STUDIES ON MOLECULAR STRUCTURE AND PROPERTIES USING MICROWAVE AND INFRARED SPECTRAL DATA

PAUL C. M.

THESIS SUBMITTED IN PARTIAL FULFILMENT OF the bequirements for the degree of doctor of philosophy

CERTIFICATE

This is to certify that this thesis is a record of bonafide research carried out by Shri. Paul C.M., part-time research scholar, during the period 1977-'82 in the Department of Physics, Cochin University under my guidance.

Cochin 682022
April 15, 1982

Dr.C. F.Girijavallabhan
Reader,
Department of Physics.

DECLAKATION

This is to certify that this thesis has not previously formed the basis for the award of any degree, diploma, associateship, fellowshir or other similar title or recognition.

Cochin 682022
C.M.Paul

April 15, 1982

CONTENTS

Page
PREFACE I
ACKNOWLEDGEMENTS V
CHAPTER I INTEODUCTION 1
CHAPTER II THEOKY OF CENTMIFUGAJ DIETORTION CONST:NTS AND THE T MATKIX FOHRATISM 30
CHAYTER III PAFAMETKISATION OF CENTKIFUGAL DISTOFTION CONSTANTS : APfLICATION TO XY 2 BENT SYMEETKIC MOLECULES 53
CHAPTEF IV CENTKIFUGAL DISTORTION CONSTA:TS IN XY_{3} PYKamidat nolevitifs and theik AFPLICATION FOR UNIQUE FIXING OF INTFAMOLECULAK FOFCES 76
CHAPTER V EVALUATIO: OF MOLECLLALi GEOMETGY OF SYMMETEIC TOF NOLECTIES USING CENTRIFUGAL DISTOHTION CONSTANTS 96
CHAPTER VI SOME ASPECTS OF VIBrational MIXING PAFAIETER IN RELATIOS WITH MOLECULAR STRUCTURE ANL PhORERTIES 128
CHAPTEK VII PSEUDOEXACT PAFAIIETEK METIOD FOK THE ANALYGIS OF HIGHEK ORDEF MOLECULAR VIBhationis 145
APPENDIX COMPUTER PROGRAMME 155

PREFACE

The investigations presented in this thesis have been carried out in the Department of Fhysics, Cochin Oniversity, where the author has been working as a part-time research scholar during the period 1977-182.

The major objective of the thesis is essentially to evolve and apply certain computational procedures to evaluate the structure and properties of some simple polyatomic molecules making use of spectroscopic data available from the literature. It must be said that though there is dwindling interest in recent times in such analyses, there exists tremendous scope and utility for attempting such calculations as the precision and reliability of experimental techniques in spectroscopy have increased vastly due to enormous sophistication of the instruments used for these measurements. In the present thesis an attempt is made to extract maximum amount of information regarding the geometrical structure ard interatomic forces of simple molecules from the experimental data on microwave and infrared spectra of these molecules.

A notable feature of the present thesis is the use of centrifugal distortion constants for the first time to determine the geometry of symmetric top molecules (Chapter V). The method developed here shows that reliable estimation of the molecular geometry can be carried out even when the microware
spectroscopic data on isotopic molecule are unavailable. The thesis contains seven chapters in all. The first two chapters are of an introductory nature and the basic background required for the calculation of centrifugal distortion constants is developed here. In the third chapter theory of parametrisation of centrifugal distortion constants in XY_{2} bent symmetric molecules is discussed in detail. In addition to difining the limits of $\tau_{\alpha \beta \gamma \delta}$ elements, this approach helps to fix uniquely the force fields of molecules belonging to the above type. It is also shown that the prediction of fundamental vibrational frequencies is possible from a knowledge of the experimental values of $\tau_{\alpha \beta \gamma \delta}$ elements in these molecules. An exhaustive discussion of the parametrised form of $D_{J}, D_{J K}$ for pyramidal XY_{3} molecule is given in Chapter IV. Certain natural approximation formulas for $D_{J}, D_{J K}$ and D_{K} are developed and the use of these formulas is demonstrated in Chapter ∇. The interatomic distances and interbond ancles of $\mathrm{PF}_{3}, \mathrm{AsF}_{3}$ and OPF_{3} molecules for which no complete isotopic data are available have been calculated making use of centrifugal distortion constants along with rotational constants and fundamentai: Vibrational frequencies. Excellent agreement with results from electron diffraction studies assures the reliability of the method presented here.

Chapter VI contains a simple formula for the vibrational mixing parameter for XY_{2} bent symmetric moleculles. It also shows how the interbond angle in these molecules can be
estimated from the pair of frequencies of the symmetric vibrations. In the last chapter an attempt.is made to solve a third order vibrational problem using pseudo-exact parameter method. The set of force constant elements obtained in the case of CH_{3} F making use of this method is found to agrees very well with the results from more elaborate calculations.

Most of the calculations presented in this thesis have been carried out using the computor facilities available at the Cochin University Computor Centre. A sample programme (BASIC) used for the calculation of the centrifugal distortion constants in XY_{3} symmetric top molecules is given as an Appendix.

Part of the investigations presented in this thesis has been published in the form of following papers.

1) Use of $D_{J}, D_{J K}$ constants for the unique fixing of intramolecular forces in XY_{3} pyramidal molecules. Ananthakrishnan T.R., Paul C.M. and Girijavallabhan C. P. 1977 Pramana 2329
2) Molecular geometry using centrifugal distortion constante.

Paul C.M. and Girijavallabhan C.P.
1979 Nat. Acad. Sci. Letters 2237
3) A note on obtaining vibrational mixing parameter fran average bending enercy criterion. Girijavallabhan C.P. and Paul C.M. 1981 Pramana 17193
4) Molecular geometry of $\mathrm{XY}_{3} Z$ type molecules using centrifugal distortion constant. Paul C.M. and Girijavallabhan C.P. Paper presented at the fifty-first annual session of The National Academy of Sciences, India, Cochin 1981 Paper No. 122 (Physical Science Section)

The investigations presented in this thesis have been conducted under the guidance and supervision of Dr.C.P. Girijavallabhan, Reader, Department of Physics, Cochin University. The author is deeply indebted to him for his sincere encouragement, able guidance and competent advice throughout the progress of this work.

I am extremely grateful to Dr.K.Sathianandan, Profescor and Head of the department of Physics, Cochin University for providing all the necessary facilities for carrying out this work and for the encouragement he has fiven during the course of this work.

The author is highly thankful to Dr.T.R.Ananthakrishnan, Professor and Head of the Department of Physics, St.Paul's College, Kalamassery for the close association, very sincere and valuable help, and stimulating discussion throughout the period of these investigations. The author is erateful to Dr.M.GoKrishna Pillai, Professor, Department of Physics, Cochin University for several useful discussions.

The immense help and encouragement I have received from all the members of the faculty of the Department of Physics, University of Cochin are acknowledged. The author wishes to thank Mr C.K.Ravindran of Cochin University Computer Centre for his assistance with computation. I express ny sincere thanks to all the researcin scholars of the Deparment of Physics, Cochin

University for their kind co-operation and help throughout the entire programe.

I am also grateful to Magr.Emmanuel Lopez,
Manager, St.Peul's College, to Principal, Rev.Fr.Raphael Olattupuram and to Former Principal, Rev.Dr.Antony Mukkath for their help, whole hearted co-operation and encouragement given to me for completing the research work. I am also thankful to the College authorities for providing me the necessary leave facilities for completing this work. I would like to thank Mr M.V.Ignatius for neatly typing the manuscript.

Finally I must thank my wife and little baby whose love and endurance and moral support have always been a source of inspiration.

CHAPTER I

INTRODUCTION

Abstract

A general introduction to earlier work such as normal coordinate analysis, importance of I matrix, parametric approach, model force fields, kinetic models of molecules, approximation techniques and molecular structure determination from microwave data. The parameter representation of vibrational normal modes is stressed throughout.

1-1 Introduction:

The studies of structure and properties of molecules have acquired a renewed vi£our in the past two decades mainly on account of the great strides made during these periods in the design and fabrication of technical equipment for spectroscopic measurements. The fact that the advent of laser has revolutionised the field of molecular spectroscopy is a well known one. Coupled with the microprocessor revolution which jields virtually unlimited computational capability, these recent developments have fiven the spectroscopists unprecedented power, precision and possibility to gain new insight into the atomic and molecular processes.

Even after the classic attempt by Wilson, Decious and Cross ${ }^{2}$ a great deal remains to be done to organise and to assimilate the experimental data that have accumulated in the recent past. The body of knowledge of the vibrational Infrared and Raman spectra of molecules and of rotational spectral data from microweve and hith resolution infrared
and Raman epectral studies of low preasure gases and vapours is so immense that the above objective is a major task which is likely to remain unfinished for ever. In the present thesis a humble effort is made to obtain some useful informations on the structure and properties of some poly atomic molecules making use of the experimental data on vibrational and rotational frequencies of the molecules reported earlier in the literature. The work heavily exploits many of the recently introduced unifying pictures of molecular vibration and interatomic force field. The following sections in this chapter give a systematic and concise description of the different aspects of vibration and rotation of polyatomic molecules.

1-2 Normal coordinate aniysia:

According to the theory of small vibrations
In the harmonic approximation, any actual vibration of the molecule can be represented as a linear superposition of a number of normal vibrations ${ }^{1-10}$ at the characteristic frequencies of the molecule. Eliminating the six coordinatea
required to describe the tianslational and rotational motion of the molecule as a whole, there are (3 $\mathrm{N}-6$) normal modes of vibration for a molecule consisting of N atoms. Since no rotational freedom exists around the molecular axis a linear molecule has only (3 N - 5) noxmal modes.

The frequency of e normal vibration is determined by the kinetic and potenticl energy of the system. The kiaetic enerey depends on the masses 0 , the individual atoms and their geonetrical arrangement within the molecule, while the potential energy arises from interaction between the atoms and is described in terms of a set of force constants. The proframe of evaluatine force constants and nomal coordinates of the molecule is known as normal coordinate analjsis. Force constrnts may be conveniently calculated usine Wilson's GF matrix method. ${ }^{10}$ The essential merit of this nethod lies in the fact that it leads to a break up of the vibrational secular equation according to the aymuetry species of the molecule. To apply the GF matrix method, first the number of genvine vibrations beloneine to each irreducible representation of the point bloup of the rolecule is found by group tieoretical considerations 2, 7. A set of internal coordinates which are chanes in bondiength and bond angle ie chosen. From the internal
coordinates, orthonormalised linear combinations called symmetry coordinates are constructed such that they tranform according to the characters of the symmetry species to which they belong.

Let A denotes the colum matrix of any symmetric coordinates r_{i} and S the column matrix of any symmetry coordinates S_{i} and Q the column matrix of normal coordinates. These are connected by

$$
\begin{equation*}
S=L Q=U R \tag{1.1}
\end{equation*}
$$

Her U is an orthogonal matrix and L is called the normal coordinete tranformation matrix ${ }^{10}$. The potential energy of the molecule is given by the expression

$$
\begin{equation*}
2 V=\sum_{i, j} f_{i j} r_{i} r_{j} \tag{1.2}
\end{equation*}
$$

in which $f_{i_{j}}=f_{j 1}$ is the force constant corresponding to the interaction pair of internal coordinates r_{i}, x_{j}. In matrix form this is expreseed as

$$
\begin{equation*}
2 V=\vec{R}_{R} P \tag{1.3}
\end{equation*}
$$

Here denotes the tranpose of the column matrix R. The potential energy is not changed by the tranformation to symmetry coordinates. Hence

$$
\begin{equation*}
2 V=\ddot{S} H S \tag{1.4}
\end{equation*}
$$

Where F is the foree constrint matrix in syinetry coordinates. It can be geen that

The kinetic onergy can also be expressed in matrix form an

$$
\begin{equation*}
2 T=\widetilde{\dot{s}} 0^{-1 \dot{8}} \tag{1.6}
\end{equation*}
$$

Here arepresente the inverse kinetic energy matrix which eatisfies the normalising condition

$$
\begin{equation*}
\theta=\boldsymbol{L} \stackrel{\sim}{L} \tag{1.7}
\end{equation*}
$$

The G elemente for a nen degenerate apecies are given by the selation

$$
\begin{equation*}
G_{i j}=\sum_{p} \mu_{p} \quad G_{p}\left(\overrightarrow{s_{1 t}}, \overrightarrow{s_{j t}}\right) \tag{1,8}
\end{equation*}
$$

Hece 1 and j rejfer to the aymatry coordinates S_{i} and S_{j} reapectively, p the set of equivalent atons, a typical set being t, μ_{p} the reciprocal mase of am atom and g_{p} the number of equivalent atoms in the $p^{\text {th }}$ set. The aumation ineq. (1.8) extents over all the ete of equivalent atome in the moleoule. For a degonerate species

$$
\begin{equation*}
G_{i j}=(1 / d) \sum_{p} \mu_{p} \quad g_{p} \quad\left(\overrightarrow{s_{i a, t}} \cdot \overrightarrow{S_{j a, t}}\right) \tag{1.9}
\end{equation*}
$$

Hose d denotes the degree of degeneracy of the speoien. The vectore appearing in both the above expressions (1.8) and (1.9) are known an S vectors and are obtained from the "syt vectory" according to the equation

$$
\begin{equation*}
g_{i t}=\sum_{k} \sigma_{i k} \vec{s}_{k t} \tag{1.10}
\end{equation*}
$$

E. wing the coefficient of the internal coordinated p_{k} in the aymetry coordinates S_{i}. Wilson, Decius and Crose ${ }^{2}$ have givea oxpreanion for the $S_{\text {rt }}$ vectore reifering to different typen ef internal coordinates. Ferigle and weister 5 have develeped
methods for writing down these vectors in the case of linear molecules.

The matrices G, F and L together sorve to determine the vibrational frequencies Λ_{i} through ${ }^{1-10}$ the equation

$$
\begin{equation*}
G F L=L \Lambda \tag{1.11}
\end{equation*}
$$

Here Λ is a diagonal matrix of elements $\lambda_{i}=4 \pi^{2} c^{2} \omega_{i}^{2}$. The condition for self consistancy of eq.(1.11) can be expressed as

$$
\begin{equation*}
|G F-E \wedge|=0 \tag{1,12}
\end{equation*}
$$

The elements λ_{1} can be calculated by solvingthis secular equation provided G and F are accurately known.

However in practice the eq. (1.12) is utilised for determining the $F_{i j}$ elements since

1) direct relationship available for the force constants are only approximate ${ }^{11,12,13}$
ii) the vibrational frequencies can be obtained from infrared and Raman experiments with very high accuracy ${ }^{8}$, But under this formalism a vibrational species of order n would involve ($1 / 2$) $n(n-1)$ force constant elements and their evaluation With the n experimentaly available λ_{i} values is an indeterminate problem. (in all cases except when $n=1$). Any atteapt to render the problem determinate should be based on either 1) the reduction of the number of $F_{i j}$ elements by evolving restrictive models for force fields or 2) the increase of experimental results which can be used as additional input data. While the former method in
not unique, the latter one sounds more physically satiefactory. Force constant evaluation during these jears utiliseseither of the two or both methods together.

1-3 Importance of 4 matrix :

Recent trends in the evaluation of molecular fore constarte are directed through the normal coordinate tranformation eatrix I and employ the equation

$$
\begin{equation*}
P=\widetilde{I}^{-1} \wedge \quad I^{-1} \tag{1.13}
\end{equation*}
$$

obtained by substitution of eq.(1.7) into (1.11). Equation (1.13) throws light on the aignefecance of matrix I in the analysis of molecular force fields. In addition to force conetante ${ }^{14}$, the men ampletude of vibration, the Coriolis coupling constants ${ }^{6}$, contrifugal distortion constants ${ }^{15}$, the molecular dipole moments 16,17 and the polarisability tensors are all basically governed by the $I_{1,}$ elements. In short the I matrix governs the characterstic vectore representing the vibrational forms of the nolecule and bears the key for the whole molecular dynamion. The geometrioal visualisation of these normal coordinate tranfermation matrices hae been illustrated by Person and Crawford ${ }^{19}$.

1-4 Paranatric approach :

In the parametric approach to the vibrational problen the normal coordinate tranformaticn I is split up into two parte in a more visualisable manner. Thus the splitting is in no way λ miquae, generaly we can write

$$
\begin{equation*}
I=I_{0} C \tag{1.14}
\end{equation*}
$$

The only condition impoes on I_{0} is that $L_{0} \tilde{I}_{0}=G$ Since I is normalieed by Wilson's condition, q.(1.7), one can expect C to be an orthogonal matrix. A rigorous proof for this condition on C hat been given by Torok and Pilay ${ }^{20}$.

Though one cen have several models for I_{0}, mainly two methods are being used. They are the shear method, whose cemetrical aignipioance in the S and Q space have been illustrated by Person and Crawford. Bmploying the most currently ueed terminology

$$
\begin{equation*}
I_{0}=\nabla T^{1 / 2} \tag{1.15}
\end{equation*}
$$

In the rotation method and

$$
\begin{equation*}
I_{0}=T \tag{1.16}
\end{equation*}
$$

In the shear method. Here V and T are the igen vector and -igen values of G respectively. Tis a triengular matrix which can be written in the I arm, $\mathrm{viz} . \mathrm{T}_{i j}=0$ with $i<j$ or with j < i. The former one corresponds to a lower triangular matrix. Howerer if the order of irequencies is auch tiat $\lambda_{1}>\lambda_{2} \ldots \ldots \lambda_{m}$ and if the normal coordinate is nearly pure, the lower triangular matrix is preferrable. 19,21

The matrix C can be expressed as a function of (1/2) n (n-1) parameters. Among the different ways of writing the C matrix, the following three representations are useril ${ }^{22}$
e) Angle parametere

$$
\begin{equation*}
c(\phi)=\prod_{i=1}^{n-1} \prod_{j \times i+1}^{n} i_{i j}\left(\phi_{i j}\right) \tag{1.163}
\end{equation*}
$$

Here the $A_{i j}$'s are elementary rotation matrices in the ij plane
$\Lambda_{i j}\left(\phi_{i j}\right)=\left[\begin{array}{llllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{J} & 0 & 0 & 0 & -\nabla & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \nabla & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Where $U=\cos \phi_{i j}$ and $V=\sin \phi_{i j}$
In $A_{i j}$ the $i 1^{\text {th }}$ and $j j^{\text {th }}$ element is $\cos \phi_{i j}$, the $i j^{\text {th }}$ eloment is - $\sin \phi_{1 j}$ and the $j_{1}{ }^{\text {th }}$ element is sin $\phi_{1 j}$. All the other diagonal elements are unity and off-iiagonal elements are zero.
b) Antisymetric parameters

$$
\begin{equation*}
C=(E-K)(E+K)^{-1}=2(E+K)^{-1}-E \tag{1.16b}
\end{equation*}
$$

Here E is a unit matrix and the elemente of the antigymetric matrix K are the parameters
$K=2^{-1}\left[\begin{array}{ccccc}0 & \alpha_{12} & \alpha_{13} & \ldots \ldots \ldots & \alpha_{1 n} \\ -\alpha_{12} & 0 & \alpha_{23} & \ldots \ldots \ldots & \alpha_{2 n} \\ -\alpha_{13} & -\alpha_{23} & 0 & \ldots \ldots \ldots & \alpha_{3 n} \\ \cdots & \cdots & \cdots & \ldots \ldots \ldots & \\ \cdots & \cdots & \cdots & \ldots \ldots \ldots & \\ \alpha_{1 n} & -\alpha_{2 n} & -\alpha_{3 n} & \ldots \ldots \ldots & \\ \hline\end{array}\right]$
e) Exponential parameters

$$
c=e^{K}
$$

Here I has the meaning as in eq.(1.16b). Thus the first two types are quite often used, rather than the last one.

It should be mentioned that neither the L_{0} 's nor the C's are the ame in the two formalism arising out of substitution of eq.(1.15) and (1.16) in eq.(1.14), though they may be related by the constraint that I rust be the same in both cases. Thus

$$
\begin{equation*}
v T^{1 / 2} c_{R}=T c_{S} \tag{1.17}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
c_{B}{\widetilde{c_{S}}}=T^{-1 / 2} \widetilde{v}_{T} \tag{1.18}
\end{equation*}
$$

Here C_{R} and C_{S} represents the C matrices in the rotation and shear methods respectively. Thus for $n=2, C_{R}$ and C_{S} matrices contains only ane angle parameter in each which we will call ϕ_{R} and ϕ_{S} respectively and one gets a relation ${ }^{21}$

$$
\begin{equation*}
\phi_{B}=\phi_{S}+\delta+2 n \pi \tag{1.19}
\end{equation*}
$$

Hece \varnothing is the angle parameter, of the rotation matrix $I=T-1 / 2 \underset{\sim}{\sim} \underset{V}{\sim} T$. Other form of I_{0} matrices have also been guggented but these forms are often applicable to $n=2$ cases $\operatorname{cal} \boldsymbol{y}^{25}$ and are reducible to one of the two types discussed above, though equations anslogong to eq.(1.17). Among these different representations for L_{0}, the one in the triangular form appeare superior by virtue of

1) easy computability 14,21 , especiail for higher order problems

1i) the progresgive rigidity picture 26 -34, it presents among the different modes of Vibration
111) the ease with which eny particular mode of vibration can be treated an uncolipled ${ }^{21}$ ard
iv) its invariant nature to the acaling changea.
substituting sq.(1.14) into eq.(1.13) we get

$$
\begin{equation*}
F=\tilde{I}_{0}^{-1} c \wedge \widetilde{C}_{I_{0}^{-1}}^{-1} \tag{1.20}
\end{equation*}
$$

This result was firat obtained by Taylor ${ }^{35}$ in 1950 and later by Torok and Pulay in a more general form ${ }^{20}$. The above equation ia basically important and provides a syatenatic approsch to the atudy of the completo aet of mathematically possible solutions. This equation has been succeafully applied to studies of problems in infrared and N.M.R. spectroncopy as woli 36

1-5 Model Porce field:

The inadequacy of exeonancy data in determining all the $(1 / 2) n(n+1)$ force conetente for a syumetric apecies of order n constituter the main problem of romal coorinate analjeis. The problem in generai ie indeterminate unlepe additional data made use of or some extra assumptions are made which reduce the the number of focce constanto. In the absenoe of additionai data, one can generate on irfinite not of force ifelde as given in eq. (1.13) 8e

$$
\rho=\tilde{I}^{-1} \text { A } I^{-1} \quad \text { witia } i=I_{0}^{i} \text {. }
$$

As a eolution to this multiplicity, varioum approdmate force fielde have beon auggested which inply orie or other assumption of a physical or mathomatical nature.

One much approximation leade to the central force field of Dennison ${ }^{46}$ which postulates only forces along lines joining pairt of atom. The number of force conotanta in thic model is lese then that of the Irequencies. However, thic eamption is strictly valid only if the molecule is held hy ionie intractions and this is not in the case of general.

The simple valence force field (S.V.F.F), firnt introduced by Bjerrum ${ }^{47}$, postulatee a ntrong reetoring foreo in the line of each valence bond whenever the diatance between two bonded atcm ohanges. In adition, there is a reaistive force opposing a chnge of angle between any two bonde.

The most general form of force field called the goneral valance force field (G.V.F.F) is defined by eq.(1.2), the $f_{i j}$ are the general valanco force constante. Various intraotions between atretching and bending and tretching and atretching doformations are taken into acceunt in this model. The number of interaction force oonstants that can be inclufed in the potential energy function is alway much larger than that of the observed frequencien from whioh they hare to be ovaluated. Then it becones necessary to neglect mom of the interaction force constante. The gencral valance force field presente mear complete picture of the internuclear forces and han been widely
used in the investigation of force fields. If there are n_{j} vibrations of a given species j, the total number of independent force constants for a molecule in the general valance force field is given by $(1 / 2) \sum n_{j}\left(n_{j}+1\right)$.

The concept of directed valance ${ }^{48}$ has been applied by Heath and Linnet ${ }^{49-52}$ to the function of ε force field called the orbital valance force field (O.V.F.F), which eliminatea the difficulty of introducing separate angle bending constants for out-of-plane vibrations. O.V.F.F accounts in a better way for the vibrational frequencies of certain molecules than does the simple valance force field. This however differs fram the latter only in the treatment of the angular displacements. This O.V.F.F criterion for minimum potential energy is maximum overlap between the bonding orbitals of bonded atome. O.V.F.F. breaks down in the case of molecules containin, heavier atoms, and further, its treatment of bending vibrations is essentially artificial. But O.V.F.F. is only an approximation of the G.V.F.F., since the former takes into account a limited number of force constants. The hybrid bond force field (H.B.F.F), a modification of O.V.F.F.based on the correlation of bond strength with bond angle, is successfully applied to NH_{3} molecule ${ }^{66}$.

In the Urey Bradiy ${ }^{67}$ fore field (U.B.F.F) in addition to main force constants which represents stretching or bending, repulsion force constants between non-bonded atoms are of the Vander Waals type. The main advantage of U.B.F J. is that it contains a smaller number of force constants then the G.V.F.F.
does, and Shimonanochi $68,69,70$ has damonstrated the goneral validity of the U.B.F.F.

Several modification have been oucsented for the convantional U.B.F.F by various worker 70-77. From a oomparative atudy of the U.B.F.F. and the G.V.F.F. in some tetrahedrat, nyranidel and trigonal planar moleculea, Dunoan ${ }^{78}$ has concluded that for the Urey Bradly model to be euccessful, the nco-bonded repulsion force constant must explain both bond-bond and bond-angle interactions at one and the ame time. However, this reetriction brealcs down when the atoric repulaions are not all in one plave and in these casen the Uroy Bradiy model fails to give a true picture.

1-6 Kinetic models for molecules:

Despite the indeterminate nature of vibrational problem When the frequencies are the experimental data, fany attempte have been made to find mathematical conditions which at least approximate the correct phyaical situation. By putting $C=$ in eq. (1.20) we get a certain Y matrix which depende only on the inveree kinetic enorgy matrix G. C = E mane vibratione are purely governed by kinetic coupling betweon internal coordinates. Ideas along these lines of kinetically defined normal coordinatea have been euggested mainily in the three different patterne.
i) the mothod of Billea potential 53,54
$24,37,40,41,55$
ii) the method of charaterstic set of ooordinaten

1i1) the mothod of progreasive rigidity ${ }^{19,} 26-34$

The method of progressive rigidity has been enjoying wider use in the recent years ${ }^{26-34}$. Here $I=T$ is the lower triangular matrix. The validity of this approximation in calculating the force constants has been investigated by Muller ${ }^{34}$ et al in detail. This method has the advantage that the potential 18 independent of the normalisation of the internal coordinates. This property known as scaling invarisnce makes the model of progresaive rigidity more satisfactory than the two other models. Freeman ${ }^{30}$ has given a comparison between the three kinematic models.

1-7 Approzimation techniques:

The kinetic models mentioned earlier oftan lead to approximate force fields near the exact ones. But this method is basicaly unreliable since $C=E$ means that the vibrations are purely governed by kinematic couplings between the internal coordinates. When these couplings are large, physically unacceptable off-diagonal elements appear in F. Moreover, the force field obtained in most cases fails to reproduce some of the sensitive aditional data. These facts auggest amall non zero values for the off-diagonal elements in C.

Many methods have been suggested during the last few years to obtain C matrices, that would correspand to the real Dhasical situation in a better manner. Few of such methods appear to give the same picture given by the kinetic models, but some peont ones approach to true physical situation in a more Butiafactory manner. They are Atrey's method $44,21,23,32$, method He Becher and Ballien $23,44,56,57$, I matrix approximation by

Muller ${ }^{32-34,58-61}$ and Reddingtords method ${ }^{65}$. Out of all these different methode, I matrix approximation technique developed mainly by muller and collaberators is more convenient one when eampared to other methode and honce it is given below.

The I matrix playe a vital role of bringing in miring botwean the aymetry coordinates and the normal coordinates. The validity of certain I matrix approximation has beon analysed by Maller ot al. Accordingly the frequencies v and δ are anaignod to the etretching and bending moden in a molecule. ν is grater then δ in most second order vibrational speciee and this type of problem may be called n vo case. Follewing the mame oonvention other casen $\nabla i s . \nu \nu, \delta \delta$ and $\nu \delta$ are aleo ravely posaible. The approximation auggected by miller axe

$$
\begin{aligned}
& I_{12}=0 \text { for } \nu \delta \text { case } \\
& I_{21}=0 \text { for } \delta \nu \text { cace } \\
& I_{12}=I_{21} \text { for } \nu \nu \text { or } \delta \delta \text { case } \\
& I_{12}=I_{21}=0 \text { when the frequincien are well }
\end{aligned}
$$

epparated.
The approximation $\mathrm{I}_{12}=0$ is equivalent to the progreasive rigidity model as well as to Streys" F_{22} minimieation oondition as already mentioned. Twe method $\mathrm{E}_{12}=0$ is enpecially oxeellent in the evaluation of vibrationali smplituden. Miler hat further noted that F_{22} will be more accurate then F_{11} wader this approximation. Expreasione for $F_{1 j}$ elemente under the approximation
$I_{12}=0$ and $I_{21}=0$ are included in Table 1. The $L_{12}=0$ approdmation actually leads to a complete characteristic vibration for the mode corresponding to erequency $34,57,60$. This is quite obvious ince under this candition, one is able to write an equation $G_{22} F_{22}=\lambda_{2}$. Supplementing to this 1dea it may be said that $\mathrm{I}_{21}=0$ approximation should lead to a complete characteristic vibretion for the frequency ν, since under this condition one is able to write an equation $G_{11} F_{11}=\lambda_{1}$. The npproximation $L_{12}=L_{21}=0$ originates from the characteriatic et of coordinate picture and is valid only in the limiting case of $G_{12} \approx 0$.

A rationaliation of the properties of I matrix for $n=3$ is poseible by considering the $n=3$ problem to be made up of three $n=2$ cases. Thus in a $\nu \nu \delta$ case one oxpects $I_{13} \approx I_{23} \approx 0$ ($\nu \delta$ case) and $I_{12} \approx I_{21}$ (νi^{\prime} case) as has been suggested by Muller. Though there are eight different cases associated with the three frequencies, only $\nu \nu \delta$ and $\nu \delta \delta$ are the comon ones. The approximation $I_{12}=L_{13}=L_{23}=0$ for $\nu \nu \delta_{\text {case }}$ have been found to be quite valid for the bent X Y Z molecules, with the frequencies in the decreasing order. The examples analysed are NSF, $\mathrm{NSCl}, \mathrm{ONF}$, ONCl and ONBr^{34}. The expressions for the $F_{i j}$ lements in terms of the λ and G - lements are given in Table 2. The approximation $I_{12}=L_{13}=L_{23}=1$ corresponds to the progreseive rigidity model. It can be noted that under this model the $F_{i j}$ elements for $n=2$ can be obtained irom the $F_{1 j}$ elements for $n=2$ by putting $\lambda_{3}=0$.

A general feature of the three approximation methode discussed so far is that the I matrix elements in all these are
determined by mechanical couplings rather than by any chemical binding couplings 34,63 . Muller ${ }^{63}$ has shown that the different approximation methods for the $n=2$ case, discussed so far coincide in the case of very small mass couplings, ie. when $G_{12} \ll G_{11}$ and G_{22}. This means that any approcimation method should be better checked with molecules having large mass couplings. Results of such attempts indicate that the $L_{12}=0$ model gives better force fielde generally 30,61 . Quite recently the criterion of minimum average bending energy has been found to give very satisfactory results in the case of amall molecules 79,80 .

1-8 Molecular atructure determination frum microwave data:

Determination of molecular geometry from spectral data has been a major endeavor of the experimental microwave apectroscopist. Spectroscopy in the microwave region is concerned with the study of rotating molecules. The rotation of a three dimensional body is quite complex and it is convenient to resolve it into rotational components about three mutually perpenicular directions through the centre of gravity - ie. along the principle axes of rotation. Then a body has three principal momente of inertia, one about each axis, usually designated I_{A}, I_{B} and I_{C}. Molecules are classified into groups according to their relative values of their three principal moments of inertia
i) Linear molecules for which $I_{B}=I_{C}, I_{A}=0$
ii) Symetric top molecules for which $I_{B}=I_{C} \neq I_{A}$
iii) Spherical top molecules for which $I_{B}=I_{C}=I_{A}$
iv) Asymmetric top molecules for which $I_{B} \neq I_{C} \neq I_{A}$

The etructural information oonerming bondlength and bond angles in a particular molecule is contained in the principal memont of inertin, whioh are invermely propotioaal to the rotational constonts A, B, and C derived from the microwave apective. The effective bondlength derived from B_{0} for the general cround vibrational state is designated as r_{0} and the associated etructure in called x_{0} structure.

Solving Schrodinger equation, the rotational energy levels allowed to a Figid diatomic molecule are given by the oxpreseion

$$
\begin{equation*}
E_{J}=\left(h^{2} / 8 \pi^{2} I\right) J(J+1) \tag{1.21}
\end{equation*}
$$

Where $J=0,1,2,3, \ldots$. In this expression h is Planck's conetant, I is the moment of inertia either I_{B} or I_{C}, aince both are equal. J is the rotational quantum mumber. For a diatomie molecule if m_{1} and m_{2} are the masses separated by a distance r_{0} then moment of inertia
$I=m_{1} n_{2}\left(m_{1}+m_{2}\right)^{-1} r^{2}=\mu r_{0}^{2}$
In the rotatiomal region, apectra are unvally diecuesed in terme of wave number, so eq. (1.21) can be expreased at

$$
\begin{equation*}
\mathcal{H}=\left(\mathrm{E}_{\mathrm{J}} / \mathrm{hc}\right)=B J(J+1) \quad \mathrm{om}^{-1} \tag{1.23}
\end{equation*}
$$

Where 0 is the velocity of light in $\mathrm{cm}_{\mathrm{s}}{ }^{-1}$ and B is the rotational constant given by

$$
\begin{equation*}
B=\left(h / 8 \pi^{2} I_{B} \bullet\right) \tag{1.24}
\end{equation*}
$$

Consider the molecule in $J=0$ atate. By absorbinf radation it is raised to $J=1$ state. The energy absorbed will be

$$
\epsilon_{J=1}-\epsilon_{J=0}=2 \mathrm{~B} \mathrm{~cm}^{-1}
$$

Hence an absorption line will appear at $2 \mathrm{~B} \mathrm{on}^{-1}$. In general to raise a molecule from J to $(J+1)$ state we would have

$$
\begin{equation*}
\epsilon_{J} \rightarrow \epsilon_{J+1}=2 B(J+1) \mathrm{cm}^{-1} \tag{1.25}
\end{equation*}
$$

The step-wise raising of the rotational energy results in an absorption apectrus corsiating of lines at $2 \mathrm{~B}, 4 \mathrm{~B}, \ldots . \mathrm{cm}^{-1}$. Once $2 B$ is known from the measurement of the separation between the abaorption lines, the bondlength of the diatomic molecule can be obtained using eq.(1.22) and (1.24).

On studying sloaely the spacing between the spectral lines we can find that separation slightly decreases for higher values of J. This is caused by the centrifugal stretching of the bunds, which indicates that the bonds are not rigid. In the upper rotational levels the molecule rotates faster and the bond is elongated slightly reaulting in a dacrease in the spacing between levals due to a slight increase in the moment of inertia.

The Schrodinger equation may be set up for a non-rigid molecule and the rotational ensrgy levels are found to be

$$
\begin{equation*}
G=B J(J+1)-D J^{2}(J+1)^{2} \mathrm{~cm}^{-1} \tag{1,26}
\end{equation*}
$$

Where D is the cantrifugal distortion constant given by

$$
D=\left(h^{3} / 32 \pi^{4} \mathrm{I}^{2} \mathrm{r}^{2} \mathrm{Kc}\right) \mathrm{cm}^{-1}
$$

K is the elasticity or force constant of the bond, and if the motan 1s S.H.M.

$$
\begin{equation*}
K=4 \pi^{2} \bar{\omega}^{2} \mu c^{2} \tag{1.28}
\end{equation*}
$$

$\bar{\omega}$ is the vibrational frequency in cm^{-1} ana μ is the reduced mass. For diatomic molecule $\mu=m_{1} m_{2}\left(m_{1}+m_{2}\right)^{-1}$. If tine force fieh is anharmonic eq. (1.26) becomes

$$
\begin{align*}
& \epsilon_{J}=E J(J+1)-D J^{2}(J+1)^{2}+\mathrm{HJ}^{3}(J+1)^{3}+ \\
& K J^{4}(J+i)^{4}+\ldots \ldots \mathrm{cm}^{-1} \tag{1.29}
\end{align*}
$$

where H, K etc. are small constants dependent upon the georetry of the molecule. They are however negligible compared with $D_{\text {, }}$ Considering the selection rule $\Delta J= \pm 1$ the energy levels of a non rigid molecule can be expressed as

$$
\begin{equation*}
\epsilon_{J+1}-\epsilon_{J}=2 E(J+1)-4 D(J+1)^{3} \mathrm{~cm}^{-1} \tag{1.30}
\end{equation*}
$$

Symmetric top molecules:

The rotational energy equation for symmetric top
molecules involve two different moments of inertia and two quantum numbers, namely J, charactorizing the total anglas nomentum of the molecule and K, the argular momentum about the major axis. The energy levels of non rigid gymatric top can be oxpressed as

$$
\begin{align*}
& \epsilon_{J, K}= B J(J+1)+ \\
&(A-B) K^{2}-D_{J} J^{2}(J i+1)^{2}- \tag{1.31}\\
& D_{J K} J(J+1) K^{2}-D_{K} K^{4} \mathrm{cN}^{-1}
\end{align*}
$$

on K^{2} so that it is immaterial whether the molecule apins in clockwise or anticlockwlse, the energy is the same for a given J. For all K >0, the energy levels are double degenerate. The selection rule is $\Delta J=0, \pm 1$ and $\Delta K=0$. $D_{J}, D_{J K}$ and D_{K} are the small corrections for the non rigidity.

$$
\begin{equation*}
\epsilon_{J+1, K}-\epsilon_{J, K}=2 B(J+1)-4 D_{J}(J+1)^{3}-2 D_{T K} J(J+1) K^{2} \mathrm{~cm}^{-1} \tag{1.33}
\end{equation*}
$$

The spectrum is basically that of a linear molecule including sentrifugal stretching, with additional term which depende on K^{2}.

Due to the selection rules, the analysia of the nicrowave spectrum of symmetric top molecules yields only information about the rotational constant B. In symmetric top molecules the structural parameters to be evaluated is grater than the available rotational constantsoHence in these type of molecules the molecular geometry is obtained by studying the microwave spectrum of its isotopic substituents. The terms $D_{J}, D_{J K}$ and D_{K} which are the corrections for the non rigidity of the molecule, are functions of nolecular geometry and force field of the molecule. The detaile regarding the calculation of centrifugal distortion constants for polyatomic molecules are discussed in chapter II.
TABTB 1
Bxpressions for F matrix eleasts under different approcinations 63
for second order Vibrational species

${ }_{21}=0 \quad{ }_{1}$		$\frac{-\lambda_{1} \sigma_{12} \mid \sigma G \sigma^{1}}{1-\lambda_{2} \sigma_{12}{ }_{12} 0^{1}}$		
$\mathrm{I}_{12}=0 \lambda_{1} 0_{11}$	${ }_{2} 9_{1}^{2}$		$\lambda_{2} a_{11} \sigma^{\text {c-1}}$	
$\mathrm{I}_{12}-\mathrm{I}_{21}=0$	${ }_{1} \theta_{11}^{-1}$	\bigcirc	$\lambda_{2} \square_{22}^{-1}$	$\begin{aligned} & \text { corresponds to } \quad 40 \\ & \text { the method of } \\ & \text { characteristic set. } \end{aligned}$
$\mathrm{P}_{12}-\mathrm{P}_{22}$	$\lambda_{1} a_{11}^{-1}$	$-\lambda_{2} a_{12} 2^{-1 / 10 T^{-1}}$, $1 \mathrm{~F}^{1}$	diatribution

- TABLE 2

Expressions for F matrix elements under the approximation 34
$I_{12}=L_{13}=I_{23}=0$ for third order vibrational species.
$P_{\text {if }}$ The expression
$F_{11} \quad\left(\lambda_{1} A+\lambda_{2} G_{12}^{2}+\lambda_{3} G_{11} C^{2}|G|^{-1}\right) / G_{11} A$
$F_{12} \quad-\left(\lambda_{2} G_{12}|G|+\lambda_{3} B C\right) / A|G|$
$\mathrm{F}_{13} \quad \lambda_{3} \subset \mathrm{IGI}^{-1}$
$F_{22} \quad\left(\lambda_{2} G_{11}|G|+\lambda_{3} B^{2}\right) / A|G|$
$F_{23}-\lambda_{3} B|G|^{-1}$
$F_{33} \quad \lambda_{3} A|G|^{-1}$

Where $A=\left(G_{11} G_{22}-G_{12}^{2}\right)$,

$$
\begin{aligned}
& B=\left(G_{11} G_{23}-G_{12} G_{13}\right) \\
& C=\left(G_{12} G_{23}-G_{13} G_{22}\right)
\end{aligned}
$$

Referances

1. Herzberg G. "Infrared and Raman Spectra of Polyatomic Molecules", D. Van Nostrand Company, Inc. New York 1945
2. Wilson E.B., Decius J.C. and Cross P.C. "Molecular Vibrations", McGraw-Hill, New York 1955
3. Volkenstein M.V., Eliasevich M.A. and Stepanor B.J. "Kolebanija Molecule" GozD. IZD. 1949
4. Mansel Davies (edited by) "Infrared Spectroscopy and Molecular Structure" Elsevier Publishing Company, Amsterdam 1963.
5. Ferigle S.M. and Meister A.G. 1951 J.Chem; Yhys. 19, 962
6. Cyvin S.J. "Molecular Yibration and Mean Square Ampiitudes" Elsevier Pablishing Company, Absterdam, 1968
7. Nakemoto K. "Infrared Spectra os Inorganic and Coordination Compounds" John Wiley \& Sons. Inc. Dew York 1963
8. Orvile Thomes V.J., 1967 J.Miol.Structure, 1, 357
9. Rosenthal J.E. and Nurphy G.K. 1936 Reve.Mod.Phys. B, 317
10. Wilson E.B.Jr., $1937 \mathrm{~J} . \mathrm{Chm}_{\mathrm{m}}$ Phys. I, 1047

1968 J.Chem. Phys. 2, 76
11. Badger R.M. 1934 J. Ohem. Phys. 2, 128

1935 J.Chem. Phys. 2, 710
12. Claxk C.H.D. 1935 Phil. Mag. 19, 476

1938 Pail. Mag. 22, 1137
13. Gordy W. 1946 J.Chem. Phys. 14, 305
14. Meal J.H. and Polo S.R. 1956 J.Chem. Phye. 定, 112

1956 J.Chem. Fhys. 24, 1119
15. Cyvin S.J., Cyvin B.N. end Hagen G. 1968 2.Haturforsch. 23a, 1649 16. Golike R.C., Milia I.M., Person W.B. kna Crawtord B. Jr., 1956 J.Cheal. Paye. 25, 1266
17. Bliacherich F. and Wolkenstein M. 1945 J.Phys.Moscow 2, 101 1945 J.Phye. Moscow 2, 326
18. Chalmers A and Mekean D.C. 1966 Spectrochim.Acta, 22, 251
19. Crawford B and Person W.B. 1957 J.Chem.Phye. 26, 1295
20. Torok F. and Pulay P. 1969 J.Mol.Struct. 2, 1
21. Girijavallabhan C.P. and Babu Joseph K

1976 Ind.J.Pure \& Appl.Phys. 12, 201210
22. Grentmacher F.Ro, Matrimeneechnung, Deutscher Verlag der Wissenschaften, Berlin, 1958

2j. Pfoiffer M. 1969 J.Mol.Spectroac. 31, 181
24. Pulay Pand Torok F. 1965 Acta Ohim.Hung. 44, 287
25. Alix A. and Bernand I. 1970 C.R.Acad.Sc.Paris, 270, 66.
26. Torkington P. 1949 J.Chem. Phys. 17, 1026
27. Drasin M.P. 1951 J.Iond. Math. Soc. 26, 221
28. Imrnudie M. 1954 J.Fhys. Rad. 15, 365
29. Orlova I.V. and Godnev. H. 1959 Opt.i.Spectroskopiya 6, 447

1959 Opt. 日pectroskopiya OSSR 6, 284
30. Freenen D.E. 1968 J.Mol.Spectrosc. 27, 27
31. Maller A. 1968 Z.Phys. Chem. 238, 116
32. Peacock C.J. and Muller A. 1968 J. Mol.Spectrosc. 26, 454
33. Peacook C.J. and Muller A. 1968 Z. 耳aturforwch. 23n, 703
34. Peaco dr C.J., Haidbom U. and Muller 4

1969 J.Mol.Spectrose - 30, 338
35. Taylor W.J. 1950 J.Chem.Fhyt. 18, 1301
36. Tomen 8. and Pliva J. 1966 J.Mol. Spectrosc. 21, 362
37. Pulay P and Forok F. 1966 Acta Chim. Hong. 47, 273
38. Pulay P. 1967 Acta Chim. Hung. 52, 49
39. Torok F. 1967 Acta Chim. Hung. 52, 205
40. Herranz J. and Caetano F. 1966 Spectrochim.Acta, 22, 1965 41. Herrans J. and Castano F.

1966 Anals. Real Soc. Espan Pis Quim (Madrid) 62e, 199
42. Freemen D.E. 1967 J.MOL.Spectrosc. 22, 305
43. Pfeiffer M. 1967 2. Physik Chem. Neue Folge, 54 (302
44. Strey G. 1967 J.Mol.Spectrosc. 24, 87
45. Alix A. and Bernard L. 1970 C.R.Acad.Sc.Paris 270, 151
46. Donnison D.M. 1925 J.Astrophys. 62, 34
47. Bjerrum N. and Pauling J. 1914 Verh d.d.Phys.Ger.16, 737
48. Pauling J. 1931 J.Amer. Chem. Soc. 53, 1367
49. Heath D.F. and Limet J.W. 1948 Hature 161, 314
50. Iinnet J.W. and Wheatley P.J. 1949 Trans.Farad.Soc.45, 33
51. Linnet J.W.,Heath D.F. and Wheatley P.J.

1949 Trang. Parad.Soc.45, 832
52. Limet J.W. and Wheatley P.J. 1949 Trans.Farad.Soc.45, 39
53. Billes F. 1966 Acta Chim. Hung. 47,53
54. Cyvin S.J., Krietiansen L.A. and Brunvoll J.

1967 Acta Chim.Hung. 51, 217
55. Pulay P. 1966 Z.Angew. Math. Mech. 46, 151
56. Becher H.J. and Ballein K.

1967 Z. Phys. Chenie, Heue Folge, 54, 302
57. Padini 4. 1966 \%.Maturforach. 21e, 2055
58. Huller A and Peacock C.J. 1968 \%. Chem. B, 69
59. Muller 1 and Peaco de C.J. 1968 Mol. Fhye. 14, 393

60 Cyvin S.J.,Cyvin B. H. and Muller A.

$$
19661969 \text { J.Mol.Struct. A0 } 341
$$

61. Peacock C.J. and Muller A. 1968 Z.Naturforsch. 23a, 1029
62. Konaka S., Murato Y., Kuchitauk K. and Morino Y. 1966 Bull. Chem. Soc.Japan 72, 1134
63. Muller A.,Kebabcioglu R., Cyvin S.J. and Mohan N. 1972 K.Norske Vidensk.Selsk.Skr.7, 1
64. Muller A., Mohan N. and Heidborn U. 1971 2.Naturforsch. 27a, 129
65. Reddington R.L. and Algiburry A.L. 1971 J.Mol.Spectrosc. 37, 494
66. King W.T. 1912 J. Chem. Phys. 36, 165
67. Urey H.C. and Bradley C.A. 1931 Phys.Rev. 38, 1969
68. Shimanouchi T. 1949 J.Chem.Phys. 17, 245
69. Sì imanouchi T. 1949 J. Chem. Phy s. 17, 848
70. Shimanouchi T. 1957 J.Chem. Phys. 26, 594
71. Scherer J.R. and Overend J. 1960 J.Chem. Phys. 33, 1681
72. Takahash1 H. and Shimanouchi T. 1962 "International Sympos tum of Molecular Struature and Spectroscopy" Tokyo
73. Shimanouch i T. and Suzuki I. 1961 J.Mol. Spectroac. E, 277

1962 J.Mol.Spectrosc. 8, 222
74. Scherer J.R. and Overend J. 1961 Spectrochim.Acta 17, 719
75. Scherer J.R., Evans J.C., Muelder W.W. and Overend J.

1962 Spectrochim.Acta 18, 57
76. Scherer J.R. 1964 Spectrochim.Acta. 20, 345
77. Parisean M.A., Wu E.L. and Overend J.

1963 J.Chem. Phys. 32, 217
78. Duncen J.L. 1965 J.inol.Spectrosc. 18, 62
79. Girijavallabhan C.P., Sasidharan Nair S. and Babu Joseph K 1976 J.Mol.Spectrosc. 61, 177
80. Girijavallabhan C.P., Sasidharan Nair S and Babu Joseph K 1977 J.Mol.Spectrosc. 65, 142

CHAPIER II
 THEORY OF CENTRRIFUGAL DISTORTION CONSTANTS AND THE T $\mathbf{S}_{\mathbf{g}}$ MATRIX FORMLIBM

Abstract

The general quantum mechanical theory of centrifugal distortion constants in polyatomic molecules as developed by Kivelson and Wilson is briefly outlined. A summary of the simplified computational procedure based on Cyvin's T_{S} matrix formaliam is given. The calculation of $t_{\alpha \beta \gamma \delta}$ elements is illustrated in the case of XY_{2} bent symetric molecular aystem.

2-1 Introduction:

Considering molecule as a Figid rotor, the rotational energy levele of the symetric top molecules have been obtained by Donnison'. Wang ${ }^{2}$ has given the correaponding expression for the asymmetric top molecules. Later worker ${ }^{3,4}$ found that rotational fine structure is influenced by the non rigidity of the molecule, especialy through the coupling of the angular momenta of fibration and rotation. Another known fact is that different emperical momente of inertia are needed in applying the Wang eecular equation for the asymmetric top to each vibration rotation band, presumably due to the variation of effective moments of enertia by the vibrational motion. Again the rigid top never accounts for the centrifugal etretching effects where these are observed experimentally. These points atrese the fact that molecules mast be treated as non-rigid rotators. The rotational energy levele of non-rigid rotor oan be obtained using classical approach ${ }^{5}$ or quantur machanical approach ${ }^{6}$. Here we outline briefly the theory for the non-rigid rotator using the quantum mechanical approach based on the firat order perturbation theory.

2-2 Hamiltonian for non-rigid rotor:

Int P_{μ} be the μ components $(\mu=x, y, s)$ of the angular coordinate aysten and let $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ and $\tau_{\mu \nu \zeta \xi}$ be constants independent of the rotational quantum number. Then the Hemilitonian for the non-rigid rotator is given by Benedict as

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{0}^{\prime}+\mathrm{H}_{1}^{\prime} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{0}^{\prime}=\alpha^{\prime} P_{z}^{2}+\beta^{\prime} p_{x}^{2}+\gamma^{\prime} p_{y}^{2} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{B}_{1}^{\prime}=(1 / 4) \hbar^{4} \Sigma \tau_{\mu \nu \zeta \xi_{5}} \quad P_{\mu} P_{\nu} P_{t} P_{\xi} \tag{2.3}
\end{equation*}
$$

$$
H_{0}^{\prime} \text { represente the Hamiltonien for the offective }
$$

rigid rotor.

$$
\alpha^{\prime}=\hbar^{2} / 2 I_{z}, \beta^{\prime}=\hbar^{2} / 2 I_{x}, \gamma^{\prime}=\hbar^{2} / 2 I_{y}
$$

I_{x}, I_{y} and I_{y} are the effective principal momenta of inertia for the given vibrational state. $H_{1}^{\prime \prime}$ is the centrifugal distortion term, the parameters of which depends on the geometry and foree constants of the molecule ${ }^{8}$. It is aspuned that the effect of H_{1}^{\prime} is amall so that it may be treated by the firet order perturbution theory. The molution of the eigen value of H_{9}^{\prime}, the sero approximation to H has bean di sousmed by King, Hainer and Orose8,9.

2-3 simplification for diatortion term:
The commation rules for angular momentum ${ }^{10} \mathrm{Vis}$.

$$
\begin{equation*}
P_{\nu} P_{\mu}-P_{\mu} P_{\nu}=-1 P_{p} \tag{2.4}
\end{equation*}
$$

where μ, ν, P are in cyclic order can be umed to elinuinate $\mu \nu / \rho_{,} E_{0}$ terme in H_{1}^{\prime}. Nho ranit of this plocedure ia a change in the coefficient of the remaining torm in p_{μ}^{2} whioh ceal be aboorbed into H_{0}^{\prime}. The new form of H is then
where
and

$$
\begin{align*}
& H=H_{0}+H_{1} \tag{2.5}\\
& H_{0}=\alpha p_{x}^{2}+\beta p_{x}^{2}+\gamma p_{y}^{2} \tag{2.6}
\end{align*}
$$

The relation between the new coefficiente α, β, γ and $\tau_{\mu \mu \nu \nu}^{\prime}$ and the previous onet axe

$$
\begin{aligned}
& \tau_{\text {gegs }}^{\prime}=\tau_{\text {gexs }} \hbar^{4}, \tau_{\text {xay }}^{\prime}=\left(\tau_{\text {xyy }}+2 \tau_{\text {xqy }}\right) \hbar^{4} \\
& \tau_{\text {ywx }}^{\prime}=\tau_{\text {yax }} \hbar^{4}, \tau_{y y s s}^{\prime}=\left(\tau_{y y s s}+2 \tau_{y y y}\right) \hbar^{4} \\
& \tau_{\text {yyyy }}^{\prime}=\tau_{\text {yуy }} \hbar^{4}, \tau_{\text {sgxx }}^{\prime}=\left(\tau_{\text {gsxx }}+2 \tau_{\text {sxsx }}\right) \hbar^{4} \\
& \alpha=\alpha^{\prime}+\left(3 \tau_{y y y}-2 \tau_{\operatorname{yxs}}-2 \tau_{y y y}\right) \hbar^{4} / 4 \\
& \beta=\beta^{\prime}+\left(3 \tau_{y y s}-2 \cdot \tau_{x y}-2 \tau_{\text {gxex }}\right) \hbar^{4} / 4 \\
& \gamma=\gamma^{\prime}+\left(3 \tau_{\operatorname{sex}}-2 \tau_{x y y}-2 \tau_{y y y}\right) \hbar^{4} / 4
\end{aligned}
$$

The total angular momontua given by

$$
\begin{equation*}
F^{2}=p_{x}^{2}+F_{y}^{2}+F_{z}^{2} \tag{2.8}
\end{equation*}
$$

comates with H and H_{0} and hence it is constent matrix with diagonal values $J(J+1)$ as far as the present problem is concerned. since P^{2} commutes $w i$ th P_{x}^{2} and P_{y}^{2}, we can form the following uceful operator producte.

$$
\begin{equation*}
\left(P_{I}^{2} Y_{X}^{2}+F_{X}^{2} Y_{E}^{2}\right) \tag{2.9}
\end{equation*}
$$

$y_{y}^{2} y^{2}+\dot{F}^{2} P_{y}^{2}=2 J(J+1) \bar{y}_{y}^{2}+2 P_{y}^{4}+\left(Y_{y}^{2} P_{x}^{2}+\sum_{x}^{2} P_{y}^{2}\right)+$

$$
\begin{equation*}
\left(x_{z}^{2} \bar{x}_{y}^{2}+y_{y}^{2} p_{z}^{2}\right) \tag{2.10}
\end{equation*}
$$

Another xelation that in used in the expreselice for fio iontativel by equaring eq. (2.6),

$$
\begin{align*}
H_{0}^{2}= & \alpha^{2} p_{z}^{4}+\beta^{2} p_{x}^{4}+\gamma^{2} p_{y}^{4}+\alpha \beta\left(p_{z}^{2} p_{x}^{2}+p_{x}^{2} p_{z}^{2}\right)+ \\
& \beta \gamma\left(P_{x}^{2} y_{y}^{2}+p_{y}^{2} p_{x}^{2}\right)+\gamma \alpha\left(p_{y}^{2} p_{z}^{2}+p_{z}^{2} p_{y}^{2}\right) \tag{2.11}
\end{align*}
$$

Elo $(2,8)$ can be unad to eliminate p_{y}^{2} in the expreneion for B_{0} fron oq. (2.6). Further squaring H_{0} and differanciating it with seapect to α, we get

$$
\begin{align*}
\partial \mathrm{E}_{0}^{2} / \partial \alpha= & 2(\alpha-\beta) p_{\mathrm{s}}^{4}+(\beta-\gamma)\left(p_{x}^{2} p_{\mathrm{E}}^{2}+p_{z}^{2} p_{x}^{2}\right)+ \\
& 2 \gamma J(J+1) p_{z}^{2} \tag{2,12}
\end{align*}
$$

We oan derive eimilar expression in which P_{x}^{2} is elininated in a like maner. Thus,

$$
\begin{align*}
\partial H_{0}^{2} / \partial \alpha= & 2(\alpha-\beta) p_{z}^{4}+(\gamma-\beta)\left(p_{J}^{2} p_{z}^{2}+p_{z}^{2} p_{J}^{2}\right)+ \\
& 2 J(J+1) p_{z}^{2} \beta \tag{2.13}
\end{align*}
$$

If W. 1 e the energy of the rigid rotor represented by Ho, Brecs ${ }^{11}$ has shown that

$$
\begin{equation*}
\left\langle\mathrm{P}_{\mathrm{E}}^{2}\right\rangle=\left\langle\partial \mathrm{H}_{0} / \partial \alpha\right\rangle=\partial{\Pi_{0}} / \partial \alpha \tag{.2.14}
\end{equation*}
$$

Where the bracket \rangle represents the diagonal elencate (average valuas) of the enclowed operators in a bapim which diagonalicen Ho. Binilarly it can be shown that

$$
\begin{equation*}
\left\langle\partial \mathrm{E}_{0}^{2} / \partial \alpha\right\rangle=\partial \nabla_{0} / \partial \alpha=2 \nabla_{0}\left\langle\mathrm{y}_{\mathrm{E}}^{2}\right\rangle \tag{2.15}
\end{equation*}
$$

Ennce we are conaldering only the firet order, the required amora will involve oniv the diagonal values of the perturiting operatore. The equation containing H_{1} will ultinately be ueed only for the diagonal values with the help of eq. (2.15). We lonew the feot that
$\left\langle H_{0}^{2}\right\rangle=W_{0}^{2}$. considering eq. (2.9) through eq. (2.13) as average value equations, they can be solved no that $\left\langle P_{x}^{4}\right\rangle$.
 can be expressed in terms of $J(J+1)\left\langle P_{x}^{2}\right\rangle, J(J+1)\left\langle\mathcal{F}_{J}^{2}\right\rangle$ $J(J+1)\left\langle P_{m}^{2}\right\rangle,\left\langle P_{z}^{4}\right\rangle, W_{0}^{2}$ and $w_{0}^{2}\left\langle P_{z}^{2}\right\rangle$. Also we can use age. (2.6) and (2.8) to solve for $\left\langle P_{I}^{2}\right\rangle$ in terms of $\left\langle P_{z}^{2}\right\rangle$.
Home

$$
\begin{equation*}
\left\langle r_{x}^{2}\right\rangle-\left\{p_{0}-\gamma \delta(\beta+1)-(\alpha-\gamma)\left\langle p_{x}^{2}\right\rangle /(\beta-\gamma)\right\} \tag{2.16}
\end{equation*}
$$

similarly we can get expression fer $\left\langle y^{2}\right\rangle$. Using these result a in H_{1}, we get the following expression for the energy of memrigid asymmetric rotor in the first order.

$$
\begin{align*}
\nabla= & \nabla_{0}+A_{1} \nabla_{0}^{2}+\Lambda_{2} \nabla_{0} J(J+1)+\Lambda_{3} J^{2}(J+1)^{2}+ \\
& \Lambda_{4} J(J+1)\left\langle P_{5}^{2}\right\rangle+A_{5}\left\langle P_{0}^{4}\right\rangle+A_{6} \nabla_{0}\left\langle P_{2}^{2}\right\rangle \tag{2.17}
\end{align*}
$$

4'e are independent of the rotational quantum numbers. Wo is the rigid rotor anergy an solved by King, latiner and Croan8,9. Evaluation of $\left\langle P_{z}^{2}\right\rangle$ and $\left\langle P_{z}^{4}\right\rangle$ have been done by olen ${ }^{11}$ and Eivelsen ${ }^{17,18}$ respectively and the se axe given by

$$
\begin{aligned}
& \left\langle\mathcal{D}_{5}^{4}\right\rangle \simeq\left\langle p_{z}^{2}\right\rangle^{2} \approx x^{4} \\
& A_{1}=16 a_{6} /(\beta-\gamma)^{2} \\
& A_{2}=-\left[16 a_{6}(\beta+\gamma) /(\beta-\gamma)^{2}+4 \delta J /(\beta-\gamma)\right]
\end{aligned}
$$

$$
\begin{align*}
& A_{3}=-D_{J}+2 R_{6}+16 R_{6}\left(\alpha^{2}-\beta \gamma\right) /(\beta-\gamma)^{2}+ \\
& 2 \delta_{J}(\beta+\gamma) /(\beta-\gamma) \tag{2.17d}\\
& A_{4}=-D_{J K}-2 \delta_{J \sigma-16 R_{6}\left(\alpha^{2}-\beta \gamma\right) /(\beta-\gamma)^{2}+} \\
& 4 R_{6} \sigma^{2}+4 R_{5}(\gamma+\beta) /(\beta-\gamma) \\
& A_{5}=-\left(D_{K}+4 R_{5}+2 R_{6}-4 R_{6} \sigma^{2}\right) \tag{2.171}\\
& A_{6}=\left(8 R_{5}-16 R_{6} \sigma\right) /(\beta-\gamma) \tag{2.17~g}\\
& \sigma=(2 \alpha-\beta-\gamma) /(\beta-\gamma) \tag{2.17~h}
\end{align*}
$$

Where

$$
\begin{align*}
& D_{J}=-(1 / 32)\left(3 \tau_{x x x x}+3 \tau_{y y y y}+2 \tau_{\mathbf{x y y}}+4 \tau_{x y y}\right) \hbar^{4} \tag{2.17i}\\
& D_{K}=D_{J}-(1 / 4)\left(\tau_{z z z z}-\tau_{z z x x}-\tau_{y y z z}-2 \tau_{z E x E}-2 \tau_{y \& y z}\right) \hbar^{4}(2.17 j \\
& D_{J K}=-D_{J}-D_{K}-(1 / 4)^{\tau} \tau_{\text {EEz }} \hbar^{4} \tag{2.17x}\\
& \mathbf{R}_{5}=-(1 / 32)\left[\sigma_{\text {zxxx }}-\sigma_{y y y y}-2\left(\tau_{\text {xxzz }}+2 \tau_{\text {x8xz }}\right)+\right. \\
& \left.2\left(\tau_{y y z z}+2 \tau_{y z y z}\right)\right] \hbar^{4} \tag{2.171}\\
& R_{6}=(1 / 64)\left[\tau_{x x x x}+\tau_{y y y y}-2\left(\tau_{x y y}+2 \tau_{x y x y}\right)\right] \hbar^{4} \quad \text { (2.17m) }
\end{align*}
$$

and

$$
\begin{equation*}
\delta_{J}=-(1 / 16)\left(\tau_{x x x x}-\tau_{y y y y}\right) \hbar^{4} \tag{2.17a}
\end{equation*}
$$

For aymmetric rotor $\mathrm{R}_{5}, \mathrm{R}_{6} \delta_{\mathrm{J}}$ vaniah and $\boldsymbol{\theta}=\gamma$. Applying this condition to eqe. (2.17) and lising the remult of eq. (2.17e), eq.(2.17) can be expressed as

$$
\begin{equation*}
W=\Pi_{0}-D_{J} J^{2}(J+1)^{2}-D_{J K} J(J+1) K^{2}-D_{K} \mathbf{K}^{4} \tag{2.18}
\end{equation*}
$$

鲑ie equation repreaenta the rotational energy levek of a non rigid aymetric rotor in the first order theory.

2-4 Centrifugal distertion:

Basic picture of the centrifugal dietartion can be obtadned by considering a diatonic molecule. Atoma are onsidered to be hard apheres joined by a rather rigid apriag which obeye Hoak'n law. If the molecule is rotated about an axie perpendicular to internuclear one, then at equilibrium, centrifugal force is equal to centripetal force. Iet $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ be the reduced maen of the molecule at equilibrive. We then have

$$
\begin{equation*}
x\left(r-r_{0}\right)=\mu r \omega^{2}=p^{2} / \mu r^{3} \tag{2.19}
\end{equation*}
$$

Where \mathbb{I} is the force constent, r_{0}, the bond length of the stationary molecule, ω, the angular velocity and P is the angular momentum. Energy of the system is given by the Hamiltonian

$$
\begin{equation*}
H=P^{2} / 2 \mu r^{2}+(1 / 2) X\left(r-r_{0}\right)^{2} \tag{2.20}
\end{equation*}
$$

Expending the internuclear dietance about r_{0}

$$
\begin{equation*}
r^{2}=r_{0}\left[1+2\left(r-r_{0}\right) / r_{0}+\cdots\right] \tag{2.21}
\end{equation*}
$$

Trom which we get

$$
\begin{equation*}
\text { B }=\left(p^{2} / 2 \mu r_{0}^{2}\right)-\left(p^{4} / 2 \mu^{2} K x_{0}^{6}\right)+0 p^{6} \tag{2,28}
\end{equation*}
$$

Firet tern is the K.I. of the rotor and the ecoond texm aricen
due to centrifugal force. Cross ${ }^{12}$, Lawrence ${ }^{13}$ and Wilson ${ }^{14}$ have discussed the centrifugal distortion for polyatomic molecules. Here we are giving below the formula for centrifugal distortion in polyatomic molecules using quantum mechanical approach. Wilson ${ }^{15}$ has given the method for evaluating the centrifugal distortion constants $T_{g g ' j j}$, winch appear as the coefficients of the matrix terms in the expression for the Harailtonien of a non-rigid rotator given by

E_{V} is a constant diagonal matrix representing the vibrational energy. P_{g} is the matrix of component of the total angular momentum along the g axis (represented by $x ; y, g$). $\alpha_{G g}$, is a numerical coefficients related to the moment of inertia of the molecule and is a fixed number for a definite vibrational state. $\tau_{\text {gg'jj }}$, depends only on the vibrational state. How

$$
\begin{equation*}
\tau_{E g^{\prime j j}}=\sum^{\prime}\left(V / \mu_{g E^{\prime}} / V^{\prime \prime}\right)\left(\nabla^{m} / \mu_{j j \prime} / V\right) \tag{2.24}
\end{equation*}
$$

The prime indicates that V ie excluded from the sum. hvy,yn Ie the difference in the energy " $\nabla^{\circ}=V^{\prime \prime} \cdot \mu_{g G}$, axe the functions Of the normal coordinate such tint

$$
\begin{aligned}
& \mu_{x x}=\left(I_{y y^{\prime}}, I_{z x},-I_{y^{\prime} y}^{2}\right) i \Delta \\
& \mu_{y y}=\left(I_{z x^{\prime}}, I_{z z},-I_{x, z}^{2}\right) / \Delta
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{g x}=\left(I_{x x}, I_{y y},-I_{x y}^{2}\right) / \Delta \\
& \mu_{x y}=\left(I_{x z}, I_{x y},+I_{y z}, I_{x y}\right) / \Delta \\
& \mu_{x y}=\left(I_{x y}, I_{y s \prime}+I_{y y}, I_{x y}\right) / \Delta \\
& \mu_{y x}=\left(I_{x x}, I_{y s \prime}+I_{x y}, I_{x y}\right) / \Delta
\end{aligned}
$$

and

$$
\Delta=\left|\begin{array}{ccc}
I_{x x} \prime & -I_{x y}, & -I_{x g} \prime \\
-I_{x y}, & I_{y y^{\prime}} & -I_{y y^{\prime}} \\
-I_{x y}, & -I_{y y^{\prime}} & I_{z y^{\prime}}
\end{array}\right|
$$

In order to calculate these T's we must know the molecular geometry fundamental mode of vibration (or force constants) and the normal vibrational frequencies. The τ^{\prime} 's can be obtained as follows.

For a non linear molecule of I atoms there are (3N-6)
independent internal displacement parameters. Let $\delta_{\mathbf{Q}_{1}}$ be the corresponding set of internal displacement coordinates. These dimplacement coordinates may be changes in bond length or bond angle. If $\mu_{G 8}$, in the equilibrium value $01 / \mu_{g},\left(a l l \delta_{q_{i}}=0\right)$ then,

$$
\begin{equation*}
\mu_{g g^{\prime}}=\mu_{E E^{\prime}}^{0}+\sum_{i} \mu_{E g^{\prime}}^{i} \delta q_{i}+O\left(\delta q_{i}^{2}\right) \tag{2.24}
\end{equation*}
$$

where $\mu_{G E}^{i}=\left(\partial \mu_{E E^{\prime}} / \partial_{q_{1}}\right)_{\partial_{q_{i}}=0}$
411 quadratic and higher order terms are neglected in eq.(2.24).
 are constanta eince $V \neq \boldsymbol{V}^{w}$. The orthogonal property of the Hermite polynomial give

$$
\begin{equation*}
\left(\nabla / \mu_{B^{\prime}} / \nabla^{n}\right)=\sum_{i} \mu_{E E^{\prime}}^{1}\left(\nabla / \delta_{q_{1}} / \nabla^{n}\right) \tag{2.26}
\end{equation*}
$$

Tee of eq. $(2.26$)and (2.24) gree

$$
\begin{equation*}
\tau_{\varepsilon^{\prime} j_{j}^{\prime}}=\sum_{\nabla^{\prime}}^{\prime} \sum_{i k} \mu_{g_{g^{\prime}}^{\prime} \mu_{j j^{\prime}}^{k}\left(\nabla / \delta_{q_{1}} / V^{n}\right)\left(V^{m} / \delta_{q_{1}} / \nabla\right)}^{h \nu_{V V^{w}}} \tag{2.27}
\end{equation*}
$$

The normal coordinates Q_{x} may be written in term of internal diaplacement coordinates $\delta_{q_{1}}$ an

$$
\begin{equation*}
\delta_{q_{i}}=\Sigma_{k} b_{i k} Q_{k} \tag{2.28}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\nabla / \delta q_{i} / \nabla^{n}\right) & =\left(\nabla / \sum_{k} b_{i k} a_{k} / \nabla^{n}\right) \\
& =\sum_{k} b_{i k}\left(\nabla / a_{k} / \nabla^{n}\right) \tag{2.29}
\end{align*}
$$

Fer the basic functions in Harmonic Oscillator, the quantity
 quantum number V_{k} associated with the normal coordinate Q_{k}. Here $\varphi^{\prime \prime}=0_{k} \pm 1$. By considering this property τ (nan be expressed as

$$
\begin{align*}
& \tau_{\operatorname{Eg}{ }^{\prime} j j^{\prime}}=\sum \mu_{g g^{\prime}}^{i} \mu_{j j}^{k} \sum_{I} b_{i 1} b_{k l}\left\{\left[\left(q / q_{1} / v_{1}+1\right)\right.\right. \\
& \left.\left(v_{1} / Q_{1} / \vartheta_{1}\right)\right] / \mathrm{h} \nu_{1,1+1}+ \\
& \left.\left[\left(v_{1} \alpha_{1} / v_{1}-1\right)\left(v_{1}-\alpha_{1} / v_{1}\right) / \mathrm{n} \alpha_{1,1-1}\right]\right\} \tag{2.30}
\end{align*}
$$

The matrix element for the harmonic Oncilator are easily calculated to give

$$
\begin{align*}
& \left(v_{1} R_{1} / v_{1+1}\right)=\sqrt{\left(v_{1+1}\right) / 8 \pi^{2} \nu_{1}^{0}} \tag{2.31}\\
& \left(v_{1} / Q_{1} / \theta_{1-1}\right)=\sqrt{\theta_{1} / 8 \pi^{2} \nu_{1}^{0}}
\end{align*}
$$

If $I_{\text {ix }}$ ie the potential constant in the expression for the potential energy ${ }^{16}$, when it ia expressed in terms of the displacement coordinate e δq_{i}, then

$$
\begin{equation*}
\left(f^{-1}\right)_{1 k}=\sum_{1} b_{11} b_{121} / 4 \pi^{2}(\nu)^{2} \tag{2.32}
\end{equation*}
$$

Vang eq. (2.32) and (2.31) in eq. (2.30) we get expression fort's as

$$
\begin{equation*}
\tau_{g g^{\prime} j j^{\prime}}=-(1 / 2) \sum_{i k} \mu_{g g^{\prime}} \mu_{j j^{\prime}}\left(f^{-1}\right)_{i k} \tag{2,33}
\end{equation*}
$$

Wilson ${ }^{16}$ has derived the same formula using classical approach. τ in are again be simplified in term of the inertia tensor I in place of the inverse inertia tensor μ. Expanding the inertia tenser in tore of the displacement coordinates $\delta_{q_{1}}$, we got

$$
\begin{equation*}
I=I_{0}+i(J)_{0}^{i} \delta q_{i}+\ldots \tag{2.34}
\end{equation*}
$$

In mich I_{0} in the equilibrive tensor and

$$
\begin{equation*}
(J)^{i}=\left(\partial I / \partial a_{i}\right) \tag{2.35}
\end{equation*}
$$

The sere aubsoript indicate e that δ^{1} ie evaluated at $\delta_{q_{1}}=0$ since $\mu=I^{-1}$.

$$
I \mu=1=I^{0} \mu^{0}+I^{0} \Sigma_{1} \mu^{1} \delta_{q_{1}}+\sum_{1}\left(d^{1}\right)_{0} \delta a_{1} \ldots+\ldots(236)
$$

Because μ is the inverse of I for all the values of δI_{1} whin asp independent, eq. (2.36) can be expressed at

$$
\begin{equation*}
\mu^{1}=-\mu^{0}\left(d^{1}\right)_{0} \mu^{0} \tag{2.57}
\end{equation*}
$$

Iow it is easy to use the principal axis syaten I_{0} and μ^{0} eo that both of the tensorsare diagonal. Therefore the diagonal element I_{0} are the reciprocale of the μ^{0}. Now eq.(2.37) is simplified and becomen

$$
\begin{equation*}
\mu_{g g^{\prime}}^{1}=-\left(J_{g g^{\prime}}^{1}\right)_{0} / I_{g g^{\prime}}^{0} I_{j j}^{0} \tag{2.38}
\end{equation*}
$$

If the average moments of inertia are not know, it is difficult to determine equilibrium moments of inertia. Therefore $I_{G G}^{0}$, and $I_{j j}^{0}$, must be replaced by the momenta averaged over the ground vibíational state. Once averaged moments of inertia are known, we can calculate the centrifugal diatortion constant. Thus
$t_{g g^{\prime} j j^{\prime}}=\sum_{i x}\left(J_{g g^{\prime}}^{1}\right)_{0}\left(J_{j j \prime}^{1}\right)_{0}\left(I^{-1}\right)_{i k}$
The $t_{g g^{\prime} j j^{\prime}}$ notation is given by Kivelson and Wileon ${ }^{19}$.
2-5 Cyvins T^{\prime} s matrix formalism:
Cyrin ${ }^{19}$ has auggested a modified method by which the quantities of $t_{\alpha \beta \gamma \delta}$ are related by the aid of certain elemente $T^{1} \alpha \beta$, rather then the partial derivation of inertia tensor components ueed in the method of Kivelson and Wilson ${ }^{18}$. The Tap, ${ }^{1}$ elements may eamily be evaluated for a given molecular model from the equilibriue poaition vectors.

The centrifugal distortion conetante $\tau_{\alpha \beta \gamma \delta}$ are now melated to quentities $t_{\alpha \beta \gamma \delta}{ }^{\text {through the eq. }}$ (2.39) ae
$t_{\alpha \beta \gamma \delta}=-2 I_{\alpha \alpha}^{e} I_{\beta \beta}^{e} I_{\gamma \gamma} I_{\delta \delta} \tau_{\alpha \beta \gamma \delta}$

Here $\alpha, \beta, \gamma, \delta=x, y$ or z and $I_{z x}^{e}, I_{y y}^{e}, I_{z z}^{e}$ are the principal moments of inertia at equilibrium. Let J_{Q} be a matrix with 6 columns $J_{x x, Q}, J_{y y, Q}, J_{z f, Q}, J_{z y, Q} J_{y z, Q}$ and $J_{s x, Q^{\circ}}$ Similarly the matrix J_{S} can also be expreased. Here Q and δ refex to the normal and symmetry courdinaten raspectively. Then

$$
\begin{equation*}
t=\widetilde{J}_{Q} \sigma J_{Q}=\widetilde{J}_{3}=1 J_{8} \tag{2.42}
\end{equation*}
$$

Here $\sigma=1 / 4 \pi^{2} \nu^{2} c^{2}, \nu$ being the wave number of the fundementials and F^{-1} is the inverse force constant matrix. The J quantities are the partial derivativen of the instantaneous juertia tensor taken at aquilibrium. That is

$$
\begin{equation*}
{\underset{\alpha \beta}{\alpha}, Q}_{j}^{J^{\prime}}\left(\partial I_{\alpha \beta} / \partial Q_{k}\right)_{0}, \quad J_{\alpha \beta, s}^{i}=\left(\partial I_{\alpha \beta} / \partial s_{1}\right)_{0} \tag{2.43}
\end{equation*}
$$

The new matrix Te introduced by Cyvin again consioting of 6 colume
 The quantitiee T $\alpha \beta, 8$ are given by the relation ${ }^{19}$

$$
\begin{align*}
& T_{\alpha \alpha, S}=2 B i_{i}^{\alpha \alpha} B^{\bullet} \tag{2.44}\\
& T_{\alpha \beta, S}=-B i^{i} R^{\bullet} \tag{2,45}
\end{align*}
$$

Where B is the oymmetric coordinate trensformation matrix, \mathcal{F}° is a columa vector oomposed of the quilibrim poaition reotor
 matrix, one for each atom alomg the main diagonal. On ach blook has the form
$\left(i^{x x}\right)_{a}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left(i^{x y}\right)_{a}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\left(i^{y \mathbf{y}}\right)_{a}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left(i^{y z}\right)_{a}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$\left(i^{z Z}\right)_{a}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \quad\left(1^{z X}\right)_{a}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$
In terms of Ts matrix, the t matrix is given by the relation

$$
\begin{equation*}
t=\widetilde{T_{s}} \quad \theta \quad \mathrm{Ts} \tag{2.47}
\end{equation*}
$$

where
$\theta=G^{-1} F^{-1} G$
t is a complete symmetric tensor or matrix defined by the twentyone distinct quantities of $t_{\alpha \beta \gamma \delta}$ arranged as

Sam explicit form of $J_{\alpha}{ }^{\frac{1}{\beta}}$,s axe given below
$J_{x, B}^{1}=2 \sum_{a} m_{a}\left(Y_{a}^{0} A_{a 1}^{J}+g_{a}^{e} A_{a 1}^{s}\right)$
$J_{y J, 8}^{1}=2 \sum_{a} m_{a}\left(x_{a}^{0} A_{a 1}^{s}+x_{a}^{e} A_{a i}^{x}\right)$
$J_{a x, 8}^{1}=2 \sum_{a} m_{a}\left(X_{a}^{e} A_{a i}^{Y}+Y_{a}^{*} A_{a i}^{J}\right)$
$J_{j, y, 8}^{i}=-\sum_{a} m_{a}\left(Y_{a}^{e} A_{a i}^{s}+z_{a}^{e} A_{a i}^{y}\right)$
$J_{s X, s}^{1}=-\sum_{a} m_{a}\left(z_{a}^{0} A_{a i}^{x}+X_{a}^{0} A_{a i}^{z}\right)$
$J_{2 \mathcal{X}, S}^{i}=-\sum_{a} a_{a}\left(X_{a}^{e} A_{a 1}^{y}+Y_{a}^{e} d_{a i}^{x}\right)$
Here a_{a} denotes the mass of atom a and $X_{a}^{e}, Y_{a}^{e}, z_{a}^{0}$ contain the equilibrium position vectors. Components of the same atom are referred to the principal system of coordinate ads. The coefficients noted, $A_{i}(\alpha=x, y, s)$ are the elements of A matrix ${ }^{16,20}$.

$$
\begin{equation*}
\alpha_{a}=\sum_{i}{\hat{\Lambda_{a i}}}_{\alpha}^{\alpha} s_{i} \tag{2.51}
\end{equation*}
$$

where $\alpha_{a}\left(x_{a}, J_{a}, z_{a}\right)$ represents the cartesian displacement coordinates. $J_{\alpha \beta}^{1}$ are related to $\mathrm{I}_{\alpha \beta}$ through the relation 19

$$
\begin{align*}
& J_{\alpha \beta, 8}=\sigma^{-1} \Phi_{\alpha \beta, 8} \tag{2.52}\\
& {\underset{\alpha \alpha, 8}{ }=\sigma^{-1} T_{\alpha \alpha, s}}^{J_{\alpha,}} \tag{2.53}
\end{align*}
$$

Hence the expression for $T_{\alpha,}, 8$ are given below.

$$
\begin{align*}
& I_{i x, 8}^{e}=2 \sum_{a}\left(I_{a}^{e} B_{i a}^{J}+Z_{a}^{e} B_{i a}^{s}\right) \tag{2.54a}\\
& \mathrm{T}_{\mathrm{JY}, \mathrm{~S}}^{\bullet}=2 \sum_{\mathrm{a}}\left(\mathrm{Z}_{a}^{0} \mathrm{~B}_{1 a}^{\mathrm{E}}+\mathrm{X}_{\mathrm{a}}^{0} \mathrm{~B}_{i a}^{\mathrm{x}}\right) \tag{2.54t}\\
& \mathrm{r}_{\mathrm{g}, \mathrm{~S}}^{0}=2 \sum_{a}\left(x_{a}^{0} \mathrm{~B}_{1 a}^{\mathrm{x}}+\mathrm{I}_{a}^{0} \mathrm{~B}_{1 a}^{y}\right) \tag{2.548}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{T}_{\mathrm{yB}, 8}^{1}=-\sum_{a}\left(\mathrm{I}_{a}^{0} \mathrm{~B}_{1 a}^{\mathrm{a}}+\mathrm{Z}_{a}^{e} \mathrm{~B}_{1 a}^{J}\right) \tag{2.544}\\
& \mathrm{I}_{\mathrm{gx}, \mathrm{~S}}^{1}=-\sum_{a}\left(\mathrm{Z}_{\mathrm{a}}^{0} \mathrm{~B}_{1 a}^{\mathrm{x}}+\mathrm{X}_{\mathrm{a}}^{e} \mathrm{~B}_{\mathrm{ia}}^{\mathrm{E}}\right) \tag{2.54e}
\end{align*}
$$

Here $B_{1 a}^{\mathrm{I}}$ are the $\mathrm{B}^{20,16}$ matrix element defined by

$$
\begin{equation*}
s_{i}=\sum_{a}\left(B_{1 a}^{x} X_{a}+B_{1 a}^{J} Y_{a}+B_{1 a}^{g} z_{a}\right) \tag{2.55}
\end{equation*}
$$

It ie clear that the expressions eq.(2.54) are simpler to evaluate that eq. (2.50). The A matrix elements are equivalent to P° vector components in the notation of Polo ${ }^{22}$, while the B matrix element constitute the usually simpler S vectors of Wilson ${ }^{16}$. Another simplification arises Prom the important fact that the equilibrium position vectors ($X_{a}^{e}, Y_{a}^{e}, Z_{a}^{e}$) used in eq. (2.54) need not neceseari $2 y$ refer to the centre of gravity of the molecule as their origin as it is required in eq. (2.50). The procedure to find ant $T_{\alpha \beta}$, s elements of $\mathrm{IX}_{2}\left(\mathrm{C}_{2 \mathrm{~V}}\right)$ bent symmetric molecule is given below.

2-6 II_{2} bent aymetric molecule as example:
Vibration of $\mathrm{XI}_{2}\left(\mathrm{C}_{2 \mathrm{~V}}\right)$ type molecule is olamified into $2 A_{1}+B_{2}$ species. The aymatry coordinate: are
$g_{1}(A)=2^{-1 / 2}\left(\Delta r_{1}+\Delta r_{2}\right)$
$s_{2}(\Lambda)=r \Delta \alpha$
$8_{3}(B)=2^{-1 / 2}\left(\Delta r_{1}-\Delta r_{2}\right)$

FTG.(2.1)
$X Y_{2}$ bent symmetric molecuic
(symmetry $\mathrm{C}_{2 \mathrm{~V}}$)

Where Δr_{1} and Δr_{2} are the ohanges in bood longth and $\Delta \alpha$ is change in interbond angle. 2α is the equilibrium $I X I$ angle. Iet m_{X} and m_{Y} be the massea of atom X and Y. The conponente of 8 rectore, t^{\bullet}. vectorn, G matrix elements, componente of i^{\bullet} vecterm and the B matrix of X_{2} bent mymetric moleculee are given .below.

Atom
S - Vectors

$$
s_{1}(A)
$$

1	0	$2^{1 / 2} \sin \alpha$	$-2^{-1 / 2} 000 \alpha$
2	0	$-2^{-1 / 2} \operatorname{ain} \alpha$	$-2^{-1 / 2} \cos \alpha$
3	0	0	$2^{1 / 2} \cos \alpha$
Atom		$S_{2}(1)$	
1	0	$\cos \alpha$	$\sin \alpha$
2	0	$-\cos \alpha$	$\sin \alpha$
3	0	0	$-2 \sin \alpha$
Atom		$8_{2}(B)$	
1	0	$2^{-1 / 2} \operatorname{ain} \alpha$	$-2^{1 / 2} \operatorname{ces} \alpha$
2	0	$2^{-1 / 2} \tan \alpha$	$2^{-1 / 2} \cos \alpha$
3	0	$-2^{1 / 2} \operatorname{ain} \alpha$	0

$$
t^{0} \text { - vectore }
$$

Atom

$$
\begin{array}{cccc}
1 & 0 & 2^{-1 / 2} \sin \alpha & -2^{-1 / 2} u^{-1} m_{X} \cos \alpha \\
2 & 0 & -2^{-1 / 2} \sin \alpha & -2^{-1 / 2} u^{-1} m_{X} \cos \alpha \\
3 & 0 & 0 & 2^{1 / 2} u^{-1} \cos \alpha
\end{array}
$$

8 (1)

1	0	$2^{-1} \cos \alpha$	$2^{-1} y^{-1} m_{x} \sin \alpha$
2	0	$-2^{-1} \cos \alpha$	$2^{-1} u^{-1} m_{X} \sin \alpha$
3	0	0	$-M^{-1} m_{Y} \sin \alpha$

s_{2} (B)

$3 \quad 0 \quad-8^{1 / 2}\left(M_{x x}^{\bullet}\right)^{-1} \quad x_{1}^{2} r^{2} \min \alpha$
0

Elements of G matrix

$a_{11}=\left(200{ }^{2} \alpha / m_{X}\right)+\left(1 / m_{Y}\right)$
$\theta_{12}=\left(-2^{1 / 2} \sin 2 \alpha / m_{x}\right)$
$a_{22}=\left(4 \sin ^{2} \alpha / m_{x}\right)+\left(2 / m_{1}\right)$
$\theta_{33}=\left(2 \operatorname{anc}^{2} \alpha / m_{X}\right)+\left(1 / n_{Y}\right)$

Where $M=m_{X}+2 m_{Y}$. m_{X} and m_{Y} are the mass of X and Y atom.
$I_{x x}^{e}=I_{y y}^{e}+I_{z x}^{e}$
$=2 M^{-1} r^{2} m_{Y}\left(m_{X}+m_{Y} \sin ^{2} \alpha+m_{Y} \sin ^{2} \alpha\right)$
r is represent the bond length $X-Y$

$$
\begin{align*}
& R^{e}-\operatorname{matrix} \\
&=\left[\begin{array}{c}
0 \\
-r \sin \alpha \\
0 \\
0 \\
0 \\
r \cos \alpha \\
0 \\
r \sin \alpha \\
0
\end{array}\right] \tag{2.65}
\end{align*}
$$

$$
\begin{aligned}
& \text { NOOO O O }
\end{aligned}
$$

$$
\begin{aligned}
& x^{m} 0000
\end{aligned}
$$

$$
\begin{aligned}
& x^{N} 0000
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 000 \\
& \text { ゥ } \boldsymbol{\omega}^{m} \omega^{m}
\end{aligned}
$$

> ソ ${\underset{\infty}{N}}_{\mathrm{N}_{\infty}^{4}} 0 \quad 0$
> $\underset{\text { ふ }}{\text { ふ }} \underset{\text { ふ }}{\text { ふ }} \underset{\sim}{\infty}$

References

1. Dennison D.il. 1931 Hev. Mod. Phys. 2280
2. Wang S.C. 1929 Phys. Kev. 34243
3. Teller E and Tisza L. 1932 Zeits. P. Physik 73791
4. Vanvleck J.H. 1935 Phys. Rev. 47487
5. Crose P.C. 1935 Phys. Rev. 477
6. Daniel Kivelson and Bright Wilson Jr.E. 1952 J.Chem.Phye. 20157
7. Benedict. 1949 Phys. Rev. 151317
8. King, Hainor and Cross. 1943 J.Chem. Phys. 227
9. King, Hainor and Crose. 1949 J.Chem. Phys. 17826
10.Klein O. 1929 Z.Physik 58730
11.Bragg J.K. and Golden S. 1949 Phys. Rev. 75735
12.Crose P.C. 1935 Phys. Rev. 477
13.Lawrance R.B. and Standberg in.W.P. 1951 Phys. Rev. 83363
14.Wilson E.B.Jr. 1936 J.Chem. Phys. 4526
15.Wilson E.B.Jr. 1937 J.Chem.Phys. 5617
16.Wiison E.B.Jr., Decius J.C. and Cross P.C.
"Bolecular vibrations" McGraw Hill Book Co. New York 1955
17.Kivelson D and Wilson E.B.Jr. 195. J.Chem.Phys. 211229
18.Cyvin B.N., Elvebredd I and Cyvin S.J. 1969 2.Naturforsch.24a, 1 19.Cyvin S.J., Cyvin B Z. and Hagen G. 1968 Z.Naturforsch. 23a, 164 20.Cyvin S.J. "wolecular vibrations and Mean Square Amplitudes" (Universitetsiorlaset, 0slo 1968)
21.Polo S. R. 1956 J.Chem. Phys. 241133

CHAPTER III

PARAMETRISATION OF CENTRIfUGAL DISTORTION CONSTANTS: APPLICATION TO XY 2 BENT SYMAETRIC MOLECULES

Abstract

A method to generate all the mathematically possible values of centrifugal distortion constants of a molecule compatible with its vibrational frequencies is developed. Application of the method to the XI_{2} bent symmetric molecules enables mapping of all the $\tau_{\alpha \beta \gamma \delta}$ constants as a . .unction of a single parameter. The use of the method in defining the limits as well as in refining the experimental values of $\tau_{\alpha \beta \gamma \delta}$ constants is discussed. The method also opens up a route to $f i x$ the force constants unambigously employing the $\tau_{\alpha \beta \gamma \delta}$ constanta as additional data. The numerical example of SCl_{2} molecule is given to illuatrate the general procedure.Approximation formulas are derived for easier evaluation of $\tau_{\alpha \beta \gamma \delta}$ constants in $X Y Y_{2}$ bent symmetric molecules. The $\tau_{\alpha_{\beta \gamma} \delta}$ elements calculated under this approximation agree very well with the experimental values obtained fram the microwave spectrum. Also a method is presented here to predict fundamental vibrational frequencies from $\tau_{\alpha_{\beta \gamma \delta}}$ elements available Ir m the microwave spectrum. Using this method fundamental vibrational frequencies of $f e w X_{2}$ bent symmetric moleculea are obtained from $\tau_{\alpha \beta \gamma \delta}$ elements.

From the theoretical discussion given in the previous chapter, we find that the centrifugal distortion constants are the functions of interatomic forces of the molecule as well as of molecular geometry. In section 4 of chapter 1 we have seen that the intramolecular force can be expressed in terms of dimensionless mixing parameters. This mears that the explicit dependence of the centrifugal distortion constants on the force constant matrix elements can be eliminated and the $D_{J}, D_{J K}$ values also can be expressed in terms of the sam: dimensionless parameters. In section 2 of the present chapter, the partmetris tion of centrifugal distortion constants is discussed in detail. In section 4 of this chapter the problem of fixing the intranolecular force field uniquely by taking centrifugal distortion constant as additional experimental data is discuss 3 d within the frame work of parametric formalism for X_{2} bent symmetric molecular system. SCl_{2} molecule is taken as an example and accurate values of force constants are obtained. The theoretical formula derived here leads to the interesting conclusion that the prediction of fundamental vibrational frequencies in the molecule is possible solely using the microwave spectrai data, viz.rotational constante and centrifugal distortion constants. The method is demonstrated in the case of few molecules by working out the numerical values of their vibrational irequencies from microwave data and comparing them with the experimental Vibretional frequencies. In sectior 3-7 we show how parametrisation leads to the natural approximation formulas for centrifugal
dietortion conatante in XY_{2} molecular model.

3-2 Parametrisation of centrifugal distortion canstante:

As noted earlier in eq. (2v39) the centrifugal diotortion constants $\tau_{\alpha_{\beta \gamma \delta}}$ are related ${ }^{1}$ to $t_{\alpha_{\beta \gamma \delta}}$. Because of the obvioue advantages of T_{S} matrix which have already been discussed in the previu chapter, we have followed the Cyvins ${ }^{2,3}$ modified method for computing centrifugal distortion constants. The t matrix consiste of element $t_{\alpha_{\beta}} \gamma \delta$ through the relation

$$
\begin{equation*}
t \quad=\widetilde{T s} G^{-1} F^{-1} G^{-1} T s \tag{3.1}
\end{equation*}
$$

where G^{-1} is the rinetic perey matrix and F^{-1} is the inveree force constant matrix. Using the eqe.(1.13), (1.7) and (1.14) of chapter 1, eq. (3.1) can be expressed in the form ${ }^{4}$

$$
\begin{equation*}
t \quad \widetilde{X} \quad c \quad \wedge^{-1} \widetilde{C} \quad K \tag{3.2}
\end{equation*}
$$

where $K=\left(L_{0}\right)^{-1} T s$
The Ts matrix for few molecular models have been already discussed by Cyvin ${ }^{2,3}$. Eq. (3.2) is important because we can map all the mathematical values of $t_{\alpha_{\beta \gamma \delta}}$ fitting the observed vibrational Irequenciea by systamatically changing $\frac{1}{2} \sum_{i} n_{i}\left(n_{i}-1\right)$ parametert of C matrix in the general case.

3-3 Application to $X Y_{2}$ bent symmetric molecular models:
When L_{0} is taken in the lower trinalar form ${ }^{4,5}$
$\left(I_{0}\right)_{i j}=0$ for $1<j$. An advantage here is wat all the non-sere - lements of L_{0} matrix can be obtained from the relation $I_{0} \tilde{L}_{0}=0$. The non-vanishing elements of K obtained from eq. (3.3), when L_{0} is taken in the lower triangular form are given below.

$$
\begin{aligned}
& K_{11}=\left(L_{0}^{-1}\right)_{11} \sqrt{8} r \\
& K_{12}=\left(L_{0}^{-1}\right)_{11} \sqrt{8} r \cos ^{2}(\alpha / 2) \\
& \left.K_{13}=\left(L_{0}^{-1}\right)_{11} \sqrt{8} r \sin ^{2}\right)(\alpha / 2) \\
& K_{21}=\left(L_{0}^{-1}\right)_{21} \sqrt{8} r \\
& K_{22}=\left(L_{0}^{-1}\right)_{21} \sqrt{8} r \cos ^{2}(\alpha / 2)-\left(L_{0}^{-1}\right)_{22} 2 r \sin \alpha \\
& K_{23}=\left(L_{0}^{-1}\right)_{21} \sqrt{8} r \sin ^{2}(\alpha / 2)+\left(L_{0}^{-1}\right)_{22} 2 r \sin \\
& K_{36}=\left(L_{0}^{-1}\right)_{33} 2 r \sin \alpha
\end{aligned}
$$

(3.4a)
(3.4e)
(3.4e)
where r represents the bond length and α represent the interbond angle. A suitable form of C that $c a n$ be used for the case under consideration is given below.

$$
C=\frac{1}{G}\left[\begin{array}{ccc}
1 & c & 0 \tag{3.5}\\
-c & 1 & 0 \\
0 & 0 & G
\end{array}\right]
$$

where $G=\left(1+c^{2}\right)^{1 / 2}$
Substituting eq. (3.5) and (3.4) in eq. (3.2) gives the direct
expression for $t_{\alpha \beta \gamma \delta}$ as

$$
\begin{align*}
t_{\mathbf{x y x}}= & {\left[\left(K_{11}^{2} \Lambda_{2}^{-1}+K_{21}^{2} \Lambda_{1}^{-1}\right) c^{2}+2 K_{11} K_{21}\left(\Lambda_{2}^{-1}-\Lambda_{1}^{-1}\right) c+\right.} \\
& \left.\left(K_{11}^{2} \Lambda_{1}^{-1}+K_{21}^{2} \Lambda_{2}^{-1}\right)\right] /\left(1+c^{2}\right) \tag{3.6a}\\
t_{\mathbf{y y y y}}= & {\left[\left(K_{12}^{2} \Lambda_{2}^{-1}+K_{22}^{2} \Lambda_{2}^{-1}\right) c^{2}+2 K_{12} K_{22}\left(\Lambda_{2}^{-1}-\Lambda_{1}^{-1}\right) c+\right.} \\
& \left.\left(K_{12}^{2} \Lambda_{1}^{-1}+K_{22}^{2} \Lambda_{1}^{-1}\right)\right] /\left(1+c^{2}\right) \tag{3.6b}
\end{align*}
$$

$$
\begin{align*}
t_{\text {zzz }}= & {\left[\left(K_{13}^{2} \Lambda_{2}^{-1}+K_{23}^{2} \Lambda_{1}^{-1}\right) c^{2}+2 K_{13} K_{23}\left(\Lambda_{2}^{-1}-\Lambda_{1}^{-1}\right) c+\right.} \\
& \left.\left(K_{13}^{2} \Lambda_{1}^{-1}+K_{23}^{2} \Lambda_{2}^{-1}\right)\right] /\left(1+c^{2}\right) \tag{3.60}\\
t_{x x y y}= & {\left[\left(K_{11} K_{12} \Lambda_{2}^{-1}+K_{21} K_{22} \Lambda_{1}^{-1}\right) c^{2}+\right.} \\
& \left(K_{11} K_{22}+K_{12} K_{21}\right)\left(\Lambda_{2}^{-1}-\Lambda_{1}^{-1}\right) c+ \tag{3.6d}\\
& \left.\left(K_{11} K_{12} \Lambda_{1}^{-1}+K_{21} K_{22} \Lambda_{2}^{-1}\right)\right] /\left(1+c^{2}\right) \\
t_{x z z}= & {\left[\left(K_{11} K_{13} \Lambda_{2}^{-1}+K_{21} K_{23} \Lambda_{1}^{-1}\right) c^{2}+\right.} \\
& \left(K_{11} K_{23}+K_{21} K_{13}\right)\left(\Lambda_{2}^{-1}-\Lambda_{1}^{-1}\right) c+ \tag{3.60}\\
& \left.\left(K_{11} K_{13} \Lambda_{1}^{-1}+K_{21} K_{23} \Lambda_{2}^{-1}\right)\right] /\left(1+c^{2}\right) \\
t_{y y z z}= & {\left[\left(K_{12} K_{13} \Lambda_{2}^{-1}+K_{22} K_{23} \Lambda_{1}^{-1}\right) c^{2}+\right.} \\
& \left(K_{12} K_{23}+K_{13} K_{22}\right)\left(\Lambda_{2}^{-1}-\Lambda_{1}^{-1}\right) c+ \tag{3.6f}\\
& \left.\left(K_{12} K_{13} \Lambda_{1}^{-1}+K_{21} K_{23} \Lambda_{2}^{-1}\right)\right] /\left(1+c^{2}\right) \\
t_{y z y z}^{=} & \left(K_{36}\right)^{2} \Lambda_{3}^{-1} \tag{3.6~g}
\end{align*}
$$

Due to the planarity of the molecule, Kivelson and Wilson have shown that some of the $t_{\alpha \beta \gamma \delta}$ elements are related through the following equations

$$
\begin{align*}
& t_{x x x x}=t_{y y y y}+t_{z z z z}+t_{y y z z}+t_{y y z z} \tag{3.7a}\\
& t_{x x x x}=t_{x x y y}+t_{x x z z} \tag{3.7b}\\
& t_{x x z z}=t_{z y z z}+t_{y y z z} \tag{3.7e}
\end{align*}
$$

Thus to study the variation of different $t_{\alpha \beta \text {, }}$ elemente in Eq. (3.6) it is enough if we study the variation of the independent quantitee $t_{y y y y}, t_{\text {szzz }}$ and $t_{x y x x}$. Also we find that the expression for $t_{\text {ygys }}$ is independent of c. The centrifugal distortion constente $\tau_{\alpha_{\beta \gamma \delta}}$ are related to $t_{\alpha \beta \gamma \delta}$ are given below.
$\tau_{y y y y}=-\epsilon t_{y y y y} / 2 I_{y y}^{4}$
$\tau_{5 z z z}=-\epsilon t_{\text {zzzz }} / 2 I_{z z}^{4}$
$\tau_{10 x x}=-\epsilon t_{x x x x} / 2 I_{x x}^{4}$
$'_{y y z z}=-\epsilon t_{y y z z} / 2 I_{y y}^{2} I_{z z}^{2}$
where $I_{x x}=I_{y y}+I_{z z}$
$I_{y y}=2 H_{Y} M_{X} r^{2} \cos ^{2}(\alpha / 2) /\left(2 M_{Y}+M_{X}\right)$
$I_{g x}=2 H_{Y} r^{2} \sin ^{2}(\alpha / 2)$
here ϵ is a constant equal to 677.3 when mass of the atom is expressed in a.m.u., bondlength in \AA, frequency in cm^{-1} and τ in yHs. G is a unit conversion factor to transform the unit of t into that of τ. In general eq. (3.8) can be expressed in the form $\tau_{\alpha_{\beta \gamma \delta}}=\left(p c^{2}+q c+r\right) /\left(1+c^{2}\right)$
Here p, q, r, are constants containing molecular geometry,
fundamental vibrational frequencies and atomic masses. An importan property of eq. (3.10) is that this equation helps us to plot directly the centrifugal distortion constant $\tau_{\alpha \beta \gamma \delta}$ as a function of a aingle parameter c. When $c=0 \tau_{\alpha \beta \gamma \delta}=r$ and $\tau_{\alpha \beta \gamma \delta}$ tends p when c takes very high values. Differenciating eq. (3.10) with
respect to c and equating it zero for extremal values, we get the maxima and minima of τ corresponding to

$$
\begin{equation*}
c=(p-r) \pm\left[(p-r)^{2}+q^{2}\right]^{1 / 2} \tag{3.11}
\end{equation*}
$$

Any value of τ beyond its maximum and minimum values will not be consistent with the vibrational Prequencies in the harmonic approxdmation. The importance of this equation is that it help us to find out the range of $\tau_{\alpha \beta \gamma \delta}$ without knowing the force field of the molecule. It is really a definite advantage to the microwave spectroscopist to know the range of $\tau_{\alpha \beta \gamma \delta}$ values in interpreting the microwave spectrum.

3-4 Unique fixing of intramolecular forces:

$$
\tau_{\alpha \beta \gamma \delta} \text { values are necessary to know the rotational }
$$ energy levels of the molecule. The centrifugal distortion constant can be obtained experimentally by studying the microwave spectrum or they can be computed from the force constants of the molecule. In many molecules the force field is not fixed uniquely because the frequency data alone are not sufficient, for this purpose. However if $\tau_{\alpha_{\beta \gamma \delta}}$ are known precisely from the microwave spectrum, it helps to fix uniquely the force field of the molecules. Hence $\tau_{\alpha \beta \gamma \delta}$ are an important set of molecular data like isotopic frequencies ${ }^{6}$, Coriolis coupling constants ${ }^{7}$, vibrational awplitudes ${ }^{8}$ and infrared intensities ${ }^{9}$.

3-5 Example SCl_{2} molecule:
In order to illustrate the theory outlined above, SCl_{2}
molecule is treated here as an example. It is one of the $\mathbf{X I}_{2}$ bent aymmetric molecules recently studied by Jerry ${ }^{10}$ et al. Molecular geometry and fundamental vibrational frequencies are taken from reference 10 and 11. reapectively. Using eq. (3.10), the variation of the $\tau_{\alpha \beta \gamma \delta}$ against c are studied and the resulte are shown in Fig. (3.1), (3.2) and (3.3) and this shows that values ehould lie within a certain range given by the extreme points of the curve. The experimentally observed values of elemente alongwith uncertainities are included in Fig. (3.1), (3.2) ana (3.3) and are marked by solid and dotted lines. The numerical values of p, q, r terms in eq. (3.10) for different valuen of $\tau_{\alpha \beta \gamma \delta}$ elements are given in Table 1. It may be noted that an experimental value of $\tau_{\alpha \beta \gamma \delta}$ generally gives two values of c. This is possible because the quadratic nature of eq. (3.10). The two values of c obtained from eq. (3.10), described as c_{A} and c_{V},for different values of $\tau_{\alpha \beta \gamma \delta}$ are also given in Table 1 . The use of two values of c in eq. (3.2) gives two sets of force ccistant. This leade to an interesting conclusion that use of any one of the $\tau_{\alpha \beta \gamma \delta}$ values as additional datum yields in general two possible sets of force constante fitting the $\tau_{\alpha \beta \gamma \delta}$ as well as the fundamental vibrational frequencies. More than one set of force fields fitting the additional experimental data like isotopic frequencies ${ }^{6}$, Coriolie coupling constants ${ }^{7}$, vibrational ampletudes ${ }^{8}$ and infrared intensities ${ }^{9}$ have been noted earlier. The present result shows that the centrifugal dietortion constants are no exception to this general reaulto in moch asess of multiplicity of force constants, use of jet another datum uan been suggested earlier to eliminate the anomaloue nett. In thie

Variation of $\tau_{\alpha \beta \gamma \delta}$ elements with parameter c.

case there are three independent $\tau_{\alpha \beta \gamma \delta}$ elements as additional experimental data. The values of ${ }^{\circ} \mathrm{y}$ given in Table 1 corresponding to each of the $\tau_{\alpha \beta \gamma \delta}$ elements show a large difference but the real value of $c\left(c_{A}\right)$ correaponding to each of the $\tau_{\alpha \beta \gamma \delta}$ elemente has almost a common value near origin. This shows that use of more than one $\tau_{\alpha \beta \gamma \delta}$ elements will help us to caloulate the force constants in a unique way. From Table 1 the real value of 0 corresponding to $\tau_{\text {yyyy }}, \tau_{z z z z}$ and $\tau_{\text {zoxx }}$ are 0.062 ± 0.005, 0.064 ± 0.001 and 0.065 ± 0.002 respectively. We can find that there is a alight difference in the real value of o obtained from different $\tau_{\alpha \beta \gamma \delta}$ elements. The value of $c=0.064 \pm 0.001$ is contained in all c values, hence we take $c=0.064 \pm 0.001$. The expression to calculate the fore constante of $X Y_{2}$ bant gymetric molecules in paramatric formaliam 1.8 given below.
$F_{11}=\left[\left\{\left(I_{0}^{-1}\right)_{11} \Lambda_{2}+\left(I_{0}^{-1}\right)_{21} \Lambda_{1}\right\} c^{2}+2\left(I_{0}^{-1}\right)_{11}\left(I_{0}^{-1}\right)_{21}\left(\Lambda_{2}-\Lambda_{1}\right) 0\right.$ $\left.\left.+\left\{\left(\Lambda_{0}^{-1}\right)_{11} \Lambda_{1}+\left(L_{0}^{-1}\right)_{21} \Lambda_{2}\right)\right\}\right]\left(1+e^{2}\right)$
$P_{12}=\left[\left(I_{0}^{-1}\right)_{22}\left(I_{0}^{-1}\right)_{21} \wedge_{1} 0^{2}+\left(\Sigma_{0}^{-1}\right)_{11}\left(I_{0}^{-1}\right)_{22}\left(\Lambda_{2}-\Lambda_{1}\right) c+\right.$

$$
\begin{equation*}
\left.\left(I_{0}^{-1}\right)_{21}\left(I_{0}^{-1}\right)_{22} \wedge_{2}\right] /\left(1+0^{2}\right) \tag{3.12b}
\end{equation*}
$$

$F_{22}=\left[\left(L_{0}^{-1}\right)_{22}^{2} \Lambda_{1} c^{2}+\left(L_{0}^{-1}\right)_{22}^{2} \Lambda_{2}\right] /\left(1+e^{2}\right)$
The force constants which have been obtained in the present work are compared with those from oarlier worics and are given in Tavle 2. The force field obtained in the present calculation is in better agreement with the results of Davis and Gerry ${ }^{10}$. The better
accuracy of the present result is a particularly notable feature.

3-6 Prediction of fundamental vibraticnal frequencies from microwave data:

Use of eqs. (3.6) and (3.8) enable us to predict the infrared irequencies and the dimensionlesemixing parameter o which controla the force finld. The centrifugal diatortion constant $\tau_{\alpha \beta \gamma \delta}$ can be rewritten as given below:
$-\frac{\left(1+e^{2}\right)}{\epsilon} 2 I_{y y}^{4} \tau_{y y y y}=t_{y y y y}=A \Lambda_{1}^{-1}+B \Lambda_{2}^{-1}$
$-\frac{\left(1+e^{2}\right)}{\epsilon} 2 I_{z z}^{4} \tau_{z z \varepsilon}=t_{z \Sigma \Sigma \varepsilon}=D \Lambda_{1}^{-1}+E \wedge_{2}^{-1}$
$-\frac{\left(1+o^{2}\right)}{\epsilon} \dot{2} I_{y y}^{2} I_{y z}^{2} \tau_{y y z z}=t_{y y z z}=F N_{1}^{-1}+\theta \hat{N}_{2}^{-1}$
where

$$
\begin{align*}
& A=X_{22}^{2} c^{2}-2 K_{12} X_{22} c+K_{12}^{2} \tag{3.16a}\\
& B=K_{12}^{2} c^{2}+2 K_{12} K_{22} c+K_{22}^{2} \tag{3.16b}\\
& D=K_{23}^{2} c^{2}-2 K_{13} K_{23} c+K_{13}^{2} \tag{3.16c}\\
& E=K_{13}^{2} c^{2}+2 K_{13} K_{23} c+K_{23}^{2} \tag{3.16d}\\
& F=K_{22} X_{23} c^{2}-\left(K_{12} K_{23}+K_{13} K_{22}\right) c+K_{12} X_{13} \tag{3.160}\\
& G=K_{12} X_{13} c^{2}+\left(X_{12} K_{23}+K_{13} X_{22}\right) c+X_{22} X_{23} \tag{3.165}
\end{align*}
$$

From eq. (3.15) Λ^{-1} is expressed in terms of \wedge_{2}^{-1} and 0 and applied in eq. (3.14) and (3.15). It helps us to plot graph between Λ_{2}^{-1} and c as shown in Yig. (3.4), using eq. (3.14) and (3.15).

Λ_{2}^{-1}
and obtained from the intersection when used in any one of the eq. (3.13), (3.14) or (3.15) will give X_{1}^{-1}. This procedure is applied to evaluate the infrared frequencies from miorowave data for molecules like $\mathrm{HO}_{2}, \mathrm{ClO}_{2}, \mathrm{SO}_{2}, \mathrm{SCl}_{2}$ and SeO_{2}. The reault obtained is given in Table 3 which is in very good agreement with the experimental data. Such an approach if of great use to the experimental infrared epectromcopista. In the oase of infrared spectra whioh are ocmplicated by bvertonea and oombination bande and their overlapa, the present calculation will be of value In looating the fundamentals in a peciea. Thus miorowave data could be great use in the analysis of infrared apectrum.

3-7 Approxdmation formula for calculating $\tau_{\alpha \beta \gamma \delta}$ elemente:
In seotion 2 of this chapter we have discussed the theory to parametrise the $\tau_{\alpha \beta \gamma \delta}$ constants in $X Y_{2}$ bent mymetric molecular models. This approach leads to the natural approximation formula for $\tau_{\alpha \beta \gamma \delta}$ lementa. The $t_{\alpha \beta \gamma \delta}$ elements oan be expressed in the matrix form and it is given in eq.(3.2). It has been noted that the matrix C is very olose to unit matrix in the oase of molecules with vibrational frequencies of order two, when I_{0} is taken in the lower triangular form ${ }^{6,7,12}$ for non-hydriden and in upper triangular form ${ }^{12,13}$ for hydrides. Hence is $\mathbf{X Y}_{2}$ bent symmetrio molecules eq.(3.2) con be approximated to

$$
\begin{equation*}
t=\widetilde{K} \wedge^{-1} \quad K \tag{3.17}
\end{equation*}
$$

The simplefied formulas for $t_{\alpha \beta \gamma \delta}$ lementa are given below.
$X Y_{2}\left(C_{25}\right)$ Mon hydrides
$t_{\text {xaxx }}=P$
(3.18a)
$t_{g z z g}=P \sin ^{4}(\alpha / 2)+\left[Q-2 R \sin ^{2}(\alpha / 2)\right] \wedge_{2}^{-1}$
(3.18b)
$t_{y y y y}=P \cos ^{4}(\alpha / 2)+\left[Q+2 \Omega \cos ^{2}(\alpha / 2)\right] \wedge_{2}^{-1}$
(3.18c)
$t_{x y y}=P \cos ^{2}(\alpha / 2)+R \Lambda_{2}^{-1}$
$t_{\text {xazz }}=P \min ^{2}(\alpha / 2)-I \Lambda_{2}^{-1}$
(3.18e)
$t_{y y z z}=P \sin ^{2}(\alpha / 2) \cos ^{2}(\alpha / 2)-[Q+R \cos \alpha] \wedge_{2}^{-1}$
where $\quad P=8 r^{2}\left(\Lambda_{1}^{-1}-G_{12}^{2} \Lambda_{2}^{-1} /|G|\right) G_{11}$
$Q=4 x^{2} G_{11} \sin ^{2} \alpha /|G|$

$$
\begin{align*}
& E=\left(4 x^{2} \sqrt{2} G_{12} \sin \alpha\right) / 101 \\
& t_{y=y s}=\left(2 r^{2} / G_{33}\right) \sin ^{2} \alpha \wedge_{3}^{-1} \tag{3.18g}
\end{align*}
$$

x it the bond length and α in interbond angle.
$I_{2}\left(C_{2 v}\right)$ Hydrides

$$
\begin{align*}
& t_{20 x}=4 \lambda^{-1} \tag{3.19a}\\
& t_{y y y y}=A A_{1}^{-1} \cos ^{4}(\alpha / 2)+B\left[C+2^{3 / 2} G_{12} 008^{2}(\alpha / 2)\right] \Lambda_{1}^{-1}+1 \lambda_{2}^{-1} \tag{3.19b}\\
& t_{z z z z}=A \Lambda_{1}^{-1} \sin ^{4}(\alpha / 2)+B\left[C-2^{3 / 2} G_{12} \sin n^{2}(\alpha / 2] \lambda_{1}^{-1}+D \Lambda_{2}^{-1}\right. \tag{3.190}\\
& t_{x y y y}=A \Lambda_{1}^{-1} \cos ^{2}(\alpha / 2)+\sqrt{2} B G_{12} \Lambda_{1}^{-1} \tag{3.19~d}\\
& t_{x x z z}=A \wedge_{1}^{-1} \sin ^{2}(\alpha / 2)-\sqrt{2} B G_{12} A_{1}^{-1}
\end{align*}
$$

(3.190)

$$
\begin{align*}
& t_{y y 8 z}=(N / 4) \Lambda_{1}^{-1} \sin ^{2}-B\left(C+2 G_{12} \cos \alpha\right) \Lambda_{1}^{-1}-D \Lambda_{2}^{-1} \tag{3.19f}\\
& t_{y z y z}=\left(2 r^{2} / G_{33}\right) \sin ^{2}(\alpha / 2) \Lambda_{3}^{-1} \tag{3.19~g}
\end{align*}
$$

Here $\quad A=8 r^{2} G_{22} /|0|$
$B=4 r^{2} \sin \alpha / 101$
$c=G_{12}^{2} \sin \alpha / G_{22}$
$D=4 r^{2} \sin ^{2} \alpha / G_{22}$
In Sable 4 the $\tau_{\alpha \beta \gamma \delta}$ values ibtained using the prosent method is compared with the experimental values ot tained from microwave apectrum. It is found that the agreement is very good. Advantage of the approximation formulas developed for calculating constante are the following.
i) The expressions contain only atomic masses, molecular geometry and fundamental vibrational frequancies.
ii) The formulas derived will be a definite advantage to the microwave apectroscopiet because the method jields values of $\tau_{\alpha \beta \gamma \delta}$ elements near the real ones without recourse to a detailed force field analyein.

Hence for a quick computation of the approximate magnitude of the centrifugal distortion constants, these formulas are of great help.

(Jnit mis	Taluen of perer in max			Sta tro veluan of	
		p	,	r	${ }^{1}$	${ }^{*}$
$\tau_{\text {गנग }}$	${ }_{-0}^{-0.490999} \pm$	-0.91855	0.99666	-0.55715	${ }_{\text {O }}^{0.0062 \pm}$	2.4
$\tau_{\text {sass }}$	${ }_{-0.0 .09017 \pm}^{0.000017}$	-0.00495	-0.008034	-0.00405	0.064土	2.2
$\tau_{\text {mix }}$		-0.00469	-0.004353	-0.0023086	${ }_{\text {cose }}^{0.0055}$	-2.15

Bxperimontal value of $\tau_{\alpha \beta \gamma \delta}$ elemente are taken from reference 10
TABLE 2

$F_{1 j}$	Present wark	Previcus mork		
		Beference 10	Reference 22	Heference 11
F_{11}	2.9274 ± 0.0142	2.913 ± 0.03	2.641	2.52
Ψ_{12}	0.0983 ± 000052	0.0926 ± 0.0055	-0.029	-0.055
${ }^{1} 22$	0.2637 ± 0.00007	0.2624 ± 0.0021	0.303	0.305

TABIE 3
Fundamental vibrational frequenciea $\left(\mathrm{cm}^{-1}\right)$ obtained from
centrifugal distortion constants

Molecule	ν_{1}			ν_{2} Calculated		Observed	Calculated	Observed
SCl_{2}	510	514	203	208				
ClO_{2}	937	943	441	445				
SeO_{2}	903	900	401	400				
SO_{2}	1142	1151	509	518				
NO_{2}	1349	1357.8	750	756.8				

TABFE 4

Centrifugal dietortion constante (in MEs) for few XI bent mymetric moleoules calculated under the
present approximation method

Molecule	$\tau_{\text {zoox }} T_{y y y y}$	$\tau_{\text {mex }}$	$\tau_{\text {xxy }}$	T_{2088}	$\tau_{78 \%}$	Reforence
SeO_{2}	$\begin{array}{cc} -0.00705 & -2.235 \\ & (-2.195 \pm \\ 0.03) \end{array}$	$\left.\begin{array}{c} -0.0416 \\ (-0.0437 \pm \\ 0.006 \end{array}\right)$	0.00916	-0.01283	$\begin{aligned} & 0.218 \\ & (0.222+ \\ & 0.017) \end{aligned}$	18
HO_{2}	$\begin{array}{cc} -0.02549 & -311.6 \\ (-299.4 \pm \\ 4) \end{array}$	$\begin{gathered} -0.03959 \\ (-0.04144+ \\ 0.00015) \end{gathered}$	0.7821	-0.0307	$\begin{aligned} & 1.822 \\ & (1.843 t \\ & 0.02)^{2} \end{aligned}$	19
SO_{2}	$\begin{array}{ll} -0.01114 & -10.000 \\ & (-9.2792) \end{array}$	$\begin{aligned} & -0.03438 \\ & (-0.03553) \end{aligned}$	0.06013	-0.01703	$\begin{aligned} & 0.3756 \\ & (0.3786) \end{aligned}$	20
ClO_{2}	$\begin{array}{ll} 0.01423 & -8.244 \\ & (-8.529) \end{array}$	$\begin{aligned} & -0.04590 \\ & (-0.04557) \end{aligned}$	0.0588	-0.0223	$\begin{aligned} & 0.3865 \\ & (0.3924) \end{aligned}$	21
$\mathrm{H}_{2} \mathrm{O}$	$\begin{array}{lr} -0.00104 & -0.09281 \\ (-0.00107 \pm & (-0.1084 \pm \\ 0.00027) & 0.0012) \end{array}$	$\begin{array}{r} 0.009212 \\ (-0.0083 \pm \\ 0.00127 \end{array}$	$\begin{aligned} & -0.002975 \\ & (-0.00491) \end{aligned}$	$\begin{aligned} & -0.00158 \\ & (-0.00108) \end{aligned}$	$\begin{aligned} & 0.001936 \\ & (0.001985) \end{aligned}$	15
$\mathrm{H}_{2} 8$	$\begin{array}{ll} -7.94 & -241.9 \\ (8.03) & (-247.56) \end{array}$	$\begin{aligned} & -145.6 \\ & (-151.25) \end{aligned}$	-17.6	-14.84	$\begin{aligned} & 123.7 \\ & (123.66) \end{aligned}$	16
$\mathrm{H}_{2} 80$	$5.057 \quad \begin{gathered} -140.49 \\ (-141.8 \pm \\ 0.9) \end{gathered}$	$\begin{aligned} & 119 \\ & (121.977) \end{aligned}$	-9.988	9.317	$\begin{aligned} & 87.38 \\ & (90.036) \end{aligned}$	17

Falnos mithin bracketo correspond to thooe reported from mioroware analysiogiren in the referenee.

References

1. Kivelson D and Wilson E.B. Jr., 1953 J.Chem. Phys. 21, 1229
2. Cyvin S.J., Cyrin B.N. and Hagen G. 1968 Z.Naturforsch. 23a, 1649
3. Cyvin B.N., Elvebredd I and Cyvin S.J. 1969 2.Naturforsch. 24a, 139
4. Ananthakrishnan T.R., Girijavallabhan C.P. and Aruldhas G. 1976 J.Mol.Spectrosc. 60, 239
5. Ananthakrishnan T.R., Paul C M. and Girijavallabhan C.P. 1977 Pramana, 2, 329
6. Ananthakriahnan TAR., Girijavallabhan C.P. and Aruldhas G. 1973 J.Mol.Struct. 16, 149
7. Ananthakrishnan T.R. and Aruldhas G. 1972 J.Mol.Struct. 13, 163
8. Ananthakrishnen T.R. Girijavallabhan C.P. and Aruldhas G.

1973 Ind.J.Pure and Appl.Phys. 11, 648
9. Ananthakrishnan T.R. and Aruldhas G.

1975 Acta.Chim.Acad.Sct.Hungary 85, 269
10. Wellington R and Gerry M.C.L. 1977 J.Mol.Spectroac. 65, 445
11. Okava T and Morino Y. 1962 J.Mol.Spectrosc. 3, 9
12. Peacok C.J. and Muller A. 1968 Z.Naturforsch. i23a, 1029
13. Muller A, Kebabcioglu R, Cyvin S.J. and Mohan N.

1974 Kgl.Norke .Videnskab.Selekabe.Skrifter I,
14. Babu Joseph K and Girijavallabhan C.P.

1974 Ind.J.Pure and Appl.Phys. 12, 20
15. Hall R.T. and Dowling J.M. 1967 J.Chem.Phys. 47, 2454
16. Helminger R.L., Cook R.I. and Lucia F.C.

1972 J.Chem. Phys. 56, 4581
17. Gamo I. $1969 \mathrm{~J} . \mathrm{MOL}$. Spectrosc. 30, 216
18. Takeo H., Hirota E., and Morino Y. 1970 J.Mol.Spectrosc. 34, 370
19. Bird G.R.et al 1964 J. Chem. Phys. 40, 3378
20. Morino Y., Kikuchi Y., Saito S. and Hirota E. 1964 J.Mol.Spectosc. 13, 95
21. Brand J.C.D., Redding R.W. and Richardson A.W. 1970 J.Mol.Spectrosc • 34, 399
22. Savaie R. and Tremblay J. 1972 Can.J.Spectrosc. 37, 73
23. Thirugnanasambandam P. and Mohan S. 1974 J.Chem.Phye. 61, 470

CHAPIER IV

CEETERIFUGAL DISTORPION CONSTANTS IN XY 3 PYRAMIDAL MOUECUKES AID THEIR APPLICATION FOR UNIQUE FIXING OP INTRAMOLROULAR PORGES

Abstract

A formalien is developed to evaluate all the possible sets of intramolecular force fields fitting fundamental vibrational frequencies and centrifugal dietortion conatente in the cage of XY_{3} pyramidal molecules. The method is applied to ${ }^{P F}{ }_{3}$ molecule at an example. It is found that there exist at many an four mete of force field fitting all the above experimentel data. A few general criteria are suggested to eliminate suprioue sete, thus making further experimental data unnecesaary to fix the true physical force field.

4-1 Introduction:

In the previous chapter we have seen how the parametrisation of centrifugal distortion constants enables us to f ind out the accurate force field of $X Y_{2}$ bent symmetric moleciles. In this chapter parameter method which incorporatea the centi'ifugal distortion constante D_{J} and $D_{J K}$ into vibrational problem associated with XY_{3} pyramidal type moleculea is presented. In this case certrifugal distortion constants D_{J} and $D_{J K}$ involve simultaneous contributions from various symmetry species, unlike in the case of Coriolis coupling constante. Hence a solution using these centrifugal dietortion constants becomes a separate problem by itself for each molecular model. Also the centrifugal distortion constants are expected to suffer least from anharmonicity of vibration and are obtainable with extremely high accuracy, they should form a much preferrable set of additional data in the solution of vibrational problems. The theory developed here to evaluate all the possible sets of intramolecular force field fitting the fundamental vibrational frequencies and the $D_{J}, D_{J K}$ constants in XY_{3} pyramidal molecules is applied to PF_{3} molecule as an example. It is found that there exists as many as four sets of force fielde fitting all the experimental data mentioned above. A few general criteria are suggested to eliminate the suprious sets, thus making further experimental data unnecessary to fix the true physical force field.

Pyramidal XY_{3} molecules posses two vibrational apeciea ($T=2 A+2 E$) each of order two and hence matrix C would involve two arbitrary parameters as against one in the earlier case. Consequently, a plotting of all the mathematically possible values of ${ }^{\top}{ }_{\alpha \beta \gamma \delta}$ elements in terms of arbitrary parameters, fitting the vibrational frequency data would yield various aurfaces. A method to cast the problem in two dimentions is presented here by imposing the additional constraint that the parameters should fit the experimental values of the centrifugal distortion constant also, in addition to the vibrational frequencies.

The matrix I_{o} can be taken in the lower triangular form as in the earlier ${ }^{1}$ case, $\left(L_{0}\right)_{i j}=0$ for $1<j$ for each of the Vibrational species. The nonvanishing K matrix elements obtained from eq. (3-3) employing this form of L_{0} and the T_{g} matrix ${ }^{2,3}$ is given in Appendix 1. A convenient form of C matrix which can be used here is
$C=\left[\begin{array}{llllll}S & c_{A} S & 0 & 0 & 0 & 0 \\ -c_{A} S & S & 0 & 0 & 0 & 0 \\ 0 & 0 & Q & 0_{E} Q & 0 & 0 \\ 0 & 0 & -c_{E} Q & Q & 0 & 0 \\ 0 & 0 & 0 & 0 & Q & 0_{B} Q \\ 0 & 0 & 0 & 0 & -c_{E} Q & Q\end{array}\right]$.
where $s=\left(1+c_{A}^{2}\right)^{-1 / 2}$ and $Q=\left(1+c_{T}^{2}\right)^{-1 / 2}$
0_{A} and 0_{E} represents the parament associated with 4 and E species vibration respectively, substitution of eq. (4.1) into eq. (3.2) Jielde expression for $t_{\alpha \beta \gamma \delta}$. The centrifugal distortion constants $D_{J}, D_{J K}$ and D_{K} are linear combinations of $\tau_{\alpha_{\beta \gamma \delta}}$ element e 4,5 and they are given by

$$
\begin{align*}
& D_{J}=-(\epsilon / 4) \tau_{\text {xIX }} \tag{4.2}\\
& D_{J I}=-2 D_{J}-(\epsilon / 2)\left(\tau_{\text {xIs }}+2 \tau_{\text {xIII }}\right) \tag{4.3}\\
& D_{I}=-D_{J}-D_{J K}-(\epsilon / 4) \tau_{\text {Iss }} \tag{4.4}
\end{align*}
$$

Tee of eq. (3.2) and (2.41) in eq. (4.2), (4.3) and (4.4) thus Jielde direct expressions for $D_{J}, D_{J K}$ and D_{I} an functions of parameter e 0_{4} and o_{5} an
$D_{J}=\frac{\left(p_{J} o_{A}^{2}+q_{J} o_{A}+r_{J}\right)}{\left(1+o_{A}^{2}\right)}+\frac{\left(1_{J} o_{I}^{2}+n_{J} o_{I}+n_{J}\right)}{\left(1+o_{R}^{2}\right)}$
$D_{J X}=\frac{\left(p_{J K} a_{A}^{2}+q_{J X} o_{A}+r_{J K}\right)}{\left(1+o_{A}^{2}\right)}+\frac{\left(1_{J K} o_{A}^{2}+n_{A K} o_{R}+n_{J K}\right)}{\left(1+o_{K}^{2}\right)}$

The various $p, q, r, 1,1, n$ terms axe mentioned earlier, functicas of molecular geometry and vibraticasl frequencies. Explicit expressions for thee e quantities are given in Appendix 2. The three relations (4.5), (4.6) and (4.7) are bent milted for
simultaneous mapping of all the mathematically possible values of $D_{J}, D_{J K}$ and D_{K} compatible with vibrational frequencies. This imediately indicates that any theoretical calculation of $D_{J}, D_{J K}$ and D_{X} constants employing the vibrational Irequencies and molecular geometry as input data is bound to lack uniqueneas due to the two degrees of freedom atill left open in the determination of molecular force field, as these parameters are directly controlled by the matrix F and vice versa, as is evident from eq. (1.23)

$$
F=\left(\tilde{I}_{0}\right)^{-1} \quad 0 \Lambda^{-1} \tilde{c}\left(I_{0}\right)^{-1}
$$

On the other hand any of the two centrifugal distortion ocnatants $D_{J}, D_{J_{K}}$ and D_{K} are known from the analysis of miorowave apectrum, the exact values of c_{A} and c_{E} can be solved from their reapective relations in eqs.(4.5), (4.6) and (4.7) and can be used to determine F matrix through eq. (1.23). However the difficultien due to the multiplicities of solution arising from the quadratic nature of these equations are bound to complicate the problem. Purther, the experimental uncertaintien in the values of $D_{j}, D_{J K}$ and D_{K} (though very amall) make the three equations slightly inconsistent thus making a dixect mathematical oolution undesirable. Comeidering the probable extent of unceriainties in the experimental data, the best possible values of o_{A} and o_{B} can be obtained by graphical methods. For different values of o_{A}, the values of c_{E} can be calculated and o_{A} vexture o_{E} curve can be plotted corresponding to eqg. $(4,5),(4,6)$ and $(4,7)$ In the ideal case, a unique point muat exist in the parameter apace, the coordinates
of which would correspond to the actual force field of the molecule and satiafy eqs. (4.5), (4.6) and (4.7). If the experimental uncertainties in the values of centrifugal distortion constants are also taken into account, then each of the curve gete the uncertainity epread and the region where they intersect should oontain the point corresponding to the exact force field. The force field fitting the experimental values of the vibrational Irequenciee and centrifugal distortion constant can be calculated fromeq. (1.23) using the values of c_{A} and c_{G} corresponding to the boundaries of the intersection of these curres.

4-3 Example: Pr_{3} molecule

PF_{3} provides an excellent test case, since for this molecule:
(i) the oentrifugal distortion constants are known to very high degree of accuracy ${ }^{6}$
(ii) the geometry is acourately known from miorowave and electron diffraction studies 7,8
(ii1) the vibrational frequencies are known accurately, the spectrum being almost non-overlapped ${ }^{9}$
(iv) the vibrational frequencies are supposed to muffer least from anharmonicity corrections 10
(σ) the force field has been well eatablished by the use of additional data $6,7,9,10,11$

The value of D_{K} is not available experimentally, but this is the case for most of mymetric top molecules as the

Irequencies in pure rotational spectrum are independent of D_{K}. However, this does not present any problem aince the correct valuen of c_{A} and c_{F} will be contained in the solution of eqg. (4.5) and (4.6).

The numerical values of $p, q, r, 1, m, n$ for $D_{J}, D_{J K}$ and D_{K} terms in eqe. (4.5), (4.6) and (4.7) for PF_{3} are given in Table 1 alongwith the required experimental data. The c_{i} versum ${ }^{0}$ E curvee corresponding to the experimental values of D_{J} and $D_{J K}$ are drawn in the range $-2<0_{\ell}<+2$ as shown in Fig.4-1.

The curves show fou intersections and are indicated ae I, II, III and IV by arrows in the figure. The coordinate valres, c_{d} and c_{B}, corresponding to each of the se intersections are given in Table 2. The $F_{i j}$ clemente, characterieing the intranolecular force field, corresponding to each of these intersection oalculated are also included in the Table 2. The results thus obtained, indicate that there exists four sets of force field that would fit the experimental data on all the four Tibrational frequencies and the two centrifugal distortion constants.

4-4 Elimination of the anomalous force fielde:

Existence of four sets of farce field fitting as many as eix experimental data, in this case, leads to a puasling situation, since only one of these would correspond to the actual force field in the molecule. In situations where such multiplicities occur elimination of the anomalous sets can be done

Fig. (4-1)
c_{A} versus c_{E} curves in conformity with the experimental values of D_{J} and $D_{J K}$

With the use of yet another experimental datum like mean amplitudes
 there oxist ohances that even this procedure may not resolve the amblquity completely thus making a unique solution still imposaible. For example, it has been noted that the vibrational amplitudes oorresponding to the non bonded atom paire 1 it both the real and anomalous solutions arising from the use of Coriolis coupling conatents or isotopic frequenciee as additional data into the Vibrational problem ${ }^{11,12,13}$. In the present case we note that both the solutions corresponding to intersections I and II given in Table 2 Iit the coriolis data extremely well. Considering also the situation in which the required additional data are not readily available, it would be preferrable to use some general oriteria for the elimination of the anomalous force fields and the foilowing are euggested for this purpose.
(i) For the true force field in XI_{3} pyramidal type molecules, there exiate a relation $\mathrm{F}_{12} \approx-2 \mathrm{~F}_{34}$. Ponomarev and Khorrin ${ }^{15}$ have nhown that thie criterion is even aperior to the coriolis data.
(1i) For most cases of vibrational apecies possessing one stretching and one bending motion, it is well known ${ }^{16,1}$ that the later is highly coaraateristic and the I matrix is best approximated in a lower triangular form. Since we have taken I_{0} in the lower triangular form, C in eq.(4.1) abould be very nearly a unit matrix and this therefore suggests axtramely sanall values for
values of $T_{\alpha, \beta \gamma \delta}$ elements, thus yielding different murfaces for $D_{J}, D_{J K}$ and D_{K} values. This projecta the physics of the problem in a much better fashion than in a blind computer calculation which merely seeks a beet fit solution. Eqs.(4.5), (4.6) and (4.7) alongwith eq. (1.23) leade to atreamined mathematical procedure incorporating the centrifugal dietortion conetante in the vibrational problem, thus leading to the varioue nolutione of intramolecular force field. The multiplicity of solutions must be anticipated because of the inherent nonlineari ty of euch problems and in the present case the criteria discussed in the previous section conveniently eerve towards the elimination of the unphysical solutions.
1 - Tq®i

Centrifugel dietortion constant Beference 6	p	q	\boldsymbol{T}	1	!	n
$D_{J}=0.007845 \pm 0.000045$	0.005302	0.001276	0.001725	0.002545	-0.005127	0.005995
$D_{\text {JX }}=-0.01177 \pm 0.00004$	-0.005567	0.001341	-0,001203	-0.001553	0.013294	-0.010486
$D_{x}=\sim$	0.001672	-0.001105	0.000862	-0.000992	-0.008163	0.004481

Table 2

Interaection point in Pig. (4.1)	$\mathrm{F}_{\text {ij }}$ elements					
	F_{11}	F_{12}	F_{22}	${ }^{1} 33$	${ }^{54}$	${ }^{5} .44$
I $\quad\left(c_{A}=0.05, c_{E}=-0.0095\right)$	6.265	0.432	0.795	4.987	-0.199	0.500
II $\quad\left(c_{4}=0.05, c_{8}=-1.45\right)$	6.266	0.432	0.795	1.183	0.491	2.279
III $\left.i c_{4}=-1.02, c_{\text {c }}=0.19\right)$	6.814	2.660	1.086	5.446	-0.875	0.592
IV $\quad\left(c_{A}=-1.02, c_{E}=-2.33\right)$	6.814	2.660	1.086	0.905	-0.056	2.717

Table 3

$5_{1 j}$	Prewent work	Rarliar work		
	Corresponding to $\begin{aligned} & c_{A}=0.02 \text { to } 0.08 \text { and } \\ & c_{A}=-0.0055 \text { to }-0.0135 \end{aligned}$	Reference 7	Reference 9	Reference 10
\mathbf{F}_{11}	6.2638 ± 0.13	6.23 ± 0.13	6.2	6.18 ± 0.01
5_{12}	0.4331 ± 0.08	0.41 ± 0.09	0.41	0.314 ± 0.06
${ }^{22}$	0.7978 ± 0.0004	0.80 ± 0.016	0.80	0.823 ± 0.008
33	4.9865 ± 0.0124	4.98 ± 0.05	4.98	4.96
5_{34}	-0.1987 ± 0.0131	-0.192 ± 0.05	-0.19	-0.2047
${ }^{14}$	0.5004 ± 0.0002	0.499 ± 0.013	0.50	0.4914

Appendix 2
Expressions for p, q, r and $1, m, n$ terms

$\left.\wedge_{2}^{-1}+\mathrm{K}_{21}^{2} \wedge_{1}^{-1}\right) / 8\left(\mathrm{r}_{x x}^{\mathrm{e}}\right)^{4}$

$\left.\hat{\pi}_{3}^{-1}\right) / 8\left(\mathrm{I}_{\mathrm{m}}^{\mathrm{e}} \mathrm{x}^{4}\right.$
$\mathrm{X}_{31} \mathrm{X}_{41} / 4\left(\mathrm{~T}_{x x}^{\mathrm{e}}\right)^{4}$
$\left.\wedge_{3}^{-1}+\mathrm{K}_{41}^{2} \wedge_{4}^{-1}\right) / 8\left(\mathrm{f}_{x=}^{\mathrm{e}}\right)^{4}$

5
$\left.\left.\wedge_{i}^{-1}\right)\left(r_{z z}^{0}\right)^{2}\right] /$
$\left(k_{11}^{2}\right)_{2}^{-1}+k_{21}^{2}$
$\stackrel{\rightharpoonup}{\underset{\sim}{7}}$
$\left.\lambda_{1}^{-1}\right)\left(r_{x}^{0}\right)^{2}-$
$\mathrm{K}_{23} \mathrm{~K}_{21}$

\underbrace{n} $\stackrel{m}{x}$
${ }^{5}$

然

N

\|
$\|$
\|

References

1. Ananthakrishnan T.R., Girijavallabhan C.P., and Aruldhas G., 1976 J.Mol.Spectrosc. 60, 239
2. Cyvin S.J., Cyvin B.N. and Hagen G 1968 Z. Faturforech. 23a, 1649
3. Cyvin B.N., Elvebredd I and Cyvin S.J. 1969 Z.Naturforech. 24a, 139
4. Dowling J.M., Gold R and Meistnex A.G. 1957 J.Mol.Spectrobc. 1, 265
5. Kivelson D and Wilson E.B.Jr., 1953 J.Chem.Phys. 21, 1229
6. Mirri A.M., Scappini F and Favero P.G. 1965 Spectrochim.Acta 21, 965
7. Hirota E and Morino Y 1970 J.Mol.Spectrosc. 33, 460
8. Morino Y, Kuchitsu K and Moritani T 1969 Inore.Chem. B, 867
9. Levin I.K., and Adams O.W. 1971 J.Mol.Spectrosc. 39, 380
10. Mirri A.M. 1967 J.Chem.Fhys. 47, 2823
11. Ananthakrishnain T.R., and Aruidhas G. 1972 J.Mol.Structure, 13, 163
12. AnBnthakriehnan T.R., Girijavallabhan C.P. and Aruldhas G.

1973 Ind.J.Fure and Appl.Phys. 11, 648
13. Ananthakrishnan T.R., Girijavailebhan C.P. and Aruldhas G.

1973 J.Mol.Structure, 16, 149
14. Hoy A.R., Stone J.M.R. and Watson J.K.G. 1972 J.Mol.Spectrosc.42, 15. Ponomarev Y.I. and Khovrin G.V. 1971 Optics and Spectroscopy 30, 1:
16. Peacock C.J. and Muller A 1968 J.Mol.Spectrosc. 26, 454
17. Alix A, Eygel H.H., Joxdanor R., Kebabcioglu R., Mohan II and Mulle 1975 さ.Mol.Structare, 27, 1
18. Torok F 1967 Acta Cnim. Acad. Sci.Hung. 52, 205
19. Torok F and Pulay P 1957 d.Mol.Structure, 3, 1

CHAPTER V

EVALOATION OF MOLECULAR GEOMETRY OF SYMMETRIC TOP

MOLECULES USING CENTRIFUGAL DISTORTION CONSTANTS:

Abstract

Expressions are derived to obtain the centrifugal distortion constants in symetric top molecules. It is found that the centrifugal distortion constants obtained using the above expressions is in very good agreement with the experimental values. Considering the mixing parameter to be very small, the formulas derived to calculate the centrifugal distortion constants contains only molecular geometry, atomic masses and fundamental vibrational frequencies. This leads to an interesting conclusion that centrifugal distortion constants can be used as an additional data, alde with the rotational constants to fix the molecular geometry of aymetric top molecules with insufficient data on the isotopic substituents. Jaing the above approach molecular geometry of $\mathrm{PF}_{3}, \mathrm{AsF}_{3}$ and OPF_{3} are evaluated. The structural parameters obtained using the above expression is in close agreement with the available experimental values.
j-1 Introduction :

We have already discussed the theory of parametrisation if centrifugal distortion constants $D_{J}, D_{J K}$ and $D_{X X}$ in $X Y_{3}$ mymetric rop molecules. In this chapter, it is shown that a paramatric tpproach leads naturaly to a set of approximation formula for sentrifugal diatortion constants. These apfroximation formulas lerived here have the advantage that they contain only molecular yeometry, atomic masses and fundamental vibrational frequencies If the molecule. It is found that the centrifugal distortion :onstants calculated using these expressions agree very well with the atandard experimental reaults available from the litreture. Phis observation leads to a very interesting conslusion that with the help of these expressions the centrifugal distortion constante together with rotational constant cen be used to fix the geometry If eymmetric top molecules like $\mathrm{PF}_{3}, \mathrm{AsF}_{3}$ for phich rotational lata on the isotopic substituents are not available.

In symatric top molecules sure pare rotational spectrum In the microwave gives only one rotational corstants B_{0}. When the structural parameters exceed the mumer of available rotational constants, moleculer geometry is usually obtained from the cicrowave spectrum of its isotopio substituants. There are molecules like PF_{3} and ABF_{3} for which there exiats no stable iaotopio substituants. The boad length and interbond angle of thase molecules cannot be obtainea from one rotational conatint B_{0}. Similarly in the case of certain $\mathrm{XY}_{3} \mathrm{Z}$ type symanetaic top molsoules like OPF_{3}, which have only one stable isotopic eubstituant, though two values of rocistianal
constants can be obtained, the two bondiength and one interbond angle needed to fix the geometry of such molecules cannot be evaluated from these. Under such circumstances, it is suggested in this chapter that experimental values of centrifugal distortion constants can serve as additional data to evaluated the molecular geometry.

5-2 Approximation formulas to evaluate $D_{J}, D_{J K}$ and D_{K} in $X Y_{3}$ symmetric top molecules:

In section 2 of chapter IV we have seen that $D_{J}, D_{J K}$ and D_{X} can be parametrised and represented by the eqs. (4.3), (4.4) and (4.5) as
$D_{J}=\frac{\left(p_{J} c_{A}^{2}+q_{J} c_{A}+r_{J}\right)}{\left(1+c_{A}^{2}\right)}+\frac{\left(1_{J} c_{E}^{2}+m_{J} c_{E}+n_{J}\right)}{\left(1+c_{E}^{2}\right)}$
$D_{J K}=\frac{\left(p_{J K} c_{A}^{2}+q_{J K} c_{A}+r_{J K}\right)}{\left(1+c_{A}^{2}\right)}+\frac{\left(1_{J K} c_{E}^{2}+m_{J K} c_{E}+n_{J K}\right)}{\left(1+c_{E}^{2}\right)}$
$D_{K}=\frac{\left(p_{K} c_{A}^{2}+q_{K} c_{A}+r_{K}\right)}{\left(1+c_{A}^{2}\right)}+\frac{\left(1_{K} c_{E}^{2}+m_{K} c_{E}+n_{K}\right)}{\left(1+c_{E}^{2}\right)}$
It is known that the mixing parameters are very small for the vibrational species of order two and the matrix C is very close to an orthogonal matrix. In chapter III we found that by assuming the mixing parameter c equal to zero, the $\tau_{\alpha \beta \gamma \delta}$ elements of XX_{2} bent symmetric molecules calculated is very close to the experimental values ${ }^{7,8,9}$. Though XX_{3} symmetric top molecules also
come under second order vibrational problem, one important difference in this case is that instead of a single mixing parameter c as in the case of $X Y_{2}$, it contains two parameters c_{A} and c_{B} connected with A and E apecies of ribration. Also from the actual calculations of c_{A} and c_{G} on a number of $X Y_{3}$ pyramidal type molecules, we find that c_{A} and c_{E} to be very amall. As an approximation, considering each parametur c_{A} and c_{s} equal to sero, we get

$$
\begin{align*}
& D_{J}=r_{J}+n_{J} \tag{5.1}\\
& D_{J K}=r_{J K}+n_{J K} \tag{5.2}\\
& D_{K}=r_{K}+n_{K} \tag{5.3}
\end{align*}
$$

On expanding r and n terng in the above equations

$$
\begin{align*}
& D_{J}=\left(K_{11}^{2} \Lambda_{1}^{-1}+K_{21}^{2} \Lambda_{2}^{-1}+K_{31}^{2} \Lambda_{3}^{-1}+K_{4.1}^{2} n_{4}^{-1}\right) /\left(8 x_{2 x}^{4}\right) \tag{5.4}\\
& D_{J x}=\left(K_{11} K_{13} \Lambda_{1}^{-1}+K_{21} E_{23} \Lambda_{2}^{-1}\right) /\left(4 I_{x x}^{2} I_{25}^{2}\right)+ \\
& \left(2 \mathrm{X}_{35}^{2} \Lambda_{3}^{-1}+2 \mathrm{~K}_{45}^{2} \Lambda_{4}^{-1}\right) /\left(4 I_{x x}^{2} I_{z 5}^{2}\right)- \tag{5.5}\\
& \left(x_{11}^{2} \Lambda_{1}^{-1}+x_{21}^{2} \Lambda_{2}^{-1}+x_{31}^{2} n_{3}^{-1}+x_{41}^{2} n_{4}^{-1}\right) /\left(4 I_{x x}^{4}\right) \\
& D_{K}=\left(X_{13}^{2} \Lambda_{1}^{-1}+R_{23}^{2} \Lambda_{2}^{-1}\right) /\left(8 X_{28}^{4}\right)+D_{J}= \\
& \left(K_{11} K_{13} \Lambda_{1}^{-1}+K_{21} K_{23} \Lambda_{2}^{-1}\right) /\left(a I_{x=1}^{2} I_{z=}^{2}\right)+ \tag{5.6}\\
& \left(2 K_{35}^{2} \Lambda_{3}^{-1}+2 K_{45}^{2} \Lambda_{4}^{-1}\right) /\left(4 I_{x I}^{2} I_{2 x}^{2}\right)
\end{align*}
$$

In hydride type molecules L_{0} is taken in upper triangular form and in non hydride tyge L_{0} is taken in the lower triangular fore $1,2,3$

The non \rightarrow vanishing K matrix elements which are wed for the calculation of $D_{J}, D_{J K}$ and D_{K} constants in hydride and non hydride molecules are given below.

X matrix elements for XY_{3} hydride molecule e:

$$
\begin{aligned}
\mathbf{x}_{11}= & \left(L_{0}^{-1}\right)_{11}\left(2 / 3^{1 / 2}\right) \&\left(1+2 \cos ^{2} A\right)- \\
& \left(I_{0}^{-1}\right)_{12}\left(2 / 3^{1 / 2}\right) \&\left(4 \cos ^{2} A-1\right) \tan A
\end{aligned}
$$

$$
\begin{equation*}
H_{21}=-\left(L_{0}^{-1}\right)_{22}\left(2 / 3^{1 / 2}\right) B\left(4 \cos ^{2} A-1\right) \tan A \tag{5.7b}
\end{equation*}
$$

$$
X_{31}=-\left(I_{0}^{-1}\right)_{33}(8 / 3) E \sin ^{2} A-
$$

$$
\begin{equation*}
\left(L_{0}^{-1}\right)_{34}(2 / 3) R\left(1+2 \cos ^{2} A\right) \tan A \tag{5.70}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{K}_{41}=\left(I_{0}^{-1}\right)_{44}(2 / 3) R\left(1+2 \cos ^{2} A\right) \tan A \tag{5.7d}
\end{equation*}
$$

$$
K_{13}=\left(I_{0}^{-1}\right)_{11}(8 / 3) R=\operatorname{in}^{2} A+
$$

$$
\begin{equation*}
\left(I_{0}^{-1}\right)_{12}\left(4 / 3^{1 / 2}\right)\left(4 \cos ^{2} A-1\right) \tan A \tag{5.7e}
\end{equation*}
$$

$\omega_{23}=\left(I_{0}^{-1}\right)_{22}\left(4 / 3^{1 / 2}\right) R\left(4 \cos ^{2} A-1\right) \tan A$
$K_{35}=\left(I_{0}^{-1}\right)_{33} 8^{1 / 2} R \sin A \cos B+$
$\left(I_{0}^{-1}\right)_{34} 8^{1 / 2} R \sin A \cos B \tan A$
$X_{45}=\left(L_{0}^{-1}\right)_{44} 8^{1 / 2} \mathrm{~B} \sin A \tan A \cos B$
Where $\cos B=\sqrt{\left(4 \cos ^{2} A-1\right) / 3} \quad$ E refer to the bond length and A refers to half the interbond angle.

$$
\begin{aligned}
& \text { Hore }\left(I_{0}^{-1}\right)_{11}=\left(a_{22}\right)^{1 / 2} / a^{1 / 2},-\left(L_{0}^{-1}\right)_{12}=+a_{12} / \sqrt{a_{22}|a|} \\
&\left(L_{0}^{-1}\right)_{22}=1 / a_{22}^{1 / 2}, \quad\left(L_{0}^{-1}\right)_{33}=\left(a_{44}\right)^{1 / 2} / \sqrt{G_{0}^{\#} \mid} \\
&\left(L_{0}^{-1}\right)_{34}=-a_{34} / \sqrt{a_{44}\left|a_{0}^{14}\right|},\left(L_{0}^{-1}\right)_{44}=1 / a_{44}^{1 / 2}
\end{aligned}
$$

There $1 a_{1}=G_{11} G_{22}-\theta_{12}^{2}, \quad 1 G^{*} \mid=\theta_{33} \theta_{44}-\theta_{34}^{2}$

$$
\theta_{11}=\left(4 \cos ^{2} A-1\right) / m_{X}+1 / m_{Y}
$$

$$
\theta_{12}=-2\left(4 \cos ^{2} A-1\right) \tan A / m_{X}
$$

$$
G_{22}=\left(4-\sec ^{2} A\right)\left(4 \sin ^{2} A / n_{x}\right)+1 / m_{X}
$$

$a_{33}=2 \sin ^{2} \wedge / n_{X}+1 / m_{Y}$
$a_{34}=2 \sin ^{2} A \tan \Lambda / \operatorname{m}_{x}$

$$
a_{44}=\left(2 \sin ^{2} A \tan ^{2} A / n_{X}\right)+\left(1+2^{-1} \operatorname{se\theta }^{2} \Lambda\right) / n_{Y}
$$

m_{X} and m_{Y} are the mase of X and Y atom reapectively
K matrix eloments for XI_{3} non hydride molecules
(5 Aa)
(5.86)
(5.8e)

$$
\begin{aligned}
& x_{11}=\left(I_{0}^{-1}\right)_{11}\left(2 / 3^{1 / 2}\right)=\left(1+2 \cos ^{2} \Lambda\right) \\
& X_{21}=\left(L_{0}^{-1}\right)_{21}\left(2 / 3^{1 / 2}\right) \mathbb{R}\left(1+2 \cos ^{2} A\right)- \\
& \left(L_{0}^{-1}\right)_{22}\left(2 / 3^{1 / 2}\right) \text { i }\left(4 \cos ^{2} A-1\right) \tan A \\
& x_{31}=-\left(I_{0}^{-1}\right)_{33}(8 / 3)^{1 / 2} \mathrm{~A} \sin ^{2} A
\end{aligned}
$$

$$
\begin{align*}
\mathbf{K}_{41}= & -\left(I_{0}^{-1}\right)_{43}(8 / 3)^{1 / 2} R \sin ^{2} A+ \\
& \left(L_{0}^{-1}\right)_{44}\left(2^{1 / 2} / 3\right) R\left(1+2 \cos ^{2} A\right) \tan A \tag{5.8d}\\
X_{13}= & \left(L_{0}^{-1}\right)_{11}(8 / \sqrt{3}) R \sin ^{2} A \\
\mathbf{K}_{23}= & \left(I_{0}^{-1}\right)_{21}(8 / \sqrt{3}) R \sin ^{2} A+ \\
& \left(L_{0}^{-1}\right)_{22}(4 / \sqrt{3}) R\left(4 \cos ^{2} A-1\right) \tan A \tag{5.80}\\
X_{35}= & \left(I_{0}^{-1}\right)_{33} 8^{1 / 2} R \sin A \cos B \tag{5.88}\\
X_{45}= & \left(I_{0}^{-1}\right)_{43} 8^{1 / 2} R \sin A \cos B+ \\
& \left(I_{0}^{-1}\right)_{44} 8^{1 / 2} R \sin A \tan A \cos B \tag{5.8h}
\end{align*}
$$

Where $\left(I_{0}^{-1}\right)_{11}=G_{11}^{-1 / 2}, \quad\left(I_{0}^{-1}\right)_{21}=-G_{12} G_{11}^{-1 / 2}|G|^{-1 / 2}$

$$
\begin{aligned}
& \left(I_{0}^{-1}\right)_{22}=G_{11}^{1 / 2} \mid G I^{-1 / 2},\left(I_{0}^{-1}\right)_{33}=G_{33}^{-1 / 2} \\
& \left(I_{0}^{-1}\right)_{43}=-G_{43} G_{33}^{-1 / 2}\left|G^{*} 1^{-1 / 2},\left(I_{0}^{-1}\right)_{44}=G_{33}^{1 / 2}\right| G^{*} 1^{-1 / 2}
\end{aligned}
$$

$$
\begin{equation*}
I_{X X}=3 m_{Y} H^{2}\left[2-\left(1-3 m_{Y} m_{X}^{-1}\right)(4 / 3) \min ^{2} A\right] /\left(2+6 m_{Y} m_{X}^{-1}\right) \tag{5.9}
\end{equation*}
$$

$I_{g}=4 m_{I} R^{2} \sin ^{2} A$
Using the above expressions the $D_{J}, D_{J K}$ and D_{K} constants of HH_{3}; $\mathrm{PH}_{3}, \mathrm{SbH}_{3}, \mathrm{AeCl}_{3}, \mathrm{PCl}_{3}$ and NF_{3} are calculated and the results are given in Table 1. It is found that the $D_{J}, D_{J K}$ and D_{K} constants calculated using the above expressions agrees very well with the experimental results.

5-3 Molecular geometry of $X Y_{3}$ symuetric top molecules using
centrifugal distortion constants D_{J} and $D_{J K}$

Many attempts have been made in the pant to eraluate by other means the bondlength and interbond angle of $X I_{3}$ prramidal type molecules for which the microwave data are inadequate. One of the methods employed in this context is to make use of the Coriolis zota mum mule of Johnson and Dennison. Hoking ${ }^{10}$ in this way tried to fix the interbond angle of $\mathrm{MF}_{3} \mathrm{PFF}_{3}$ and AsF moleculea. Since the exror involved in the geta constants are falrly large, the interbond angle evaluated from them are not quite correct.

Ponomarer ${ }^{11}$ and Khovrin tried to $f i x$ the geometry we these molecules using Coriolis zeta constants and centrifugal distortion sonstante along with a certadn constraint on the quadretic force field of the molecule. Their wort mowed that the variation of molecular geometry has an extreme 2 y marked effect on the centrifugal distortion constants D_{J} and $D_{J K}$ Conversely we infer that the molecular geometry evaluated ueing $D_{J}, D_{J K}$ constante must be Fexy close to the aotual geometry of the molecule. Indirect evaluation of nolecular geometry is therefo poanible when the centrifugal distortion constants D_{J} and D_{i} are arailable Prom the micromave spectrum with oufficient accuracy. Determinktion of these congtanto with an accuxady of is or better is poamible for symmetric top molecules Irom the neasurement of bigh I rotatlonal transitions ${ }^{12}$. In this context we suggest here a thod to determine the etructure of $X Y_{3}$ symetrofe top Folecules Irom the centrifugal distortion constanta and the fundaniatal Fibrational

frequoncies.

Bq. (5.1) and (5.2) are of great importance when the atructural parameters of the molecule are not known precieely. With the holp of eq. (5.4) and (5.5) the bondlength and interbond angle may be calculated from the experimental values of D_{J} and $D_{J X}$. We have adopted the following procedure for obtaining the molecular geometry of XI_{3} aymatric top molecules. For different values of interbond angle α, the bond length R was solved fron eq.(5.4) and (5.5). R against $(\alpha / 2)$ is plotted in both cases. The intersection gives the currect value of the bondlength R and half the interbond angle aa shown in Fig. (5.1) and (5.2). Using this procedure we have obtained the molecular geometry of PF_{3} and ABF_{3} for which there are no stable isotopic substituents. The structural parametere obtained for the me moleculen is in very good agreement with the experimental values obtained from the electron diffraction and they are given in Table 2.

5-4 Approximation formula for centrifugal distortion constante in $\mathrm{II}_{3} \mathrm{Z}$ symetric top molecules

In this chapter we have already seen that approximation formias to evaluate $D_{J}, D_{J_{K}}$ in $X Y_{3}$ pyramidal type molecules help us to obtain the molecular geometry of aymetric top moleculea whoee isotopic subetituents are not available. This enoourages one to extend the thod to develop approximate expressions for contrifugal digtortion constants in $X_{3} Z$ aymetric top moleonle.. Amang $\mathrm{XI}_{3} Z^{2}$ 日ymotric tops also there exiet certain moleculee

Variation of R against ($\alpha / 2$) for PF_{3} molecule using centrifugal distortion constants D_{J} and $D_{J K}$ as experimental data.

Variation of R against; $(\alpha / 2)$ for AsF_{3} molecule usinc centrifugal distortion constante I_{J} and $\mathrm{D}_{J K}$ as experimental data.
like OPF_{3} for which data on isotopic substituent are not sufficient enough to f ix the molecular geometry. The analysis of microwave spectrum of OPF_{3} molecule yields one rotational constant B_{0}. An isotopic substitution of the OPF_{3} molecule ($0^{18} \mathrm{PF}_{3}$) yields one more rotational constant B^{\prime}. From two rotational canstants three structural parameters viz. two bondlength and one interbond angle cannot be evaluated. If one more datum containing the structural parameters is available, we can f ix the molecular geometry.

Here we have taken D_{J} as this additional data. Expression to evaluate D_{J} is derived with the assumption that the mixing parameters in the different species of vibrations are neglegible. The approch developed by Muller ${ }^{13}$ et al to higher order problems can be highly useful here. A detailed discussion of this aspect is given in chapter VII. The coupling between any two symmetric coordinates S_{i} and S_{j} are governed to a large extend by $\varnothing_{i j}$ which in turn may be set to zero, provided that S_{i} and S_{j} corresponds to stretching and bending vibrations. $\phi_{1 j}{ }^{\prime}$ a are the mixing parameter expressed in the angular form. We have calculated the force constants of many $X Y Y_{3} Z$ symmetric top molecules by setting all the $\varnothing_{i j}$'s equal to zero and have compared with the force constants calculated using additional experimental data. The observation is that even if there are small changes in the offdiagonal force constants, the diagonal force constants are reproduced well. "The centrifugial distortion canstants ${ }_{\alpha \beta \gamma}{ }^{T}$ are often well defined by the diagonal force constants" as observed by Mills ${ }^{14}$. Therefore
noting the mixing parameter matrix equal to unit matrix for the calculation of D_{J} ie quite reasonable.

$$
\text { According to eq. (2.41) } t_{\alpha \beta \gamma \delta} \text { are related to } \tau_{\alpha \beta \gamma \delta}
$$

es

$$
t_{\alpha \beta \gamma \delta}=-2 I_{\gamma \alpha \gamma}^{e} I_{\beta \beta}^{e} I_{\gamma \gamma}^{e} I_{\delta \delta}^{e} L_{\alpha \beta \gamma \delta}
$$

hence $t_{x y x}=-2 I_{x X X}^{4} \tau_{10 x x}$
Therefore

$$
\begin{align*}
& \text { fore } \tag{5.11}\\
& \tau_{\text {xxx }}=-t_{x \times x} /\left(2 I_{x X}^{4}\right)
\end{align*}
$$

From eq. (4.2) $\tau_{\text {max }}$ is related to D_{J} as

$$
D_{J}=-(\epsilon / 4) \tau_{0000}
$$

with the help of eq.(5.11) we can write the above expression as

$$
\begin{equation*}
D_{J}=\left(E / 8 I_{x x}^{4}\right) t_{20 x x} \tag{5.12}
\end{equation*}
$$

Using eq.(3.17) t matrix can be expressed as

$$
t=\widetilde{K} \quad \Lambda^{-1} \quad K \quad \text { where } K=\left(L_{0}^{-1}\right) T m
$$

The Ta matrix used for calculating centrifugal distortion constants is given in in Appendix 1. (We have noted an error in the TS matrix formulated earlier by Joseph and Venkateswarlu ${ }^{16}$. The second term in T_{xx} 10 actually negative). How $t_{\text {mock }}$ cen be expressed as $t_{\text {tx }}=K_{11}^{2} \Lambda_{1}^{-1}+K_{21}^{2} \Lambda_{2}^{-1}+K_{31}^{2} \Lambda_{3}^{-1}+$

$$
\begin{equation*}
X_{41}^{2} \wedge_{4}^{-1}+X_{51}^{2} \wedge_{5}^{-1}+X_{61}^{2} \wedge_{6}^{-1} \tag{5.13}
\end{equation*}
$$

Ding eq. (5.12) and (5.13) wo can write

$$
\begin{array}{r}
D_{J}=\left(\in / 8 I_{x x}^{4}\right)\left(K_{11}^{2} \dot{\Lambda}_{1}^{-1}+K_{21}^{2} \Lambda_{2}^{-1}+K_{31}^{2} \wedge_{3}^{-1}+\right. \\
\left.K_{41}^{2} \wedge_{4}^{-1}+K_{51}^{2} \Lambda_{5}^{-1}+K_{61}^{2} \Lambda_{6}^{-1}\right) \tag{5.14}
\end{array}
$$

Where $K_{11}=2 \mathrm{~B}\left(\mathrm{I}_{0}^{-1}\right)_{11}$

$$
\begin{aligned}
K_{21}= & 2 R\left(L_{0}^{-1}\right)_{21}-\left(I_{0}^{-1}\right)_{22} 3^{1 / 2}\left(1+\cos ^{2} \beta\right) \\
K_{31}= & 2 R\left(I_{0}^{-1}\right)_{31}-\left(I_{0}^{-1}\right)_{32} 3^{1 / 2}\left(1+\cos ^{2} \beta\right)+ \\
& \left(I_{0}^{-1}\right)_{33} 3 r\left(3+3 p^{2}\right)^{-1 / 2}\left[2 \cos ^{2} \beta(\cos \alpha-1)(\sin \alpha)^{-1}+\right.
\end{aligned}
$$

$$
p q \sin \beta \cos \beta]
$$

$$
\begin{aligned}
K_{41}= & -\left(L_{0}^{-1}\right)_{44}(3 / 2)^{1 / 2} \sin ^{2} \beta r \\
\mathrm{~K}_{51}= & -\left(L_{0}^{-1}\right)_{54}(3 / 2)^{1 / 2} \sin ^{2} \beta r-\left(L_{0}^{-1}\right)_{55}(3 / 2)^{1 / 2} q r \sin \beta \cos \beta \\
K_{61}= & -\left(L_{0}^{-1}\right)_{64}(3 / 2)^{1 / 2} \sin ^{2} \beta r-\left(L_{0}^{-1}\right)_{65}(3 / 2)^{1 / 2} q r \sin \beta \cos \beta \\
& +\left(I_{0}^{-1}\right)_{66}(3 / 2)^{1 / 2} r \sin ^{2} \beta(2+\cos \alpha)(\sin \alpha)^{-1}
\end{aligned}
$$

Here $p=3^{1 / 2} \cos \beta / \cos (\alpha / 2), q=(R / r)^{1 / 2}$
R is the $Z-X$ bondength, r is the $X-Y$ bondlength, X is the $Y-X=Y$ angle, β is the $Z-X-Y$ angle given by the relation $\sin \beta=180-\left[23^{-1 / 2} \sin (\alpha / 2)\right]$

The relation between $\left(L_{0}^{-1}\right)$ and G matrix elemeuts ta given below.

$$
\left(I_{0}^{-1}\right)_{11}=1 / T_{11}, T_{11}=G_{11}^{1 / 2},\left(I_{0}^{-1}\right)_{22}=1 / T_{22}, T_{22}=\left(G_{22}-T_{21}^{2}\right)^{1 / 2}
$$

$$
\begin{aligned}
& \left.T_{21}=a_{21} / T_{11} \cdot\left(I_{0}^{-1}\right)_{33}=1 / T_{33}, T_{33}=\sqrt{a_{33}-\left(T_{31}^{2}+T_{32}^{2}\right.}\right) \\
& T_{31}=G_{31} / T_{11}, F_{32}-\left(G_{32}-T_{21} T_{31}\right) / T_{22},\left(L_{0}^{-1}\right)_{21}-T_{21}\left(T_{11} T_{22}\right)^{-1} \\
& \left(I_{0}^{-1}\right)_{31}=\left(T_{32} T_{21}-T_{31} T_{22}\right)\left(T_{11} T_{22} T_{33}\right)^{-1}\left(I_{0}^{-1}\right)_{32}=-T_{32}\left(T_{22} T_{33}\right)^{-1} \\
& \left(L_{0}^{-1}\right)_{44}=1 / I_{44} \cdot T_{44}=\left(G_{44}\right)^{1 / 2},\left(L_{0}^{-1}\right)_{55}=1 / T_{55}, T_{55}=\left(G_{55}-T_{54}\right)^{1 / 2} \\
& T_{54}=G_{54} / T_{44},\left(I_{0}^{-1}\right)_{66}=1 / T_{66}, T_{66}=\left[G_{66}-\left(T_{64}^{2}+T_{65}^{2}\right)\right]^{1 / 2} \\
& T_{64}=G_{64} / T_{44}, T_{65}=\left(G_{65}-T_{54} T_{64}\right) / T_{55},\left(L_{0}^{-1}\right)_{54}=-T_{54}\left(T_{44} T_{55}\right)^{-1} \\
& \left(L_{0}^{-1}\right)_{64}=\left(T_{65} T_{54}-T_{64} T_{55}\right)\left(T_{44} T_{55} T_{66}\right)^{-1},\left(I_{0}^{-1}\right)_{65}=-T_{65}\left(T_{55} T_{66}\right)^{-1} \\
& \sigma_{11}=m+3 M \cos ^{2} \beta \\
& a_{22}=\left(K^{2}+1\right)\left(m+3 M \sin ^{2} \beta\right) \\
& G_{33}=M+X \\
& G_{21}=3 M\left(x^{2}+1\right)^{1 / 2} \sin \beta \cos \beta \\
& \theta_{31}=3^{1 / 2} M \cos \beta \\
& \sigma_{32}=3^{1 / 2} M\left(K^{2}+1\right)^{1 / 2} \operatorname{ain} \beta \\
& G_{44}=m+M(1-\cos \alpha) \\
& G_{55}=\left(3-K^{2} 2^{-1}\right)+M(1-\cos \alpha)^{3} / \sin ^{2} \alpha \\
& a_{66}=m+1.5 m(\cos \beta-\lambda)^{2}+1.5 x \lambda^{2} \\
& G_{45}=M(1-\cos \alpha)^{2} / \sin \alpha
\end{aligned}
$$

$G_{64}=3 M \sin \beta(\cos \beta-\lambda) 2^{-1}$
$G_{65}=(K / 2)\left[m-M(\cos \beta-\lambda)(1-\cos \alpha)(\cos \beta)^{-1}\right]$
where $K=-3 \sin \beta \cos \beta / \sin \alpha, \lambda=r / R, \alpha$ is the $Y-X-Y$ angle, m, M, and X are the reciprocal masses of X, Y and Z atome.

Making use of eq.(5.14) we have evaluated tae D_{J} for few heavy symmetric top molecules given in Table 3. We can find that the D_{J} calculated using the above expressions agrees with the experimental values available from the literature.

5-5 Molecular geometry of $\mathrm{XY}_{3} 2$ symmetric top molecules:
In section 3 of this chapter we have seen that one of the important application of the approximation formula used for calculating centrifugal distortion constants is in the evaluation of molecular geometry of symnetric top molecules whose isotopic substituents ure not easily available. Among $X Y Y_{3} Z$ symmetric tops also this becomes applicable. Here the molecules may posses isotops but the number of rotational constants available from them may not be sufficient to fix the molecular geometry. A typical case is that of OPF_{3} molecule. It posseses only one additional isotopic species namely $0^{18} \mathrm{PF}_{3}$. Hence Prom $0^{16} \mathrm{PF}_{3}$ and $0^{18} \mathrm{PF}_{3}$ we get two rotational constants which are not sufficient to fix structural parameters namely two bondlengtha and one interiond angle. In this situation we suggest to use D_{J} as an additional datum.
$0 \mathrm{PF}_{3}$ is a heavy symmetric top molecule, the microwave spectrum of which has been very recently studied ${ }^{15}$. The centrifugal
distortion here indaces a small change in the dipole moment and hence a study of the Q branch of the spectrum yields the value of $\left(B_{0}-A_{0}\right)$. The selection rules of the distortion moment spectrum is that $\Delta J=0, \pm 1, \Delta K= \pm 3$. Knowledge of B_{0} from the R branch and ($E_{0}-A_{0}$) from Q brancin enable us to detemine A_{0}. Now for $0 \mathrm{PF}_{3}$ molecule A_{0}, B_{0} and D_{J} are known. Hence we can evaluate the molecular geometry without the need of an isotopic aubstitution. The expression for A_{0} and B_{0} are given below.

$$
\begin{equation*}
A_{0}=2 m_{Y} r^{2}(1-\cos \alpha) \tag{5.15}
\end{equation*}
$$

$B_{0}=m_{Y} r^{2}(1-\cos \alpha)+m_{Y}\left(m_{X}+m_{Z}\right)\left(3 m_{Y}+m_{Z}+m_{X}\right) r^{2}(1+2 \cos \alpha)+$ $\left(3 m_{Y}+m_{X}+m_{Z}\right)^{-1} m_{Z} R\left[\left(3 m_{Y}+m_{X}\right) R+6 m_{Y} r(1+2 \cos \alpha) / \sqrt{3}\right]$

Here G_{y} is the mass of F atom, m_{X} is the mase of P atom, m_{Z} is the mase of O atom, R is the $O P$ bondlength, I is the PF bondlength and α is the $F-P-F$ angle. The molecular geometry can be obtained from eq. (5.14), (5.15) and (5.16).As a. direct solution is not easy we have adopted here a graphical method. Fromeq. (5.15) r is expressed in terms of α and that is used in eq. (5.14) which along with eq. (5.16)gives us a relation between R and α. Hence a graph is plotted between R and α using D_{j} and B_{0} represented by eqs. (5.14) and (5.16) as shown in Fig, (5.3). The intersection gives. the values of F and α. The value of α obtained from the graph is uged in eq. (5.15) to evaluate x. In Table 4 the molecniar geometry obtained using the present method with $]_{j}$ as additional data ie cornpared with yalues obtainsd from the literature. The agreement is very good. The above approach tams shows a new

Plot of R against \times for OPF_{3} moterule
Fig. (5-3)
application for contrifugal dietortion constants whioh oan be used an additional data to fix the molecular geonetry of $\mathrm{XY}_{3}{ }^{Z}$ aymetric top molecules for which the microwave data are inadequate.
TABIE 1

Molecule	$\begin{array}{r} D_{J} \\ \text { Calculated } \end{array}$	Obse rred	$\begin{array}{r} D_{\text {JK }} \\ \text { Calculated } \end{array}$	Obserred	$\underset{C_{K}}{\mathrm{D}_{\mathrm{K}}}$	Obserred	Bef.
HH_{3}	23.86	24.27	-42.47	-43.65	24.7	23.5	20
PH_{3}	3.91	3.95	-4.98	-5.2	3.5	4.09	21.
AeH_{3}	2.61	2.13	-3.32	-•	2.53	-•	22
PCl_{3}	0.0012	0.00117	-0.0017	-0.00188	0.00085	-•	23
AeCl_{3}	0.00074	0.00077	-0.00106	-0.00114	0.0005	-	24
IF_{3}	0.0138	0.0145	-0.0218	-0.0227	0.0098	-•	14

FIG.(..
XY_{3} Bymatetric top molecule

	${ }^{\text {Bond }}$ angle		${ }^{\text {Bond }}$ angle	Heforance
1.561	$97^{\circ} 3^{\prime}$	1.706	$95^{\circ} .37^{\prime}$	Prosent worc**
1.55	102.	1.712 ± 0.005	$102{ }^{\circ} \pm 2^{\circ}$.	10
1.562	98.	1.708	98.	12
1.563 ± 0.002	$96^{\circ} 53^{\prime} \pm 41^{\prime}$.			17
	$97.30{ }^{\circ}$		96.	11
	$97^{\circ} .48^{\prime} \pm 12{ }^{\prime}$			18***
			$95.87^{\circ} \pm 0.28^{\circ}$	$19^{* *}$

TABLE 3
CENTKIFUGAL DISTORTION CONSTANT D_{J} (in MHz) OF XI ${ }_{3} Z$ hEAVY
SYMMETRIC TOP MOLECULES

Molecule	Calculated using the present method	Calculated from force field	Ref.	Experimental values	Ref.
SPF_{3}	0.000298	0.000225	16	0.0003	26
$\mathrm{CF}_{3} \mathrm{Cl}$	0.000534	0.00055	23	0.00059	24
SPCl_{3}	0.00007	0.000089	16	-	-
$\mathrm{CCl}_{3} \mathrm{Br}$	0.000061	0.000074	23	-	-
$\mathrm{CCl}_{3} \mathrm{~F}$	0.00038	0.00046	23	0.00046	25

FIG. (5.5)
$\mathrm{XY}_{3} Z$ Symmetric top molecule
TABIE 4
MOLBCULAR ESOMETHI OF OPF_{3}

Appendix 14

$\mathrm{m}_{\alpha \beta}, \mathrm{s}$	${ }^{\text {m }}$	${ }^{\text {r }}$	F_{sz}
$8_{1}\left(A_{1}\right)$	$3^{-1 / 2} 2 \mathrm{~B}\left(1+2 \cos ^{2} \Lambda\right)$	$3^{-1 / 2} 2 \mathrm{R}\left(1+2 \cos ^{2} \Lambda\right)$	$83^{-1 / 2} \mathrm{~B}=\operatorname{in}^{2} 4$
$S_{2}\left(A_{1}\right)$	$-3^{-1 / 2} 2 \mathrm{~B}\left(4 \cos ^{2} \mathrm{~A}-1\right) \mathrm{tan}$	$-3-^{-1 / 2} 2 \mathrm{~B}\left(4 \cos ^{2} \mathrm{~A}-1\right) \tan 1$	$43^{-1 / 2} \mathrm{R}\left(4 \cos ^{2} \Lambda-1\right) \mathrm{tan} 4$
$S_{1 a}{ }^{(B)}$	$-3^{-1 / 2} 2^{3 / 2} \mathrm{~B} \sin ^{2} \mathrm{~A}$	$3^{-1 / 2} 2^{3 / 2} \mathrm{E} \sin ^{2} \mathrm{~A}$	0
$\mathrm{s}_{2 \mathrm{a}}(\mathbb{B})$	$2^{1 / 2} 3^{-1 / 2} \mathrm{~B}\left(1+2 \cos ^{2} A\right) \tan A$	$-2^{1 / 2} 3^{-1 / 2_{B}\left(1+2 \cos ^{2} A\right) \tan A}$	-
$\mathrm{s}_{1 \mathrm{~b}}\left({ }^{(B)}\right.$	-	-	0
$\mathrm{s}_{2 \mathrm{~b}}\left({ }^{(3)}\right.$	0	0	0

Appendix 1A continued

Appendix 1B
T_{5} matrix for $\mathrm{XY}_{3} Z$ symmetric top molecules

$T_{\alpha \beta}, \mathrm{S}$	T_{xx}	T_{yy}	$\mathrm{T}_{\mathbf{z Z}}$
$S_{1}\left(A_{1}\right)$	2 R	2 R	0
$S_{2}\left(A_{1}\right)$	$-3^{1 / 2} r\left(1+\cos ^{2} \beta\right)$	$-3^{1 / 2} r\left(1+\cos ^{2} \beta\right) \quad 2$	$23^{1 / 2} r \sin ^{2} \beta$
$S_{3}\left(A_{1}\right)$	$3 \times H\left(3+3 p^{2}\right)^{-1 / 2}$	$3 \mathrm{rH}\left(3+3 \mathrm{p}^{2}\right)^{-1 / 2} 6$	$6 \mathrm{r} G\left(3+3 \mathrm{p}^{2}\right)^{-1 / 2}$
$S_{4 a}(E)$	$-3^{1 / 2} 2^{-1 / 2} r \sin ^{2} \beta$	$3^{1 / 2} 2^{-1 / 2} \times \sin ^{2} \beta$	0
$S_{5 a}(E)$	$-3^{1 / 2} 2^{-1 / 2} r q \sin \beta \cos \beta$	$3^{1 / 2} 2^{-1 / 2} r q \sin \beta \cos \beta$	$\beta \quad 0$
$S_{6 m}(E)$	$3^{1 / 2} 2^{-1 / 2} \times I$	$-3^{1 / 2} 2^{-1 / 2} \times I$	0
$S_{4 b}(E)$	0	0	0
$S_{5 b}(\underline{E})$	0	0	0
$S_{6 b}(E)$	0	0	0

Appendix 1B continued

$T_{x / \beta, S}$	T_{yz}	T_{zx}	$\mathrm{T}_{x y}$
$S_{1}\left(A_{1}\right)$	0	0	0
$S_{2}\left(A_{1}\right)$	0	0	0
$S_{3}\left(A_{1}\right)$	0	0	0
$S_{4 a}{ }^{(E)}$	0	$-0^{-1 / 2} r \sin \beta \cos \beta$	0
$S_{5 a}(E)$	0	$-3^{1 / 2} 2^{1 / 2} \mathrm{~J}$	0
$S_{6 a}(E)$	0	$-6^{1 / 2} \mathrm{r} \mathrm{K}$	0
$S_{4 b}(E)$	$-6^{1 / 2} r \sin f \cos \mu$	0	$3^{1 / 2} 2^{-1 / 2} \mathrm{r} \sin ^{2}, 3$
$S_{5 b}(\underline{\text { E }}$	$-3^{1 / 2} 2^{1 / 2} \mathrm{~J}$	0	$3^{1 / 2} 2^{-1 / 2} r \sin \beta \cos \beta$
$\mathrm{S}_{6 \mathrm{~b}}{ }^{(E)}$	$-6^{1 / 2} \mathrm{rk}$	0	$-3^{1 / 2} 2^{1 / 2} \mathrm{r}$

Where

$$
\begin{aligned}
& H=-2 \cos ^{2} \beta(1-\cos \alpha)(\sin \alpha)^{-1}+p q \sin \beta \cos \beta \\
& G=\sin ^{2} \beta(1+2 \cos \alpha)(\sin \alpha)^{-1}-p q \sin \beta \cos \beta \\
& I=\sin ^{2} \beta(2+\cos \alpha)(\sin \alpha)^{-1} \\
& J=q r\left(\sin ^{2} \beta-\cos ^{2} \beta\right)+q^{\prime} R \\
& X=(1-\cos \alpha) \sin \beta \cos \beta(\sin \alpha)^{-1}
\end{aligned}
$$

B is the Z - X bondlength,
r is the $X-Y$ bond length,
α is the Y - $X-Y$ angle,
β is the $Z-X-Y$ angle,
$q=(B / r)^{1 / 2}$
$q^{\prime}=(r / R)^{1 / 2}$
$p=3^{1 / 2} \cos \beta / \cos (\alpha / 2)$

References

1. Anenthakrishnan T. Fi . and Aruldhas G. 1972 J. Mol.Struct. 13, 163
2. Ananthakrishnan T.R., Girijavallabhan C.P. ard Aruldhas G. 1973 J.MoL.Struct. 16, 149
3. Anenthakrishnen T.R., Cirijavallabhan C.P. and Aruldhas G. 1976 J.tol.Spectrosc. 60, 239
4. Peacock C.J. ana Muller A. 1968 Z.Naturforsch. 23a, 1029
5. ifuller A., Kebabaioglue R., Cyvin S.J. and Mohan N.

1972 Kgl.Norske Videnscab. Selskabs.Skrifter I, 1
6. Eabu Joseph K.and Girijavailadian C.P.

1974 Ind.J. Pure Appl.Phys. 12, 210
7. Alix A, bysel ii.ll., Jordanov E., Kebabcioflu K., Kohan N. and Nuller A

1975 J.inol.struct. 27, 1
8. Anantnakrisnnan 'i'ok. and Grijavallabhan C.P.

1977, Pramana 8, 114
9. Anantiakrishnan T.1. and Girijavallabhan C.P.

1976 Cuem. Phys. Letters 40, 261
10.Hokins L.C. 1966 J.Chen. Phys. 45, 4594
11. Ponomarev Y.I. and Khovrin G.V. 1971 Opt.Spectrosc. 30, 122
12.Mirri A.M. 1967 J.Chem. Phys. 4I, 2823
13. Peacock C.J.and Huller A. 1969 J. Hol. Spectrosc. 30, 338
14.Mills I.M. "Critical Evaluation of Chemical and Physical

Structural Infornation" National Academy of Sciences,
Washington D.C. 1974
15.Kagann R.H., Ozier I and Gerry in.C.L. 1978 J.iol.Spectrosc.61, 281
16.Joseph P.A. and Venkateswarlu k .

1971 Ind.J.Pure \& Appl.Phys. 9, 235
17. Hirota E. and Morino Y. 1970 J.Mol.Spectrosc. 23, 460
18. Morino Y., Kochitsu K. and Moriteni T.

1969 Inorg. Chem. 8, 869
19. Konaka S. and Kirmura M. 1970 Bull.Chem. Soc.Japan 13, 1963
20. Benedict W.S. and Plyler E.K. 1957 Can.J.Phys. 35, 1235
21. Maki Arthur G., Sams Robert L., and Bruce Olson W.M.

1973 J.Chem.Phys. 58, 4502
22. Stroup R.E., Oetjen R.A. and Bell E.E.

1953 J.Opt.Soc.Am. 43, 1096
23. Rama Rao C.G., and Santhama C.

1967 J.Mol.Spectrosc. 22, 238
24. Decker C.E., Meister A.M. and Cleveland F.F.

1951 J.Chem. Phys. 19. 784
25. Fevero P.G. and Mirri M. 1963 Nuovo Cimento 30, 502
26. Williams Q., Sheridan J. and Gordy W. 1952. J.Chem. Phys.20,164

SOME ASPECTS OF VIBRATIONAL MIXING PARAMETER IN RELATION WITH
MOLECULAR STRUCTUER AND PROPERIIES

Abstract

Analytical expression is given for the mixing parameter that characterises the vibrational eigen vector matrix in the second order case based on the criterion of minimisation of average bending energy of molecular vibration. The expresion which is derived on the assumption that the parameter c is small contains only interbond angle and the two normal frequencies of the apecies. Bent $X Y_{2}$ molecular system is taken as an example and it is found that the calculated values of the parameter are in good agreement with the standard values. The value of c obtained using the average bending energy criterion ts directly plotted against the mass ratio m_{Y} / m_{X} of $X_{2}\left(C_{2 V}\right)$ molecules and the graph shows an interesting linear relationship. This relation helpe to evaluate the interbond angle of $X Y_{2}$ bent symmetric molecules from mass ratio and the two normal frequencies of the A species.

6-1 Introduction:

As observed in earlier chapters vibrational eigen vector matrix is of crucial importance in the studies connected With the internal mechanics of molecules as many molecular quantities like force constants, centrifugel distortion constants and vibrational amplitudea are directly related to this. The normal coordinates for a vibrating molecule is given by eq.(1.1) as $S=L Q$. The eigen vector matrix I, determitned by the molecular geometry and the true harmonic force Pield of the molecule is obtained Irom eq.(1.11). Recent atudies ${ }^{1}$,have shown that a reasonably valid I matrix can be obtained from the G matrix alone. Such kinematically defined eigen vector matrices are of great help in determining the vibrational normal coordiuatem as well as approximate internal force field in the molecule.

6-2 Average vibrational poteatial energy:

Using eq.(1.2) the potential function may be expressed in terms of internal valance coordinates at

$$
2 \dot{V}=\sum_{i, j} I_{i j} r_{i} r_{j}
$$

Taking average in the sense detined by cyoin ${ }^{4}$

$$
\begin{array}{ll}
\langle 2 V\rangle=\sum_{i, j} i_{i j}\left\langle r_{i} r_{j}\right\rangle \\
\langle 2 V\rangle=\sum_{i, j} i_{i j} \sigma_{i j} \tag{6.2}
\end{array}
$$

Where $\sigma_{i j}$ are the $\boldsymbol{F l}$ an square amplitudee defined ad $\sigma_{i j}=\left\langle r_{i} r_{j}\right\rangle$

The average of the square of the inatantaneous change in the equilibrium dis'zance between an arbitrary pair of atoms is called the mean square amplitude. The spectroscopic calculation of mean squar amplitudes of vibration, which are themselves a set of characteristic constants of the molecule, utilizes the data on vibrational frequencies. Cyvin ${ }^{4,5}$ has developed a detailed formalism for the spectroscopic evaluation of mean square amplitudes in terms of the symmetrised mean square amplitudes matrix $\boldsymbol{\Sigma}$. The mean square amplitude of vibration refering to internal coordinates are called paralel mean square amplitudes to distinguish them from the general mian square amplitudes based on cartesion coordinates. $\Sigma_{i j}$ are defined by the matrix relation

$$
\begin{equation*}
\Sigma=\langle s \quad \stackrel{\sim}{s}\rangle \tag{6,3}
\end{equation*}
$$

By eq.(1.1) $\quad \Sigma=\quad L \quad \Delta \quad I$
Where $\Delta=\left\langle Q \tilde{Q}_{Q}\right\rangle$. From q iantum mechanical considerations it can be shown to be a diagonal matrix elements

$$
\begin{equation*}
\Delta_{r}=\left(h / 8 \pi^{2} c \omega_{r}\right) \cot h\left(h c \omega_{r} / 2 K T\right) \tag{6.5}
\end{equation*}
$$

Here h is the Planck's constint, K is the Boltzman constant and T is the absolute temprature.

At any finite temprature, vibrational excitation occure With a Boltzman distribution and the above mentioned averaging process implies a thermal averaging in addition to quantum mechanical averaging. In order to avoid higher vibrational states and consequent variation of $\langle V\rangle$ with temprature, ground states undergoing zero point vibrations are considered in this otudy.

In terms of symuetry coordinates one may express eq.(6.2) as

$$
\begin{equation*}
\langle 2 v\rangle=\sum_{i, j} F_{i j} \Sigma_{i j} \tag{6.6}
\end{equation*}
$$

For n internal coordinates, the right hand side of this equation would contain $n(n+1) / 2$ terms, many of which are identical. By parametrising $F_{i j}$ and $\Sigma_{i j}$, one can atudy the symmetric variation of $\langle V\rangle$

6-3 Application to $\mathrm{XY}_{2}\left(\mathrm{C}_{2 \mathrm{~V}}\right)$ type molecules:
For this type of molecules, the potential energy
can be expressed as

$$
\begin{align*}
2 V= & f_{r}\left(\Delta r_{1}^{2}+\Delta r_{2}^{2}\right)+r^{2} f_{\alpha}(\Delta \alpha)^{2}+ \\
& 2 f_{r r} \Delta r_{1} \Delta r_{2}+2 r f_{r \alpha}\left(\Delta r_{1}+\Delta r_{2}\right) \tag{6.7}
\end{align*}
$$

Where Δr_{1} and Δr_{2} are the stretch increments and $\Delta \alpha$ is the change in bond angle. r denotes the equilibrium $X-Y$ distance. Averaging eq.(6.7)
$\langle 2 V\rangle=2 \mathbf{f}_{r} \sigma_{r}+f_{\alpha} \sigma_{\alpha}+2 f_{r r} \sigma_{r r}+4 f_{r \alpha} \sigma_{r \alpha}$
Here the first term arises from pure stretching, the secand term is pure bending, third term is stretch-stretch interaction and the last term represents the stretch-bend interaction.

6-4 Average bending enersy criterion:

For all the $X Y_{2}$ bent symmetric nonhydrides studied, Girijavailabuan et al ${ }^{6,7}$ find that thertexists a minimum for the average bending energy $F_{22} \quad \Sigma_{22}$. The value of the mixing
parameter c corresponding to the minimum of bending energy term is found to yield a force field, which agrees exceedingly well with that fixed with the aid of additional experimental data. This criterion is called the average bending energy criterion. It is known that c is quite small ${ }^{3}$ when I_{0} is taken in the lower triangular form. Hence we can neglect terms containing c^{3} and higher powers of c and write the average bending energy with sufficient accuracy as,
$\left\langle 2 V_{\alpha}\right\rangle=F_{22} \sum_{22} \approx\left[(p n+r l) c^{2}+r m c+r n\right] /\left(1+2 c^{2}\right)$
Where F_{22} is the symmetry force constant corresponding to bending vibration given by the expression ${ }^{9}$

$$
\begin{equation*}
F_{22}=\left(p c^{2}+r\right)\left(1+c^{2}\right)^{-1} \tag{6.10}
\end{equation*}
$$

and \sum_{22} is the corresponding mean amplitude ${ }^{10}$ given by

$$
\begin{align*}
& \Sigma_{22}=\left(1 c^{2}+m c+n\right)\left(1+c^{2}\right)^{-1} \tag{6.11}\\
& \text { where } \cdot p=\left(L_{0}\right)_{22}^{-1} \Lambda_{1}, r=\left(L_{0}\right)_{22}^{-1} \Lambda_{2} \\
& 1=\left(L_{0}\right)_{22}^{2} \Delta_{1}+\left(L_{0}\right)_{21}^{2} \Delta_{2} \\
& m=2\left(L_{0}\right)_{21}\left(L_{0}\right)_{22}\left(\Delta_{2}-\Delta_{1}\right) \\
& n=\left(L_{0}\right)_{21}^{2} \Delta_{1}+\left(L_{0}\right)_{22}^{2} \Delta_{2} \\
&\left(L_{0}\right)_{22}^{-1}=G_{11}|G|^{-1},\left(L_{0}\right)_{21}=G_{12} G_{11}^{-1 / 2},\left(L_{0}\right)_{22}=|G|^{-1 / 2} G_{11}^{-1 / 2} \\
&|G|=G_{11} G_{22}-G_{12}^{2}
\end{align*}
$$

Differenciating with respect to c and setting the result equal to zero

$$
\begin{align*}
\frac{d\left(P_{22} \Sigma_{22}\right)=}{d c}- & {\left[(p n+r l) c^{2}+m c+m\right] 4 c\left(1+2 c^{2}\right)^{-2}+} \\
& 2(p n+r l) c+m\left(1+2 c^{2}\right)^{-2}=0 \tag{6.12}
\end{align*}
$$

$\frac{d}{d c}\left(r_{22} \Sigma_{22}\right)=4 c^{3}(p n+r l)-4 c^{3}(p n+r l)+2 m c^{2}-4 m c^{2}+$ $2(\mathrm{pn}+\mathrm{rl}) 0-4 \mathrm{rnc} c+\mathrm{m}=0$
$\frac{d\left(r_{22} \Sigma_{22}\right)}{d c}=-2 m o^{2}+2(p n+r l-2 m) e+m=0$
When o it very small one can express cat

$$
\begin{align*}
& \text { c }=-r i / 2(p n+r i-m n) \tag{6.13}
\end{align*}
$$

$$
\begin{align*}
& -\min =2 G_{12}|G|^{-1 / 2}\left(\omega_{1} \omega_{2}-\omega_{2}^{2}\right) \omega_{1}^{-1} \\
& 2 \mathrm{pn}+2 \mathrm{rl}-4 \mathrm{rn}=2 \mathrm{o}_{12}^{2}|\mathrm{G}|^{-1}\left(\omega_{1}+\omega_{2}-2 \omega_{2}^{2} \omega_{1}^{-1}\right)+ \\
& 2\left(\omega_{1}^{2} \omega_{2}^{-1}+\omega_{2}^{2} \omega_{1}^{-1}-2 \omega_{2}\right) \tag{6.14b}\\
& \text { Hence } c=E /(J+K) \tag{6.15}
\end{align*}
$$

Here $E=G_{12}|\theta|^{-1 / 2}\left(\omega_{1} \omega_{2}-\omega_{2}^{2}\right) \omega_{1}^{-1}$

$$
\begin{aligned}
& J=G_{12}^{2}|G|^{-1}\left(\omega_{1}+\omega_{2}-2 \omega_{2}^{2} \omega_{1}^{-1}\right) \\
& I=\omega_{1}^{2} \omega_{2}^{-1}+\omega_{2}^{2} \omega_{1}^{-1}-2 \omega_{2}
\end{aligned}
$$

From this expression for c, the vibrational eigen vector matrix can be constructed using the eq. (1.14) with $I_{12}=0$ and

$$
c=\left(1+c^{2}\right)^{-1 / 2}\left[\begin{array}{cc}
1 & c \tag{6.16}\\
-c & 1
\end{array}\right]
$$

6-5 Results:

1) The present result for the value of the parameter c helps to clarify a number of recent observations. For example the result indicates that as a first approximation the value of the mixing parameter is directly proportional to square root of $G_{12}^{2} /|G|$ as noted by Nuller ${ }^{10}$.
ii) The mass dependence of the eigen vector matrix element noted by Muller et al ${ }^{10}$ and Ananthakrishnan et al ${ }^{11}$ can be explained on this basis. It can also be shown that the ratio of $\mathrm{L}_{12} / \mathrm{L}_{21}$ of the matrix element is proportional to the parameter and also proportional to G_{11} / G_{12} since $L_{12} / L_{21} \approx G_{11} c / G_{12}$.
iii) Another important feature of the present expresaion is that the eigen vector matrix is not defined solely on a kinematic basis. The molecular force field as expressed through the frequency factors in the expression for c also has an important role in determining the true vibrational eigen vector matrix. In Table 1 the result calculated using the present formula for a number of $X Y_{2}$ non-hydride molecules are compared with the c values determined from stendard
```
force field obtained with the help of additional.
experimental data.
```

6-6 Application of the average bending energy criterion:

Values of the mixing parameter cobtained from average bending energy crite:'ion when plotted directiy againet the mase ratio m_{Y} / m_{X} gives an interesting linear relationship ${ }^{11}$. Hence for molecules oif small mass coupling also certain regularities between the L matrix elements and the mass ratio can be established. One interesting feature of this graph is that all the c values are positive for non-hydrides and negative for hydrides. Since it is impossible to pinpoint the force field or the c values by virtue of the inherent spreads in the experimental values as well as of errors due to anharmonicity, the observations of such regularities in the value of L_{12} / I_{21} or of c with molecular $s t r u c t u r e s$ are bound to help refinement of our knowledge of many of the molecular constants. A very interesting result arising from such observation is that the $I_{i j}$ show almost complete dependence upon geometry and atomic masses at least in such simple cases. Here we find for molecules of small mass ratio

$$
\begin{equation*}
c=0.03 \mathrm{~m}_{\mathrm{Y}} / \mathrm{m}_{\mathrm{X}}+0.034 \tag{6.17}
\end{equation*}
$$

and for molecules of large mass ratio

$$
\begin{equation*}
c=0.005 \mathrm{~m}_{\mathrm{Y}} / \mathrm{m}_{\mathrm{X}}+0.088 \tag{6.18}
\end{equation*}
$$

These relation are useful in determinine the interbond angle 2α of XY_{2} benc eymatric molecules when the frequencies are known

Fig. (6-1)
Variation of c with m_{Y} / m_{X} in molecular types $X X_{2}\left(C_{2 V}\right)$

1) SeO_{2}
2) ${ }^{37} \mathrm{ClO}_{2}$
3) ${ }^{35} \mathrm{ClO}_{2}$
4) SO_{2} 5) SCl_{2}
5) $\mathrm{s}^{37} \mathrm{Cl}_{2}$
6) OF_{2}
7) NO_{2}
g) ${ }^{35} \mathrm{Cl}_{2} \mathrm{O} \quad$ 10) ${ }^{37} \mathrm{Cl}_{2} \mathrm{O}$
8) $\mathrm{H}_{2} \mathrm{Se}$
9) $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{T}_{2} \mathrm{Se}$ 13) $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{~S}$
10) $T_{2} S$
11) $\mathrm{D}_{2} \mathrm{O}$ and
12) $\mathrm{T}_{2} \mathrm{O}$.
along with the mase ratio. With the help of eqs.(6.15), (6.17) and (6.18) here we have calculated the interbond angle of ano $X Y_{2}$ non-hydride molecules. Heraberg ${ }^{12}$ has already given a method to find out the interbond angle of $X Y_{2}$ bent symetric molecules using the formula

$$
\begin{align*}
\nabla^{3}- & \left(1+2 m_{Y} m_{X}^{-1}\right)\left(\nu_{1}^{2}+\nu_{2}^{2}+\nu_{3}^{2}\right) \nu_{3}^{2} W\left(\nu_{1}^{2} \nu_{2}^{2}\right)^{-1}+ \\
& \left(1+2 m_{Y} m_{X}^{-1}\right)\left(1+m_{Y} m_{X}^{-1}\right) \nu_{3}^{4}\left(\nu_{1}^{2} \nu_{2}^{2}\right)^{-1}=0 \tag{6.19}
\end{align*}
$$

Where $W=1+2 m_{I} m_{X}^{-1} \sin ^{2} 2 \alpha, 2 \alpha$ is the interbond angle. m_{Y} and m_{X} are the mass of X and Y atom. The interbond angles evaluated using the present method and the Horsberg's method are given in Table 2. We can find that the interbond angle evaluated using the present method if rery close to the experimental value. The present method requires only two Irequencies ν_{1} and ν_{2} and the atomic masses. Brenthough Herzbergt method make use of all the three Irequencies ν_{1}, ν_{2} and ν_{3} the interband angle obtained are widely different when compared with the experimentel values exeept in the acse of SO_{2}.

6-7 Interbond angle of $\mathrm{XI}_{2}\left(\mathrm{C}_{2 \mathrm{~V}}\right)$ hydride moleculen uning 1eotopic frequencies:

In hydiride $X Y_{2}$ bent aymetric molecules, it is poesible to calculate the interbond angle ueing the expreasion ${ }^{12}$
$\min 2 \alpha=\sqrt{\frac{m_{x}\left(\omega_{3}^{2} m_{1}-\omega_{3}^{* 2} m_{1}\right)}{2 m_{1} m_{2}\left(\omega_{3}^{* 2}-\omega_{3}^{2}\right)}}$

Here 2α is the interbond angle, ω_{i}^{*} represent frequencies of the isotopically substituted molecule. If this equation is used to evaluate the bondangle of $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{Se}$ we can find from Table 3 that interbond angle of $\mathrm{H}_{2} \mathrm{Se}$ is imaginary even if the bondangle of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$ come out correctly.

The fore constant and hence the F matidic are invariant under isotopic substitution of atom in the molecule. This in turn, enable us to write eq.(1.23) as

Here the *enotes the case after isotopic substitution. Now by virtue of the orthoganality of $\stackrel{\text { C }}{\mathrm{C}}$, we can write the condition from eq. (6.21) as

Trace $\left(\tilde{\mathrm{L}}_{0}^{*} \tilde{\mathrm{~L}}_{0}^{-1}\right.$ c $\left.\wedge \underset{\mathrm{C}}{\sim} \mathrm{L}_{0}^{-1} \mathrm{~L}_{0}^{*}\right)=$ Trace $\stackrel{*}{\wedge}$
This in turn leads to a simple equation of the form

$$
\begin{equation*}
p c^{2}+q c+r=0 \tag{6.23}
\end{equation*}
$$

Where $p=G_{11}^{*} G_{11}^{-1}\left(\Lambda_{2}+G_{12}^{2} \Lambda_{1}|G|^{-1}\right)-\left(\Lambda_{1}^{*}+\Lambda_{2}^{*}\right)+$

$$
\begin{align*}
& \left(G_{11} G_{22}^{*}-2 G_{12} G_{12}^{*}\right) \Lambda_{1}|G|^{-1} \tag{6.24a}\\
q= & 2\left(G_{12}^{*}-G_{12} G_{11}^{*} G_{11}^{-1}\right)\left(\Lambda_{2}-\Lambda_{1}\right)|G|^{-1 / 2} \tag{6.24b}\\
r= & G_{11}^{*} G_{11}^{-1}\left(\Lambda_{1}+G_{12}^{2} \Lambda_{2}|G|^{-1}\right)-\left(\Lambda_{1}^{*}+\Lambda_{2}^{*}\right)+ \\
& \left(G_{11} G_{22}^{*}-2 G_{12} G_{12}^{*}\right) \Lambda_{2}|G|^{-1} \tag{6.24c}
\end{align*}
$$

8ince 0 is very small, higher powers of can be neglected bence

$$
\begin{equation*}
c=-r / q \tag{6.25}
\end{equation*}
$$

We know that for hydride molecules c

$$
\begin{equation*}
c=-\left(0.4 m_{Y} / m_{X}+0.025\right) \tag{6.26}
\end{equation*}
$$

From eq. (6.25) and (6.26) we can write r

$$
\begin{equation*}
r / q=\left(0.4 \mathrm{~m}_{Y} / \mathrm{m}_{X}+0.025\right) \tag{6.27}
\end{equation*}
$$

Since K.H.S. is known the interbond angle can be evaluated from this equation This has been done here in the case of $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{Se}$

The reaults are given in Table 3, along with the convontional method given by Herrberg. We can find that the interbond angle of hydride molecules evaluated using the present method agrees extremely well with the experimental values available Prom litrature. Thus a knowledge of the vibrational mixing in a symmetry species of a molecule is highly useful in determining the geometry of the gystem when frequencies of isotopic molecules are available.
TABLE 1
?nmmeter value for XY_{2} bent symetric molecules

sulocule	c calculated using present method	c obtained from standard force field	Reference for standerd force field
HO_{2}	0.095	0.093 ± 0.006	13
ClO_{2}	0.051	0.057	14
SCl_{2}	0.065	0.061	15
SO_{2}	0.041	0.027 ± 0.003	16
OP_{2}	0.102	0.13 ± 0.02	17
SeO_{2}	0.025	0.034	18

TABLE 2
Interbond angle of $\mathrm{IY}_{2}\left(\mathrm{C}_{2 \mathrm{~V}}\right)$ non-hydride moleculea

woiocute	smout statad	rs satac	sporisemat value
sog_{2}	17.55°	${ }^{122}$:	19.5 :
SOM_{2}	9.4.45	${ }^{68}$	100°
$\mathrm{cl2}_{2}$	${ }_{12} 2^{\circ}$	30°	$119.5{ }^{\circ}$
n_{2}	$13.5{ }^{\circ}$	$8 \%^{\text {P }}$	${ }^{13,25.5}$
pa_{2}	${ }^{10.4 .20^{\circ}}$	6°	10.22°
∞_{3}	$10.5{ }^{\circ}$	113°	10.8°

Experimental values and frequencies that are used for calculating the
interbond angle of XY_{2} bent symmetric molecules is taken from reference 15
TABIE 3
Interbond angle of XI_{2} bent symmetric hydride molecules

Molecule Present method Herzberg method Experimental valuesReference for harmonic frequencies and experimental values			
$\mathrm{H}_{2} \mathrm{O}$	104.8°	103.9°	19

Roferences

1.- Alix A.J.P., Eysel H.H., Jordanov B., Kebabcioglu R.,

Mohan 1 and Muller A. 1975 J. Mol.Struct. 27, 1
2. Crawford B and Person W.B., 1957 J.Chem.Phys. 26, 1295
3. Ananthakrishnan T.R., Girijavallabhan C.P. and Aruldhas G. 1976 J.Mol.Spectrosc. 60, 239
4. Cyvin S.J. 1968 "Molecular Vibration and Mean Square Amplitudes Elsevier Amsterdam
5. Cyvin S.J.(Bditor) 1972 "Molecular Structure and Vibrations" Elsevier Amsterdam
6. Girijavallabhan C.P., Sasidharan Nair S and Babu Joseph K. 1976 J.Mol.Spectrosc. 61, 177
7. Girijavallabhan C.P. Babu Joseph K and Sasidharan Nair S. 1977 J.Mol.Spectrosc. 65, 142
8. Ananthakrishnan T.R., Girijavallabhan C.P. and Aruldhas G. 1973 J.Mol.Struct.16, 149
9. Ananthakrishnan T.R., Girijavallabhan C.P. and Aruldhas G. 1973 Indian J.Pure.Appl.Phye. 11, 649
10. Muller A, Mohan N.and Heidborn U. 1971 Z.Naturforsch. 27a, 129
11. Ananthakrishnan T.R., Girijavallabhan C.P. and Babu Joseph K.

1976 Z.Naturforsch.31a, 1009
12. Herzberg G. 1966 "Infrared and Raman Spectra of Polyatomic Molecules" D.Van. Fostrand Company, INC. Hew York
13. Arakawa B.T. and Mielson A.H. 1958 J.Mol.Spectrosc.2, 413
14. Kriahna Pillai M.G. and Curl R.F. 1962 J.Chem.Phyo.37, 2921
15. Phirugnanaeambendan P.and Mohan S. 1974 J.Chem. Phys.61, 470
16. Kivelson D. 1954 J.Chem. Phys. 22, 704
17. Morino Y.and Saito S. 1966 J.Mol.Spectrosc.12, 435
18. Takeo H, Hirota E.and Morino Y. 1970 J.Mol.Spectrosc. 34,370
19. Benedict W.S. Gailor N and Plyler E.K. 1956 J.Chom. Phys.24, 1139
20. Allen H.C. and Plyler E.K. 1956 J.Chem\&Phys. 25, 1132
21. Hill R.A. and Edwards T.H. 1965 J.Chem. Phys. 42, 1391

CHAPTER VII

PSEODOEXACT PARAMETER METHOD FOR THE ANALYSIS

 OF HIGHER ORDER MOLECULAR VIBRATIONS
Abstract

Abetract

The normal coordinate tranformation matrix L associated With a vibrational problem of order 3 is expressed in the parameter form so that its elements become functions of 3 indepeident angular parameters ϕ_{12}, ϕ_{13} and $\phi_{23^{\circ}}$ In order to solve higher order vibrational problems, possessing insufficient experimental data, the possibility of imposing constraints on these parameters is analysed in the light of coupling they provide between the various symetry coordinates in a normal mode. It is shom that the constraints like $\phi_{12}=\phi_{13}=0$ are best valad in the case of $X Y_{3} Z\left(C_{3 V}\right)$ type molecules when $\left(\omega_{1}^{*} / \omega_{1}\right)$ is approximately equal to $\left(G_{11}^{*} / G_{11}\right)^{1 / 2}$, a term which is calculable purely from molecular geometry and atomic masses. The applicabilit of the constraint is illustrated in the case of $\mathrm{CH}_{3} \mathrm{~F}$ molecule, the force field which is already well eatablished.

7-1 Introduction:

A complete analysis of molecular vibration requires unambiguous knowledge of the potential energy matrix F characterizing the intramolecular forces. In the general valance force field representation, the matrix F associated with a Tibrational species of order n involves (1/2)n(n-1) elements and their evaluation with n vibrational frequencies is mathematically impossible. Recent works ${ }^{1-5}$ indicates that one may require as many as four independent experimental data to fix unambiguously the force field associated with the simplest case of order $n=2$. For higher order problems this number would increase disproportionately, thus making the available experimental data insufficient for unambiguous calculation of force constants for most of the molecules. The scarcity of enough number of additional experimental data accurate enough to provide unique solutions of the force field F leaves open scopes for techniques based on approximations.

Attempts in this direction indicate that such approximations can best be initiated upon matrix I which actually trenforns the aymmetry coordinates S to the normal coordinate Q at given by eq.(1.1). The possibility of obtaining the I matrix near enough to the true one and hence the force field F in casea Where the available experimental data are confined only to frequenoies of vibration for a pair of isotopic substituente is presented here by applying certain constraints upon the mixing
paraneter which bring about mixing between symetry coordinates In each of the normal moden. The C matrix can be expressed in terme of angular parameters $\phi_{i j}$ as given in eq.(1.16b) as

$$
c(\phi)=\prod_{i=1}^{n-1} \prod_{j=1+1}^{n} A_{i j}\left(\phi_{i j}\right)
$$

$\varnothing_{\text {if }}$ are called the mixing parameter in the sense that they determine the contribution from each normal mode to e. given symetry coordinate or vice versa.

7-2 Mixing parameter and vibrational problem:

According to eq.(1.11)the matrix relation $G F L=L \wedge$ gtates the vibrational problem in a nutshell. The eq.(1.13)projects the significance of L matrix in the determination of F from yibrational frequencies. Differentiation of eq.(1.11) yields

$$
\begin{equation*}
\Delta \Lambda=I^{-1}(\Delta G) \tilde{L}^{-1}+\tilde{L}(\Delta F) L+\Lambda I^{-1}(\Delta I)-I^{-1}(\Delta I) \wedge \tag{7.1}
\end{equation*}
$$

Moting that $\Delta F_{i j}$ becomes zero and the last two terme together do not contribute to the diagonal elemente, the abore expreseicn for the shift in frequencies due to isotopic shift oan be written at

$$
\begin{equation*}
(\Delta \wedge)_{11}=\left[I^{-1}(\Delta G) \tilde{I}^{-1}\right]_{11} \tag{7.2}
\end{equation*}
$$

Substitution of firom eq.(1.14) givee

$$
\begin{equation*}
\left(\frac{\Delta \Lambda}{\lambda}\right)_{11}=\widetilde{C} J c \tag{7.3}
\end{equation*}
$$

Where $J=I_{0}^{-1}(\Delta G) \tilde{I}_{0}^{-1}$

If I_{0} is taken in the lower triangular form ${ }^{1,2,3,8,10-13} \mathrm{~J}$ can be direotly calculated from the molecular geometry and atomic masses. The unique evaluation of all $\phi_{i j}$'s from eq. (7.3) would be impossible aince:

1) the sum rule $\sum_{i} \frac{\Delta \hat{A}}{\Lambda}=\sum_{J_{i 1}}$ implied in eq.(7.3) constrains the n independent relations emerging from the equation to only ($n-1$) which is always less than (1/2) $n(n-1)$ for n grater than 2.
ii) Each of the relation will be of the second order in terms of the $\varnothing_{1 j}$'s to be solved. Much discussions have been made on the ambigeous solutions emerging due to the quadratic nature of these equations and the methods have been suggested to spot correct ones in aimple cases of $n=2^{1-5}$ as we have already seen in chapters III and IV. However this problem poses greater difficulty in the case of higher order vibrational species and it is in this context that a physicaly meaningful approximation becomes worthy of consideration.

7-3 Constraints on mixing parameter:

The form of L_{0} obtained when it is taken in the lower triangular form ${ }^{8}$, presente a certain progressive rigidity model for I wher the mixing between the symmetry coordinates in a normal mode is developed purely on a kinematic besis. The validity of this model al a very good approximation to the actual I matrix has been well established. The model is found to hold extremely well when the different symetry coordinates are leant
coupled with one another - a consequence which follows due to the difference in the charactericity of two normal modes corresponding to one stretching and the other bending. Substitution of eq.(1.14) in eq. (1.1) indicates that any additional mixing between S_{i} and S_{j} can be brought about through parameter $\phi_{1 j}$. The approrimation that emerges from such considerations allows certain $\phi_{1 j}$ to be set equal to eero provided the related coordinates S_{1} and \mathbf{S}_{j} corresponding to stretching and bending reapectively have negligible interaction, L_{0} here being taken in the lower triangular form. The consequence of this approximation in the present context follows from eq. (7.3). For example the aymmetry coordinatee S_{1} involves least coupling with others, one would expect $\left(\Delta \wedge_{1} / \Lambda_{1}\right) \approx J_{11}$ in the approximation $\phi_{12}=0$ and $\phi_{13}=0$ in the third order case. This inturn brings a considerable reduction in the number of $\varnothing_{1 j}{ }^{\prime} s$ to be solved from eq. (7.3). 7-4 Application of the present technique: .

As an illustration of the technique, the third order Tibrational problem associated with $\mathrm{XY}_{3} Z$ symmetric top molecules is analysed. There exist two vibration species (A and g) each of order 3 associated with this type of molecules and the Irequency data required are readily available from the intrature ${ }^{14}$ With high accuracy. The first mode vibration in each apeciee corresponds to stretching vibration. This leade to the approximation $\varnothing_{12}=\varnothing_{13}=0$ in lime with the diecuseion in the previous ecction, thus leading to a relation

$$
\begin{equation*}
\frac{\Delta \wedge_{1}}{\wedge_{1}}=J_{11}=\left(\Delta G_{11} / G_{11}\right) \tag{7.5}
\end{equation*}
$$

From eq. (7.3) this can be further be simplified to the form of the frequency ratio as

$$
\begin{equation*}
\omega_{1}^{*} / \omega_{1}=\left(G_{11}^{*} / G_{11}\right)^{1 / 2} \tag{7.6}
\end{equation*}
$$

Conversely, whenever this relation holds good one can reasonably expect the stretching vibrations to be highly characterstic with least perturbation, thus giving the mixing parameters \varnothing_{12} and \varnothing_{13} to be negligibly small.

In this case, the coupling between the two bending modes, \varnothing_{23} alone need to be determined for which the relation $J_{22} \cos ^{2} \phi_{23}+J_{33} \sin ^{2} \phi_{23}+2 J_{23} \cos \phi_{23} \sin \phi_{23}=\left(\frac{\Delta \Lambda}{\Lambda}\right)_{22}$
$J_{22} \sin ^{2} \phi_{23}+J_{33} \cos ^{2} \phi_{23}-2 J_{23} \cos \phi_{23} \sin \phi_{23}=\left(\frac{\Delta \Lambda}{\Lambda}\right)_{33}$
emerging from eq. (7.3) can be used and a solution of this equation yields
$\tan \phi_{23}=\left(-J_{23} \pm H\right) /\left[J_{33}-\left(\frac{\Delta \Lambda}{\Lambda}\right)_{22}\right]$
where $H=\sqrt{J_{23}^{2}-\left[J_{22}-\left(\frac{\Delta \Lambda}{\Lambda}\right)_{22}\right]\left[J_{33}-\left(\frac{\Delta \Lambda}{\Lambda}\right)_{22}\right]}$
$\tan \phi_{23}=\left(J_{23} \pm P\right) /\left[J_{22}-\left(\frac{\Delta \Lambda}{\Lambda}\right)_{33}\right]$
where $P=\sqrt{J_{23}^{2}-\left[J_{22}-\left(\frac{\Delta \Lambda}{\Lambda}\right)_{33}\right]\left[J_{33}-\left(\frac{\Delta \Lambda}{\lambda}\right)_{33}\right]}$
The quadratic nature of the eq. (7.7) and (7.8) leads theoretically to two different roots for ϕ_{23}, say ϕ_{23} actual and ϕ_{23} virtual represented by $\phi_{23^{A}}$ and $\phi_{23} \nabla$. This inturn leads to two sets of
theoretically possible force fields. The ϕ_{23} values and the two roots of force fields calculated for $\mathrm{CH}_{3} \mathrm{~F}$ are given in Table 1, using molecular geometry and frequency data. The force field of $\mathrm{CH}_{3} \mathrm{~F}$ is well studied by Aldous and Mills ${ }^{15}$ by employing as many as 22 experimental data. The force field obtained using the present approach is compared with Aldous and Mills in Table 1. The force field obtained using $\phi_{23^{A}}$ (smaller of the two values) agrees well with the standard force field obtained from the literature. Elimination of anomalous force field can be done by use of additional experimental data like Coriolis coupling constants or mean amplitude of vibration. The criteria that mixing parameter value must be less than 45° in order to hold the assignment proper may also be useful ${ }^{16}$ in many cases to eliminate the anemalous sets. 7-5 Conclusions:

1) The method presented is only pseudoexact in the sense that it brings in a certain amount of decoupling of one of the normal modes from the remaining ones and is expected to wark well in cases where such decoupling almost truely exists by virtue of the oharacteristic nature of vibrations, which is easily checked by $\left(\Delta \Lambda_{1} / \wedge_{1}\right)$ observed $\approx J_{11}$ calculated.
2) The method gives almost the correct values of force constante, though we do not apply a sufficient number of additional experimental data.
3) The method gives two solutions as a consequence of the quadratic nature of equations (7.9) and (7.10). However there are infinite sets of force fields fitting the frequency data (including those of isotopic substituents), but the present state of affairs which yields definite solutions certainly improves the situation. In fact multiplicities of solutions are inherent in many such approaches to the problem as has been noted earlier.
4) The present approach of setting selective constraints on the mixing parameters appears more logical and physically meaningful.
'ABLit 1
The E species force f ield of $\mathrm{CH}_{3} \mathrm{~F}$ fitting the experimental data on vibrational frequencies and isotopic substitution

$\mathrm{F}_{\mathbf{i j}}$	Present method		Previous results	
	Set for $\phi_{23} A=5^{\circ} 11^{\prime}$	Set for $\phi_{23} v=360311$	Aldous and Mills ${ }^{15}$	Muller et a
F_{11}	$\begin{aligned} & 4.843 \\ & (5.371) \end{aligned}$	$\begin{aligned} & 4.844 \\ & (5.368) \end{aligned}$	$\begin{aligned} & 4.948+0.065 \\ & (5.42 \overline{2}+0.054) \end{aligned}$	
F_{22}	$\begin{aligned} & 0.467 \\ & (0.497) \end{aligned}$	$\begin{aligned} & 0.393 \\ & (0.417) \end{aligned}$	$\begin{aligned} & 0.470+0.006 \\ & (0.47 .1+0.005) \end{aligned}$	(0.5)
F_{33}	$\begin{aligned} & 0.724 \\ & (0.762) \end{aligned}$	$\begin{gathered} 0.857 \\ (0.904) \end{gathered}$	$\begin{aligned} & 0.722+0.009 \\ & (0.756 \pm 0.007) \end{aligned}$	(0.76)
F_{12}	$\begin{aligned} & -0.086 \\ & (-0.090) \end{aligned}$	$\begin{aligned} & -0.054 \\ & (-0.062) \end{aligned}$	$\begin{aligned} & -0.108+0.013 \\ & (-0.11 \overline{3} \pm 0.012) \end{aligned}$	
F_{13}	$\begin{aligned} & \because 0.108 \\ & (0.142) \end{aligned}$	$\begin{aligned} & 0.087 \\ & (0.102) \end{aligned}$	$\begin{aligned} & 0.217+0.093 \\ & (0.244 \pm 0.084) \end{aligned}$	
F_{23}	$\begin{aligned} & -0.061 \\ & (-0.064) \end{aligned}$	$\begin{aligned} & 0.023 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.060+0.006 \\ & (-0.06 \overline{3} \pm 0.005) \end{aligned}$	(-0.09)

*The values in parenthesis correspond to those obtained after unharmonicity corrections of the observed vibrational frequencies. All $\mathrm{F}_{i j}$ are in mydn/A

References

1. Ananthakrishnan T.R. and Aruldhas G. 1972 J.Mol.Struct.13, 163
2. Hoy A.K., Stone J.M.R., Watson J.K.G. 1972 J.Mol.Spectrn.42, 393
3. Ananthakrishnan T.K., Girijavallabhan C.P. and Aruldhas G. 1973 J.Mol.Struct.16, 149
4. Ananthakrishnas T.R., Girijavallabhan C.P. and Aruldhas G. 1973 Indian.J.Pure.Appl.Phys. 11, 648
5. Ananthakrishnan T.R. and Aruldhas G. 1975 Acta Chim. (Budapest) 85,269
6. Perion w.B.and Crawford B. 1957 J.Chem. Phys. 26, 1295
7. Torok F ana Pulay P. 1965 Acta.Chin.Acid. Sici. Hung. 44, 287
8. Alix A, Eysel H.H., Jordanov B., Kebabcioglu R, hohan N. and Muller A., 1975, J.inol.Struct. 27, 1
9. Taylor W.J. 1950 J.Chem. Phys. 18, 1301
10. Ananthakrishnan T.R. and Aruldhas G. 1974 J.Mol.Struct. 23,316
11. Muller A, Schmidt K.H. and Mohan N. 1972 J.Chem. Phys. 57, 1752
12. Peacock C.J. and Muller A. 1968 J. Mol.Spectrosc. 26, 454
13. wuller A, and Peacock C.J. 1969 J.Mol.Spectrosc. 30, 338
14. Muller A, and Peacock C.J. 1957 J.Chem.Phys.27, 456
15. Aldous J, hills I.L. 1962 Spectro.Chim.Acta 18,1073
16. Torok F 1967 Acta.Chim.Acad.Sci.Hung. 52, 505
17. Muller A and Rai S.M. 1975 J.inol. Struct. 24,59
```
Computer programme for calculating p,q,r,l,m and n terme
in equation (4.5) and (4.6)
0005 REM.PGM FOK FOKCEFIELD (XY3) BY CN PAUL
0 0 0 8 ~ D I M ~ J ~ ( 1 4 )
0010 FOR I = 1 TO 14
0 0 2 0 ~ R E A D ~ J ~ ( I ) ~
0030 NEXT I
0040 LET X1 = SIN (J (3))
0050 LET X2 = COS (J (3))
0060 LET X3 = X1/X2
O070 LET X4 = 1/J (1)
0080 LET X5 = 1/J (2)
0 0 9 0 ~ L E T ~ X 6 ~ = ~ 1 / X 2 ~
0100 LET X7 = 2*J(4)*(1+2**2*X2)
0110 LET X8 = 1/SQR(3)
0120 LET X.9 = 2*J (4)*(4*X2* Z2-1)
0130 LET XO = SQR(4*X2*X2-1)
0140 LET A1 = (4*X2* X2-1)* X4 + X 5
0150 LET A2 = - (4*X2*X2-1)*X4*X3*2
0160 LET A3 = (4-X6*X6)*(4*X4*X1*X1+X5)
0170 LET A4 = (2*X4* X1*X1+X5)
0180 LET A5 = 2*X4*X1*X1*X3
0190 LET A6 = 2*X4*X1*X1*X3* X 3 + (1+.5* X6*X6)*X5
0200 LET A7 = A1*A3-A2*A2
0210 LET AB = A4*A6-A5*A5
0220 LET B1 = 1/(SQR(A1))
0230 LET B2 = -A2/(SGR(A1*A7))
```

```
0240 LET B3 = (SQR(A1/A7))
O250 LET B4 = 1/(SQR(A4))
0260 LET B5 = -A5/(SQR(A4*A8))
0270 LET B6 = SQR(A4/A8)
0280 PRINT B1, B2, B3
0290 PRINT B4, B5, B6
0300 LET R1 = B1*X8*X7
0310 LET R2 = B2* X7*X8-B3* X9**8* X3
0320 LET R3 = - B4*2*(SQR(2))*X8*J(4)*X1*X1
0330 LET R4 = (R3*B5/B4)+B6*(S2R(2))*X8*.5*X7*X3
0340 LET R5 = B1*8*J(4)*X1*X1*X3
0350 LET R6 = (R5*B2/B1) +B3*2*X8* X9*X3
0360 LET R7 = B4*2*(SGR(2))*J (4)**1*N0
0370 LET R8 = (R7*B5/B4)+B6*2*(S2R(2))*J(4)*X1*X3*X0
0380 PRINT R1, R2, R3, R4
0 3 9 0 ~ P R I N T ~ R 5 , ~ R 6 , ~ R 7 , ~ R 8 ~
0400 LET P1 = 677.3*(R1*R1*J(6)+R2*R2*J(5))/(2*J(13))
0410 LET Q1 = 677.3*(R1*R2*J(7))/J(13)
0420 LET C1 = 677.3*(R1*R1*J(5)+R2*R2*J(R))/(2*J(13))
0430 LET L1 = 677.3*(R3*R3*J(12)+R4*R4*J(11))/(2*J(13))
0440 LET M1 = 677.3*(R3*R4*J(8))/J(13)
0450 LET N1 = 677.3*(R3*R3*J(11)+R4*R4*J(12))/(2*J(13))
0460 LET Y1 = (R1*R5*J(6)+R6*R2*J(5))*J(9)*J(9)/J(14)
0470 LET Y2 = (R1*R1*J(6)+R2*R2*J(5))*J(10)*J(10)/J(14)
0480 LET P2 = (Y1-Y2)*677.3
0490 LET I3 = (R5*R2+R6*R1)*J(7)*J(9)*J(9)/J(14)
```

```
0500 LET I4 = 2*R1*R2*J(7)*J(10)*J(10)/J(14)
0510 LET Q2 = (Y3-Y4)*677.3
0520 LET Y5 = (R5*R1*J(5)+R2*R6*J(6))*J(9)*J(9)/J(14)
0530 LET I6 = (R1*R1*J(5)+R2*R2*J(6))*J(10)*J(10)/J(14)
0540 LET C2 = (Y5-Y6)*677.3
0550 LET I7 = 2*(R7*R7*J(12) +R8*R8*J(11))*J(9)*J(9)/J(14)
0560 LET Y8 = (R3*R3*J (12) +R4*R4*J(11))*J(10)*J(10)/J(14)
0570 LET L2 = (Y7-Y8)*677.3
1)580 LET Z1 = (2*R7*R8*J(8))*J(9)*J(9)/(.5*J(14))
0590 LET 22 = (R3*R4*J(8))*J(10)*J(10)/(.5* J(14))
0600 LET M2 = (21-22)*677.3
0610 LET 23 = 2*(R7*R7*J(11)+R8*R8*J(12))*J(9)*J(9)/J(14)
0620 LET 24 = (R3*R3*J(11)+R4*R4*J(12))*J(10)*J(10)/J(14)
0630 LET N2 = (23-24)*677.3
0640 PRINT P1, Q1, C1
0650 PRINT L1, M1, N1
0660 PKINT P2, Q2, C2
0670 PRINT L2, M2, N2
0680 DATA m
0690 DATA I }\mp@subsup{x}{x}{},\mp@subsup{I}{z}{},\mp@subsup{\Lambda}{3}{-1},\mp@subsup{\Lambda}{4}{-1},4\mp@subsup{I}{xx}{4},4\mp@subsup{I}{xx}{4}\mp@subsup{I}{zz}{2
Where P1 = pJ of eq.(4.5), Q1 = qu of eq.(4.5)
    C1 = r J of eq.(4.5), L1 = 1/J.of eq.(4.5)
    M1 = m
    P2 = PJK of eq.(4.6),Q2 = q.JK of eq.(4.6)
    C2 = (rJK of eq.(4.6), L2 = 1 JK of eq.(4.6)
    M2 = m}\mp@subsup{m}{K}{}\mathrm{ of eq.(4.6),N2 = n
```

