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PREFACE

This is a report of the investigations carried out
on the universal parameters associated with the
transition to chaos in nonlinear dissipative systems.
It essentially deals with an analytic perturbative
procedure developed to solve the renormalisation
group equations and its application to specific one­
hump maps. The universal function obtained is used
to compute the fractal dimensions of the Feigenbaum
attractor. The Melnikov-Holmes method of predicting
the onset of chaos is applied to a driven pendulum
with nonlinear damping followed by a detailed
numerical analysis.

Chapter l gives an introduction to deterministic
chaos, surveying briefly the nature of onset of
chaos in conservative and dissipative systems. The
different routes to chaos in dynamical systems along
with the existing methods of characterising them are
touched upon. The Chapter ends with an attempt to
reveal the relevance of chaos in related fields.

In Chapter 2, the universality theory as developed
by Feigenbaum in the context of one—dimensional maps
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is presented, with special emphasis on the two renorma­
lisation group equations involving the universal para­
meters a and 5 and the function g(x). The solution
of these equations using the perturbative scheme is
developed. A universal relation characterising any
l-d map for a specified z is derived.

The perturbative procedure is applied to specific
cases in Chapter 3. Thus the a and 5 values as well
as the function g(x) for quadratic, cubic and quartic
maps are computed analytically. For nonpolynomial maps
an expansion about the nearest integer value is also
discussed.

Chapter 4 begins with a brief discussion of the
self-similar property of the Feigenbaum_attractor at
the accumulation point of the bifurcations. The
iterates of g(x) form a Cantor set. Here the function
g(x) is obtained using the perturbative analysis and

expressions for the first three dimensions Do,Dl and
D2 are derived. These are computed for a range of z
values and the variation of these dimensions with z
is studied.

The last Chapter forms a separate section of the
thesis. It deals with the onset of chaos in
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near-integrable systems. The Melnikov-Holmes
criterion which forms the lowest threshold for

chaos is described. It is then applied to a
specific system, namely, a driven pendulum with
a small nonlinear x-dependent dissipation. The
dissipation is chosen to be of the van der Pol
type. This analytic treatment is supported by
a detailed numerical analysis involving phase
portraits, Poincare sections, Lyapunov exponent,
power spectra etc. The last section deals with
the effect of an external random noise on the

dynamical behaviour of the above system.

Part of the investigations presented in this
thesis has provided material for the following
papers.
l. 'Perturbative evaluation of universal constants

for a quartic map’ - Pramana (J. Phys.) gg (1986)
465.

2. ‘Calculation of universal parameters of one hump
maps‘ - Communicated to Physica D.

3. ‘Transition to chaos in a driven pendulum with
nonlinear dissipation’ _ Communicated to Pramana
(J. Phys.)



SYNOPSIS

The thesis work is mainly centered on the asymptotic
behaviour of nonlinear and nonintegrable dissipative
dynamical systems. It is found that completely
deterministic nonlinear differential equations des­
cribing such systems can exhibit random or chaotic
behaviour. Theoretical studies on this chaotic
behaviour can enhance our understanding of various
phenomena such as turbulence, nonlinear electronic
circuits, erratic behaviour of heart and brain,
fundamental molecular reactions involving DNA, mete­
orological phenomena, fluctuations in the cost of
materials and so on.

Chaos is studied mainly under two different
approaches - the nature of the onset of chaos and
the statistical description of the chaotic state.
Successive period doubling bifurcations constitute
one of the most common mechanisms for the onset of

chaos in many systems representing a wide variety of
physical phenomena. Irrespective of the differences
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in the underlying physics, such systems are found
to have some common behaviour as far as onset of
chaos is considered. This universal behaviour was
reported by M.J Feigenbaum in the case of one
dimensional maps that represent the Poincare
sections of higher dimensional flows [26]. He
found that the period doubling route to chaos is
characterised by two universal constants, the bifur­
cation rate 5 and the scaling factor a. The
computation of a and 5 for any map is usually done
numerically [51].

We have developed an analytic algorithm involv­
ing a perturbative scheme, which provides fairly
accurate values for a and 5. This is given in the
first section of the thesis. We consider maps of

the form xn+l = 1 - X |xn|Z, where z is the order
of the local maximum of the map. The universality
theory is based on two renormalisation group (RG)
equations for the fixed point function g(x) at the
accumulation point hm of the period-doubling
bifurcations [49]. Expanding g(x) into a general
power series in |x|z and substituting in one of the
RG equations, an infinite set of coupled nonlinear
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equations for the coefficients of expansion Sn are
obtained. To solve them, Sn are expanded into a
perturbative series in inverse powers of a. The
equations can then be successively solved for the

coefficients Snm. Thus a as well as g(x) can be
expressed explicitly in terms of Snm and therefore
computed analytically. Using the other RG equation,
5 can be computed in a similar way. we find that
the equations for 5 can be cast in the form of a
matrix eigenvalue equation and the highestpositive
and real eigenvalue furnishes 5.

In general for any z value, the first three

coefficients Snmcan be written down explicitly.
Using them and using the technique of Pade approxi­
mants to sum the series, we get a(z) and 5(2) for
any z value. These equations define the different
universality classes and a universal relation connect­
ing a, 5 and z is also derived.

For a given z, it is possible to carry out the
calculations to any order of accuracy. Thus for a
quartic map and a cubic map, we computed a and 5 to
different orders and found that the agreement with
the numerical values is excellent. However, the
perturbation series is not highly convergent but
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asymptotic in nature and therefore the truncation of
the series is crucial in giving good results.

when z is not an integer, the above method is
rather cumbersome to apply. In such cases we find
that the general method can be side stepped and the
expressions for a and 5 can be expanded inei, where
O<|€|<l. Any noninteger z value can be written as
z = z':_g, where 2' is the integer nearest to z.
Then the e-expansions can be used to compute a and 5.
We observe that this expansion procedure does not
affect the accuracy of the values much. Using the
iterates of the computed universal function and some
scaling arguments, we have derived expressions for the
important dimensions characterising the attractor at

)ym in one dimensional maps [31]. The agreement with
available numerical values is good. The behaviour of

Do and D1 with z is different for large z values. Dl(z)
shows a dip as z increases while Do(z) shows
saturation.

The second section of the thesis deals with
investigations on the onset of stochastic behaviour in
a driven pendulum with van der Pol like dissipation.
Such a system with some modifications can model nonlinear
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electronic circuits, Josephson junction with
interference of tunnelling currents, and laser
systems. Predicting the exact transition point
where chaos sets in, in such systems is still a
challenging problem. Till now, the only analytic
method available for this has been the Melnikov

criterion [4]. The Melnikov analysis gives the
distance between the stable and unstable manifolds

of the perturbed system based on calculations
involving trajectories of the unperturbed system.
We have derived this function for the above

system, followed by a detailed numerical analysis
including phase portraits, Poincare sections and
power spectra.

The system we considered has essentially
three control parameters, the damping constant B,
the driving amplitude A and the driving frequency
w. In our numerical computations, we mostly kept
B at 0.2. Then the behaviour of the system as A
is varied was studied at three different frequencies.
We found the following interesting results.
i) At very low frequencies ie w = 0.04, the transition

to chaos is quite obvious. Just as the Melnikov
criterion is crossed, the invariant curve in phase
space loses its smoothness. As A is increased,
it develops distortions and twists and finally
reaches the strange attractor.
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ii) At medium frequencies, w = 0.4, we found that as A
increases, the limit cycle develops a stochastic
band of increasing thickness.

iii) At frequencies w¢=l, the behaviour is qualitatively
similar. However as A increases, the stochastic
band splits again into periodic trajectories.

iv) Because of the nature of the dissipation, the
centre (0,0) of the perturbed system is no longer
stable. Numerical studies reveal that the centre
becomes unstable through a bifurcation and for
sufficient perturbations, orbits near (0,0) spiral
away to the limit cycle.

The effect of an additive white noise in the above
system is interesting from a practical point of view [86
We made a numerical analysis of the influence of noise
especially near the transition point. We find that for
low noise amplitudes, the presence of noise smooths out
the stochasticity to some extent although the approach
to chaos is accelerated by noise.



INTRODUCTION

It has become clear over the last few years that
many deterministic dynamical systems described
by simple but nonlinear equations with only a
few variables can behave in an irregular or
random fashion. This phenomenon, commonly called

deterministic chaos, is essentially due to the
fact that we cannot deal with infinitely precise
numbers. In these systems trajectories emerging
from nearby initial conditions diverge exponen­

tially as time evolves)and therefore)any small
error in the initial measurement spreads with
time considerably, leading to unpredictable and
chaotic behaviour. It is interesting to note
that this unpredictability cannot be avoided by
just making the observation more precise. If we
use a measuring device having an accuracy 3‘; ,
the same device can be used later with the same

accuracy, but the equations of motion fail to
predict the outcome of the observation with the
same degree of accuracy. This accounts for the
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apparent stochastic behaviour in deterministic
systems. The analysis of the development of
chaos has attained considerable sophistication
by now and we shall now describe the technical
background for the later chapters.

General concepts and definitions

A dynamical system is a time evolution defined
by the system of first order differential
equations,

95- = f (X)  (1.1)at

where x = x (t)e;m9, is a vector valued function
and f : U-HRn is a smooth function, nonlinear in

general [1]. f generates a flow (qt : U-e \Rn,
where U Q|Rn and <Pt(x) = \P(x,t) is a smooth
function defined for all x in U and t in some

interval I = (a,b) Q lR)and QPsatisfies (1.1).
If f does not contain time explicitly, the system
is called autonomous; otherwise it is called
non-autonomous.
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The continuous time evolution equation (l.l)
can be abstracted by a discrete map:

Xn +1 = F  -.¢
This can be done in one of the following ways.

i) If x (t) is a solution of (1.1), we define
xn+l = x(n+l). Then F is the time-one map associ­
ated to the flow defined by f. This is called the
stroboscopic method [2].

ii) We approximate Q; = x(t+1) - x(t) so that
dt

xn+l = f (xn) + xn = F (xn))and this is the
difference equation corresponding to (1.1). This
method is applicable when the problem is one
dimensional.

iii) F may be viewed as the Poincare map of the flow

(Qt, with respect to a chosen surface [3]. Thus
for a 2-dimensional problem, the phase space (q,p)
is 4-dimensional and the energy surface is three­
dimensional. If we consider the surface Sx with

y = O, py is determined from the condition
H(x,y = O, px, py) = E. px and x are the variables
and the position of the system on SX completely
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specifies the state of the system. The system

starting out on SX will cross it repeatedly at

T ,
Px“

/1/Zt »-~<// l /I. /€‘\\\ ,-:1,t / / ____ /

X
F’\\ \

X'9
\___..*\

4%‘
X

U3

9*-‘9

xl,x2,x3... . Each crossing is a map of the plane
into itself. Qualitatively different trajectories
can be distinguished by their Poincare sections.
Thus a regular periodic orbit gives points lying
on a closed curve while a chaotic trajectory yields
an irregular set of points.

Fixed points form an important class of
solutions of equation (1.2). A period k fixed
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point is defined by

Fk (X0) = X0 ... (1.3)
where Fk = F(F(F( ... k times (x))) ..). A fixed

point xo is said to be stable if iterates of points
xn in its neighbourhood remain close to xo all the
time. If xn-§ xo as n-+<», xo is asymptotically
stable and is called a sink. Saddle points or
sources are unstable fixed points. To examine the

stability of fixed points, we expand x around xo:

x = X0 + lxx ... (1.4)
so thatZ A  000
where A is the ordered product of the k matrices

Mi = M(xoi) evaluated at the successive fixed
points with

M(x) = °*n+1_ ... (1.6)
oxn

If the eigenvalues of A are complex, then the
fixed point is elliptic or stable, with trajecto­
ries forming ellipses around it. If the eigenvalues
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are real, the trajectories are hyperbolae and thus
move away from the fixed point. This type is
therefore unstable or hyperbolic. If the eigen­

values are unityithe fixed point is parabolic [4].

y Xo
elliptic fixed point hyperbolic fixed point

If (1-2) has a hyperbolic fixed point)then there
exist local stable and unstable manifolds which

are defined as follows [I]:

Wioc (X) = {XG-I-U|Fn (x)—§x as n-)¢<>

and F" (X)€_U\dn 3 ox ... (1.7)

Wu (X) = {X€U|F'-n(x) ->x as n —‘1¢=>loc

and F'“ (><)eu,\<;n >  (1.8)
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Here u c |R" is a neighbourhood of X. The global
manifolds are obtained by taking unions of back­
ward or forward iterates of the local manifolds:

ws (X) = \_l F'" (ws (x)) .. (1.9)n,o loc
Wu (x) = ‘kl Fn (Wu (x)) ... (1.10)n20 loc

ws
‘ I

u
WV ­< >

/\

The stable and unstable manifolds may
interesect at points which are called homoclinic,
if they belong to the same hyperbolic fixed point

and heteroclinic)if they belong to different
fixed points.

Conservative systems

For a conservative system, Liouville's theorem
says that the volume in phase space is conserved
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by the time evolution. The equations of motion for
a system with N degrees of freedom are obtained from
the hamiltonian H as

q = 9-5‘ =;3k =_$'1i,1<=1,2,...1\1..(i.11)k dpk oqk
These equations can be transformed to a set of action
and angle variables, by a canonical transformation
giving

- ow - 0%
Ik =- -6?‘-1;-' :  =--'6-i-lg .¢.(l¢l2)

If the transformed hamiltonian is independent of

Bk, thén Ik(t) = Ik(Q) and 0k(t) = wkt +Ok(O)

so that we get 2N constants of motion Ik and 9k(°)~
If we can find a transformation that will execute
this, the system is called integrable. For nonlinear
systems, this is possible by expanding the variables

qk and pk in power series in Ik and Gk and substitu­
ting into the equations of motion to solve for the
coefficients of expansion. This is the subject of
canonical perturbation theory. Whenever the series
obtained converge, we have an integrable system.
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When no such convergent series exist, the system is
nonintegrable. The Toda chain [5],.the Kdv equation
(6), the Calogero fluid system (7) etc. are examples
of nonlinear integrable systems. An N-degree of
freedom integrable system has orbits lying on an

N-torus; the actions Ik measure the N radii of the
torus and Gk, the N angles of a point on the torus.
When N Z 2, each bounded orbit cannot come arbitrarily
close to every point on the (2N-1) energy surface.
Hence an integrable system cannot be ergodic.

In a nonintegrable system, the series diverge

due to a singularity in one of the integrals Ik[8].
Thus two orbits with initial conditions arbitrarily
close to each other, but on either side of such a
singularity can have entirely different behaviour.
Such a sensitive dependence on initial conditions
makes it impossible to calculate the orbit for any

time interval of interest)resulting in unpredictabi­
lity and chaos. As examples of nonintegrable
systems, we quote the Henon-Heiles system [9], the
motion of protons in the intersecting storage
rings [10], the celestial three body problem [ll],
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wave—particle interaction [12] and Fermi accelera­
tion [13]. If the system is near-integrable, one
can write

H (1,5~) =-. Ho(I) +e_Hl(I,0') (1.13)
where Iel <<l.

The equation of motion for such a system can be
expressed through a perturbed area-preserving twist
map on the I-Ci surface of section [4]. For
sufficiently small perturbation and moderate non­
linearity, the celebrated KAM theorem [14,15]
states that most of the tori of the unperturbed
system persist albeit in distorted form. Some are
destroyed and these form a finite measure which
grows with the perturbation. The destroyed tori
generate stochastic regions in the gaps between the
KAM tori. The tori corresponding to rational winding
number break up into alternate elliptic and
hyperbolic fixed points. Near every elliptic
fixed point, there are closed invariant curves and
a new structure of elliptic and hyperbolic fixed
points. It is fascinating to observe that this
structure is repeated down to arbitrarily small
scales. In the neighbourhood of a hyperbolic
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fixed point, the stable and unstable manifolds
intersect each other infinitely many times forming
a kind of web or complex network. This occurs
near every hyperbolic fixed point even to small
scales resulting in a selfsimilar ‘lace work of
intimate intermixing of integrable and stochastic
regions‘ [3].

As the strength of the perturbation increases
more and more tori are destroyed with the accompany­
ing growth of stochastic regions and the last torus
to disappear is the one for which the winding

number is the Golden Mean, Iégi [lo]. If N)3,
the gaps between the tori form a single connected
region and there can be leakage from one stochastic
region to another. This leads to Arnold diffusion
[17]. Because of this the existence of invariant
tori cannot guarantee stability of motion. The
transition to global stochasticity in conservative
systems is understood to be through the overlap
of resonances [18].

Dissipative systems
Dissipative systems are those in which the volume
of the phase space shrinks to zero as t-+-w, and
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hence are represented by dissipative or area-contract­
ing maps. Thus the long time behaviour of the dissipa­
tive system is easier to predict than that of a
conservative system. The local rate of change of
volume is

1\(x) = ln|det M(x)| .. (1.14)
where M is the Jacobian of the discrete map given in
(1.2). The average rate of contraction is

\ _ lim l n
its (X0) _ n_§¢, 5 lnldet M (x)| ... (1.15)

For dissipative systems, there is a contraction of
volume so that Pg; -C[4].

Since the phase space volume contracts, the steady
state motion for an N-dimensional system lies on a
surface of lower dimensionality. Such a surface is
called an attractor. For one dimensional flows the
only possible attractors are fixed points or sinks,
while for two dimensional flows, there can be two kinds
of attractors, sinks and limit cycles. As the control
parameter ‘n of the system changes, the stable attractor
becomes unstable and undergoes bifurcation to pairs of

attractors. The creation of two fixed points as >\=‘%O
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with no fixed points for >\< >\o is called a tangent
bifurcation. If a fixed point is destroyed and two
new sinks are produced, we have a pitch fork
bifurcation. In higher dimensional systems, we have
a fixed point bifurcating into a limit cycle. This
is called a Hopf bifurcation.

Ti stable +X l Xw l g x°\  gK x f xio\ Q -)5 -unstable i
tangent bifurcation pitchfork bifurcation

T.
x

>~=»
x+

z* A

Hopf bifurcation
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when the bifurcation repeats successively and
reaches a limit, the attractor changes character and
becomes chaotic. On the chaotic attractor, nearby
orbits, though bounded, diverge exponentially. This
leads to sensitive dependence on initial conditions
resulting in random or chaotic behaviour. Such an
attractor is called a strange attractor. This has
an infinitely leaved structure with the peculiarity
that on finer and finer scales the basic pattern
reappears. The strange attractor is a complicated
manifold in phase space which is defined as an
‘infinitely folded sheet of infinite extent located
in a bounded region of phase space‘ [19]. The
Hausdorff dimension of such an attractor is a non­
integer or fraction.

In Hamiltonian systems, the stochastic region
does not occupy the whole of the phase space, but is
bordered by regions of regular behaviour. But in
dissipative systems in the place of islands of
stability, there appear stable limit cycles to which
sooner or later all the initial points are attracted.
When dissipation is large, a point wanders for in­
finite time over the stochastic region before reaching
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the limit cycle, thus producing foliation characteri­
stic of the strange attractor.

The greatest interest has been in the study of
simple models; for example)a continuous map defined by

xn+l = f(xn,>\), ... (l.l6)
with f =>~><n (1-><n))  (1.17)
is called the logistic map and this turns out to be
the most widely studied system [20]. This occurs in
the population studies of certain biological
species [21].

The investigation of stochasticity by reduction
to one dimensional map has been used extensively in
the Lorenz system [22] described by,

x =-ox+oy

z = xy - bz, ... (l.l8)
with 0 = lO, r>O and b = 8/3.

This arises from a three-mode truncation of the
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Navier - Stokes equation describing Rayleigh-Bénard
convection in hydrodynamics. Here x is the amplitude
of the convective motion, y, the temperature differ­
ence between ascending and descending currents and z
is the distortion of the vertical temperature profile
from linearity. o,r and b are dimensionless real
parameters. It is interesting to note that the same
system of equations can be obtained for single-mode
lasers by truncating the Maxwell-Bloch equations[23].
A reduction to one dimension is possible because the
instability of the trajectories occurs in the same
direction everywhere. There are systems for which
the unstable direction is multidimensional, for
example the Rossler system given by [24]

Q = -(y+z)
Y =X+';'Y5
2 = % + z (x-p) .. (l.l9)
The Henon-Heiles dissipative map is another

example where the existence of the strange attractor
as well as its self-similar structure has been proved
conclusively by numerical experiments [25]. This is
a two dimensional map
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x = y + 1 - ax 2n+l n n
yn+l = bxn ; b<l .. (1.20)

For b = 0.3, it is found that at a = 0.3675, the

point attractor at xo undergoes a cascade of period
doublings and a strange attractor exists for
l.O6<a<l.55.

Routes to chaos in dissipative systems
We have seen that in dissipative systems the topo­
logical nature of the attractor may change as the

control parameter )\crosses a point )\B. The
first bifurcation is often followed by further
bifurcations and this sequence is called a transi­
tion scenario. We consider three important
scenarios which have had theoretical and experimental
success.

[he fe.i.@.@n.b@sm-.-§.¢ en 84:12

This is the most commonly occuring and conse­

quently the most widely explored route to chaos.
In this, the mechanism is a pitch fork bifurcation,
an infinite cascade of such period-doublings leading
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to chaotic behaviour. This has been observed in

Renard experiments, Taylor experiments, driven
nonlinear oscillator, chemical reactions and
optical instabilities. At the accumulation point
)\m of the period-doublings, an aperiodic attractor
exists. There are two universal constants associa­
ted with the scenario [26],

i) the scale factor a;

lim Axn
(I=n_>O° -A--)2-—-"-" 000n+l

where Lixn is half the separation between the fixed
points in the 2n cycle

ii) the rate of accumulation of bifurcations

lhn A -X5 = :cn+l~~c*~n at ... (1.22)
nfioo >‘n+2 ">\n+l

with >‘n » the Value at which the nth bifurcation
occurs. For the logistic map, these constants were
first evaluated by Feiqenbaum as a = 2.5029 and
6 = 4.66920.
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lntermittency or the Romeaun¢_Manpgville
Pocenario

Pomeau and Manneville [27] suggested that there

are certain systems in which for >\< >\C stable
periodic motion is exhibited but above >\c, there
are chaotic bursts which become more frequent as
X is varied until the motion becomes truly chaotic.

Above >\C, as the stable fixed point becomes unstable,
a memory of the fixed point is displayed since the
motion of the trajectory slows down and numerous
iterations are required to move through the narrow
channel between the map and the bisector. This leads
to long laminar regions and the motion is chaotic
until a new regular phase starts again. This is

W y
xm-I ‘~

\

s xn_>
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called intermittency and is associated with a saddle­
node or tangent bifurcation which occurs due to the
collision of stable and unstable fixed points with
the disappearence of both. The laminar phases

have a mean duration |)\-.hC| -1/2 [28].

There are three types of intermittency. In
type I, the fixed point becomes unstable when a
real eigenvalue crosses the unit circle at +1. This
is observed in Béhard experiments, nonlinear RCL
oscillators etc. In type II, two complex conjugate
eigenvalues cross the unit circle simultaneously and
in type III, a real eigenvalue crosses the unit
circle at -l. Intermittency has been detected in
Bénard experiments, Josephson junctions, chemical
reactions and lasers.

TheRuelle-TakensgNewhousescenario
In this scenario, the system undergoes three

Hopf bifurcations in succession, before reaching a
strange attractor. The power spectrum of such a
system will exbihit one, then two and possibly
three basic frequencies [29]. When the third
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frequency is about to disappear, simultaneously
some broad-band noise appears indicating a
chaotic state. This route to chaos has been
observed in Benard experiments, Taylor experi­
ments and nonlinear conductors.

'_>@ —*—>>\<>\
<. >\Q<>\<>.c_ )\c<)‘<>\c

3 dim. torus strange attractor
1/

Characterisation of Chaos

We have mentioned that the long-time behaviour
of most of the deterministic nonlinear systems
generically exhibits chaos. Sihce this type of
motion has stochastic features, its complete
description requires statistical methods. This
is based on a number of underlying mathematical
concepts which are discussed below.
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§vapunov_characteristic_exponen§s [4j

The Lyapunov characteristic exponents characterise
the mean exponential rate of divergence of trajectories
surrounding a point and thus provide a computable
quantitative measure of stochasticity. Consider two
nearby trajectories in N-dimensional phase space with

the initial conditions xo and xo +~AxO. These evolve
in time according to (l.l) and the tangent vectorllx
has the Euclidean norm.

d (xO,t)==|i1Ax (xO,t) [I ... (l.23)
The time evolution of Ax is given by

%T:.Ax =M(x(t))Ax  (1.24)
where M is the JacobianZ gi 000

ox

corresponding to the flow defined by (l.l)

Nearby trajectory

Axttl
trajectory

‘QB
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The mean exponential rate of divergence of nearby
trajectories is given by

lim 1 d(Xovt)o (xo) = Y ln K =n*>~»- ...(l.26)‘ll"§°° d(xo:°)
d(o)-*0

Choosing a basis ei, o takes values

oi (xo) = o(xO, ei) ...(l.27)
These are the Lyapunov characteristic exponents (LCE)
which are usually ordered by size:

ol>o2>...>oN

It is clear that at least one of the oi 's must vanish
since in the direction of flow, £>x grows linearly
with time.

The above concept can be generalised to describe
the mean rate of exponential growth of a p-dimensional
volume in tangent space where p<N. Thus the pth
order Lyapunov exponents are accordingly defined as,
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' ‘IV (X vt)|l
op (xO,V ) = llm % ln Q0 *u”* .. (1.28)p t+<” ||Vp(xO,o)||
op is the sum of the p largest exponents of
order l.

Up =Q'l+(j2+...+op 0.;
For conservative systems this sum is zero)while for
dissipative systems’it is negative.

LCEs can be defined for maps as well. Thus if

the YWi(n) are the eigenvalues of the matrix An
defined as

l/n
An = [M(xn) M(xn-1) ... M(Xl)] ... (1.30)

GF

where M= "S; , corresponding to the F given in (1.2),
then the LCEs are given by

map6. = 1"‘ ln [-~. (n)]  (1.31)1 n;§m 1

where'C is the mean" time between successive inter­

sections of the trajectory with the surface of section
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A positive LCE indicates trajectory divergence and
chaos while a negative LCE sets the time scale on
which transients or perturbations of the state of
the system will decay. For a periodic state, there
is one LCE equal to zero with all others negative
while for a quasi-periodic state with k frequencies,
there will be k LCEs equal to zero and others
negative.

TheKOlm@qorOv-Sinaientreex [28]

The Kolmogorov-Sinai entropy or K-entropy is

the most important measure by which stochastic
motion can be characterised. It is defined as
follows. The N-dimensional phase space is
partitioned into boxes of size 1N. Consider the
trajectory x(t) of a system on a strange attractor.
The state of the system is measured at time
intervals’C. Then P._ . _ is defined as the

lO,ll,0ooln

joint probability that x(t=o) is in box io.x(té¢)
is in box il... and x(t+nC) is in box in,
The quantity

K = * 2 P_ _ log P (1.33)
n iofllfcoin 1091]-,¢0in ioyi-1-’..in
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is proportional to the information needed to locate

the system on a special trajectory it ... ig with
precision l. Therefore Kn+l — Kn is the additional
information needed to predict in which cell in+l,

the system will be if we know it was previously in

the cells if , ... ix . ie. Kn+l - Kn measures
the loss of information about the system from time
n to n+l. Then the K entropy is defined as the
average rate of loss of information

lim lim lim -1

I-'

MD

K = —————- K — K1 0

3
A

5
O

¢%0 l-so n-aw = "H
lim lim lim=_ l z P
‘C-)0 1.-50 n'—‘1°° n"'C iO,,,j_n iO1°°in

x log Pic’ .. in ... (1.34)

For regular motion K = O, while for exponential
divergence on a strange attractor K>O and for
completely random motion Kévw. K is the averaged
sum of the LCEs.

For maps with discrete time steps't = l and
equation (1.34) is modified as
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lim lK = - - Z P. . log P. .l%o n ll..ln 11 .. ln .. (1.35)
naw

This can be generalied tolim f1<=_ l, 1f n ¥-T 1°? X Pi i .. (1.36)1+0 _ _ _n§m ll..ln l .. n

with Kl = K

The K-entropy is inversely proportional to the
time interval over which the state of a chaotic
system can be predicted. ie.l 1‘Cm  log .. (1.37)
lnvariantflmeasure

The detailed picture of an attractor is given
by the probability measure P(x) on the attractor
which describes how frequently various parts of the
strange attractor are visited by the orbit. P(x)
is defined as the time average of Dirac deltas at
the points x (t)

lim 1 TP = T fat 5x(t) .. (1.38)tam 0
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The measure is invariant under time evolution. In
general there are many distributions invariant to
a given map or time evolution. However a unique
distribution is singled out by repeated iteration
such that time average equals space average for

almost all initial conditions xo. For a period
n-cycle, P(x) is discrete having n delta functions
at the n stable fixed points. For a one dimensional
map, the invariant measure is defined as,lim N 1
P(x) = Nfim é §_O 5 [x-f (xO)] ... (1.39)1....

Since P(x) has to be stationarY,f’(x) must be
independent of time. So we have

l
P(Y>= f dx 5[y-f(><)]P(x)  (1.40)

O

This is the Frobenius-Peron integral equation for
P (x). If P(x) is known, time averages can be

replaced by space averages over the invariant
measure and this is useful in the computation of
LCE and K-entropy. €’(x) is usually computed
numerically [4].
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Cantor set_and dimensions

The typical geometry of a strange attractor is
a set of self similar structures that repeat on
finer and finer scales. This can be put in
correspondence with the geometry of a Cantor set.
A.Cantor set is a compact metric space that is
totally disconnected, uncountable and of zero
measure. It has typically a fractional dimension
and displays scale-invariance. As an example we
consider the middle-thirds Cantor set constructed
as follows [3Oj. Consider the line of unit length
and remove its middle third. Take the remaining
two intervals and remove their middle thirds. This
process is repeated and in the limit we have a set
that has zero net length and an uncountable number
of elements.

I. 1 —¥0 1
I a $ 1 ' l0 ‘/3 Q/3 1
'_i* ‘-i—* +1--\ Liao ‘/9 2/9 ‘/3 9/3 7/9 9/9 1
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The definition of fractal or capacity dimension is
given by

lim<1 = L‘-‘-“liil ...(l.4l)€+o h‘(l/€)
where M (e) is the minimum number of intervals of
length Q needed to cover the interval (O,l). In
the construction of the Cantor set, after the pth
repetition of the process, we have Q_= (l/3)p and
M (£2) = 2p. Hence

lim p<1 = -1-9-L = o.o3o ...(1.42)

It is customary to define three important
dimensions for a strange attractor.

Ihecapacitydimension DQ

Suppose the strange attractor is embedded in
a subset of a p-dimensional Euclidean space lRp.
We take N (G2) as the minium number of p-dimensional
cubes of side<a, needed to cover it. Then the

capacity dimension DO is defined as
limoo = els°§i N (el . . .(1.43)Q->/o log (l/é)
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For small values of Q_,

log N (G) = DO log (l/G) ... (1.44)
This expression is used in the numerical computation

of DO by box counting. For this, the space is
divided into boxes of size G. and the number of boxes

containing at least one point of the attractor is
counted as M. A graph is plotted with log M/loge.vs.

l/log<; . DO is obtained by fitting a straight line
to this graph for several values of Q; and extra­
polating the result to e.=>o.

The information dimesion D1

D1 is a generalisation of Do which takes into
account the relative probability of the cubes used
to cover the attractor. We define [31]

N (4?)
1(<-2) = 2 pi log -1-  (1.45)i=1 Pi

where pi is the probability for one point of the
attractor to be contained in the ith cube. It is
the amount of information necessary to specify the
state of the system to within an accuracy Q_. Then

D1 is given by,
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limD - l1l54L—- ... (1.46)
1 @~*@ lOq(l/e)

Since for small Q ,

I (Q) 2  IOQ  ¢-.
D1 tells us how fast the information necessary to
specify a point on the attractor increases as Q
decreases. If all cubes have equal probability,

then I (G) = log N (6) and hence Dl = DO. In all
other cases D1 < DO.

The correlation dimension D2

D2 is defined as

l N(e)im 2l Z .D2 = Og(i=1P1l ... (1.48)
€—>o log (l/Q)

2

It can be shown that zpi = c(¢;) [28])where
C (6) is the correlation integral given by

1.

C (Q) : Ni: —fi§- 1? (3'[€-(Xi—Xj)] ... (1.49)
Hence linD = m l°9 3(G’1 .. (1.50)2 €~¢ro 109 (1/Q)
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This is used in the numerical determination of D2
from a time series.

Qeneralised dimensions and fffl spectrum

A complete characterisation of the strange
attractor of dynamical systems is now possible by

considering the structure of scaling indices ai
on the fractal measure [32]. The concept is most
general since it allows different values for the
scaling index a and f(a) is defined as the dimension
of the set of points on the fractal with the same
value of a. The f-a spectrum thus describes the
global scaling measure of the strange attractor.

To characterise the inhomogeneous static
structure of the strange attractor, an infinite

number of dimensions DQ are introduced [33].

N(c)

. log{ Z p.%]Dq = 11“ 1 g_ i=0¥l ... (1.51)Q-§o q - l log (1/Q )

The first three members of this set correspond to
the dimensions introduced earlier; ie., for q-ao,

Dq-a Do, q—+l gives DO#§Dl and if g = 2, then
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Do = D2. In general D0;<Dq for q’ > q; the
equality sign holding only if the attractor is
uniform. q—>w corresponds to the most concen­
trated region on the attractor while q=a-w
correspond to the most rarefied region.

The generalised partition function for such
an attractor is defined as [34].

N oF: 2  ooo(.].oE-52)l=ll
For large N, this Y'is of order unity only if

‘C =   o0o(lo53)
c(q) is obtained by solving (1.52) equated to unity
Then’C is related to f(a) through a Legendre
transformation:

1 =  -' f a0o(lo54)
a'cwhere a = EEr- .._(l.55)

For different values of g, one can thus get the
corresponding f(a). The f value at the maximum

point gives DO.
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Relevance of chaos in related fields

The discovery of chaos has made an enormous
impact on atomic physics, nuclear physics,
solid state physics, cosmology, fluid mecha­
nics, optics and so on. It has brought out
limitations to predictions possible from
established laws. However, the realisation
that chaos is a common and usual behaviour in

nonlinear systems can influence many related
fields of science. Chaos has been observed
in cardiac cells [35] and neural systems [36].
Although in nonlinear physical systems the
presence of chaos is being frowned upon, in
biological systems, it is often found to be
beneficial.
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Chaotic systems can be an information source,
since in turbulence information flows from micro­

scopic to macroscopic scales [37]. Chaos is made
use of in the human brain and so is applied in the
field of artificial intelligence. The richness of
a symbolic sequence in a chaotic orbit is of
relevance for language theory [38]. Information
can be stored in the time series of a system with
a chaotic orbit and thus used to create memory.
Cellular automata [39] and coupled map lattices can
have a large number of attractors which might be
useful for storage of information [40]. Tomita
pointed out that the soft response in chaotic
systems is associated with pattern recognition or
learning in brain [41]. Moreover study of
dynamical systems with complexity can enhance our
understanding of the human brain [42], self—limiting
biological reactions, turbulence, complex chemical
reactions, meterological phenomena, fluctuations
in the cost of materials and so on.



ONE DIMENSIONAL MAPS AND UNIVERSALITY

Dissipative dynamical systems exhibiting complex
or chaotic behaviour occur quite commonly in
condensed matter physics, fluid physics, accele­
rator physics, chemical reactions, electrical
circuits and so on. For such multidimensional

systems, the volume of the phase space contracts
in all directions and the trajectory converges
to a limit cycle. One direction will have the
slowest convergence and hence these systems
have asymptotic motions that can be modelled by
one dimensional noninvertible maps. The differen­
tial equations representing these systems can be
reduced to one dimensional maps by means of
Poincare sections, stroboscopic methods or
return maps corresponding to the maximum values
of the variable. Such maps also arise naturally
as simple models of system behaviour as in
population studies of certain species. In
general, one dimensional maps of the form

xn+l = fA(xn) ... (2.1)
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have a tuning parameter A whose variation drives
the system through a series of bifurcations. This
period-doubling route, usually called the Feigenbaum
Scenario, forms the most common and the most well

studied route from periodic to aperiodic behaviour.
The sequence of bifurcations exhibits some striking
universal features near the infinite bifurcation

limit>\m characterised by two scaling constants
a and 5. Thus the measurable properties of any
system in the aperiodic limit can be described in a
way that essentially bypasses the details of the
equations governing the system. The universality
theory was developed in the context of quadratic
maps by Feigenbaum [43]. Soon after this work,
several numerical and theoretical studies lent
support to the universality picture in a number of
models in various dimensions. It was first tested
experimentally in 1980 in an actual turbulence
experiment [44]. The universality theory was later
extended to circle maps [45 ] and hamiltonian
maps [46] and later generalised to include period
n-tuplings in complex iterative maps [47]. It also
plays an important role in the intermittent route
to chaos [48].
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The Universality theory

The key to understanding repeated period­
doublings is the introduction of a doubling
transformation T which carries a map f to
one obtained by

composing f with itself,
restricting to an appropriate subdomain and
changing the co-ordinates to magnify the
subdomain to the original domain. To account
for the universality, one has to show that
T has a fixed point and that in the neighbour­
hood of the fixed point T is expanding in one
direction and contracting in all others.

To define the doubling operator T, we
consider one-hump maps of the form

Z

where z is the order of the local maximum.

This map has the following general features:

For A <>\< A , there exists a stable 2n­n-l n
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cycle with elements x *, xl*, ... x* which isO 2n—lcharacterised by

‘I’

I151‘): (><i)| < 1  (2.3)
where the prime denotes differentiation of the

function fx ‘with respect to xi.

At }\n, all points of the 2n'1 cycle become unstable
via pitchfork bifurcations leading to a new stable

n
2 cycle for )\n < >\ < >\n+l'

A 2n superstable cycle is defined by

r--:i

, ‘I­f  = one 04h i> 0 <2 >n

*

This implies it always contains xo = O as a Cycle
element.

The distance dn of the point in a 2“ supercycle
which is closest to x = o is given by

2n-1

dn = §\n (o) ... (2.5)
aWe have ___E‘_ =-. -<1  (2.6)
dn+l



where a is the scale factor introduced in the precedlng
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chapter.

Then

ie. (-Q)“ f2n (0) = cl ..- (2 8)
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This can be generalised to the whole interval
(-1.1) and the rescaled functions then converge to
a limiting function [28].. 2“llm (-(I)n f  =  ..~n'%’m )\n+l G

2n91 (x) is determined by the behaviour of f (x)
An+l

around x = o and should be universal for all f with
the same z [49].
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We introduce a whole family of functions

~ lim n 2n Xg.(><) - (-<1) r (—-)  (2.10)l n_§‘” j\ an
n+i

i 5: Of]-,2, 000

where the gi for i > l are iterates of glf All such
functions are related by

gi_l(x) = -a gi (gi( % )) = T gi(x) ... (2.11)

In the limit i-+-w, we define

g(x) = lim gi(x) ... (2.12)
i—#<=

Clearly g(x) satisfies the equation

g(x) = -a g (g(x/a)) ... (2.13)

Thus g is the fixed point function of the doubling
transformation T. Since the equation does not fix
absolute scales, we introduce a normalisation condition

q(<>) = 1  (2.14)
Equation (2.13) determines a universally as

<1 = -5-T7  (2.15)
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n

g(x) is obtained as the limit of f2’s at the value
of Pt“ . This ls the unique value 0? f\at which
repeated applications of T will lead to a convergent
function.

We define [26, 43]

A91 = gm (X) -<11 (X)  <2-16>

Then equation (2.11) becomes,

91 (X) = -—<1(qi+ A91) [qi(></<1) +A91(><,/1)]

= <2i_1(x)- <1 [Aqi(<3i(x/<1))

J’ 9,1 (gi(></¢))A91(></01)] + 0((A9i)2)

(2.17)

ie.Agi_l(X)= -Q [Aqi(qi(x/a)) + gi (qi(x/(1))

xAgi(x/a)] + o((Aqi)2)  (2.18)

In the limit i—?°°, qi—=;g so that Agi_§o_
So we write,=   on-0
with the condition ni_>o as i—>>*>=>.
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Then (2.18) gives a closed equation for h(x) and ni:

ni_l = Sni, ... (2.20)
h(x) = —(@/5) [h(q(x/a)) + q'(q(X/a))

x h(x/a)] ... (2.21)
Equation (2.20) can be trivially solved to give

ni = 6'1 ... (2.22)
Then (2.12) is satisfied if 6>1. It can be shown
that [26]

1\n+l -f\n¢< 6"“ ,,_ (2.23)
logarithmically so that the original definition of 5
given in Chapter l automatically follows.

We observe that universality arises from the
fact that bifurcation is a local phenomehon. Here
we consider the region near x = 0 where distances
between points scale as a, while points near x = l
are found to scale as a2. It is also possible to
consider scaling and universal behaviour centered
around points other than these two [50].
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The Renormalisation Group equations
and calculation of a and 5

The essence of the renormalisation group (RG)
analysis given above is that different maps
with the same z value have the same values

for a and 6. The RG equations (2.l3) and
(2.21) can be used to evaluate a and 5 for a
given z value. However the structure and
solutions of these equations are not yet fully
studied. Numerical evaluation of a and 5
shows that there exists universality classes
characterised by a and 5 for different z
values [51].

Among the available analytic methods, we
mention the eigenvalve matching RG method [52]
and Helleman's scheme [53]. The former has
the drawback that it is difficult to exteni it
beyond the second or fourth order of renorma­
lisation. Moreover it provides us with the
5 values only. There is no direct way of
getting a and g(x). The Helleman scheme has
been applied to quadratic maps. But for maps
with 2>2, the algebra involved is very
cumbersome.
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A method of evaluating a and 5 using
equations (2.13) and (2.21) was reported by
Delbourgo et al which involves the trunca­
tion of g(x) to first order in Ixlz [54].
For second or higher order, numerical methods
must be resorted to. Moreover the asymptotic
expressions in their approach refer to the
limit N-%~~ for N-replication. Even though
multifurcations other than bifurcations are
usual, we feel that the large N limit is
rather unphysical. A computational iterative
procedure based on the nested structure of
g(x) is used by van der Weele et al and is
found to have a rapid convergence for small
z values [55].

Perturbative scheme for evaluation
of universal parameters

An analytic method based on a perturbative
scheme was developed by Singh [56] to solve
equation (2.13) for a and g(x). Here g(x)
is expanded into an infinite series and the
coefficients of expansion are replaced by a
perturbative series in inverse powers of a.
The method has been applied to quadratic
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maps giving good results. We have extended this
scheme so that (2.13) and (2.21) can be solved
simultaneously for a,5,g(x) and h(x) for any
general z. Here the functional equations are
replaced by infinite dimensional nonlinear vector
equations.

To this end we write g(x) asw nz
g(x) = 1 + nil Pn |x| __. (2'24)

with the normalisation given in (2.14). In the
neighbourhood of the extremum at x = 0, g(x) is
positive for any z and g(g(x)) can be expanded into
a similar power series. ThusI % Z

g(g(x)) = l + E P + (P Z rzP ) Ix]r=l r 1 I=l r
+ (P2 2 rPr + Pi Z rz(rz—l2I=l r=l 2
x Pr) |x|2Z + ... ... (2.25)

We redefine the coefficients of expansion in
(2.24) as

p Q“ = s [Q12 ... (2.26)I‘) H
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Using (2.24) - (2.26) in (2.13) and equating coeffi­
cients of ixlnz we get

%

l + 1 + (“I2 Z E5 = O t n = o ... (2.27)“ r=l ar
|_ Xl + 2 rSr- °-—-"_" = = 1 co 0 0Z rzl ar_l Q ; 1'1 (2 28)

1 1'1 co
5n [1 - ‘*--—] + 2 3 (r25 Srlull“-1) {>2 r>,1 L ar-1

S S OOO SX Z ml (mg g  6 =0> Q‘. 7 if i 77 7 7‘ if i’—
ml/l mLZl la|z(n_[) ml+..+mk,n

n =2,3,4’o00 000
These form an infinite set of coupled nonlinear

equations. To solve these, we expand Sn in inverse
powers of a,

~ s= E *i 00¢m=O Q

Using this expansion in (2.28) and (2.29),eguating
coefficients of equal powers of 1/a to zero, we obtain
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a hierarchy of equations which can be solved

successively for the coefficients Snm. These are
used in (2.27) to yield the equation for a:

2 w w S
F]; + 1+ Ia] 3 1; .__r_@ =0  (2.31)I=l m=O dr+m

The universal function g(x) is given by

W z-n w S nz
q(x) = 1 + nil [la] 20 —-If-Q] |><| . (2.32)= m= (I

In our work, we have expanded h(x) also into a power
series as in (2.24). We substitute this in (2.21)
and equate coefficients of Ixlnz on both sides to
get, oo Z S

- Q 3 [1+hr + la] £i__£_ ] = 5 ;1‘.-.:l (IrD = O 000
z-l

- oz  (N hr S1 + 2 1'2 la! Srsir=1 1 a 2 "K af
S

+ hlfirz) _l-1] = 6111;l ar n-3]. 000
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_ oz OZ? I22 (rz) E2 + ({+l)( rz)------Sr }r=l P31 1- qr {+1 a"’Z*r

X Z _s“1Sm?"'Smx 5m + m nml)l,..mL)l a,(n_;) 1 -~ L»
n-l n-6' rz Sr

'1' Z I Khn ('.+l) ( u_ § ‘ n_n, __'z'+r i‘

x Z smLsm2"'Sm1 5 + ,m OOm n
m1;1,..m@1 a=("-i) 1 L ’

S

+ hn ;zr =~- = 5 hn ;
ar+(n-l)z

D = 2,3,4 000 000

The expansion given in (2.30) can be used here also
and the Snm coefficients determined earlier can be
substituted. We have reduced the above set of

equations into a matrix eigenvalue equation of the
form.

0 h = 8 h ... (2.36)
where h is the column [l,h1,h2,...hn]. The largest
real eigenvalue of D furnishes the relevant 5 value.
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In practice, we can work only with truncated

series of Sr and hr . We determine the Sum
coefficient which are required to retain terms upto
a definite power of l/a in the equation for a,
(2.31). Then the maximum number of coefficients

hr that can be included are used in the calculation
of 5.

However we find that the perturbation series
is not highly convergent but shows some of the basic
characteristics of asymptotic series. The details
of the calculations given in the next chapter
indicate that the absolute values of the successive

Snm coefficients, for a given n, do not decrease
steadily, but decrease for a few m values, then
increase , beyond some m value. The corresponding
a values calculated using the perturbative series
also show some fluctuations about the numerical

value, instead of converging to it uniformly.
Therefore the selection of the truncation point is
rather crucial. It is found that there is definite
advantage if we use Padé approximants [57] to sum
the series in the expressions for a and 5.
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Universal relations for general z

It is now well established that one-hump maps
fall into different universality classes
labelled by the order of their extremum z.
For any z value, the first few coefficients

Snm using (2.28) and (2.29) work out to be_ -(2-1) (2-1)
510:“ 1/Z i 511:7; 520 “'27

(2.37)
The equation for a (2.31) using these coefficients
is,

z-1
l+ 1 = |,<,|’[._1_+ $._._l_._+ ...] (2.38)Q Za 2z2a2

The series in the brackets can be replaced by its
Padé approximant. Thus considering the lowest
approximation, we use the [1/1] approximant to
yield

gi = (l+a) Y1-é;E£l] ... (2.39)

In the limit z 5 l, we find a-=>~. For a given
z>l, (2.39) can be solved for a. Fig 2.1 shows
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Fig. 2.1 - The values of a for different values of'
z. The computed values using (2.39) are
shown by triangles while numerical values
are indicated by circles.
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the values of a thus obtained. The numerical values
are also plotted. It is clear that the agreement is
quite good. The computed values are provided in
Table 2.1

Using the coefficients in (2.37) in the equations
for 5 (2.33) - (2.35) we get the approximate expression,

25 = az-a+2+ Liill + [(51-a-2-(£:ll}2Za za
2

Z+1_ 12;-ll _ (Z-1) _ z(z-1) 1
* “'°" { w ""2"; "53"" H’Z Q Z (I

000
Replacing the series in the last term by its [1/2]
Pade approximant, we get

2

25 = az-a+2+ £E:£l + {{az-a-2- £::il}­Z6 za
2+2 _l

+  4_l_<rJ__z(;-1) K2  (2.41)za(za+l)+l+z(z-1)

As z increases the first term within the square
brackets increases faster than the second, so we
write



Table 2.1 - Computed values of a using (2.39).
The numerical values are also

: 56 :

given for comparison [51,55,58]

77 7 7 Computedvalues 1 "Numerical 7A z r of a Y a values

5 1.1 4
1.2 4
I 1.5. 2.0 ‘
j 2.1* 2.2 .

2.3 ~

1

*, 2.4
f 2.5
A ;3.0 ~
. \

1

5.0 71 6.0 I
> 7.01 8.0:1

\"11 ' _ ‘_

7.978673
5.390312
3.405767
2.517021
2.422142
2.340300
2.268835
2.205783
2.149665
1.940393
1.704310
1.571511
1.485068
1.423759
1.377734
1.312754
1.047940

1

I

\

P

\ »

__ii _ _

7.97
5.37
3.39
2.5029
2.4084
2.3269
2.2557
2.1928
2.1368
1.9277
1.69
1.56
1.467
1.41
1.358
1.2914
1.03373
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|a|z+2 ) Z 2 (--Kbl) -1ml  <2..2>
za(za+l)+l+z(z-l)

When z is large the last term in (2.42) is '2 l.
So we can recover the universality relation
derived by Delbourgo [58] from (2.42) i.e.

5 IR’  "' (Z + 1 000
For very large values of z, 6 = az_¢+¢ where

c<l. So we can infer the inequality

az > 5 > az - a --- (2.44)
These limiting expressions were derived earlier
using entirely different arguments [55].

The values of 5 for different maps computed
using equation (2.41) are shown along with numerical
values in Fig. 2.2. We observe that the computed
values agree well with numerical values as is evident
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from Table 2-II.

In the next chapter, we apply the above
perturbative scheme to specific cases viz.
quadratic, cubic and quartic maps. For non­
polynominal maps, we present an expansion in
terms of a small parameter Q .
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Table 2.II - Computed values of 5 using
(2.41). The numerical values
from [51,55,58] are included.

‘ Z * Computed values 1
of 6

Numerical
5-values

’ 1.1
‘J 1.2
1 1.5

200 1
2.1
2.2
2.3
2.4
2.5

5.0
6.0
'7.0
8.0

10.0
100.0

3.0 »
4.0 A

2.818065
3.118078
3.811942
4.708019
4.868009
5.023532
5.174898
5.322243
5.466273
6.145081
7.339693
8.514767
9.313801

10.454400
10.979350
12.350160
27.137240

2.83
3.14
3.80
4.6692
4.8253
4.9773
5.1256
5.2706
5.4127
6.0847
7.29
8.35
9.296

10.2
10.948
12.3
27.75



UNIVERSAL PARAMETERS FOR ONE—HUMP MAPS

The perturbative scheme developed in Chapter
2 can be used to obtain the universal con­
stants a and 5 as well as the universal
function g(x) for any given map. Detailed
calculations for different orders of
accuracy have been carried out for quadratic,
cubic as well as quartic maps and the
results are reported. For fractional z
values, the general method can be side-stepped
and an expansion about the nearest integer
value can be performed in the expressions for
a and 5. Such an e-expansion does not affect
the accuracy of the values much. The results
for l.5<z<2.5 are given.

The universal constant 5
for a quadratic map

The Snm coefficients as well as the value of
the scaling constant a for a quadratic map
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were first calculated by Singh[56]. We have
reproduced his results in Table 3.1 for complete­
ness. We calculate the constant 5 for such a
map using the perturbative procedure and the ele­
ments of the D matrix defined in (2.36) work out
to be

D
511 5 ' s

= --G--2(Z2[S "|" -——-— +—-1-I-2 +a a2 a3ll lO

D12

D13

§2.2..i22. 6 +52.' 4“[s2o + a + a2 1 [530 a 1
8540 .+ ""'_"" 1a

=-C;

2

2SlO Sllj 2510 S1 S11+ ~ ~ 2 ~ + -"—-"2 + “"5 ]
2

= -2a [sD21 10 a a2 a
D

s5 5 21 510 3053019S

(I

5
=-4cz[__-1-.9.+i];l.]_.£§2.Q;22 1 Q2 a

D

D31

S S= _4a [ -1Q + _ll ] ;23 a a2
a '

9
C!
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Table 3.1 - The Snm coefficients for the
quadratic map [56]1 I 1 ~ 4 I 4 1|,. U A

\

r

. ‘ ‘r ‘ ‘A 1 - 0.5 ‘ - 0.25 _ 0 j - 0.25
2 A 0.125 2 0 5 0.03125 ,

\

,3 A2 0 0.0625W 3
\4 i O ‘

1w 1 + 1| i i

m r L0 1 ; 2 ~ 3 '
\

>
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2
4 S_ _ ___lQ, ­D32 " a ’
4s2_ _ 10_' T 000

Using the Sum values given in Table 3.1 and
the value of a obtained in [56] as a = 2.5, we get

I
-‘Q‘ 3.75 -2.5 -2.6

0 T 0.9 2.2 2.4g
-‘O04 —Oo4_\\ ‘Q.

The largest eigenvalue of D is given by
6 = 4.66602965. This is close to the numerical

value, 4.6692016 ... [26].
'1!

The corresponding h function is

h(x) = 1-O.3656757x2 - O.OOO736226x4 . (3.3)

Solutions of RG equations for a
cubic map

Next to the logistic or quadratic map, the cubic
map is perhaps the most physically interesting
system [59,60] and we apply the perturbative scheme
to the cubic map. The expansion coefficients
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Sum are calculated by substituting z = 3 in
equations (2.28) and (2.29). The following

system of equations give the Snm values:

510

520

S11

521

530

512

522

531

S40

513

S32

+

= O

L
3

3

2

9

;

3
S10

s20 ;

s2 15 s $2 '1o 511 ' 2o 1o '
4

S10 F

2

9

2

4

3

2

- 3 s '521 30 '
2 + S S2 ) 15(s2 S1 10

2s _ s ~S20 S11 1o) 36530 1o '3 3- 2o s s ~S10 S11 20 10 '

_ - 4 s 'S22 3 531 40 '3 2 2 2= -45 — -2o(3s 51o 512 6510 511 2o 1o3 3 ,
* 521 510) - 84530 510 '



: 66 :2 3_ _ s s s
523 ~ 520 3(3 S10 513 + 6 S10 11 12 + 11 >

2
— l5(52O5l1 + 2529519512 + 2 5215105112 2
+ s22s1O) - 36 (slo 831 + 2 530510511)

2
' 66 S40 510 ‘

- 15 s s4S41 _ - 20 1O '
=0‘S50 ,

etc.

The coefficients obtained on solving the above
set of equations are given in Table 3.II. The
equation for a (2.31) works out to be4 3 2
S10 a + (Sll+S2O) a +(l+Sl2+S2l+S3O) a

+ (l+Sl3+S22+S3l+S4O) a + (Sl4+S23+S32+S4l+SO) = O

... (3.5)

Using the Snm values given in Table 3.11, we get

0.333334 a4 + 0.111111 a3 - 0.9376542 a2
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This can be solved for a and the only real and
positive root that is greater than l is 1.928236.
This is the acceptable value of a, very close to
the numerical value which is 1.9277 [61].

The equation for the universal function g(x)
is found to be 3 6
g(x) = 1 - 1.763892 |x| + 0.2072627 |x]_

+ 0.0442792 |x|9 - o.oos537133 |x|12___ (3_7)

5 is the eigenvalue of the D matrix in equation
(2.36). Using equations (2.33) - (2.35) for z=3,
the elements of the matrix are obtained as,

S S S S
D11 = -a-3a3 (S10 + -ll + -lg +-lg + -ii) ­a a2 a3 a4S S S

_ 6q2 (520 + _Zl + _Z% + _2§ )CI (1 (Z3S s s
_ 9a (530 + _§£ + _§% ) - 12 (s4O+ _§i )(1

15s5Oa ’
D12 = ’°‘5

D13 = '“3
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2 2S‘S 1 _ 2
2 _6a2 [S + __LQ__iL + -- (25 sl2+sl1)21 10 a a2 10

1

+ -55 (2 510513 *2 511 512) * ;Z (2 510514(I

+ 2 511513 + Si2)] - 3Oa[S2OSlO + é (520811

+ 510821) + fig (512520 + 521511 +S22SlO)

+ -is (520 513 * 521 512 * 522 511 * 523510
(I

- 72 [530 slo + é ($30 S11 + s31 slo)

+ $5 (530 S12 * 531 S11 * 532 510)]

_ iii [s4OslO +~§ (s40 sll+s4lslO)]

?1°255<>S1Q ,
2(I

= _ Ell Elg _ EZQ + EZLs 6D22 6[ 10 + a + a2] [ Q a2 1
_ 3§aQ ,

a2 511 s= -6 (S + -— + 2-52 > ;23 10 a a2
2

= _9 ( .§.l.Q +  __ 30 S29  ;32 a a2 62
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26 s s 3 3s s 1 2___._2_Q__l2-3s _i@__1-i -—(3ssD31 _ Q2 a[ lo + a + a2 lo 122 1 2 5 s3 s s ——— 3 s s + 6 5+ 10 ll) + a3 ( lo 13 10 11 123 2 1 2
* 511 )1 " 6°[S2651@ * 6 (2 52o51o511*521510 )

21

2 252 2 1
+ 522510 )1 ' a [$30510 * E (2 530510511

22 660 s s
+ 531510)] ' >~ 3010 3

(Z

2s 2s SD = - 15 ( -19-+ 6 19 ll) ... (3.8)33 G 0,2
A

Taking [h] to be [1 h h ], 5 is the largest eigen­7172
value of the D matrix given in (3.8). This is
calculated to be 6.118815, the numerical value being
6.0847 [61].

The eigen function h(x) is given by

h(x) = 1 - 0.3640163 |x|3 - o.o941o95s |x|6 .. (3.9)
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Universal parameters of a quartic map

The set of equations for Snm coefficients in
the case of a quartic map with z = 4 is listed
below

510

511

512

512

514

515

516

S20

521

522

+

+

+

+

+

+

+

+

+

L .-4,
2520 =

S2 21 ++
2523 *

2524 +

2525 *

3
6510

0 ;

S ::: °3 30 0 ,
3s3l + 4s4O = 0 i

3S34+4S43+5S52+6S6l+7S70 =

0 I
2

l8S%O s + 28s S = o ;2 2  2
18 (S10 S12 + 510511) + 28 (S10 S21

ll 2o 10

2

+ 2 s2Oslls1O)+ 66 530510 = o ;



+

+

+

+

+

+

+

+

+

+

+

+

+

+

:72:2 3
s5 (5 510 513 * 5 510 11 512*511)

25 (2 510520512 * 520521 * 2 5215105112 2
522510) * 55 (510531 * 2 530510511)

2 2 2
520 * 15 (510 514 * 2 510511512 * 510512

2
sllslz) + 28 (2 s2OslOsl3 + 2 s2Os1lsl2

2

2 521510512 * 520511 * 2 522510511

s s2 ) + 66 (2s s s + s s2 + 2s s s23 10 31 10 11 30 11 30 10 122 2
532510 ) * 125 (2 540510511 * 541510)

2

190 ssoslo = 0 ,2 2
521 * 15 (510 515 * 2 510511514 * 511513

2

2 510 512513 * 511512 ) * 25 (2 520510514
2

2 520511513 * 520512 * 2 521510513 * 25215115122 2
2 522510512 * 522511 * 2 523510511* 524510)

66 (2 530510513 * 2 530511512 * 2 531510512

s s 2 2 s s s s s 2 ) 12 (s s231 11 * 32 10 11 * 33 10 * 5 40 11



530

531

532 3 2 3 3
s33+ 16 ($10313 + 3 slosllslz + slosll ) + 55(522slO

534

540

:73:

s 2
2540510 12 * 2541510511 * 542510 )+552 2190 (2 530810511 51 10) + 276360510 = 0 ;

4

3 S3 _16 S10 511 + 56 S20 10 = 0 ,

+4(4S3S 652 4 210 12 * 10 511) * 55 (3 520510 $113 3S __ O
2 2

5 520510512 * 5 520510511 + 3 $21511)

S3 2 _ ) S3 _220 (s31 lo + 3 s30 slo sll + 560340 10 _ 0 ,3 2 2
4(4 slo $14 +12 s10 sll s13 + 12slOS11 s126 52 2 s4 ) 210 512 * 11 * 55 (5 520510 5132 2 » 3 .
3 522510 511 + 3 531510 sll + 530510)­2 3 3
220 (3 540510 511 * 541 510 ) + 560 S50 510

2
12 S20 S10 = Q 3

5
S10 = O '
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s41 + 5 slosll + 70 szoslo = 0 ;4 3 2 3
542 * 5 (510512 * 2 510 511) * 7° (4 5205105114 4 _+ s2lslO) + 495 saoslo = 0 ,4 3 2 3
543 * 5 (510513 * 4 510511512 * 2 510511)3 2 2 3s* 7° (4 520 10512 * 5 520510511 * 4 5215105114 3 4

* 522510’ * 495 (4 530510511 + 531510 )
4

+ 1820 540519 = Q 3

s50 = O ;
54 5 5

s52 + 56 (5 slosllszo + 521510 ) + 792 s3OslO = 0 ,

s60 = 0 ;
6= O  000

The values of the Snm coefficients calculated
using the above equations are given in Table 3-III.
Using these, the equation for a (2.31) with terms
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upto l/a2 is obtained:

a5 + O.375a4 + 0.0625 Q3 - 3.91796e7s a2

- 3.s13o46a75 a + 0.5644s3125 = Q ... (3.11)

This equation gives only one real and positive
solution greater than one ie.l.69078lO26. This is
in good agreement with the numerical value of a for
z = 4. viz. 1.69 [61].

The universal function g(x) is,

g(x) = 1 - 1.s93139aoo X4 + o.1932o775 X8

+ o.1371767s2 X12 - o.o3o593s23 x16

+ o.oo179343o346 X10 ... ... (3.12)

The elements of the D matrix in the equation for
5 in (2.36) are obtained in this case as,

511 S12 513 5141) =- -445 +—'"+-""+-"+'_"ll a a [ lo a a2 a3 a4
+_§l-_§_+Sl___§_]_8a3[S2O+§_2_'1‘.+.§_2_2.+.§_2_§.G6 (I (I2 (I3(I5 \S S S S S
+_%‘l+_2.§.]..12¢2[s +._3._1.+_22.+_2_3.4 5 30 2 3Q a a a a

534 541 §A2_ §A3___. _ 16 5 + ___ + + - 2O[S+ a4 J G ( 40 a a2 a3 50
__-1 --_ 0 --—-—— -Z—--1I­

S 28 S
+ 551 + S52 ] _ 24 (56 + 61) _ 10 ;a a2 a a Q2



(I

(1

:77:

0
P

0
,

D14 5 '5 ‘
23 2 510511 1 2

D21 —- 12a [S10 + a + -———a2 (28 S 2 + 511)-5- __—___ 101
+

+

+

+

+

+

+

+

+

+

+

l s i_ s
Z5 (2 510513 + 2 511 12) * a4 (2 510 14

2 511513 + 552 ) + 5&5 (2 510515 5 2 511514

2 512513)] ' 56 “2 [520510 + é (520511

510521) * £5 (512520 + 521511 * 522510)

$5 (520513 * 521512 * 522511 + $23510)

fig (520514 * 521513 * 522512 * 523511
1

524510)] - 121“ [530510 * a (530511 * 53151c1 1
Z5 (530512 * 531511+ 532510) * Z5 (530513

531512 * 532511 * 533510)] " 240 [54°Sl°1 1
Z (540511 * 541510) * Z2 (540512 * 541511

- 380 s 1 s s +5 5542510)] -3- [550 10 * a ( 50 11 51 10)]
55? 560510 .

a2
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5 S S S3 Ll 12 20 21
= -8 (S10 + a + a2) — 8 (—E— + -25 )

12530 .
G2 ’

23 1 s s
= -3 (s O + -ii + —i%) ;5 a 212 3 3s s= - - 5 5 - 12 a2 [s + T 19 llQ2 20 10 10 a1 2 2 1 2

+ ___ (3 $10 s12 + 3 $10511) + _§_(3 5105132a G
6 s s s + S3 ) 1- (3 s4 S* 10 11 12 11 * Q4 10 142 2

+ 5 510511513 * 5 511512 + 5 510512 )1
2 1 s s s + s s2' 155“ [520510 * E (2 20 10 11 21 10)

2

1 £5 (2s2OslOs12 + szosll + 2 s2lS1O5l1G 2 1 2 s s s+ 522510) + "'5 (2 520510513 + 20 11 12G 2 2
+ 2 521510512 + $21511 + 2 S22SlOSll+ S23512 1 2
- 55° [530510 * Q (2 530510511 * 531510 11 2
+ -5 (253Q510512 * 530511 + 2 531510511Q 2 1630 2 1
+ 532510)] ' ';“[540510 * Q (2 5405105112 3420 2 _
+ 541510 )] - —;§— 550510 ,

2510 2 510511 56 .
= - 18 ( -2- + a2) ' EQ 520510 '- 12 s +5ll +512 ­

D24 — - ( 10 a5 a2 ) 1
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2

510 1 2519 511 _Q (1
s

65 ( Sf9 + 2519 114) ;a a2
4 45i05lL 1 (453 s 6s2 524“ [510 + a + Z5 10 12 + 10 11)1 3 2 S S3

'5 (4 510513 + 12 510511 12 * 4 S10 11)]
CI 3 1 2 3

280 [szoslo + 3 (3 szoslosll + 521510)1 2 2 2
"§4(3 520510512 * 3 520510511 * 3 521510511
Cl

1980 3 1 2
a [$30510 + E (3S3()SlQSl1

3
522510)] '

72803 s s3 ­
s31s1O]] - -35- 40 10 »

3
l6S]Q
a2

3
56310--- :

a2
3g2 4 O00

Q2

coefficients given in Table 3.III are used to

D matrix as,
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6.48l6l599 —l.69078lO26 —l.69078lO26 -l.69078lO26

-O.67462368 2.509l70305 3.0l8340608 4.5275lO912
D=

-2.937ll342 -O.7965496l6 -l.95326ll65 -4.604ll5602

—l.l3037874 0.08745llO O.30607885 l.202452628‘an .iv

... (3.14)

This matrix has only one eigenvalue greater than
1 and it is the acceptable value of 6 which is 7.23ea2924.
The numerically obtained value is 7.284 [61].

The corresponding h function in this case reads
h(x) = 1 - 0.2290202 x4 - 0.382212 X8

+ 0.1646167 xl2+ ......... ... (3.15)
Universal constants of nonpolymonial maps

Numerically it has been shown that there exists a
spectrum of universality classes corresponding to all
possible values of z [51]. Thus one can even consider
nonpolynomial maps with fractional 2 values. For some
systems due to symmetry or other reasons, the quadratic
term may vanish and then maps with higher z values
arise as natural reductions. They exhibit interesting
phenomena near the onset of chaos [62]. Maps with
z = 1.2 to 1.4 do occur in chemical turbulence [63].
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Kawai and Tye consider maps whose extrema have a

logarithmic dependence on x [64]. One dimensional
maps of systems with finite degrees of freedom
sometimes show nonpolynomial behaviour, a well

known example being the Lorenz model [22]. These
maps are usually discontinuous at the critical
point and the existing method is to approximate
them by piecewise linear maps.

For fractional z values, the index m may take
fractional as well as integer values and the

evaluation of Snm becomes rather difficult. Further )
there can arise ambiguities in choosing a cut-off
as required by the perturbative procedure. Hence we
follow an alternative method that consists in expanding
z about 2, where z’is the integer nearest to the
fractional z value. Thus we write z = z§i<; where
O< |e| <O.5.

To illustrate the method, we take z'= 2. Writing

a = aO;.da where ao is the value of a for quadratic
maps, we find

Q2 2
do = l +-eln ao +'—5?-(lnao) + ... ...(3.l6)
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a2+€ = a:;[a§ - (2+e) ao dd] ... (3.17)

where terms containing higher powers Ofqg and da
have been neglected.

Equation (2.31) for z = 2 works out to be

1+a=|a|2(-é-+-$1-+3223-+...)  (3.18)

Using the expansions given in (3.16) and (3.l7),in
(3.18), the change in the a value for a given Q is,

da = [pb +-Q(pl+p2 ln ao) + G? (p3 + pl ln do
2

P
+ _52(1nag )1/[qo + e(q1 + <12 ln <10)2 2
+ Q (q3 + ql ln ao + g%(lnag )] ... (3.19)

Where the coefficients p and q are given in Table

3.IV. For g;= O, z = 2 and da = O ie. po = O in
(3.19). This gives ac = 2.5.

Using the same expansion procedure in equation (2.40)
we obtain
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Table 3.1V - The p and q coefficients in (3.19
4* j * *<~ 7-*1; i 4__ i _,~

21 Cl 7 5 \\ 2~(! 1 \
p = 0 - _ a -l+____ “ = q ­0 2 8 0 32aO  Q0 0

1p =;;_ O __ j 7 +* 1 A‘ q = ....1 4 l28ao 48 1 8a2 ‘ ‘ao 0 5 1 5

Z
8

21

__§___
32ag

l28a2
0

2 \“Q “Q 1 l 1 1 3_ ___ - __.— ___ —--— = _ __ >=>;+ —
pa "’ 8 32 96 32ao Q3 32 + 48ao 128a

32a,p2= "2-"*-e-+32% *°'2=°‘<>*§ ­' o
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25 = ao +<;al +532 + da [bo +q:_bl +g_ b2]

+ [CO +-€(¢l + ci ln ao) + Q? (c2 + Cé ln ao, 2
+ c2Klna0)) + da (do +-e(d1 + df ln ao)

+ 2 (d + d Iln Q + a"1na)2))] é (3 20)€ 2 2 O 2  000 0
The coefficients ao, al, ... are given in Table 3.V.
For €;= 0 and da = o, the value of 5° is given by

0 - 2 o ' o 2ao ° ° ° 0l

QR)
O \/

N1

\--J

+»4 + —- ... (3.21)
For ao = 2.5, we get 80 = 4.eeo41s379.

The values of a and 5 for different values of
are given in Tables 3.VI and 3.VII. We find the values
are sufficiently accurate for small values of‘; . The
error in 5 is more due to the accumulation of errors

from ao, 60 and da.
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Table 3.VI - Values of a for different values

1*.»
of Q*:L I ,, ——.L~ ~ ~ L| 1z ‘ €_ ‘ a P z M Q a\

2.01
2.02
2.03
2.04
2.05
2.06
2.07
2.08
2.09
2.1
2.2
2.3
2.4
2.5

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.30
0.40
0.50

2.4s972s63
2.4796ss10¢
2.469s7213
2.4602746s,
2.4soaa977&
2.4417117a
2.43273s14=
2.4239s44e4
2.41s36454'
2.4oe96o31
2.3321209s¢
2.2712vso1¢
2.2213lO78§

2.179ss4o3

1.99
1.98
1.97
1.96
1.95
1.94
1.93
1.92
1.91
1.90
1.80
1.70
1.40
1.50

-0.01
-0.02
-0~03
-0.04
-0.05
-0.06
-0.07
-0.08
-0.09
-0.10
-0.20
-0.30
-0.40
-0.50

2.51050864
2.52126l23
2.53226461
2.54352586
2.55505228
2.5668513?
2.57893088
2.5912988O
2.60396334
2.61693298
2.76546462
2.9559044l
3.20158779
3.51838508\ \ w 7‘ \ \1 7 4
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Table 3.v11 - Values of 6 for different

___ , _ ;{ ,

values of Q

Z. 5 8 .1. ~.
2.011

2.021

2.o3Q

2.04j
2.05.
2.06‘

2.074
2.08;
2.09;

2.1 A
2.2 ‘

M

2C3 1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
0.10

0.20

0.30

4.675260l70

4.6s9s11193;
4.7o4o476s4

4.71795o242

4.723840994

4.744680047=

4.7s747s77aq
4.7698753971

4.781858018

4.7934l3203‘

4.8829l8566

4.917969637b

_ __ .,~: *8; - *- ~ 1 *
1.99

1.98

1.97

1.96

1.95

1.94

1.93

1.92

1.99

1.90

1.80

1.70

-0.01 4.e4s299o9s
-0.02,14.629933778§
-0.03?74.6l434967

I

-0.04‘ 4.598569856‘

-0.05 4.582625646;1 » ‘
-0.06 14.566548998<

-0.07 14.sso374359

-o.osA 4.s3413a79
-0.09f 4.5l7882072
-0.10. 4.501647019

-0.20 4.352394078
-0.301 4.28030l067

1

_* 4,_ . ' ""_ *_;]‘: _ _. _ 1 —.— ——— - .2--|



: 88 :

Comments and discussion

The perturbative expansion procedure discussed
in this chapter and the preceeding one has
certain advantages over existing methods of
evaluating universal parameters. Although
some amount of computation cannot be avoided in
the final steps, the method is an analytic
procedure. This approach is algebraically much
simple even when z is large. Thus for the
quartic map, we note that the 6 values we obtained
for the three successive approximations of [h]
are, 6.757592744, 7.4853777l and 7.23682924, the
last value being the closest to the numerically
computed one. It would be interesting to compare
this behaviour with that found in an eigenvalue
matching RG calculation [65], where in the
values 9.31426, 8.08956, and 6.99948 are obtained
corresponding to l-2 cycles, l-4 cycles and 2-4
cycles renormalisation. We find that the pertur­
bative method yields the best value in a
sufficiently small number of steps.



FRACTAL DIMENSIONS OF THE
FEIGENBAUM ATTRACTOR

For one dimensional maps of the form considered
in the previous chapters, the period doubling
cascade accumulates atlkw, where the system
possesses a 2“ orbit. The associated universal
behaviour is characterised by the function g(x)
that satisfies (2.13). The iterates of g(x)
form a nearly self-similar Cantor set, called
the Feigenbaum attractor. The nature of the self­
similarity of such an attractor for one hump maps
was studied in detail by Hu [66]. He derives
analytic approximations for the first three

dimensions Do, D1 and D2. But in the actual
calculations, an approximate g(x) is used. We
discuss the analytic expressions obtained using
the g(x) obtained by solving (2.13) by the
perturbative scheme and given in (2.32). The

generalised dimensions Dq for quadratic maps
have been studied in detail by Jensen et al [67],

and the Do and D1 for attractors obtained by
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period multiplications other than period doublings
were calculated by Chang and McCown [68].

Self-similarity of the Feigenbaum
attractor

The attractor consists of a set of points (xi)k
generated by the map

x = g(x ) , ... (4.1)1+1 1

Starting from xo = o. This set consists of two
subsets, the even subset (xi):ven and the odd
subset (xi)§dd

(X  =  U  ¢.oi 1 even odd
with K k

(xi)eVen = (Xi, 1 = 2,4,... 2 ) ... (4‘3)
and k _ k

()(i)odd = (Xi, 1 = 1,395,». 2 "‘-1) ...
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Thus for k = 1,2,3 ... the set is shown in the
figure

*2 *11 l~ , k=1-l/a O 1
X2 *4 X3 X1c— I Z5 t ‘_
X2 X6 X8 X4 X3 X5 X7 X1-ti» |..___L___.¢ H: L__; k=3

From the normalisation condition g(o) = 1 and
from (2.13) we find,

.... 0 —-_-1; ° -- 1 Q .... 1xl _ 1 , x2 - a , x3 - g(E) , x4 - E2_ 1 . _ 1 1 . 1 1X5 "' g( E2) r X6 '- "' ‘J g( E ) 1 X7 =
_ l_X8 _ “ a3 0¢4 0.0 (4.5)

The whole set lies in the interval (-é , 1). It is
possible to rescale the set such that the new set
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K

(X3) lies in the interval (0,1); using the
transformation [66]I l l

xi = T111727 (Xi + E) ... (4.6)
It is proved in [66] that the even subset is

exactly similar to the whole set while the odd
subset is only approximately so and we have the
relation

k 1 k 1 1 k 1' v--—-' ‘ —- ‘ 000 407(x1)" q (x1)even L) a’ (x1)odd ( )

where a’ = - a g'(1). Each subset can be further
divided into two subsets similar to it and so on.
Thus the Feigenbaum attractor can be divided into

2m'l subsets with m z k, as sl, s2, ... s2m_l
each having the same structure but rescaled by a

different factor l/SJ, Here
15, = -V ,- s,es ... (4.8)

with the (xi) ordered such thatI I I I= 000 '-_-1 ‘pg 0
O xl < x2 < x3 < < X2m_l (4 9)
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1'-ii‘ P - 45 § “j§_‘S1 2 3 4
\--&1.__g ~__‘5152 T5 3? S-1; 56 F933

The iterates given in (4.5) after the rescaling
using equation (4.6) and the ordering mentioned in
(4.9) becomes 1 I 1 1

Q)-'
Q-I
~00

I

X1 =0; X2’:-Q ; X3 —(I'-I-13  +ax0:=1   (4.10)
The universal function g(x) is obtained by

solving (2.13). This has been done in Chapter 2 using
the perturbative expansion method. Using the first
few coefficients Snm given in (2.37) in the expression
for g(x) in (2.32), we find the universal function for
any general z in the form,
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gm = 1 - Ian’ [-5 + 1%‘-§-11.1’z a
Q2 _1 22+ ___(l__l|x| + 000 000
2z2a2

The behaviour of g(x) for some typical values of
z is shown in Fig. 4.1.

The Capacity dimension Do

Considering the first four iterates given in (4.10)
we find the set consists of two subsets, that are

scaled by S1 and S2 respectively. From (4.8) we get

_.____l__ _S1 - xé _ xf - a ... (4.12)
and

1

S2 = X$—Xé

,_ (H é)   (4.13)
(1-9( %L-))

If it takes N(€l) steps of width €_ to cover the
whole set, then

N (<-1) = N(sle) + N(s2Q)  (4.14)
For small Q ,N  @<  000
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Fig. 4.1 - The universal function g(x) computed
using (4.11) for a) z=l.2, b) z=2,
C) z=5, d) z=lO
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from the definition Do given in (1.44). Substituting
(4.15) in (4.14)

-130 --Do -D0
G; = (Sig) + (S2Q)D Die 1 = S1 0+ 52 O ... (4.16)

If we consider the set after m iterations, there will
be R = 2m-1 subsets and then (4.16) can be generalised
to [66]' :

R -DO.2  = 1 000J=l

As a first approximation, we use (4.16) to derive an

expression for Do. Substituting for S1 and S2 from
(4.12) and (4.13)

1 D

(é )D0 + [ l—g£E) O = 1 ... (4.18)1 + ­a

From (2.39) we have

lalz ( 1) -1....__.__ 1- ._.iI'._._  _% + 1 " za f 22a ] (4 19)
Using (4.11)
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__1_ _ L g-1) (-1)
9(a) _ 1 _ [Za + Z2a2] + 5_§EI§;2- ... (4.20)

Then (4.18) can be simplified as,

(2-1) D°
_i__ + [1 + zza] = 1 ... (4.21)

Da O “Z Do

This is a transcendental equation for Do. For a given
z, a is computed using (4.19) and (4.21) is solved by
the successive bisection method [80] to get DO. The
results are given in Table 4.1. The variation of Do
with z is given in Fig. 4.2. The numerical values for
z = 2,3,4 and 5 [66] are also shown for comparison.
Our calculations give Do = 0.5366545 for z = 2, very
close to the numerical value 0.538 [67].

We find that the expression (4.18) has been recently
derived by Bhattacharjee [69]. He derives an inter­
pglatign fgrmula for DO. The values of DO calculated
using his equation do not agree with our computed
values for higher values of z.

The information dimension D1

Using similar scaling arguments, we derive an

expression for D1. The information entropy defined
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Table 4.1 - The values of the capacity
dimension Do for different
z values. Available numeri­
cal values are also given [66].

) 77'  7 T D 1 1 _ , E .111. _z 1 a 1 0 A‘ 0
'(computed) (numerical)1 _ _ _ _

1 1.5
, 2.0 ‘ 2.517021?

‘ 5.5

‘ 8.0

1* M Z 1_ i_?9 4__1[ { 5 L
I

1.1 i§7.978673
1.2 A 5.3903121

.;3.405767

2.5 1 2.149665‘1 ‘ 13.0 1.9403931
3.5 , 1.802739400 ‘A
5.0 Y 1.571511“

* 1.5242241 1
6.0 S 1.485068
6.5 I 1.4520413
7.0 , 1.423759\

1 1.3777349
8.5 1 1.358715
9.0 , 1.341753
9.5 ; 1.3265201

10.0 L 1.312754»
100.0 1.047940!

1

0.3185205
‘0.3766027
10.4653759
10.5366545

6.5774682
0.6050853
0.6253683
0.6410400
0.6535812
0.6638768
0.6725070
0.6798533
0.6861959
0.6917333
0.6966110
0.7009468
0.7048263
0.7083248
0.7114913
0.7143796
0.7759078

1
1 1

~ 0.538 3 0.01
1

1 i

M 0.601 3 0.01

§ 0.640
1

3 0.09

I 0.661 1 0.087 1 1\ 1
1

1‘ 11 1
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Fig. 4.2 - The values of the capacity dimension D
calculated using (4.21) for different
z values. The triangles indicate the
numerical values [66].
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in (1.45) can be expressed as the sum of the contri­

butions from the subsets S1 and S2 ie.

I(e) =Il(e.) +12(<;) ...(4.22)

If the probability for the iterates to be in S1
is pl and that to be in S2 is p2 we have pl+p2 = 1.
Taking N (£5) to be the number of steps of widthgto
cover the whole set, we require the same number to

cover the subset S1 at resolution '€/S1. Thus [31],

L
P1

1

'55

I1 (<5) = plln

I2 (Q) = P21"

Then (4.22) gives,

l
I (Q) =P1l" pl

l
+ p2ln gg + pl I (G31)

+ pl I (Q51) ...(4.23)

+ p2 I (Q52) ...(4.24)

+ D2 1 (e52) ...<4.25)
For small<g, we have from (1.47)

I (€I)oQ Dlln (g) ...(4.26)
Then (4.25) can be written as,1- l 1 1D — = _, l _

lln (€) pllfi pl+P2 n p2 +plDlln (€§I)
1+ p2D3_ln(‘§"55) ...(4.2

M
\-..4
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Since pl and p2 are equal in the present context,

p =p =2‘.l 2 2
Thus (4.27) gives,1 1 1 l

D111‘) (€) = 1112+ :2‘ D1 '_ln('é'§1‘) + ln  ...(4.28)
2ln 2

ie. D1 = -——————- ...(4.29)
ln(S1S2)

In general if we are considering R subsets we get, [66]

M21133
F-' 1-"

T:
.w

D1 = ’; ooo(4030)
n Sj

i=1

Using (4.12), (4.13), (4.19) and (4.20) in (4.29) and
simplifying,

2 ln 2
D1 = “F“‘”**T*Te=e o ~" ~* 4 ,,,(4,31)- )

(z+1) lna - ln[l+ £52;-]

Thus D1 can be computed for a given z. For z = 2,
the value is 0.5183, while the numerical value is

0.5171. The variation of D1 with z is shown in Fig.4.3
while the computed values are given in Table 4.II. The
computed values given in [66] are also plotted in
Fig. 4.3 for comparison.



: 102

Table 4.11 - The values of the information
dimensions D1 calculated using
(4.31). Available numerical
values are included for

1}

i

1»

\

7 I

I

I r

4

‘ \

7

I

\

r

4

]\
I

1.

H

M

1;
i

1 r

z 1 1 7
‘ ,(computed values); (numerical values)

1.1
1.2
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
100.0

0.3182830
0.3756095
0.4596621
0.5183313
0.5440816
0.5560675
0.5609948
0.5619522
0.5605657
0.5577611
0.5540956
0.5499165
0.5454470
0.5408324
0.5361673
0.5315165
0.5269203
0.5224089
0.5179980
0.5136993
0.3192317

0.517

0.557

0.556

0.558

i
i
i

i.

comparison [66].
710*‘ 7011979 9 D1 9 9

Y’ 2 _1-~_@,. ml 2 W» 1 .~e~.. _.a 2 _ 1

0.08

0.01

0.04

0.02

J

I
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ay
\

P 1 1 L 1 L1 3 5 7 9
Z——>

4.3 - The information dimension D1 vs z as
given by (4.31). The available
numerical values are shown by triangles
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The correlation dimension D2

The generalised dimensions Dq, other than Do and

D1 can be computed by defining the partition
function discussed in Chapter 1. From (1.52) we
have the partition function

q q
F = -___pi +  ...(4.32)£1 42

Equation (l-53) gives

D = rc o0o(4o33)q (Q-1)
It is clear from (4.8) that

_ 1 and = _l_£1 _ 51 ‘£2 52
and in this case pl = p2 = % . Thus (4.32) can
be modified as,

1 'CS1 +  =  000
If we consider in general R subsets for greater
accuracy, we write

R C q-R_Xl Sj - ...(4.35)J:

The correlation dimension is given by q = 2 and so
(4.33) gives'c = D2. Thus (4.34) implies
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D2 D2S1 +  = 4 000
The explicit expressions for S1 and S2 given in
(4.12) and (4.13) modify (4.36) as

Ql 2
“D2 + (l* Hi = 4  (4.37)

1 -9(3)

This can be simplified further using (4.19) and
(4.20) to yield

D2D za  1 a ;, e__ =4 000
(z—l) D2[1+-—--]
22a

This equation can be solved by the $U¢¢9$$iVe

bisection method to get D2 for different values of
z. The results are tabulated in Table 4.III. The

D2 vs z relationship is plotted in Fig. 4.4.

Discussion

It is found that the variation with z is signifi­
cantly different for the three dimensions studied
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The values of the correlation
dimension D2 for different values
of z. The numerical values
available in [66] are also
given.

1 Z *F5 2  222 6 W“ D2
, A (computed values): (numerical

~-2-as #
‘ P

1

values)»1-. 2
1* 1.1 1

Q 1.5 12.0
K 2.5 1w H. VM 3.0 1y .' 3.5 q
1 4.0 ”
1 4.5 1
V SOQ .
Q 5.5 x6.0

605 ‘
7 7.0 1
Y 7.5 1
7 800 7
‘f 8059.0
; 9.5
H 10.0 A
M16000

0.3180460
0.3746270
0.4542183
0.5022655
0.5172233
0.5197161
0.5166886
0.5110947
0.5043395
0.4971327
0.4898491
0.4826857
0.4757461
0.4690801
0.4627077
0.4566326
0.4508471
0.4453420
0.4401018
0.4351122
0.2548094

0.501

0.509

0.498

0.483

i
i,

i,

42

7 72*?
1

4

0.02 A

0.02

0.05 »

0.03

;: _ T _ _ _ — _ ____~— :~,— g ~ : __- ~ e '_'T—f_;+ifT * J
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0.7 —
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Fig. 4.4 - The variation of the correlation
dimension as a function of z expressed
in (4.38). The numerical values [66]
are indicated by triangles.
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here, Thus D0 increases with z and shows almost
saturation for very large z values, while D1
increases first and then shows a dip at larger

values of z. D2 also decreases, as z increases
beyond a certain value. Thus the asymptotic
values of the three dimensions are well separated
while for small z values, they are very close.

For each z value we have DO>Dl>D2. The available
numerical values agree well with the values
computed here.

Our method has the advantage that an analytic
g(x) is used and the accuracy of the values can be
improved by including more terms in g(x). The
dimensions for any z, including fractions, can be
calculated in a straight-forward manner.



ONSET OF CHAOS IN DISSIPATIVE SYSTEMS

Methods for establishing chaos in dissipative
systems have special significance since such
systems, unlike conservative systems, need not
necessarily show stochastic behaviour. There­
fore it is important to predict under what
conditions chaos first appears in nonintegrable
systems with dissipative perturbation. The
origin of chaos in such systems can be traced
to the motion of the system near its unperturbed
homoclinic orbit or separatrix. Melnikov's
method [70] introduces an integral function which
measures the separation between the perturbed
stable and unstable manifolds of a separatrix,
using calculations involving the unperturbed
orbits. If this function has a simple zero, then
the two manifolds intersect transversally. This
implies that the structure of a horseshoe is
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embedded in their neighbourhood [71]. Holmes and
Marsden developed this method for a two degree of

freedomliamiltonian system [1]. They further
extended it to higher dimensional systems where
Arnold diffusion occurs [72].

The Melnikov-Holmes method

We consider a two dimensional autonomous system

that has a single hyperbolic fixed point and is
perturbed by a periodic function of time. Such a
system is described by

i = fo (x) +<;fl (x,t) ... (5.1)
x

where x = ( l)€ZlR2 and*2

f = fol (xl'x2)) andO  (XlgX2)

f £11 (x1»X2't)d1 fl2 (XlaX2,t)

fo and fl are sufficiently smooth functions and
fl is T-periodic in t.

The unperturbed system corresponding to e=O
in (5.1), is hamiltonian and integrable so that
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a real valued function H exists and

6H OH
:2 3;; ’  =2 — 5'1‘ 000
The system is assumed to possess a hyperbolic
fixed point X0 and an integrable separatrix orbit
xo(t) =)<such that

Olim lim
t_Hm xo(t) = téwm x0(t) = xo  (5.3)

The stable and unstable branches xz(t) and x:(t)
join smoothly and in general, there is an elliptic
fixed point within the separatrix.

When the system is perturbed, the phase space
may be extended to three dimensions (x1,x2,t),
and we view the motion in a surface of section
t = constant (mod.T). The stable and unstable
orbits in the surface of section do not join
smoothly. For a dissipative perturbation, three
possibilities arise and these are indicated below
in diagramatic form:
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It is only in the last case that chaotic motion
appears. To obtain the conditions for the inter­
sections, we write the stable and unstable orbits
as,

><$'“(t,to> = ><o<t-to) +ax§'"(»¢ ,¢o)  (5.4)

where to is an arbitrary initial time, which fixes the
particular Poincare'section chosen. From equation
(5.1)

iO(t-to) = fo(xo(t-to)) ... (5.5)
The total time derivate of (5.4) is thus,

&$'“ = fO(xQ(t-10)) +-ek§'“ -.- (5-6)
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From (5.1),

is’u = f0(x) +<;fl(x,t)

= fo(xo(t—t0) + QX1(tyto) +e;fl(xo(t-to)

+ @x1(t-to,t)) ... (5.7)
The right hand side can be expanded to first order in
Q . Then

i$’u = fo(xo(t-to)) +q;J(xo)xi’u

+ E fl(x0(t-to),t) ... (5.8)

Comparing (5.8) with (5.5) we get [4],

ii’u = J(XO) Xi’u + fl(X0(t—tO),t) 000 (509)

Here J(x0) is the Jacobian matrix of fo evaluated at
xo(t-to). Thus

bfol Ofol
J (xo) =

bxol

2312
bxol

6X02

Ofo2

6x02

.. (5.10)

Equation (5.9) can be solved for x5 for t>t0 and
for xu fgr t<to with the condition that
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x5(t=»») = xu(t—5-w) = xp ... (5.11)

where Xp denotes the position of the hyperbolic
fixed point in the perturbed system.

The distance between the two solutions is,

d(t,to) = xi(z,to) - xT(t,tO) ... (5.12)

The Melnikov function M(t,to) is defined 85 thé
projection of d along a normal N to the unperturbed
orbit xo at t.

ie. M(t,tO) = N.d ... (5.13)

U
X

‘\ \ N
d

Xs
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From (5.5)

N = -f°2(x°)
fOl(xO)

Therefore (5.13) becomes

M(t'to)= fold2 ' fo2dl

= fokd ... (5.14)
where ;\ denotes the antisymmetric wedge product
defined by

I

x1'\x2 = xloX21 “ ‘ll X20

We write

M(t,tO)= M5 - Mu ... (5.15)
where

M5'“(t-to) = fO,\x§’“ ... (5.16)
Ms = %oA xi + foo ii

= J(xo) ioA.xi + f0A ii

= J(xo) fo»~xi + fo»~J(xo) xi + foA fl

= Tr J(xO) fOA xi + foA fl ... (5.17)



: ll6 :

Since the unperturbed system is assumed to be
hamiltonian, Tr J = 0. This gives,

-s
M _ fOA fl

By integrating this, it can be shown that
%

M5(to) = -tf( foA\f1)dt ... (5.18)
O

Similarly for the uhstable orbit, we have
touM (to) - - I ( fo»\f2 at ... (5.19)

Combining (5.18) and (5.19), we get

M(to) = - f( f°A.f2 at ... (5.20)

The behaviour of M(tO) is crucial in determining the
possibility of chaotic motion near the separatrix.

If M(to) has a simple zero ie. E! + o and isbt0
independent of Q, then the local stable and unstable
manifolds intersect transversally [73]. This implies
the Poincare section has Smale-horseshoe chaos[74].

A Smale-horseshoe, shown in the figure, though not
an attractor, can influence the behaviour of orbits
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which pass close to it. These orbits therefore display
an extremely sensitive dependence on initial conditions
and exhibit a chaotic transient before stabilising to
orbits of all periods, including a strange attractor.
Thus Melnikov's method predicts the lowest boundary of
chaotic threshold [75].

The boundary of the horseshoe region is given by, 2
M(to) = o and QM— = O while Q—M— + o. Then ifot 2o bto
2!‘ + Q, then )\B is the bifurcation value atbk >‘B

which quadratic homoclinic tangencies occur.

In general one cannot always get explicit

9Xpre8$i0n$ exactly for Xo(t). So a numerical calcula­
tion of xO(t) is inevitable [76]. We note that the
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Melnikov method is the only analytic method available
for predicting the appearence of chaos in a dynamical
system. The method has been extended to predict the
appearence of a heteroclinic tangency by Ling [77]
and generalised to deal with regions of chaos in the
parameter space of quasiperiodically forced two degree
of freedom dissipative systems by Wiggins [78].

Transition to chaos in a driven pendulum
with nonlinear dissipation

A driven pendulum with dissipation is known to have
phase locked states as well as chaotic behaviour [79].
If the pendulum is moving through an inhomogeneous

medium, the damping may be x-dependent. Here we

consider one such situation where the damping is
nonlinear and of the van der Pol type . The equation
of motion of such a pendulum is,

Y + sin x = A sin wt - Bk(x2-1) ... (5.21)

where A and w are the amplitude and frequency of the
driving term while B is the damping constant. In the
spirit of the previous section, this equation can be
written as,
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x = v

v = - sin x + e[B(l-x2)i + A sin wt] ... (5.22)

where e is a small parameter.

The Melnikov analysis described in 6§5.l is
used to analyse the onset of chaos in this pendulum.
The unperturbed system corresponding to e = 0 is
integrable and its hamiltonian is

2Ho =5’ -'  X 000
The unperturbed homoclinic orbits are given by [1]

xo(t) = 2 tan—1(sinh t) ... (5.24)

The Melnikov function M(t0) defined in (5.20), for
the system given in (5.22) is then,

Z

M(to) = - J‘ [5 {1-X3 (t-to)} vi (t-to)

+ A vO(t—to) sin wt] at ... (5.26)

Changing the variables to'c = t-to and using the
explicit forms for xo and vo from (5.24) and (5.25),
M(to) can be split into four integrals as



: 120 :

%

M(to) = - 45 f sech2 1: dc<==> 2
+ 168 f sech2't [tan-l(sinh-c)] dt

X

- 2A cos wto f sech C sin w‘c dc

+ 2A sin w to f sech t cos wt dt ... (5.27)

The first integral is easily evaluated while the third
vanishes and we get

2w 2 n
jb sechzt [tan'l(sinh t)] dc = E — 4 ... (5.28)-®

j'sech't cos w't dc = n sech ( E; ) ... (5.29)

Using these in (5.27)

2
M(tO) = - (72-81: )5 + 21. A sech ( gi’ ) sin wto(5.3O)

We define a function R(w) as
2­R(w) = (8n72)¢0$h ( E2 ) ... (5.31)2n 2

Thus for i >R(w), equation (5.30) shows that M(t0)
oscillates between positive and negative values.
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This indicates transverse intersections of the
stable and unstable manifolds resulting in local
stochasticity. Fig. 5.1 shows the variation of
R(w) with w. For values of A and B lying above
the curve, the system can exhibit chaotic
behaviour.

It is clear from (5.30) that at A = AC given
DY

(8n2-72) KwAc = R(w)B = ---—--—— COSh  ... (5.32)2n

M(to,Ac) has a quadratic zero, in the surface of
section.

oM(to,Ac)ie. M(t0,AA) = ... ~»~-: = 0“ oto
while 95 1 + o ... (5.33)oA Ac

Then AC corresponds to a bifurcation value at which
homoclinic tangency occurs. It has been shown by
Holmes that the homoclinic bifurcation is the limit
of a countable sequence of subharmonic bifurcations
that take place inside the separatrix [74].
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Fig, 5,1 _ The threshold for chaos in the parameter

plane as predicted by the Melnikov-Holmes
criterion (5.31). Chaos can exist for
parameter values corresponding to points
above the curve.
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However it is found that in many situations,
the numerically observed threshold lies above the
Melnikov prediction [75]. This is because, the
Melnikov criterion does not imply that the traje­
ctories will be asymptotically chaotic. In some
cases there can be transient chaos followed by
asymptotically periodic trajectories [80]. So we
carried out a detailed numerical analysis of the
above system.

Numerical Analysis

To investigate the occurence of chaotic attractors
in the van der Pol pendulum, we have to rely heavily
on numerical studies involving phase portraits,
Poincare'maps, power spectra and computation of
maximum Lyapunov exponent. We carried out a

numerical integration of (5.22) using fourth order
Runge-Kutta-Gills Scheme [81]. The integration was
carried out in general at time steps of 1__th of a

100

drive period and the trajectory watched for 20 to
30 periods. There are three control parameters for
the problem, namely the damping constant B, the
driving frequency w and the driving amplitude A.
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In our studies we kept B mostly at 0.2. A plot of
the output values of x and i gives the phase
portraits corresponding to the Chosen values of A,w
and B. To observe the Poincare'map, we plot the
outputs obtained after an interval of time equal to
the period of the driving force.

To explore the chaotic region in its complexity
and variety, we analysed the power spectra using the
Fast Fourier Transform (FFT) technique [82]. These
help to distinguish chaotic bands from periodic
orbits and observe the fine structure of periodic
orbits embedded in bands. In the algorithm for PFT

we write the xk values which are the outputs of the
numerical integration of (5.22) as

N-1 -2nikQ/Nxk = 12 at’ e ... (5.34)=o

There is a lot of redundancy involved in the
evaluation of (5.34) and FFT takes advantage of these
to reduce substantially the number of operations
required. To eliminate spurious frequency components,
a cosine bell or some other tapering function is
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applied to the output before FFT is applied [83].

The computation of the maximum Lyapunov exponent

omax can be used as a test for chaos. To compute
omax, we write (5.21) as an autonomous system of
first order differential equations as

*1 = *2

£2 = - sin xl + B (l-xi) x2 + A sin x3*3 = (J) 000
The variational system of equations for the tangent
vector w is given by

W1 = W2_ 2
wé = - (cos xl + 2B X2 xl) wl + B(l-xl) w2

+(A cos x3)w3 ... (5.36)
W3 =0

We take W3 = l and for an initial we and xo solve
the above two sets of equations. w is normalised to
a norm of unity every'c seconds [84,30]. Thus

dk = ||wk_1<<=> 1|

with wk(O) = |Iwk-1¢C)|l ... (5.31)
dk
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Then from (1.26),
nlim 1 EO = '-"—'-'   000IDGX n_§°° fit J:-1

A positive value for omax is the signature of chaos.

The prominent features of our numerical studies
are summarised below.

Chaoticattractor at low frequencies

Because of the nonlinear dissipative term, the system
in (5.22) would always enter into a limit cycle
behaviour, which makes it difficult to trace the
region near the separatrix. For small values of w,

the phase portraits below the Melnikov threshold AC,
show periodic orbits near the separatrix. For w=0.04

and B = 0.2, Ac = 0.22. Fig. 5.2 shows the phase
portrait for A = 0.1. The Poincare'map corresponding
to this value reveals a periodic 5 cycle. The
system becomes chaotic for A>0.25. The chaotic
attractor for A = 0.6 and the corresponding FFT are

given in Fig. 5.3. We computed omax at this frequency
and found it to be equal to -2.5xl0“2 for A = 0.1,
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while it is 9.8xl0'2 for A = 0.6. This confirms the
existence of a chaotic attractor for A = 0.6.
Qualitatively the same type of behaviour exists for
frequencies upto w = 0.06.

fiend fermeiien and periQd—dOubliqql$equen¢e
insidegthe;band

For values of w lying in the range 0.08<w<l, the
system shows a tendency towards the formation of a
thick or band-like limit cycle. For a pendulum with
a dissipation of the usual type ie. Bx, the limit
cycle forms the stable attractor of the system.
However, here because the dissipation has a quadratic
dependence on x, the system has to adjust continuously
as x changes along the trajectory and this repeated
attempt to approach a limit cycle leads to a thick
band like limit cycle. We observe that this occurs
below the Melnikov criterion, but near escape from
the potential well. Thus for w = 0.4, the band exists
for A lying between 0.1 to 0.28. Fig. 5.4 shows such
a band for A = 0.2.

The FFT analysis for these values reveals some
hidden periodicity inside the band. For A<0.2, FFT
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Fig. 5.4 - The band-like limit cycle in the phase space
for w = 0.4, B = 0.2 and A = 0.2.
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shows only four fundamental modes while at A = 0.21,

a period-doubling takes place producing peaks on
either side of the original modes. The next two
period doublings occur at A = 0.217 and 0.218.
This sequence of periodedoublings are clear from the
FFT given in Fig. 5.5. These, we presume, are
subharmonic bifurcations that take place inside the
separatrix. The sequence is found to accumulate
near A¢=O.27. This accumulation point should correspond
to the homoclinic bifurcation value. Using (5.32)

this works out to be AC¢=O.2667, very close to the
value obtained using the FFT analysis.

For slightly higher values of A, ie A>O.27, the
trajectory extends from -n to +n spending most of the
time near i,n. When A increases beyond 0.29, the
system either jumps to a nearby fixed point or
diverges to w. This type of behaviour usually coincides
with a homoclinic tangency of the separatrix [85].

The maximum Lyapunov exponent Computed for

different values of A corresponding to the band are
given in Table 5.1. We find that omax is small but
negative for low values of A. However just before
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5.5.a. - The FFT of the band shown in
Fig. 5.4 for B = 0.2,
w = 0.4 and A = 0.2, revealingfour fundamental modes.
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fundamental modes, indicate a period­
doubling has taken place inside the
band
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The maximum Lyapunov exponent

computed for w = 0.4, B = O

4

A O’
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escape from the well, omax acquires small positive
values.

For higher values of w, the same type of
behaviour is generally observed. However at w = l,
the band which exists for A<O.3, splits into periodic
trajectories. Thus at A = 0.3, we observe
asymptotically a periodic 4 cycle, as given in
Pig. 5.6. When A is increased further, the driving
force predominates and the system tends to a one­
cycle having the same periodicity as the external
force. However we observe some transient chaos in

this region before the trajectory settles down to
the one-cycle (Fig. 5.7).

Instability of the centre

For the unperturbed system, the centre (0,0) is an
elliptic fixed point. But for sufficiently large
values of the perturbation, the centre is unstable
and trajectories starting near it, spiral away. We
find that the stability of the centre is determined
by the parameter B and that the stability is lost
through a bifurcation. Fig. 5.8 shows a two-cycle
at B = 0.0005.
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Effect of external noise

External noise is an unavoidable factor in actual
experiments. So a full understanding of a
physical system necessitates the inclusion of
external noise in the theory. Though chaotic
behaviour is possible and quite common in non­
linear dynamical systems without external noise,
the response of the system to noise is interesting
especially near bifurcation points. In general’
noise plays a rather constructive role in the
theory of chaotic phenomena [86]. In the case of
one dimensional maps, it is found that external
noise will wash out all details in higher order
bifurcation sequences [87]. This results in a
truncation of the infinite sequence and chaos

sets in earlier at )\m(@)< ?\m(o), where 6
is the noise strength. Thus noise acts as a
disordering field here [88]. There are
situations where noise destabilises the chaos
and produces some kind of order. The transition
to order is characterised by a sharpening of the
power spectrum, abrupt decrease of entropy and
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appearence of negative Lyapunov exponent etc [89].

It is of considerable interest to study how
the presence of noisy perturbations can affect the
variety of dynamical behaviour observed in the

system, discussed in §5.3. Noise is usually
modelled by the addition of a random term to the
deterministic dynamical equations. The equations­
of motion (5.22) modify as

i = v

v = - sin x + [B(l-x2)k + A sin wt]+ F (t) ... (5.39)
We take r (t) to be amplitude limited or rectangular

noise with amplitude!"o. This corresponds to finite
power fluctuations in an actual system.

For small values of w, we find noise levels
upto 0.0l have no significant effect on the

trajectories. But for r‘O::0.l, the onset of chaos
is earlier. For A = 0.6 we study the effect of
noise for various levels of noise amplitudes. The
number of frequencies N within a power range, is

plotted against the noise level[‘o in Fig. 5.9.
It is clear that noise reduces N considerably thus
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within a definite power
range is plotted against
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clear that N is reduced
considerably for non zero
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indicating a tendency towards order. This is also
evident from the peaking of the whole spectrum
about a definite frequency (Fig. 5.10). Such
noise-induced order was observed earlier by
Matsumoto and Tsuda [89].

The period-doubling inside the band takes place
earlier in the presence of noise. Thus when

Po = o.o1, eveh at A = 0.2, the FFT looks like
that at A = 0.218 withY;= 0. This is given ih
Fig. 5.11. At higher frequencies, the introduction
of noise clears away the transient chaos observed
earlier. So the periodic nature of the trajectory
is established quite early in time, whereas without
noise the periodicity is observed only asymptotically
(Fig. 5.12).

\

Thus we find external noise reduces the

randomness of the strange attractor at low frequen­
cies and speeds up the bifurcation sequence inside
the band while at higher frequencies, it wipes out
the transient chaos.



Log (Power)___%>

-182

: 150 :

j  ‘~ W /0
i J I 1 I‘ I J_.. ls pl

ii 0.070 0 ii 0.150 0.257 0.515
Frequency___>

5.ll.a. - The FFT in the presence of a
noise of amplitude F0: 0.01,
for w =0.4, {:3 =O.2 and
A = 0.2. This is to be
compared with the FFT given
in Fig. 5.5.0. with r"=0and A = 0.217. °



I

Power

L)
O‘
O
-J

;l5l:

Q ,
1'1  F
‘P

\‘D ‘
I

\

WW W 1 M““"\¢‘" A

5? ?

€¢--ii
, F i_==é_-=­5-”;__=€_;fi*:

““%E;-6

1¢?g%?

\ \
\

‘P

‘P_2;5~ l I I 1 j | 1 I 10.079 ' OJ58 0.237 0.316
Frequency___>

Fig. 5.ll.b. - The FFT with noise of amplitude
PO =0.0l at w =O.4, B =O.2
A T-0022.



: 152 :

I1 4} I ' +_J_

0 '.
.

.

Q

I

\\‘ .|"' "I':0 0'.. N .,.u R _i. \-, I
Q

(I

6

J

Figo  '­ 1.The phase portrait for w = 0.01.B = 0.2, A = 0.3 and F =
The periodic four cyclg is
established very soon in the
presence of noise while withoutnoise, the periodicity is evident
only asymptotically.



REFERENCES

[1]

[2]

[3]

[4]

[5]

[9]

[7]

[8]

[9]

10]

J Guckenheimer .. ‘Nonlinear oscillations,
and P J Holmes dynamical systems andbifurcations of vector

fields‘ (springer, Berlin,
1983).

N Minorsky .. ‘Nonlinear oscillations‘ —
(van Nostrand Co Inc.
New York 1969) 39o.

M V Berry .. in Topics in Nonlinear
Dynamics ed. S Jorna,
Am. Inst. Phys. Conf. Proc.
59 (1978) 15.

A J Lichtenberg .. ‘Regular and Stochastic
and M A Lieberman motion‘ (Springer, New York

1983).

J Ford .. in Fundamental Problems in
Statistical Mechanics‘
Vol. 3. ed. E G D Cohen
(North Holland, Amsterdam
1975) 215.

Gardner, .. Phys. Rev. Lett. 19 (1974)Greene, 1095.
Kruskal and
Miura

I'§L4(')
ZUZLO

M A Qlshanetzky .. Lett. Nuovo. Cimento 1g
and A N Perelomov (1976) 33.
R H G Helleman .. in Fundamental Problems in

Statistical Mechanics,
Vol. 5, ed. E G D Cohen
(North Holland, Amsterdam
19ao) 155.

M Henon .. Astron. J. Q9 (1964) 73.
and C Heiles

C Horton, .. ‘Longtime Predictions in
L Reichl and Dynamics‘ (John Wiley Pub.V Szebehely New York, 1982).
eds.



[ll]

l2

l3

l4

l5

[16]

17

[18]

l9

[29]

2l

22

: l54 :

C L Siegel
and J K Moser

G R Smith
and A N Kaufman

E Fermi

J Moser

V I Arnold

J Greene

V I Arnold

M A Lieberman
and A J Lichtenberg
H Froehling,
J D Crutchfield,
D Farmer,
N H Packard and
R Shaw

M J Feigenbaum

R May

E N Lorenz

CO

.0

O‘

.0

OI

OI

Lectures on Celestial
Mechanics (Springer
Heidelberg 1971).

Phys. Rev. Lett. §j
(1976) 1613.

Phys. Rev. 1; (1949)
1169.

Nachr. Akad. Wiss.
Gottingen Math. Phys.
51 (1962) 1.

Sov. Math. Dok. 2 (1961)
501, Q (1962) 136;
Russian Math. Surveys.
18 (1964) 86.
J. Math. Phys. gg (1979)1183. 1
Sov. Math. 061. Q (1964)
681.

Phys. Rev. 5; (1972)
1852.

Physica Q§_(1981) 605.

Los Alamos Science l
(1980) 4.

Nature 261 (1976) 459.

J. Atmos. Sci. ZQ (l963)
l3O.



: 155 ~

23] H Haken ..
[24]

25

26

27

28

[29]

[39]

31

32

33

34

O E Rossler

M Henon ..
M J Feigenbaum

Y Pomean
and P Manneville

H G Schuster

J P Eckmann

W H 5teeb
and J A Louw

J D Farmer
C

C.

O0

.0
8 Ott and J A Yorke

T C Halsey,
. H Jensen,
. P Kadanoff,

Procaccia and
I Shraiman

[IJ!—1l"‘Z

H G E Hentschel
and I Procaccia

A Arneodo,
G Grasseau and
E J Kostelich

O.

O.

Phys. Lett. A53 (1976)77. """
A57Phys. Lett. (1976)

397.

Comm. Math. Phys. QQ
(1976) 69.

J. Stat. Phys. 19 (1978)
25.

Comm. Math. Phys. Z5
(1980) 189.
‘Deterministic Chaos’
(Physik Verlag, Weinheim).
Rev. Mod. Phys. Q; (1981)O
‘Chaos and Quantum Chaos‘
(World Scientific,
Singapore 1986) 42.

Physica Q1 (1988) 153.

Phys. Rev. A33 (1986)
1141.

Phys1¢s_Q§ (1988) 436.

Phys. Lett. A124 (1987)
426.



35

36

37

38

39

4O

41

[42]

43

44

45

46

M R Guevara,
L Glass andA Shrier

H Hayashi,
S Ish'zuka,
K Hirakava

R Shaw

N Chomsky

B A Huberman
and T Hogg

J J Hopfield

K Tomita

K Tomita

M J Feigenbaum

A Libchaber
and J Maurer

M J Feigenbaum,
L P Kadanoff and
S J Shenker

G Benettin,
C Cercignani,
L Galgani and
A Giorgitti

: 156 :

CO

CO

OI

IO

O-O

Q0

Science 214 (1981)
1350.

Phys. Lett A98
(1983) 474.

Zeit. fur Nat. A36
(1981) 8o.

‘Reflections on
language (Pantheon
Books New York 1975)

Phys. Rev. Lett. Q2
(1984) 1048.

Proc. Natt. Acad.
Sci. 12 (1982) 2554;
81 (1984) 3088.

Pro . Theor. Phys.
19 (1984) 1.

Phys. Lett. Alll,
(1985) 152. "“"

J. Stat. Phys. 2;
(1979) 889.

J. Phys. (Paris)
Colloq. 51 c3 (1980)51.

Physica Q§(l982)
370.

Lett. Nuovo Cimento
g8 (1980) 1.



47

48

49

5O

51

52

53

[54]

55

56

57

58

P Cvitanovic
and J Myrheim

B Hu and
J Rudnick

M J Feigenbaum

S J Chang
and P R Fendley

B Hu and
I I Satija

B Hu and
J M Mao

R H G Helleman

R Delbourgo,
W Hart and
B G Kenney

157

IO

CO

‘O

O0

P van der Weele, ..J
H W Capel and
K Kluiving

V Singh

G A Baker Jr

R Delbourgo
and B G Kenny

OI

O0

Phys. Lett (1983)
329.

A94

Phys. Rev. (1986)
2453.

A34

Physica Q1 (1933) 16.

Phys. Rev. A33 (1936)
4092.

Phys. Lett (1983)
143C

A98

A25Phys. Rev. (1982)
3259.

in Proc. of the 93rd
E. Fermi Inst. School
of Physics on NonlinearAcoustics ed. D. Sette
(North Holland Amsterdam
1934).

Phys. Rev. A31 (1935)
514.

Phys. Lett. A119(1936) 15. """

Pramana (J. Phys) 24
(1935) 31.

‘Essentials of Pade
Approximants (Academic
Press, New 1975).

Phys. Rev. A33 (1936)
3292.



[59]

6O

61

62

63

64

65

66

67

68

69

[79]

[11]

] Y

: 158 '

S Fraser
and R Kapral

S Fraser,
E Celarier and
R Kapral

R V Mendes

I Procaccia,
S Thomae and
C Tresser

Kuramoto
and 5 Koga

H Kawai
and S H H Tye

P R Hauser,
E M P Curado and
C Tsallis
B Hu and
J M Mao

T C Halsey
and M H Jensen

S J Chang
and J Mc Cown

J K Bhattacharjee

V K Melnikov

S Smale

CO

O0

CO

O0

Q0

Phys. Rev. A25 (1982)
3223.

J. Stat. Phys. §§
(1988) 341.

Phys. Lett. A84
(1981) 1.

Phys. Rev. A35 (1987)
1884.

Phys. Lett. A92
(1982) 1.

Phys. Rev. A30 (1984)
2005.

Phys. Rev. A30 (1984)
ZQ74.

J. Phys. A20 (1987)
1809.

Physica 028(1988)112. “
Phys. Rev. A31 (1985)8791. ' '
Phys. Lett. A117
(1988) 889.

Trans. Moscow. Math.
Soc. 12 (1963) 1.

Bull. Amer. Math.
Soc. 1; (1967) 747.



[72]

[73]

74

75

76

77

78

[79]

[89]

81

: 159 :

P J Holmes ..
and J E Marsden

J E Marsden ..

B Greenspan ..
and P J Holmes

M Bartuccelli,
P L Christiansen,N F Pedersen and ..
M P Soerensen

F H Ling ..
and G W Bao

F H Ling ..
S Wiggins . .

D D'Humieres,
M R Beasley,B A Huberman, °'
and A Libchaber

R L Kautz ..
and R Monaco

E V
and

Krishnamoorthy ..
S K Sen

J. Math. Phys. ZQ
(1982) 669.

in ‘Chaos in Nonlinear
dynamical systems’ ed.
J. Chandra (Siam,
Philadelphia 1984) 19.

in ‘Nonlinear Dynamics
and Turbulence’ eds.
Barenblatt, G Iooss
and D D Joseph
(Pitman, London 1981)

Phys. Rev. 833 (1988)
4686.

Phys. Lett. (1987)
413.

A122

Phys. Lett. (1987)
447.

A119

Lett. A124 (1987)Phys.
138.

Phys. Rev. A26 (1982)
3483.

J. Appl. Phys. Q1 (1985)
875.

‘Computer-based Numerical
Algorithms‘ (AffiliatedEast-West Press Pvt. Ltd.
New Delhi 1978) 333.



82

83

[84]

85

[86]

87

88

89

90

E O Brigham

P W Milonni,M L Shih .
and J R Ackerhalt

A Wolf,
J B Swift,
H L Swinney and
J A Vastano

R H Abraham
and H B Stewart

J P
J D
B A

Crutchfield,
Farmer and
Huberman

G Mayerkress
and H Haken

J P Crutchfield
and B A Huberman

K Hatsumoto
and I Tsuda

A B Rechester
and R B White

' 160 :

IO

CO

CO

‘The Fast Fousier
Transform‘ (Prentice
Hall Inc. Englewood
Cliffs 1974)

‘Chaos in laser-matter
interactions‘ - (World
Scientific Pub. Co.
Pte. Ltd. Singapore
1987)

Physica 018 (1985) 285.

Physica, 021 (1986)
394.

Phys. Rep. 92 (1982)
45.

J. Stat. Phys. ZQ
(1981) 149.

Phys. Lett. A77 (1980)
407.

J. Stat. Phys. Q1 (1983)
87; 84 (1984) 111.

Phys. Rev. A27 (1983)1203. '


	STUDIES ON THE UNIVERSAL PARAMETERSANDONSET OF CHAOS IN DISSIPATIVE SYSTEMS
	C E R T I F I C A T E
	D E C L A R A T I O N
	ACKNOWLEDGEMENTS
	contents

	PREFACE
	SYNOPSIS
	chapter 1

	chapter 2 
	chapter 3

	chapter 4

	chapter 5

	references


