BEAM SHAPING OF SECTORAL ELECTROMAGNETIC HORN ANTENNAS USING CORNER REFLECTOR TECHNIQUE

K. T. MATHEW

A thesis submitted for the Degree of DOCTOR OF PHILOSOPHY

To

THE UNIVERSITY OF COCHIN

MICROWAVE LABORATORY, DEPARTMENT OF PHYSICS, UNIVERSITY OF COCHIN, COCHIN,

KERALA, INDIA.

DECLARATION

```
This is to certify that this thesis is
an original authentic record of original
work carried out by Mr.K.T. Mathew, M.Sc.
under my supervision and guidance, in the
Department of Physice, University of Cochin,
Cochin 682 022 and that no pert thereof has
been presented by him for any other degree.
Mr.K.T.Mathew has pasesed the M.Sc. Degree
Examination of the University of Kerala in
the First Class. He has also passed the
Ph.D. Qualifying Examination of the Cochin
University in Februery 1977.
```

Cochin - 22
10 May 1978

Supervising Teacher
Dr.K.Gopalakrishnan Neir Reader in Industrial Physies Cochin University.

ACKNOWLEDGEMENTS

It is with great pleasure I exprese my eincere gretitude to Dr.K.Gopalakrishnan Nair, Reader in Industrial Physice, for his able guidance and competent edvice throughout my research work. His considerate and inspiring attitude encouraged me much for completing this work in time.

I em extramely grateful to Prof.K. Sathyenandan end Prof. Joy George for providing Laboratory and Library facilities.

All the members of the faculty and technical personnel in the Department of Physics were very cooperative and helpful and I wish to plece on record my sincere gratitude to all of them.

I acknowledge with pleesure the cooperation end
encouragement I received from the Principal, Profo(Sr.) Marita and my colleagues of St. Teresa's College. Ernakulam.

I am aincerely thankful to all my friends in particular Mr.G.Mohanachandran, Mr.E.J. Zechariah and Mr. K. Vasudevan for their cooperative ettitude.

My thanks are 180 due to Mr. M.S. Mukundan for carefully typewriting the manuscript.

K.T. MATHEW

LIST OF SYMBOLS

--600

--7--

5 : Distance of feed dipole from the apex of the corner reflector.
j

- Complex quantity $\sqrt{-1}$
: Bessel function of the order indicated by the suffix and arguement shown in brackete.

LIST OF FIGURES

S.No. Figure No. Page			
1	1.1		16
2	1.2		19
3	1.3		21
4	3.1		38
5	3.2	Plate	39
6	3.3	Plate	40
7	3.4	Plate	42
8	3.5		45
9	3.6	plate	46
10	3.7	Plate	47
11	3.8	Plate	49
12	3.9		54
13	4.1		60
14	4.1	(B) Plate	61
15	4.2		66
16	4.3		67
17	4.4		69
18	4.5		72
19	4.6		75
20	4.7		79
21	4.8		80
22	4.9		83
23	4.10		85
24	4.11		81

S.No. Figure No. Page No.		
25	4.12	94
26	4.13	97
27	4.14	99
28	4.15	100
29	4.16	101
30	5.1(A)	104
31	5.1(B)	105
32	5.2(A)	107
33	5.2(B)	108
34	5.3	110
35	5.4	111
36	5.5	113
37	6.1	118
38	6.2	122
39	6.3	129
40	6.4	131
41	6.5	134
42	6.6(A)	140
43	6.6(B)	141
44	$A_{1} \cdot 1$	152
45	$A_{1} \cdot 2$	153
46	$A_{1} \cdot 3$	156
47	$A_{2} \cdot 1(A) P l a t e$	161
48	$A_{2} \cdot 1$ (B^{\prime}	162
49	$A_{2}{ }^{2}$	164

LIST OF TABLES

--10--

BEAM SHAPING OF
SECTORAL ELECTROMAGNETIC
HORN ANTENNAS
USING CORNER REFLECTOR
TECHNIQUE

CHAPTER

INTRODUCTION

Abstract

1.1 Antenna in General

An antenna may be defined es a device for trenemitting or receiving electromagnetic waves. The word "antenna" is actuelly borrowed from zoology, where it means sensory organ on heeds of insects and crustacea. The structure, in any form, associated with the region of trensmission between e guided wave and freespace wave or vice versa is termed as an antenne.

In 1873 James Clark Maxwell formulated the electromegnetic theory which gave a comprehensive outlook for the propegation of electromagnetic energy in the form of waves. Hertz, in 1885, constructed the first entenne end demonstrated the existence of electromagnetic waves. Further developments end progress were in very repid speed and antennas of different varieties came into existence to suit many requirements.

Different types of antennas will have different current and charge distribution and different geometries. So the radiation characteristics of each will be different. An imaginary antenna with no aperture is point source antenna. It provides a convenient isotropic refersnce with which other antennas can be compared. The simplest antenna is a one dimensional wire antenna. This includes short and long wire monopole, dipole and loops. The main drawback of the wire antennas is their low gain end directivity. At mierowave frequencies, they have other drawbacks also. For example the beam width mey ba undesirably high and the matching may not be perfect. To obtain higher gain and more directive radiation patterns, entennas with larger effective areas are used.

1.2 Electromagnetic horn antenna

For many years, horns have been used as an ackoustical instrument to amplify or direct sound weves. As an electromagnetic device the horn cannot have any such longevity. In fact, both microwavee and harn antennas were in use in the late nineteenth century only.

The forerunner of the horn, namely the hollow pipe radiator, seems first have been used by Sir Oliver Lodge. In 1897, Indian Physicist Prof. J.C. Bose visited London and lectured at the Royal Institution. His lecture

Abstract

included a demonstration of millimeter wave spectrometer operating at frequency of 60 GHz . Among the components constituting the spectrometer were few dielectric prisme end a true pyramidal horn which Bose referred to as a "collecting funnelwi(a).

Electromagnetic horn radiator is a convenient form of directional antenna used in high frequency circuits. Ite simple structure, high directivity and bandwidth are all attrective features desirable to such short wave entennas. In practice, the electromagnetic horn antennas are the primary feeds of eecondary antennas like paraboloidal or cylindrical reflectors and cheese mirrars which ere widely used in redar systeme. For getting rader beams of desired directional properties, electromagnetic waves from the primary horn feed must be properly shaped. Even if the horn is used as arimary antenna, the radiation pattern must be shaped properly to get optimum directivity. Thus the shaping of beems from electromagnetic horns has got special significance and practical applications.

The horn has much greater utility than merely that of feed for reflectors and lenses. It is a comon element in phased array entennas. It is a reliable and accurate gain standard end finally, it is useful radiator, easy to excite and simple to build. These qualities make the horn inveluable to engineers and scientists in a^{n} umber of fields.

1.3(a) Action_of an Electromagnetic horn antenna

The experimente on the use of open ended wave guides as radiators indicated that an increase in the dimensions of the waveguide, crose section reduces the beamangle. But this will ceuee secondary sidelobes. The higher order wavee present in the mouth of the waveguide cause these sidelobee. These higher order waves can be prevented by having proper dimensione of the waveguide which will sustain only the dominant mode and flaring the waveguide in the vicinity of the open end to obtein a large eperture that is necessary to achisve a amell beam angle. Such a flared section of a wavila is called an "electromagnetic horn". A aectoral horn is one of the rectangular cross section flared only in one plane. Thus, we have the E-plans and the Hoplane sectoral horns. Morne flared in both planes ere called "pyramidal horne". For eircular waveguidee, conicel horns of circular cross section are used. Figure 1.1 shows different types of horns.

A horn ettached to the end of a waveguide providee large aperture. It aleo servec as a means of better impedence matching between the waveguide and the medium beyond it. Hence it will reduce the backward reflection at the mouth of the guide system. The extent

FIGURE 1-1.
DIFEERENT TYPES OF HORN ANTENNNAG
(a) Pyramid. Horn (b)E-Plane soctorel Hora
(b) Conical Hoin (d)H-Plane Sectorn. Horia
of directivity and power-gain depends on the horn-length and the flare angle.

A horn antenna may be considared as a taper transformer between guidad waves and waves in free space. The horn itself may be assumed to be waveguide with variable characteristic impedence. If the rate of taper is not too great, the reflection from the aperturs will be small. The beam shape is controlled only in the plane where the horn is flared, while in the other principal plana, the beam shape is that of an opan ended waveguide with the eame dimensions. A sectoral horn provides a fan shaped beam. Such fan shaped beams are ueed for surface based and navigational rader syetem.

A horn may be excited by attaching it to the end of aection of a weguide of appreciable length which is connected to a microwave resonance chamber through a probe. If the edge effects are neglected the rediation patterns of horn antennas can be determined from the aperture dimension and the aperture distribution. To obtain a uniform aperture distribution long horn with small flare angle is required. But for practical convenience the horn should be as small as possible. An optimum horn will be in between these extremities and has the minimum beemwidth without excessive sidelobee for a given length.

A longitudinal section of a horn antenna is shown in fig.1.2. L is the axial length of the horn, A_{E} is its aperture and φ the flare angle. δ reprosente the difference in path length for wave reaching the aperture at the side of the horn. If δ is suficiently small, compered to the wavelength, of radiation used, the field is nearly uniform over the entire aperture. For a constant length L. the directivity of the horn indreeases as the aperture and flare angle φ_{0} are increased. However, when A_{E} and φ_{0} become co large that δ ie 180 degrees, the field at the edge of the aperture is in phase opposition to the field at the axis. This will increase the sidelobes and hence decrease the directivity. It follows that the directivity occurs at the largest flare angle for which δ does not exceed a certain value δ_{0}. Thus the optimum horn dimensions can be related by

$$
\begin{aligned}
\delta_{0} & =\frac{L}{\cos \left(\varphi_{0} / 2\right)}-L \\
L & =\frac{\delta_{0} \cos \left(\varphi_{0} / 2\right)}{1-\cos \left(\varphi_{0} / 2\right)} \\
\text { i.e. } \phi_{0} & =2 \cos ^{-1} \frac{L}{\left(L+\delta_{0}\right)}
\end{aligned}
$$

The inherent limitation of all horn antennes is the end effect. For better directivity this endeffect is to be minimised by soma techniques such as lens compen-

FITARE I-2
LONGITUDNAL SECTION OF A HORN
sated antennas. Another limitation of horn antenna is excitation of higher modes. For uniform aperture illuminations, these highsr modes must be suppressed.
1.3(b) Cornex Reflector Antennas

```
    Kraus 40 suggested a beam antenne, called the
corner, V or sphenoidal reflector type antenne which
consists of a driven linear radiator kept along the bi-
sector of two metallic reflectore which are joined along
a line by hinges. A corner reflector system is shown
in Figure 1.3. From the asaumption that the reflecting
plenes are perfectly conducting and infinita extent and
by using the method of images. he obtained analytical
expressione for the antenna characteristics such as gain
and directional radiation pattern. One of the important
theoretical conclusions drawn by Kraus is that too small
apacing for the driven radiator from the apex of the
corner reflector will adversely affect the gain of the
8ystem. Again, the spacing will have an uppar limit also,
above which the beam splits up to sidelobes. When refle-
ctors of larger dimensions are taken, their widths or
langths are found to have negligible effect on the radi-
ation patterns. Thus the gain and directional patterns
of the syatem can be conveniently adjusted by varying the
spacing 'g' or the corner angle 2\alpha or both.
```



```
    A characteristic of the corner reflector antenna
Is that. it will return a signal in the same direction
exactly along which it was received. Because of this
characteristic, the corner reflector antennas find appli-
cations in rader and microwave system. In military vehi-
cles and shipa, sharp corners of metal plates are avoided
in the design to eliminate the possinility of forming
"corner reflectore" which will increase the possibility
of "aeeing" them by the anemy radars. One of the great-
est uses of corner reflector antenna is in home talem
vision reception.
```

```
1.4 Scheme of Present Work
In the present investigation posaibility of beam shaping of sectoral horns and corner reflector syetems'has been studied in detail. The experimental results obtained in the above two cases are compared. As far as the flanged sectoral horns are concerned, the special advantage is that the gain is increased without impairing impedance conditions. An intensa study on corner reflector antennas shows that the beam broadening or focussing will be possible by adjusting parameters involved. Beam tilting by imposing asymmetries is another interesting property of both the systems. A compre-
                            the past work in
hensive study of/these fields has been presented in
Chapter II.
```


Abstract

Chapter III is exclusively for describing the experimentel techniques used in the present investigation. - In Chapter IV, experimental results on flanged sectoral horns and corner reflector syetems are presented.

A comparative analysis of the experimental results obtained with flanged sectoral horns and corner reflector eysteme is presented in the Chapter V. The similarity and close resemblance in each aspects are shown by presenting typical results from these two systems.

Theoretical aspects of both types of antennas are considered in Chapter VI. Attempts ere made for co-brdinating the theoretical aspects and drawing a final conclusion.

In Chapter VII, the final conclusion that the flanged sectoral horn may be considered as a corner refles ctor system has been drawn. The importance of the conclusions and usefulness are pointed out. The scope for further work in these lines has been indicated.

The work done by the uthor in related fields is given as two appendices A_{1} and A_{2}. Refarencee are given at the end. Most of these references are directly scratinised by the author. In a few cases, the author had to satisfy himself by seeing only the abstrects as the papers were not available to him in their original form inspite of his best efforts.

CHAPTER II

PAST WORK IN THE FIELD

2.1 Introduction

A great deal of work on both flanged sectoral
horns and corner reflectors hae been reported in literature. In this chaptsr, the past work done in the field of electromagnetic horns and corner reflector antennas in general has been sumarised. Different attempts made for the beam shaping of sectoral horns and corner reflector systems are presented.

2. 2 Electromagnetic Horn Radiators

Along with the development of horn antennas, several attempts were made by scientists for effectively shaping the beam by artificial means. The following j r a brief description of these efforts.

With the revival of interest in microwave and waveguide transmission lines by 1930, many papare appeared in the arena. The first analysis of radiation by an active horn antenna was given by Barrow and Chuº A clear description of the radially propagating modes in a sectoral radial waveguide is given in their paper. In

Abstract

their terminology, H modee have no component of electric field in the radial direction, (Ep = O). In their second paper ${ }^{2}$ they applied Huyghena' principle to the waveguide field that would occur in the hornpouth when the sides were of infinite extent. On this aseumption they calculated the H-plane radiation pattern of H-plane sectoral horns. They observed that the radiation patterns of asectoral and rectengular guide behave similarly when the flare angle is small and the radisl length not too long. But for fixed radial length and increaeing flera angle, the beam first begins to sharpen, reaches a minimum width and then broadens again. Southworth and King described some experiments made to determine the directive properties of metal pipea and horns when used as receivers of electromagnetic waves. The experiments include the measurement of received power with and without the horn in place and the determination of the directional petterns of the horn in two orthogonal planes. Their etudy indicates that the horns are simple andeffective means of obtaining power ratios of a hundred or more. The effect of varying different horn parameters showe that thers is an optimum angle of flare, for maximum directivity.

The principlee of designing electromagnetic horn antennas to obtain beams of specified angular spread,

Abstract

smoothness of contour and power gain ere described in a later paper by Chu and Barrow ${ }^{2}$.

Chu ${ }^{4}$ in his paper, described the method of calculating the radiation properties of hollow pipes and horns. For the $T E_{11}$ wave in circular pipe and the $T E_{01}$ wave in rectangular pipe the diractivities are analytically expressed in terms of beam angle and power gain. It is found that the two waves have substantially equal power gains on the basis of equal areas of openings.

In lecture delivered at the Radio location Convention 1946, Rust introduced the phase correction to the horn radiators. It will ba noticed that the maximum phese difference between the wavelets proceeding through the centre and through the sides depends upon the length of horn. He suggested that this langth must be at least 50 wavelengths to reduce this phase difference. He pointed out that the metal partitions acting as sections of waveguide could be used to obtain this correction.

Horton ${ }^{6}$ explained a method based on Schelkunoffis theory for the computation of radiation patterns of electramagnetic horns of moderete flare angles. For the case of transverse electric field in a wave guide or horn of moderate flare angle, the problem of calculating the radiation pattern is reduced to that of evaluating two definite integrals. Experimental data is presented to illustrate the agreement between theory and experiment.

Electromagnetic fields from conical horns were subject of intense study by M.G. Schorr, E.J. Beck ${ }^{7}$ and A.P. King ${ }^{8}$. They solved Maxwell's equations for perfectly conducting conicel waveguides for their analysis.

The edge diffraction theory applied by Russo ${ }^{9}$ et.al. describes new method for computing E-plane patterns including backlobe region. The diffraction fields are obtained by applying the relations developed by Pauli in conjunction with reciprocity theorem. It has been shown that the radiation of the horn is due to diffraction by the E-plane edges and by direct radiation from the source at the apex of the horn.

Using the edge diffraction theory Yu, Rudduck and Peters ${ }^{10}$ studied the radiation characteristice of horn antennas. The far-side-lobes and backlobe radiation have been solved without employing field equivalence principle. A corner reflector with amgetic line source located at the vertex is proposed es model for the principal E-plane radiation of horn antennes. A complete pattern including multiple interactions and images of induced line sources is obtained in the form of an infinite serise.

Hamid ${ }^{11}$ used the geometrical diffrection theory to investigate the gain and radiation pattern of a conicel horn excited by a circular waveguide operating in the $\mathrm{TE}_{\mathrm{q}} 1$
mode. Narasimhan and Reo ${ }^{12}$ presentad a simple, accurate and self consistent solution for modes in a conical horn. The eigen functions and eigen values derived from the aimple solution for the $T E$ and TM modes of different orders were found to be very close to the exact solution.

James J. Epis ${ }^{13}$ euggested a modification to the electromagnetic horn to get identical radiation patterns in the E and H-planes. The radiation polar diagrams of typical conical and square pyramidal horns have E-plane patterns which are generally narrower than thair respective Haplane patterns, due to several reasons. The modification is effected by aimply fastening metallic pins of small diameters or mechanical screws on the exterior periphery of the horn aperture. The most important advantage of this compensated horn is that equalisation of the E and H-plane patterna was possible for all polarisations. The input VSWR is not affected adversely by thie aperture modification.

Walton and Sundberg ${ }^{14}$ used dielectric composite lenses to correct the phase error present acrose the eperture.

John L Kerr ${ }^{15}$ described a horn model with broad band width and a substantial reduction in axial length. This horn could be operated in the $0.2-2.0 \mathrm{GHz}$ range. He fabricated tha H-plane walls in the form of grids.

Abstract

E.H. Braun ${ }^{16}$ described methods of evaluating the parameters of horn and he suggested a simple procedure for designing such a horn.

A.W. Love ${ }^{17}$ suggested a diagonal horn. The waves which are propogated in auch a horn are composed of a TE Oq_{1} mode and $T E_{10}$ mode orthogonally. This typa of horn antenna can easily be used to radiate circular polarisation. The diagonal horn can be used ae feed horn for illuminating parabolic reflectors.

A new technique is described by Seymour ${ }^{18}$ for controlling E-plane aperture distribution and radiation pattern of a pyramidal or conical horn. Small variations of flare angle at one or more points along the horn are used to produce tapered aperture field in the E-plane. Equal E and H-plane beam-widths with low side lobes are obtained. The structure ie simple and economical to fabricate and offere low VSWR and minimum dissipation lose.

Ching C. Han and Adam Wickert ${ }^{19}$ fabricated a multi-mode rectangular horn antenna generating a circulary polarised elliptical beam. This antenna operated in two orthogonal modes set and used in conjunction with apacecraft to illuminate an elliptical zone on the earth surface offered a high edga coverage gain, low side lobes, low edge of coverage axial ratio and low cost.

Corrugated horn feed is a fairly new model.
Kay and Simmons ${ }^{20}$ in United States observed that grooved
walls in a horn would present the same boundary conditions to all polarisations and would therefore create tapered aperture field distributione in all planes. This would eliminate the spurious effects at the E-plane edges caused by diffraction and would result in squal E and H-plane beam widthe. Lawere and Peters ${ }^{21}$ did some work independently on this field in the seme periode They studied the effect of corrugation depth, separation and corrugation thickness. They also found that the back lobes and side lobes could bs minimised by introducing a series of quarter wave length deep choke slots in to the walls of the horn near the aperture.

Important contributions in the field of corrugated feed-horn are made by Clarricoats 22. 23, 24 and his group. Comprehensive theoretical explenations for radiation patterns of corrugated conical and rectangular horns were presented by them. They elso studied the radiation pattarns of lene corrected conical scalar horn. Jauken and Lambrechtsa ${ }^{25}$ studied small corrugated conical horn antennas with wide flare angles.

Naraeimhan and Reo ${ }^{26}$ studied different hybrid modes in corrugated horn and they have shown a deviation to the rigorous solution obtained by Clarricoats for corrugated horns. Narasimhan ${ }^{27}$ investigated the form of field in a conical horn with uniform circumferential corrugations with arbitrary corrugation depth.

Abstract

Dielectric rod and tube antennas are relatively old but the first combination of a delectric cone and a horn seeme to have occurred in the mid 1960's. The aperture efficiency in dielectrically loaded horn antennas was investigated by Tsandoulas and Fitzgarald ${ }^{28}$. It is shown that aperture efficiencise of the order of 92-96 per cent may be obtained easily and inexpensively. This method hae application in limited scan arraye. By lining all four sidee of equare horn with a dielectric a circularly polarised feed was obtained. Several authors 29,30,31 conducted studies on this subject. Clarricoats et.al ${ }^{32}$ demonstrated that the radiation pattern of a dielectric cone excited by a horn can be predicted with sufficient accuracy. The results also show that the radiation pattern of the dominant $H E_{11}$ mode of the dielectric cone is similar to that of the same mode of the corrugated horn.

Horn reflector antenna ${ }^{33,34}$ is another type of horn radiator. It is a combination of a square electromagnetic horn and a reflector that is a sector of a parboloid of revolution. The apex of the horn coincides with the focus of the paraboloid. It is an extremely broad band antenna. Since it is not polarisation-sensitive, it can be used in any linear or circular polarisation. As it is an offesfit paraboloidal antenna, impedance mismatch due to reflected signal on the feed is very little. This typa is commonly used in satellite communication systems.

From the elaborate study of horn antennas, Pao ${ }^{35}$ suggested the possibility of shaping the primary pattern of horn feeds. He put small pins and othse such obstacles at the mouth of the horn radiators. The radietion patterns were haped considerably but with terrible mismatch. He also suggested metal flanges and strips.
Owen and Reynolds ${ }^{36}$ conducted a serias of experiments to establish the effact of matal flanges on rediation patterns of small horns. They studied the effect of length and included angle of the flange on radiation characteristics. An approximate theory was suggested by them. Butson and Thampson ${ }^{37}$ performed experiments on the same line. They proved the validity of the aseumption made by Owen and Reynold that two secondary radiators may be aseumed to be situated at the edges of the flanges.
A bulk of work has been reported on theoretical and experimental field on the radiation pattern end characteristics of horn aadiators. An exhaustive study on the beam shaping of sectoral horn antennas by metallic fianges 18 mada by Nair and Keshy 38,39.

2.3 Corner Reflectox Antenna

Although a parabolic surface can produce greatest directivity, it hes been found that highly effective directional system results from the use of two flat conducting sheets arranged to intersect et angle forming a

```
corner. A 900 corner reflector is forming a square
reflector. A 180' corner is equivalent to a single
flat sheet reflector, a limiting case of the corner refle-
ctor. The first significant contribution in this field
was made by J.D. Kraus40. In his own words, "A corner
reflector consisting of two flat conducting sheets or
their aquivalent constitutes a distinct type of reflector
system capable of substantial gains and possessing many
uniqus characteristics". The theoretical explanation for
the various results obtained is given on the basis of the
theary of images in electrostatics. Kreus could develop
expressions for both gain and directional patterns. In
his experiment, he used a helf wave dipole as the driven
element. He constructed grid type corner reflector having
spaced parellel wires or conductors. He elso discussed
the bidirectional corner reflectors.
Edward E. Harris \({ }^{41}\) made an extensive experimental
investigation of the corner reflector antennas taking into
consideration the different parameters involved. He
studied the radiation patterns for various corner angles
and for different spacing of the dipole. Heplans and
E-plane patterns ware studied saparately. Radiation resi-
stances of ariven helf wave dipole for various positions
of the dipole were determined.
```

A theory developed by James R. Wait ${ }^{42}$ provided
a straight forward solution for the resultant fields any-
where within the angle subtended by the corner reflector. Comments on Moullin's 47 theoretical treatment are also made in this paper.

Cottonny and Wilson ${ }^{43}$ studied the effect of aperture angle on the optimum position of the dipole. They used corner reflector of variable widthe. The effect of dimensions of reflecting surfaces on the gain was also investigated.

In another paper, A.C. Wilson and H.V. Cottonny 4 messured radiation patterns for corner reflector antennas having various combinations of widthe and lengths of the reflecting surface. The aperture engls was set at a value required to minimise gain. They also constructed and tested corner reflectors with a collinear array of dipoles.
M.A.K. Hamid ${ }^{45}$ described modified radiation
pattern of sectoral horns and corner reflector antennas
loaded with shaped dielectric slabs along ths walls. This
can improve the directivity in all cases.

David Proctor ${ }^{46}$ presents a series of computerderived design charts for maximising the radiated field from a corner reflector. Optimum feed positions ars shown for various corner reflector angles. The performance of corner reflector is analysed by the method of images. He obtained the position of the driven element from the apex of the corner reflector for various corner angles.
A close follow up of the past work done in this field indicates that no attempt has been made to co-relate the flanged sectoral horn with a corner reflector system. This point has bean taken up in the present investigation.
methodologys experimental techniques and measurements
3.1 Introduction

This chapter deals with experimental set up and measurement techniques used in this investigation. The description of the equipmant used and their arrangement is followed by a discussion of the methode of measurements employed.

```
Measurements have been carried out in \(X\) and \(S\) bands. Most of the wark is done in the X -bend, with a mean frequency of 9.4 GHz . But the results obtained have been verified with S-band which has a frequency rengs of 5.6 GHz to 8.2 GHz .
```


3.2 Equipment: General_Description

```
    The principal components in this investigation
comprise of the microwave sources, waveguide assembly pyra-
midal and sectoral horns, metallic flanges, corner refle-
ctors, field detecting system and so on. A reflex kly-
stron oscillator operating with a stabilised power supply
end modulation circuit, couples microwave power through
```


Abstract

a probe assembly to a weguide bench. The waveguide test bench includes a circulator or an isolator, frequency meter (cavity wavemeter) calibrated variable attenuator, monitor to detect power, standing wave detector and a transmitting antenna which is usually a pramidal horn. The receiving system consists of the horn under test, and - crystal detector, which is mounted on the waveguide. The waveguide is furnished with varieble short circuiting plunger. This system is mounted on etand capable of rotation about a vertical axis to record radiation patterns. The output across the crystal is given to a very sensitive spot type microgalvanometer.

3.3 Mierowave Sources and Waveguide System

The X-band microwave unit of mean frequency 9.4 GHz consists of stabilised power supply and klystron oscillator $723 \mathrm{~A} / \mathrm{B}$. The microwave radiations are coupled to the waveguide through a probe. Small variation in the frequeney can be accomplished by tuning the cavity of the oscillator. The frequency can be read with the help of the frequency meter. The voltage standing wave ratio is measured with alotted section. tunable probe with crystal detector and VSWR meter. Schematic diagram of experimental arrangement is shown in fig.3.1.

The reciprocity theorem in antennas enables us to use test horn ae aeceiver. A pyramidal horn with

SCHEMATIC DIAGRAM OF EXPERIMENTAL ARRANGEMENT USED

FIGURE 3.2
X-band Microwave source and Waveguide system.
-40-

FIGURE 3.3
8-Band Test Assembly

Abstract

20cm x 10cm eperture dimensions is used as a standerd transmitter. The whole systam can be set up on an adjustable stand at any desired height. E-plans or Hoplane radiation pattern can be etudied by connecting appropriate waveguide twist to the waveguide preceeding the transmitting horn. Figure 3.2 shows the photogreph of X-band microwave source and waveguide system.

S-band microwave bench is compect variabla frequency unit consisting of regulated power supply modulation unit and the klystron. It is a variable frequency source with range 5.6 GHz to 0.2 GHz . The pows output can be adjustad and power level is indicated by an internal d.c. meter. The output can be made continuous or modulated wave. The power from the klystron (RK 5727) is coupled to the waveguide through co-axial cable RG 58/U and probe assembly. The S-band test bench resembles the X-band set up described above. The S-band test asembly is shown in Fig. 3.3.

3.4 Sectoral Horns

Both E-plane and H-plane sectoral horns ere used. in this investigation. Since X-band and S-band have different frequencies and hence waveguide dimensions are different. E-plane and H-plane sectoral horns are made of moderately thin copper or brass sheets. To obtain good conductivity the inner surfaces of horns are silvered. Different parameters of horns used are given in the Table 3.1. Figure 3.4 gives a view of these horne.

- 42 -

FIGURE 9.4
Viev of eem of the Eoplane and H-Plame
enctoral Horn uned in this laventlgation

3.5 Flange Systam

Abstract

Aluminium and brass flanges are used to study their effect on the radiation patterns of the horn radiators. The flanges are designed to enable easy adjustment of angle, width, orientation and other related parameters. The flanges are nothing but two metsi sheets joined with serews on a hinge on either side of a rectan-

 gular frame. Fig. 3.5 shows aiew of the flange systam. The rectanguiar frame with flange elements can be inserted on the sectoral horn eo that the flange elements are situated on either sides of the flared region of the horn. Fig. 3.6 gives the lay out of a langed sectoral horn. Thus, the edges of the flange elements ere parallel to the aperture of the horn. The flange can be slided over the horn and fixed at any desired position. A calibratsd scale fixed on the outer surface parallel to the axis of the horn enables to find the position of the flange with respect to the aperture.
3.6 Corner Reflectors

A corner reflector ie formed by the intersection of two plane reflectors. It is fed by dipols. Though there are striking resemblances in the characteristic patterns of flanged sectoral horns and corner reflectore the setting of both is entirely different. The driving element in corner reflector is not a directional feed. A helf-wave dipole is used in this investi-
TABLE 3.1 Parametere of Sectoral Morne

- FIGURE 3-5

METALILE FLANGE SYSTEM

- 46 m-

FIGURE 3.7
Microwave Source and Corner Reflector Antenna.

Abstract

gation ee the feed for the corner reflector. The arrangement of the corner reflector eystem is shown in Fig. 3.7. The pyramidal horn used in the previous investigation ae tranamitter is replaced by the corner reflector eystem. The waveguide is coupled through a co-axial cable, the other end of which feeds the dipole. The cable pesses through the groove cut at the centre of the wedge of the corner reflector. The system is mounted on a convenient stand. For plotting the radiation patterns of corner reflector systam the classical method of using the test entenna es transmitter is employed. The receiver is a pyramidal horn with a crystal detector IN23. The recea iver ie moved along the circumference of a circle of constant radius $>\frac{2 D^{2}}{\lambda}$ with the apex of the corner refleetor as centre. The output of the crystal is given to a highly sensitive microgalvanometêr. Fig. 3.8 showe the corner reflector antenna with pyramidal horn as the receiver. 3.7 Masauraments_-Methods_and Techniquee 1. On-axis.Power. The power of the electromagnetic energy radiated along the axis of the antenna system has to be measured in the case of both flanged sectoral horns and corner reflector systems. This is measured by placing amell horn fitted with a detector crystal in a crystal mount. The crystal used is IN21 or IN23. The axis of the receiver horn is arranged to be

FIGURI 3.8
A View of Corner Reflector and Pyramidal Horn Receiver.

```
collinear with the exis of the transmitter antenna. so
that the receiver will be at point along the axis of
the tranemitter. The distance betwgen the two antennas
is adjusted to be greater than }\frac{2(\mp@subsup{D}{1}{2}+\mp@subsup{D}{2}{\prime})}{\lambda}\mathrm{ where D D and
D
and receiver antennas respectively. This restriction
is for taking the observations only in the far-field
region. In the actual set up, the receiver horn ie
atteched to stand which is cepable of moving along a
long wooden bench, so that the distance can be convani-
ently adjusted. The output from the crystal detector is
given to a very sensitive microgalvanometer (scalamp type)
whose deflections are proportional to the crystal current
and hence to the power of the radiated energy at the point
where the crystal is kept. The galvanometer deflections
can thus be taken as measure of the on-exis power at
the point. The intensity of the field at the point will
be proportional to the square root of the gelvanometer
deflection.
2. Radiation Patterns: Power end Intensity
Patterns. For plotting the radiation patterne of antennas. there are two methode. (e) By using the antenna under teat as transmitter of electromagnetic wavee while the power or inteneity distribution at different points along the circumference of a circle with the antenna as the centre is etudied by another receiving antenna. (b) By using
```

the entenna under teet ae receiver of electromagnetic wavee transmitted by a standard antenna. From the well known reciprocity theorem in antennas, it can be seen that the characteristies of an antenne will be the same in both cases. For the mejor part of the work deseribed in this thesis, the second technique is used, as it is more convenient and simple. For plotting the radiation patterns of corner reflector antennas, the first method is employed since it is difficult to fabricate movable frame holding the corner reflector elements end the feed dipole togehber. However, for experimental confirmation, both the techniques are employed in many cases and average patterns are developed.

When the horn under test ie used ae a transmitter of C.W. signal, the radiation patterns are plotted in the following way. The long arm on which the emall receiving horn with exystal mount is arranged, is capable of rotating about an axie paseing through the centre of the aperture of the transmitting antenna under test. (Flanged sectoral harn or corner reflector eystem). Thus the receiver can be kept at different points on the circumference of a circle of conetant radius $R>\frac{2 D^{2}}{\lambda}$ around the teat antenne. As mentioned earlier, this lmit of distance is choaen for taking the observations only in the far field region of the antenna. The power at these points are readily obtained from the galvanometer deflections. By plotting these on polar co-ordinate paper, the power pattern of the tranamitting antenna can be obtained. If the square root
of the galvanometer deflections are plotted, we will get the intensity pattern from which the antenne gain in the plane can be eaeily claculated by numerical integration of the pattern ${ }^{52}$.

Particular care is taken in avoiding all possible interactions of external objects in the region of the radiated field. The wells of the big room used for the investigations are coated with a paint or graphite which is a good absorbing material for microwavee. Metallic surfaces are avoided in the radiation field of the antenne.

will be those in the far field region of the antanna. Here D_{1} and D_{2} are the larger dimensions of the two horns. In all cases the patterns are normalised. (Fig.3.9)
3. Beam Width. Beam width determines the quality of an antenna. The angular width of the main lobe of the pattern at the half-power point is called the beam width or the half power beam width of an antenna 54 . As the E and H-planes have different patterns, they will have different beam widths aleo. The half power points are the three decibel points on the decible plot, the 0.5 points on the power plot or the 0.707 points on the voltage plot. The chart ie always normalised so that the maximum point is unity, or zero decibels.
4. Gain of the Horns. The gain of an antenne is an importent measure of its performance in eystem. Antenna gain ${ }^{55}$ is the ratio of the maximum radiation intensity at the peak of the main beam to the radiation intensity in the same direction which would be produced by an isotopic radiator heving the same input power. The gain function describes the variation in the radiated power with angla and is given by

$$
G(\theta, \varphi)=\frac{p(\theta, \varphi)}{W_{T} / 4 \pi}
$$

Where $p(\theta, \varphi)$ is the power radiated per unit solid angle in the direction θ, φ end W_{T} is the total radiated power.

Thus a high gein antenna has main beem with lerge amplitude and narrow beam width and side-lobee of reletively emall amplitude.

The numerical integration of the intensity pattern in plane represented in the rectangular comordinate gives the gain in that plane (Montgomery) ${ }^{51}$.

$$
G_{\theta}=\frac{2 \pi I_{\max }}{\int_{0}^{2 \pi} I_{\theta} d \theta}
$$

I θ is the intensity corresponding to any bearing angle θ. $\int_{0}^{2 \pi} I_{\theta} d \theta$ is numerically given by the area enclosed between the intensity curve and the axis on which θ is represented with limits 0 to 2π. In decibels, gain is given by

$$
G_{d B}=20 \log _{10}\left[\frac{2 \pi I_{\max }}{\int_{0}^{2 \pi} I_{\theta} d \theta}\right]
$$

5. Voltage Standing Wave Ratio (VSWR).

Standing waves are an indication of the quality of transmiseion. When there is reflection from a discontinuity or from the end of tranemiseion line. part or all of the incidsnt weve is made to travel back towards the input end. Thus, there will be two waves travelling in opposite direa ctione. The places, where the two waves add, will be point of maximum voltage while position of cancellation will have minimum voltage. A well matched line has no
reflectione. Tha ratio of the maximum voltage on the line to the voltage at the minimum is called the voltags stending wave ratio.

Since the reflected valtage is proportional to the oboolute magnitude of the reflection coefficient the standing wave ratio becomes

ie $\quad|\Gamma|=\frac{\text { VSWR }-1}{\text { VSWR }+1}$

The standing wave ratio may be measursd by simply testing the voltage along a transmission line or wave guide. The set up is as shown in Figure 3.2.. A longitudinal slot is provided in the well of a waveguide. A small proba is inserted to sample the voltage and is slided along the waveguide to find the maximum and winimum. The piece of the weveguids with the slot and the probe is called a slotted section or alotted line. The inserted probe acts es an antenna to receive amall portion of the signal at each point. A crystal is mounted to detect the output voltage which is given to the VSWR meter. VSWR is measured under various flange conditione especially at the optimum and minimum positions of the flanga. This is echieved by measuring on axie power and VSWR simulteneously for various flange positions.

6. Pargmetgre_=_Flange_and_Corner_Reflactor.

 An exhaustive study of the effects of various flange parameters on the beam shape of flanged sectoral horns is carried out in this study. The flange parameters are, the width of the flange elements included angle, position of flange with respect to horn aperture, angls between flange axis and horn axis and different flange elements. The above said parameters are applicable to corner reflectors also. These parameters are obtained by diract measurement made on the flange or corner reflector system.For theoretical caleulations, electronic calculators are widely used. A few radiation patterns are calculated using an ECIL computer facility elsewhera.

CHAPTER

EXPERIMENTAL RESULTS

4.1 Introduction

Abstract

In this chapter experimental results obtained from various investigation with flanged sectoral horns and corner reflector eystams are presented. In order to compare the ection of flanges with thet of corner reflector system, the observations are confined to the main effects produced by the systems. The main aspects thus investigatsed ares

a) Variation of on-axie power of the systeme when the distance of the primary feed from the apex of the flange or corner reflector system is varisd.
b) The existence of 0 and M positions.
(Optimum and Minimum poeitions).
c) Variations of the radiation patterns of the systems at the D and M positions.
d) Changes in tha beam width of the systems for various positions of the primary with respect to the apex.
e) Possibility of the beam tilt by imposing asymetry on the systems.
A. Results Obtained with Metallic Flanges Fitted on Sectoral Electromanetic Horn Antennas
4. 2 Variation of On-axis Powerwith Relative Position
of the Flangewith respect to the Aperture

It has bean observed that the on-axis power of
a flanged sectoral horn depends on the position of the flanges with respect to the aperture of the horn. The nature of this variation is established by the set up shown in Figures $4.1(A)$ and $4.1(B)$. The detector is kept at point in the far zone, $\left(R>\frac{2 D^{2}}{\lambda}\right)$ along the axie of the system. The flange system is gradually moved backwards.

The distance Z and the corresponding on-axis
power are measured. Observations representing on-axis power. P, versus flange position Z are taken for a nuber of horns with flanges of varying length and included angle. Few such observations are given in Tables 4.1 to 4.3. Figures 4.2 and 4.3 show the general form of these veriations. The distance Z is varied in steps of 0.50 cm . Details of these method of measurement is given in section 3.7. Extrame cars is taken in maintaining the symetry of the flange system and keeping the detector crystal exactly along tha axis. Graphs connecting $P_{\text {e }}$ and Z are

FIGGUPE 4-I(A)
FLANGED H-PLANE SECTORAL HORN
(a) View in the H-plane
(b) View in the E-piam

- $-61=$

EIcurs 4.1(B)

set up los the measurement of on-axis pover

TABLE 4.1 Variation of On-axis Power with Position of Flange

Flange dist- Normalised on-axis power P_{0} ance from - - - horn aperture 2 cm Horn H1, Freq. 9.4 GHz, Horn H3, Freq.9.4.GHz, ω / λ $=3,2 \alpha$ $=60^{\circ}$ W/入 $=2,2 \alpha=90^{\circ}$		
0	0.73	0.53
0.3	1.00	--
0.5	0.49	0.40
1.0	0.018	0.27
1.5	0.00	0.12
2.0	0.26	0.08
2.5	0.57	0.37
3.0	0.73	0.63
3.2	0.77	--
3.5	0.69	0.86
4.0	0.55	1.00
4.5	0.60	0.99
5.0	0.51	0.92
5.5	0.26	0.75
6.0	0.20	0.60
6.5	0.37	0.45
6.7	0.41	--
7.0	0.30	0.33
7.5	0.24	0.19
8.0	0.29	0.17
8.5	0.45	0.17
9.0	0.33	0.25
9.5	0.26	0.40
10.0	0.45	0.55
10.5	0.36	--
10.8	0.24	--
11.0	0.22	--
11.5	0.36	--
12.0	0.44	--
12.5	0.25	--

TABLE 4.2 Variation of Onaaxis Power with Position of Flange

TABLE 4.3 Variation of On-axis Power with Position for flange

```Flange dist- ance from horn aperture z cm```	$\begin{aligned} & \text { Normalised ol } \\ & \text { HornE1 } \\ & \text { Freq. } 9.40 \mathrm{GHz} \\ & \text { W/ג }=3.7 \\ & 2 \alpha \quad=60 . \end{aligned}$	$\begin{aligned} & \mathbf{r} P_{0} \\ & 2 \end{aligned}$
0	0.84	0.89
0.5	1.00	0.96
1.0	0.83	1.00
1.5	0.60	0.71
2.0	0.39	0.25
2.5	0.21	0.45
3.0	0.10	0.59
3.5	0.10	0.73
4.0	0.14	0.54
4.5	0.21	0.63
5.0	0.36	--
5.5	0.49	--
6.0	0.61	--
6.5	0.40	--
7.0	0.24	--
7.5	0.21	--
8.0	0.29	--
8.5	0.39	--
9.0	0.36	--

```
plotted for different definite values of flange angle
with flanges of different widths using various sectoral
horns operating at different frequencies.
These observations are made on both H-plane and E-plane sectoral horns. Figures 4.2 and 4.3 are showing the results for few M-plane and E-plane sectoral horns respectively.
It is observed from Po-Z curves which have the approximate shape of damped sinusoidal variations in general, that there are distinct flange positions with respect to the aperture, where \(P_{\text {. reaches maximum valuss. Whereas }}\) for certain other positions it reaches minimum values. These positions are called the "optimum position (or O-position"). and "minimum position (or M-position") respectively. The flange kept at the aperture is said to be at the "A-position". This position provides a reference for comperison with the above two positions. The distances of O-position end M-position from the aperture are represented by \(Z_{0}\) and \(Z_{m}\) respectively. These values can be readily obtained from the p. - 2 plots. From the different 0 and M positions we take the most dominant position for further study of radiation patterns.
It can be argued from the Po-Z graphe that a flange at O-position may give a favourable set up for axial concentration of energy and hence a focussing of the
```




#### Abstract

beam from the horn. On the other hand, a flange at M-position may avoid axial flow of enargy, resulting a beam eplitting or beam broadening. This is taken as the next point for investigetion.


### 4.3 Effact of Flange Poaition on_Beam Shape: Veriation of Rediation patterns_at Different Positione_of_tha Flange Syatem. Change in HP BW

Aa indicated in the preceeding section, the veriation of on-exia power with the pesition of the metallie flange with reapect to the operture is clue for the poselbility of beam sheping or aectoral electromegnetic horn antannas. Both the $H$ and E-plana eectoral horns are subjected to intensiva study in this respact. The changaa in radiation patterns are obeerved in the plane perpendicular to the plane of plera of the horne. The flenge system will not make any change in the redistion patterns of the horns in the plane of flera. Thus, for the M-plana sectaral harn, the variation effected by the flange system will be only in the E-plane patterns. Tha H-plane patterns of tha H-plane sectoral horn ramain unaffacted by the flange syotem. Similarly, for the E-plane eectaral horns, E-plana radiation patterns remain., unaffem cted, while tha drastic changes are observed only for the H-plane rediation patterne. This behaviour of the flange system ie illustratad in Fig. 4.4. presanting the natural

H-Plane patterns of H-plane sectoral horns


E-plane patterns of E-plane sectoral Horns


Horn H 1 9.4 GHa $W / \lambda 4.0$ $2 \alpha 60 \mathrm{~d}$


Horn E 2 9.4 GHz $W / \lambda 4.0$ $2 \alpha$ 45d.

FIGURE 4.4
RADIATION: PATTERNS OF SECTORAL HORNS WITH AND WITHOUT FLANGES The flange system does not make any significant change in the radiation patterns in the plane of flare of the sectoral horns.
radiation patterns in the reapective plane with and without flange system. Interpretation of this phenomenon will be given in a subsequent chapter, where theoretical explanations are preasited.

### 4.3A Variation of E=Rlane Radiation Patterns of Heplane Sectoral Horn with Regpect to the Position of r Flange_System.

*To study the effect of flange position on the E-plane radiation pattern of the H-plans aectoral horn, the natural E-plane patterns of the horns are obtained first. These are taken as the reference patterns. The radiation patterns are recorded by the method described in section 3.7. A waveguide twist is conveniently used to make the E-plane horizontal. The test antenna system is used as receiver, which is capable of rotating about a vertical axis passing through the apex of the flange system. After plotting the natural pattern of the horn a flange system of particular width and angla is symetrically mounted on it at the A-position. Similar measurements are repeated with the ame flange at the ' $\mathrm{O}^{\prime}$ and $\mathrm{I}^{\prime} \mathrm{M}^{\prime}$ positions which are determined from the $P_{0}-Z$ graph of the horn. These meagurements are repeated with the same horn but with flanges of different included angle and flange lengthe. A number of frequencies are tried for ascertaining the results.

TABLE 4.4 Measured E-plane Radiation Pattern at various Positions of Flange

Horn H1; Freqz $9.4 \mathrm{GHz} ; \quad W / \lambda=2,2 \alpha=90^{\circ}$

```Bearing angle 0```	Normalised power at angle $\theta$			
0	1.00	1.00	1.00	0.1
5	0.98	0.83	D. 54	0.16
10	0.95	0.74	D. 22	0.42
15	0.95	0.70	D. 03	0.48
20	0.89	0.63	D. 01	1.00
25	0.82	0.58	D. 00	0.88
30	0.74	0.39	0.015	0.68
35	0.68	0.26	0.05	0.52
40	0.59	0.21	0.09	0.46
45	0.64	0.19	0.10	0.36
50	0.50	0.16	0.08	0.24
55	0.45	0.10	0.058	0.16
60	0.41	0.06	0.048	0.06
65	0.27	0.03	0.039	0.04
70	0.35	0.00	0.01	0.00
75	0.27	0.00	0.00	0.00
80	0.23	0.00	0.00	0.00
85	0.18	0.00	0.00	0.00
90	0.16	0.00	0.00	0.00

Abstract

A set of sample observations is given in Teble 4.4. The readings are normalised so thet the patterns will have the same maximum(unity) irrespective of the different maximum power available in each casa. A few sets of radiation patterns are zepresented in Fig. 4.5.

\subsection*{4.3B Variation_of H-plane Radiation Patterns_of E=plane Sectorel Horns_with respect to the Position of the Flange Systom}

As in the case of the H-plans sectoral horns the effect of the flange position on the H-plane rediation patterns of the E-plane sectoral horn is studied by keeping the flange at different positions with respect to the eperture. For taking these patterns with the set up described in Chapter III, the transmitting horn is atteched to the wavaguide astem. The horn antenna under teat with tha flange system is used es the receiver and is arrenged on the turnteble such that the E-plane pattern can be conveniently taken.

A few observations are given in Table 4.5. Fig. 4.6 represents a set of M-plana radiation patterns of the E plans sectoral horns used in this investigation.

It can be seen thet the E-plane radiation patterns of the Haplane sectoral horns and Haplane radiation patterns of E-plane sectoral horns ara adjustable to greatsar extent by the flanga technique. At Doposition the beams

TABLE 4.5 Measured H-plane Radiation Pattern at various

 Positions of FlangeHorn E1 Freq: $9.4 \mathrm{GHz} ; W / \lambda=2.5,2 \alpha=50^{\circ}$

0	1.0	1.00	1.00	0.38
5	0.98	0.82	0.89	0.34
10	0.88	0.55	0.63	0.41
15	0.78	0.40	0.52	0.59
20	0.67	0.26	0.38	0.79
25	0.59	0.15	0.38	0.79
30	0.56	0.15	0.20	1.00
35	0.42	0.19	0.14	0.93
40	0.30	0.21	0.13	0.79
45	0.27	0.23	0.09	0.69
50	0.20	0.13	0.09	0.62
55	0.13	0.13	0.05	0.48
60	0.10	0.13	0.02	0.41
65	0.067	0.13	0.00	0.30
70	0.05	0.09	0.00	0.17
75	0.02	0.02	0.00	0.11
80	0.00	0.00	0.00	0.07
85	0.00	0.00	0.00	0.03
90	0.00	0.00	0.00	0.00

H-PIANE RADIATION PATTERNS OF E-PLANE SECTORAL HORNS

are invariably sharpened or focussed while at M-position the patterns are broadened or split up into major aide lobes. The extent to which this effect is observed is seen from tables 4.6 and 4.7 in which the half power beam widthe of the syetems are tsbulated.

4.4 Variation in VSWR for the Different Positions of the Flange System

The impedance conditions of the flanged sectoral horns are studied by observing the VSWR of the system. The horn under test is fitted at the and of the microwave test set up as shown in figure 3.a. The VSWR is measured with the horn. Keeping the flanges at the D-position and M-position, the obeervations are repeated. It is observed that the VSWR of the horn is not considerably affected by the flange systam. In some cases slight decrease in VSWR was observed when the flange is at O-position. This result holds for both H and Eaplane sectoral horns. These results are presented in the tabla 4.8.

4.5 Possibility of Beam Tilting_by_Asymmetry_Imposed on the Flange Systew.

a) Axis asymetry. In the earlier sections, the flanges used were all symmetric with respect to the horn radiator. But we may thing of impoeing asymetries on the system. For example, an axis asymmetry can be imposed by tilting the flange axis off the horn axis.
TABLE 4.6 Half power Beam Widths of the E-plane Patterns of H-plane Sectoral

Horns	$\begin{gathered} \text { Frequency } \\ \text { GHz } \end{gathered}$	Flange width ω / λ	Flange angle 2α	Half power beam width in the E-plane (deg) 			
H1	9.4	2	$40 \cdot$	80°	30	27	$90 *$
H1	9.4	3.7	$100{ }^{\circ}$	80°	46	28	$80 *$
H2	9.4	3.0	$10{ }^{\circ}$	92	66	40	$84 *$
H3	7.5	2.0	50°	98	69	47	73
H3	6.0	2.5	60°	128	58	20	75
H4	6.0	2	80°	90	48	19	64
H4	6.6	2	140°	84	52	20	55
H5	7.5	3.7	$120{ }^{\circ}$	88	63	29	108*

- Indicates that the beam is split. Beam width in this case is
taken as the sum of the half power beam widths of the lobes.
TABLE 4.7 Half-power Beam Width of H-plane Patterns of E-plans Sectoral

-Indicates that the beam is split. Beam width in this case is taken
as the sum of the half power beam widths of the lobes.

FIGURE 4-7
REPRFSENTATION OF A FLANGE SYSTEM WITH AXIS ASYMMETRY

(a)Shaped beam with symmetrical flange at O-position
(b) Flange axis tilted towards left
(c) Flange axis tilted towards right.

Abstract

Fig.4.7 shows the flange system with axis asymmetry. Let the angle between the two axes be Δ. The resultant beam-shape of this asymetric astem is investigated as follows.

The asymmetric system of the flange of elementa of the same material and of equal flange widtha, is moved to an optimum position as determined earlier. Using the eystem as a receiver of CW aignal frow a standard pyramidal horn, the radiation patterns are plotted. A eet of sample observatione is given in Table 4.9. For $\Delta=15^{\circ}$, 20° and 25° the radiation patterns teken in different caese are shown in figure 4.8.

It can be seen that the focussed beam is undergoing a definite tilt due to this asymmetry. It is intereeting to note that the resultant beam is effectively tilted towarde the flange axis from the horn axis.
b) Asymmetry_in flangewidth. Another type of aeymmetry which can be imposed on flange system is the width asymmetry. This meana that we are putting the flange elements of the eame material with different widtha, say W_{1} and W_{2}. The axis of the flange is mede to be the same es the horn axie. The optimum position for such a flenge astem is obtained from the data available with a flange system of mean width $W=\frac{W_{1}+W_{2}}{2}$. The rediation patterns correaponding to the optimum position are

Frequency used : 9.4 GHz					
				$v \quad \mathrm{~S}$	R
Horn	ω / λ	$\alpha^{2 \alpha}$	without flange	Flange at O-position	Flange at M-position
H1	2.5	45	1.41	1.30	1.57
H1	2.5	60	1.41	1.32	1.60
H2	3.5	90	1.45	1.38	1.52
H2	2.5	120	1.45	1.41	1.54
E1	2	60	1.237	1.265	1.296
E1	2.5	45	1.237	1.273	1.292
E2	2	30	1.40	1.41	1.46
E2	3	75	1.40	1.41	: 044

plotted. It is obsarved that the baam is undergoing a tilt by this asymetric flange also. For different values of $\left(W_{2}-W_{1}\right)$, the patterns are racorded. The mean width $\frac{\left({ }^{2} W_{1}+1 W_{2}\right)}{2}$ is kept constant through_out. The tilt of the beam is found to be towards the side of tha smaller flange element for maller values of $\left(W_{2}-W_{1}\right)$. But, as this quantity is increased the tilt becomes zero at some stage and then goes to the side of the longer element. The reault has been confirmed with results obtained for different horne and frequenciee. In figure 4.9 these patterns are hown.
c) Asymmetry in amplitude of excitation of the flange elements. If the flange elements are of differsint materials we get a flange system which may give secondary radiatore of unequal amplitudes. This also may be treated as a system with asymetry. The widtha of the elements will be the sama and its axis colinear with the horn axis. In the present investigation; on one side, flange element of aluminium is used, while on the other side, perspex element of the same width and thickness as that of the metal element is used. Keeping the flange at the O-position, the radiation pettern is plotted. The patterns thus obtained for different horns and flange parameters are shown in Figura 4.10. Table 4.10 gives observations taken for plotting a few such radiation patterns.

Horn H1:	Frequency 9.4 GHzs $Z=2 \mathrm{~cm}, 3 \mathrm{~cm}$.			
Power P_{0} (Galvanometer reading)				
ing angla $\Delta=15^{\circ}$ $\Delta=25^{\circ}$				
θ° Left Right Left Right				
0	38	38	54	54
5	90	6	79	33
10	90	4	102	36
15	104	14	98	70
20	117	25	78	145
25	96	23	68	128
30	34	31	47	80
35	10	29	35	88
40	19	20	28	100
45	34	16	26	100
50	45	10	24	64
55	23	5	19	30
60	21	0	19	17
65	21	0	17	22
70	10	0	16	15
75	5	0	10	15
80	5	0	8	10
85	0	0	2	7
90	0	0	0	0

TABLE 4.10 $\begin{gathered}\text { Measured Radiation Pattern with Flange } \\ \text { Element asymmetry (Amplitude asymmetry) }\end{gathered}$

Horn H1: Freq. $9.4 \mathrm{GHz} ; W / \lambda=2: 2 \alpha=60^{\circ}$

It can be observed that the tilt produced by this asymetry is towards the side containing the metal flange. This tilt is most significant for maller flanga angles.

From the foregoing section, it is evident that the flange astem is capable of shaping the beam from a sectoral electromagnetic horn antenna. The different parameters involved can be conveniently adjusted for controlling the beam hepe to any deaired pattern. A beam thus focussed can be even tilted to any side by imposing one or more asymmetric conditions on the system.

B. Resulte Obtained with Corner Reflector System

4.6. Variation of On-axis Powerwith Distance of the Primary Feed from the Apex of the Corner Reflector Sygtem.

In this case the primary feed is a half wave dipole fed through a co-axial cable, from a microwave source. The corner reflector system is simply two metalile sheets oriented at an angle 2α. The feed dipole is parallel to the apex-line of the corner reflector astem. Radiation patterns of such system have been thoroughly studied by many reeearch workers $40-46$. However aystematic study of the corner reflector syetem in comparison with the flanged sectoral horn has not yet been attempted.


```
Hence the present observations are taken in stap by step
procedure adopted for flanged sectoral horns.
```

The variation of the on-axis power with distance 's' of the primary feed is obtained by keeping a detector erystal at a point along the axis in the far field region. The distance 'S' is varied in regular steps and the variation of P., the on-axis power is noted. It is interesting to note that P. undergoes periodic variations giving distinct maximü and minimum on-axis power. These positions can be sasily obtained from the graph. Sample observations are given in Table 4.11. For various angles of the cornex reflector system these results have been verified. Figure 4.11 shows graphical representation of these results.

4.7 Variation of Radiation Patterns at Different Positions of the Primary Fesd.

The rapid variations in the on-axis power with
respect to the distance 'S! of the primary fesd is suggesting ths possibility of beam shaping as in the case of flanged sectoral horns. To test this conclusion. H-plane radiation pattarns of the corner reflector astem are taken for different values of 's'. These are presented in figure 4.12. Typical observations for plotting the radiation patterns are given in Table 4.12(a) and 4.12(b).

TABLE 4.12(a) Measured Radiation Patterns of Corner Reflector System

Frequency: 9.4 GHz; $2 \alpha=45^{\circ} ;$ Width $=3 \lambda$

RADIATION PATTERNS OF CORNER REELECTOR ANTENNAS AT DIFFERENT POSITIONS OE THE DIPOLE FEED
(a) Arbitrary position(Not corresponding to maxim minimum of on-axis po:ver)
(i) Optimum position of the feed
(c) Minimum position of the fead.

```
It can be seen that the radiation patterns are undergoing noticeable variations as 'S' is varied. At the optimum positions of the primary feed the radiation patterns are narrowed down with an effective focussing, while at M-positions the beams are broadened or split into major side lobes. The results are testified at different frequencies using a number of corner reflector systems of various parameters.
For a quantitative analysis the half power beam widths of the radiation patterns for different positions of the primary feed are tabulated. This is given in Table 4.12 (c).
```

```
4.8 Varigtions_in_VSWR at Different Positions_of_the
```

4.8 Varigtions_in_VSWR at Different Positions_of_the
Primary_Feed from the Apex of the Corner Reflector.
Primary_Feed from the Apex of the Corner Reflector.
Using a slotteci line and e tunable probe the VSWR of the corner reflector system is measured. The distancs 'S' is varied in regular steps and the corresponding VSWR is measured precisely. The variation of VSWR with 'S' is plotted and a few such graphs ars shown in Figure a.13. It can be seen that the VSWR is varisd considerably with distence 'S'. At certain positions the VSWR is minimum while at some other positions they are very high. The positions of minimum VSWR are indicating an improvement in the matehing condition while its increass

```

TABLE 4.12(c) HPBW of the Radiation Pattern of Corner Reflsctor System



FIGURE 4.13
VARIATIONS OF V.S.T.R WITH THE POSITION OF DIPOLE FEED

\begin{abstract}
indicates worsening of the same. It can be seen that a better matching of the system is corresponding to an optimum position of the primary feed giving a focussing of the beam.
\end{abstract}
4.9 Beam Tilting_by_Asymetric Corner Reflector System
a) Offaxis primary faed. The feed dipole
is slightly displaced from the axis of the corner refle-
ctor. The distance 'S' from the apex of the corner refle-
ctor is adjusted to corrsspond the value for the optimum
beam focussing. This is obtained from the earlier investi-
gation of the variation of the on-axis power. It hae been
observed that the resultant beam is tilted to the side
opposits to the side containing the primary radiator. A
few patterns taken with different corner reflector systems
are presented in figurs 4.14 .
b) Width asymmetry. It has been observed that the difference in widthe of the corner reflector element is also a cause for producing beam tilt. Keeping CR elements of varying widths, radiation patterns are plotted when the primary feed is kept at O-position for the on-axis power. The resultant radiation pattern is found to be tilts away from the axis towards the side containing the shorter element. As the CR angle is increased the tilt becomas more and mare insignificant as shown in the Figure 4.15. For greater values of \(\left(W_{2}-W_{1}\right)\) elso the beam tilt is not very significant.

(a) Primary feed in the axis of the CR system.
(b) Primary feed on the right side at an angle 4 of the \(C R\) axis
(c) Primary feed on the lect side at an angme \(\Delta\) of the \(C R\) axis.


> Corner reflacior
> \(2 \alpha 45 \mathrm{~d}, 9.4 \mathrm{CHz}\)
> \(\mathrm{W}_{1}: 2 \lambda ; \mathrm{w}_{2}: 3.5 \lambda\).
\(2 \alpha 60 \mathrm{O} ;\)
\(\mathrm{W}_{1}: 2 \lambda ; \mathrm{W}_{2}: 1 \lambda ;\)

20 90d; 9.4 Glz \(\mathrm{W}_{1}: 2 \lambda\); \(\mathrm{W}_{2}: 4.5 \lambda\)
2人: 90d 9.9 GHz \(W_{1}: 2 \lambda ; W_{2}: 5 \lambda\).
FIGURE 4-15
Beam tilting of Corner reflector antennas by reflector elements of different
widths.
(a)Symmetric flange of equal width \(W=\left(W_{1}+W_{2}\right) / 2\) on both side:
(b) Shorter element on left side.
(c) Shorter element on right side.


\begin{abstract}
c) Asymmetric reflector element. Keeping CR elements of different materials but of the aems thickness and widths another type of asymmetry can be imposed in the system. In the present investigation a perspex element of the same width and thickness as the aluminium element is used to make the asymetric slement. Here the conductivity and hence the reflectivity of the elementa for the electromagnetic waves will be different. The resultant beam shape of this complex system is studied by plotting the radiation patterns when the primary dipola feed is kept at the optimum position. It has bean observed that the beam is tilted towards the side containing the metal elemsit. The tiltsd radiation patterns of a few such asymmetric CR systemsare given in Figure 4.16.

The above experimental results obteined with flanged sectoral horns and corner raflector antennas show striking resemblances in many respects. An exhaustive comparative study of these resemblances is made in the next chapter.
\end{abstract}

\section*{CHAPTER V}

COMPARATIVE ANALYSIS OF THE EXPERIMENTAL RESULTS

\subsection*{5.1 Introduction}

This chapter extensively gives a comparative analysis of the results presented in the preceeding chapter. The flanged sectoral horns and the corner reflector systems are found to bs giving similar results in almost all aspects investigatsd in the present study. The varistion of the on-axie power with reepect to the position of the primary feed, changes in the radiation patterns with respect to the flanga or corner reflector parameters, changes in beam shape due to various asymmetries imposed on the system are all found to be identical. A systematic analysis of thsse similarities is presentsed in the following sections.
3. \(<\) Variation of On-axis Powsr with the Distanca of the Primary Feed from the Apex of the Flange or Corner Reflector_System.

From the results presented in sections 4.2 and 4.6 it can be seen that the on-axis power of the both flanged


FIGURE -5-1. A
COMPARISON BFTWEEN FLANGED SECTORAL HORNS AND
CORN:R RFFLECTOR SYSTEMS: VARIATTON OF' ON-AXIS POWER.


\begin{abstract}
sectoral horns and corner reflector syetems varies with the distance \(z\) or 5 , which is. the distance of the primary feed (aperture of the horn or the dipole, as the case may be) from the apex of the flange or corner reflector system. In both the cases, the on-axis power has sharp maxima and minima for distinct values of \(Z\) or \(S\). For two identicel systems operating at the same frequency, variation of onaxis power is compared. This is given in Figures 5.1 A and 5.1 B. For various horns and corner reflectors operating at different frequsncies, this has been verified as shown in the sets of graphs in the abovefigures. It can be seen that the positions of ths primary feed corresponding to maximum or minimum onaaxis power are almost identical under the same conditions for both flanged sectoral horns and corner reflector systems.
\end{abstract}

\subsection*{5.3 Variations in Radiation Patterns}

For symetric metallic flanges and corner reflector systems, variations effected in the radiation patterns by the changes in distance of the primary feed are compared for identical systems. Figure 5. 2 A represents radiation patterns of identical flange and CR eysteme for different values of '5'.

The general variations of patterns are the same in both the cases. For example, flange or acorer reflector of any angle kept at D-position (maximum on-


RADIATION PATTERNS


FIGURE 5-2•B.
COMPARISON BETWEEN THE RADIATION PATTERNS OF IDENTICAL FLANGED SECTORAL HORNS AND CORNER REFLEECTOR SYSTEMS: AT O-POSITIONS THF BEAMS ARF. SHARPENED AND AT M POSITIONS THEY ARE BROADENED OR SPLTTT INTO MAJOR STDE-LOBES.
```

axis power) will sharpen the radiation pattern. On the
other hand, if it is kept at M-position (minimum on-axis
power) bsam will be broadenad or split into prominent
sidelobes as shown in Figure 5.2 B. Comparison of radi-
ation patterns of the two systems having identical condi-
tions reveals this facts very clearly.
5.4(e) Beam Tilt by Flange or Corner Reflector Axis
Asymmetry.
The flanges on ths sectoral horns are adjustsd
such that tha axis of the flange system is different from
the horn axis. The radiation patterns of such a system
for flanges at D-position are plotted for various horns
and frequencies. These patterns are compared with the
patterns obtained using identical corner reflectors. A
comparative enalysis of the results is given in Figure 5.3.
It can be seen that the beam is undergoing a tilt
towards the axis of the flange or corner reflector systam.
Thus the behaviours of the flanges and the corner refle-
ctor system are similar in this aepects elso.
•
5.4(b) Width_Asymmetry.
Flange or corner feflector elements of unequal
widths make asymmetric systems. Here the unequal widths
of the elemente make the system uneven or asymmetrie. In
both the flange and corner reflector systems, the result-

```


FIGURE 5-3
BEAM TILT BY AXIS ASYMMETRY:(a) SVmmetric system; (b)Flange/CR axis tilted to right; (c) Flange/CR axis tilted to left.

ant beam is found to be tilted towards one side depending upon the mean difference \(\left(W_{2}-W_{1}\right)\) and the average width \(\left(\frac{W_{1}+W_{2}}{2}\right)\). In the flange system with moderate values of \(\left(W_{2}-W_{1}\right)\) the tilt is towards the side containing the emaller flange element. However, with increase in \(\left(W_{2}-W_{1}\right)\) the tilt becomes irreguler. For corner reflector syetsm for moderate values of \(\left(W_{2}-W_{1}\right)\) the \(t i l t\) is towards the side containing the smaller elements as in the case of the flange systeme This comparative analysis is presentsdin Figure 5.4.
5.4(c) Amplitude Asymmetry

The effects of dissimilar flange or corner reflector elements on either aidag of the primary radiator are investigated in section 4.5 c and 4.9c. This asymmetry is achieved by keeping a metal elament on one side and an equivalent (same width and thickness) element made of a different material (for example perapex) on the other side. The resultant beam at the optimum position of the primary feed is found to be tilted away from the common axis. The tilit is invariably towards ths side containing the matal element. This result is common for both the flanged sectoral horns and corner reflector systens as shown in Figure 5.5.

\subsection*{5.5 Conclusion}

The different aspects of the results obtained


FIGURE 5-5 BEAM TILTING OF FLANGED SECTORAL HORNS AND CORNER REFLECTORS BY AMPLITUDE ASYMIETRY
(a) Metal elements on both sides
(b) Metal element on the right side
(c) Metal element on the left side


A detailed study of the theoretical aspect of the two systems is given in the following chapter. The application of the corner reflector theory for the flanged horn antennas solves the problem of explaining the results available with E-plane sectoral horns.

\section*{CHAPTER VI}

\section*{THEORETICAL CONSIDERATIONS}

\subsection*{6.1 Introduction}

The possibility of modifying radiation patterns from sectoral horn antennas has been investigated by a number of research workers. The flange technique in its earlier form has been adopted with considerable success by Owen and Reynolds \({ }^{36}\), Butson and Thompson \({ }^{37}\). Nair and Srivastava \({ }^{38,39}\) and many others. Additional attempts by introducing more variable parameters into the system were also reported. In explaining these effects the "Line Source Theory" has been adopted. According to this theory the edges of the metallic flange elements act as secondary radiatore, while aperture of the sectoral horn is taken as arimary linear source. But this theory seems to be inadequate for explaining the effects of metal flanges on both \(E\) and H-plans horns. The line source thaory can be applied only to H-plane sectoral horns since the edges of the flange elements are parallel to the \(H\) vector which satisfies the condition for radiation. But for E-
```

plane sectoral horn this condition cannot be satisfied
and hence the effects of flanges on E-plane sectoral horn
remain unexplained. The present attempt is to corfolate
ths effects exhibited by the flanges both on }H\mathrm{ and E-
plane sectoral horns with the corner reflector theory.
The consistence of the experimental results in the two
systams has already been pointed out in the previous
chapters.
6.2. Theory of the Flanged Sectoral Horns
a) Line Source Theory
b) Modified Line Source Theory.
a) Line Source Theory. According to the suggestion made by Owen and Reynolde the two edges of the conducting flange can be considered as two secondary radiators while the aperture of the horn may be taken as arimary radiator. The expression for the power p_{θ} at any point making an angle θ with the horn axis is derived as follows
Let S be this primary radiator and S_{1} and S_{2} the two secondary radiators. The angle subtended by S_{1} and S_{2} at S be 2α - As given in Figure 6.1(a) P is a point in the far field corresponding to bearing angle Assuming that the intensity of field from the primary as unity, K is taken as the amplitude of the field at p due to each of the secondary radiatore.

```

\section*{cation}

S

(a) Representation of Primary and

(b) Vector diagram of fields at \(P\).

FIGURE 6-1.
Representation of primary and secondary sources

 primary.
\(\varphi=\) the phase difference of each secondary cadiastor with respect to the primary due to the path \(\frac{8}{2}\), ie.
\(\varphi=\frac{\pi}{\lambda} \quad\) which is a constant. \(\Omega_{1}=\) net phase change of the field at \(p\) due to \(S_{1}\), relative to the primary.
\(\Omega_{2}=\) net phase change of the field at \(p\) due to \(S_{2}\), relative to the primary.
\(\varepsilon_{1}=\) phase difference of the radiator from \(S_{1}\) due to the difference in path affected at \(p\)
ie. \(\quad \varepsilon_{1}=\frac{\pi B}{\lambda} \cos (\alpha-\theta)\)
similarly \(\varepsilon_{2}=\frac{\Pi B}{\lambda} \cos (\alpha+\theta)\)
so that
\[
\begin{align*}
& \varepsilon_{2}-\varepsilon_{1}=\frac{2 \pi_{B}}{\lambda} \sin \alpha \sin \theta  \tag{6.3}\\
& \varepsilon_{2}+\varepsilon_{1}=\frac{2 \pi B}{\lambda} \cos \alpha \cos \theta
\end{align*}
\]

The corresponding vector diagram of field
reaching \(P\) can be represented as shown in Figure 6.1.(b). The resultant amplitude of the two secondary radiators is given by
\(|R|^{2}=K^{2}+K^{2}+2 K^{2} \cos \left(\Omega_{2}-\Omega_{1}\right)\)
But \(\quad \Omega_{2}-\Omega_{1}=\varepsilon_{2}-\varepsilon_{1}\)
\(\therefore|R|^{2}=4 k^{2} \cos ^{2}\left(\frac{\varepsilon_{2}-\varepsilon_{1}}{2}\right)\)
therefore
\(|R|=2 K \cos \left(\frac{\pi B}{\lambda} \sin \alpha \sin \theta\right)\)
The resultant amplitude of the field at \(P\) due to the primary end the two secondary radiators is given by \(\quad \sqrt{\left|P_{\theta}\right|}\)
1.e. \(\left|P_{\theta}\right|=1^{2}+|R|^{2}+2|R| \cos \left(\frac{\varepsilon_{2}+\varepsilon_{1}}{2}-\varphi\right)\) substituting the values of \(|R|\) and \(\varepsilon_{2}+\varepsilon_{1}\) we get
\(\left|P_{\theta}\right|=1+4 K \cos \left(\frac{\pi B}{\lambda} \sin \alpha \sin \theta\right)\)
\[
\left.\begin{array}{rl}
\times\{\cos & \left.\left[\frac{\pi B}{\lambda} \cos \alpha \cos \theta\right)+\varphi\right] \\
& +K \cos \left(\frac{\pi B}{\lambda} \sin \alpha \sin \theta\right)
\end{array}\right\}
\]
which is the power delivered by the flanged horn antenna at a point \(P\) making an angle \(\theta\) with the horn axis.
b) Modified Line Source Theory. In the line source theory presented above, the aperture of the horn is taken as a linear source. This approximation is not true especially in the case of Enplane sectoral horns. Hence a modified theory is attempted for. Here we consider the aperture of the horn as area through which electromagnetic energy is radiated. Let \(E_{\text {, }}\) be the mean amplitude of
excitation existing at the aperture. In the far field the intensity at a point is given by Jordan \({ }^{48}\) es
\[
\begin{equation*}
E_{0}=\left(\frac{E_{0} A_{E} A_{H}}{2 \lambda_{5}} \frac{(\sin \mu)}{u}(1+\cos \theta) \operatorname{Exp}(-j \beta x)\right. \tag{6.7}
\end{equation*}
\]
```

where λ the free apace wavelength of radiation
Σ = distance of point ' M^{\prime} from the antenna
Byotom。
$P=\frac{2 \pi}{\lambda}$
$u=\left(A_{E} \operatorname{ein} \theta / \lambda\right)$

```
    \(A_{E} \cdot A_{H}\) widths of the aperture in the \(E\) and H-planes
        respectively
and \(E_{\text {. }}\) field exieting at the aperture of thentenna.
putting E. = 1 . the above equation can be written as


The resultant field at \(M\) (figure 6.2) due to the two secondary sodiators, each having on amplitude \(K\) and phase difference \(\left(\frac{\pi B}{\lambda}\right)\) ia given by Nair et.at \({ }^{38}\) as
\[
E_{f} \quad=2 K \cos (\hat{P} / 2) \text {. }
\]
- -2 ation

FIGURE 6-2
Primary and Secondary radiators in
Flanged Sectoral Horns.
where \(\hat{\mathrm{P}}=\mathrm{BAC}=\left(\varphi_{1}-\varphi_{2}\right)+\left(\varphi_{1}^{\prime}-\varphi_{2}^{\prime}\right)\)
\(\varphi_{1}, \varphi_{2}, \varphi_{1}^{\prime}\) and \(\varphi_{2}^{\prime}\) are the angles defined as in the above reference.

Eq when expressed in the complex form is
\[
E_{f}=\left|E_{f}\right| \exp (-j \beta x)=(2 K \cos \hat{p} / 2)
\]
\[
\begin{equation*}
x \exp (-j \beta r) \tag{6.9}
\end{equation*}
\]

If \(E\) is the resultant field st \(M\) due to both \(E_{a}\) and \(E_{f}\)
then \(E=\left|E_{a}\right|+\left|E_{f}\right|\)
Adding them as phasors we may write
\[
\begin{equation*}
E=\left[\left|E_{a}\right|^{2}+\left|E_{f}\right|^{2}+2\left|E_{a}\right| \cdot\left|E_{f}\right| \cos \left(E_{2}-\varepsilon_{1}\right)\right]^{1 / 2} \tag{6.10}
\end{equation*}
\]
where \(\varepsilon_{1}=(\pi / 2-\beta\) r)
and \(\varepsilon_{2}=-\beta r\).
so that \(\left(\varepsilon_{2}-\varepsilon_{1}\right)=\pi / 2\)
therefore \(E=\left[\left|E_{a}\right|^{2}+\left|E_{f}\right|^{2}\right]^{1 / 2}\)
Hence the power at the point \(M\) may be written as
\[
\begin{equation*}
P_{\theta}=\left|E_{a}\right|^{2}+\left|E_{f}\right|^{2} \tag{6.12}
\end{equation*}
\]

Therefore the resultant E-plane power pattern of the horn with the double secondary antenna system can be written as
\[
\begin{array}{r}
\hat{P}_{\theta}=[2 K \cos (\hat{P} / 2)]^{2}+\left[\frac{A_{E} A_{H} \sin \left(\pi A_{E} \sin \theta / \lambda\right)}{2 \lambda x\left(\pi A_{E} \sin \theta / \lambda\right)}\right. \\
\times(1+\cos \theta)]^{2} \tag{6.13}
\end{array}
\]

The values of \(\hat{P}\) may be substituted depending upon the nature of flange systam. For a symetric flange system kept at the apertura, \(\hat{p}=\frac{\left(\frac{2 \pi B)}{\lambda} \sin \alpha \sin \theta\right.}{}\) as given by Nair et.al. \({ }^{38}\) and in which case eq.(6.13) way be written as
\(P_{\theta}=\left[2 K \cos \left(\frac{\pi B}{\lambda} \sin \alpha \sin \theta\right)\right]^{2}+\left[\frac{A_{E} A_{H} \sin \left(\pi A_{E} \sin \theta /\right.}{2 \lambda_{r}\left(\pi A_{E} \sin \theta / \lambda\right.}\right.\)
\[
\begin{equation*}
x(1+\cos \theta)]^{2} \tag{6.14}
\end{equation*}
\]

This may be taken as more appropriata sxprassion for the radiation patterns of flanged horn antanna system, since ws have not made any oter simplified assumption that the primary aperture is a linear source. Computations of radiation patterns on the basis of this theory revealed more closeness with experimental results.

However, oven this modification is not suitable for E-plane sectoral horns, since orientation of field vectors with respect to the edges of the flange element is not congenial for electromagentic radiation. Let us now see the possibility of applying the corner reflector theory to this probelm.

\subsection*{6.3 Thsory of the Corner Reflector Antenna}

From the assumption that the reflecting planes are perfectly conducting and infinita in extent and by using the method of images, Kraus \({ }^{40}\) derived expressions for gain and directional patterns of corner reflector antennas. Kraus showed that very small spacing of the driven radiator from the apex of the corner reflectors will adversely affect the gain of the systems. The spacing will have an upper limit also, above which the beam splits up to sidelobes. Thus the gain and directional patterns of the system can be conveniently adjusted by varying the apacing 's' or the corner reflector angle \(2 \alpha\) or both.

Later investigation by Moullin \({ }^{47}\) gave more theoretical background and design data of corner reflector antennas. Following again the method of images, he proved that the directional pattern of a \(C R\) sysem can be expressed in the form of aseries of Bessel functions ass
\[
\begin{gather*}
\frac{E_{0}}{E_{0}}=4 n(-1)^{n / 2}\left[J_{n}(K) \cos n \theta+J_{3 n}(K) \cos 3 n \theta+\right. \\
J_{5 n}(K) \cos 5 n \theta+\ldots \tag{6.15}
\end{gather*}
\]
when \(n\) is even and
\[
\begin{align*}
& \frac{E_{0}}{E_{0}}=4 n j(-1) \frac{(n-1)}{2}\left[J_{n}(K) \cos n \theta-J_{3 n}(K) \cos 3 n \theta+\right. \\
&\left.J_{5 n}(K) \cos 5 n \theta-\cdots \cdot\right] \tag{6.16}
\end{align*}
\]
when \(n\) is odd. Here
\(E\) - electric field at any point with bearing angle \(\theta\),
\(E_{0}=\) maximum slectric field,
\(n=\pi / 2 \alpha\). where \(2 \alpha=\) corner angle,
\(K=v e c t o r\) distance \(=2 \pi 5 / \lambda\), where 5 is the distance of the driven linear radiator from the apex and \(\lambda\) the wavelength of radiation
\(j\) - complex quantity \(\sqrt{-1}\) and
\(J\) - Bessel function of the order indicated by the suffix and argument shown in brackets.

It is seen that the expressions (6.15) and (6.16) are valid only when a system of perfect images exists, i.e. only when \(n\) is an integer. If this condition is not satisfied, sufficient number of terms of the infinite series must be added in the expression given by
\[
\begin{array}{r}
\frac{E_{0}}{E_{0}=4 n\left[\operatorname{Exp}(n j \pi / 2) J_{n}(K) \cos n \theta+\right.} \\
\left.\operatorname{Exp}(3 n j \pi / 2) J_{3 n}(K) \cos 3 n+\cdots\right] \tag{6.17}
\end{array}
\]
For these frarctional \(n\) values, there will be two field
components with 900 phase variations. No values of \(K\)
will make the forward field zero. For all values of \(n\),
the axial field fluctuates periodically as \(K\) is continueusly
incresed.

\section*{--127}

\begin{abstract}
In the present study, identicel flenges and corner reflector systems are taken for experimental investigation. For exampla, for a flanged sectoral horn, a flange or included engle \(60^{\circ}\) is taken. To find the effect of corner reflectors, conducting elements of the same width and engle are used. Experimental results with respect to on-axis power and radiation patterns are then comparad. As already pointed out, there were striking resemblances in all the aspects and hence we may conclude that the behaviour of the metallic flanges on corner reflectors is similer to, or the same as, the corner reflector system. Here again the primary aperture of the horn is behaving as a linear radiator kept within the corner reflector elements. In many similar casea thea patterna are compared. As shown in Figures 5.2 to 5.5, we can see that they all are giving conclusive proof for this deduction.
\end{abstract}

The variation of on-axis power with respect to the distance 'S' it can be obtained by solving equetion (6.17). From a recent computation by Proctori \({ }^{46}\), distances of the primary feed from the apex of the corner reflector systems giving maximum and minimum on-axis power values are obtained. These are compared with corresponding values of \(Z\), experimently obtained for flangad sectoral horns. In table 6.1. this quantitative analysis' is shown, giving theoretical values of 'S' and experimental
TABLE 6.1 Comparieon botween Theorotical and Experimental valume of 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Horn & Freq. GHz. & \[
\begin{gathered}
\text { CR/Flange } \\
\text { anglo } \\
2 \alpha
\end{gathered}
\] & \multicolumn{4}{|l|}{Dietance of the primary feed from the apoal in \(\lambda\)
CORNER REFLECTOR
(Theorntical valuna) (FLANGED HORN
Optimum Minimum} \\
\hline 1 & H1 & 9.4 & \(45^{\circ}\) & 0.85 & 0.12** & 1.00 & 1.6 \\
\hline 2 & E 1 & 9.4 & \(60^{\circ}\) & 0.60 & \[
\begin{aligned}
& 1.58 * * \\
& 0.00 \% *
\end{aligned}
\] & 0.61 & . 1.1 \\
\hline & & & & & 1.00** & & \\
\hline 3 & H2 & 9.4 & \(90^{\circ}\) & 0.5 & \[
\begin{aligned}
& 0.00 \% \\
& 1.00 \%
\end{aligned}
\] & 0.53 & 1.1 \\
\hline 4 & H4 & 7.5 & \(180^{\circ}\) & 0.75 & \[
\begin{aligned}
& 0.50 e 日 \\
& 1.00 e 日
\end{aligned}
\] & 0.70 & 1.2 \\
\hline
\end{tabular}
- From Proctor \({ }^{46}\) and Moullin \({ }^{47}\)
- Both values are probable according to computed graphe.




\(\rightarrow Z / \lambda\)
FIGURE 6.3
Variation of on-axis power of flanced sectoral horns Corner reflector theory.

\begin{abstract}
values of \(Z\), for optimum and minimum on-axis powsr. We can see that the experimental values are very close to the theoretical values obtained from the corner reflector theary. Figure 6.3 piesents aset of these theoretical and experimental values. As far as the radiation patterns are concerned, sharpening and broadening of the patterns are effected by flanges or cornar reflector systems in the same manner. If the spacing bstween the apex and the driven radiator is corresponding to maximum of the on-exis power the beam will be sharpened. On the other hand, the beam will be split or brnadened if the spacing corresponds to a minimum of on-axis power. This aspect has been vesified by experiments and the results were presented in Chapter V.

The asymmetries which are causing beam tilt in the flangad eectoral horns can be explained on the basis of the line source theory. If \(W_{1}\) and \(W_{2}\) are the widths of the plange elements on the two sides, the resultent pattern can be derived, using the method given by Koshy at.a149
\end{abstract}
```

Figure 6.4 represents a sectoral horn fitted with an asymmetric flange system. As the flange is moved back from the aperture D to some arbitrary position 0^{\prime} through a distance Z, the secondary radiators taka positions $S_{1}{ }^{\prime}$ and S_{2}^{\prime}. The phases of excitation of S_{1} and S_{2} with respect to the primary are

```


FIGURE 6-4
Representasion of Flanged sectoral horn with asy:nmetric flange system.
\[
\begin{align*}
& \varphi_{1}=(2 \pi / \lambda)\left(w_{1}^{2}+z^{2}-2 w_{1} z \cos \alpha\right)^{y_{2}}  \tag{6.18}\\
& \varphi_{2}=(2 \pi / \lambda)\left(w_{2}^{2}+z^{2}-2 w_{2} z \cos \alpha\right)^{y_{2}} \tag{6.19}
\end{align*}
\]

For a distant point \(M\) in space with bearing angle \(\theta\) there is additional phase difference \(\varphi_{1}^{\prime}\) between \(S_{1}\) and the primary due to unequal paths.
\[
\begin{align*}
\varphi= & (2 \pi / \lambda) \operatorname{SS}_{1}\left[\cos (\alpha-\theta) \cos \delta_{1}-\sin (\alpha-\theta)\right. \\
& \left.x \sin \delta_{1}\right] \tag{6.20}
\end{align*}
\]

But
\[
\begin{aligned}
& \cos \delta_{1}=\left(w_{1}-2 \cos \alpha\right) / 0 s_{1} \\
& \sin \delta_{1}=z \sin \alpha / 0 s_{1}
\end{aligned}
\]

Therefore
\[
\begin{gather*}
\varphi_{1}^{\prime}=(2 \pi / \lambda)\left(w_{1}-z \cos \alpha\right) \cos (\alpha-\theta)- \\
2 \sin \alpha \sin (\alpha-\theta) \tag{6.21}
\end{gather*}
\]

The phase difference at \(M\) between \(S_{2}\) and the primary is given by
\[
\begin{gather*}
\varphi_{2}^{\prime}=(2 \pi / \lambda) \quad\left(w_{2}-z \cos \alpha\right) \cos (\alpha+\theta)- \\
z \sin \alpha \sin (\alpha+\theta) \tag{6.22}
\end{gather*}
\]

Figure 6.5 shows the vector represtation of the flanged system. \(O A, A C\) and \(A B\) ars the field vectors at \(M\) due to the primary and secondery sources \(S_{1}\) and \(S_{2}\) respactively. The resultant field \(R\) due to \(S_{1}\) and \(S_{2}\) is given by
\[
\begin{equation*}
R=2 K \cos y_{2}\left(\varphi_{1}-\varphi_{2}+\varphi_{1}^{\prime}-\varphi_{2}^{\prime}\right) \tag{6.23}
\end{equation*}
\]

The resultant power \(P_{\theta}\) at \(M\) is given by
\(P_{\theta}=O D^{2}=1+R^{2}-2 R \cos O \hat{A D}\)
and \(\hat{O A D}=\pi-y_{2}\left(\varphi_{1}+\varphi_{2}+\varphi_{1}^{\prime}+\varphi_{2}^{\prime}\right)\)
Therefore
\(P_{\theta}=1+R^{2}+2 R \cos y_{2}\left(\varphi_{1}+\varphi_{2}+\varphi_{1}^{\prime}+\varphi_{2}^{\prime}\right)\)

Here it is assumed that the antenna aperture acts as a line source of amplitude unity and the edges of the flange elements as two secondary sources excited to an amplitude \(K\). Substituting and rearranging equation (6.24) the expression \(P_{\theta}\) is obteined in terms of \(\lambda, W_{1}, W_{2}, Z, \alpha\) and \(\theta\). If the flange axis is turned through an angle from the horn axis, the flange axis becomes the axis of reference and the bearing angle is \((\theta+\Delta)\). \(P_{\theta}\) for such on asymmetric system is obtained by replacing the \(\theta\) terms with ( \(\theta+\Delta\) ) in the expression (6.24). Thus the most general expression for \(P_{\theta}\) is obtained as


FIGURE 6-5
Vector diagram of fiolds due to a
- flanoed sectoral horn.
\[
\begin{array}{rl}
p & 1+\left\{4 k \operatorname { c o s } ( \pi / \lambda ) \left[\left(w_{1}^{2}+z^{2}-2 w_{1} z \cos \alpha\right)^{y_{2}}\right.\right. \\
& -\left(w_{2}^{2}+z^{2}-2 w_{2} z \cos \alpha\right)^{y_{2}} \\
& +\left(w_{1}-w_{2}\right) \cos \alpha \cos (\theta+\Delta) \\
& \left.\left.+\left(w_{1}+w_{2}\right) \sin \alpha \sin (\theta+\Delta)\right]\right\} \\
& \times\left\{k \operatorname { c o s } ( \pi / \lambda ) \left[\left(w_{1}^{2}+z^{2}-2 w_{1} z \cos \alpha\right)^{y_{2}}\right.\right. \\
& -\left(w_{2}^{2}+z^{2}-2 w_{2} z \cos \alpha\right)^{y_{2}} \\
& +\left(w_{1}-w_{2}\right) \cos \alpha \cos (\theta+\Delta) \\
& \left.+\left(w_{1}+w_{2}\right) \sin \alpha \sin (\theta+\Delta)\right] \\
& +\cos (\pi / \lambda)\left(w_{1}^{2}+z^{2}-2 w_{1} z \cos \alpha\right)^{y_{2}} \\
& +\left(w_{2}^{2}+z^{2}-2 w_{2} z \cos \alpha\right)^{y_{2}} \\
& +\left(w_{1}+w_{2}\right) \cos \alpha \cos (\theta+\Delta) \\
& \left.\left.+\left(w_{1}-w_{2}\right) \sin \alpha \sin (\theta+\Delta)-2 z \cos (\theta+\Delta)\right]\right\}
\end{array}
\]

In actual calculations this expression has to be multiplied with an overall obliquity factor ( \(1+\cos \theta\) ) .

\section*{By introducing different conditions in various} cases, variation of on-axis power, beam shaping of radiation patterns and beam tilting by different types of asymmetries can be effectively explained. If the flange elements have equal widths ie. \(W_{1}=W_{2}=W\) the above equation becomes
\[
\begin{aligned}
& P_{\theta}=1+\left\{4 k \cos \left[\left(\frac{2 \pi w}{\lambda}\right) \sin \alpha \sin (\theta+\Delta)\right]\right\} \\
& \times\left\{k \cos \left[\left(\frac{2 \pi w}{\lambda}\right) \sin \alpha \sin (\theta+\Delta)\right]\right. \\
& \cos (2 \pi / \lambda)\left[\left(w^{2}+z^{2}-2 w 2 \cos \alpha\right)^{y_{2}}\right. \\
&w \cos \alpha \cos (\theta+\Delta)-z \cos (\theta+\Delta)]\}
\end{aligned}
\]

To get the expression for the variation of on-axis power \(P_{0}\) with the position \(Z\) of the flange, put \(\theta \neq 0\) and \(\Delta=0\)
\[
\therefore p_{0}=1+4 k^{2}+4 k \cos (2 \pi / \lambda)
\]
\[
\begin{equation*}
x\left[\left(w^{2}+z^{2}-2 w 2 \cos \alpha\right)^{1 / 2}+w \cos \alpha-z\right] \tag{6.27}
\end{equation*}
\]

This is same as the equation derived by Nair et. al. \({ }^{38}\)
Thus, from the analysis of the general expression the following conclusions can be drawn.
a) Variation of on-axis power \(p_{0}\) with the position of flange

The positions of maxima and minima can ba evaluate from the above equation. For simplicity, let us take the included angle equal to 180\%. Then the above equation is reduced to
\(P_{0}=1+4 k^{2}+4 k \cos \left(\frac{\pi B}{\lambda}-\frac{2 \pi Z}{\lambda}\right)\)
But \(\frac{B}{2}=\sqrt{w^{2}+z^{2}}\)
\(P_{0}=1+4 k^{2}+4 k \cos \left[\frac{2 \pi}{\lambda}\left(w^{2}+z^{2}\right)^{1 / 2}-\right.\)
\[
\begin{equation*}
\left.\frac{2 \pi z}{\lambda}\right] \tag{6.28}
\end{equation*}
\]

Thus it is seen that \(P_{0}\) varies sinusoidally about \(P\) as \(Z\) is changed. The maxima and minima are obtained when \(\frac{2 \pi}{\lambda}\left(w^{2}+z^{2}\right)^{1 / 2}-\frac{2 \pi z}{\lambda}\) is \(2 n \pi\) and \((2 n+1) \pi\). respectively, where \(n\) is any integer including zero.

From the above equation the theoretical value of 2 giving maximum and minimum on-axis power are calculated.

The distance \(Z_{0}\) of the flange from the aperture for the optimum position is
\(\frac{2 \pi}{\lambda}\left(w^{2}+z_{0}^{2}\right)^{1 / 2}-\frac{2 \pi z}{\lambda}=2 n \pi\)
\(\therefore z_{0}=\frac{w^{2}}{2 n}-\frac{n}{2}\)
Similarly for the minimum values of \(P_{0}\)
\(z_{m}=\frac{w^{2}}{(2 n+1) \lambda}-\frac{(2 n+1) \lambda}{4}\)
Values of \(Z\) giving different order maxima and minima are given in Table 6.2. Table 6.3 is giving theoretical and experimental value of \(Z_{o}\) and \(Z_{m}\) for different values of \(n\).
TABLE 6.2 Valuea of 2 for differant order Maxime and Minima in terms of
2
2
\(u\)
- \(n=m\)

The experimental valuee given in the above tabla are thoee of tho H-plana sectorml horne. In the cwee of E-plana eectoral horne the valuee of \(Z_{m}\) and \(Z_{0}\) obtained from axperiment are found to be much differant from the theoretical velues thus predicted. Ae the \(H\) vector is perpendiculer to the edgee of the flange elemente the eesumption of the eecondary sourcee at theee positione ia not velid according to Buteon end Thompeon \({ }^{37}\). This disparity in the case of E-plene eectoral horns can be solved if we adopt the corner reflector theory basad on the method of imagee. Ae own earlier in Chapter \(V\) the corner reflector theory givee better reeulte in the case of both E-plane and H-plene eactoral horns. Thie is evidont from the graphs presented in figuree 3.1 and 6.3.

\begin{abstract}
Howevar the 1 ine source thaery is capable of explaining the observed phenomena in flanged Hoplene sectoral harne to considerable sxtent. The experimentel patterns for the sactoral horns with flangee et the eperture, st O-position and M-positon are givan in Figures \(66(A)\) and 6.6(B). (The experimentel petterne in these piguree are repeeduced from Figures 4.5 end 4.6). By eubstituting for 2 - 0 for the aperture position, \(z=z_{0}\) for optimum pooition and \(Z=Z_{m}\) for the minimum position, the corresponding rediation patterns are computed. These are ehown in the figure in green lines.
\end{abstract}


Flange at the Anerture of the Horn \(Z=0\)


Flange at the OaPosition. \(Z=Z\) 。


Flange at the M-Position.
\(Z=Z_{m}\)

FIGURE 6-6 A.


A comparative study of the Line-Source theory and Corner Reflector theory applied to flanged Sectoral Horn Antennas.
a.Natural patterns of the horns; b.Patterns with flange at the aperture; \(c . P a t t e r n s\) with flange at O-position; d.Patterns with flange at M-position.

Experimental Patterns; using Line Source Theory;
_ Theoretical patterns comput Theoretical patterns computed using Corner reflector theory.
TABLE 6.3 For faw flangee of included angle \(2 \alpha=180^{\circ}\), tha thsoretical


It cen be seen that the experimentel rediation patterns are very close to the theoretical patterns on line source theory far the Hoplane sectorsl horns. But the patterns differ enoxmoualy in the case of E-plane enctorel horns.

A plot of the radiation patterne for the \(E\) same flanged horne evaluated on the basis of cornor reflector theory using equation (6.17) is ehown es red linas in the grapha in Figuras \(6.6(A)\) end \(6.6(B)\). We can sae that thase theoretical puttarns ara very close to the experimentel patterns obteined for both \(H\) and E-plane secteral horns. Hencs we may conclude undoubtedly that the corner reflector theory is most appropriate to axplain the effect of metel plangee on actoral horns.

However, the corner reflector theory ie not suituble to explain the obeerved bean tilting effecte by eeymmetric flange or corner reflector system. Ae pointed out ancliex, the geomatry of the corner reflector syetem damande the faed antonna to be at the biaector of the ongle formed by the refiector elements. Ae this condition will be violated by the asmmetric excitation the corner reflector theory aeame to be inadequate to explain the coneequent beam tilting. It may be noted that en extension of the line eouree theory can be used to explain these beam tiliting effecte with considerable succees.

\section*{- -144 -}

\begin{abstract}
6.4 Conciuaion

For aymetrie syetame of flangad \(E\) and M-plano aectorel horne the corner raflactor theory le most eulteble to explain the beam eheping. The difficulty in oxplaining the reaulte with E-plane esctoral horns is thue eolved by this uniform thsory. However the effects shown by asymetric flange systome are not explainable by the corner raflector approech. In euch caee wo may have to stick on the line souree theory a indiceted bove.
\end{abstract}

\section*{CONCLUSIONS}

\subsection*{7.1 Introduction}

\begin{abstract}
From the exhaustive experimental and theoretical study pressented in tha previous chapters, few interesting conclusions ars drawn and these ars presented in this chapter. The significance of these conclusions is of great importance in antenne fesd systems in which a sectoral horn is used as the primary feed. The primary radiation patterns can be conveniently shaped by the corner reflector technique.

For a symmetrical flanged sectoral horn antenna the corner reflector analogy is most suiteble. The two flange elsments act aa reflecting elements casting images of the primary. The resultent beam pattern will depend upon the position of the primary feed from the apex, and the included angle.
\end{abstract}

Tha importance of this conclusion is that it
provides an easier explanation for the behaviour of both \(H\) and E-plane sectoral horns. The line sourcs theory
which was originally used te explain the results obtained with flanged H-plane sectoral horne was not capable of explaining the bahaviour of flanged E-plane sectoral horns. But the corner reflector theory is applicable for both types of the sectoral horne. Hence this approximation can be taken as solution for the hitherto unexplained results available in the case of E-plans sectoral horns.

The beam tilting exhibited by flanged sectoral
horns due to asymmetric excitation is finding essier explanation in the line source theory. The very definition of corner reflector demande arimary feed along the bisector of the corner angle and the consequent formation of images. Hence the results obtained with asymmetric systems are explainable with the line source theory only. However further attempts can be made to modify corner reflector theory to incorporate these asymetric parameters.

\section*{7. 2 Importance of the Work}

Beam shaping of the primary horn radiation by the Corner reflector technique is of importance in many ways. Proper aligning of arimary feed horn with large secondary reflector antenna is painstaking job for antenna experts. But a corner reflector fitted on the horn has a number of parameters which are variable to obtain the desired alignmant.
```

Impedance matehing for the complex system of a primary feed and a secondery reflector can also be achi-

```

\begin{abstract}
eved by corner reflector technique. The axial flow of energy in the horn can be minimised by the flange parameters. This results in minimum reflection back to the horn from the reflector and the consequent reduction in VSWR. Preliminary observations in this aspect proved that this is possible to considerable extent.
\end{abstract}

Even when the horn is used as the main radiator in mall radar and navigational aid, the corner reflector technique cen be used for effective beam shaping.

\subsection*{7.3 Scope for further work}

The investigation presented in this thesis offers much scope for further work in this field. Some of the problems which are considered and subjected to preliminary investigation have already been mentioned. The following is a brief description of the problems connected with this atudy for further investigation in the fiald.
a) The effect of beam shaping of primary horn feed due to corner reflector technique on secondary reflector antennea is a problem which requires further elaborate study. When the sectoral horn is used as a primary feed, the corner reflector fitted on it can change the beam shape. How this primary beam variation is affecting the resultant beam from the secondary reflector (which is usually a paraboloid) has not been investigated. It is pre-

\begin{abstract}
sumed that the resultant beam shape will change in accordance with the primary beam variation. Some preliminary observetions in this regard are presented in Appendix \(A_{2}{ }^{\circ}\)
\end{abstract}
b) The impedance matching between a secondary reflector and the primary horn feed is another subject of study. The reflected energy, from the secondary radiatora in to the primary horn, primarily depenfor on the beam shape of the horn. Since this beam shape can be altered by the corner reflector fitted on the horn, the reflection from the secondary radiator and hence the VSWR can be considerably decreased. This will result in better impedance matching.
c) As pointed out earlier, the corner reflector theory seeme to be inadequate to explain the effects shown by asymmetric systems. A theoretical study in this respect can be pursued to modify the corner reflector theory to incorporate the asymetric parameters.
d) The effect of the corrugated corner reflector elemente has not been investigated. In such systems we get additionsl parameters like depth of corrugation, width and thicknees of walle. The effect of these parameters together with that due to other parameters like length, angle, and position of the primary feed can be investigeted in detail. Considering the importance of corrugated metal conductors in surface weve propagation, this will be a sudy of significant importance.

\section*{APPENDICES}
1. Beam Shaping of Sectoral Horn Antennas by Compound Flange System.
2. Effect of Planged Sectoral Horn Primary Feeds on the Radiation Patterns of Secondary Refiector Antennas.

\section*{APPENDIX \(A_{1}\)}

\section*{BEAM SHAPING OF SECTORAL HORN ANTENNAS BY COMPOUND FLANGE SYSTEM*}
```

Abstract: Flanges with different amplitudes of excitation are named as compound flanges. These planges are found to be effective in modifying the radiation patterns of sectoral horn antsnna. Dielectric flanges are functioning in the same way as that of metallic flanges having the same parameters. A compound flange system with a metallic slement on one side and a dielectric one on tha other side is observed to have a very aignificant tilting effect on the beam. Relevant radiation patterns are presanted and a theoretical explanation is given.

```
1. Introduction

The effect of metal flanges on radiation patterns
is a subject of interest in telecommunication field. Nair and Srivastava \({ }^{56}\) and Nair at.al. \({ }^{36}\) pointed out that the radiation patterns of a sectoral horn can be shaped according to one's desire. Butson and Thompson \({ }^{37}\) studied the

\footnotetext{
Published as a peper in Indian J. Radio Space Phys. Vol 5 Sept. 1976. pp 254-256.
}
effect of flange length and flange angle. It has been pointed out that the axis asymmetry and width asymmetry can produce beam tilt. Another type of asymmetry namely amplitude asymmetry has been suggested by Koshy et.el. 39 The two secondary radiators formed by the edges of flanges will have different amplitudes of axcitation if they are of different materials. This suggestion has been taken up for the present investigation.

\section*{2. Experimental Setup and Techniques}

The method of measurements is the same as described by Nair and Srivastava \({ }^{56}\). The flange system consists of a rectangular frame to which the flange elements can be conveniently attached. Provisions are made to vary the flange width and flange angle. As dielectric elements perspeet plates of thickness 0.1 cm . were used while aluminium plates of same thickness were used as the metal elements. Figure 1 shows flanged sectoral horn.

\section*{3. Experimental Results}

When a symmetric dielectric flange system is used it has been observed that E-plane radiation patterns of H-plane sectoral horns will be changed as in the case of metal flanges. The on-axis power fluctates with the position of the flange relative to the aperture of the horn, showing sharp maxima and minima as shown in Figure 2. The corresponding positions of the flanges are called the opti-
-152 -


FIGURE - -1 (APPFNDIX I)
REPMEENTATION OF A ELANGFD SFCTORAT. HORN


FIGURF-2(ADPENDIX I.)



Table 1--Half-power Beam Widths of Horns with and without Metallic and Dielectric Flange System
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
Flange \\
length W cm.
\end{tabular}} & \multirow[b]{4}{*}{Flange engle \(2 \alpha\) deg.} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{Beam widths of modified E-plane radiation patterns (in deg)}} \\
\hline & & & & & \\
\hline & & \multicolumn{4}{|l|}{with metallic with dielectric} \\
\hline & & \multicolumn{4}{|l|}{flanges flanges} \\
\hline & & & & & \\
\hline \multicolumn{6}{|r|}{\(\begin{array}{llll}\mathrm{H} 1 & \mathrm{H2} & \mathrm{H} 1 & \mathrm{H2}\end{array}\)} \\
\hline & & (93) & (82) & (93) & (82) \\
\hline \multirow[t]{4}{*}{6.3} & 45 & 42 & 21 & 64 & 68 \\
\hline & 60 & 22 & 20 & 40 & 52 \\
\hline & 90 & 20 & 18 & 38 & 56 \\
\hline & 120 & 16 & 16 & 38 & 64 \\
\hline \multirow[t]{4}{*}{5.5} & 45 & 34 & 38 & 62 & 64 \\
\hline & 60 & 23 & 28 & d5 & 55 \\
\hline & 90 & 26 & 24 & 52 & 40 \\
\hline & 120 & 30 & 20 & 54 & 42 \\
\hline
\end{tabular}

mum position or O-position and minimum position or M-
position respectively.
    The behaviour of dielectric flanges on E-plane
radiation patterns of H-plane sectoral horns is investi-
geted by keeping the flanges at O-position and M-position
as shown in figura 3. For a comparison the half power
beam widthe of the natural patterns and that of the modi-
fied beams due to metellic and equivelent dielectric flan-
ges are tabulated in Table 1.
    Using compount flange systom with metallic
flange on one side and a dielectric element on the other
                    ob
side the variation the on-axis power is studied. All
other asymmetries are avoided. The O-position and M-
position are determined. Radiation patterns at O-posi-
tion are plotted. It has been obaerved that the beams
are tilted towards the metallic flange element. This is
presented in figure \(3(c)\) and \(3(d)\). The results of the
detailed investigations are tabulated in Table 2. The
tilting is lese prominent at larger values of flange angle.
Theoretical Explanation
According to the theory suggested by Owen and Reynold \({ }^{36}\) the two edges of the flanges act as secondary radiators. The resultant pattern of the system can be obtained by combining the radiations from the primary aperture of the horn and the two secondary radiators. For


FIGURE 3. (APPENDIX I)
Natural and Modified radiation patterns
a.Natural pattern, (b)modified pattern with a symnetri= dielectric flange at O-position; (c)focussed beam tilted by an asynmetric flange system when the dielectric flange element is on the right side and (d) focussed seam tilted by an asymmetric flange system when the dielectric element is on tne left side. (The tilting is invariably towards the side in which the metallic element is attached)

Table 2-Beam Tilt by Asymmetric Flange System
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Flange length (in cm)} & \multicolumn{4}{|l|}{Beam tilt (in deg) Ls towards left, Rs towards right} \\
\hline \multirow[t]{2}{*}{} & Right & Left & Right & & \multicolumn{4}{|c|}{Horn} \\
\hline & & & & & H9 & & H2 & \\
\hline 6.3 & - & - & 6.3 & 45 & 18 L & & 21 & \(L\) \\
\hline - & 6.3 & 6.3 & - & 45 & 20 R & & 18 & R \\
\hline 6.3 & - & - & 6.3 & 60 & 14 L & & 14 & L \\
\hline - & 6.3 & 6.3 & - & 60 & 12 R & R & 10 & R \\
\hline 6.3 & - & - & 6.3 & 90 & 8 L & L & 9 & \(L\) \\
\hline - & 6.3 & 6.3 & - & 90 & \(5 R\) & R & 6 & R \\
\hline 6.3 & - & - & 6.3 & 120 & 0 & & 0 & \\
\hline - & 6.3 & 6.3 & - & 120 & 0 & & 3 & R \\
\hline 5.5 & - & - & 5.5 & 45 & 20 L & & 17 & L \\
\hline - & 5.5 & 5.5 & - & 45 & 17 R & R & 15 & R \\
\hline 5.5 & - & - & 5.5 & 60 & 15 L & L & 12 & L \\
\hline - & 5.5 & 5.5 & - & 60 & 14 R & R & 10 & R \\
\hline 5.5 & - & - & 5.5 & 90 & 4 L & L & 9 & \(L\) \\
\hline - & 5.5 & 5.5 & - & 90 & \(6 R\) & R & 6 & R \\
\hline 5.5 & - & - & 5.5 & 120 & 2 L & L & 4 & L \\
\hline - & 5.5 & 5.5 & - & 120 & 0 & & 3 & R \\
\hline
\end{tabular}
the compound flange system the amplitudes of excitation of the two secondary radiators are assumed to be different say, \(K_{1}\) and \(K_{2}\). For symetric compound flange system the power \(P_{\theta}\) at a distant point of bearing angle \(\theta\) is given by Koshy et. al \({ }^{39}\) as
\[
\begin{aligned}
P_{\theta}= & 1+k_{1}{ }^{2}+K_{2}^{2}+2 K_{1} K_{2} \cos \hat{p}+2\left\{\left[\cos \frac{\pi B}{\lambda}\right.\right. \\
& \times\{1+\cos (\alpha-\theta)\}] \times\left(K_{1}+k_{2} \cos \hat{p}\right) \\
& \left.+\left[\sin \frac{\pi B}{\lambda}\{1+\cos (\alpha-\theta)\}\right]\left(K_{2} \sin \hat{p}\right)\right\}
\end{aligned}
\]
where \(\hat{\boldsymbol{P}}\) is the phase difference between the two secondary sources, \(2 \alpha\) is the flange angle and \(\lambda\) is the wavelength of radiation. The value of \(K_{1}\) has been estimated by Butson and Thompson \({ }^{37}\) as 0.077 . Using the same method and substituting for \(K_{1}\), the amplitude of excitation \(K_{2}\) of the dielectric is extrapolated to be 0.026. The theoretical patterns are agresing well with the exporimental patterns in Figure 3.
5. Conclusion
```

 From the above experimental results it may be
 concluded that dielectric flanges are also effective in
controlling the E-plane radiation patterns of H-plane sect-
oral horns. The beam can be effectively tilted easily
with a compound flange system.

```

\section*{APPENDIX \(A_{2}\)}

Effect of Flanged Sectoral Horn Primary feeds on the Radiation Patterns of Secondary Reflector Antennas*

> Abstract - Preliminary experimental results confirming the effects of flanged sectoral horn feeds on the radiation patterns of a paraboloidel reflector ore presented. The flangeposition of the primary horn feed is found to have a very significant effect on the beam shape of the secondary rediator. Radiation patterns for different flange parameters have been presented.

Experimentel and theoretical investigations on flanged sectoral horns have been publised and the basic properties of such systems as revealed from these investigations may be summarized as follows:
(i) A flange system kept at ' \(\mathrm{O}^{\prime}\) position effects maximum focussing of the beam.
(2) At 'M' position, the flange causes broadening or splitting of the beam.

\footnotetext{
- Published as a paper in Jour. of the Inst. of Elect. and Telecom. Engrs. 1977 Vol 23 No. 3 pp 148-149.
}

\begin{abstract}
(3) Asymmetries of flange system in orientation, flange width or conductivity may ultimately cause beam tilt from the axis of the horn.

The experimental confirmation of the first two results given above is obtained from the early works of Nair and Srivastava \({ }^{56}\). A detailed study on the relative position of metal flenges on the radiation patterns was made by Nair et.a1.0 and they showed that the beam may be narrowed, broadened or split up. depending on the position of the flange relative to the aperture of the horn. Regarding the flange-asymmetry, theoretical study was made by Koshy et. al \({ }^{49}\). It was shown by S.B. Singh et. al. 39 that flange-width asymmetry as well as flange-axis asymetry was effective in beam tilt. The width-asymetry can focus, broaden or tilt the beam depending on the position of the flange system. Theoretical curves by Nair et.al. agree well with the experimental curves. A third asymmetry; namely the asmmetry in amplitude of excitation of the flange, suggested by Koshy et.al \(\mathbf{1 9}^{49}\) is under invesiigation.
\end{abstract}
```

The effect of flanged sectoral horn radiators
used as primary feeds to illuminate secondary reflector antennas like paraboloids has not been investigated so far. This paper presents the results of such a study. flanged sectoral horns mounted at the focus of a large paraboloidal reflector gave interesting results. Radiation patterns for different flange-parameters have been presented.

```
-161 -


FIGURE 1 (A)(Appendix II)
- Sectore' Horn and Paraboloidal Reflector


FIGURE 2B(APPENDIX-I\$)
Experimertal arrangement of flanged primary horn feed and paraboloidal reflector used as a receiver.
P:Paraboloidal reflector: H:Horn: G:Flanga; E:Cocal point of the partooloio; C.Cryjt l mormt. The whole arston s combe of rotating about a ver ioal awis s sibm by bo arrow ark.

\begin{abstract}
The experimental arrangements consist of a large aluminium paraboloidal reflector mounted on a stand which can be rotated about a vertical axis. The flanged horn can be ekpt at the focus of the paraboloid, to act as the primary feed. For plotting the radiation patterns of this system, it is used as a faceiver of C.W. signal from a large standard pyramidal horn. Figure 1 represents an outline of the experimental set up. For plotting the secondary radiation pattern, the paraboloid with the flanged horn is used as a receiver. To measure the received power, germanium crystal (IN 21 or IN 23) properly mounted is kept at a point along the axis of the horn is used. The output of the crystal detector is applied to a very sensitive microgalvanometer whose deflection is proportional to the crystal current and hence the power of the received signal at the point where the crystal is kept. The patterns are manually plotted by noting the received power corresponding to different orientations of the receiver axis with respect to the transmitter axis. A flange syatem, as explained by Nair et.al. \({ }^{56}\) may be arranged at the 'M-position' or'o-position' of the primary horn feed. Variations in the secondary radiation patterns of the paraboloid due to different flange-parameters (namely, flangelength, flange-angle, relative position of the flange with the aperture of the horn etc.) are studied.
\end{abstract}

\section*{Results}

The study of effects of flanges attached to primary


FIGURE 2 (APPENDIX-II)
Natural and modified E-plane radiation patterns of a paraboloidal radiator with flanged H-plane horn primary feed.
A: Natural E-plane pattern of the system when no flange is attached to the feed horn; B. Modified pattern when the flange is at 0-position of the horn; C:Modified patterns when the flange is at M-position
Paraboloidal Reflector: Focal length: 20 cms ; aperture diameter: 65 cm .
Flange parameters: For Horn H1: Flange length \(6.4 \mathrm{cms} ; 2 \alpha=60^{\circ}\) (for 0 -posn) For M-Positions corresponding to figures \(C(a),(b)\) and (c),6.4cms, 60 degrees. 5.5 cms .60 degrees and 5.5 cms 90 degrees respectively. For Horn H2, flange narameters are the same as for H1.

\begin{abstract}
horn feeds on the secondary radiation patterns of reflector antennas revealed very interesting results. A representative set of radiation patterns is given in fig. 2. The patterns plotted are those in the E-plane. A close analysis of the results reveals the following facts: (i) the optimum directivity of the system is not affected by a flange, when it is at the O-position of the horn. This is found to be true for any value of flange-angle and flange-length. But at M-position, the flange has got a very dowinant role in shaping the secondary radiation pattern. (ii) The secondery radiation pattern from the reflector antenna can be split or broadened with proper selection of flange widths and flange angles.
\end{abstract}

\section*{Conclusions}
The results clearly show that the secondary radi-
ation patterns from a reflector antenna can be shaped to
a considerable extent by the flenge technique which was
originally developed for primary horn feeds only 56 . Even-
though an enhanced focussing or sharpening of the secondary
pattern is not possible by the flange, it can broaden or
split the pattern to any desired shape by slight adjustment
of flange parameters. This may have practical applications
in matching and aligning very large communication and radar
antennas.

REFERENCES

\section*{REFERENCES}

1(a) Lovs, A.W. "Elactromagnatic Morn Antannae" IEEE Pyase (1976).

1(b) Barrow, W.L. and Chu, L.J. MTheory of Elactromagnatic Horn" Proc.I.R.E. Vol.27. pp.51-64, January 1939.
2. Chu, L.J. and Barrow, W.L. MElactromagnetic Horn Deaign" Trana. AIEE Vol.58, pp.333-338. July 1939.
3. Southwarth, G.C. and King, A.P. MMatal Harns as Directive Receivers of Ultrashort Wavan" Proc. IRE Vol. 27 pp.95-102 (1939).
4. Chu, L.J. ©Calculation of Radietion Propartiae of Hollow pipen and Mosne". J.Appl Phyaica, Vol. Il pp.603-610 September 1940.
5. Rust, N.M. "The Phase Corraction of horn radiators" Inat. Elec. Eng. Vol.93. Pt.IIIA, pp.50-51. March/ May 1948.
6. Horton. C.W. Mon tha thaory of the radiation patterns of elactromagnatic horna of moderate plare anglen" Proc. IRE Vol. 37 Pp.744-749. July 1949.
7. Schorr, M.G. and Back, F.J. Jr. "Elactromegantle field of Conical Horn" J.Applied Phyaics, Vol.21. pp.795-801. Auguat 1950.
8. King, A.P. The Radiation Charecteristica of Conicel Horn Antennag" Proc. IRE Vol.38. pp.249-251 Mareh 1950.
9. Russo, P.M., Rudduck, R.C. and Patars, L. Jr. "A Method for Computing E plans patterna of Horn Antennaen IEEE Trans. Ap. Vol.Ap.13. pp.219-224 March 1965.
10. Yu, J.S.. Rudduck, R.C. and Paters L Jr."Comprohenaive Analysis for E Plane of horn Antennas by edga dipfrection Theory", IEEE Trens. Antennas Prop. Vol. Ap.14. Pp.138-149. Mareh 1966.
11. Hamid, M.A.K. "Diffraction by Conical Horn" IEEE Trens Antennas Prop. Vol.Ap.16. pp.520-528 Sept 1960.
12. Narasimhan, M.S.. Rao, B.V. MModes in a Conicel Horn New Approach" Proc. Inat. Elec. Eng. Vol.118. pp. 287-292 Feb. 1971.
13. Jamas. J. Epio "Compansated Electromagnatic Harna" Mierowave J. Vol.4. pp.84-89. May, 1961.
14. Walton, K.L. and Sundberg, C.V. Mroad band redged horn design" Microwave J. Vol.7, pp.96-101, March 1964.
15. John L. Kerr "Short axial length broad band horn" IEEE Trans Antennas Prop. Vol. Ap. 21 pp.710-815.
16. Braun, E.H. Wome data for the design of electromagnetic horne" IEEE Trans. Antennes Prop. Vol.Ap. 4 , pp.29-31 Jan. 1956.
17. Love, A.W. "The diagonal horn antenna" Microwave J. Vol. V, pp.117-122, March 1962.
18. Seymour B. Cohn, WFlax angle changes in a horn as a means of pattern control" Microwave J. Vol. 13 pp41, 42, 44. 46. Oct, 1970.
19. Ching C.H. and Adam N. Wicket NA new multimode rectmegular horn antonna generating a circularly polarised elliptical beam" IEEE Trans Antennas Prop. Vol.Ap.22, pp.746-751 Nov. 1974.
20. Simmons A.J. and Kay A.F. "The Scalar faed - A high performance feed for large paraboloid reflectors" IEE Conf. Publ. 21, (1966) pp.213-217.
21. Lawric R.E. and Peters L. MModifications of horn Antennas for Low side lboes levels" IEEE Trans Antennas Prop. Vol.Ap.14, pp.605-610, Sept. 1966.
22. Clarricoats, P.J.B. "Analysis of Spherical hybrid modes in a corrugated Conical Horn" Elect. Lett. Vobs pp.189-190, May 1969.
23. Clarricoats, P.J.B. and Saha, P.K. "Radiation Patterns of lens corrected Conical Scalar Horn" Elect. Lett. Vol.5. pp.592-593. Nov. 13. 1969.
24. Clarricoats, P.J.B. and Saha, P.K. MPropagation and radiation behaviour of corrugated feeds Part I and Part IIn Proc. Inst. Elec. Eng. Vol. 118, pp.1167-1176 Sept. 1971 and abid pp.1177-1186. Sept. 1971.
25. Jenken M.E. and Lambrechtse, C.W. WSmall corrugated conical horn antenna with wide flare angle" Elec. Lett. Vol.5, pp.489-490. Oct. 1969.
26. Narasimhan, M.S. and Rao B.V. WHybrid modes in corrugated conical horn" Elec. Lett. Vol.6 pp.32-34, Jan. 22, 1970.
27. Narasimhan, M.S. "Corrugated conical horns with arbitrary corrugation depth" Radio Electron Eng. Vol. 43 pp.188-192, March 1973.
28. Tsandoulas. G.W. and Fitzgerald, W.D. "Aperture Efficiency enhancement in dielectrically loaded horns" IEEE Trane Antennes Prop. Vol.21. pp.69-74 Jan. 1972.
29. Hamid M.A.K. Jowaij, S.J. and Martens, G.O. "A dielectric loaded circular waveguide antennan IEEE Trans. Antennas Prop. Vol.Ap.20. pp.96-97 Jan. 1972.
30. Toshio Satoh "Dielectaic loaded horn entenna. IEEE Trans Antennas Prop. Vol.Ap 20, pp.199-201 March 1972.
31. Bartlett H.E. and Moseley, R.E. Wdiel guides - Mighly efficient low noise antenna feeds" Microwave J. Vol.g pp.53-58 Dec. 1966.
32. Claricoats P.J.B. and Salema C.E.R.C. Mntennas employing conical dielectric horns" Proc. Inst. Elec. Eng. Vol. 120 pp. 741-749. July 1973.
33. Crawford A.B. Hogg, D.C. and Hunt, L.E. MA horn refiector Antenna for Space Communication" Bell Syat. Tech. J Vol. 40, PP.1095-1116. July 1961.
34. Hinee d.M.. Tingveli and Turrin, R.H. "Thselectrical characteristies of the conical horn - reflector antenna" Bellsyet Tech. J. Vol. a2. Pt.2. Pp.1187-1211. July 1963.
35. Pao C.S. WShaping of Primary Patterns of Horn Feed" (1945) Radiation Laboratory Report No. 655.
36. Owen A.R.G. and Reynolds L.G. "The Effect of flanges on Radiation Patterns of Small horns", Journal IEEE (1946) 93 Part III-A. 1523-1533.
37. Butson P.C. and Thompson G.T. "The Effect of flanges on radiation patterns of wave guides and sectoral horne, Proc. IEE (1959), 106 Part B, 422-446.
38. Nair, K.G., Koshy, V.K. and Srivastava, G.P. "A theoretical study of the asyrmetric excitation of conducting flanges by a primary aperture antenne and the consequent radiation pattern" Int J. Electronics (1968) Vol. 24 No.5, 497-500.
39. Koshy, V.K., Singh, S.B., Nair, K.G. and Srivastava, G.P. WEffect of esymmetry in amplitude of excitation of secondary sources by a primary aperture antenna" Int. J. Electronics (1968) Vol. 25 No.3, 289-291.
40. Kraus, J.D. "Corner Reflector Antennas" Proc. IRE 23, 1940. 513-520.
41. Edward E. Harris MAn experimental investigation of the cornar: reflector antennaom Prac. IRE 41. 1953, 643-659.
42. James R. Wait Mon the theory of on antennas with an infinite corner reflector", Can J. Physics 32, 1954, 365-371.
43. Cottony H.V. and Wilson A.C. Gein of finits size corner reflector antennasn. IRE Trans on Antennas and Propagation AP. 6, 1958, 366-369.
44. Wilson A.C. and Cottony H.V. WRadiation patterns of finite size corner reflector antennes". IRE Trans on Antennas and Propagation". AP 8. 1960, 144-157.
45. Hamid M.A.K. Miffraction by dielectric loaded horns and corner reflectore" IRE Trans on Antennas and Propagation. AP. 1969 660-662.
46. David Proctor Graphs simplify corner reflector antenna design.
47. Moullin, E.B. MRadio Aerials" Oxford University Press, London, 1949.
48. Jordan E.C. "Electromagnetic Waves and Radiating Systems" Prentic-Hall of India p. 570.
49. Koshy V.K.. Nair K.G. and Srivastava G.P. MAnalysis of radiation from a flanged apertura antennas" IEEE Trans. Antennas and Propagation Vol. AP 18 pp.407-411 1970.
50. Silver, S. "Microwave Antenna Theory and Design" MIT Radiation Laboratory Series Vol.12. MeGraw Hill Book Company, New York 1949 p. 199.

Montgomery C.G. "Technique of Microwave Measurements" MIT Leboratory Series Vol.11. McGraw-Hill Book Compmny, New York, 1949, pp.476. 900, 914.

Jasik E.A. "Antenna Engineering Hand Book" McGraw-Hill Book Company, New York 1961 pp.1-3.
53. Barlow H.M. and Cullen A.L. Microwave Measurements" Constable and Company, London 1950, p. 347.
54. Wheeler G.J."Indroduction to Microwaves" Prentice-Hall Inc. Eaglewood Cliffs, NJ.
55. Edward A. Wolff "Antenna Analysis" John Wiley and Sons. Inc. U.S.A.
56. Nair, K.G. and Srivastava, G.P. "Beam-ahaping of H-plane sectoral horns by metal flanges" J. Inst. Telecommun. Engrs. (India), Vol.13. Pp.76-82, February, 1967.
\[
G 1877
\]
```

