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PREFACE

The work presented in this thesis has been
carried out by the author as a part-time research scholar
in the Department of Physics, University of Cochin during
l98O-1985.

The thesis deals with certain methods of find­

ing exact solutions of a number of non-linear partial
differential equations of importance to theoretical
physics. Some of these new solutions are of relevance
from the applications point of viéw in diverse branches
such as elementary particle physics, field theory, solid
state physics and non-linear optics and give some insight
into the stable or unstable behaviour of dynamical Systems

The thesis consists of six chapters. The first
chapter is introductory and gives a brief survey of non—
linear partial differential equations in the context of
theoretical physics with emphasis on a new stable particle
solution called soliton and some recently developed
mathematical tools for finding exact solutions.
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In Chapter 2, the solitary wave solutions
of double sinh-Gordon equation are studied by using two
systematic methods, Hirota's bilinear operator method
and the base equation technique.

Chapter 3 contains a new solution of SU(2)
Yang-Mills theory which is developed by solving scalar Q4
field by the bilinear operator method.

In Chapter 4 several members of the Klein—Gordon

family of non—linear equations are connected by mappings

and this procedure yields some new solutions.

Chapters 5 and 6 deal with the similarity method
of solving non—linear partial differential equations. In
the fifth chapter this method is applied to Klein—Gordon
family of equations so as to produce some new type of
rotational invariant solutions and explore their common
characteristics from the point of view of the similarity
group. In the sixth chapter the similarity group method
of analysis is applied to coupled equations of SU(2) Yang­
Mills theory so as to derive in a uniform manner some
known as well as new time-dependent solutions of the
Prasad-Sommerfield limit.
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SYNOPSIS

An immense variety of problems in theoretical
physics are of the non-linear type. Non~linear partial
differential equations (NPDE) have almost become the
rule rather than an exception in diverse branches of
physics such as fluid mechanics, field theory, particle
physics, statistical physics and optics, and the constru­
ction of exact solutions of these equations constitutes
one of the most vigorous activities in theoretical physics
today. The thesis entitled ‘Some Non-linear Problems in
Theoretical Physics’ addresses various aspects of this
problem at the classical level. For obtaining exact
solutions we have used mathematical tools like the bilinear

operator method, base equation technique and similarity
method with emphasis on its group theoretical aspects.

A new era in theoretical physics was ushered
in by the discovery of a non-linear transformation called
inverse scattering transform (IST) and the collisional
stability of a particular solitary wave solution, called
soliton, of a class of NPDEs by Gardner, Greene, Kruskal
and Miura [99] and Zabusky and Kruskal [29]. Further
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rapid development added a number of non~linear field
theoretical models such as Korteweg-de Vries (Kdv), two­
dimensional sine~Gordon (sG), non-linear Schr6dinger,.
Thirring model etc. The solitary wave solutions of an
integrable system are often called solitons [193] which
are either topological or nontopological, depending on
the nonvanishing or vanishing of the topological charge.
Equations such as KdV, sG etc. belong to this class that
is characterised by the existence of an infinite number
of conserved quantities. Backlund transformation (BT)
constitutes one of the oldest approaches to the solution
of NPDEs. The method of prolongation structures has
been introduced recently to support the studies using
IST and BT.

The bilinear operator method pioneered by
Hirota [90-98] is closely associated to the numerical

\

method of Padé approximants. We have applied this method
to develop single solitary wave solutions of the Double
sinh-Gordon (DshG) equation in (l+l) dimensions. The
DshG system is a newly introduced system and bears close
resemblance to the Liouville and the Toda models. For

massive and massless ¢4 equations this method yields
some previously known solutions.



ix

Non-abelian gauge theories of the Yang—Mills (YM)

type are of great interest in contemporary field theory
and.particle physics, especially in the context of unified
models of fundamental interactions. By using some suitable
Ansatz one can reduce the SU(2) YM or YM—Higgs theory to

non~linear differential equations (NDE) (the massless ¢4
equation, or one-dimensional Liouville equation) or to a
set of coupled NPDEs. Euclidean space solutions of the
massless ¢4 equations lead to the celebrated instanton

and merons of SU(2) pure YM theory. Monopole solutions
of YM—Higgs system can be obtained from the one dimensional

Liouville equation or a pair of coupled NPDEs.

We have used the singular solutions of the
massless ¢4 model to generate a new family of solutions
of SU(2) YM theory. These solutions are interpreted as

localized yp-<1 -Pj_eId;$ involving no flux transport. It
is conjectured that these objects having infinite action
and infinite topological charge, closely resemble.the
merons and may play a tunnelling role. The idea of employe
ing the solutions of a known differential equation to
construct a solution of a given NPDE was developed by
Pinney, Reid and Burt [80-89] who called it the base
equation technique. Using this approach we developed
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multisolitary wave solutions of the DshG system in
arbitrary dimensions, which collapse to a single solitary
wave in (l+l) dimensions.

We have developed a generalisation of the base
equation method and called it the composite mapping
method, wherein a sequence of maps is applied to several
members of the non-linear Klein—Gordon (NKG) family to

produce new solutions. In a broad scenario like this
where one deals with a whole class of NDEs rather than

a specific one, besides yielding new solutions, this
procedure can expose certain ‘family relationships‘
between different equations which we later confirmed

through the similarity group method. Starting from the
classical ¢4 equation we have generated, through sequen­
tial maps, arbitrary dimensional solutions of Liouville,
double sine-Gordon (DsG), DshG, massive and massless ¢6

equations of the NKG family by imposing simple constraints
at each stage. While all other known solutions of the
DsG collapse to a single wave in (l+l) dimensions, our
solutions behave differently. Since all the four distinct
solutions obtained by us can be simultaneously constructed
for given values of a parameter, it will be possible to
study their interactions. In this context we have also
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highlighted the appearance of one set of solutions and
the disappearance of another set at a critical point.

The Lie point transformation theory has emerged
as a most outstanding attempt to study continuous symmetry,
particular solutions and dimensional reduction of NPDEs
[116-121]. When a second order NPDE is invariant under
these transformations, known as similarity transformations,
it is possible to reduce the number of independent
variables by one, and find similarity solutions of the
equation [l87]. In general the similarity transformations
form an extended group, the similarity group, which upon
a suitable redefinition of the generators, leads to the
Poincare group in the case of Klein—Gordon (KG) equations.

This suggests a three-fold classification of solutions of
two dimensional KG equations into translation invariant,
hyperbolic rotation (boost) invariant and similarity
invariant types. Similarity invariance denotes invariance
under the full similarity group. Such a description
emphasises the behaviour of the solutions rather than
that of the equations. Most of the known solitary wave
solutions are of the translation invariant type. We have
produced rotationally invariant solutions of several NKG
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equations. The group—theoretical meaning of the base
equation technique has also been examined. We have found

that the similarity groups of the original equation and
the constraint equation are identical in all the cases
studied in the literature.

It has been conjectured that the existence of
the Painlevé property (PP) (i.e.,_the absence of movable
critical points) is a signal to the original equation's
integrability. We have shown that the translation-invariant
sector of the sG equation does not possess PP whereas the
rotation invariant sector does possess PP. This may
restrict the '_P&lfile\Jé property of the sG system in
some sense.

The SU(2) Yang—Mills field interacting with a
Higgs scalar triplet is known to give monopole solutions
through the 't Hooft Ansatz. Prasad and Sommerfield developed

spherically symmetric solutions to this system in a special
limit in the static case. Afterwards several attempts

based on guesswork were made to obtain time-dependent exact
solutions. We have carried out a similarity group analysis
of the coupled system of equations representing the SU(2)
'YM~Higgs model equations and shown that the equations
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reduce to the one—dimensional form under the full similarity
group or under one of its subgroups. This approach gives
two new exact time-dependent solutions along with some
previously known solutions.
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INTRODUCTION

l.I. Non-linear phenomena in theoretical physics

It seems nature very often delights in signaturing
her mysteries in terms of non-linear systems of equations.
The non-linear field equations which form the basis of
quantum field theory have long been known to possess a
rich array of solutions at the classical level. A consider­
able number of physical applications of non-linear partial
differential equations (NPDEs) have been made since the last
century, especially in differential geometry and fluid
mechanics.

In 1895 Korteweg and de Vries [1] showed that long

waves in water of relatively shallow depth, could be modelled
approximately by a non-linear equation, which was later named
the Korteweg-de Vries (KdV) equation. Solitary wave.solutions
are some special solutions of the Kdv equation, which were
historically first observed and recorded by Scott-Russell [2]
in 1844. Stokes and Riemann [3,4] had studied some approxi­
mate non-linear waves even before Korteweg and de Vries. In
1876, Backlund proposed the sine-Gordon (sG) equation [5] to

l
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model a non-linear pseudospherical surface in differential
geometry. He developed a method of finding arbitrary number
of solutions of two dimensional sG equation which was later
found to be highly useful in theoretical physics.

Recently, say from 1960 or so, however, applications
of non-linear models have blossomed in various disciplines.
A vivid example of non-linear phenomena in optics is the
observed transformation of a laser beam in a dispersive
medium into a sequence of wave lumps [6,7]. The non-linear
Schrodinger (NLS) equation has been used for the modelling
of stationary two-dimensional self-focusing of plane waves
[8,9,lO], one-dimensional self-modulation of monochromatic

waves [ll-14], self-trapping phenomena of non-linear optics, etc

Non—linear studies were first introduced into plasma
physics in 1961 [15]. Today we find a number of areas in
plasma physics such as plasma turbulence, relaxation of beams
of energy distribution of particles which are optimal for
plasma chemistry, anomalous plasma resistance, self-compression
of high—intensity waves, namely, the Langmuir, lower hybrid,
drift and other waves, space plasma and so on, wherein the
non-linearity scenario projects itself [16-19].

Another physical evidence for the existence of
non-linear phenomena has been obtained from studies of



3

magnetic flux propagation. The magnetic flux penetrates
a very thin (~*25°A) barrier layer of niobium oxide which
separates two superconducting metals (niobium and lead).

The simplest non-linear model equation for this magnetic
flux dynamics is the one-dimensional sG equation, which

has also been used to explain the self-induced transparency
phenomenon of non-linear optics.

The sG equation has been proposed as a simple

model for elementary particles [27]. The modern theory of
elementary particles is a rich repertory of non-linear
equations possessing particle-like solutions. The Toda
lattice equation [20,21] is a well known non-linear physical
model, very extensively studied recently by several authors.
Moreover, physicists are increasingly coming to the belief
that non-linear phenomena may play an essential part in
such different fields as elementary particle physics, solid
state physics, hydrodynamics, astrophysics, non~linear optics
and even in biology [22,23,24]. Some special non-linear
phenomena are of fundamental importance in the system of

L

concepts of a new science called 'synergetics' [25].

Sooner or later, one has to replace the linear
oscillator paradigm of classical physics by some non-linear
wave models.
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l.II. Non-linear differential equations

By a linear operator L we shall mean one having
the properties:

L(u + v) = L(u) + L(v) (l.l)
L(ku) = k L(u) (1.2)

where u and v are arbitrary functions and k is a scalar.
By a non-linear operator we shall mean one that is not linear.
When a non-linear operator is equated to zero or to a given
function, we have a non—linear equation. The principal
objective in the study of a non-linear equation is to confirm
whether or not a solution can be obtained, either explicitly
or implicitly, in terms of classical functions. Studies of
classical NPDEs have served as a source of emerging information
in theoretical physics.

NPDEs exhibiting wave phenomena can essentially be

classified into hyperbolic and dispersive types [26]. -The
theory of hyperbolic partial differential equations (PDEs) is
fairly well studied, whereas that of non—linear dispersive

wave equations had received only scant attention till about
two decades ago. Equations such as KdV, modified KdV (MKdV),

NLS, sG and Boussinesq, belong to the dispersive type.
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Since the last century, NPDEs have arisen in

large numbers in the study of fluid dynamics. The progressive
wave solutions play an important role in the general solution
of initial value problems. The prototype for hyperbolic waves
is frequently taken to be the equation

2 2utt - c $7 u = O (1.3)
The definition for hyperbolicity depends only on the structure
of the equation, but is independent of the properties of the
solutions, whereas the prototype for dispersive waves is
based on a specific property of solutions rather than the
type of equation. A linear dispersive system is characterized
by the existence of a solution of the form,

u = c cos(kx - wt) (l.4)
where w, the frequency, is a definite real function of the
wave number k and the function w(k) is associated to the

specific system. The system is said to be dispersive since,

the phase velocity vp = w/k, depends on k; so the modes with
different k will propagate at various speeds, leading to
dispersion. In general, for a dispersive wave:

d2__% # O (1.5)dk
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The general form of a dispersive solution of a
linear system can be written as a Fourier integral

00

u(x,t) = P(k).c0s(kx - wt)dk (1.6)
0

F(k) is obtained from the initial and boundary conditions

associated to the problem. The function u(x,t) represents
a linear superposition of waves of different wave numbers,
each travelling with its own phase velocity w/k. As time
evolves a single wave disperses into a whole oscillatory
train with different wavelengths. The group velocity is
defined by

vg = %% - (1.7)
For dispersive waves, vg and vp are different and it is
vg which plays the dominant role in the propagation. The
energy associated to the wave is also propagated with the

group velocity vg.

A simple non-linear wave equation is

ut + ou ux = -Gtlltux a (1.8)
which has an implicit solution

u = L1(% - 6ut). (1.9)
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Whenn u is large and positive, there will be a large effective
speed u along x and the wave develops a rising front leading
to a "shock wave‘.

Given an underlying wave equation, a travelling wave
u(n) is a solution which depends upon x and t only throughn = x - vt (1-19)
where v is a fixed constant [l95].

A spatially localized solution of a travelling wave is called
a solitary wave, whose transition from one constant asymptotic
state as x-—+ —w to another as x-—+-+<», is asymptotically

ilocalized in space. In general there are two types of travel­
ling waves, as shown in figs.(l.l) and (1.2).

It is possible to balance the non-linearity against
dispersion to get a solitary wave u(kx - wt). A typical model
for solitary waves in deep and shallow water is provided by
the KdV equation [1],

ut + 6u ux - k uxxx = O. (l.ll)
A single solitary wave solution of equation (l.ll) is:

u(x,t) = 202 sech2 (cx - 4c3t) - (l.l2)
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The profile corresponding to (1.12) is as shown in fig.(1.1),
bell-shaped, asymptotically vanishing and propagates along
the-R-axis without any change in shape. About 140 years

back, Scott-Russell had observed this type of solitary
wave in the English Channel [2].

In 1876 Backlund developed a transformation theory
aand demonstrated the possibility of developing arbitrary
number of particular solutions of NPDEs of differential
geometry [5]. By this procedure he was able to obtain a
particular solution of the sG equation

uxx - utt = sin u (1.13)
in the form

u = 4 arc tan[exp(kx - wt)] (1.14)

The profile of this solution is indicated in fig.(l.2).
Nearly 100 years treked and the sG equation (1.13) has become
a standard field theoretic model.

In 1962, Perring and Skyrme [27] studied the
collision process of solitary wave solutions of the sG equation
through computer analysis. They observed that the solitary
waves of sG equation emerged from a collision with their shapes
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and velocities unaffected. The wave-wave interactions in

the sG system were studied independently by Seeger, Donth

and Kochendorfer [28].

In 1965, Zabusky and Kruskal studied the collision
process of solitary waves of KdV equation in plasma [29].

The result was the same: the solitary waves emerged from the
collision without any change of shapes and velocities. They
called such collisionally stable solitary waves 'solitons'
and thus inaugurated a new branch of physics, the non-linear
.dynamics.

A soliton is essentially a non-linear solitary wave
where the dispersion of the group velocity is exactly compen­
sated for by the non-linear self-compression of the wave
packet, and as a result, the soliton propagates without
spreading and conserves its shape and velocity asymptotically,
upon collision with other solitons. Hence for a given solitary
wave solution, u(x,t) composed only of solitary waves for
large negative time,

N

u(x,t) ~ Z: u(n.) as t -—»-w (l.l5).-i=1 J

where nj = kjx - wjt, the name soliton applies if the solitary
waves indexed by j emerge from collision with similar waves,
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with no more than a phase shift, that is,

z

YT/12

u(x,t) u(fij) as t -—~ + w (1.16)

i
where nj = kjx - wjt + S}.

The stability of the soliton, in spite of its
large mass, can also be understood as a consequence of a
topological charge conservation law. The charge is associated
with the trivially conserved current,

_y@ == gt” q)u(x,t) (1.17)
where

em) = _ evu

6°1 = 1.

The topological charge Q for a solution u(x,t):

Q =  j° dx

= [u(+<==>) - u(-00)]. (1.18)
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The conservation of the non-zero charge Q takes care of

the stability of the soliton[30:]­

On the basis of the topological charge Q, solitons
are usually classified into two types [3O]: topological

solitons or kinks (Q # O), and non—topologica1 solitons
(Q = O). In the literature the term 'soliton' is usually
reserved for non-topological solitons of integrable
systems.

Some typical examples of kink solutions are those
of the sG equation in l+l dimensions and the magnetic
monopole solution of ‘t Hooft and Polyakov [31,32] in 3+1
dimensions. The bell-shaped solution (l.l2) of KdV equation
is a non-topological soliton. The topological charge is
the result from non-trivial mapping between the internal
field space and the manifold of real space (x,y,z), hence
the field configurations of these solitons belong to non­
trivial homotopy classes.

A solitary wave solution of any importance must

be stable against small linear perturbation, and this
property can be checked by a classical linear stability
analysis. We shall illustrate this procedure for a Klein­
Gordon (KG) type non-linear field equation in l+l dimensions

uxx - utt = V'(u), (l.l9)
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where the field potential V(u) is non-negative to ensure
positive definiteness of energy. The prime denotes
differentiation with respect to the field u(x,t). For a
static configuration u(x,O):

uXx(x,O) = V'(u(x,O))- (l.2O)
A time-dependent solution of (1.19) can be written as the
sum of a static part and a time-dependent part labelled by

a parameter 2,n,

u(x,t) = u(x) + 1fln(x) exp(i1nt)- (1.21)

Substitution of this in (l.L9) and linearisation around

the small perturbation tbn(x) gives a Schrodinger equation
for lknz

- 3-é-2%‘) + v~<u<><.o>> 1,bn<><> = 1§1b,,<><> (1.22)

Jlesonafi/2 50u"$431cm¢£'/1'00; orflk é) 44 1 "’ 1”
For classical linear stability,Athe eigenvalues 7\

must be non-negative, so that small perturbation about the

static solution u(x,O) do not grow exponentially in time@@§],

The Schrodinger equation (l.2Z) always has a zero
frequency solution, called the translation mode, irrespective
of the potential [33]. So for linear stability, it is

2
n
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sufficient to demonstrate the existence of a translation
mode as the lowest eigenvalue.

The classical stability is believed to ensure
the stability of the corresponding quantum state. This
procedure of linear stability analysis cannot, however,

be extended to higher dimensions [34]. As the dimensions
increase, the translation mode eigenvalue becomes degenerate

A mathematical function of an arbitrary number
of soliton solutions or an N-soliton solution was first
suggested by Hirota [35]. One particular interesting
case occurs when two solitons have the same envelope

velocity [36]. This pulse has zero area and is called
by different names in the literature: the ‘O-n‘ pulse or
the ‘doublet’ or the ‘breather’. It can be viewed as a
two-soliton bound state or as a localized wave-form with

an internal degree of freedom. These breathers translate
at a constant velocity without decay and emerge from
collision, with atmost a phase shift, as solitons [29].
The energy of the breather is slightly less than that of
a two—soliton state; in addition, it pulsates due to the
internal degree of freedom [37]. The breather solution of
the sG equation (l.l3)[37] is expressed in derivative
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form by

O7 l+(n/§)2sech26 cos ¢
(1.23)

where 0' = (t - x/c), ¢ == £50 + wlx - 2§t and

9 = 9,, + w2x - 2nt and c, n,§ , ml, m2 are constants.

The wave profile of this solution is depicted in fig.Q.3).

The breather solution is called a '0-n‘ pulse in’non-linear
optics since it takes the field u from zero to zero as x
goes from -w to +w_and it has zero area or 'On‘ area.
On the other hand the kink is a '2-n’ pulse, it has
‘pulse area’ 2n when it is associated with the 2n-kink

(for example, the sG solution (1.14)).

In more than l+l dimensions, one must necessarily
deal with models involving spin which lead to complicated
systems. Then the translation mode in n-dimensions is
n-fold degenerate, whereas for the ordinary Schrodinger
equation, the lowest eigenstate is non-degenerate. Hence
for space dimensions n > l, the classical scalar system
is generally not stable [38,39,4O].

In dimensions more than l+l, fields with spin
degrees of freedom have to be imposed to support stable



§
|

f%E

O L

Pig.l.3 Breather solution of sG equation
(derivative profile).
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static classical configurations. It leads to gauge models
that are known to possess soliton solutions in three
dimensions [41].

l.III. Four dimensional non-linear theories

As mentioned in 1.1, non-linear field systems are
of special interest in the study of elementary particles
and quantum field theory as they possess a particle-spectrum
which survives quantization. Most interesting of these
objects, which are reminiscent of hadrons, arise in theories
with spontaneous symmetry breaking (SSB).

The basis of a symmetry principle in physics is
that some pifipeitfgs remain invariant under certain transform­
ations.y$he tnamsdwiflfifls rediiflon abs. Gauge theories [42-46]
are characterised by their invariance under a group (the gauge
group) of symmetry transformations. Based on the type of
gauge group that defines the symmetry transformation, gauge
theories are classified into abelian and non~abelian types.
The simplest gauge group is U(l) and the corresponding gauge
theories are called abelian gauge theories. If higher symmetry
groups such as SU(2), SU(3) etc. are involved then the theory
becomes non-abelian.

Consider the Lagrangian of a free fermion field'¢/(x)

to -= 1/» <><><1 ¢ - H0111 <><> (1.24)
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which is invariant under the phase transformation,

tb (x) --—> ei°1;[;<><), (1.25)
where a is x-independent. This implies that the derivative
of the field transforms like the field itself:

\

op%p(x)-—>eia ogMb(x) ~ (1.26)

The group of transformations (l.25) and (1.26) is the abelian
group U(l).

Yang and Mills [47] generalized the principle of
gauge invariance to the case where the invariance is associated
with a non-abelian internal symmetry group SU(2). Let
¢i(x), i=l,2,...n be a set of fields. The Lagrangian describing
the dynamics of the system will be invariant under a compact

O

Lie group G of transformations of the fields ¢l(x), given by

¢l<x> -+ ¢1(x> - 1@ar§j¢j<x> * (1.27)

where the Ta are the generators of G. The type of gauge
invariance discussed above, is known as global or rigid gauge
invariance.
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When a is made x~dependent,

¢(><> --> ei“(’<)¢(><) , (1.28)

the derivative of the field no longer transforms like the
field. This is true for abelian as well as non-abelian
groups. But the local gauge invariance can be maintained

by defining a covariant derivative DH:

nut/)(><) __» 61°“) np¢(><) - (1.29)

To construct the operator Du, we define a new vector field
Ap(x) called a gauge field, which transforms as:

Ap(x) ___, Ap(x) - é op,a(x) (1.30)

where e is the coupling constant. Defining Du asZ -I-I . ,3Up an 1eAp , (l l)
we can write the locally gauge invariant Lagrangian as

LO --> Ll = $00 (ii? — m)1,D(><)

-= 1b<><><1¢ - m>1,b<><> + e1,0<><>m,Z/(><>A“<><>­

(1.32)
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If Ap(x) is the photon field, then an additional term for
the kinetic energy is to be added:

Ll -,-+ 1.2 .-.= Ll -- 1/4 PM PP” , (1.33)

where

rm, = apA,,(><) - a,Ap(><) - (1.34)

The new Lagrangian (1.33) is the Lagrangian for quantum
electrodynamics (QED). It can be seen that the local gauge

invariance will be destroyed if L2 contains a term proportional

to Au A“, which is the mass—term of the field. This implies
that local gauge invariance demands the photon to be massless.

The same analysis can be extended to non-abelian
gauge groups in the following manner. The matter fields
transform according to

¢i(><) —-> ¢>i(><) - 1<1"“(><> Tij-¢J'(><> - (1.35)

The gauge fields Ai(x) transform as

a a 1 a 5 b c _
Ap(x) ——+ Ap(x) - E dpd (x) + iabca Ap (1.36)
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As before, e is the coupling constant and fabc are the
structure constants of the compact Lie group G,

[Ta, Tb] 2; 1 fabc TC . (1.37)
A gauge-covariant derivative is defined by

0 a - ' Ta A8 . 1.38P, --—-> u 19 p(X) ( )
The Lagrangian which is locally gauge-invariant can now
be written:

L2 = Ll - 1/4 F3” Pg” , (1.39)
where

“CU

a _ a _ a cPu» - OPAL, avxtp + e fabc A  (1.40)

Once again the gauge field is massless preserving
gauge invariance. So the local gauge invariance demands a
set of massless vector fields, and the number of massless
gauge vector bosons has to be the same as the number of

generators of the gauge group. When the Lagrangian L(¢,op¢)
of the system is invariant under some symmetry group of
transformations, by Noether's theorem [48], there exists a
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well-defined set of conserved current densities jfi(x)
such that

o "3 =-. 0 ~ 1.41pJp(X) ( )
The charge associated with the current density j3(x) is
given by

Qa = j d3x j2(x) (1.42)
which is the generator of a symmetry transformation of the

field. The vacuum state ‘§> in the quantizec theory may or
may not be invariant under this transformation,

Qa‘;> = o (1.43)
OI‘ Q?l;> 4 0 (1.44)
When (1.44) holds, the vacuum is not invariant under the
symmetry group of transformations, eventhough the Lagrangian

is invariant and this case is known as spontaneous symmetry
breaking (SSB).

One of the simplest models exhibiting SSB is the
one with a single scalar field, defined by the classical ¢4
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Lagrangian, in l+l dimensions [49,5O],

2_1 122 4L ~§wg>-<§m¢+ §¢>- (Le)
The Lagrangian has got reflection symmetry ¢ ea» - ¢. The
potential function associated to the above Lagrangian is:

v(¢) .-.-.- %-m2¢2+ 9-Z:-¢4. (1.46)

The profile of the potential V(¢) for m2 < O is sketched
in fig.(l.4). In this case, V has two absolute minima at
¢ = i m/wi , With na local maximum at ¢ = O. This
indicates that the symmetry is spontaneously broken by the
vacuum state. The vacuum expectation value (vev) of the
quantum field ¢ is

<o‘];z5|o> = /m"/-Qt (1.47)
=6’

whereas the ~meson mass of the $4 theory isF§m?

A more general example is that of an n-component
real scalar field ¢:

L = %<@p¢i>2 - %2¢i wi - gs <¢i¢i>2 ~ (1.48)
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This Lagrangian is invariant under the orthogonal group
O(n) in n-dimensions. If m2 < O, the potential has a ring
of minima at o = Y(-m2/A). Let the nth component of ¢
be the one which develops a non-vanishing vev namely,

0.

3 = vev = <O|¢|O> =  ° (1.49)o‘

The new feature is that there is still a non-trivial group,
which leaves the vacuum invariant. This subgroup is O(n-l)

with %(n~l)(n-2) generators. As stated earlier it can be
seen that the Lagrangian (1.48) contains a massive field
with bare mass - 2m2 > O and (n-l) massless fields. Thus
to each broken generator of the original group, there
corresponds a massless boson, known as Goldstone boson after

Goldstone, who conjectured [51] that where there is a
spontaneous breaking of a continuous symmetry in a quantum
field theory, there must exist massless spin zero particles.
If the Lagrangian is invariant under a group G, but the
vacuum has a lower symmetry, i.e., it is invariant under a

subgroup Go, then the number of massless Goldstone bosons
is given by

n = dim G - dim GO. (1.50)
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Thus the Lagrangian (1.48), when SSB is taken
into account, associates (n—l) Goldstone bosons. Physical

illustration of Goldstone bosons is given by excitations
of zero frequency modes in solid state physics. Phonons
in crystals and liquid helium [52] and magnons in ferro­
magnets [53] provide examples of excitations with zero
frequency.

In conventional gauge theory, all the gauge fields
are massless, whereas if gauge theories are to be applied to
weak interaction, the gauge fields should be rendered massive
Nambu [54] and Anderson [55], who were stimulated by the

idea of SSB in the theory of superconductivity [55], first
suggested a possible solution. Towards mid~sixties, it was
realised that [56] the Goldstone conjecture, the existence
of massless particles associated to SSB, need not be true
and the conjecture is valid only for global symmetries,
whereas for local gauge theories, through Higgs mechanism,
the Goldstone conjecture fails.

In the presence of gauge fields, the Goldstone
theorem is no longer applicable because of the fact that the
gauge fields can absorb the Goldstone bosons and as a result,
the gauge fields become massive. Thus a single mechanism
can account for the disappearance'of the Goldstone bosons
and the emergence of massive gauge fields.
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Non-abelian gauge theories, the prototype of which
was introduced by Yang and Mills [57], have played a very
crucial role in two currently popular models of fundamental
physical processes: the 'electroweak' quantum flavour­
dynamics, whene fihfl QQMQR flmemde awe ZdenhWflZed'W@%h the

fiflflsifime mbmman [58,59], and the ‘strong’ quantum chromo­

dynamics [6O,6l,62j. Consequently, SU(3) Yang-Mills (YM)
fields coupled to quarks (quantum chromodynamics, QCD)

appears to provide the only realistic framework that can
accommodate the MIT/SLAC experiments on high energy lepton­

nucleon scattering. Even then YM field equations have not
been solved in a general setting, let alone in the context
of classical field theory.

Although there are several compact Lie groups which

find a place in physical applications, we shall be concerned
only with SU(2). The basic dynamical variables of SU(2)

YM theory are the vector potentials A: carrying space-time
index p, and internal symmetry index a which ranges over
1,2 and 3. In component notation,

El

P Z 2* APA 21 a , (1.51)
where the oa are the Pauli matrices. The YM fields Fun are
related to the potentials AZ by

Fa = a Aa - o Aa ab° Ab AC, 1.52pl) pl! )J}.L+e€ p.v ( )
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where e is the coupling constant. The equation of motion is

DpFp” = o. (1.53)
The SU(2) gauge theory with a Higgs triplet is

defined by the Lagrangian

lpuaa 1 U33}_2aa_l]\aa2
(1.54)

where

a a abc b cjig‘: app + e E Ap¢ . (1.55)
The Lagrangian L is invariant under local SU(2) transform­

ations, with pa and A3 both transforming like the adjoint
representation.

In this classical theory there is a spontaneous
violation of local SU(2) gauge invariance. This is due to
the Higgs potential V(¢),

I\>|—­

1:
IO

*8.
0:

‘S.
0.1

vum = - + %4-7\<¢“‘¢a>2~ (1.56)

The Higgs field must be nonvanishing at spatial infinity in
order that the potential energy be zero thereE@lThus any
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physical solution must satisfyP _¢a-——* -TA na(?), na.na - l,r-» w (l.57)Y

This defines SSB in the corresponding quantum theory, where
one gives the Higgs field a nonzero vacuum expectation value

<¢%>» # O. If fla # O at infinity, then it necessarily
selects a direction na in group space. This ‘breaks’
local SU(2) gauge invariance in the sense that any solution
that satisfies (1.57) cannot be invariant under a U(l) sub­

group of the SU(2) gauge group. The vector na(r) then
determines this subgroup.

In the limit p2-—+ 0, JR->0 with %i < e, the Hiqqs
potential V(¢) in (1.56) vanishes. In this limit the local
SU(2) gauge symmetry of the classical solution may or may
not be 'restored'. It is restored if the limiting value of
p.2/1 is zero, but not otherwiselglj,

A YM theory with a local gauge symmetry breaking

potential is characterised by the Lagrangianl 2 2 2 \L f -3P3», Pg”-gi-}\(A +u/A) . (1.58;

To minimize the potential energy at infinity we need [Z1]2 2A »—+ - p /A , as r-—+ a . (1.59)



29

In 1975, Julia and Zee [63] observed that the gauge potential

component A2 enters the equations of motion very much as a
Higgs field does. Moreover, in the limit p2 = O, ]\ = O

and p2/A < w, one can reinterpret Ag as an imaginary
Higgs field i¢a or conversely Qa as an imaginary gauge
potential iA:. This is only true for static fields.

By the Julia-Zee correspondence [631 we can interpret
any static solution of the SU(2) gauge theory defined by
(1.58) as a solution of the larger theory defined by (1.54).

The first non-abelian YM solution was found by Wu
and Yang [64] which is pointlike, where the gauge potential
behaves like l/r everywhere. The Wu-Yang solution describes
a pointlike non-abelian magnetic monopole attached to a string

The equations of motion obtained from the Lagrangian
(1.54) are

an me. Q eabaf; n~<=- g_g<¢> = O (1.60)

and

auP'“’a - e €b°P“”b A: + e gab‘: f[”b¢° = o , (1.61)

where V(¢) is (1.56). By an ingeneous Ansatz one can reduce
these complicated equations to a simple form. In 1968 Wu and
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Yang [64] developed an Ansatz, which was subsequently
modified by others in which the fields were assumed to be
spherically symmetric.

The Wu-Yang-‘t H0oft—Ju1ia-Zee Ansatz seeks a

solution of (1.60) and (1.61) in the form [65]:

¢a = fa H(r,t)/er (1.62)
A: = $3 J(r,t)/er (1.63)a AAi = Eaij rj[1 - K(r,t)] / er (1.64)

where 9 = ra/r. Inserting (1.62-1.64) into (1.60) and (1.61)
we find

2 2
r2[ Q_E _.Q_% ] = 2HK2 + 2% [H3 - C2r2H2] (1.65)6r2 at 9

where

C = pe/Y1 (1.66)
For L’ = O from (1.61)

2 o2J 2r ——— = QJK . (1.67)
2or

For L’ = 1,2,3 from (1.61)

2 62K 62K 2 2 2r"[ -- - ~__ ] = K(K - 1) + K(H - J ), (1.68)2 2or ot
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2H o J _ @JI _____ _ 5? (1.69)ot.or6J Q5 - . .E? K + 2 at J - O (1 70)
The last pair of equations yield a solution

J(r,t) = r f(t) + g(r) (l.7l)
where f and g are arbitrary functions of t and I respectively

J(r,t) -——> const. as r-» w (1.72)

so that

f(t) = O ,

which implies

J(r.t) = q(r

So we have

%% J = O

implying

Q5 _at " O
or J = O ­

(1.73)

(1.74)

(1.75)

(1.76)

(1.77)
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For time-dependent solutions the natural choice
is (1.77). In this case (1.65) and (1.68) respectively
become

2 2
1~2[ 9--*,§ - 9%] = K(K2 - 1) + KH2 (1.78)or“ ot2 2 1
r2[ 9.1‘! - LE ] = 2n1<2 + -35 (H3 — C2r2H2)- (1.79)OI2 at? 9

Exact finite energy non-trivial solutions to these coupled
radial equations are not known for ;\ ¢ O. Yet, the behaviour
of solutions [See fig.(l.5)] at the origin and the infinity
can be demonstrated [4l]:

r-——+ w K(r,O)-——+ O + const. exp(_Br), B = (en/Y2;m'

r ——+ w H(r,O)--@- Br + const. exp(—Y2pr), B = (ue/V2)

r -+ O K(r,O) ———» l + const. e r2

I‘ -—-> o H(r,O) ——> const. er2 (1.80)

The particular version of these equations (1.78)
and (l.79) that Prasad and Sommerfield [66] considered
corresponds to the case A = O with fixed C (this case being
referred to as the Prasad-Sommerfield (PS) limit), and
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Fig.l.4 Behaviour of ¢4 potential-for m2*< O.
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Fig.l.5 Asymptotic behaviour of SU(2) monopole solutions
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OH _ 6K _5? _ O , 5¥- _ O (l.8l)
giving

}-i.
l\.>

0'01
Hklro7<

= K(K2 - 1) + KH2 (1.82)

2 62H 2r __§ = 2HK . (1.83)or

They reported [66] finite energy static point monopole solutions
of the form

K(r) = Cr/sinh Cr (1.84)
J(I‘) = O (1.85)
H(r) = Cr coth Cr - l. (1.86)

Apart from the spherical symmetry Ansatz other
Ansatze are also useful in yielding monopole solutions.
Recently, using Bogomolny's cylindrical symmetry Ansatz

[67], Porg5c$5,et al [68,69]_reduced the equations of
motion (1.60) and (1.61) to the Ernst equation [70] and
obtained N-monopole solutions through an auto-Backlund
transformation.
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By means of a specific Ansatz for the YM potential

A3, one can reduce the equation of motion of pure YM theory
to scalar Q4 equation of motion. In Minkowski space it is
of the form

e A: = i 1 barb/¢ . (1.81)
Q A3 = eian amp/¢ :3; 1581 aosfi/595 (1-88)

while in Euclidean space the Ansatz is

e A3 = 1 68¢/¢

e A? - €_ 5 ¢/Q5 i Sai 60¢/$25. (1.89)1 " ian n

In both cases the equation of motion of pure SU(2) YM theory
becomes

%5pE:l¢ = -E5 bugs  ' (1-90)
An integration of this equation gives the massless ¢4
equation,

[::I;Z5 +]\¢3 = O , (1.91)
where A is an integration constant.
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An instanton is an extraordinary solution of the
Euclidean SU(2) YM theory found by Belavin, Polyakov,Schwartz

and Tyupkin [l94] imx l975, and is some kind of a localized
vacuum fluctuation with zero energy and characterized by
unit topological charge. Moreover, it is of finite action
and, a localized, selfdual and non-singular solution.

The selfduality condition in Euclidean space is

e Bi = 1 e E2 , °Qf_ J_ _I(1.92)
age 3%“; Cdzmespoqd {B  ,_fl.o[ awl-‘_$eO?0(u\ 0 12rE'$‘P9Z::{w-ioap rs
‘:H‘bR%=>nem=>_Q. Cage 4%‘ G00-S@O»£¢1*-*OQl1; 9  9°‘) A063 0°‘ ew '
;HereE2 E5 Pin , (1.93)
and‘ __ 1 a
are the SUQ2) ‘electric’ and 'magnetic' YM fields, respectively
The instanton solution is developed from the scalar field Q
as

¢ = C/(X2 + v2) , (1.95)
where v is a constant and C = v8v2/A.

The exact solution of N instantons with arbitrary

sizes, centered at points x = an in Euclidean space has been
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constructed [71] from the scalar field Q

N

Q3 = l + Z an/[ X-8n]2, (1.96)
n=l

This configuration represents either N instantons or N
anti-instantons, but not a mixture of both. It is generally
believed that no exact solution exists which describes an
instanton and an anti—instanton.

Another interesting Euclidean solution is the
‘meron', a non-selfdual, singular solution with infinite
action and characterized by one half unit of topological
charge [72,73,74] and it is a pointlike object. It is
believed that merons correspond to tunnelling between two
different vacuua in real time. These vacuua have topological

charges n = O and n = %, respectively: Callen et al [75,76]
have suggested that an instanton consists of two’merons,
and that instanton dissociation into meron pairs signals
a phase transition of the YM theory into the confining
phase.

A one-meron solution of the YM theory was first
given by de Alfaro et al [72] and was developed from the $4
Ansatz—reduced equation (l.9l),where ¢ is

¢ = 1/v<>~><2>. (1.97)
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They also constructed the two meron solution:

2¢ = s sss..<.ae"p:).s as - (1.98)
}\(x-a)2(x-b)2

Clearly solution (1.97) is only a special case of (1.98)
when a -->0, b—-P =», /\--> O»; b2/A < <1».

l.IV Methods of exact solution

The first objective in the study of a non-linear
differential equation (NDE) is to ascertain whether or not
a solution can be obtained either explicitl" or implicitly
in terms of classical functions. The simplest procedure
followed in such an investigation consists in finding a
transformation which will reduce the equation to some type
that is known to have a solution of the desired kind. Some—

times the solutions of an NDE can be expressed in terms of
solutions of a related linear equation or simpler NDE.

The differential equation whose solutions are used
to solve another differential equations is often called the
‘base equation’. This method was first introduced by
Pinney [77] for finding solutions of ordinary NDEs. Kamke [78]
studied several NDEs in terms of related base equations.
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Ames [79] gives a good summary of references of various
studies in this field. Reid and Burt [so-89] have made
extensive application of the base qequation technique in
a variety of problems in theoretical physics.

In 1950, Pinney used the base equation approach
to the NDE,d2Y '3 c___ + P(x) y + Cy = O - (1.9))

dx2

Its solution

y = (au2 + bv2)q2 (l.lOO)
was obtained using the differential equation

2

where

w = u %% ~ v gg # O - (l.lO2)
This idea was later generalized [80,81] to develop solutions
Of the equation

2Q_X + q(x) y = r(x) yl*2n (l.lO3)
dx2
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where (n ¢ O, -%). The method was subsequently extended to

NPDEs [87]. For example, a particular solution of the non­
linear KG equation,

age“ go + m2¢ + A ¢3 I-T o (1.104:

can be obtained in terms of two base equations:

bq
\_/

opa“ u + m2u = O (l.lO
and

dpu aha + m2u2 = O , (l.l06)
where, O“ = gpv an , gpv = (l,—l,-l,-l); then

¢) I: _._._Li_._5 (1.107)Ru1 _ ___
8m2

Recently, this method has been used to solve double
sine-Gordon [89] equations. For the DsG equation,

2 .m . b . ,opato + 5 s1n(ao) + 55 Sln 2¢ = 0 (1.1oa)

the basic equations adopted are:

5

opahw/1 + (m2 + b)§D - 2(m2 + 2b)1)D3+ cw: o (1.109)
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and

(e@qQ)(e“yb) - (m2 + 3b + a)¢?(1-yfih -(2b-B)tbA(l-ybz) = O

(1.110

where; 2 1A = -2(m + 2b) (1.111B = 3b (l.ll2
Q3 = -3-arc sinw - (1.113

One advantage of this method is that one can
develop arbitrary dimensional solutions of KG equations.
N-solitary wave solutions can also be constructed via the
linear superposition principle, when the base equations are
1inearEilA disadvantage of this procedure is that the method
has not proved flexible enough to deal with equations outside
the KG family.

Hirota developed a direct method [35,9O—98] of

finding exact solutions of a number of non-linear evolution
equations. His method consists in replacing the dependent
variable by a ratio of two functions. This approach is very
much similar to that of Padé approximants [99]. Hirota
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defines a new bilinear operator Dz as follows [97]:_ T1
D; q(><,1)-f(><,1;) 2: (§-1» - lg?) q(><,1) f(><,'1')\ (1.114)

‘C:-‘T,'

and n -— 6 5 n I 2 ‘[Q g(x,t)-f(x,t) =3 (5;- 5;?) g(x,t) f(x ,1) , (1.115)
x=x‘

Ordinary differential operators and bilinear operators are
related:

n§~9(x) = Dng-l (1.116)ox" X
‘M/f) _ D Q‘5; 9 _ Xf2 (1.117)

><I\)

l\J

D -f D f-fQE_(9/f) = ___%_i _ E _§_l_ (1,118)2 -2 f f2Ox 1

X0.)

H»

C3

LQ

Pa

U
|\)

H»

H»

g?___(g/f): D Q _3 X XQX3 £2 f2 f2
DZ (g-f) = n§”l(qX f - fx g) (1.120)

where gx = gg and fx = gg . On replacing the given
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differential operators and functions by the new bilinear
operators and g/f, respectiveiy, we get a coupled bilinear
operator equation. This equation is split into two, so that
one of the equations is in general of the same structure
as the linear part of the original non~linear equation.
Functions g and f are then expanded as power series in a
parameter t-2<< l and the coefficients of different powers
cfi'6 are determined as in perturbation theory. This method
can be illustrated for sG equation in l+l dimensions:

uxx - utt = sin u ~ (1.121)
This gives a pair of coupled bilinear equations

(Di - Di)g-f = g.f (1.122)
(oi - D€)(f-f _ g.g) = o (1.123)

by the dependent variable transformation,

U = 4 arc tan (g/f) - (i.l24)
Clearly equation (l.l22) is very much similar to the linear
part of the equation (1.121). Let us consider power series



expansions for f and g:

f=f+Ef+(-12o l
2 3
f2 +

3
Q

g = go +6 gl + 6 g2 + G

f3 + ...

g3 + ...
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(1.125)

(1.126)

On substituting (l.l25) and (l.l26) in (l.l22) and (l.l23)
and collecting the coefficients of like powers of £5 , as
in perturbation theory, we get E91]

go = fo = O

91 = @><1@(9),

fl = l

gn = O, for all n

fn = O, for all n

where,Q = kx -- wt + 8 ,

K2 - m2 = l ­

This yields the exact solution of sG equation (l.l2l) as

u = 4 arc tan(e9)

Z 2

Z 2

and

(1.127)

(1.128)

(1.129)

(1.130)

(1.131)

(1.132)

(1.133)
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which represents a kink-antikink bound pair solution.

Hir0ta's method possesses the advantage of being

applicable to equations in any number of dimensions. Equations
other than those of the KG family also can be solved by this
approach [97]. This method has been used to study three-wave
interaction phenomena [97]. A method of developing N-soliton
solutions, was also introduced by Hirota for exponential type

-r. N .
solutions, by replacing the e9 term by Z eQJ where

J=l.=-k--If 8..Gt it “J + J

\ A new era in theoretical physics was ushered in by
the discovery of ‘Inverse scattering transform‘ (IST) by
Gardner, Greene, Kruskal and Miura [99] whereby the initial
value problem for the KdV equation could be solved. This
method was later formulated in terms of Lax operators [lOO].
A brief outline of this procedure is presented here.

Let us assume that we are able to find two linear

operators L and B which depend on the solution u of a NPDE

satisfying the operator relation

iLt = BL - LB. (1.134)
Then the associated eigenvalue problem for the linear operator
L is L¢= HQ (rum



The eigenvalues E become independent

operator B is selfadjoint. Then the
be shown to evolve in time according

ilbt = syb.

There are possibilities to associate
with the linear operator L; then for
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of time when the

eigenfunction Eb may
to

(1.136)

a scattering problem
given data ¢(x,O),

one can find the ¢(x,t), through a standard procedure. One
of the attendant difficulties of this method is the lack of
a systematic procedure to identify the linear operators L and
B exactly. There are cases where these operators turn out
to be trivial. The construction of ¢(x,t) from the scattering
data of the linear operator L is also not an easy job, as it
leads one to grapple with the Gelfand-Levitan integral
equation [lOl].

There is a close connection between IST and Fourier

transformation. The IST provides the exact solution to certain
non-linear evolution equation, just as the Fourier transform
does for certain linear evolution equations [lO2,lO3].

The Backlund transformation (BT) had its origin in
some studies of Backlund [lO4,lO5] relating to the simultaneous
equations of the first order, arising in differential geometry
[lO6]. The BT provides a method of constructing various classes
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of equivalent equations, thereby leading to the integrals of
the original equation, and this is closely associated to
‘contact transformations‘ [107] of differential geometry.

Let (x,y,z, p=zX, q=zy) be a surface element and
(x',y',z',p',q') be an element of any other surface. To
connect the two surface elements completely, it is necessary
to have five distinct equations. Each set satisfies the
total differentials

dz = p dx + q dy (l.l37)
dz‘ = p'dx' + q'dy' (l.l37)

Equations (1.137) reduce the number of independent equations
to four, namely,

Fn(X,Y,Z.p,q; X',Y'.Z',p',q') _= 0, n=l,2,3.4~ (l-138)

There are certain cases when the variable z or z‘ is an

integral of Monge-Ampere form [lO7],

R r + s s + T t + u (r t - $2) = v (1.139)

where r = zxx, s = zxy, t = zyy. Then the transformation is
called a BT. This form of the Monge-Ampere equation is not
the most general one, so that not all such equations can be
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expected to have BTs [lO7]. Clairin [lO8,lO9] developed the
BT for the sG equation in two dimensions in the form-Q ' _fé (q + C1‘) = 'g;- SiI1(Z'-"2'"-‘E’ ) (]-.l4U)l . ' s§ (p - p‘) = a sin(5—%—5 ) (l.l4l)

where z and 2' are two arbitrary solutions of sG equation
and a is an integration constant called the BT parameter.
This type of BT connects two distinct solutions of the same
equation and is called an auto@Backlund transformation (ABT).

It is known from the theory of surfaces [lO6] that there exists
a relationship among four distinct solutions of sG equations
which does not involve quadratures:

Z -— Z (Z + (I Z - Z
tan(-9-I-9) - (ai--&-2-) tan(--=1‘-Z-—--2) (1.142)l 2

where 20, zl, 22, 23 are particular solutions of the sG
equation. This procedure has been exploited [llO,lll] to
develop N-soliton solutions of sG equation. Diagrammatically
this procedure can be represented as in fig.(l.6). This
diagram can be extended further to develop N-soliton solution
without quadratures [llO,lll].

NPDEsof the type

Zxt = f(Z) (l.l43)
can have a BT as well as an ABT.
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O

Pig.l.6 Auto-Backlund transformations for four
arbitrary solutions of sG equation.
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For example,

Zxt = exp(mZ) (1.144)
which is the two dimensional Liouville equation it can be
connected to the wave equation,

zgt = 0 . (1.145)
Thus a solution of Liouville equation can be transformed to
the solution of wave equation and vice versa [ll2].

Apart from various techniques studied in the literature
Weiss et al [ll3,ll4] have recently introduced a comparatively
simple procedure for finding ABTs.

A powerful method of solving ordinary as well as
PDEs was developed in the 19th century by Sophus Lie [ll5]
by using continuous transformation or topological groups. For
simplicity, let us consider a second order PDE with one
dependent variable u and two independent variables x and t

H(x,t,u,uX,ut,uXx,uXt,utt,....) = O (1-146)

Applying one parameter infinitesimal transformations,
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x* = x +€ X(><,t,u) + O(€2)* 2t = t +e T(x,t,u) + O(e )

u* = u +-€ LKx,t,u) + O(62) - (l.l47}

\4'l{¢wthe equation ("1.1.4s) is transformed to

‘X’ '95 ‘X’ * ‘K’ ‘X’
H(x ,t ,u ,ux*,ut*,uX*x*...) = O (l.l48}

then we say, equation (l.l46) is invarint under the infinitesi­
mal transformation (l.l47). X, T and U are the 'infinitesimals’
of the transformations associated to the variables x, t and u,
respectively.

Let us consider the solution surface (“l(x,t,u)
in (x,t,u) space as in fig.(l.7) where u* = u(x*,t*) on the
surface. By the infinitesimal transformation (1.147) we
shall have

u(x +6 X + O(e2); t +éIT + O(£2))

= u + € U(x,t,u) + O(E2)- (l.l49)

On expanding and equating the 0(6) terms;

bu éuX TX + T ET = U ,



*u

#6 (><*_,

(><,.’¢,u)

t*,u*)

0 t
¢’

Fig.1.? The invariant solution surface
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This is called the ‘invariant surface condition‘. By
Lagrange‘s condition, the solutions of equation (1.150)
can be obtained from the characteristic equations,

d><_.£1_‘.=__.Q.2.X - T U (l.l5l)
This implies

d .x3% = f- = f(x,t,u) (1.152)
and

%% = g = g(x,t,u) - (1.153)
When (1.152) is independent of u we get

X = X(t, Cl, C2) (l.l54)
u = u(t, cl, c2) (1.155)

where Cl and C2 are arbitrary constants. The arbitrary constant
of integration Cl now plays the role of a new independent
variable say >(, and C2 is the dependent variable or ‘similarity
solution‘. Thus we have

u(><,’¢) = F()(). (1.156)
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On inserting (1.156) in (l.l46) we can find a equivalent
ordinary differential equation (ODE) in terms of a similarity
solution F(§() and similarity variable X1:

1<(X, F, P‘, F",....) = 0 (1.157)
where a prime indicates the differentiation with respect to
the similarity variable'X1.

The importance of similarity solutions and the
similarity approach has been discussed by many authors [llo-121
Two general results seem to emerge from the similarity approach
of infinitesimal point transformations:

i. If an ODE is invariant under the transformations, its
order can be reduced by one.

ii. If a PDE is invariant under the transformations, it is
possible to find similarity solutions of the equation,
and the number of variables can be reduced by one.

The similarity method can be extended to arbitrary

numbers of independent variables xj and dependent variables
ui, j = l,2,...n, i = l,2,...m. Let us define infinitesimal
transformations of an arbitrary number of variables:
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xg 5 xj + E Xj(xl,x2,..xn; ul,u2,...um) + O(e2)

ui*= ui + 6 Ui(xl,x2,..xn; ul,u2,..um) + O(€2)
(1.158)

where Xj are the infinitesimals of the independent variables
xj, and Ui those of the dependent variables ui. The invariant
surface condition associated with the ‘infinitesimal operator‘

i_ a 6 O
(1.__.Xl5;- +X2-5-Y-+....+Xn-5->-<-—'l 2 n

(1.159)
\+UlQ'""I+....+Um9"""IHou Ou

is defined by,

T: 0 (1.160)
H=O

where H = O represents the system of PDEs.

Finite transformations corresponding to the infinitesimal
set (l.l58) are given byI* .U1 1'-'  Ul

r1 1'1 .= §fi-F (M11 (l.lc">l)

C
l-.J|+ +

1-[\/]s+~F/18

and
9(­

n nx. = x. Q-Ox. - (l-162)J J n‘ J
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Like the independent variables xj and dependent variables ui,
the partial derivatives also transform under an infinitesimal
transformation. The infinitesimals associated with the partialO O
derivatives ui_,u;_xk,....j,k=l,2,...,n. are denoted byJ J
[U5 ], [U3 X ], ...and are often called the first extensions,J j K '
second extensions etc. The partial derivatives transform
according to

C
X I-"sh* *

X
(-1.

1-H
LJ.

P3

= u + E [UX ] + O(e ) (1.163)
where the extension

[Ui ] = Ui + Ui. u” — X ui — X uv ui .xj xj U1 xj k xj xk kuv xj xk
(1 = l,2,3,..m; j, 1< = l,2,..n). (1.164)

To simplify the foregoing formalism we shall
introduce the total derivative operators

D _ 5 bu“ a“ PDxj 5xj + oxj bu

and

OI
CI

'--'>§<'C
>i<

D =  +5-'—' p
DX§ @Xj X bu

a % _ (1.165)
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The transformation rule (1.163) now becomes-* O i DX . \
ul* Z U1 +@;[ QQ_ - 5;: ui ] + O(e2) (1.166)x. X- D DJ J Xj 3

yielding

. Dui DXU i1 '1[Ux.] :  -- 5*; LIX”,J J J
Similarly the second derivatives transform as

i
U 3 ux X +€ 1: "'"""""'" " _"""" UX X J + O(E2). (l.l68:'xjxk j j Dxk Dxk j v

The second extensions are

i- DU .1 x- DX .[U)(. X J : —--*1 -- -—-2 U1 . (l.l69)

In the case of a second order equation, for instance,

Hcxj, U1, u;_, u;_Xk) = o , i=l,2,..m;j,k=l,2...n.(l.l7O}J J
the invariant surface condition is

6H i OH Ui  + Ui  :-_ O
XJ 5Xj + U 551 + [ Xj] bul [ Xjxk] oulx. x.xkJ J (1.171)

On solving (l.l7l), the infinitesimals Xj and U1 etc., can be
found.
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l.V Integrability and Painlevé property

Recently much attention has been focused on the

classification of non-linear dynamical systemsjintegrable
and non-integrable types. The Kdv equation is a simple
integrable system [l22], whereas DsG model is a non-integrable
system [l23]. For an integrable system; the equation of
motion can be explicitly solved and so these systems are
highly regular and well predictable. Classically integrability
is defined as the existence of an action-angle representation
[124].

For integrable dynamical system the following
properties have been noted in the literature [l25].

i. The associated initial value problem can be
exactly solved by IST.

ii. There exists an infinite number of conservation laws.

iii. The system has an ABT.

iv. The associated ‘Lie point vector fields‘ have
'Lie~Backlund vector fields.‘

v. They define a pseudospherical surface, that is a
surface of constant negative Gaussian curvature.

vi. There exists a covariant exterior derivative of
Lie algebra-valued differential forms representation.
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The existence of some of the above properties need not imply
integrability. For example, Liouville's equation, has an ABT
and possesses an IST, but it does not constitute an integrable
system. Thus the above conditions are not sufficient to
establish integrability. The integrability of a system is
closely associated to a property called 'Painlevé property‘ (PP)
of an ODE which can be derived from the PDE modelling the

given system [l26,l27].

Consider a second order ODE in the complex plane,
with variable coefficients:2 ..Q_H.+ p(z) gg + q(z) w = O (l.l72;dz2 '
Let the general solution be

w(z; A,B) = A wl(z) + B w2(z). (l.l73)

If the singularities of w(z) do not depend on A or B, then
they are said to be fixed. A singularity is said to be movable
when its location depends on the constants of integration.
Linear differential equations have only fixed singularities,
whereas NDEs can have both fixed and movable singularities.

The absence of movable branch points or essential
singularities of an ODE is described as the Painlevé property (5 )
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and the equations that possess PP are said to be of Painlevé
type or P-type.

The first order equations with PP are generalized
Riccati equations:

dw _ 2HE - P0(z) + Pl(z)w + P2(z)w . (l.l74)

A second order equation

2Qgg = F( 3%-, w,z ) (1.175)dz

is P-type if it can be reduced to any one of the six Painlevé
transcendents (PI-PVI) listed below [12a]=

2

PI, 9{§dz

d2wPII , dz2
d2wPIII -—­

’ dz2
2

PIV, 945
dz2

Q.Q.N £0J2

PV,

= 6w2 + z

= 2W3 + zw +

._ .l..(_<iE."£)2 _, .3;“ W dz Z

=l_..§..“_’2+2w (dz)

~ <~_!>;~,,;+ -1--><-3‘-"‘1>‘“‘ 1-5'1?‘-’-+“”'l (awn?)

Q

dw
HE

5

+

3 3
w

.-1-.

2

+

(cxw2 +5) + Y W3 +£­

zw2 + 2(z2- a)w + B‘%

2
)" w-l z “ z dz Z2
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2<1w_g1 1 1 dw2 1 1 1 93
WI’ 5175 " 2(a;*a'I1"*m')(a*z> -(st:-z':'1'*;v:2)dz

wtw-lLQw—z) §_Z_ + lE_'_"_!-_) +8 El-Z-3-1-'-) ]
+ _z;2;(T1z:..il)2—: [Q + w2 (W—l)2 (“"'Z)2

(1.176)

where a, B, Y and S are constants.

Ablowitz et al [l26,l27] have conjectured that every
non-linear ODE obtained by an exact similarity reduction of a
NPDE solvable by some inverse scattering transform has PP.
It is believed that if an ODE possesses PP, then this system
isfintegrable.

In classical mechanics, the Toda lattice [20] is a
well known example of an integrable system. In field theory
the sG equation is an integrable system in l+l dimensions.
In quantum field theory a best known example of an integrable
system is the quantum non-linear Schrodinger equation [I29].

Recently a number of studies on non-linear operators
and integrability of evolution equations have also appeared.
Let u be a smooth function on the real line vanishing rapidly
at infinity, and K(u) be a smooth vector field on the space S
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[_I3o~ ms]

of these functionsk For integrability, the evolution equation,

Ut -  :2 O (1.177
has dependence on a certain integro-differential operator T(u).
This operator T(u) has been given various names in the
literature: squared eigenfunction operators [l3O], recursion
operators [l3l—l34], strong symmetries [l35], hereditary
symmetries [l35], Kahler operators [136] or regular operators
[l37]. Several investigators, especially Magri [l36],
Gelfand and Dorfmom [137] Pokas and Fuchssteiner [138-139]

and Aiyer [132-134] have extensively studied the structure
of these operators and their connection to the Hamiltonian
formulation.



SOLITARY WAVES IN DOUBLE SINH—GORDON SYSTEM

2.I The double sinh-Gordon equation

Skyrme [140] proposed a non-linear field theory
which, for the scalar case and in l+l dimensions, reduces
to a non-linear extension of the Lagrangian density corres­
ponding to the linear KG equation. The equation considered
by him has subsequently become known as the sG equation which

is characterised by a sine function in the equation of
motion. In 1962, Perring and Skyrme [27] found by a computer
analysis that the solitary wave solutions of the sG equation

are collisionally stable and thereby paved the way for the
introduction of the soliton concept. Later this was recognised
as an important model in solid state physics [142] and high
energy particle physics [49,l4l]. An equation of motion with
two sine functions was subsequently introduced [142-147] and

named the double sine-Gordon (DsG) equation which has led to
several applications in non-linear optics [l43,l45] such as
the study of the B—phase of liquid helium [145,14e] and the
ltreatment of quasi-one-dimensional charge-density wave
C

mondensates of organic linear conductors like TTF—TCNQ [l47].
in l+l dimensions the sG field system undergoes a second

63
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order phase transition [l48]. The hyperbolic version of
the sG family of equations has been discussed recently.
Unlike the sG equation, the sinh-Gordon (shG) equation has

no soliton solutions [149] although like the sG equation,
this has got an ABT and an infinite number of conservation
laws.

A new member called the double sinh-Gordon (DshG)

model has recently been added to the KG family of equations
by Behera and Khare [l5O]. They found a kink solution for
this model and demonstrated the possibility of calculating
the exact free energy associated with the second order phase
transition that the system undergoes. Minami [151] has
recently studied this model and established its relation
to the Toda lattice model [20].

Morse [152] introduced an anharmonic potential of
the exponential type:

v(¢) = a/b exp(_b¢) - 2a/b exp(—b/2'¢) (2.1)

which was later called the Morse potential. A more general
form of an anharmonic exponential type potential is

V(¢) = al/b exp(-b¢) + 2a2/b exp(-b¢/2) + a3/b exp(b¢)

+ 2a4/b exp(b¢/2) - (2.2)
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= 8 = 8 = O ,l 2 4
the potential yields the classical Liouville equation [l42],

¢xx - Qtt = a3 exp(b¢) ~ (2.4)
This is
used in

"31

a2

b

we obtain

¢xx

a well studied field-theoretic model and widely
fluid mechanics and differential geometry [4l,l54—l57]

For

:: E13: (I

: 84 = O= l , (2.5)
the equation of motion

- Qtt = a sinh ¢ , (2.6)
which is generally known as the sinh-Gordon equation.
For the

b4

a1

a2

choice

==-4

2: 83:: a4 Z '-'2“ ,
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‘(2.2) gives

V(¢) = n2/8 cosh 4¢ - n cosh 2¢ , (2.8)

where n is a real parameter. To ensure the vanishing of the
potential as ¢-—+»O, we may modify this trivially into the
form 2 2 . A

V(¢) = n /8 cosh 4¢ - n cosh 2Q - én + an. (4.9)

This represents the potential corresponding to the DshG
equation and has minima at

Q =- O for n > 2 , (2.10)
and

cosh 2¢ = 2/n for n < 2. (2.11)
For the second condition (2.11) there are two degenerate minima
The values of the potential at the minima are

/'\
I\§

|.....a

Q
\./‘

Vmin(¢ = O) 2 O T
and _ - 2 W

Vmin(cosh 2¢ = 2/n) = i(-n - 4nfi¢). (2.13)

The equation of motion corresponding to the potential
(eq.(28)) is
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The first known solution for this model is a kink-like
solution [l5O]:

¢(x,t) = arc tanh (l7qLgl-e: taflh .V2(X_ut)i)W1-“2/2) V(l-112/4)V[m(¢2--u2)]

(2.15)

which is defined for the values |n| < 2. As X-—e>w, this
behaves according to

tanh [¢(i‘”)] == I V[(2-U)/(2+fl)] , (2-16)

which are the values of the field ¢ corresponding to the two
degenerate minima characterising the kink solution (2.15).

In this chapter we first show that the DshG field
system possesses other types of solution besides the large
amplitude kink-like solutions. For this purpose we use the
bilinear operator method as well as the base equation technique.
We also examine the asymptotic behaviour of multisolitary wave
solutions and carry out a linear stability analysis of the
single solitary wave solution. This system is shown to p0SseSS
stable solitary wave solutions in l+l dimensions. Characterised
as they are by a vanishing topological charge, these new
solutions can be considered non-topological objects [30].
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2.11. Solitary waves by the bilinear operator method

Define a transformation

¢ = arc tanh (g/f) (2.17)
so that the equation of motion (2.14) yields the bilinear
differential equation,2 2 2 1

(f2+q >(n§-Dt)f Q - f g(D§-0t)(f-1 + e-q)

= 2n2f~g(f2+g2) - 4n(f2—g2)f-g (2.1s)

where 05 is the bilinear diffiiential operator. On splitting
(2.18), so  one is Qioeafl aeanoiéee mm, be huxhneovr :1 »)Fanal3_,w6

,¥ir>clf

(Di-D€)f-9 = 2n(n—2)f-9, (2.19)

(oi-o€)(f f + g.g) = -an g.g. (2.20)

We introduce power series expansions for f and g in a parameter
which is very close to unity:

f = 1+ g2f2+ g4f4+... (2-21)
g -= ggl + g2g2 +  (2-22)
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On equating the coefficients of same powers of 6 we
obtain a set of differential equations:

(Di-n§>gl = 2n(n—2)ql (2.23)2 2 2(DX-Dt)(2f2 + qlql) = —8nol (2-24)
C.>:,- vs) 2,. = 2'1 ('1-%
(D; __ 0,3) (93-1~f,_‘3,) = zq ('1-1) (31 * (=51)

Q);-_ 95-) @,‘+ 412.) = 21 ('1-1) (311 *(*—""-L)\Qv OQ.­_ _ in § V .F 0 "' 7 .
Equation (2.23) implies,

2 2O gl 6 gl ~ 2~( 2 2————i - ————- - n n— )ql - (2- 5)2 2Ox ot

A simple solution for this equation (2.25) is

91 == @><1@(9) (2.26)
where, 9 = 1<>< - wt + 8 and

k2 - m2 = 2n(n-2)~ (2.27)
Equation (2.24) yields,

o2f2 @213 <32gl 62gl ogl2 agl 2
2i ""2"" ""§"1"2[g1"""§" "Q1 ""5"" 57 * 5?]5x at ox at

= Bngi - (2.28)
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Inserting (2.26) in (2.28),

£2 = -—exp(29 )/(211-4) . (2.29)

We Sflgt Ca“ ¢.¢>ns\s-\>u>i':Q~j 5&3 [97]

gn = O for all n > 2

fn = O for all n 3 46 = 1 (2.30)
Combining (2.17), (2.21), (2.22), (2.26), (2.29) and (2.30)
an exact solitary wave solution of DshG equation (2.14) is
obtained:

¢(x,t) ; arc tanh l_éfp?;g§;%%fi:Z) - (2.31)
‘kw 442

This solutionflbehaves qualitatively as sketched in fig.(l.l).

Ea e/eaitaee-is-wiiaw We lmimrk wmnmm (w¢.(2.-mm, This

new solution is defined for n 4.2 and can readily be extended
to arbitrary dimensions. We might expect to obtain the multi­
solitary wave solution by setting,

Ng = 2 e><p(Q.). (2.32):I=l J
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However, the corresponding power series of the form (2.23)
and (2.24) do not terminate, exposing the failure of the
bilinear operator method to provide any such solutions.

2.III. Multisolitary wave solutions

The base equation technique is found useful for
the construction of multisolitary or N-solitary wave solutions
of the DshG equation in arbitrary dimensions.

Let us accordingly rewrite equation (2.14) as

opopo = n2/2 sinh 4¢ - 2n sinh 2p , (2.33)

where u = O,l,2,...(n-l) and the n dimensional D'Alembertian,

PT1 DI-—-1 i-*

O1
><

l—*-[\)

2 ‘ 2
6 5,11 ._= Q_2 _ §_>___ . (2.34)t‘ at =

The transformation

Q) = arc sinhw (2.35)
converts (2.33) into the form-.1 "

[14-1/)2] /zapapw - [1+1p2]3/U) @p¢@~¢._2n2¢[1+1p@1"*[1.2¢2

l__.J

+ 4n‘!/[l+1l/2]‘/2 = 0 . (2.36)
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I3

I--'

i
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We may take the equation

6*}/J éplfl = [l+1,§](4n—-6n2—D)¢2—- [l+\/12](4n2+B)1,b4

O

as the base equation. The function Qb can then be expressed
as [gs] ,

ya = u A“vh,

where

A = (1 - Bu2/8m) - Cu4/l2D2 ,

B = (8n — 8H2)

c = -on2

M = (n - n2/2)

2D2 = (4n - Zn ),

and u satisfies the equations
I".a épu + Bdu = O

H

opu spa + D202 = O.

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
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Henceforth, the last two equations (2.42) and (2.43) can
be employed as base equations for solving (2.38). These
equations admit a simple exponential type solution:

u = a exp(akx), (2.44)
where a is an arbitrary parameter and

k = (kc, kl,...kn_l) (2.45)
x = (t, xl, x2,...xn_l) (2.46)(1 2

so that (4n-2n2) < o or n ¢ (0,2).

Equations (2.39)~(2.46) imply an exact solution of
the DshG system (2.33):

¢ = arc sinh (u/Il- (l~2n)u2/(8-4n) + u4/2(4-2n)2]%9.

(2.48)

All the solutions of (2.42) and (2.43) are auto­
matically the solutions of the DshG equation. Since (2.42)
is a linear equation, the linear superposition
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N

u = 5:: a. €Xp(@.kiX) (2.49)1 J J ­0 .J:

is also a solution of (2.42) and (2.43). On substituting
this form in (2.48), a multisolitary wave solution of the

DshG equation emerges with the additional set of conditions:

2ajaikjki + (4n ~ 2n ) = O , (2.50)
where

»

Ki 5 (kio’ K11’ ki2"°'kin—l)

= (kio, ii) (2.51)
and

W’
P.1­

\H\

PT
L4.

7:;
I,-I.

rm
L4.

1+

o

(2.52)

for any i and j.

For a multisolitary wave solution in an n dimensional
space-time, the number of independent components of the wave

vector djkjX is N(n-l), whereas the number of constraints in
equation (2.50) is N(N-l)/2, for i # j. Hence for the system
not to be overdetermined,

N 4 '(2n-1). (2.53)
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Thus the solitary wave index N is restricted by the dimensional
of the space-time n. Nevertheless, in 1+1 dimensions only
one solitary wave can be found as there is only one independent
wave vector and any other wave vector is necessarily parallel
to it, as can be verified in the following way [89].

For any two vectors ki and kj, if'%j be the angle
\

between them, then Egg]

2 2*h. . k. k.
cos égj = E59—El9 i p-i-41)

2i|uzJ.\

7m
H;.

7a
L1.

-IF.-—"

= vi vj i V[(Vi—l)(V§ ~l)]» (2-54)

-O1 2 2 2 2 ~2
where vi = kio/Ki and Ki - kio — Ki.. . 2 . .

For a t1me—like ki, ki > O implies

2 ~2kio - Ki > O , (2.55)
giving 2 ~2 ,V(kiO/Ki) _ lvil > 1, (2.a6)

Similarly for a space-like ki, we have

lvil < 1- (2.57)
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To ensure the consistency of the tIiQ@“°m@tri¢ function

Icos Qijl < l. (2.58)
Equation (2.54) now gives

+ V[(v2 -l)(v2 -1)] < 1 - v v i(9 59)-l - ViVj Q -.. . i  i j‘ ~'
For time-like ki we have |vi| > l, implying

vivj > l
or

l — vivj < O. (2.6O)
From (2.59) and (2.60) we find2 2 2 2

(1 + vivj) ) (vi —l)(vj -l) ) (l - vivj) , (2.61)

which gives

(vi - vj)2 4 0 , for all 1 and j. (2.62)

For real values of vi and vj (2.62) is true only for the
equality, implying

vi = vj for all i and j. (2.63)
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Equations (2.54) and (2.63) yield,

cos Qij = l , (2.64)
and thus

Hence in 1+1 dimensions all vectors are necessarily
parallel and therefore all are dependent and so the multi­
solitary waves reduce to a single solitary wave. For a

space-like ki, this argument can be repeated and the result
will not be contradicted.

2.IV. Linear stability of solutions in l+l dimensions

To investigate the linear stability of a particular
solution of a NDE a small perturbation is applied to the
solution, and examine whether or not this small perturbation
grows with time. If the perturbation remains small enough,
the non-linear equation that it obeys may be approximated by
a linear equation. In this section we analyse the linear
stability of the single solitary wave solution (2.31).

The static form of the single solitary wave
solution (2.31) is
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¢s(x) = arc tanh Q eXP(k%l ) . (2.66)1- exp(2kx)/(2n-4)

Let

¢(X,t) = ¢s(X) + ¢p(X.t) . (2-67)

where ¢p(X,t) is a perturbation such that lop] << 1.

On substituting (2.67) in (2.14) we obtain,

¢p’XX - ¢p,tt = n2/2 sinh[4(¢s + ¢p)]- 2n sinh[2(¢S + Qp)

\2 . .
- [n /2 slnh 4¢s - 2n slnh 2¢s].

(2.68)

By the linearity assumption ]¢p| << l, so, H 2 »
¢p,XX - ¢p’tt _ ¢p[2n cosh 4¢S —4n cosh 2¢S].(2.o9)

This is not of the same form as (2.14); nevertheless, it is
linear and therefore easier to solve. Now consider a separable
form of the solution,

¢p(x,t) = f(x) exp(7\t). (2.70)
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This leads to the Schrodinger eigenvalue problem,

[_ Q32 + vo (Q38) +(;\2+2q"-1-"L)]f'(>=)_ = O (2.71)
Ox

for the potential

q;¢s) = 2n2 cosh 4¢S - 4n cosh 2¢S - (2n2_4n) (2.72)
= \1"(¢.)-(2'1’- 4'1)­

%(¢s) is smooth and bounded and tends to zero as x-—»i;m .
Thus, there exists atmost a finite number of bound product
solutions for which |f|-—*O as X-—e>i w. But corresponding
to the eigenvalue;\2ft'i‘”m=othere exists a non-zero eigen­
function f(x) given by

@¢()f(x,O) = 5&3-X . (2.73)
The nodes of f(x,O) are infinitely separated; so IR = O is
the lowest eigenvalue [l58]. This demonstrates the linear
stability [34] of the solution (2.31).

2.V. Asymptotic behaviour of multisolitary wave solutions

The multisolitary wave solutions in more than
l+l dimensions are of the form
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¢N(X ’-t) = are sinh ‘__?_?  r ___.;;7_  __ ; ;.__;£_._._ _ __. ?_r__ (20U ‘/2
E -" §@5%‘§“§ *

In-'

where
N

uN = §:g aj exp(ajkjxj). (2.75)
This can be seen to break up into N simple waves in the
asymptotic regions. For as

ocjkjxj ----> - ~===

¢N -———+ arc sinh uN (2.76)

and as ajkjxj--++ w , the dominant term in the braces of
(2.74) is

ufi / 2(4-2n)2. (2.77)
Consequently,

¢N ¢; arc sinh(uN/(4-2n)) as ajkjxj -4-+ w. (2.78)

To calculate the phase shift we consider the jth wave in the
asymptotic regions,
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fij = arc sinh[aj exp(ajkjxj)] as x ——+ - w (2.79)

and

¢j as arc sinh[aj exp(-ajkjxj)/(4-2n)] as x —%-+ w ­

(2.8O)

Defining the corresponding phases [89] as,

51 = log aj (2.81)
83 = log [(4-2n)aTl] (2.82)+ J

the phase shift for the jth wave is given by

Aj = 83 - <53 (2.83)
1:: 1og[(4-211)/613?]. (2.84)

The multisolitary wave solutions behave as if they were simple
waves both at -w and +w, and each component wave nearly under—

goes a phase shift given by (2.84). However, there is no
loss of stability for the multisolitary wave profile as a whol
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in the asymptotic regions. Similar behaviour has been noted
[29] for KdV solitons in one space dimension.

2.VI. Topological charge

The conserved topological charge Q associated with
a solitary wave in l+l dimensions is defined as

oo

Q = S‘ J° dx , (2.85)
where

J“ = €“” q)¢ , (2.88)
and

é“'= 1, e“” = -6”“ - (2.87)

The Behera-Khare kink (eq.(2.l5)) can be shown to possess
a topological Charge

Q = 2 arc tanh V[(2-n)/(2+q)] , In] < 2. (2.88)

However, the solitary wave solutions reported herein are
associated with vanishing topological charge and are, therefore
non—topological configurations [30].
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Even though the multisolitery wave solutions
which are defined in more than one space dimension possess
very good stability properties, Derrick‘s theorem [38] does
not pezmit them to possess finite energy.



SU(2) YANG-MILLS FIELDS JITH NO ENERGY TRANSPORT

3.1. Classical SU(2) Yang-Mills gauge theory

Non-abelian gauge theories of the type first
introduced by Yang and Mills [57] play a very crucial role
in currently popular models of electroweak and strong
interactions. Although in principle, any compact Lie group
can be used to construct a non-abelian gauge theory, the
simplest SU(2) model [41] suffices to bring out several
characteristic features of such theories.

The Lagrangian for a pure YM theory is

L 2 .. -J-= F P“? (3.1)4 pv

The fields Pp” are related to the potentials AH by

1‘I: = _ ‘C  “-, r .Luv own” q)»H + e abc AHAl,, (3 2)

where e is the gauge coupling constant and the Levi-Civita

symbol éabc represents the structure constants of the SU(2)
group. The equation of motion is

D]Pp'v= U, (3.3)P

84
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with Du defining the covariant derivative,

D :: (5 -- G A .P P PI

A Minkowski-space su(2) gauge field configuration is said
to be self-dual if

~a_t_]; 0:8-_+""'a 'Fpv._. 2 €pva8 Pa _ _ 1 bu” , (3.5)

or equivalently

1 E2 = i Bi , (3.6)C

where

a == a a _ l 8En ._. son , an _ - 5 €nij Fij (3-7)

are the SU(2) ‘electric’ and 'magnetic‘ YM fields. The
Lagrangian (3.1) can be expressed as

_ A a a ma aL _ 2 [En En - an en]. (3.8)
This is minimized (or maximized) by a self-dual solution.

Quite a large variety of exact solutions of pure
YM theory are known, the first explicit static solution of
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which was found by Ikeda and Miyachi [l59]. This solution
can be written in the forma C a .Ao- .. 8a3(-Fm) , Ai ._ 0. (3.9)
with C and D constants. For D = O this essentially
represents a static, point-like Coulomb potential.

Through a specific Ansatz for the potential,there
exists a useful connection between the SU(2) YM theory and
the scalar ¢4 equation of motion. It was first discovered
by ‘t Hooft [160] in connection with the instanton problem,
which was further simplified by Corrigan and Fairlie [161]
and Wilczek [l62]. This Ansatz, quoted in Chapter l, (see
equations (1.87)-(1.89)) reduces the equation of motion (3.3)
of the SU(2) YM theory to a single equation of motion for
the ¢4 scalar theory

[I191 +>\¢3 = 0. (3.10)
The YM field strengths in Minkowski space take the following
form:

a .== ae En -- e Pen_ l 2....
“ €nam[@ aoomfi ' $2 bob bm¢]

P­

O3
D
m
f_"‘|

‘Sle­

°R>

1 O ¢ - -;5<@O¢> cow + owp @m¢>1

i 1% onaagzfi - 5.2 any) oa¢], (3.11)



8 .7.
0

1

<3a_ .1; €..F.'.eBn " "2e nil] 13

= 1 ie 132+ Elan  (3.12)
The Lagrangian density is given by

292 L c= [::]@a(@“¢/m) _ 3 A?¢4. (3.13)

The pseudoscalar density D(x) and L are related:

e2(L : D) = é e2(s§ - 1 e§)2

= -3 (Ow/¢>2, (3.1-<1;
where the i signs correspond to selfduality and anti~selfduality
respectively, of the gauge fields. The selfduality condition in
Minkowski space

1

»Bi = i 1 E2 , 4 (3.15)
(Kw + 5:3“ cam->Pwl= i:  “J "“3"' c°““P°“‘M' M i‘°0f"1“‘Oi+1)

yieldsD = i L (3.10)
OI‘ E]¢ Z or (3-J-7)

OY ¢ : O
“l°"f*o@1f<19s&i:v s_1:~§;¢é§sT<1Téia;i5h [of <3~15>>§»1J­- . _ . 4



The energy momentum tensor 9pv(x) is

_ a aA .i ta afi
gov _ — Fpfi R2 + 4 gpv‘a5 Fa

In component form

_ L'-a -a _ a a900 “ 2(hn En + an Bn)

I _ (5 Ea 8Qoj jmn m Bn

A9.. = -E‘???-B"f‘B? 8..13 1 J 1 3 + lj 2
In terms of the scalar field ¢{ (3.18) becomes

‘Sb
li­

Q1

‘S
O1

PO

e2Qp_D =

l

u ”¢ "?5bu

88

(3.18)

(3.19)

(3.23)

a a a a _(En En + Bn Bn) (3.21)

6,, Qa

o/
Q
‘SXI
Q4

/""\
4»

w
w

+   ""  6(I¢ ­
For selfduality the condition (3.l7) implies

I

9W = o. g (,5 I (3.23)
jg“ MAY Le _;eeQ___%eJ M‘ jmo ¢h;si.mcJ, o_,¢,.';. 9&4,“-Ken eilfev U =o9\’wm> MQ
ii“-. Q:cP*z;~e$Sioq it»; S¢;ua/\$1.b'2mc\ne:\' Qs (3-“22\ Va-“sac; , +€en”"s¢Q*L,;,., Becomes Sea”

The total energy of the YM field is then

(-32 E = /’d3X G29O0

= - <>/\[d3><[§(<‘>O¢>2 + -§(V¢)2 + -};R¢4]. (3.24)
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In Euclidean space the YM field strengths are
given bya l 2

e-En = enam [Q O06m¢ - é§ 60¢ ©n¢]

i Sna [5 <>§¢ - $3 <@O¢ 60¢ - @,,,¢ @,,,¢>1

/R
bi»

IX?
(J1

l 2
i [5 @a5n¢ — g§35a¢ 5n¢] ,3 W ; l re an _ i Li - Bna 5 [:1 ¢ - (3.26)

The selfduality condition isa _ + a . .En _ _ Bn, (3.27)
:Non-selfduality implies violation of (3:Z?§;:_%
The Lagrangian density L is given by

- L = .1: n - -31- (CM/¢)2, (3.118)
2e2

where the two signs correspond to selfduality and anti­
selfduality cases, respectively.

The pseudoscalar density

D = 1: 5% an [Lj<@p¢/¢>1-9

= - E2 B3 . (3.29)
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The expression for the energy momentum tensor Qpv is the
same as in Minkowski space.

The recent flurry of activity in exploring the
classical sector of YM theory has unravelled a rich variety
of nontrivial classical solutions having striking implications
at the quantum level [41]. Both the selfdual and anti­
selfdual classes of solutions are equally important.

It is possible to classify solutions of YM theory
into propagating and non-propagating types, based on their

velocity of transport [l63,lo4]. Yhe wen-wnupaqatknw (Zemo
velacfivffl) s/wlutinrvs may 1290 dconsfizi/ezyerd 1 . A self­

uoilf; Zero Q1‘)-("I3-f tamspd’
dual solution then turns out to be a YM   , because
the momentum density vanishes. This point seems to have been
overlooked by Kovacs and Lo [165] while reporting a set of
selfdual and anti-selfdual solutions in SU(2) YM theory.

In the present work we present a class of anti­
selfdual and non—selfdual solutions which can be interpreted_ vm . V tzwngpni _ _ _
as non—linear f1.elciw':K» no enewgy /1. Thev are singular iniiniteA i '
action configurations whose actual role at the quantum level,
is not clear. Their contribution to the exact functional
integral could be different from zero, and in the infrared
region may even be more important than that of any finite
action configuration [lea]. '



.3.II. Application of the bilinear method

Non-singular solutions of (3.10) in terms of

elliptic functions have recently been used to construct
progressive wave solutions of YM theory [l64,l67].
Employing Hirota's bilinear operator method, a class of

91

singular solutions can be obtained. Define a transformation

¢ = 9/f

which converts equation (3.10) into the bilinear form:

f Duo“ g-f - g nun“ sf + A.g3 = 0,

where

p _ 2 _ 2 _ 2 _ 2DuD _ Dt Dx Dy . Dz ,

Di being a Hirota-type bilinear operator.

On splitting, (3.31) yields,

nun“ g.f = o ,

D D“ f-f = X g2.
H

We introduce power series expansions of g and f in a par

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

ameter €



which is assumed to be close to unity:

2
g = go + 6 gl + 6 g2 + ..' 2 .f = fo + 6 fl + € f2 + .. (3.36)

where the gn and fn are functions to be suitably determined

Introducing these expansions into (3.33) and (3.34),
the following equations emerge:

\2 h 2
[(®OfO1 - (éiro) 1 = Oft>E:]fo ­

+ fOE:]gl + 2(6ifO)(©igl) - 2(6OfO)(6Ogl) =glE::yfo

fo[::]fl + flmfo + 2(aifO)(oifl) - 2(aofo)(oOfl) =

Q/

QQ

IX 1) +  : Og1[::]g1 (©Oel)( O\ , 2
2£l[::] fl - 2(@Ofl)(aOfl) + 2(eifl)(oOIl) - Agl =O 00000 O0on 00000 O0 0 OI

(3.3

where {:1 = of - §j2. A consistent solution for the system

O

O

O ,

92
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of equations (3.37) is then obtained as follows:

gl = 3'; B (3.38)
fO- = c (3.39)
fl = i kx , (3.40)

provided,

go = O = gn : O for all n 3 2 (3.41)

fn = O for all n > 2 , (3.42)
where B and C are arbitrary non-negative real constants,
and

k E; (ko, E1) and x £5 ( O (3.43)

X

><}
I-lo

\_-/'

With 6? being set equal to unity, we arrive at the solution‘

¢ = i B/(C i kX)- (3-44)
The associated dispersion relation is

K2 = -A B2/2. (3.45)



\O
-13

The solution conjectured earlier [165] corresponds to the
case, i B =w-= 1., with A : —-2.

3'IIl Y5nQ—Mills fields with no energy transport

The solution of the auxiliary Q4 equation we have
obtained (see eq.(3.44)) is singular on the hyperplane
3 i kx = O and yields YM fields exhibiting analogous behaviour

The YM potentials corresponding to the solution (3.44) in
Minkowski space are8 _ + ' k .e A0 — — 1 E3 ¢ (3.46)

9 A? Z €€anka¢/B i 1851 kO¢/B. (3.47)

The corresponding electric and magnetic fields are then

E1 __ 8
e En :1 e Pon

2 1». 1 8na<-/\/2>¢2 , <s.4s>

e Ba E2 — L e 5 ..F§.n 2 1113 13
1'1

: 3; SM A go?/2 _ 8% lo". (si1.4<;»>

It can be easily shown that the scalar field solution (3.44)
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is also valid in Euclidean space. Using the Euclidean version
of the potentials (1.89) we have

a
G _.A. O = It ka¢/B

a _ 6 r f .e Ai “ _ ian knw/B i Séi KOA/B

The corresponding electric and magnetic fields are

2
G Ea = i 8na(“ x/2)¢ 9n .
e Bi = 1 8na(-- 7\/2>¢2 + $na/\¢2­

The square of the electric field in Minkowski space

Ea Ea = -(3 A2/4e2)¢4 ,n n

while in Euclidean space it only differs in sign:

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

Ea ea = (3_X2/4e2)¢4. (3.55)
For the selfdual fields in Minkowski space we consider the
plus sign of the first term in (3.49), giving

Q Ba :: 8n na
= —ie E2 , (3.5s)
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while in Euclidean space,

e Bi = —-Q E3 , (3.57)
which is incidentally the anti-selfdual condition in Euclidean
space.

The pseudoscalar density D(x) corresponding to this
in Minkowski space is given by

n(><) = - 1 E2 Bi

= (3 A2/4e2)¢4 , (3.58)
and in Euclidean space

n<><) = _ E‘; Bi

(.0

LT!

\D
\../

q 2 2 %= (Q A /49  ( .
If we consider the negative sign in (3,49) we obtaina - 2

e an = 3 8na(-1/2)A;z>

<.c=

Q\
O

\_.-I

=3ie1"5.a. (.
T1



97

This is the-non-selfdual condition in Minkowski space.
Similarly taking the negative Sign in (3.51), the non­
selfdual condition

I@ Bi = 39 E3 (3.@1)
in Euclidean space is satisfied.

These results imply that the fields can be non­
selfdual in Minkowski as well as Euclidean space. The
pseudoscalar density corresponding to the non-selfdual field
in both Euclidean and Minkowski spaces are of the same form:

D(x) = -(9 263/4@2)¢4. (3.62)

Obviously, the energy momentum tensor, Qpv,
vanishes for the anti-selfdual case, whereas when the fields
are non-selfdual we have the components of energy momentum
tensor:

900 = -(M2/e2>¢“' (ma)
913. = -. 8iJ.(s A2/e2)§Z§4 (3.64;Qoj I O.
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It may be noted that the selfdual or anti-selfdual
solutions of Kovacs and Lo [165] correspond to the choice
of the plus sign or minus sign in the denominator of the
solution (3.44), whereas, in the present work the corres­
ponding property, namely anti-selfduality or non-selfduality,
does not depend on the choice of the sign of kx in (3.44).

Following Brillouin [l63], a flux velocity vj can
be defined [l53]:

vj = 903./Q00. (3.67)
The flux velocity vj is identically zero in the present
case. This implies that the YM solutions herein obtained
are non-propagating waves, and are best described as localized
fiE'Ici5‘f';'....'.;. Nevertheless, a non-vanishing phase velocity
can be associated with these waves, as seen from the dispersion
relation (3.45) which remains valid in Euclidean space as
well. For §\< O, the phase velocity is greater than c and
for K > O it is less than c, where c is the velocity of light.

Since the pseudoscalar density D(x) is singular the
topological charge becomes infinite@@ZAn interesting property

of the YM fi&‘fd__'5;‘; .- ;-"V: is their singular behaviour on the

hyperplane B i kx = O. That this is an essential feature
of the solution is clear from the observation that any gauge
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invariant quantity, such as ego, exhibits this singularity.
The hyperplane singularity of the Ym fields  ' ;, like the
Dirac string [l68], is not an artifact of the gauge.
Nevertheless, there is no magnetic monopole attached to
the YM fields»­

Though the Minkowski form of the YM fleicis'

is complex, the square of the electric field is real. Being
of infinite action and infinite t0pOlOqiC&l charge it would
be tempting to compare these localized flelilsyfngt with
merons which arise in Euclidean space and are believed to
correspond to tunnelling between different vacuua in real
time, characterized by topological charges n = O and n = l/2,
respectively. The YM fielthfi-Y 1: with their infinite
topological charge may be assigned a tunnelling role in
Minkowski space, between the vacuua n = O and n = w.

u'"m~}"""','~ .

-3';-'_--I \‘-.1. - '  ‘RIf  , ‘ / ': / \. _: \ ,'’ .'_ ..\ . v- \'-. .' - ' ' '1r ' '45 I - |: - = ­
." 4- _

5. \“_\ j. ' I If*= .0
-_____,,‘ . -1'



COMPOSITE MAPPING METHOD FOR GENERATION OF SOLUTIONS

IN THE KLEIN-GORDON FAMILY

4.1. Relationships between KG type equations

Equations of the KG family featuring scalar fields
possess Lorentz invariance as a common property. This suggests
the possibility of mapping a particular solution of one such
equation into that of another, of the same family. For selected
pairs of KG type equations this procedure has been successfully
implemented before [88,l69], constituting applications of the
base equation technique [77-89]. The recent identification of
a large variety of NDEs in the KG family possessing kink or
soliton solutions with interesting properties and physical
applications calls for a more detailed exploration of the base
equation method. Lorentz invariance being a common trait of
such equations, there can exist relationships between different
members of the KG family, realizable in the form of maps between
particular solutions of classes of KG type equations. Naturally,
for a specified class of such equations, this would imply a
multiplicity of maps or a composition of maps which generates
particular solutions.

In the present chapter extensive use of the technique
of composite maps is made to produce kinks and solitons in the
KG family. Specifically, this approach is applied to equations

lOO
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such as sG, DsG, ¢4, Liouville and ¢6. The non-linear
correspondence between particular solutions of some of the
members of the KG family through a transformation in terms
of the arc sine [88] or arc tangent [169] function has been
studied in the literature. we combine both of these trans­
formations and develop a non-linear composite map that takes
solutions of one KG equation to those of two other equations

A soluiion oh?-,e Otlginol KGE-q)-'44-ion is (canal. by Solving +cpt'|’hYs5£dI"">CA 91!-1441005‘ Sim-Jinoeo L,HS

of the same family.‘ The results obtained expose several
‘family relationships‘ existing within the KG family.

4.II. Solution of ¢4 equation by bilinear operator method

Since some solutions of the $4 equation play an
important role in our programme of composite maps, we obtain

them here by the bilinear operator method [90-98]. We write
the scalar field ¢ satisfying the massive Q4 equation,

agate + a¢ + BQ3 = O , p=O,l,2,...n. (4.1)

as the quotient of two functions _

¢ = e/f. (4.2)
This leads to the bilinear differential equation

f opptg f + a g £2 ~ g DpDuf-f + Bg3 = o, (4.3)



where

U
(-1- '\)

"5

|I: _ - Z  ,1:1 1

and D8 is a Hirota-type bilinear operator

On splitting (4.3), we have

DuDu g-f + a g f = O,

Duo“ f-f + 5 g 4 = 0.

Expanding g and f as power series,

yields a set of equations for the gi and fi, with the

2
g = g0 + € gl + 5 g2 + .. .

f = £0 + e fl + @2f2 + .. .

conditions

gj = O ; fj = O, for all j > 9.

Choosing

go : fo : O’
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(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)
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the solution

gl = _tV(2<I/£3) (4.11)
fl = 2exp(9) / (€Xp(29)— 1), (4.12)

n

follows, where Q : Ecot - 5 kaxfi +8. Assuming aJ cl\

j=l
dispersion relation

D 2 2
2:: kj - ko = a ,
J=l

I’?
-£3

Q-4
(.0

\~../

we find the solution

¢ = i V(2a/s) 2 exp(9) / [exp(26) - 1]. (4.14)

This is a new solution which turns out to be singular at
Q30" . However, as discussed later, this singularity gets

eliminated under suitable transformation to other non~linear
/

equations like the DsG and $0.

A known multi—dimensional solution reported

earlier [169] can also be obtained by this procedure. Settin

go = o; fl = 1. (4.15)
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Equation (4.5) yields

opopgl + agl = o. (4.10)
A simple solution for this equation is

gl = exp(Q). (4.17)
When we set

gj = O ; fj = O for all j > 2, (4.18)
(4.6) gives

fl = (-B/8@)eXp(29).

Then an exact solution of $4 equation is,

Q Z i exp(9)/[l —(§/8@)QX§<2Q)]. (4.19)

If we change a to -a in (4.1), a non-singular soliton-like
solution (i.e., asymptotically vanishing),

¢ = 1 @Xp(9)/[1 +(3/8@)@KP(29)], (4-20)

is obtained.
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Setting a = O in (4.1) dives a solution of masslass4 .¢ equation:
I

¢ _: 1 A/(eitg) , (4-21)
(A and B are arbitrary constants) which coincides with (3.45)

("P
3..
(D

obtained by bilinear method.

4.111. Maps from ¢4 to sG and Liouville's equations

As a first example of the composite mapping method,
we shall consider maps from Q4 to sG and Liouville equations.
The Q4 and sG systems are two model field theories widely
employed in different branches of theoretical physics and
adequate references to these models have been given in the
preceding chapters. The Liouville equation was introduced
by Liouville [isa] in 1853 and has a variety of applications
such as in the Lagrange stream function model for two
dimensional steady vortex motion of an incompressible fluid
[l7O], the theory of thermionic emission and the problem of
the isothermal gas sphere [l71]. It has been noticed that
several coupled equations in modern gauge theories reduce to
the one or two dimensional Liouville equation [4l,l72].

The sG equation in arbitrary dimensions may be
written in the form

71>

Q

‘D

apo"‘1/J + 0: sinab = O. ( --2)‘
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The non-linear map

%£! = 2 arc sin ¢ (4.23)
transforms (4.22) into

[1-o2] Queue + ¢ ape o“¢ + aoii-@212 = o. (4.24)

x suitable spliiting of (4.24) gives $4,

ouaho + aw » QQQ3 = o , (4.26)
and the constraint:

*‘ o‘ - a¢4' = 0. (4.26)ape a”¢ + a

Choosing ¢ as in (4.14) where B is replaced by -2a gives a
zomplex solution of sG equation:

Lb = 2 arc sin[i 2i @Kp(Q)/(l+ exp(29} )1. {4.27

Choosing Q as in (4.19) with the xeplocement 5 —~+--2a, gives
an analytic solution of sG equation:

ya = 2 arc sin[i Q p<@>/<1+ @xp(¢@>/4>1- <4-2~3)
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The Liouville equation in arbitrary dimensions may
be written,

aPo“@[;+ 5 egbb = o. (4.29)
Under the transformation

Eb = log @, (4.30)
we obtain the massive ¢4, and the constraint equations:

apetm + afl + 23¢3 = 0 (4.31)

au¢ ohm + QQ2 + a¢4 = o, (4.32)

where a can be zero, or a real constant. Using (4.14)
we obtain an exact solution of the Liouville equation£dzu=¥o

EL = 109 [2V( 1/B) eXp(9)/(@Xp(29)-l)]- (4-33)

Inserting (4.20) and replacing a by -a gives another solution
of (4.29):

1/1 = log [exp<6»)/<1+<s/4==>e><p<2a>>1,Mamie. (4.34)
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Setting a = O in (4.31), the resulting equation is analogous4 _ . . . 1 .to massless ¢ . Prom (4.21) we can find the third indepenuent
solution of the Liouville equation:

0

11; = log [1 A/(B :£9)], (4.35)
Pwouwlswt k2 = ­

4.IV. The composite map :¢4—#-DsG ~%~¢6

It has been shown that [173] the ¢6 model has
soliton-like solutions in 1+1 dimensions. The DsG equation
involving arbitrary'pmrameters a and 5,

opapgp + a sin1;I + B sin(Qb/2) = O, (4.36)

transforms under the map,

ip = 4 arc tan ¢ (4.37)
into:

2[1+¢2]@p@P¢ _ 4¢@w¢ spa + <2@+;)¢ + (_2@+@)¢3 = 0.1‘

(4.38)

On Splitting this equation, there emerge the ¢4 equation

ouo“¢ + (a + B/2)¢ + 5¢3 = O , (4.39)
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and a constraint:

app a“¢ + (a + 5/2)¢2 + 5/2 ¢4 = o (4.40)

Inserting the form given in (4.14) with the replacement
a ~—*(a + B/2), a 'On—pulse' like solution of the DsG
equation is obtained:

1/; = 4 arc tan[_-1; 2W2a+e)/slexp(e)/<e><p<2e)-1)1
(4.41)

Also corresponding to (4.19) we get another solution:

w = 4 arc tan I—_  - ,-_e  ,exP   _r_1-:- ,  ­
1—[B/(8@+4B)]@Xp(29)

The dispersion relation associated with both these solutions
is

(-1.
‘I3

I“-'
P?’
-l\J

J - kg = a + 5/2. (4.43)i
Qua

For a = -fi/2, the massless Q4 equation follows

from (4.30). The corresponding DsG equation is

opapyfl - B/2 sin1¢!+ B sin(Pb/2) = O. (4.44)
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Using (4.2l) we obtain two pairs of 'On—pulse' like
solutions of DsG equation (4.44):

‘Eb = 4 arc tan[i.A/(B iEJ)1. (4.45)

By the non—linear transformation

LL’ = 4 arc sin ¢ , (4.46)
one can pass from the DsG equation (4.36) to the equation

2<1-¢2>@;@“¢ + 2¢ @p¢ oP¢ + 2@¢<1-¢2>2 <1-2¢2>

+ B¢(1-¢2)2 = o. (4.47;

This yields the ¢6 model defined by

apapo + (a+B/2)¢ - (4a+B)¢3 + sq ¢5 = o (4.4s)

plus the constraint:

@p¢ @“¢ + <@+@/2>¢ ~ <2@+@/2>¢4 + Q ¢6 = o. (4.49)

The DsG solution (4.41) now yields an exact solution of Q6:

Q4 = i _2W2a+.B)exp(6)- - (4.50)
V[B+(8a+26)eXp(29)+B @Xe(49)]yz
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The associated dispersion relation is

n

§Z:k§ - kg = (Qa + 5)/2. (4.51)
J=l

The solution (4.50) can be interpreted as a nontopological
soliton-like configuration.

Corresponding to (4.42) we get another solution
of the o6 equation (4.48);

Q; Z  .E;i><.P.( 91   .1 (4.52)
fil—B @Xp(29)/8(a+B/2)]2 + eXp(29l)2

The associated dispersion relation is the same as (4.51).

4.V. The composite map: ¢2~—>sG-+-Q4

"3

Starting from solutions of the linear KG or $4
equation, a pair of maps can be constructed yielding solutions
of sG and Q4 equations. A solution of the Q2 equation:

Q = Q9 , (4.53)
where E9 is defined as in (4.12), can be used to obtain a
solution of sG equation in the following manner. The
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non-linear map (4.37) converts sG equation (4.22) into:

[1+¢2]apa“¢ - 2p one o“¢ + a¢[i~¢2] = 0- (4.54)

On splitting this gives

ensue + as = o (4.55)
one ate + afig = o. (4.56)

Inserting (4.53), which is a solution of $2, the well known
solution of the sG, namely:' - ' (4.57)QU - 4 arc tan [exp(6)]

follows. Using (4.23) we obtain a well behaved soliton­
like solution of the Q4 equation (4.25):

¢ = 2 exp(9)/[l+exp (29)]. (4.sa

4.VI. Multisolitary wave solutions

A fact of some importance is that N solitary wave
solutions or multisolitary wave solutions can easily be
constructed for cases where eé) appears, by the replacement

eel.

W

cirv]z

Q—­-.­

F-—*

Q.e J , (4.59)
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e “ “= - " ..\. .. is, 2....‘where j kojt %ilklJYl +c3, J l, N, and by

imposing the additional constraints

T) ,_ ,_\
(kij - ks,>2 _ (noj _ rot)» = o, (4.ou)

where i, s = l,2...n, j, f= l,2,...N. As discussed in
Chapter 2, the relation (4.60) restricts the number of
solitary wave solutions according to N é(2n—l), where n
is the space-time dimensionality. However, in l+l dimensions

Mn

(1­

there will exis only one solitary wave as there is only
one independent wave vector and any other vector is necessari
parallel to it.

4.VII. Discussion

The composite mapping method has been shown to be

a powerful tool for exposing family relationships among
non-linear difterential equations of importance to physics
and also for generating kink and soliton-like solutions.
Of the several new solutions herein reported, the solution
(4.45) for DsG and solutions (4.50) and (4.52) for Q6, are
of special interest. The other known solutions for the
DsG collapse to a single kink or anti~kink in l+l dimensions
[89]. Our solution (4.45) is an exception to this behaviour.
Since all the four distinct solutions specified by (4.45)
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can be simultaneously constructed for given values of the
Tparameter B, it should be possible to study their interactions

Another interesting feature is that when the
parameters a and B in (4.36) are varied, the solution (4.41)
disappears at d = -B/2, but the solution (4.45) arises
precisely at this point in such a manner that corresponding

to a kink or antikink ‘given by (4.41), there are now two
pairs of ‘On-pulse‘ like solutions given by (4.45) of the
DsG equation. Similar phenomena have been studied for the
Kdv system [l74,l75], in which the varied parameter is the
depth.

The $6 model, apart from being a classical field
theory in its own right, is a model of the first order
ferroelectric phase transition discussed in condensed-matter

\
J

physics [l7 whose finite—temperature behaviour has recently

O
m...

been studied [l77]. The only other known (time-dependent)
.1
._\

soliton»like solution oi the fiu equation is that reported
in Ref [89].

When the composite mapping method is applied to the

hyperbolic counterparts of the KG models discussed here it
is found that resulting solutions are all singular.



SYMMETRY CLASSIFICATION OF SOLUTIONS OF NON—LINEAR KLEIN­

GORDON EQUATIONS

5.1. The similarity approach

It is now clear that Lie's point transformation
theory has been one of the most outstanding attempts to
study continuous symmetry, particular solutions, and
dimensional reduction of NPDSs [l75]. Recently the
importance of similarity solutions has been stressed by
many authors in different contexts [ll6—l2l]. Similarity
solutions are believed to correspond to solutions belonging
to the continuous spectrum part of the IST solvable equations.
In early studies of soliton concepts, it was merely shown
that similarity solutions of the KdV equation satisfied a
third order non—linear ODE [l78,l79]. Later several investi­
gations were carried out to identify integrable systems
using similarity transformations.

In classical mechanics the so called Painlevé

property (PP) serves to distinguish between integrable and
non-integrable systems. Such connections have been studied
by the similarity reduction of PDEs to ODEs using infinitesimal

ll5
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transformations. For example, the sG equation in 1+1
dimensions can be reduced to P111 [l8O], whereas the Kdv
[181] and modified KdV [I82] are reduced to P11 and the
Boussinesq [183] is reduced to Pl. This study has also
been extended to multidimensional systems [184-187].

In this chapter we study certain group-theoretic
properties of solutions of l+l dimensional non-linear KG
equations. In general the similarity transformations form
an extended group, the similarity group, which upon a
suitable redefinition of the generators, leads to the
Poincare group in two dimensions. This suggests a three­
fold classification of solutions of two dimensional KG

equations into translation invariant (TI) hyperbolic
rotation (boost) invariant (HRI) and similarity invariant
(SI) types. Here the phrase ‘similarity invariant‘ is
used in the sense of invariance under the full similarity
group. Such a description, which focuses on the behaviour
of the solutions rather than that of the equation, is
physically important in the sense of establishing links
with certain conservation laws, whenever such laws exist.

The similarity reduced equation obtained from a
two dimensional KG equation is an ODE which may or may not

possess PP. when the reduced equation is of P-type, it
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would be reasonable to seek the orinin of the PP in one of
the restricted symmetry classes like translation or hyper­
bolic rotation.

Most of the known solutions of KG equations are

of the TI type {i.e.,solitary waves). In five different
cases of non—linearity HRI solutions are obtained, most
of them new. In the sG case, we find that the PP arises
from hyperbolic rotation invariance. The group—theoretical
meaning of the Pinney-Reid-Burt base equation method [89]

of solving NPDEs is also examined. We point
similarity groups

out that the
of the given equation, the base equation

and the constraint are identical.

5.II. Similarity

If a KG

dimensions

uxx _ utt Z

remains invariant

group of Klein-Gordon type equations

type differential equation in l+l

F(u) (5.1)
under the infinitesimal transformations

><* a >< +e X(><,t,u) + on?)

t* : t +6'T(x,t,u) + O(e“)
*1

'3u* = u +6-U(x,t,u) + O(€‘) , (5.2)
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then e * guX*X%- ut*t* = F(u ) - (5.3)

The derivatives uxx and utt transform according toe:- »2
ux*x* = uxx + 6 [Uxx] + O£€ )")3 . , / 2 ;ut*t% = utt + e [Utt] + O\6 ) , (J.4)

where the bracketed symbols denote the e{teW_ioQ§.ns

Equating coefficients of first order in €I ,
in (5.3),wé find

[U ] - [U 1 ==9F(u)- (‘J5-5)xx tt Em?

The extension [UXX] is calculated to be of the form:

)J

_ 2 V \,[UVXJ = u + 2(u - X ) u + (u ~ QX )u~ - A Uxx xu xx x uu ‘ xu X uu

Lt.
no .­r‘\

+ U - TX u — ' u u - T u( u / X) xx u XX x xx t
. Q _- 2T u u — T u" u - 21 u lru x t uu x t x xt

--- A­°"' U U ""' I-f U U 0in xx t Tu xt x
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The corresponding expression for [Utt] can be obtained from
this by the permutations (x,t) and (X,T).

Substituting for the extensions in (5.5) and equating
coefficients of different orders of derivatives of u to zero,
the following constraints are obtained.

Uxx “ Utt- 2 O’ 2 Utu ' Ttt + Txx = O

Xxx ' 2 Uru - Xtt = O’ Txu ' Xtu = O

TX-Xt==O, Tt=Tu=O

Xx = Xu = O, Ux = Ut = Uu = O - (5.6)

Solving the above constraints consistently the
infinitesimals are obtained as

X = at + §

T = ax + 8U = 0, (5-7)

T1)
‘O

where a, Q are constant parameters. Thus the infinitesimals
do not depend on the form of P(u). In (5.7) the parameter a
defines a hyperbolic rotation (i.e., one leaving (x2 - t2)
invariant), while the parameters 3 and E: define space and
time translations respectively.



Following the standard procedure, we define

three generators Xi, (i = 1,2,3):

t. _ a o>\l-X6—E+t6?('

6
X2 = 6?

x = ‘5 (5 8)3 FE’ 0 0
These generators obey the Lie algebra given by

ix, X21

"iXlJ
[K2, X31

However, if we

the generators

shown to obey the Poincaré group Lie algebra for two

dimensions.

= -X3

= X2

= O.

replace t —~+ i t a redefinition of

Xi is required, and they can then be

120

(5.9)



121

vG$¢#n-Haws

If we define an infinitesimal operator {H1 associated

with the similarity group €? of KG equations by the relation

(\=x%;+1"§1c-+u~g-5, (5.10)

then the invariance of a solution u under ti? is expressed
by

[Yo -.= o. (5.11)
5.III. The ternary classification of solutions

From the Lie algebra associated with the similarity

group €%?of two dimensional KG equations, we can isolate two
trivial abelian subalgebras, one generated by X1 and the
other by X2 and X3. The corresponding groups of transformations

fiii and téi include hyperbolic rotations and translations,
respectively. This motivates a classification of particular
solutions of a KG equation into three sets: the TI, HRI and
SI types. The SI solutions are Poincar§—invariant, but the
remaining two classes also merit sufficient attention, as
the following discussion shows.
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Firstly, we consider the TI class of solutions.
The corresponding infinitesimals are

X = B

1"=‘8

U = 0. (5.12)
The similarity variable )( and the similarity solution are
obtained from the Lagrange condition

95- = 939- = 99-. (5.13)X T U
This gives

X =-. 8 X - st. (5.14)
The similarity solution is then expressed by ‘

u = f(X). (5.15)
On inserting (5.15) into (5.l) the invariant

equation results:

_ 2 2(82 - (3)9-1: -_= 1=(f). (5.16)
ax2
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All travelling wave solutions (solitary waves) of (5.1)
satisfy (5.16) and are invariant under the translation

subgroup €?s, so that

l*1s us = o , (5.17)
wherewfdb is the infinitesimal operator corresponding to
translations,

{~18 = 5 §§§ +w8 gi-, (5.18)

and us is a TI solution.

To generate HRI solutions, we take the infinitesi­
mals in the form

X = at

T = (IX

U = U. (5.19)
The Lagrange condition (5.13) yields the similarity variable n
and similarity solution g(n):

n = w/2><><2 - t2) (5.20)U = 9(n)- (5-21)
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The corresponding invariant equation is obtained by using
(5.2l) in (5.1):

' <12 dqn __Q + -_ = (l/2a)F(g). (5.22)2 dn
dn

By a change of variable

n = QT , (5.23)
(5.22) reduces to

d29 1 T--if-5: = 5'6 9
dT

HRI solutions ur are invariant under the hyperbolic rotation

subgroup figg in the sense,

{Air ur = O , (5.25)
where the infinitesimal operator-(Er of hyperbolic rotations
is of the form

__ a <5fir _ at-5;; + ax?)-E - (5.26)
To the best of our knowledge, £5;-invariant solutions have
been rarely quoted in the literature. A few examples are
given in the next section.
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The similarity variable t , and the similarity
solution h(€) corresponding to the infinitesimals of the

full group g are given by

Ti = 5-a<><2 - t2) + <>< - fit) + (-B2/20¢) ; (5.27)

and

u = h(f). (5.28)
However, the resulting invariant equation takes the same
form as (5.22) with the replacements 11 --->1: and g --+ h.

As a consequence, it is possible to transform a €?r

invariant solution into a €§?invariant one of the form
(5.28) by redefining the similarity variable. This procedure

is not applicable to §?g-invariant solutions.

5.1V. Examples of I-{RI solutions

1- —D%OL1-Qrl]-‘e s_i_ne~@Q,rd<>11_¢.q.-a £102Q.

An HRI solution of the DsG equation,

uxx - utt = -a sin u + 2a sin u/2 , (5.29)

has been obtained by the procedure described in the preceding
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section. This new solution is given by

u = 4 arc tan{% l/Y[d(X2 - t2)i}- (5-30)

Replacing the sines in (5.29) by hyperbolic sines we are
led to a new solution of the DshG equation

u = 4 arc tanh(i_; l/Y[¢I(X2 - ‘fl2)9- (5-31)

2- Qssslsisuiieasatiqn

An HRI solution of the massless u4 equation [41],

u - u = 2au3 (5 32)xx tt ’ ‘
already exists in the literature in the context of the
de Alfaro-Pubini-Purlan one meron solution [72],

u = 3 1/V[a(x2 - t2)]. (5.33)

3- Massless Q5 equation

The massless ué equation,3 5 .uxx - utt = 2au - 3au , (5.34)
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is found to possess an HRI solution,

U = i 1y[1 + Q(X2 - t2)]. (5.35)

This solution vanishes asymptotically with a singularity
on the surface [a(x2 - t2) + l] = O.

4- Lieurillelequatiee

The invariant equation for the Liouville equation
[153]

uxx — utt = 4a exp(2u) (5.36)
can be exactly reduced to the one dimensional Liouville formd2s ­__-_§ 2 €Xp(2S)dT

where 2s = T + 2g. Reducing further to an integral we have

1~ =2[__§L_ (54%)(Z2-C2)

with(%2-c2): exp(2s), and c is an arbitrary constant. The
three known solutions of the one dimensional Liouville

equation [172] can therefore be transformed into the



l28

corresponding three HRI solutions of the two dimensional
Liouville equation listed below:

u = -log[log(a(x2 - t2))] -9filog[a(x2 - t2)], (5.39)

u = log[c sech(c log(a(x2 - t2))] —]fl3lOg[d(X2 — t2)],

C f O (5.4O)

u = log[c cosech(c log[a(x2 ~ t2)])] —g@ log(a(x2- t2)),

C # O - (5.41)

5.V. Painleve property

Ablowitz et al [l26,l27] conjectured that, when
the ODEs obtained by the similarity reduction from a given

PDE is of the P~type, then the PDE would be integrable. Zn
vv’I£°“§;»$1€J?°°w‘2322%J2$°“?at4%2+»%a*  “f§».~‘2;'%‘ma2

MWuMd'W@ Ymflbnufliiua flb tflaaw VH9 WHQUEB flfi ii ¢RnflN@nnW@

-Wnwgwzbfi/111/twp iw: We dé:fif¢mzenz}z swmmrlcmp dd/Hmseq Yum vmrziaab

229 fiflnfliflmw fiaki. We show, by means of the example of
the sG equation, that the PP resides in one of the restricted
svmmetrv classes such as rotation or translation.
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It is well-known that the similarity-reduced
equation corresponding to the sG equation possesses PP. It
will be shown below that the PP is characteristic of HRI

solutions, whereas it is not shared by the purely TI
solutions.

The sG equation is written in the form

uxx - utt = sin u - (5.42)
Corresponding to the sG equation (5.42), the invariant
equation (5.22) reads

2do dg 1.n dnz + -Ea = 53 sin g. (5.43)
A change of variable [l8O],

w = exp(ig), (5.44)
yields the P-type (P111) equation [l8O]:

2

Z‘-53 = <1/<»><-3%? - <1/11> 3% - (1/4om)(w2 - 1;.

(5.45)

On the other hand, the TI similarity equation (5.16) with a
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replacement F(f) -—»sin f, becomes the non-P-type:

23% = (l/w)(%%)2 - (w2" 1)/[fl(82— 52)] (5-46)do

Jnder the substitution,

w = exp(i:f). (5.47)
This shows that the purely TI solutions of sG do not
exhibit PP.

. _ ,1¢__;9,_QIn the light of the znnaeé§a9edteonnectaan between­
F?k&ndKin$QQfi&H$&ifiy, it follows that for the sG, there

eXi$t8 af Paioievrfif sector as well as a non-tPa\'.\'.1_IeVé’.

sector, of solutions, these being identified with the fiRI
and TI classes, respectively.

5.VI. Similarity group and base equation method

In the base equation method a solution of a KG
equation is used to construct a solution of another KG
equation. This mapping is governed by a constraint equation
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which is to be respected by both members of the solution
pair. As shown above, since the KG family of equations is

characterised by the same similarity group‘§?, it follows
that both members of the solution pair must belong to this
group. Consequently, the constraint equation which is
usually a different equation, must also belong to the same
similarity group.

To illustrate the above ideas, let us consider
the pair of KG equations,

uxx - utt = P(u), (5.48)
and

vxx - vtt = G(v). (5.49)
If a solution u of (5.48) is to be mapped into a solution v
of (5.49) according to

v = v(u), (5.50)
then the usually imposed constraint is

vi - vi = 2[G(v)dv. (5.51)
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This equation belongs to the same similarity group €? as
(5.48) or (5.49). As a specific example, we consider the
mapping of a class of particular solutions of the Liouville
equation

uxx - utt == A exp(2u) (5.52)

to those of the massless u4 equation

v - v - A v3 (5 53)xx tt “ ’ '
through a relation

l

The constraint that permits such a map is

vi - vi = é A V4. (5.55)
It can be readily verified that the similarity group of

(5.55) is identical with

5.VII. Discussion

We have pointed out that, by a suitable redefinition

of the generators, the similarity group fi?>of KG equations
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zan be made isomorphic to the Poincare group. If that be

the case, then fi? must coincide with the invariance group
of the Hamiltonian,

_ l 2 2 lI-I - -2- (ux - ut) + §[P(u)du . (5.56)

This property may be traced to the vanishing of the
infinitesimal U, generating infinitesimal transformations
of u.

In the preceding sections we have studied a
three-fold symmetry categorization of solutions of two
dimensional KG equations. The KG family is characterized

by a unique similarity group? with subgroups gr and ‘gs
representing hyperbolic rotations and translations, respectively

Kinks and other solitary waves belong to the TI class, while
in the only known integrable KG type system the sG, the
solitons, through their conjectured property of satisfying
a P-type similarity equation, belong to the HRI class. It
should be emphasized that PP is not always characteristic
of HRI solutions, though this may be true with KG equations.
For ea non-KG type equation such as Boussinesque equation [183]
the only admissible transformations turn out to be translations
and therefore, its PP is associated with translation symmetry.
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We have exhibited new HRI solutions in several

interesting cases such as DsG, DshG, massless u4, massless
and Liouville equations. HRI solutions can be made SI by
imposing translational invariance on them, but TI solutions
do not permit this kind of global extension.

The two dimensional

solutions reported in this chapter can be extended straight­
forwardly to higher dimensions.

6u



TIME—DEPENDENT.EXACT SOLUTIONS OF CLASSICAL

SU(2) YANG—MILLS-HIGGS SYSTEM

6.1. Classical solutions of SU(2) Yang—Mills-Higgs system

According to current views the fundamental physical
interactions are described by unified gauge theories. A great
deal of progress has currently been made towards understanding
of the classical YM field equations [57]. These properties
have turned out to be of interest not only in their own right
but also in connection with confinement [58—62]. In four
dimensional spontaneously broken nonabelian gauge theories,

solitons appear as monopoles corresponding to a suitable gene­
ralization of the Dirac quantization condition [l68]. They
predict the existence of heavy monopoles.

A physically significant prototype of a spontaneously
broken nonabelian gauge theory is the SU(2) Yang-Mills-fiiggs
theory. Static monopole solutions were discovered by Prasad
and Sommerfield in the limit of vanishing Higgs coupling (§\—+O),

this limit being nowadays known as the Prasad-Sommerfield (PS)
limit [66]. Various workers have since obtained time-dependent,
singular solutions of this system [a5,1ss-192]. No systematic
procedure was adopted in arriving at any of these solutions

135
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with the result that both the static and time-dependent
1

solutions emerged as products of ingenious guesswork.

Herein it is proposed to carry out a similarity
analysis of the time-dependent non-linear coupled differen­
tial equations associated with a spontaneously broken SU(2)
YM theory [60-66]. This gives the invariance group
of the system of equations, and we use this information
to generate some of the previously known time-dependent
solutions in the PS limit. We also present two new time­
dependent solutions possessing surface singularities.

6.II. Similarity group of SU(2) YM~Higgs system

The SU(2) YM field coupled to an SU(2) Higgs

field is given by the Lagrangian density:

L = -<1/4>P“”a P3” -<1/2n1“a[]j + (p2/2>¢a¢a

- (A/4><¢a¢a>2 , (6.1)

where the symbols have been defined in chapter l. At the
PS limit, the time-dependent spherically symmetric Ansatz [65
reduces the equations of motion to the form
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2 _ 2r (H,rr - H’tt) _ 2 HK (6.2)2 2 2
r (K’rr - K’tt) = K(K - 1) + KH , (6.3)

where 2 2
H = g___I_i and K = 9.-...%. , (X ‘-3 I‘,‘b).

To study the similarity group‘€? of this system,
we define a generic dependent variable ua(a = 1,2) such that
ul = K and u2 = H, and consider a one parameter family of
infinitesimal transformations defined by

r* = r +5 R(r,t,ul,u2) + 0(3)

t* = t + e T(r,t,ul,u2) + 0(e2)

-X­

The infinitesimals R, T and Ua must ensure the invariance of
(6.2) and (6.3) under the transformations (6.5). Theo2u“ a2u“ ­
derivatives __§ and __§- transform according toor ot"

‘K’a _ a a 2
u’r*r* - u,rr‘+ 6 [U’n_] + O(€ ) (6.6)* 2
u(’xt*_t—X— -‘= Utftt + é [Utfttj + O(€ ) 2 (6.7)
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where U“ = -- etc. and [Ua ] denotes an ‘extension’

(X =

with

r,t):

U

i

,xx

x oufi
020“ + 2 e20“ Us _ o2xiua_ + Q3“ Us6x2 a ’X ox2 ’l oufi ’xX

i 2 a 2 12 ax a _ a u B uy 2 a X U6 ua,x ,15; u’Xl + ouEouY u’X ’X ” ox dug

i r 91Q§ a B B a
- bus (u’i u xx + 2 u,X u .X)

a2Xi a._ 11321;‘. ,
a uBouY

B Yu’x u’x u’l (6.8)

xl = R , X2 = T. (6.9)
When equations (6.5) are substituted into the

transformed system corresponding to (6.6) and (6.7) and
coefficients of first order in GI are equated to zero, we
find

2 l 2 l 1
r [U’rr] - r [U’tt] + 2rX (K’rr- K,tt)

+ ul(1 - 3K2 - H2) - 2 U2KH = O,

(6.10)
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2 2 2 2 1
r [U’rr] — r [U,tt] + 2r X (H’rr— H’tt)

Solving (6.10) and (6.11) for the infinitesimalséee Appendix

- 2 K2U2 - 4HKU2 = 0. (6.11)

R = 2/ht +1<r (6.12)
'1‘ = )((r2 + 62) +JC_t + 6 (6.13)

U“ =

where X , X

0 , (6.14)

and o are constants.

Equation (6.14) states the invariance of any
solution of the SU(2) YM-Higgs system reduced by the Ansatz

(1.62-1.64) under the similarity transformation (6.5).

The occurrence of three independent parameters

Ga, a = 1'72’

G1 =

G2 =

G3:

JQ and 0 above permits us to define the generators
3.

2rt §-5 + (:2 + 62) -Q-E , (6.16)
6

176-5 +11%-_'E,

6.__ 6.16at, ( )

9
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which satisfy the Lie algebra,

[G2, G3] = —G3 (6.18)
[G3, cl] = 262. (6.19)

We identify this as the Lie algebra associated with the

similarity group €? of equations (6.2) and (6.3).

6.lII. Time-dependent solutions

In the preceding chapter we developed a method
of constructing particular solutions of non-linear KG
equations under various subgroups of the similarity group.
That procedure may be extended to the SU(2) YM-Higgs system

reduced by the Ansatz (1.62-l.64). The idea is to consider

different subgroups of the similarity group3§?, define a
similarity variable for each subgroup, set up the corres­
ponding similarity-reduced equations and solve them. Solutions
are obtained in cases where the reduced equations are of the
PS type. The different cases are discussed below.



A. Full group?

Equations (6.12-6

:A 74O,'j»Q7éQ, 6'-= J<-2/4}\

.14) yield the similarity var

2

X: r/(t2-r2+)%\E +Ji'-A-)_

14]

iable

(6.20)

The similarity-reduced system of equations are

2

X 92% = 1<(1<2-1) +KH2,
dX

(6.21)

X2 6214inilq
2 = 21~n<2.

dX
(6.22)

This is of the same form as the equation considered by
Prasad and Sommerfield for the 'A . static case ((1.8

solution of (
2) and (1.83)).

6.21) and (6.22 ‘) is ((1.84) and(l.86)):

1<(X) = CX/sinh (cx) , (6.23)

I-IO<) _= ox coth (CX) - 1. (6.24)

where )1 has been defined in (6.20). Th
with th

is solution coincides

at reported in Ref [65].
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However, a new solution can be obtained by

replacing r by'X: in the static solution reported in
Ref [I72]. Thus we are led to the solution

1<<X) = X/(A +X) (6.25)
H(X) = A/(A +X>. (6.26)

where A is a nonzero arbitrary constant. Both K(X:) and
I~I(')() are singular on the surface (A +X) = O.

B. Subgroup Ii: _')<'. = o = O

Under the subgroup €lC 1? specified by DC = o =
the infinitesimals read

R = 2)\rt (6.27)
T = A (r2 + t2). s (6.28)

With a similarity variable

n = r/(t2 - r2) (6.29)
the reduced system assumes the form of (6.21) and (6.22)

on the replacement X:-+ n. We note that there exist two

O
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families of solutions just as in the case of the full

group'§? mentioned above. They are

K(n) = c n/sinh(Cn) (6.30)
H(n) = c n coth(Cn) - 1. (6.31)

as found in Ref [65], and

K(n) =i n/(A + n) (6-32)
H(n) = A/(A + n) , A # 0 (6.33)

which constitutes a new time-dependent solution. The
later is singular on the surface (A + n) = O.

C. Subgroup fi?;:_A = O,_XI# O, o # O

For the subgroup §2C§, X: O, and the infinite­
simals are

R = Jc r (6.34)
T = QC t + G. (6.35)
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The corresponding similarity variable is

if = r/(t - a) (6.36)
where a is a nonzero arbitrary constant. The similarity
equations read

(Q2 - £4) K"- 2f3K' = K(K2 - 1 + H2) (6.37)

(‘£2 - £4) H" - 2fi3H' = 2 HK2 (6.38)

where a prime denotes differentiation with respect to f .
-:1

It has not been possible for us to find an exact solution
for this system.

6.1V. Discussion

The similarity method of analysis of the non—linear
coupled differential equations equivalent to the classical

SU(2) YM-Higgs system gives the similarity group€?;, which
evidently depends on the Ansatz employed. There is an explicit

time-dependent similarity variable for each subgroup of g?.

Under the full group é? as well as under one of its subgroups
figi, time-dependent solutions arise as generalizations of



the well known static solutions of Refs[66] and [l72]. This
indicates the possibility of transforming any static solution
of (6.2) and (6.3) into a non_trivial time-dependent form. The
two new solutions herein obtained as well as those reported
earlier in the literature, can be continued to the Euclidean space

APPENDIX

The equations (6.12)-(é.l4) are obtained by solving
nearly 100 constraint relations obtained from (6.10) and (6.11)
by equating coefficients of different orders of derivatives of
K and H. These

secondary types
the former. We

r2 Ugr -r2U_t‘t +

2:2 u§H -- r2Rn.

2r2 U§K - r2Rrr

constraints can be divided into primary and
such that the latter arise as combinations of
list only the primary constraints.

(1-3K-H2)U‘ -zxnuz = 0

-I'2Rtt ‘-1 O

:2 ugr - r2u§t -2K2u2 -4KHU‘ = o

r Uk -2rRr + 2R

Trr ' Ttt =
u* = uz = 0,

O’ Trt

RK

= 0, rug -2rTt + 2a = 0

=Q IR -R=Ol‘T -H=Or ’ r ’ t
=TK='TH =O

=RH=O.
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