f_{\eta k}(\nabla-u)(1-p)[1-H(t-v)]$ $x \mu_{j-k}(t-v) d v d u$
$+\int_{0}^{t} \sum_{\eta_{i}=1}^{B} D_{\eta}(u) \int_{u}^{t} \sum_{k=1}^{j} f_{\eta k}(v-u)(1-p)[1-H(t-v)]$
$x \mu_{j-k}(t-v) d v d u$

$$
\begin{align*}
& +\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} \sum_{i=1}^{B} M_{\eta}^{i}(v-u) \int_{v}^{t} \sum_{k=1}^{j} f_{i k}(w-v)(1-p) \\
& x[1-H(t-w)] \mu_{j-k}(t-w) d w d v d u \\
& +\int_{0}^{t} F_{a}(u) \int_{u}^{s} \sum_{m=0}^{\infty} h_{0}^{* m}(v-u) \mu_{0}(v-u)[1-H(t-v)] \\
& x \mu_{j}(t-v) d v d u \\
& +\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} F_{\eta}(v-u) \int_{v}^{t} \sum_{m=0}^{\infty} h^{* m}(w-v) \mu_{0}(w-\nabla) \\
& x[1-H(t-w)] \mu_{j}(t-w) d w d v a u \tag{5.12}
\end{align*}
$$

Finally,

$$
\begin{align*}
P_{00}(t)= & \int_{0}^{t} F_{a}(u) \sum_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(v-u) \mu_{0}(v-u) \\
& x[1-H(t-v)] \mu_{0}(t-v) d v d u \\
+ & \int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} F_{\eta}(v-u) \int_{v}^{t} \sum_{m=0}^{\infty} h^{* m}(w-v) \mu_{0}(w-v) \\
& x[1-H(t-w)] \mu_{0}(t-w) d w d v d u \tag{5.13}
\end{align*}
$$

5.4 VIRTUAL WAITING TIME IN THR QUEUS

Let W_{t} be the virtual waiting time in the quene at time t. The probailility distribution of W_{t} is computed here, conditional on the state of the system at time t. It should be noted that we have already computed the system size probabilities and hence this will give us explicit expressions for the virtual waiting tine. Furtwer, it is to be noted that even if the waiting room is full, the virtual customer can join the queue and enter for the next service along with the waiting customers.

We consider the following cases seperately.

Case (i): The state is (i,j) at time $t, 0<i \leqslant B$ and $0 \leqslant j \leqslant B$, so that the server is working.

Then

$$
\begin{aligned}
\operatorname{Pr}\left\{W_{t} \leqslant x\right\}= & \int_{0}^{t} M_{a}^{i}(u)\left[G_{i}(t+x-u)-G_{i}(t-u)\right] p d u \\
& +\int_{0}^{t} M_{a}^{i}(u) \int_{t}^{t+x} G_{i}(v-u)(I-p) H(t+x-v) d v d u \\
& +\int_{0}^{t} D_{i}(u)\left[G_{i}(t+x-u)-G_{i}(t-u)\right] p d u
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{t} D_{i}(u) \int_{t}^{t+x} G_{i}(v-u)(1-p) H(t+x-v) d v d u \\
& +\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} M_{\eta}^{i}(v-u)\left[G_{i}(t+x-v)-G_{i}(t-1)\right] p d v d u \\
& +\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} M_{\eta}^{i}(v-u) \int_{t}^{t+x} G_{i}(w-v)(I-p) \\
& x H(t+x-w) d w d v d u \tag{5.14}
\end{align*}
$$

Case (ii): At time t, the state is $(0, j), l \leq j \leq B$. Server is under vacation

Then

$$
\begin{aligned}
\operatorname{Pr}\left\{W_{t} \leqslant x\right\}= & \int_{0}^{t} F_{a}(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(v-u) \mu_{0}(v-u) \\
& x[H(t+x-v)-H(t-v)] d v d u \\
& +\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} F_{\eta}(v-u) \int_{v}^{t} \sum_{m=0}^{\infty} h^{* m}(w-v) \mu_{0}(w-v) \\
& x[H(t+x-w)-H(t-w)] d w d v d u
\end{aligned}
$$

$$
+\int_{0}^{t} \sum_{k=1}^{j} f_{a k}(u)(1-p)[H(t+x-u)-H(t-u)] d u
$$

$$
+\int_{0}^{t} \sum_{\eta=1}^{B} M_{a}^{\eta}(u) \int_{u}^{t} \sum_{k=1}^{j} f_{\eta k}(v-u)(1-p)
$$

$$
x[H(t+x-v)-H(t-v)] d v d u
$$

$$
+\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} \sum_{k=1}^{j} f_{\eta k}(\nabla-u)(1-p)
$$

$$
x[H(t+x-v)-H(t-v)] d v d u
$$

$$
\begin{align*}
& +\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} \sum_{i=1}^{B} M_{\eta}^{i}(v-u) \int_{v}^{t} \sum_{k=1}^{j} f_{i k}(w-v) \\
& \quad x(1-p)[H(t+x-w)-H(t-w)] d w d v d u \tag{5.15}
\end{align*}
$$

Case (iii): At time t, the state is $(0,0)$. Server is under vacation.

Then

$$
\begin{align*}
\operatorname{Pr}\left\{W_{t} \leq x\right\}= & \int_{0}^{t} F_{a}(u) \int_{u}^{t} \sum_{m=0}^{\infty} h^{* m}(v-u) \mu_{0}(v-u) \\
& x[H(t+x-v)-H(t-v)] d v d u \\
& +\int_{0}^{t} \sum_{\eta=1}^{B} D_{\eta}(u) \int_{u}^{t} F_{\eta}(v-u) \int_{\nabla}^{t} \sum_{m=0}^{\infty} h^{* m}(w-v) \mu_{0}(w-v) \\
& x[H(t+x-w)-H(t-w)] d w d v d u \tag{5.16}
\end{align*}
$$

Chapter 6

AN (s, S) INVENTORY SY STEM WITH RANDOM REPLENISHMENT

6.1. INTRODUCTION

Inventory systems based on (s,S) policy has been studied quite extensively by several authors. A systematic account of the probabilistic treatment in the study of inventory systems using renewal theoretic arguments has been given by Arrow, Karlin and Scarf (1958). A valuable review of storage systems was given by Gani (1957). Hadley and Whitin (1963) deals with the applications of mathematical models to practical situations. Tijms(1972) gives a detailed analysis of (s,s) inventory systems and chapter 3 of his monograph deals with the probabilistic analysis. Sivazlian (1974) considers the case of arbitrary interarrival time distribution and zero lead time. Srinivasan (1979) analyses the case of arbitrary interarrival time distribution and random lead time. The same problem with two ordering levels have been considersd by Thangaraj and Ramanarayanan (1983). Sahin (1979) considers the case of bulk demands and constant lead times. In all these cases, the probability mass function of on hand inventory is derived and the associated optimization problems discussed.

In this chapter we consider a continuous review (s,S) inventory system with time between unit demands and lead times random variables following general distributions. In all the cases discussed in the past, whenever the level drops to s or below, an order is placed for a quantity so as to fill the inventory, and after a lead time the entire quantity ordered for is received. But in practice, this may not be the case. If the items have very high demand in the market, we may not get the full amount we have ordered. The item will be replenished according to the availability with the supplier. So j.t will be reasonable to assume that the quantity replenished is random which lies between a fixed lower level and the quantity ordered. Here we consider this problem and using renewal theoretic arguments, we derive the probability mass function for the stock level at an arbitrary time point t.

In section 6.2 we give the assumptions underlying the model and the notations used. Basic results regarding the transition probabilities are given in Section 6.3. In Section 6.4, we derive expressions for the probability distribution of the inventory level at arbitrary epochs. We find the expected value of total inventory carrying cost and the total expected profit due to sales over a time interval of length t, in Section 6.5. Section 6.6 deals
with the case of zero lead time, and there the probability distribution of the inventory level is derived under such a condition. The steady state solution is also obtained in this section. Using this, the associated optimization problem is discussed in Section 6.7. Finally, we give some numerical results.
6.2. THE MODEL

Let us consider a warehouse of maximum capacity S and suppose that initially the warehouse is full. Due to incoming demands, the stock level goes on decreasing. The demands are assumed to occur for one unit at a time and the time interval between consecutive demands form a sequence of independent and identically distributed random variables. Whenever the stock level drops to s, the reorder level, an order is placed for $S-s$ units. We assume that $S>2 s$ to avoid perpetual shortage. The lead time for materialization of an order is assumed to be arbitrarily distributed random variable, independent of the stock level and the time between demands. Further, lead times are assumed to be independent and identically distributed random variables. The market considered here is assumed to be competitive enough to rule out backlogging of demands and the demends that emanate during the stock out period are deemed to be
lost. Since the market is competitive and there are suificient demand for the item, the supplier may not be ready to supply (or may not be in a position to supply) the whola amount we have ordered. Thus, eventhough the order is for a fixed quantity $S-s$, the replenishment is by a random quantity. The quantity replenished is assumed to lie between $s+1$ and $S-s$. The probability that replenishment is by a quantity i is p_{i} for $s+1 \leq i \leq S-s$ such that $\sum_{i=S+1}^{S-s} p_{i}=1$. Then the stock level can be described by a discrete-valued stochastic process $\{I(t), t \geqslant 0\}$ with $I(0)=$ S. The epochs corresponding to the arrival of demands constitute a renewal process.

Notations

$I(t)$	stock level at arbitrary time t
$\pi(n, t)$	$\operatorname{Pr}\{I(t)=n \mid I(0)=S\}$
$F(),. f() \quad$.	Cumulative Distribution Function (CDF) and probability density function (pdf) of the inter occurrence time of successive demands.

$G(),. g($.	CDF and pdf of lead time
$\bar{F}(),. \bar{G}($.	1-F(.), l-G(.) respectively
$f_{s, i}(x) d x$	probability that due to the first demand after order realization, the inventory level drops to i in the interval $(x, x+d x)$, given that the order is placed at time zero when the level was $s .(s \leq i \leqslant S-1)$.
$\mathrm{s}^{f} \mathrm{~s}(\mathrm{x}) \mathrm{dx}$	probability that an order is placed in the interval ($x, x+d x)$, given that the previous order is placed at time zero.

6.3. TRANSITION PROBABIIITIES

It is to be noted that the successive time points at which the inventory level drops to s will form a renewal process. Since the initial inventory level is S, this will form a delayed renewal process. We can derive the renewal density function for this delayed renewal process, by using the transition probabilities $\mathbf{f}_{s, i}$.

Considering all the mutually exclusive and exhaustive cases, we can write expressions for the transition probabilities as follows.

$$
\begin{equation*}
f_{S, S-1}(x)=G(x) p_{S-5} f(x) \tag{6.1}
\end{equation*}
$$

For $S-s \leq i \leq S-2$, we have

$$
\begin{align*}
f_{s, i}(x)= & G(x) p_{i-s+1} f(x) \\
& +\int_{0}^{x} \sum_{j=1}^{S-i-1} f^{* j}(u)[G(x)-G(u)] \\
& x p_{i+j-3+1} f(x-u) d u \tag{6.2}
\end{align*}
$$

For $2 \mathrm{~s} \leqslant \mathrm{i} \leqslant \mathrm{s}-\mathrm{s}-1$, we have

$$
\begin{align*}
f_{s, i}(x)= & G(x) p_{i-s+1} f(x) \\
& +\int_{0}^{x} \sum_{j=1}^{s-1} f^{* j}(u)[G(x)-G(u)] \\
& x p_{i+j-s+I} f(\{-u) d u \\
& +\int_{0}^{x} \sum_{n=0}^{\infty} f^{* i+s}(u)[G(x)-G(u)] p_{i+1} f(x-u) d u \tag{6.3}
\end{align*}
$$

For $s+1 \leqslant 1 \leqslant 2 \mathrm{~s}-1$, we have

$$
\begin{align*}
f_{s, i}(x)= & \int_{0}^{x} \sum_{j=2 s-i}^{s-1} f^{* j}(u)[G(x)-G(u)] p_{i+j-s+1} f(x-u) d u \\
& +\int_{0}^{x} \sum_{m=0}^{\infty} f^{* m+s}(u)[G(x)-G(u)] p_{i+1} f(x-u) d u \tag{6.4}
\end{align*}
$$

Finally,

$$
\begin{equation*}
f_{s, s}(x)=\int_{0}^{x} \sum_{m=0}^{\infty} f^{* m+s}(u)[G(x)-G(u)] p_{S+1} f(x-u) d u \tag{6.5}
\end{equation*}
$$

Usiris equations (6.1) - (6.5) we can write

$$
\begin{equation*}
s_{s}(x)=\int_{0}^{x} \sum_{i=s+1}^{S-1} f_{s, i}(u) f^{* i-s}(x-u) d u+f_{s, s}(x) \tag{6.6}
\end{equation*}
$$

Hence the renewal densty function of the process is given by

$$
\begin{equation*}
R(x)=\sum_{m=0}^{\infty} s_{s^{f}}^{* m}(x) \tag{6.7}
\end{equation*}
$$

and the renewal density function of the delayed renewal process is given by

$$
\begin{equation*}
M(u)=\int_{0}^{u} f^{* S-s}(v) R(u-v) d v \tag{6.8}
\end{equation*}
$$

6.4 MAIN RESULTS

The principal quantity of interest is the probability mass function of the inventory level at any arbitrary point t on the time axis. That is, $\operatorname{Pr}\{I(t)=n \mid I(0)=S\}$ for $n=0,1,2, \ldots, S$.

Suppose that we consider the sequence of events consisting of the times at which the inventory level reaches s (the reorder level). Let Y_{1} denote the time elapsed from origin until the first event occured. Y_{2} be Vise time elapsed between first and second events and so on. The sequence of random variables $\left\{Y_{k}\right\}, k=1,2, \ldots$ form a delayed renewal process [see Cox (1962)]. In each of the following expressions, we will make use of the renewal density $M(u)$ given by (6.8).

Now considering all the mutually exclusive and exhaustive cases, we will get the following equations for the inventory level probabilities.

$$
\begin{equation*}
\pi(S, t)=\bar{F}(t)+\int_{0}^{t} M(u) \bar{F}(t-u) G(t-u) p_{S-s} d u \tag{6.9}
\end{equation*}
$$

For $S-s<n<S$, we have

$$
\begin{align*}
\pi(n, t)= & {\left[F^{* S-n}(t)-F^{* S-n+1}(t)\right] } \\
& +\int_{0}^{t} M(u) \sum_{j=1}^{S-n}\left[F^{j j}(t-u)-F^{* j+1}(t-u)\right] \\
& x G(t-u) p_{n+j-s} d u \tag{6.10}
\end{align*}
$$

$$
\begin{align*}
& \pi(S-s, t)= {\left[F^{* s}(t)-F^{* s+1}(t)\right] } \\
&+\int_{0}^{t} M(u) \sum_{j=1}^{s-1}\left[F^{* j}(t-u)-F^{* j+1}(t-u)\right] \\
& x G^{\prime}(t-u) p_{S-2 s+j} d u \\
&+\int_{0}^{t} M(u) \int_{u}^{t} \sum_{m=0}^{\infty} f^{* m+s}(v-u) \\
&\times L G(t)-G(\nabla)] p_{S-s} \bar{F}(t-\nabla) d \nabla d u \tag{6.11}
\end{align*}
$$

For $2 \mathrm{~s}<\mathrm{n}<\mathrm{S}-\mathrm{s}$, we have

$$
\begin{aligned}
\pi(n, t)= & {\left[F^{* S-n}(t)-F^{* S-n+1}(t)\right] } \\
& +\int_{0}^{t} M(u) \bar{F}(t-u) G(t-u) p_{n-s} d u \\
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{j=1}^{s-1} \sum_{k=0}^{S-n-j} f^{* j}(v-u) \\
& x G(v-u) p_{n+j+k-s}\left\lfloor F^{* k}(t-v)-F^{* k+1}(t-v)\right] d v d u \\
& +\int_{0}^{t} M(u) \int_{u m=0}^{t} \sum_{m}^{\infty} f^{* m+s}(v-u)[G(t)-G(v)] p_{n} \bar{F}(t-v) d v d u
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{t} M(u) \int_{u}^{t} \sum_{m=0}^{\infty} f^{* m+s}(v-u) \\
& \left.\quad x \int_{v}^{t} \sum_{j=1}^{S-s-n} l G(w)-G(v)\right] p_{n+j} \\
& \quad x\left[F^{* j}(t-w)-F^{* j+I}(t-w)\right] d w d v d u \tag{6.12}
\end{align*}
$$

For $s+1 \leqslant n \leqslant 2 s$, we have

$$
\pi(n, t)=\left[F^{* S-n}(t)-F^{* S-n+1}(t)\right]
$$

$$
+\int_{0}^{t} M(u) \int_{u}^{t} \sum_{j=1}^{s-1} \sum_{k=s-j}^{S-n-j} f^{* j}(v-u)
$$

$$
x G(v-u) p_{n+j+k-s}\left[F^{* k}(t-v)-F^{* k+1}(t-v)\right] d v d u
$$

$$
+\int_{0}^{t} M(u) \int_{u}^{t} \sum_{m=0}^{\infty} f^{* m+s}(v-u)[G(t)-G(v)] p_{n} \bar{F}(t-v) d v d u
$$

$$
+\int_{0}^{t} M(u) \int_{u}^{t} \sum_{m=0}^{\infty} f^{* m+s}(v-u) \int_{v}^{t} \sum_{j=1}^{s-s-n}[G(w)-G(v)] p_{n+j}
$$

$$
\begin{equation*}
x\left[F^{* j}(t-w)-F^{* j+l}(t-w)\right] d w d v d u \tag{6.13}
\end{equation*}
$$

$$
\begin{equation*}
\pi(s, t)=\int_{0}^{t} M(u) \bar{G}(t-u) \bar{F}(t-u) d u \tag{6.14}
\end{equation*}
$$

For $0<\mathrm{n}<\mathrm{s}$, we have

$$
\begin{equation*}
\pi(n, t)=\int_{0}^{t} M(u) G(t-u)\left[F^{* s-n}(t-u)-F^{* s \sim n+1}(t-u)\right] d u \tag{6.15}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\pi(0, t)=\int_{0}^{t} M(u) \bar{G}(t-u) F^{* s}(t-u) d u \tag{6.16}
\end{equation*}
$$

6.5. INVENTORY CARRYING COST AND CUMULATIVE PROFIT

If the cost of carrying is constant and depends only on the amount of commodity in the inventory, it can be taken as unity per unit time, without loss of generality. Then the total inventory carrying cost $C(t)$ during the interval ($0, t$), where 0 is our reference point at which the stock level drops to s, ia given by

$$
u(t)=\int_{0}^{t} I(u) d u
$$

Taking expectations on both sides we get,

$$
\begin{equation*}
E[c(t)]=\sum_{n=1}^{S} n \int_{0}^{t} \pi(n, u) d u \tag{6.17}
\end{equation*}
$$

where $\pi(n, u)$ is explicitly given by (6.9)-(6.16).

Let α be the profit that is realized in the sale of each item and we denote by $P(t)$ the cumulative profit due to sales in the interval ($0, t$), where o is our reference point coinciding with an order point. We now proceed to obtain explicit expression for the expected value of $P(t)$.

Now we define $\psi(n, t)$, for $s \leqslant n \leqslant S-1$, as

$$
\begin{aligned}
\psi(n, t)= & \text { Probability that due to a demand in } \\
& (t, t+d t) \text {, inventory level drops to } n \\
& \text { and no ordering takes place in the } \\
& \text { interval (o,t), given that an order } \\
& \text { was placed at time zero. }
\end{aligned}
$$

Considering all the different cases, we obtain the following equations.
for $S-s \leq n \leq S-1$, we have

$$
\begin{equation*}
w(n, t)=\sum_{i=1}^{S-n} f^{* i}(t) p_{n-s+i} G(t) \tag{6.18}
\end{equation*}
$$

For $s+l \leqslant n \leqslant s-s-l$, we have

$$
\begin{align*}
\psi(n, t)= & \int_{0}^{t} \sum_{j=1}^{s-1} \sum_{k=1}^{S-n-j} f^{* j}(u) G(u) p_{n+j+k-s^{\prime}} f^{* k}(t-u) d u \\
& +\int_{0}^{t} \sum_{m=0}^{\infty} f^{* m+s}(u) \int_{u}^{t} \sum_{k=1}^{s-s-n} G(v-u) p_{n+k} \\
& x f^{* k}(t-v) d v d u \tag{6.19}
\end{align*}
$$

Also

$$
\begin{equation*}
\psi(s, t)=s_{s} f_{s}(t) \tag{6.20}
\end{equation*}
$$

For $0 \leqslant n<s$, we have

$$
\begin{equation*}
\psi(n, t)=f^{* B-n}(t) \bar{G}(t) \tag{6.21}
\end{equation*}
$$

$$
\text { Now we define } P(n, t) \text { as the probability that }
$$

there occurs a demand during the interval ($t, t+\alpha t$) by which the stock level drops to n conditional upon the stock level has dropped to s in an arbitrarily small interval preceeding time zero.

Then $P(n, t)$ can be written as

$$
\begin{equation*}
P(n, t)=\Psi(n, t)+\int_{0}^{t} R(u) \psi(n, t-u) d u \tag{6.22}
\end{equation*}
$$

where $\psi(n, t)$ is given by (6.18)-(6.21) and $R(u)$ is given by (6.7).

Now we can find out the expected value of the cumulative profit due to sales in the interval ($0, t$), with o chosen to coincide with an ordering point, as

$$
\begin{equation*}
\mathrm{E}[P(t)]=\alpha \sum_{n=0}^{S-1} \int_{0}^{t} P(n, u) d u \tag{6.23}
\end{equation*}
$$

Thus the probability mass function $\pi(n, t)$ and the coincidence function $P(n, t)$ enables us to determine the expected value of the inventory carrying cost and the cumulative profit due to sales over any period of time. The cumulative cost of reorders can also be dealt with directly by evaluating the expected value of the number of reorders.
6.6 THE MODEL WITH ZARO LEAD TIME

As a particular case, if we assume that the lead time is zero in the above model, then $\{I(t), t \geqslant 0\}$ will be a discrete valued continuous parameter stochastic process taking values $s+l, \ldots, S$. Here the sequence of random variables $\left\{Y_{k}\right\}, k=1,2, \ldots$ forms a delayed renewal process in which the distribution function of Y_{I} is given by

$$
\operatorname{Pr}\left\{Y_{I} \leqslant y\right\}=\int_{0}^{y} f^{* S-s}(u) d u
$$

$-64032-$

and the distribution function of Y_{k} for $k=2,3, \ldots$, is given by

$$
\operatorname{Pr}\left\{Y_{k} \leq y\right\}=\sum_{0}^{y} \sum_{i=s+1}^{S-s} f^{* i}(u) p_{i} d u \quad 519,872
$$

Let its density function be denoted by $h($.$) . The$ probability that the kth order, $k=1,2, \ldots$, will be placed in the interval ($t, t+d t$) is

$$
\begin{aligned}
\operatorname{Pr}\{ & \left.t<Y_{1}+Y_{2}+\ldots+Y_{k} \leqslant t+d t\right\} \\
& =\left(f^{* S-s_{*}}{ }^{* k-1}\right)(t), k=1,2, \ldots
\end{aligned}
$$

Then the renewal density of the delayed renewal process is given by

$$
\begin{equation*}
M(u)=\int_{0}^{u} f^{* S-s}(v) \sum_{k=1}^{\infty} h^{* k-1}(u-v) d v \tag{6.24}
\end{equation*}
$$

Now considering all the different cases, we can get the probability mass function of the inventory level $I(t)$ as follows.

$$
\begin{equation*}
\pi(S, t)=\bar{F}(t)+\int_{0}^{t} M(u) \bar{F}(t-u) p_{S-s} d u \tag{6.25}
\end{equation*}
$$

For $2 \mathrm{~s}+\mathrm{l}<\mathrm{n}<\mathrm{S}$, we have

$$
\begin{align*}
\pi(n, t)= & {\left[F^{* S-n}(t)-F^{* S-n+1}(t)\right] } \\
& +\int_{0}^{t} M(u) \sum_{j=0}^{S-n} p_{n+j-s^{\prime}}\left[F^{* j}(t-u)-F^{* j+1}(t-u)\right] d u \tag{6.26}
\end{align*}
$$

For $s<n \leq 2 s+1$, we have

$$
\begin{align*}
\pi(n, t)= & {\left[F^{* S-n}(t)-F^{* S-n+1}(t)\right] } \\
& +\int_{0}^{t} M(u) \sum_{j=2 S+1-n}^{S-n} p_{n+j-s} \\
& x\left[F^{* j}(t-u)-F^{* j+1}(t-u)\right] d u \tag{6.27}
\end{align*}
$$

Now we can find out the stationary distribution of the inventory level probabilities using Laplace transforms.

Let $\hat{\pi}(n, z)=\int_{0}^{\infty} e^{-z t} \pi(n, t) d t$

$$
\hat{f}(z)=\int_{0}^{\infty} e^{-z t} f(:) d t
$$

$$
\hat{h}(z)=\int_{0}^{\infty} e^{-z t} h(t) d t
$$

Then

$$
\begin{align*}
\hat{M}(z) & =\int_{0}^{\infty} e^{-z t} M(t) d t \\
& =\frac{1}{z}[\hat{f}(z)]^{S-s}[1-\hat{h}(z)]^{-1} \tag{6.28}
\end{align*}
$$

Then by taking Ianlace transforms on both sides of equations (6.25)-(6.27) we get

$$
\begin{equation*}
\hat{\pi}(S, z)=\frac{1}{z}\left\{[1-\hat{f}(z)]+p_{S-s}[1-\hat{f}(z)][\hat{f}(z)]^{S-s}[1-\hat{h}(z)]^{-1}\right\} \tag{6.29}
\end{equation*}
$$

For $n=2 s+2, \ldots, s-1$, we have

$$
\begin{gather*}
\hat{\pi}(n, z)=\frac{1}{z}\left\{[\hat{f}(z)]^{S-n}[1-\hat{f}(z)]+\sum_{j=0}^{S-n} p_{n+j-s}[\hat{f}(z)]^{S-s+j}\right. \\
\left.x[1-\hat{f}(z)][1-\hat{h}(z)]^{-1}\right\} \tag{6.30}
\end{gather*}
$$

For $n=s+1, \ldots, 2 s+1$, we have

$$
\begin{align*}
\hat{\pi}(n, z)= & \frac{1}{z}\left\{[\hat{f}(z)]^{S-n}[1-\hat{f}(z)]\right. \\
& \left.+\sum_{j=2 s+1-n}^{S-n} p_{n+j-s}[\hat{f}(z)]^{S-s+j}[1-\hat{f}(z)][1-\hat{h}(z)]^{-1}\right\} \tag{6.31}
\end{align*}
$$

Let P_{n} be the probability that exactly n units, $n=s+1, \ldots S$ are in the inventory in the steady state.

Then

$$
\begin{aligned}
P_{n} & =\operatorname{Pr}\{I=n\}=\lim _{t \rightarrow \infty} \pi(n, t) \\
& =\lim _{z \rightarrow 0} z \hat{\pi}(n, z)
\end{aligned}
$$

Thus

$$
\begin{align*}
P_{S} & =\lim _{z \rightarrow 0}[1-\hat{f}(z)]+\lim _{z \rightarrow 0} p_{S-s}[\hat{f}(z)]^{S-s} \frac{1-\hat{f}(z)}{1-\hat{h}(z)} \\
& =\lim _{z \rightarrow 0} p_{S-S}[\hat{f}(z)]^{S-s} \frac{\hat{f}^{\prime}(z)}{\hat{h}^{\prime}(z)}[\text { Using L'Hospital's rule] } \\
& =p_{S-S} \frac{B X}{E Y Y} \tag{6.32}
\end{align*}
$$

where X is the random variable denoting interoccurrence time of successive demands and Y the r andom variable denoting time between successive orders.

For $n=2 s+2$, ..., $S-1$, we have
$P_{n}=\lim _{z \rightarrow 0}[\hat{f}(z)]^{S-n}[1-\hat{f}(z)]+\lim _{z \rightarrow 0} \sum_{j=0}^{S-n} p_{n+j-s}[\hat{f}(z)]^{S-s+j} \frac{1-\hat{f}(z)}{1-\hat{h}(z)}$

$$
\begin{align*}
& =\lim _{z \rightarrow 0} \sum_{j=0}^{S-n} p_{n+j-s}[\hat{f}(z)]^{S-S+j} \frac{\hat{f}^{\prime}(z)}{\hat{h}^{\prime}(z)} \text { [Using L'Hospital's } \\
& \text { rule] } \\
& =\sum_{j=0}^{S-n} p_{n+j-s} \frac{E X}{E Y} \tag{6.33}\\
& =\frac{E X}{E Y} \sum_{j=n-s}^{S-s} p_{j}
\end{align*}
$$

For $\mathrm{n}=\mathrm{s}+1, \ldots, 2 \mathrm{~s}+1$, we have

$$
\begin{align*}
P_{n} & =\lim _{z \rightarrow 0}[\hat{f}(z)]^{S-n}[1-\hat{f}(z)]+\lim _{z \rightarrow 0} \sum_{j=2 s+1-n}^{S-n} p_{n+j-s} \\
& x[\hat{f}(z)]^{S-s+j} \frac{1-\hat{f}(z)}{1-\hat{h}(z)} \\
& =\sum_{j=2 s+1-n}^{S-n} p_{n+j-s} \frac{E X}{E Y} \\
& =\frac{E X}{E Y} \sum_{j=s+1}^{S-s} p_{j} \\
& =\frac{E X}{E Y} \tag{6.34}
\end{align*}
$$

Thus the steady state probabilities are given as follows. For $n=2 s+2, \ldots, S$, we have

$$
\begin{equation*}
P_{n}=\frac{E X}{E Y} \sum_{j=n-s}^{S-s} p_{j} \tag{6.35}
\end{equation*}
$$

and for $n=s+1, \ldots . .2 s+1$, we have

$$
\begin{equation*}
P_{n}=\frac{E X}{E \bar{Y}} \tag{6.36}
\end{equation*}
$$

In this case, if we take $p_{S-s}=1$ and all other p_{j} 's equal to zero, we will get the results of Sivazlian(1974).
6.7 AN OPTIMIZATION PROBLEM

Our objective function is the steady state total expected cost per unit time. We have to choose the decision variables s and $S-s=Q$ so as to minimize the objective function.

Let R denote the expected quantity replenished
i.e. $\quad R=\sum_{n=s+l}^{S-s} n p_{n}$

Also $R=\frac{B Y}{E X}$

Let \bar{D} denote the expected number of demands per unit time.

Then
Expected quantity replenished
$\bar{D}=\overline{E x p e c t e d ~ t i m e ~ e l a p s e d ~ b e t w e e n ~ s u c c e s s i v e ~ o r d e r s ~}$
$=\frac{R}{E Y}$

Therefore

$$
E Y=\frac{R}{\bar{D}}
$$

Therefore the expected number of orders placed per unit time is

$$
\begin{equation*}
\frac{I}{E Y}=\frac{\bar{D}}{R} \tag{6.37}
\end{equation*}
$$

Expected inventory level at any instant of time is

$$
\begin{aligned}
E[I] & =\sum_{n=s+1}^{s+Q} n P_{n} \\
& =s+\sum_{n=1}^{Q} n P_{s+n} \\
& =s+\sum_{n=1}^{Q} n \sum_{j=n}^{Q} \frac{1}{R} p_{j}
\end{aligned}
$$

$$
\begin{equation*}
=s+\frac{1}{R} \sum_{n=1}^{Q} \sum_{j=n}^{Q} n p_{j} \tag{6.38}
\end{equation*}
$$

The total expected cost per unit time is given by

$$
F(s, Q)=\frac{K+c R}{E Y}+h E[I]
$$

where K is the fixed order cost, c is the variable procurement cost per unit and h is the holding cost per unit per time.

Using equations (6.37) and (6.38) we get

$$
\begin{equation*}
F(s, Q)=\frac{K \bar{D}}{R}+c \bar{D}+h s+\frac{h}{R} \sum_{n=1}^{Q} \sum_{j=n}^{Q} n p_{j} \tag{6.39}
\end{equation*}
$$

where s is a nonnegative integer and Q is a positive integer. Equation (6.39) gives the objective function. Since the lead time is zero, it is very easy to see that the optimum value of s is $s^{*}=0$. Then the optimum value of Q is obtained by minimizing the function

$$
\begin{equation*}
F(Q)=\frac{K \bar{D}}{R}+c \bar{D}+\frac{h}{R} \sum_{n=1}^{Q} \sum_{j=n}^{Q} n p_{j} \tag{6.40}
\end{equation*}
$$

over the set of positive integers.

Since R is a function of Q, the $f l r s t$ and last terms are functions of Q and we can show that there exists optimum values of Q that minimizes the cost function $F(Q)$. We will explain it by considering the special case that all the p_{j} 's are equal. When all the p_{j} 's are equal and equal to p, we get

$$
p=\frac{I}{Q}
$$

Then the expected quantity replenished is given by

$$
\begin{aligned}
R & =\sum_{i=1}^{Q} 1 \cdot \frac{I}{Q}=\frac{1}{Q} \frac{Q(Q+1)}{2} \\
& =\frac{Q+1}{2}
\end{aligned}
$$

Therefore

$$
\begin{align*}
F(Q) & =\frac{2 K \bar{D}}{Q+1}+c \bar{D}+\frac{2 h}{Q+1} \sum_{n=1}^{Q} \sum_{j=n}^{Q} n \cdot \frac{1}{Q} \\
& =\frac{2 K \bar{D}}{Q+1}+c \bar{D}+\frac{2 h}{Q(Q+1)} \sum_{n=1}^{Q} n(Q-n+1) \\
& =\frac{2 K \bar{D}}{Q+1}+c \bar{D}+\frac{h}{3}(Q+2) \tag{6.41}
\end{align*}
$$

It is easy to see that this function is convex and the optimum value of Q, Q^{*} exists which minimizes (6.41). Then Q^{*} is approximately given by the integer nearest to $\sqrt{\frac{6 K \bar{D}}{h}}-1$.

That is

$$
\begin{equation*}
Q^{*} \cong \sqrt{\frac{6 K \bar{D}}{h}}-1 \tag{6.42}
\end{equation*}
$$

To illustrate this, we give a numerical example, by assuming different ∇ alues for h, K and \bar{D}, in table l. Instead of considering this, if we are following the same procedure as that of Sivazlian (1974), we will get

$$
\begin{equation*}
Q^{*}\left(Q^{*}+1\right) \leqslant \frac{6 K \bar{D}}{h} \leqslant\left(Q^{*}+1\right)\left(Q^{*}+2\right) \tag{6.43}
\end{equation*}
$$

In table 2 we give the numerical values obtained for this case.

If we take $\frac{6 K \bar{D}}{h}=80$, then $Q^{*}=8$.
If $\frac{6 K \bar{D}}{h}=42$, we get $Q^{*}=5$ or 6 and table 1 suggests that Q* could be taken as 5 .

Table l: Optimum values of Q for different values of h, K and \bar{D}

D	Q*								
	$K=10$				$\mathrm{K}=15$		$\mathrm{K}=20$		
	$\mathrm{h}=0.2 \mathrm{~h}=0.5 \mathrm{~h}=1.0 \mathrm{~h}=0.2 \mathrm{~h}=0.5 \mathrm{~h}=1.0 \mathrm{~h}=0.2 \mathrm{~h}=0.5 \mathrm{~h}=1.0$								
0.2	7	4	2	8	5	3	10	6	4
0.4	10	6	4	12	7	5	14	9	6
0.6	12	7	5	15	9	6	18	11	7
0.8	14	9	6	18	11	7	21	13	9
1.0	16	10	7	20	12	8	23	14	10
1.2	18	11	7	22	14	9	26	16	11
1.4	19	12	8	24	15	10	28	17	12
1.6	20	13	9	26	16	11	30	19	13
1.8	22	14	9	27	17	12	32	20	14
2.0	23	14	10	29	18	12	34	21	14

Table 2

Q^{*}	0	1	2	3	4	5	6	7	8	9	10
\ldots											
$Q^{*}\left(Q^{*}+1\right)$	0	2	6	12	20	30	42	56	72	90	110
$\left(Q^{*}+1\right)\left(Q^{*}+2\right)$	2	6	12	20	30	42	56	72	90	110	132
\ldots											

Remark:

The model analysed in Section 6.3 can be extended to allow vacation to the server whenever the system becomes empty. In that case also, one can write explicit expressions for the inventory level probabilities at arbitrary epochs, but the optimization part seems difficult.

Chapter 7

AN ($3, S$) INVENTORY SYSTEM WITH BULK DEMANDS
 AND VACATIONS TO THE SBRVER

7.1. INTRODUCTION

Abstract

In this chapter we consider a continuous review (s, S) inventory system with random lead times. We assume that the time between demand points and quantity demanded at these points are independent sequences of independent and identically distributed random variables. The lead times are generally distributed random variables depending upon the size of the order. Whenever the inventory becomes dry, server goes for vacation of random duration having a general distribution. No backlogging of demands is allowed and all demands occurring when the server is on vacation are lost.

The probabilistic analysis of (s,S) inventory system using renewal theoretic arguments is considered by several authors. For instance, Arrow, Karlin and Scarf(1958) and Tijms(1972) contain detailed treatment of these models. Srinivasan (1979) considers the case of unit demands and random lead times. The case of bulk demands and constant lead times is considered by Sahin (1979). Gaver (1959) analyses the case of compound Poisson demand and random lead
times. Ramanarayanan and Jacob (1987) analyse the case of general bulk demands and random lead times.

The effect of vacation periods in inventory theory is first analysed by Daniel and Ramanarayanan(1987 a,b). Usha, Ramanarayanan and Jacob (1987) consider the case of unit demand, finite backlog of demands, random lead times and vacations to the server. Here we consider the case of bulk demands, random lead times and vacations to the server and derive the time dependent solution of the inventory level at an arbitrary time point t.
7.2. ASSUMPIIONS OF THE MODEI

1. The maximum capacity of the inventory is S.
2. An order is placed to fill the inventory whenever the inventory level falls to or below s.
3. The inter-occurrence time of demands are independent and identically distributed random variables with distribution function $F($.$) and density function f($.$) .$
4. The quantity demanded at each demand point is a random variable which can vary from 1 to b where $s<b<S-2 s-1$ with probability p_{k} for demanding k units, such that $\sum_{k=1}^{b} p_{k}=1$.
5. The lead times are independent r andom variables depending on the size of the order. If an order is placed at level i, $0 \leqslant i \leqslant s$, the lead time has distribution function $G_{i}($.$) and density function g_{i}($.$) .$
6. Whenever the inventory becomes dry, server goes for a vacation of random duration having distribution function $H($.$) and$ density function $\mathrm{h}($.$) .$
7. The inter-occurrence time of demands, quantities demanded, lead times and vacation periods are all independent.
8. Arriving demands are lost during the inventory dry period and the vacation period of the server.

Notations

$$
\begin{array}{ll}
\varphi(z) & \sum_{k=1}^{b} p_{k} z^{k} \\
p_{k}^{n} & \text { coefficient of } z^{k} \text { in }[\varphi(z)]^{n} \\
q(v) \quad \sum_{n=1}^{\infty} f^{* n}(v)
\end{array}
$$

$\pi_{i}(t) \quad$	The conditional probability that the
inventory level is i at time t, given	
	that at time zero the inventory level
	was s and the demand process starts.
	$(i=0,1,2, \ldots, S)$.

$h_{i, j}(x) d x \quad$ The conditional probability that due to some demands, inventory level drops to j in the interval ($x, x+d x$) given that inventory level was i at time zero and there is no replenishment during the interval ($0, x] \quad(i>j \geqslant 0)$.

Now consider the time points at which the first demand after each order realization occurs and look at the inventory level at these points. S is the level at time zero and if $\eta(S-s-b \leqslant \eta \leqslant S-1)$ is the level after the first transition, $f_{S, \eta}(x)$ denotes the probability density function of the transition time. Similarly if η is the level at one such time point and γ is the level at the next such time point, $f_{\eta, \gamma}(x)(s-s-b \leqslant \eta, \gamma \leqslant s-1)$ denotes this transition time probability density function. Transitions can occur with a vacation period or without a vacation period during lead time. Let $\mathcal{I}_{i, j}(x)$ denote the transition time probability density function with a vacation period and let ${ }_{2} f_{i, j}(x)$ denote the transition time probability density function without a vacation period.

Let

$$
f_{S}(x)=\left(f_{S, S-S-b}(x), f_{S, S-S-b+1}(x), \ldots, f_{S, S-1}(x)\right)
$$

It is a vector of order $b+s$.

Now we define a square matrix F of order ($b+s$) given by

Then $\left(f_{S} * \sum_{n=0}^{\infty} \boldsymbol{F}^{* n}\right)(x)$ will be a vector of order $b+s$.
For $\eta=S-s-b, \ldots, S-1$, let

$$
\begin{align*}
F_{\eta}(x)= & (\eta-S+s+b+1) \text { th coordinate of } \\
& \left(\underline{f}_{S} * \sum_{n=0}^{\infty} \mathbb{F}^{* n}\right)(x) \tag{7.1}
\end{align*}
$$

7.3. TRANSITION TINE PROBABILITIES

First we find out the expressions for $h_{i, j}$'s.

For $i=s+1, \ldots, S$ and $j=1,2, \ldots, i$, we have

$$
h_{i, j}(x)=\sum_{n=1}^{\infty} \sum_{k=s+1}^{s+b} \int_{0}^{x} f^{* n-1}(u) P_{i-k}^{n-1} f(x-u) p_{k-j} d u \quad \text { (7.2) }
$$

For $i=s+1, \ldots, S$, we have

$$
h_{i, 0}(x)=\sum_{n=1}^{\infty} \sum_{k=s+1}^{s+b} \int_{0}^{x} f^{* n-1}(u) P_{i-k}^{n-1} f(x-u) \sum_{j=k}^{b} p_{j} d u \text { (7.3) }
$$

For $i=1,2, \ldots, s$ and $j=1,2, \ldots, i$, we have

$$
\begin{aligned}
h_{i, j}(x) & =\sum_{n=1}^{\infty} \sum_{k=s+1}^{s+b} \int_{0}^{x} f^{* n-1}(u) p_{i-\frac{1}{2}}^{n-1} f(x-u) p_{k-j} d u \\
\text { and for } i & =1,2, \ldots, s, \text { we have } \\
h_{i, 0}(x) & =\sum_{n=1}^{\infty} \sum_{k=1}^{b} \int_{0}^{x} f^{* n-1}(u) P_{i-k}^{n-1} f(x-u) \sum_{j=k}^{b} p_{j} d u \quad \text { (7.5) }
\end{aligned}
$$

Now the follow ng relations for transition tine probabilities can be easily obtained.

For $S-s-b \leqslant \eta \leqslant S-1$, we have

$$
\begin{align*}
I^{f}{ }_{S, \eta}(x)= & \int_{0}^{x} \sum_{i=0}^{s} h_{S, i}(u) \int_{u}^{x} h_{i, o}(v-u) \int_{v}^{x} q(w-v) \\
& x[H(x-w)-H(w)]\left[G_{i}(x-w)-G_{i}(v)\right] \\
& x f(x-w) p_{S-i-\eta} d w d v d u \tag{7.6}
\end{align*}
$$

For $S-b \leqslant \eta \leqslant S-1$, we have

$$
\begin{align*}
2^{f} S_{, \eta}(x)= & \int_{0}^{x} \sum_{i=0}^{s} h_{S, i}(u) \int_{u}^{x} \sum_{j=1}^{i} h_{i, j}(v-u) G_{i}(x-v) \\
& x \quad f(x-v) p_{S-i+j-\eta} d v d u \tag{7.7}
\end{align*}
$$

Now for η satisfying $S-b \leqslant \eta \leqslant S-1$, we have

$$
\begin{equation*}
f_{S, \eta}(x)=1^{f_{S, \eta}}(x)+2^{f}{ }_{S, \eta}(x) \tag{7.8}
\end{equation*}
$$

and for $s-s-b \leqslant \eta \leqslant s-b-1$, we have

$$
\begin{equation*}
f_{S, \eta}(x)=1^{f_{S, \eta}}(x) \tag{7.9}
\end{equation*}
$$

Now for $s-s-b \leqslant \eta, \gamma \leqslant s-1$, we have

$$
\begin{align*}
I^{f} f_{\eta, r}(x)= & \int_{0}^{x} \sum_{i=0}^{s} h_{\eta, i}(u) \int_{u}^{x} h_{i, o}(v-u) \int_{v}^{x} q(w-v) \\
& x[H(x-w)-H(w)]\left[G_{i}(x-w)-G_{i}(v)\right] f(x-w) \\
& x p_{S-i-\gamma} d w d v d u \tag{7.10}
\end{align*}
$$

For $S-s-b \leqslant \eta \leqslant s-1$ and $s-b \leqslant \gamma \leqslant s-1$ we have

$$
\begin{align*}
& 2^{f} \eta, \gamma \\
&(x)= \int_{0}^{x} \sum_{i=1}^{s} h_{\eta, i}(u) \int_{u}^{x} \sum_{j=1}^{i} h_{i, j}(v-u) G_{i}(x-v) \tag{7.11}\\
& x f(x-v) p_{S-i+j-\gamma} d v d u
\end{align*}
$$

Now for $S-s-b \leqslant \eta \leqslant S-1$ and $S-b \leqslant \gamma \leqslant S-1$, we have

$$
\begin{equation*}
f_{\eta, \gamma}(x)=I^{f} \eta, \gamma(x)+2_{\eta, \gamma}(x) \tag{7.12}
\end{equation*}
$$

and for $S-s-b \leqslant \eta \leqslant S-1$ and $S-s-b \leqslant \gamma \leqslant S-b-1$, we have

$$
\begin{equation*}
f_{\eta, \gamma}(x)=I_{\eta, \gamma}(x) \tag{7.13}
\end{equation*}
$$

From equations (7.8) and (7.9) we get all the entries of vector \underline{f}_{S} and from equations (7.12) and (7.13), we get all the entries of the matrix F. Now we derive the expressions for inventory level probabilities using the above equations.
7.4. INVENTORY LEVEL PROBABILITIES

Considering all the mutually exclusive and

 exhaustive cases, we can derive the following expressions for the inventory level probabilities.$\pi_{S}(t)=\bar{F}(t)+\sum_{i=1}^{s} \int_{0}^{t} h_{S, i}(u) \bar{F}(t-u) G_{i}(t-u) d u$

$$
+\int_{0}^{t} h_{S, 0}(u) \int_{u}^{t} q(v-u)[H(t-u)-H(v)] G_{0}(t-v) \bar{F}(t-\nabla) d v d u
$$

$$
+\int_{0}^{t} h_{S, 0}(u) \int_{u}^{t} q(v-u) \bar{H}(t-v) G_{0}(t-v) d v d u
$$

$$
+\sum_{\eta=S-s-b}^{S-1} \sum_{i=1}^{s} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, i}(v-u) G_{i}(t-v) \bar{F}(t-v) d v d u
$$

$$
+\sum_{\eta=S-s-b}^{S-1} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, o}(v-u) \int_{v}^{t} q(w-v)[H(t-v)-H(w)]
$$

$$
x G_{0}(t-v) \bar{F}(t-w) d w d v d u
$$

$$
\begin{align*}
& +\sum_{\eta=S-S-b}^{S-1} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, 0}(v-u) \int_{v}^{t} q(w-v) \bar{H}(t-w) \\
& \quad \times G_{0}(t-v) d w d v d u \tag{7.14}
\end{align*}
$$

For $l \leqslant 1 \leqslant s$, we have

$$
\begin{aligned}
\pi_{S-i}(t)= & \int_{0}^{t} h_{S, S-i}(u) \bar{F}(t-u) d u \\
& +\int_{0}^{t} F_{S-1}(u) \bar{F}(t-u) d u \\
& +\int_{0}^{t} h_{S, i}(u) \int_{u}^{t} h_{i, 0}(v-u) \int_{v}^{t} q(w-v)[H(t-v)-H(w)] \\
& +\int_{0}^{t} h_{S, i}(u) \int_{u}^{t} h_{i, 0}(v-u) \int_{v}^{t} q(w-v) \bar{H}(t-w) G_{i}(t-v) d w d v d u \\
& +\sum_{\eta=S-i+1}^{S-1} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, S-i}(v-u) \bar{F}(t-v) d v d u \\
& +\sum_{\eta=S-s-b}^{S-l} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, i}(v-u) \int_{v}^{t} h_{i, o}(w-v) \int_{w}^{t} q(y-w)
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{\eta=S-s-b}^{S-1} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, i}(v-u) \int_{v}^{t} h_{i, o}(w-v) \\
& \quad x \int_{w}^{t} q(y-w) G_{i}(t-w) \bar{H}(t-y) d y d w d v d u \tag{7.15}
\end{align*}
$$

For $S-s-b \leqslant i \leqslant S-S-1$, we have

$$
\begin{align*}
\pi_{i}(t)= & \int_{0}^{t} h_{S, i}(u) \bar{F}(t-u) d u \\
& +\int_{0}^{t} F_{i}(u) \bar{F}(t-u) d u \\
& +\sum_{\eta=i+1}^{S-1} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, i}(v-u) \bar{F}(t \quad v) d v d u \tag{7.16}
\end{align*}
$$

For $s+l \leqslant i \leqslant s-s-b-l$, we have

$$
\begin{align*}
\pi_{i}(t)= & \int_{0}^{t} h_{S, i}(u) \bar{F}(t-u) d u \\
& +\sum_{\eta=i}^{S-1} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, i}(\nabla-u) \bar{F}(t-v) d v d u \tag{7.17}
\end{align*}
$$

Also

$$
\begin{align*}
\pi_{s}(t)= & \int_{0}^{t} h_{S, s}(u) \bar{F}(t-u) \bar{G}_{s}(t-u) d u \\
& +\sum_{\eta=S-3-b}^{S-1} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, s}(\nabla-u) \bar{F}(t-\nabla) \bar{G}_{s}(t-v) d v d u \tag{7.18}
\end{align*}
$$

For $1 \leqslant i \leqslant s-1$, we have

$$
\begin{gather*}
\pi_{i}(t)=\sum_{j=i}^{s} \int_{0}^{t} h_{S, j}(u) \int_{u}^{t} h_{j, i}(v-u) \bar{F}(t-v) \bar{G}_{j}(t-v) d \nabla d u \\
+\sum_{\eta=S-a-b}^{S-1} \sum_{j=i}^{s} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, j}(v-u) \int_{\nabla}^{t} h_{j, i}(w-v) \\
x \bar{F}(t-w) G_{j}(t-w) d w d v d u \tag{7.19}
\end{gather*}
$$

Finally,

$$
\begin{aligned}
\pi_{0}(t)= & \int_{0}^{t} h_{S, 0}(u) \int_{u}^{t} q(v-u) \bar{G}_{0}(t-v) d v d u \\
& +\sum_{i=1}^{s} \int_{0}^{t} h_{S, i}(u) \int_{u}^{t} h_{i, 0}(v-u) \int_{v}^{t} q(w-v) \bar{G}_{i}(t-w) d w d v d u \\
& +\sum_{\eta=S-S-b}^{S-1} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, 0}(v-u) \int_{v}^{t} q(w-v) \\
& x \bar{G}_{0}(t-w) d w d v d u
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\eta=S-s-b}^{S-1} \sum_{i=1}^{s} \int_{0}^{t} F_{\eta}(u) \int_{u}^{t} h_{\eta, i}(v-u) \\
& \quad \int_{v}^{t} h_{i, 0}(w-v) \int_{w}^{t} q(y-w) \bar{G}_{i}(t-y) d y d w d v d u \quad \text { (7.20) }
\end{aligned}
$$

7.5 CONCLUDING RAMARIS

We have studied in this thesis, the tine dependent benaviour of some queueing models of the $M / G / 1$ type with bulk arrival, bulk service and vacations to the server. Also we have studied the transient behaviour of inventory models with random replenishment, bulk demands and racations to the serper. The expressions derivod are explicit but complicated dia not asily yielding for zratical purposes.

The most impoatant problem one can thins of is to develop an algorithm to solve the given results numerically. To the application point of view, this is quite worthwhile work. For developing the algorithm, possibly one can effectively use some fast transform techniques (see, \&lliott and Rao (1982)), because here we cannot use the usual procedure of Laplace transforms.

It should be noted that the bulk service queueing systems we have solved include the so called general case of Erlang input as special case. The $E_{k} / G / 1$ queueing System can be identified as an $M / G^{k} / I$ model as it is done by Takacs (1961). Similarly, other Erlang input models with and without vacations to the server c an be solved by imbedding it in some $M / G / l$ bulk service queue.

In vacation models, one important result is the stochastic decomposition property of the system size or waiting time. One can think of extending this to the transient case. For the decomposition property of the waiting time, one can use the distribution of the virtual waiting time, since it can be defined as the unfinished work (see Kleinrock (1975)).

One can use our method of matrix convolutions to derive the time dependent solution for the GI/M/1 models also. Here the regeneration points will be the arrival points. Another problem one can think of is the cyclic service $M / G / I$ queue. Suppose there are n queues attended by a single server in a cyclic order. For a particular queue, the time server attending other queues will be equivalent to a vacation. In this case, the vacations
need not be identically distributed. Here also one can derive the time dependent solution by using the method we have used in this thesis. Variations with gated semince etc. can also be looked into.

Also one c an study the case of $M / G / \infty$ queueing system. Suppose in an inventory system witi Poisson demend and randon iead times, order is placod whenever the level becomes s and full backlogging is allowed. Then tine number of outstanding orders at a particular time will be equivalent to the number of servers busy in the $M / G / \infty$ queueing system. Solving other multisevver queues will alsu be an interesting problem.

In inventory theony, one can study the asse or
Gulti-item, dulti-echeion problema, using oum mothod.
Also one can study the problem with porisicine oompodities. Inventory system with perishable commodities is equyelent to a queueing system with impatient custoners (see, Kaspi and Perry (1983, 1384)). So we can stady M/G/l queues with impatient customers and use the results in inventory theory.

Consider an inventory system having two types of demands with one having priority over the other. Before the inventory level attains a certain level, both types of demands are net. After attaining this level, the higher priority demands are met and the other type of demands backlogged. For this model, one can derive the inventory level probabilities and this can be extended to the case of more than two types of demands.

The technique used to derive the time dependent solution of queueing system may be of special interest to any stochastic system having regenera;ive structure. For example, reliability theory is one such area, where we can effectively use this method to derive the time dependent solution.

REFERENCES

1. Ali, O.M.E. and M.F. Neuts (1984), 'A service system in which two stages of waiting and feedback of customers', J. Appl. Prob. 21, 403-414.
2. Arrow, K.J., T.Harris and J. Marschak (1951), 'Optimal inventory policy', Econometrica, 19, 250-272.
3. Arrow, K.J., S. Karlin and H. Scarf (1958), 'Studies in the Mathematical Theory of Inventory and Production', Stanford University Press, Stanford.
4. Asmussen, S (1987), 'Applied Probability and Queues', Wiley, New York.
5. Avi-Itzhak, B., W.L. Maxwell and L.W.Miller (1965), 'Queueing with alternating priorities', Oper. Res. 13, 306-318.
6. Avi-Itzhak, B. and P. Naor (1962), 'Some queueing problem with the service station subject to server breakdowns', Oper. Res. 10, 303-320.
7. Bailey, N.T.J. (1954a), 'On the queueing processes with bulk service', J.Roy. Statist. Soc. B 16 , 80-87.
8. Bailey, N.T.J. (1954 b), 'A continuous time treatment of a simple queue using generating function', J. Roy. Statist. Soc. B.16, 288-291.
9. Bhat, U.N. (1964), 'Imbedded Markov chain analysis of bulk queues', J. Austral. Math. Soc. 4,244-263.
10. (1968), 'A Study of the Queueing Systems M/G/I and GI/M/I', Lect. Notes in O.R. and Math. Eco. 2, Springer-Verlag, Berlin.
11. Chaudhry, M.L. (1979), The queueing system $M^{X} / G / 1$ and its ramifications', Naval Res. Logist. Quart. 26, 667-674.
12. Cinlar, E. (1975), 'Introduction to Stochastic Processes', Prentice-Hall Inc., Englewood Cliffs, New Jersey.
13. Cohen, J.W. (1969), 'The Single Server Queue', NorthHolland, Amsterdam.
14. (1976), 'On Regenerative Procasses in Queueing Theory', Lect. Notes in Eco. and Math. Systems 121, Springer-Verlag, New York.
15. Cooper, R.B. (1970), 'Queues served in cyclic order: waiting times', Bell System Tech. J. 49, 399-413.
16. (1972), 'Introduction to Queueing Theory', Macmillan, New York.
17. Courtois, P.J. (1980), 'The $M / G / 1$ finite capacity queue with delays', IEEE Trans. Commun. COM-28, 165-171.
18. Cox, D.R. (1955), 'A use of complex probabilities in the theory of stochastic processes', Proc. Cambridge Phil. Soc. 51, 313-319.
19. \qquad (1962), 'Renewal Theory', Methuen, London.
20. Daniel, J.K and R.Ramanarayanan (1987a), 'An (s,s) inventory system with rest to the server', Naval Res. Logist.

21. De Kok, A.G., H.C. Tijms and F.A. Vander Duyn Schouten(1984) 'Approximations for the single-product productioninventory problem with compound Poisson demand and service-level constraints', Adv. Appl. Prob. 16, 378-401.
22. Doshi, B.T. (1985), 'A note on stochastic decomposition in a $G I / G / I$ queue with vacation or set up times', J.Appl. Prob. 22, 419-428.
23. ————1986), 'Queueing systems with vacations-- a survey', Queueing Systems, 1, 29-66.
24. Dvoretzky, A., J.Keifer and J.Nolfowitz (1952), 'The inventory problem I, II', Econometrika, 20, 187-222, 450-466.
 optimal character of the (s,s) policy in inventory theory', Econometrica 21, 586-596.
25. Elliott, D.F. and K.R.Rao (1982), 'Fast Transforms: algorithms, analyses, applications', Academic Press, New York.
26. Federgruen, A. and L.Green (1986), 'Queueing Systems with interruptions', Oper. Res. 34, 752-768.
27. Feldman, R.M. (1978), 'A continuous review (s,s) inventory system in a random environment', J. Appl. Prob. 15, 654-659.
28. Feller, W. (1983), 'An Introduction to Probability Theory and its applications', Vol.2, 3rd edition, Wiley Eastern Ltd., New Delhi.
29. Finch, P.D. (1961), 'Some probability problems in invent ory control', Publ. Math. Debrecen, 8, 24i-261.
30. Fuhrman, S.W. (1984), 'A note on the $M / G / 1$ queue with server vacations', Oper. Res. 32, 1368-1373.
31. Fuhrmann, S.W. and R.B.Cooper (1985), 'Stochastic decomposition in the M/G/l queue with generalized vacations', Oper. Res. 33, 1117-1129.
32. Gani, J. (1957), 'Problems in the probability theory of storage systems', J.Roy. Statist. Soc., B 19, 181-206.
33. Gaver, D.P. ur. (1959a), 'Renewal-theoretic analysis of a two-bin inventory control policy', Naval Res. Logist. Quart. 6, 141-163.
34. \qquad (1959b), 'Imbedded Markov chain analysi s of a waiting line process in continuous time', Ann.Math.Statist. 30, 698-720.
35. (1962), 'A waiting line with interrupted service including priorities', J.Roy. Statist.Soc. B 24, 73-90.
36. Gnedenko, B.V. and I.N. Kovalenko (1968), 'Introduction to Queueing Theory', Israel Program for Scientific Translations, Jerusalem.
37. Gross, D. and C.M.Harris (1971), 'On one-for-one ordering inventory policies with state dependent lead times', Oper. Res. 19, 735-760.
38.

_____ (1974), 'Fundamentals of Queueing Theory', John Wiley and Sons, New York.
40. Gross,D., C.M.Harris and J.A. Lechner (1971) 'Stochastic inventory models with bulk demand and state dependent lead times', J.Appl. Prob. 8, 521-534.

4l. Hadley,G and T.M.Whitin (1963), 'Analysis of Inventory Systems', Prentice-Hall Inc. Englewood Cliffs, New Jersey.
42. Heyman, D.P. (1977), 'The T-policy for the $M / G / 1$ queue', Manag. Sci. 23, 775-778.
43. Hordijk,A. and Van der Duyn Schouten, F.A. (1986), 'On the optimality of (s,s) policies in continuous review inventory models', SIAM J. Appl. Math. 46, 912-929.
44. Jacob, M.J. (1987), 'Probabilistic Analysis of Some Queueing and Inventory Systems', Unpublished Ph.D. thesis, Cochin University of Science and Technology.
45. Jacob, M.J. and A.Krishnamoorthy (1987), 'Time dependent solution of a finite capacity M/G/l queueing system with general vacations to the server', (unpublished).
46. Jacob, M.J. and T.P.Madhusoodanan (1988), 'Transient solutior for a finite capacity $M / G^{a, b} / 1$ queueing system with vacations to the server', Queueing Systems.
47. Kaspi, H. and D.Perry (1983), 'Inventory systens with perishable commodities', J.Appl. Prob. 15, 674-685.
 perishable commodities with renewal input and Poisson output', J.Appl.Prob. 16, 402-421.
49. Keilson, J. (1962), 'Queues subject to service interruptions', Ann. Math. Statist. 33, 1314-1322.
50. Keilson,J and L.D. Servi (1986a), 'Oscillating random waik models for GI/G/l vacation system with Bernoulli schedules', J.Appl.Prob. 23, 790-802.
51. (1986b), 'Blocking probability for an $\mathrm{N} / \mathrm{G} / \mathrm{I}$ vacation system with occupancy level dependent schedules', Oper. Res. (submitted).
52. - (1986c), 'The dynamics of the M/G/I vacation model', Oper. Res. (submitted).
53. Kendall, D.G. (1953), 'Stochastic processes ocurring in the theory of queues and their analysis by the method of imbedded Markov chain', Ann.Math. Statist. 24, 338-354.
54. Kleinrock, L. (1975), 'Queueing Systems', Vol.I, John Wiley and Sons, New York.
55. Ledermann, W. and G.E.H. Reuter (1954), 'Spectral theory for the differential equation of simple birth and death processes', Phil. Trans. Roy. Soc. London, A 246, 321-369.
56. Lee, T.T. (1984), $M / G / L / N$ queue with vacation time and exhaustive service discipline', Oper. Res. 32, 774-784.
57. Lemoine, A. (1975), 'Limit theorems for generalized single server queues: the exceptional system*, SIANi J. Appl. Math. 29, 596-606.
58. Levy, H and L.Kleinrock (1986), 'A queue with starter and a queue with vacations: delay analysis by decomposition', Oper. Res. 34, 426-436.
59. Levy, Y and U. Yechiali (1975), IUtilization of idle time in an M/G/l queueing system', Manage. Sci. 22, 202-211.
60. Medhi, J. (1984), 'Recent developments in Bulk Queueing Models', Wiley Eastern Limited, New Delhi.
61. Miller, L.W. (1964), 'Alternating priorities in multiClass queues', Ph.D. Dissertation, Cornell University, Ithaca.
62. Moran, P.A.P. (1959), 'The Theory of Storage', Methuen, London.
63. Naddor, B. (1966), 'Inventory Systems', John Wiley and Sons, New York.
64. Nahmias, S. (1982), 'Perishable inventory theory: a review', Oper. Res. 30, 680-708.
65. Neuts, M.F. (1967), 'A general class of bulk queues with Poisson input', Ann. Math. Statist. 38, 759-770.
66. Neuts, M.F. and M.F.Ramalhoto (1984), 'A service model in which the server is required to search for customers', J. Appl. Prob. 21, 157-166.
67. Pakes, A.G. (1973), 'On the busy period of the modified GI/G/l queue', J. Appl. Prob. 10, 192-197.
68. Prabhu, N.U. (1965), 'Queues and Inventories', John Wiley and Sons, New York.
69. ——— (1980), 'Stochastic Storage Processes', Springer-Verlag, New York.
70. Ramanarayanan, R. and M.J. Jacob (1987), 'General analysis of an (s,S) inventory system with random lead times and bulk demands', (unpublished).
71. Ramaswami, V. (1981), 'Algorithms for a continuous review (s,s) inventory system', J. Appl. Prob. 18, 461-472.
72. Richards, F.R. (1975), 'Comments on the distribution of inventory position in a continuous review (s, S) policy inventory system', Oper. Res. 23, 366-371.
73. Ross, S.M. (1970), 'Applied Probability Models with Optimization Applications', Holden-Day, San Francisco.
74. Saaty, T.L. (1961), 'Blements of Queueing Theory with Applications', Mc-Graw Hill, New York.
75. Sahin, I. (1979), 'On the stationary analysis of continuous review (s, s) inventory systems with constant lead times', Oper. Res. 27, 717-729.
76. —— (1983), 'On the continuous review (s,S) inventory model under compound renewal demand and random lead times', J. Appl. Prok. 20, 213-219.
77. Scholl, M. and L.Kleinrock (1983), 'On the M/G/l queue with rest periods and certain service-independent queue disciplines', Oper. Res. 31, 705-719.
78. Servi, L.D. (1986 a), 'D/G/l queues with vacations', Oper. Res. 34, 619-629.
 $M / G / l$ cyclic service queue with Bernoulli schedule', IEEE J. of Selected Areas in Commun. SAC-4, 813-820.
80. Shanthikumar, J.G. (1980), 'Some analysis on the control of queues using level crossing of regenerative processes', J.Appl. Prob. 17, 814-821.
81. ——— (1982), 'Analysis of a single server queue with time and operation dependent server failures', Adv. in Manage. Sci. 1, 339-359.
82. Silver, E. and R. Peterson (1985), 'Decision Systems for Inventory Management and Production Planning', 2nd Ed. John Wiley and Sons, New York.
83. Sivazlian, B.D. (1974), 'A continuous review (s, S) inventory system with arbitrary interarrival distribution between unit demands', Oper. Res. 22, 65-71.
84. Srinivasan, S.K.(1979), 'General analysis of s-S inventory systems with random lead times and unit demands', J.Math.Phy. Sci. 13, 107-129.
85. Takacs, I. (1961), 'Transient behaviour of singleserver queueing process with Brlang input', Trans. Amer. Math. Soc. 100, 1-28.
86. ——_ (1962), 'Introduction to the Theory of Queues', Oxford University Press, New York.
87. Thangaraj, ∇. and R.Ramanarayanan (1983), 'An Operating policy in inventory systems with random lead times and unit demands', Math. Operationsforsch. U. Statist. Ser. Optim. 14, 111-124.
88. Thiruvengardam, K. (1963), 'Queueing Systems with breakdown', Oper. Res. 11, 62-71.
89. Tijms, H. (1972), 'Analysis of (s,S) Inventory Modela', Mathematical Centre Tracts 40, Amsterdam.
90. - (1986), 'Stochastic Modeling and Analysis', John Wiley and Sons, New York.
91. Usha, K., R.Ramanarayanan and M.J.Jacob (1987), 'Inventory systems with finite backlog of demands and rest time for server', Cahiers du C.E.R.O.
92. Van der Duyn Schouten, F.A. (1978), 'An M/G/I queueing model with vacation times', Z. Oper. Res. A 22, 95-105.
93. Veinott, A.F. Jr. (1966), 'The status of mathematical inventory theory', Manage. Sci. 12, 745-777.
94. Welch, P.D. (1964), 'On a generalized $M / G / 1$ queueing process in which the first customer of each busy period receive exceptional service', Oper. Res. 12, 736-752.
95. White, H.C. and L.S.Christie (1958), 'Queueing with preemptive priorities with breakdowns', Oper. Res. 6, 79-95.
96. Whitin, T.M. (1953), 'The Theory of Inventory Management' Princeton University Press, Princeton.

