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Chapter~l

INTRODUCTION

This thesis is devoted to the study of some
stochastic models in Inventories and Queues which are

physically realizable, though complex. It contains a
detailed analysis of the basic stochastic processes
underlying these models. Many real—world phenomena

require the analysis of system in stochastic rather than
deterministic setting. Stochastic models are becoming
increasingly important for understanding or making
performance evaluation of complex systems in a broad
spectrum of fields such as operations-research, computer
science, economics, telecommunication, engineering etc.

Our aim is to have an improved understanding of the
behaviour of such models, which may increase their
applicability. Some variants of inventory systems with
random lead times, non-identically distributed inter
arrival demand times, state dependent demands, perishable
commodities, varying ordering levels etc. are considered.
Also we study some finite and infinite capacity single
server queueing systems with single/bulk services,
vacation to the server; transient as well as steady
state solutions of the systems are obtained in certain
cases. Each chapter in the thesis is provided with self



introduction, notations and some important references.

This chapter gives a brief introduction to the subject
matter and some related topics. It gives a concise
survey of some important developments in the area of
inventories and queues. Some basic notions in renewal
theory and Markov renewal theory are supplemented. Finally
an outline of the results obtained is given.

l.l INVENTORY THEORY - AN OUTLINE

An inventory is an amount of material stored for
the purpose of sale or production. Inventory management
of physical goods or other products or elements is an
integral part of logistic systems common to all sectors
of the-economy, such as business, industry, agriculture,
defence etc. In an economy that is perfectly predictable,
inventory may be needed to take advantage of the economic

features of a particular technology, or to synchronize
human tasks, or to regulate the production process to meet
the changing trends in demand. When uncertainity is
present, inventories are used as protection against risk
of stockout.

The existence of inventory in a system generally
implies the existence of an organized complex system
involving inflow, accumulation, and outflow of some



commodities or goods or items or products. The regulation
and control of inventory must proceed within the context
of this organized system. Thus inventories, rather than
being interpreted as idle resources, should be regarded
as a very essential element, the study of which may provide
insight to the aggregate operation of the system. The
analysis of inventory system defines the degree of inter
relationship between inflow, accumulation, and outflow
and identifies economic control method for operating such
systems.

Analysis of Inventory systems

Inventory systems may be broadly classifed as

continuous review systems or periodic review systems.

In continuous review systems, the system is monitored
continuously over time. In periodic review systems, the
system is monitored at discrete, equally spaced instants
of time. An analysis of an inventory consists of the
following steps: (1) determination of the properties
of the system, (2) formulation of the inventory problem,
(3) development of a model of the system, and (4) derivation
of a solution of the system.

Inventory policies — Decision variables

An inventory policy is a set of decision rules

Q)



that dictate ‘when’ and ‘how much‘ to order. Several

policies may be used to control an inventory system;
of these, the most important policy is the (s,S) policy.
Under this particular policy, whenever the position
inventory (sum of onhand inventory and outstanding orders)
is equal to or less than a value s, a procurement is made
to bring its level to 5. Under a continuous review system,
the (s,S) policy will usually imply the procurement of a
fixed quantity Q = S-s of the commodity, while in periodic

review systems the procurement quantity will vary. The
(s,S) policy incorporates two decision variables s and S.
The variable s is called the reorder level, which identi
fies when to order, while S-s identifies how much to order.

Objective function

In an inventory Problem, the objective function may
take several forms, and these usually involve the minimiza

tion of a cost function or the maximization of a profit
function. The planning period or horizon period, which is
the length of time over which the system is assumed to
operate, may be either finite or infinite. For a finite
horizon period, the total cost (profit) experienced over

the entire horizon may be the criterion; alternatively the
criterion may be average of the total cost (profit) per
unit time. On the other hand, if the horizon is infinite,



the long run average total cost (profit) experienced
over the infinite horizon, is selected as the criterion.
In stochastic models expected values of costs are measured.

consists of the additiveThe cost function, in general,
contribution of the procurement cost, the holding cost,
and the shortage cost.

The inventory models are usually characterized by
the demand pattern and the policy for replenishing the
stock in the store. The replenishments ordered may arrive
after a time lag L, which may be fixed or a random variable.
This time lag L is called the ‘lead time‘. The time interval
during which the inventory is empty is termed as a dry
period.

The quantitative analysis of the inventory system
started with the work of Harris (1915), who formulated and
obtained the optimal solution to a simple inventory situation.

this wasWilson (1934) rediscovered the same formula and

successful in popularizing its use. The formula is an
expression for an optimal production lost size given as
a square root function of a fixed cost, an investment or
holding cost, and the demand. It is often referred to as
the ‘simple lot—size formula’ or the ‘economic order
quantity (EOQ) formula‘, or the ‘Wilson formula‘. A
stochastic inventory problem was analysed for the first

U’



time by Masse (1946). After that several studies were
made in this direction (See Arrow, Harris and Marschak(l95l),
Dvoretsky, Kiefer and Wolfowitz (1952). Dvoretsky et al.
obtained the conditions under which optimum inventory
levels can be found. The development of the theory upto
1952 have been summarized by Whitin (1953).

A valuable review of the problems in the probability
theory of storage systems is given by Gani (1957). A
systematic account of probabilistic treatment in the study
of inventory systems using renewal theoretic arguments is
given in Arrow, Karlin and Scarf (1958). Hadley and
Whitin (1963) deals with the applications of such models
to practical situations. Tijms (1972) gives a detailed
analysis of the inventory systems under (5,5) policy. The
cost analysis of different inventory systems is given in
Naddor (1966). A practical treatment of the (s,S) lost
sales model can be found in the recent books by Silver
and Peterson (1985) and Tijms (1986).

A detailed review of the work carried out in (s,S)
inventory systems upto 1966 can be found in Veinott (1966).
We refer to the monograph by Ryshikov (1973) for inventory
systems with random lead times. Sivazlian (1974) considers
an (s,S) inventory model in which unit demands of-items



occur with arbitrary interarrival times between demands,
but with zero lead time. His results are extended by
Srinivasan (1979) to the case in which lead times are
i.i.d. random variables having a general distribution.
Sahin (1979) considers an (s,S) inventory system in which
demand quantities are nonnegative real valued random

variables with constant lead time. Again in Sahin (1983)
an (s,S) inventory system in which demand quantities
(positive integer valued), lead times and interarrival
times between consecutive demands are all independent

and generally distributed sequences of i.i.d. random
variables.is discussed. She obtained binomial moments

for the inventory deficit. Thangaraj and Ramanarayanan(l983)
consider an inventory system with random lead times and
having two ordering levels. Kalpakam and Arivarignan(l985)
have studied an (s,S) inventory system having one exhibiting
item subject to random failure time and obtained the limiting

distribution of position inventory by applying the techniques
of semi-regenerative process. Ramanarayanan and Jacob (1987)
also analyse an (s,S) inventory system with random lead times
and bulk demands. An (s,S) inventory system with rest periods
to the server has been analysed by Daniel and Ramanarayanan
(1988).



The earliest work on the decay (perishability)
problem is due to Ghare and Schrader (1963) who considered

the generalization of the standard EOQ model without
shortages. Their model was extended to more general types
of deterioration by Covert and Philip (1973) and Shah (1977).
Nahmias (1982) reviews various models and objective functions
in the analysis of such inventory systemso Motivated by the
study of blood bank models Kaspi and Perry (1983, 1984) and

Perry (1985) have studied inventory systems for perishable
commodities in which life time of the items stored are fixed

as well as random variables. They utilized the analogy
between these systems and a queueing system with impatient
customers to study the process of the lost demand, the
number of units in the system, etc.

A continuous review (s,S) inventory system in random

environment is analysed by Feldman (1978). Hichards (1979)
analyses an (s,S) inventory system with compound Poisson

demand. Algorithms for a continuous review (s,S) inventory
system in which the demand is according to a versatile
Markovian point process is given by Ramaswami (l98l).

Approximation for the single—product production-inventory

problem with compound Poisson demand and two possible

production rates where the product is continuously added
to inventory can be seen in De Kok, Tijms and Van der Duyn
Schouten (1984). Using Markov decision drift processes,
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Hordijk and Van der Duyn Schouten (1986) examines the

optimality of (s,S) policy in a continuous review inventory
model with constant lead time when the demand process is
a superposition of a compound Poisson process and a contin
uous deterministic process.

Stidham (l974) has introduced and studied a wide
class of stochastic input-output systems. The system is
fed by an exogenous stochastic input process. The quanfity
in the system builds over time as a result. At a certain
(random) time instant all the quantity in the system is
instantaneously removed (cleared) and the situation allowed
to repeat itself. Such systems are called stochastic
clearing systems. Its applications to bulk—service queues
and (s,S) inventory systems are given by Stidham (l977,l986).
In a generalized stochastic clearing system, the system
contents are restored to a level m ( > O ), rather than
zero, at each clearing instant. with inventory defined
as the negative of system contents, the generalized model
covers (s,S) inventory systems with continuous or periodic
review. In his paper Stidham (1986) discusses the optimality
of the clearing parameters.

In the case of random lead times, the concept of
vacations to the server during dry period is introduced
in inventory system by Daniel and Ramanarayanan (1987, '88).
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Several other models with vacations to the server, finite
backlog of demands, bulk demands, varying ordering levels
etc. can be found in Jacob (1987).

lo2 QUEUEING THEORY - AN OUTLINE

The development of queueing theory started with the
publication of Erlang's paper (l909) on the M/D/1 queueing
systems For this system, which has constant service times
and a Poisson arrival process, Erlang explained the concept
of statistical equilibrium. This paper touched the essential
points of queueing theory, and for a long time research in
queueing theory concentrated on questions, first time
discussed by Erlang.

Until 1940, the majority of the contribution to
queueing theory was made by people active in the field of
telephone traffic problems, After the Second World Nar,
the field of operations research rapidly developed and
queueing applications were also found in production planning,
inventory control and maintenance problems. In this period,
much theoretically oriented research on queueing problems
were done.

In the fifties and sixties, the theory reached a
very high mathematical level (see Cohen (1969) and Takacs(l962)).



11

Advanced mathematical techniques like transform methods,
Wiener-Hopf decomposition and function theoretic tools
were developed and refined. This research resulted in a

number of elegant mathematical solutions.

In particular, noting the inadequacy of the equili
brium theory in many queue situations, Pollaczek in 1934
began investigations of the behaviour of the system in a
finite interval. Since then, there appeared considerable
work in the analytical behavioural study of queueing
systems. The trend towards the analytical study of the
basic stochastic processes of the system has continued,
and queueing theory has proved to be a fertile field for
researchers who wanted to do fundamental research on

stochastic processes involving mathematical models.

For the time dependent analysis of the system,
more sophisticated mathematical procedures are necessary.
For instance, for an M/M/l queue, under statistical equili
brium, the balance of state equations is simple and the
limiting distribution of the queue size is obtained by
recursive arguments and induction. But for the time
dependent solution, the use of transforms is necessary.
The time dependent solution was first given by Bailey (l954b)
and Ledermann and Reuter (l956). while Bailey used the



method of generating functions and the differential
equations satisfied by them, Ledermann and Reuter used
spectral theory for their solution. Champernowne's(l956)
combinatorial method and Conolly's (1958) difference
equation techniques are also aimed at the transient
solution for the system size in an M/M/l queue system.
Parthasarathy (1987) suggests a simple and direct approach
for the same.

To analyse the case of M/G/l queues, Palm (l943)
and Kendall (1953) have used the method of regeneration
points and imbedded Markov chain which continue to have a

tremendous influence on queueing theory. Kendalls
exposition created a new technique for analysing certain
queueing models which are not Markovian. His approach made

the analysis of the transient behaviour of queueing systems
much more accessible. The method of supplimentary variables

investigated by Kendall (1951) and Cox (1955) is extensively
discussed in the book by Gnedenko and Kovalenko (1968).

The study of bulk queues is considered to be
originated with the pioneering work of Bailey (l954a).
It may be said to have begun with Erlang's investigations

of M/Ek/l queue, for its solution contains implicitly the
solution of the model Mk/M/1. Bailey studied the stationary
behaviour of a single server queue having simple Poisson



input, intermittently available server and service in
batches of fixed maximum size. The results of this study
are given in terms of probability generating functions,
the evaluation of which requires determining the zeroes
of a polynomial. This study was followed by a series of
papers involving the treatment of queueing processes with
group arrivals or batch service. Gaver (1959) seems to be
the first to take up specifically queues involving group
arrivals followed by Jaiswal (l960, 1961, l962), Bhat(l964)
and others. For more details on bulk queues, one may refer
to Medhi (1984) and Chaudhry and Templeton (l984). For a
detailed treatment of queueing systems and for further
references, one may refer any one of the standard books
on the subject like Saaty (1961), Takacs (l962), Cohen (1969),
Prabhu (l965, 1980), Gnedenko and Kovalenko (i968),

Cooper (1972), Gross and Harris (1974), Kleinrock (i975)
and Asmussen (1987).

Queueing systems in which the service process is
subject to interruptions resulting from unscheduled break
downs of servers, scheduled off periods, arrival of customers
with pre-emptive or non-preemptive priorities or the server
working on primary and secondary customers arise naturally.
The impact of these service interruptions on the performance
of a queueing system will depend on the specific interaction
between the interruption process and service process.



Queueing models with interruptions and their

connection to priority models were first studied by
White and Christie (1958), who considered the case with
exponential service, on—time and off-time distributionso

Their results were extended by Gaver (1962), Keilson (1962),
Avi-Itzhak and Naor (1962) and Thiruvengadam (1963) to
models with general service time and off—time distributions
but exponential on—times. When the on-periods are not
exponential, the problem becomes very difficult and one
such model is studied by Federgruen and Green (1986).

A detailed analysis of single server queueing system
with server failures is given in Gnedenko and Kovalenko(l968).

Another variation of the interruption model is the
vacation model. In this the queueing system incurs a
start-up delay whenever an idle period ends or server
takes vacation periods. The vacation model includes
server working on primary and secondary customers alsoo

Motivated by the study of cyclic queues, Miller (1964)
analysed a system in which the server goes for a vacation
(rest period) of random duration whenever it becomes idle.
He also considered a system in which server behaves normally
but the first customer arriving to an empty system has a
special service time. These types of systems and similar
ones were also examined by Welsch (1964), Avi-Itzhak,



Maxwell and Miller (1965), Cooper (1970), Pakes (1973),

Lemoine (1975), Levy and Yechiali {l975),_Heyman (1977),
Van der Duyn Schouten (l978), Shantikumar (1980, 1982) 9

Scholl and Kleinrock (1983) etc.

(1)All the models having rest periods, set-up time,
starter, interruptions etc. can be jointly called as
vacation models. While the queue with interruption has
preemptive priority for vacation, other types of vacations
have least priority among all work with vacation taken
when the system is empty. Variations of vacation models
are available with single and multiple vacations and
exhaustive and non~exheustiye service disciplines.

A queueing system in which the server taking exactly
s called aFloone vacation at the end of each busy period,

single vacation system. When the system becomes empty,
Q) 23 (1server starts a vacation he keeps on taking vacations

until, on return from a vacation, atleast one customer is
present. This is called a multiple vacation system. We
say that a vacation model has the property of exhaustive
service in case each time the server becomes available,
he works in a continuous manner until the system becomes

empty.. Systems with a vacation period beginning after
every service completion, or after any vacation period



if the queue is empty is known as the single service
discipline. According to Bernoulli schedule discipline
the server begins a vacation period if the queue is
empty. If at a service completion the queue is not
empty, then service is resumed with fixed probability p
and with probability l—p a vacation commences. Single
service disciplines and exhaustive service disciplines
are special cases of the Bernoulli schedule discipline.
Another variant of the vacation model is that the server

goes for vacation after serving a random number of
customers.

Vacation systems with exhaustive service discipline
are analysed by several authors. See for example, Levy
and Yechiali (1975), Hayman (1977), Courtois (1980),
Shantikumar (1980), Scholl and Kleinrock (1983), Lee(l984),
Fuhrmann (1984), Doshi (1985), Servi (1986 a), Levy and

Kleinrock (1986), Keilson and Servi (1986 b) etc. Systems
without exhaustive service discipline are considered by
Ali and Neuts (1984), Neuts and Ramalhoto (1984), Fuhrmann

and Cooper (1985), Keilson and Servi (1986 b,c) and
Servi (1986 a). The case of Bernoulli schedule discipline
is introduced by Keilson and Servi (1986 a) and further
studied by Servi (1986 b).



The main results in the vacation system is the delay
analysis by decomposition. The stochastic decomposition
property of M/G/l queueing system with vacation says that
the (stationary) number of customers present in the system
at a random point in time is distributed as the sum of two
or more independent random variables, one of which is the
(stationary) number of customers present in the corresponding
standard M/G/l queue (ie. the server is always available)

at a random point in time. For more details on queueing
systems with vacations one may refer to Doshi (1986).

All the above models assume the existence of

stationary distribution and study the queue length and
waiting time distributions. The time dependent behaviour
as well as steady state behaviour of M/G/1 and G/M/l queue
ing systems are extensively studied by Bhat (1968) in which
bulk arrival and bulk service queues are considered and
the bahaviour of the waiting time process is obtained. Some
aspects of the dynamic behaviour of M/G/l queues with
vacations is studied by Keilson and Servi (1986 c). An
attempt to find the transient solution of M/Ga’b/l queue
with vacation using matrix convolution has been made in
Jacob and Madhusoodanan (1987). But they have remarked

that the solution in that form is not numerically tractable.
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1.3. RENEWAL THEORY

Renewal processes are the simplest, regenerative

stochastic processes. Let { Xn, n=l,2,...} be a sequence
of non—negative independent identically distributed random
variables with common distribution function F(.) and assume

that Pr [Xn=O} < 1. Since Xn is non—negative, E(Xn) exists.

Let S0 = 0, Sn = Xl + X2 + ... + Xn for neg 1, and let

Fn(x) = Pr {S 3 x‘} be the distribution function of Sn.Tl. . . *n
Since Xi‘s are l.l.d., Fq(x) = F (x).

Define the random variable

N(t) == sup{ru| Sn 3 t}

Then the process {Ifl(t), t 3 0:} is called a renewal process.

If for some n, Sn = t, then the nth renewal is said to occur
at time t; Sn gives the time of the nth renewal and is called
the nth renewal epoch. The random variable N(t) gives the
number of renewals in the interval ( o,t ].

The function M(t) = E[N(t)] is called the renewal
function of the process. It is easy to see that

N(t) g n ¢==$ Sn 3 t
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Thus the distribution of N(t) is given by

Pr{N(t) .—. n} = £=*“(t) - I-‘*“*"l(t)

where F*n(t) denotes the n-fold convolution of F(t) with
itself (F*°(t) 2 1)

and the expected number of renewals is given by

N.(t) = °§ F*“(t)
n=l

Its derivative

m(t) = M'(t) = E f*“(t)

is the renewal density function, assuming the density
function f(t) exists. m(t) is the expected number of
renewals per unit time. Let us give another interpretation
of renewal density, which is very important in practical
applications, in the following way:

m(t)dt = M(t+dt) — M(t)

= 2 [F*“(t+dt) - F*“(t)]
nzl

= 2: Pr{t<sn5_t+dt}
n—l
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We have Pr [more than one renewal point in (t,t+dt)}
-—-9 o(dt) as dt——+ 0. Therefore

Lt m(t)dt = Pr-{S1 or 82 or $3 or ... liesdt—~%0‘ in (t,t+dt) }
ie., m(t) is the probability of a renewal in (t,t+dt).

Now, suppose that the first interoccurrence time X1
has a distribution G(o) which is different from the common
distribution F(o) of the remaining interoccurrence times

X2, X3, 000 0

As before define

and

ND(t) .—. Sup {n | Sn<_t}

The stochastic process .[ND(t), t 2 0:5 is called a Delayed
or Modified renewal process.

Here we have

Pr {ND(t) = n} = G * I-‘*(“"l)(t)— <3 * £=*“(t)
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so that the modified renewal function is

Mh(t) = E [Np(t)] = “E0 G*F*“(t)

The modified renewal density function is given by

m *
mD(t) = MD'(t) = 2 g*f ”(t)

n=o

provided that the density functions g(x) = G’(x) and
f(x) = F'(x) exist.

Now, consider a stochastic process{:X(t),t Z 0:}
with state space{o,1,2, ...}, having the property that
there exist time points at which the process (probabilis
tically) restarts itself. That is, suppose that with
probability one, there exists a time T1, such that the
continuation of the process beyond T1 is a probabilistic
replica of the whole process starting at 0. Note that this

property implies the existence of further times T2,T3, ...,
having the same property as T1. Such a stochastic processes
is known as a regenerative process.

From the above it follows that{:Tl,T2, ...} forms a
renewal process; and we shall say that a cycle is
completed every time a renewal occurs. For details on
renewal theory, one may refer to Cox (1962), Feller (1965),
Ross (1970) or Cinlar (l975b) among others.
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1.4 MARKOV RENEWAL PROCESSES

A Markov renewal process .{(Xn,Tn); n 2 0:} has
two constituents; {Xn : n-z 0.} is a homogeneous Markov

chain whilst (Tn+l - Tn) is the sojourn time in X“
(throughout, To = 0). Hence we can think of Xn as the
state entered at T and left at T . Given {xnz n 1 O},n n+1
the {rml - Tn : n g 0} are independent and the distri
bution of (Tn+l ~ Tn) depends on-[Kn : n 3 O}through Xn
and Xn+l only. We assume that the sojourn times are
always strictly positive. when the initial state is i,
that is X0 = i, the time of returns to state i form an
ordinary renewal process; whilst the visits to j # i
form a delayed renewal process (the delay being the
time that elapses until the first visit to j). Thus
as Cinlar (1969) puts it ‘the theory of Markov renewal
processes generalizes those of renewal processes and
Markov chains and is a blend of the two‘.

The semi-Markov matrix Q has its (i,j)th entry

Q(i,j,t) = PrfLXn+l=j, T T < t I xn=i}n+1‘ n 

so that E Q(i,j,t) is the distribution function of the
5

sojourn time in i and P(i,j) = Q(i,j,w) is the transition

matrix of the Markov chain {_Xn:n g 0.}. The Markov
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renewal function is R(i,j,t) = E Qn(i,j,t), where
n=on+1 . t . n .Q (i,j,t) = 2 J Q(i,k,du) Q (k,3,t-u) for n 3 ok 0

I! I-4
I"\

‘.1

1 if 1 = j
°'3) = o if 1 ¢ j

There are processes which are, in general, non—Markovian

and Q°(i,j,t)

and yet possess the strong Markov property at certain selected
random times. Then, imbedded at such instants, one finds a
Markov renewal process.

Let Y = {Y(t), t Z O}- be a stochastic process defined
on a probability space (rL,J1,P) with a topological state
space E, and suppose that the function t-——9Y(t,w) is right
continuous and has left-hand limits for almost all m 6 I1 0

A random variable T:I1———?[o, m] is called a stopping time

for Y provided that for any t < m, the occurrence or non

occurrence of the event{:T g tm} can be determined once

the history .{Y(u); u g_t:} before t is known.

The process {Y(t),t 1 O]. is said to be semi—regenerative
if there exists a Markov renewal process (X,T)=-{(Xn,Tn),n Z O}
with finite state space such that

(a) for each n Z O, Tn is a stopping time for Y;

(b) for each n > O, Xn is determined byu[Y(u);u S Tn].



24

(c) for each n 2 O, m 3 l, 0 3 ti < t2 < ... < tm,
and function f defined on Em and positive,

Ei[f(Y(Tn+tl), ..., Y(Tn+tm))/ Y(u); u g Tn ]

= Ej [f(Y(tl), ..., Y(tm)j on-{Xn = j }

where Ej and Ej refer to expectations given the
initial state for the Markov chain X.

The theory of Markov renewal processes provides a
useful framework for the analysis of many complex

stochastic systems. For a summary of basic results and
applications of Markov renewal theory one may refer to
two excellent survey papers by Cinlar (1969, 1975a).

1.5 AN OVERVIEW OF THE MAIN CONTRIBUTIONS OF THIS THESIS

The main concern of this thesis is the study of
some complex stochastic models in Inventories and Queues.

By studying the underlying stochastic processes of the
models considered, transient state probabilities of the
systems are obtained. Steady state results are attempted
wherever possible. The associated optimization problems
are also discussed for some models.
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Renewal theory and Markov renewal theory provide

elegant and powerful tools for analysing the underlying
stochastic processes of the models considered in this
thesis. By identifying the process as a regenerative
or semi-regenerative one the transient as well as the
steady state solutions are obtained.

Chapter 2 deals with a continuous review (5,8)
inventory system with independent non-identically distri
buted interarrival demand times and random lead times.

Explicit expressions are obtained for the distribution
of on-hand inventory. An optimization problem associated
with this model and also the one associated with the model

with zero lead time are discussed. Some numerical examples
are considered and the optimal decision variables are
obtained.

In chapter 3 we consider two models of (s,S) inventory
policy in which the quantity demanded by an arriving customer
depends on the availability such that it does not exceed
what is available on hand. The interarrival times between
demands constitute a family of i.i.d random variables.
Model—I assumes zero lead time. Using renewal theoretic

arguments, the system state probability distribution at
arbitrary time and also the limiting probability distribution
are obtained. Optimal decision rule is also indicated.
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In Model-II we study the situation with random lead time
and in this case the inventory level probability distri
bution at arbitrary time is derived by applying the techniques
of semi—regenerative process. The computation of limiting
distribution is also indicated.

Chapter 4 is devoted to a continuous review (s,S
perishable inventory system having exponential life time
distribution for the commodities in stock. The demand

epochs form a renewal process and the probability distribution
of demand magnitude depends on the time elapsed since the
previous demand. Lead time is assumed to be zero. For this
model the transient and limiting distributions of inventory
level are derived by applying the techniques of semi
regenerative process. Some particular cases are also
discussed.

In chapter 5 an (s,S) inventory policy with varying
ordering levels and random lead times is studied. The
quantity ordered is to bring the level back to S and the
ordering level is determined based on the number of demands
during the previous lead time subject to a maximum level c.
Time-dependent system size probabilities are obtained. The
correlation between the number of demands during a lead
time and the next inventory dry period is obtained. Some
illustrations are also given.
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The last four chapters are concerned with queueing
models. A queueing process of the type Ek/Ga’b/l with
server vacation is considered in chapter 6. The system
is assumed to be of finite capacity. On completing the
service of a batch if the server finds less than 'a' units
(customers) waiting, he goes on vacation of random duration
having a general distribution. If on return from vacation
the number of units waiting is again less than 'a', the
server extends his vacation for a random length of time
independent of and having the same distribution as the
previous one. This goes on until on return from vacation
there are atleast 'a' units in the system (multiple vacation).
The transient system state probability distribution at
arbitrary time point is obtained by identifying the regenera
tion points and using matrix convolutions. Virtual waiting
time distribution is also obtained.

Chapter 7 deals with a service system with single
and batch services. Customers arriving according to a

homogeneous Poisson process enter the service station via
a waiting room. At each time when all the customers in
the service station are served out, the server scans the
waiting room and if he finds less than or equal to a fixed
number 'c' of customers he takes them to the service station
and serves them one at a time according to FCFS (First Come
First Served) rule. If he finds more than 'c' customers the
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server serves them all together. Single/batch service
times have general distributions. Here we consider three
models. In the first model the server starts serving as
soon as an arrival to an empty system takes place. In
the second model when the system becomes empty the server

goes on vacation of a random duration. Multiple vacation
policy is assumed here. Using Markov renewal theoretic
arguments the steady state and transient solution of the
system state probabilities and virtual waiting time
distributions for the two models are obtained. In Model—IIl

a variant of the standard M/G/l queue with single and
batch services is considered. Here we assume that customers

arrive at the service station according to a Poisson process
with parameter p. At the end of each service, if the server
finds more than c customers waiting he serves them all
together in a batch and if there are less than or equal to
c customers, he serves them one at a time according to FCFS
rule. Limiting probabilities of the number of customers in
the system is obtained explicitly by applying the techniques
of semi—regenerative process.

In chapter 8 a single server queueing system with
a finite waiting room is considered. The interarrival times
of customers and service times have phase type distributions.
An arriving customer finding the system full is lost.
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Algorithmically tractable matrix formulas are obtained
for the computation of stationary queue length distri
bution;.

The last chapter deals with a finite capacity
M/G/l queueing system with server vacation schedules
dependent on the number of customers it has served since

the completion of the last vacation. Using Markov
renewal theory the transient system state probabilities
are derived. The virtual waiting time distribution of
a customer in the queue is also obtained.



Chapter~2

AN (s.5l\INvENToRY SYSTEM JITH NON-IDENTICALLY

DLSTRIBUTED INTERARRIVAL DEMAND TIMES AND

RANDOM LEAD TIMEs*

2.1. INTRODUCTION

Inventory systems of (s,S) type had been studied
quite extensively in the past. A systematic account of
the probabilistic treatment in the study of inventory
systems using renewal theoretic arguments has been
given by Arrow, Karlin and Scarf (1958). Further details
of work carried out in this field can be found in Hadley
and whitin (1963), Veinott (1966), Kaplan (1970), Gross
and Harris (l97l). Tijms (1972) gave a detailed analysis
of (s,S) inventory systems and chapter 3 of his monograph
deals with its probabilistic analysis. Sivazlian (1974)
has considered an (s,S) inventory model in which unit
demands of items occur with arbitrary interarrival times
between demands and zero lead time. Srinivasan (1979)

examined the same problem with random lead times.

Sahin (1979) analysed the model with general interarrival
demand distributions and constant lead times. In all the

above situations the distribution of on hand inventory

* This appeared in Cahiers du C.E.R.O. Vol.29,

30
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were computed and associated optimization problems were
Solved o

In this chapter we consider a continuous review
(s,S) inventory model with time between successive unit
demands independent but not identically distributed random

variables. Specifically XS, XS_l, ..., Xl,XO be the times
between successive demands when the inventory levels are

S, S-l, ..., l, 0 respectively. We assume that lead
times are independent and identically distributed (ioiod)
random variables and are independent of the arrivals of
demands. It is quite natural to expect in a market that
time gap between successive demands are non-identically
distributed and so this model might be more realistic.
Section 2.2 contains a complete description of the model.
System state probabilities are derived in Section 2.3.
The cost function of the model is formulated in

Section 2.4. The steady state behaviour of the system
is obtained in Section 2.5 and the last section is concerned
with the case when lead times are zero and the associated

optimization problem, followed by a numerical example.

The renewal theorem for independent but not
identically distributed random variables was given by
Smith (l964) which may be used in analysing the model
presented here.



2.2. DESCRIPTION OF THE INVENTORY POLICY

Let S be the maximum capacity of a ware house.

At time t = O the inventory level is 8. Due to incoming
demands the stock level goes on decreasing. The demands
are assumed to occur for one unit at a time and the time
intervals between the arrivals of two consecutive demands

form a family of independent non—identically distributed
random variables. As soon as the stock level drops down
to s, the reorder level, an order for replenishment is
placed for S-s units. We assume that S > 25 to avoid
perpetual shortage. The lead time- the time interval
measured from the epoch when the stock level drops to s
to the epoch when the quantity S—s reaches the ware house
is assumed to be distributed arbitrarily with distribution
function G(.) but independent of stock level and demand.
Lead times are assumed to be ioiodo random variables. The

market considered here is competitive enough to rule out
back-logging of demands and the demands that emanate

during the stock out period are deemed to be lost. Thus
the stock level can be described by a discrete valued

stochastic process {:I(t), t 3 0'} with 1(0) = 5.

Let Fa(.), ( a 2 O,l,2,...,S) be the successive
distribution function of the time interval Xa between the
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arrivals of two consecutive demands, when there are a
( a = O,l,2,...,S) units in the inventory. For the sake
of convenience, the underlying distributions are taken
as absolutely continuous. The corresponding small letters
denote the density functions, All the results can easily
be reconstructed, however, for discrete case.

I(t) C) Reorder time/\

[3 Replenishment time

S..---.

s* :
O «43 s E— ; t

Fig.2.l. A typical plot of the Inventory level against
time.

The following notations are used in the sequel:

I(t) - on-hand Inventory level at time t.
x

f*g(x) — convolution f f(x~y)g(y)dy
o

for f(x), g(x) defined on the set of non
negative real numbers.
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f*k(x) — k-fold convolution of f(x) with itself,
‘X’

(f O(x) 21 ).

T(.) - l-F(.), the survival function

3(a) — Laplace transform f e-axa(x)dx.
o

203 MAIN RESULTS

Let I(t) denotes the on hand Inventory level at
arbitrary time t. The principal quantity of interest is
the probability mass function of the inventory level at
any arbitrary time t on the time axis. ie., Pr {I(t)=n},
D :3 0’l’2’ooo,S0

Suppose now that we consider the sequence of
times at which the inventory level reaches 5 (the reorder

level) from above. Let Y1 denote the time elapsed from
origin until the first event occured (reaching level s).

Y2 the time-elapsed between the first and second event
and so on. The sequence of random variables {YR} , k=l,2,...
forms a modified renewal process [See Cox (l962)]. In
each of the following expressions we will make use of the
renewal density m(u) of the time points at which the
inventory level reach s. An explicit expression for m(u)
is also given.



(i)

(ii)

(iii)

(iv)

Pr {I(t)=O} = E m(u)§(t-u) E (fs*...*'fl)(v~u)

( : f:m(t—v»dv dum=O

For n:l,2,...,s—l,t _ t
Pr {I(t)=n}~= g m(u)G(t-u) i (fS*fs_l* ... * fn+l)(V-U)

?n(t—v)dv du

t
Pr {I(t)=s} = f m(u)E(t-u)?s(t-u)du

O

For n=s+l, s+2, ..., S—s—l

Pr {I(t)=n] = (FS*FS_l* ... *“n+1’ S 8-1

t t _ E
+ f m{.L') f Fs(V""U)g(V""U)  °°‘* f'n+l)(.W'-V)o u v

? (t-w)dw dv dun5-1 t t _
+ kil é m(u) fl (f$*fs_l*...*fS_k+l)(v—u)t _ tr’ _a

i FS_k(w-v)g(w—u) ¢(fS_k*...*fn+l)(x—w)

?n(:—x)dx dw dv du



t t t _ w *
+ f m(u) f (fS*... *fl)(v-u) f ('2 fOm(w—v) )o u v m=o
‘C __ 1',
i FO(x-w)g(x—u) i(fS_S*fS_S_l* ... *fn+l)(y—x)

'?n(t-y)dy dx dw dv du.

(v) Pr {I(t)=S-s}»= (F O 0*?S

‘t

FS(v-u)g(v-u) i (fS*fS_l*...*fCCI'*~r+

t
+ f m(u)

0

?Q_S(t—w)dw dv duN-Is-l t t t _
+ kzl f m(u) f (fS*fS_l*...*fS_k+l)(V-u) f FS_k(w-v)g(w—u)= 0 u ‘ Vt I _

i \fs_k* ..* fs_s+l)(x—w)FS_s(t-x)dx dw dv du

t ‘t 1.’ co *
+ fm(u) f (fs*fS_l*...* fl)(v-u) f ( 2 f m(w-V) )O U V m==o

?O(x-w) g(x—u) ?S_S(t-x)dx dw dv.du.
é“nd



(vi) For n = S-s+l, S—s+2, ..., °S—l

Pr {I(t)=n} = (FS*FS_l*...*Fn+l-FS*FS_l*...*Fn)(t)t t_ t
+ £m(u) 5 FS(v—u)g(v—u) 5 (fS*fS_l*...* fn+l)(w-v)

?n(t-w)dw dv du

S—n-1 t t
+ kZl f m(u) J (fS*fs_l* . *fS_k+l)(v~u)= 0 u_ f

f FS_k(w-v)g(w—u) f (fS_k*o.#-fn+l)(x-w)v v:
?n(t-x)dx dw dv du

1-,_ 1:
+ Jm(u) f (fS*fS_l*...*fs_S+n+l)(v-u)o ut '.I. 1

f Fs_S+n(w-V) gfw-U) Fn(t-w)dw dv du
V

and finally

t
(vii) pr{1(t)=s} —_- T=S(t)+ f m(u)

O



Explanation of (i) - (vii):

Since I(o)=S, in order to have I(t)=O the inventory
must have crossed the level s from above atleast once. Let

u be the last instant at which inventory level drops to s.
After u, the replenishment of the stock does not materialise
upto t and the inventory level reaches zero level at v
( u<vgt) and there may be infinite number of lost demands
in (v,t]. Using these facts we can arrive at (i).
Expressions (ii) and (iii) follow on similar lineso

To prove (iv) we recognise that I(t) 2 n can
happen with or without crossing the level s. The first
event can be classified into three mutually exclusive and
exhaustive set of events according as (a) after time u
(the last instant at which inventory level drops to s)
there is replenishment before any demand occurs and after

replenishment the inventory level comes down to n at time t,
(b) after time u there are exactly k (k=l,2,...,s—l) demands,
then replenishment takes place and thereafter inventory level
drops down to n at time t, and (c) after time u inventory
level comes down to zero level, thereafter replenishment
occurs and then inventory level drops down to n at time t.
Expressions (v), (vi) and (vii) follow similarly.



Let ¢0(.) denotes the probability density function
of Y1 and ¢(.) the common probability density function of
the random variables Y2,Y3, ... . Then we have

¢O(u) = (fS*fS_l*,,, *fS+l)(u) (2.301)
and

¢(u) = E ?S(v)g(v) (fS*fS_l*o..*fs+l)(u-v)dvt u_
g (fS*fs_l*...*fs_k+l)(V) £FS_k(w-V)g(w)

(fS_k*....*f )(u—w)dw dvs+l

+ * ..-ll-...-E V W-V7‘<rf f><>JL'l(°§r*’*'*( >>O s 3-; l V m=O 0

EO(x—w)(f *f )(h~x)dx dw dvS-s*f" s+l
E'%C

(2.3.2)

Then the renewal density of reorder points is given by

m(u) = (¢O* 2 (25 )(u-)» (2.3.3)
I'1=0
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2.4. COST FUNCTION OF THE MODEL

Having obtained an explicit expression for Pr {I(t)=ni}
in terms of the probability density functions of the basic
random variables in question we can obtain the inventory
carrying (holding) cost. If h is the holding cost per
unit item per unit time, then the total inventory holding
cost during the interval (o,t) is

(‘FH(t) = h ' I(u)du (2.4.1)
O'*~

where the above integral can be interpreted in the Ito
sense (see Mc Shane (l974))o Taking expected value on
both sides of (2.4.l)

we get

t
E[H(t)] = t1 n f'Pr {I(tpa{}du (2.402)

0Fl IIMUJ i-‘

Let K be the fixed order cost; c = variable procure
ment cost per unit and k = shortage cost per unit. The
average length of time for which there is shortage is

S

E(L— x xi)* where L is the lead time and x* indicates1:1

max [O,X). The expected number of lost demands is therefore

I40’)equal to E(L- Xi)+/E(Xo). So the expected shortagei l
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cost per cycle (representing the length of time between two
successive epochs at which the inventory level comes to
reorder level) is

S +
E(L-.2 xi)k 1:1 (2.403)

E(x0)

and K+c(S-s) is the fixed cost for procurement per cycle.
If we multiply this by M(t), the renewal function correspond

ing to the renewal process-{Yn] , we obtain the expected> l

procurement cost over the interval (O,t). The expected
shortage cost over the interval (O,t) is

S

E(L— 2 xi)*k 1:1 [M(t)—lj
E(Xo)

Hence we have the total expected cost during the interval
(O,t) as

C(s,S,t) = h I(u)=n} du + M(t)[K+c(S-sj]
nrnua

J
<>*aa

Ti H
«re

11 I [ m(t)-1 ] (2.4.4)
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2.5. STEADY STATE BEHAVIOUR OF THE SYSTEM

Using the asymptotic results of renewal theory,

we obtain the limiting distribution of the discrete
valued stochastic process I(t) as follows. The limiting
probability mass function n(n) is given by

pO(n.u)du
n(n) =

x ¢(x) dx
osat 0“fi3

where

po(n,t) = lim Pr {I(tO+t)=n, N(to+t)-N(to)= o/A-+0

1(to)= s < I(tO-M}.

N(t) sup{n g 0: Y1-+Y2+  + Y“ 5_ t}

2.6. THE MODEL WITH ZERO LEAD TIME

As a particular case, if we assume that the lead

time is zero in the model considered above, then {I(t),t Z O}
is a discrete valued continuous parameter stochastic process
taking values s+l, 5+2, ..., 8. Here the sequence of random

variables {YR}, k=l,2,..., forms a renewal process in which
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distribution of Yk is given by

O%:<

(f *fS_l*...*f$+l)(u)duPr{Y'_{_y}= 5

Its density be denoted by f(o). The probability that the
kth order, k=l,2,3,... will be placed in the interval t
and t+dt is

*k
Pr ;_t < Yl+Y2+  + Yk g t-mt}: f (t),

kl"-1,2,3, one

Then the probability mass function of I(t) is:
For n = 5+1, 5+2, ..., S-l

t
Pr {1(t)=n} = [ f(fS*fS_l+.. *fn+l)(u)du

O

t
0

oo '1’, as
+ kil £ [ 3 (fS*fS_lx...*fn+l)(u) dux _ *k

=-f (f *fS_l*...*fn)(U)dUJ f (t—x)dX
O



and Pr{I(t)=S}= [l- } fS(u)du] + :0

Let

B(n9a)

fn<a>

A

and f(a)

Then

For n=s+l,

$(n9a)

/\
and p(S,a)

STEADY STATE DISTRIBUTION OF THE INVENTORY LEVEL

Let 0’ n
n = 5+1, s+2,

ll

3+2,

0“wdk=l
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ex *k
[l- f fS(u)du]f (t-x)dxo

?e"°‘t pr{I(t)=n}dt
O

? e'“t fn(t)dt
O

f e‘“t f(t)dt
O

, s—_1

7% [?S(a)  ?n+l(a)_?S(a)  ?n(a)]

El %[?S(a) ... ?n+l(a)-?s(a)...?n(a)][?(a)]k

1 ? (a) E ( A A '1E S ... n+1 a)[l—fn(a)][l—f(a)]

é [l—?s(a)]l1—?(a)]"l

(2.6.l)

(2.6.2)

be the probability that exactly n units,
..., S are in the inventory in the steady state.
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Then by a Tauberian theorem, [see Widder (l946)]

P = P1‘ {I-zn}n lim Pr {1(t)=n}
t——9w

lim a B(n,a)
a—~9O

For n=s+l,s+2,...,S-1,

A {'1 ooo ? )P“ = lim _EF ) “+l(a [ “ 1
“*0 [1—%‘<a)]

0 \ COO f%‘c > ? < > " '<
a*_9O f'(a) Hospital's

rule)

_ E(Xn)" S
2 E(Xi)1=s+l

1-? (a) %--Ia)Us = 11m A5 = lim Ab \a——+O l~f(a) a——9O f'{a)

-1-:(xS)

Z ELXi)1=s+l
Thus

Cixp)Pm = C ‘ , n=s+l,s+2,...,S. (2.6.?)
E E(}-'.i)
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Here when we assume Xn's to be independent identically
distributed random variables we get the results of
Sivazlian (1974).

OBJECTIVE FUNCTION AND OPTIMAL DECISION RULES FOR ZERO
LEAD TIME CA3 :

If delivery of orders is instantaneous, then no shortage
is allowed. Our objective function is the steady state total
expected cost per unit time; we have to choose the decision
variables s and 3 so as to minimize the objective function.

The expected time elapsed between two successive orders
is

S

(Y) = Z E(Xi)i=s+l *IT}

Therefore the expected number of orders placed per unit time is

1 = S 1 (2.e.3)
X E(Xi)i=S+l

tn _~<

Expected inventory level at any instant of time iss s s O a
E(I) = Z nP = 2 nE(Xn)/ 2 E(X.) (2.6.4)n=s+l n n s+l i=s+l 1
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Total expected cost per unit time is

K+c S-5)C(S,S) = E Y + h E(I)

where K = fixed order cost, c = variable procurement cost
per unit, h = holding cost per unit per unit time.

Substituting for E(Y) and E(l), we have

8 s
c(s,s) = [ K+c(S-s)+h 2 n E(Xn)]/ 2 E(Xn) (2.a.s)n=s+l n=s+l

where s and S are non—negative integers and s < 8.

Obviously the above expression is not separable in s
and S. The minimization of C(s,S) can be done, knowing the
first moments of the interarrival times, with the aid of a
computer.

Here s* = O is the optimal value. The optimum value of S
is obtained by minimizing the function

n E{Xn)] / g E(Xn) (2.6.6)
S

Cl(S) = F K+cS+h 2=1 n—ln

over the set of positive integers S. we shall now give an
example typical of the-above case.



EXAMPLE

Let Xn follow exponential distribution with para»
meter Kn. Assume that S g_25. For specified values of
K,c,h and Xn's the optimal values S* and Cl(S*) obtained
using a computer are given below:

3 Values S* Cl(S*)
an=n (n:l,2,...,25) 11 23.842
an: 1/n(n=1,:,...,25) 6 7.000
3n's(n=l,2,...,25) are
1.02, 201, 104’ 203, 205H 4.3, 5.0, 2.3, 4.1, 4.03 4.2, 1.5, 2.4, 3.6, 4.6 14 17.6253.2, 1.7, 4.9, 1.3, 2.0P: 3.9, 4.2, 1.7, 2.4, 4.9

H
O

(5 3n's(n=l,2,.. ,25) arem)

i 1.3, 2.4, 4.2, 5.0, 3.14.0, 2.8. 4.2, 3.9, 2.1 14 18.841
1.2, 1.9, 1.7, 2.8, 3.9
4.0, 4.9, 4.8, 3.7, 3.6
2.5, 2.4, 1.3, 1.2, 3.6
3q's reversed in order of‘ Illrd row 14 19.085
3n's reversed in order of. .1“./th IOW  18.

‘E amen, n=1,_,.. ,25 10 25.606A-4'3, -_
fiffi Knzl/n,n=i,2,...,25 8 4.667



Remark:

The model analysed in Section 2.3 can be extended
to allow vacations to the server whenever the system becomes
empty. In this case also one can write expressions for the
inventory level probabilities at arbitrary time points but
the optimization part seems to be difficult.



Chapter-3

AN‘ {ms} IN‘-fENTOR‘r’ ‘;'sTE.=‘n '..".'I’{‘I-i STATE

DEPENDENT DEMANDS

3.1 INTRODUCTION

Conventional inventory modehsassume demand and

inventorv level as independent quantities. In this
chapter we consider a continuous review (s,S) inventory
model in which quantity demanded by each arriving unit

is a positive integer valued random variable that depends
on the present inventory level. The time dura+ionsbetween
successive demands are ioiod random variables with finite

expectations. It is assumed that quantity demanded will
not exceed what is available. In situations like famine
etc. the Government directs the shopkeepers to exhibit
the quantity of items available with them and its price.
Customers rationalv buy items depending on its availability.
Somejtimes customers may be motivated to procure with the

ease of availability. This kind of behaviour may be
approximated by a stock dependent demand pattern.

Gupta and Vrat (1986) suggested an EOQ model through

cost minimization technique to take care of stock dependent
consumption rate. This could not take care of stock
dependent demand rate except where the demand rate is

‘dependent on replenishment size. Mandal and Phaujdar(l989)
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proposed an EOQ model with instantaneous replenishment,

without shortages and demand rate depending upon the

current stock level, which is assumed to be linearly
increasing with stock status.

Two models are treated in this chapter. In
section 3.2 we consider the model with zero lead time.

Using renewal theoretic arguments, the system state
probability distribution at arbitrary time and also the
limiting distribution are obtained. The results are
illustrated by a numerical example and a method of
finding optimal decision rules is briefly discussed.
Section 3.3 is concerned with the model with random

lead time. In this case inventory level probability
distribution at arbitrary time is derived by applying
the techniques of semi-regenerative process. The
computation of limiting distribution is also indicated.

he introduce the following notations used in
this chapter.

I(t) — Inventory level at time t ( |\/ 0)

F(.) ~ Distribution function of time between two
successive demands (interarrival time
distribution}.

My (.) — Density function of F(.}.



[-00
(.._lo

F11

rm

‘Tl

n-fold convolution of F with itself,
*

n.—..l,2,...., with F °(t) 2 1.

Lead time distribution function

Density function of G(o)

as
L *n(

H M8

CZ

I";=.l,2,o..,S.
Laplace transform of P(n,t), n=l,2,...gS.

Probability that j units are demanded when
the inventory level is 1

Probabilitr that at a demand epoch there
were * units and due to the demand the ievel
is Drought * level j.

S-s

{s+i, 5+2. ..., S }
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I’
Z. . O00 . 0' ' ‘ 000p‘ '.l%'l2f 'f“‘1 . . P111 P1112 in-13’

(1 > 11 > 12 > ... >1n_l>3)
s 2 i > 3

flp : 4lnj
Z

1l,12,...,1n_l PiilPili2...Pi j;. . . n—l
(1 ) 11 > 12 > ... >in_l > s)L i ) s, 3 < s

3.2 MODEL—I: ZERO LEAD TIME CASE

Here we assume that lead time is zero and no

shortage is permitted. As soon as the inventory level
falls to s or below an order is placed to bring back

the inventory to S. If Xn denotes the inventory level
after the nth demand, then -{xnjkforms a Markov chain
with state space F = {s+1, s+2, ..., s } and its transi
tion probabilities are given by

Jo fori_j,j;éSPij = Pr{Xn+l=j I Xn = 1} = ii(i_j) for i > j, j # S
2 q for i = s+l,s+2,...,S;

Lk=i—s ik J = 3

First of all, we shall obtain the distribution
of a cycle which is defined as the time duration between
two successive S to 5 transitions. We assume that

X0 =  '-="'- So
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Let Z be the length of a cycle. Then

h(z) = Pr{ 2 < Z 3 z+dz }

Pr{z < Yl+Y2+ ... + Yn g z+dz} ¢g,S
I

IIME-"n l

where‘Yl,Y2, ... are ioi.d random variables with distri
bution F(.) and ¢g S is the probability that starting9

from S, the inventory level reaches back to S at the nth
transition for the first time.

o n
1°’ ¢s,s il,i2,...,in_l 6 F Psil P1112 °°' pin_lS

S > 11 > i2 >...>in__l>s

M *n nThus h(z) = 2 f (2) ¢ (3.2.1)n=l 5'5
Let Zl,Z2, ... be the lengths of successive cycles.

The distribution of Zi’s are i.i.d with p.d.f. h(.). Then
{Z1} forms a renewal process and the corresponding renewal
density is given by

m(u) = g h*r(u) (3.2.2)
r=l
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Now we can find out the probability distribution
of the system size. We have

P(S,t) = l—F(t) + J m(u) [1-F(t-u)jdu (3.2.3)
o

and for s+l g i < S
S i

P(i.t) = [F*j(t)-F*(5*l)(t)] ¢2.i
IIMIj 1

Ci’

_zi [F*j(t—u)-F*j+l(t—u)]¢g’i du+ f m(u)0 321
(302.4)

where eg i is the probability of first visit to i in j7

transitions, starting from 8, without visiting the state
S in between.

LIMITING PROBABILITY DISTRIBUTION

Taking Laplace transforms of both sides of
(302.3) we get

’13(s.a) =-§ L1——?(a)J + ’rfi(a) ;};[1—?(a)J

A co,‘ “mBut m(a) = 2 [h(a)]r = h :r=l l—h(«) (since 3(a) < 1)



56

where 9(a) = ngl [?(a)]n ¢g S

Theréfore

M AA A Z [f(a)]n ¢g’SP(S,a) = %[lLf(a)] + [l+ “:1 ] (3.2.5)
M “ —n n

1 n:l[f(a)J ¢S,5

Similarly, taking Laplace transforms of both
sides of (3.2.4), we get

A 5-‘ A . A . .
P(i.a) = jg: [“i'[f((1)]J - -f-[[f(a)]3+l] ¢g_i

5331 ’‘< > [-1-[?( >15 -1-[H >13“ 9253'+j:l m a a a — a a ] 8,1
5-31. l A  A=

M A n n
“El [f(a)] ¢3,S[l + " ], (3.2.6)
1- § [?(a)]n ¢nn=l S's

i 3   000-, S"].o
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Let P“ be the probability that the inventory level is n
(n: s+l, s+2, ..., S) in the steady state. Then,9 0 A

pn = 11m Pr {1(t)=n] = 11m a P(n,a)‘[2?-)0-o Q--PO
It is easy to verify from (3.2.5) that

[1-?(a)]P8 = lim na-90
IIME 1[?<a>J“ ¢g,5

1- g [?(a)]n ¢? 5n=l °’
To obtain the limiting value of this indeterminate expression,
we apply L’ Hospital's rule once, yielding

M

3, ¢§,s—- n:
Ps * M ¢nZ n .n-l 5'8

Similarly, we get

S-1 . M
2 ¢3 . 2 p“

P. = M1 n2 n ¢n=l S’S

(3.2.7)

, i =  $+2,ooo’S‘l

(3.2.8)



Thus, in the steady state, the inventory level
is distributed as given in (3.2.7) and (3.208) and is
independent of the distribution of the interarxival time
between demands. One can easily see that this result
reduces to Sivazlian (1974) when unit quantities a1e
demandedo Further this reduces to Sahin (i983) and
Ramanarayanan and Jacob (1987) with zero lead time when

quantity demanded are i.i.d random variables.

Examplg

SLn)p0St* that; s:LL. Srffi. ilion I’ : {.l,2,L3,4,E>}7fa-or j_fl1 o 0 0 0
1/2 1/2 0 0 0

Let Q = (qij)i’jFF: 1/3 1/3 1/3 0 01/4 1/4 1/4 1/4 0
1/5 1/5 1/5 1/5 1/5

0 0 0 0 1
1/2 0 0 0 1/2

Then P = 1/3 1/3 0 0 1/3
1/4 1/4 1/4 0 1/4
1/5 1/5 1/5 1/5 1/5



.1 . 
¢§’i, 1 e 1 and k : 1,
in the following table

1,0

0

.,b are obtained as given

k 1 2 3 4 5
1

1 1/5 13/50 3/40 1/120 0
2 1/5 7/50 1/60 0 03 1/5 1/20 0 0 04 1/5 0 0 0 0
5 1/5 5/12 7/24 1/12 1/120

The steady—state probabilities are calculated

(3.2.7) and (3.208) as

using

n Pn

l O.2l8978l34
2 O.l45985422
3 O.lO9489067
4 0.08759l253
5 O.437956208
Z 1.000000144
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JOII'.xI'1' [‘*I’;3TRIi3UTION 017 THIS QUE-xI‘JI'I'I”Y ORUF.-IRI7.IJ AND THE

LENGTH OF A CYCLE

Let Q denotes the quantity ordered in a cycle
whose length is Z. Then the joint distribution of Q
and Z is

n(n,z) = Pr {Q:n, z < Z 3 z+dz}

M

= 2 Pr[Q=n, z < z < z+dz|k demands}k=l "
PI‘{k demands}

M7- Z Z P .p. a one
k=l S>il>i2>...>ik_l>s 511 1112' '

P. . q. . _ _ *ke1k_21k_l 1k_l,1k_l (S n) f (2)

Now the expected value of the quantity ordered per unit
time can be calculated as

11

ll MU)

ELQ/Z] 7 (n/2) n(n.z) dz (3.2.9)
0n M

Also E[Z] n E(Y) wgs (3.2.1o)
IIME 1I1
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OBJECTIVE FUNCTION AND OPTIMAL DECISlON RULE

We assume that the procurement cost consists
of a fixed cost K and variable cost c per unite The
holding cost is h per unit per unit time. Our objective
function here is the steady state expected total cost
per unit time; the decision variables s and S are to be
selected so as to minimize the objective function.

Expected inventory at any given time is

S
ECI) = 2 1 p.,

s

where Pi's_are given by {3.2.7) and {3.2.8).

The total expected cost per unit time is

) = .Kg + c ELQ/Z] + n 5(1) (3.2.:1)Y’:
J-o

The value of s and S which minimize the above expression
,are the optimal values ( p -1, or a -iven (q..)}.

13
l_{ 1

Remark

The model with zero lead time and quantity demanded

not restricted to be atmost what is available can be analysed
simila fashion if we as(D Hin (D ume that the replenishment is

done in suzh a way as to bring the inventory on hand back to
Cf‘) after meeting the demand that has just taken place.



3.3 MODEL—II: RANDOM LEAD TIME CASE

In this section we consider the model with

random lead times. The quantities demanded depend on
the inventory level at the demand epoch. Not more than
what is available will be demanded (will be sold). Lead

[40t mes are i.i.d random variables with distribution

function G(.) and density g(.). No backlogging is allowed.
As soon as the inventory level falls to s or below due
to a demand, an order is placed and the quantity ordered
for is to bring back the level to 5 (ie. if inventory
on hand is i (g s) at the time of ordering, then the
quantity ordered is S-i. The demands that arise during
a dry period are lost (in fact, by our assumption no
item will be demanded by the arrivals during dry period).

Let YO,Yl,Y9,...,Yn ... be the successive inventory
levels at which orders are placed and O = To < To < T < ...2

< Tn < ... be the corresponding ordering epochs. Then
{(YP,Tn), n = O,l,2,... } constitutes a Markov renewal
process on the state space E =.{O,l,2,...,s}. The semi
Markov kernel of this process is

Q(i, ,t) = PLY(-1. I/\ c+ \ v-< II t...
L. J
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and is given by

Q(i:j9t) =
O‘ad C“wd' <“afl Ilb1H

f*n(u) ¢?,0 k(v—u) g(w)
\'

n l

S"l*j *m *(m+l)
2 [’ —Lt””1“F (t“Yl] ¢§_i .dw dv dum=l [l-F(w-V) ] '3

tfi ‘E4 3. i""'A\ *.
+ J J E E f n(u) ¢2 P g(V)o u k=l n:o ’

2 L La J¢S_i+k jdv du,m=l [1-F(v-u)] ’
i,j E E (3.3°l)

In the above expression for Q(i,j,t), the first
term on the right deals with the case of arrivals (demands)
taking place during dry period and second one considers
the case of no dry period in between two consecutive
replenishments. Let an order placing point be taken as
time origin and suppose at such a point the level falls
to i( 5 s), another n (n:l,2,..,i) demands bring it to
level zero at time u, (if at time 0 the level has not
already become zero due to the demand) then follows a dry
period with a number of arrivals, this is represented by
k(v-u} demand‘quantity b’ those arrivals is zero b our.7
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assumption— or we may call these unmet demands, the

last such taking place at time v. The replenishment
takes place at time w(> v). Now the inventory level
is S-i. The next demand (the one after time v) takes
place after time w and in the interval (w,t) there are
exactly m demands, taking away a total of S-i-j units to
bring the level to j(g 5) thereby resulting in the next
order placing. This explains the first term on the right
in (3.3.l). The second term is similarly explained
except that in this case there is no dry period.

The Markov renewal functions of the process is

given by

R(i.j.‘c) 2 Q”(:,j,t), 1,3‘ e E (3.3.2)R0
where

Q“~(i.3‘-.t)= Pr [ \r,,=j, inst / You: 1

H= 2 ”
R J Q(i,kdu)Qn"l{k,j,t-u)eE.o

and o°(i,j,t).—.{é  ?-3: for all t > o
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TIME DEPENDENT PROBABILITY DISTRIBUTION OF INVENTORY

LEVEL.

Assume that at time zero an order has just been
placed with inventory level at i (3 s) and the demand
process starts. Define

1.*.-JoP(i,j.t) = Pr [I(:)=j / :(o+)= Yo:
i e E, 3 e E.

Since the stochastic process {l(t), t Z O is a semic

regenerative process with the embedded Markov renewal

process (Y,T) =:{(Yn,Tn}, n=O,l,2,...}., the function
P(i,j,t) satisfies the following Markov renewal equation.
[ see Cinlar (1975) J.

Q{i2r1dU) p(r9j9t"U)7 (30 ()3 0 CA)
\../

where

K(i,3,t) — Pr[I(t)_.3, Tl>‘t/I{O+)=i:,, .165, 36::

For any t 3 O, the function K{i,j,t) is given by

i) for i E E and i < j 3 s
K(i9j9t) = 0
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ii) for i E E, j < i.

. . - i—j *m - *(m+l) mm=l ’
iii) for i e E, s < j g 5-1

*n n
r<<:.j.t) = i 2 f cu) cam gm

S~i+k—j [F*m(t_u)_F*(m+l)(t_El] dv du2
m=l [l-F(v—w)]

3 E t i *n n
+ J J f E f (u) ¢; 0 k(v—u) g(w)O U V nzl *'

5'§‘j[F*m(t-v)-F*(m*l)(t—y1] dw dv du
m=l [1-F(W-V)]

and finally

iv) for i E E, S-1 < j 3 S

. _ t t E i—k **n, nK(19J9t) = J J L 2 I (U) ¢i k g(V)0 u k=j—S—i n=l ’
s-‘ k~‘ -* * 1

§+ J [r mfit-U)-F (m+ )(t-U)]
mzl [1-F(v—u)]

dv du
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AA A . ..th
Let Pa, Ka and Qa denote matrices whose (1,3)

elements are $(i,j,a), R(i,j,a) and 6(i,j,a) respectively,
where

’i>(i.j.a) = J‘ exp <—at> Q(i.3.dt)

Then the Laplace transform of the set of Markov renewal

equations can be expressed as

A A ' A APa == (I-Qa) kn = Ralgx (3.3.4)
A

where Ra is the matrix of Laplace transform of Markov
renewal functions of the markov renewal process (Y,T)
which exists for a > 0 [see Cinlar (l975) ].

LIMITING DISTRIBUTION OF THE INVENTORY LEVEL

In order to obtain the limiting distribution of

the stock level, consider the Markov chain Y = {Yn, n > 0}
associated with the Markov renewal process (Y,T). The
transition probability matrix Q‘ = (Q”(i,j)) of order s
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is given by

Q'(i.j) = lim Q(iaj.t)
1',---500

If the chain Y is irreducible, it possesses a

unique stationary distribution 5 = (no,nl,..., us)
which satisfies 5 Q’ = E and 2 nj = 1.

Let 5 : (po,p P2, ..., PS) denotes the steady17

state probability vector of the inventory level where

Pj = lim P(i,j,t) is the limiting distribution of the‘l',—->00

inventory level. Now making use of the result given in
Cinlar (1975) and assuming that (Y,T) is irreducible
recurrent aperiodic we have

P. = 2 nk f K(k,j,t)dt/ 2 nkmk (3.3.s)3 k e E o kera
where mk is the mean sojourn time in state k, given by

mk = [ 1-1; Q(k,j,t)] dt.
3O'w8



Chapter—4

MARKOV RENEWAL THEORETIC ANALYSIS OF

A PERISHABLE INVENTORY SYSTEM

4.1 INTRODUCTION

Inventory systems of (s,S) type had been studied
quite extensively in the past. The details of the work
carried out in this field can be found in Arrow, Karlin
and Scarf (1958), Hadley and Whittin (1963), Veinott(l966),
Sivazlian (1974), Srinivasan (1979), Sabin (1979), Beckmann
and Srinivasan (1987) etc.

The earliest work on the decay (perishability)
problem is due to Ghare and Schrader(l963) who considered

the generalization of the standard EOQ model without short
ages. Their model was extended to more general types of
deterioration by Covert and Philip (1973) and Shah (1977).
In his paper on perishable inventory systems, Nahmias (1982)
reviews various models and objective functions in the
analysis of such systems. Motivated by the study of blood
bank models Kaspi and Perry (1983, 1984) and Perry (l985)
have studied inventory systems for perishable commodities
in which life time of the items stored are fixed as well
as random variables. They utilized the analogy between
these systems and a queueing system with impatient customers,
to study the process of lost demands, the number of units in

69
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the system etc. Kalpakam and Arivarignan (19853) have
studied an (s,S) inventory system having one exhibiting
item subject to random failure and obtained the limiting
distribution of position inventory by the technique of
semi-regenerative process, when quantity demanded is one
unit. Again (s,S) inventory system with one exhibiting
item subject to exponentially distributed failure time
and quantity demanded by an arriving unit depending on

the time elapsed since the last arrival is investigated
in Kalpakam and Arivarignan (l985b). In both cases they
assume zero lead time. The exhibited item on failure is

immediately replaced by another item from the stock.

This chapter is devoted to a continuous review
(s,S) inventory system in which depletion of stock takes
place due to random demand as well as random failures
of items, under the assumption that the demand epochs

form a renewal process and the demand magnitude have an

arbitrary distribution which depend on the interarrival
time of demand epochs. Each unit in the stock has a
random life time. The replenishment of stock is assumed
to be instantaneous.

Here the inventory levels change due to demand

or due to depletion of items. Clearly the instants at
which units are removed from the stock do not form a



renewal process. Hence the usual analysis of the
stochastic process of inventory level through renewal
theoretic methods fails. we analyse the model by
identifying an embedded Markov renewal structure in
the stochastic process of the stock level which is seen
to be semi-regenerative.

This chapter is organized as follows. Section 4.2
is devoted to problem formulation and analysis of the
model. The transient solution of the model is derived
explicitly in this section. In section 4.3 we derive the
steady state solution making use of the results obtained
in Section 4.2. In Section 4.4 we mention some special
cases of the model described earlier.

4.2. PROBLEM FORMULATION AND ANALYSIS

The maximum capacity of the warehouse is fixed as

5 units. Each item in the inventory has negative exponential
life time with parameter p. The failed items are disposed
off. The demands are assumed to occur in such a fashion
that the time interval between two consecutive demand

points constitute a family of i.i.d random variables with
common distribution function F(.), an arbitrary conditional
probability mass function for demand magnitudes depending

only on the time elapsed from the previous demand point.



Further whenever the st

level less than or equal to st
ment is placed to bring the
aneously.

The following notations

f(t)*9(t)
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ck level drops to a
< S), an order for replenish

2 ck level back to S instant

are used in this chapter:

- Convolution of functions f(t) and g(t)

f*n(t) — n-fold convolution of f(t) (f*°(t)E£l)

%(a) - Lapiace transform of f(t).
_ (1 if n 2 o5(“) 10 if n < o

N - {1,2,3, .. }
N0 T  .0. JL
M - S-s
E - {i,2,.. ,m }
?(t) — l-F(t)
bk(t) ~ The conditional probability that the quantity

demanded is k, given that the time interval
since the last demand is t ( k=l,2,...)

bk(t) — rik br(t) ( k=l,2,... )
¢(t) - l—exp(-ut)
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m“Vn<t> — ( 3 ) [ ¢<t) J“ [ 1-¢<t) ]m‘”,

D H O,l,2,..., m
m S+l,S+2’ooo,SO1!

(ie. probability that exactly n out of m
stocked items fail in [O,t] ).

m

mT1n(t) "' kin
n '<t> - J1-< n (t) >m n dt Inri

l(t) - Inventory level (stock level) at time t.

Let 0 = To < Tl < T2 < ... be the times at which
demand occurs. I(t) assumes values in the set .{s+l,
s+2, ...., s+M }. Let us define

In = I(Td+),r1 e No

Let a < a2 < ... be the times at which stock isl
replenished. Define

gn(i,t) = lim pr{t < an 3 t+6/ I(O+)=s+i,Tl>t} /56-+0

(4.2.l)
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ie, gn(i,t) denotes the conditional probability that the
nth replenishment takes place in (t,t+6) given that the

stock level is initially s+i and T1 > t.

We prove the following theorem:

Theorem
The stochastic process (I,T) = {(ln,Tn), n e No:}

is a Markov Renewal Process (MRP) with state space

{s+l, s+2, ..., s+M:}and the semi—Markov kernel
{Q(1,j,t), 1,3‘ 6; E, t 3_ 0}
where

Q(i,j,t) = 1>r{1m_l=s+j, Tn”-Tn<_t / In-.=s-+1}

is given by

’ 1-3 t
6(i-3-1) IE1 {br(u) S+i«}r(i_3._r)(u) dF(u)

"'n:,l  .Ebr('-1) |:gn(ipu)* (s+M).‘}/(M_j_I.)(u)]dF(U)

Q(i,j,t)=< f°r 3 ’A M (4.2.21 t __
IE1 g br(U)s+iNf(i—r)(u) dF(u)

co M t___ _
+n:al ril 5) arm) [gn(1.u>+S+M7v(M_r,<u)] am)

for j=M
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Proof:

As the demand epochs form a renewal process

Tn+l-Tn is independent of the intervals Tr—Tr_l, r=l,2,...n.
By assumption, the probability mass function of demand

magnitudes at Tn+l depends only on the interval length

Tn+l—Tn and does not depend on either any other intervals

Tr-Tr_l, r=l,2,...,n or the demand magnitudes. Moreover
because of the lack of memory property of exponential
distribution, the failures of items in the stock is an

interval (Tn,Tn+l] is independent of the process [I(t),tgTnE,
Hence,

Pr{In+l== s+j, T -T g_ t 1 I0,Il,...,In,n+1 n
T0,Tl,...,Tn }

= Pr{In+l = s+j, Tn+l—Tn g t/In } (4.2.3)

which proves the first part of the theorem.

We have an = al + (a2—al) + ... + (an-an_l) with

al having the density (S+i)ni’(t) and ar—ar_l(r=2,3,...)

having density SnM'(t). Since al,a2-al, .... are independent
random variables
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we get

gl(i9t) = (s+i) ni'(t) (40204)
gn(i9t) = (s+i)fli'(t)*SflM'*(n-l)(t)an=2,3,...

If we denote the number of replenishments in (O,t) by
N(t) and defining

Qn(i,j,t) = Pr{Il=s+j, T1 3 t, N(Tl) -.= n /

I(O+) = 3+1} (4.2.6)
n=O,l,2,...

Then

Q(i,j,t) = 2 Qn(i,j,t) (41.2.7)n=o

In order to derive the expression for Qn(i,j,t)
(n=O,1,2,...) assume that the next demand after the
initial one occurs in (u,u+du) where u < t. Making use
of the following arguments and the independence of the
demand occurrences and failures of items, we have for

(i) n = 0, j £ M.

In this case no replenishment takes place in (O,u].
Assume that the demand that occurred at time u is for r
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items (r = l,2,...,i—j; provided i > J). In order that
the stock level is s+j at time u, i—j—r items should
have perished in (o,u) out of the initial s+i ones and

j t
Qo(i.J.t) = 5(i-J-1) ::l £ br(u)5+ijV(i_j_r)(u)dF(u)

(11) n # On J = M

nth replenishment occurs at some time v( < u ) and
the stock level at time soon after v is S(= s+M). Assume
that the demand at time u is for r items (r=l,2,...,M-j).
In order that stock level is s+j at time u, M~j-r items
out of 8 should have perished in the interval (v,uJ

M-j t
Qn(i.j.t) = 1:1 £ br(u)Lgn(i.u)* 5«/r(M_j_r)(u)]dF<u)

(iii) D = 0, j = M

No replenishment in (O,u]. In order that the level
is S at time u, an order should have occurred at time u
and i-r items ( r = l,2,...,i) perished out of s+i in (O,u).
Then the demand at time u should be for atleast r unitso
Therefore,
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oo(1.M.t) -= ‘6r(u)(5+i;}r(1_,,(u) cu-*(u)
Wm. r-' O‘-—r+

and finally for

(iv)n;éO,j=M.

th (n'-:l,2,ooo)This deals with the case where the n

replenishment takes place at some time v(<u). As in the
previous case there should be an order placed at time u
triggered by a demand so that the stock level becomes S
instantaneously. Assume that M-r (r = l,2,...,M) items
are perished out of S in (v,u). Then the demand at time
u should be for more than r items, and

3!

Qn(j-ajvt) =
IIM

t.

.(I)‘5r(u) [g,,<:.u)*5«{r,,,_r(u)1an=<u)r 1

Now substituting these results in (4.2.7), we get (4.2.2)

[Q.E.D.]

In order to obtain the transient solution of the
system let us define

p(i,j,t) = Pr {1(t)..—.s+j / 1(o+) = s+i}, i,jEE.

Since the stochastic process {I(t),tZO:}is a semi
regenerative process with the embedded MRP (I,T), the
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function p(i,j,t) satisfies the following Markov renewal
equation (MRE)

p(i9j9t) = k(ivj9t) + Q(i7r:dU) p(rojst“U)3 itje E
o=~u llbfig 1

(4.2.8)
where

k(i,j,t) .—_ Pr {I(t)=s+j, Tl>t / 1(o+) = s+i_],i,j€_E.

Theorem (fl.2.2)

The function k(i,j,t) is given by

r?(t)[ éti-3)(S+i)7y(i_j)(t>+nElgn<:.t>*

k(i.j.t) 9*< ‘S*”)WD(M”j)(t)], j£M (4.2.9)
1

E<t)[$+;vvi<t)+ “:1 gn(:.t)*S°%g(t)1. j=M

Proof:

The events along with the condition that the next demand
should occur after t units of time, can be classified into
the following mutually exclusive and exhaustive cases. The
stock level does not drop to s or drops to s atleast once due
to the perishability of items. Since the failures of items
in no way depend on the demand occurrence, this yields (4.2.9).

[Q.E.D.]
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A “ “ th
Let Pa, Ka and Q“ denote M order square matrices. th A . . A . A . .whose (1,j) elements are p(1,3,a), k(i,J,a) and Q(1,3,a)

respectively, where

a(i9j9a) = I e_at Q(i9jvdt)
0

Then the Laplace transform of the set of MREs can be written
as

A A A /\Pa = K“ + Qa Pa (4.2.lO)
which yields

A “ ‘1 “ “ A 4 9 llPa = (I~Qa) Ka = RaKa ( .-. )

where fia = (I-6a)—l is the matrix of Laplace transforms of
Markov renewal functions of the MRP (I,T), which exists for
a > 0 (Cinlar (1975) ).

4.3. STEADY STATE ANALYSIS

In order to obtain the limiting distribution of the
inventory level, consider the underlying Markov chain

I = {In, n e N° }associated with the MRP(I,T).
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The transition probability matrix Q = [Q(i,j)] of order M
is given by

Q(j-vj) = lim Q(j-vjat)
t—+w

? b (U)($+i)’¥/(j-_J._r)(U)]’_‘:l O r

M_.

+n 1 IE: br(u)[9n(i.u)*5‘f’(M_j__r)(u)]dF(u);j#M2% (43.1)
iBr‘”) (s+i)WV(:-r)(”) dF(”)

uv18 0‘a8

H Hbdw 0‘a8

co Mco__
:1 i br(u)[gn(i.u)*5§f(M_,)(u)]dF(u);j=M

A necessary and sufficient condition for the chain

I to be irreducible is that bl(t) £ 0 for some interval in
[0, m). It can be seen by the following arguments.

If bl(t) # O for some interval in [0, m), then from
(4.3.l) we have

Q(i.j) > 0. j # M
and Q(i,M) > O for i e E.
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Thus every state is accessible from all other states
and the Markov chain 1 is irreducible.

Conversely, suppose that bl(t)5E 0, then all the
entries in the (M-l)th column of Q becomes zero and
consequently the state M-l is inaccessible from any other
state, which contradicts the fact that the chain I is
irreducible.

Since the chain is irreducible, it possesses a

unique stationary distribution E = (nl,n2,...,nM) which
satisfies EQ = E and 2 n = l.

J

Let S = (pl,p2,...,pM) denotes the steady state
probability vector of the inventory level where

pj = lim p(i,j,t) is the limiting distribution of the....%¢b

inventory level. Now we have the steady state result.

Theorem§4.3.l)

If bl(t) g o for some interval in [o, m) and F(t)
is absolutely continuous with finite expectation, then

B = R K(t) dt / m (4.3.2)
O‘a8

where m = f x dF(x) is the mean interarrival time between
0

demands.
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Proof:

As a consequence of the first condition the finite
Markov chain I is irreducible and hence recurrent. Hence
the embedded MRP (I,T) in the semi~regenerative process

{I(t), t ; OT}becomes irreducible and recurrent.

By the second condition, the MRP(I,T) is aperiodic,
as the derivative of the Semi-Markov kernel exists. Hence
making use of the result in Cinlar (1975) we have from
equation (4.2.8)

p=2 1:. k(jnt)dt/}3n.rn.“ jeE3o " jeE33
where mj is the mean sojourn time in state j. This can
be written as

UI II =
O“w8

K(t)dt / E’ E

where K(t) =(k(i,j,t)) i’j e E— Tm =  00-,
Here mj = m = f xdF(:r)0

° |_Q.E.DJ
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4.4 SPECIAL CASES

As an illustration we consider the following
particular case: when the items are not perishable
ie, p = O and F(x) is arbitrary.

Then r—— -—1'0 0 .. .. .. O 1
91 0 .. .. .. 0 E2
B2 B1 .. . . 0 53Q = : (4.4.l)
9M_l aM_2 .. .. .. pl BM

where

51 = ?bi(t) dI-‘(t)
O

and B1 = 2 f bk(t) dF(t) = 5k0k=:i nt48k i

The stationary distribution E can be obtained following the
usuai method of solving

-\-/-Q-=.\7
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and normalizing

‘V. -'-_-  O00,
which then gives

n. a: rM_j / (l+RM_l), j=l,2,...,M-1

M-1)

where rj is the discrete analogue of +he renewal density

of the sequence.{Bj, j Z 1]-which is equal to 2 BJk=.].

*1:

J

and Rj = 2 rj is the renewal function corresponding to thek=l

sequence {Bn, n g 1} (see for eg. Feller (1968) ).

The steady state distribution of the stock level is
given by

B = ?(t) E 1 dt / m

n at O'*58 , since f ?(t)dt = m
0

Hence pj, j = l,2,...,M are given by (4.4°2).

Corollary (1)

If the demand process is compound renewal, ie.,

br(t)=br, then Bi = bi. The limiting distribution
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pn, n = l,2,...,M is given by (4.4.2) where rj and Rj
correspond to the sequence {:bn, n 2 1} which agrees
with the result of Sahin (1979) in the discrete case.

Corollary (21

If the items demanded are unit quantities we have

bl = l and br = 0 for r ) 1. Then

Ij = -1-   7- j, j = 1,2, 000

Then (404.2) reduces to nj = l/M, j = l,2,....,M which
agrees with the result of Sivazliam (1974).

Remark

Several extensions of the model considered in this

chapter are possible. For example, one may consider a
model with a positive lead time. For the analysis of
such models one needs more sophisticated techniques. The
assumption that life time distribution is exponential is
crucial in this chapter. As one may expect, the results
in the general life time distribution will not be as neat
and easy to compute as they are in this rather simple
model.



Chapter—5

AN INVENTORY SYSTEM WITH UNIT DEMAND

AND VARYING ORDERING LEVELS

5.1 INTRODUCTION

In the previous chapter we discussed state dependent
demand process. In this chapter we shall introduce another
type of dependence in the basic process. The interarrival
times of demands are i.i.d random variables with distri
bution function G(.) that is absolutely continuous with
density g(.). Each arrival demands exactly one unit.
Initially the inventory level is s resulting in an order
placing. Order is placed for M units and let S = M+s.
Lead times are i.i.d random variables which are independent
of the quantity ordered for and inventory level, having
absolutely continuous distribution function F(.) and its
density be f(.). We fix a c(> S). The ordering levels
other than the initial one are determined as follows.
Suppose the number of demands during a lead time is J then
the next ordering level is I = min(J,c). Thus the ordering
level can be 0.l,2,...,c. The order quantity will be such
as to bring back the inventory level to S at the ordering

87
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epoch. Thus S-I units are ordered if I is the ordering
level. No backlog is permitted. We discuss the time
dependent probability distribution of the inventory
level in Section 5.2. Correlation between the number of
demands during a lead time and the length of the next
inventory dry period is obtained in Section 5.3. Some
illustrations are also given. This model has been
discussed earlier by Ramanarayanan and Jacob (1986).
However their method has a drawback that computation is

hard and further passage to the limit is rather difficult.

In the sequel we use the following notations.

G(.), g(.) — Cumulative distribution function (c.d.f)
and probability density function (p.d.f),
respectively, of the interarrival time
between demands.

F(.), f(.) - c.d.f and p.d.f, respectively, of the
lead times.

denotes convolution

f*n(x) = n—fold convolution of f(x) with itself
(f*°(x)':=.l).

E = {o,1,2,...,s, .. c}
R+ = Set of non-negative real numbers
N = Set of natural numbers
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Z
O I! {o}UN

l-G(.)G(-)

5.2 ANALYSIS OF THE MODEL

ooo,Tn, coo
which the initial, first, ... nth orders are placed for
replenishment and X0(=s), Xl,X2, ..., Xn, ... be the
corresponding ordering levels. Assume that Y0, Y1, Y2,...,
Y ... be respectively the number of demands during then?

lead times these start at To,Tl,T T2,000’ n’ 0000 O

{(Xn,Yn), n=O,l,2,...} constitutes a Markov chain on the

Then

set E x No.

Now define Zn = (Xn,Yn). The process {(Zn,Tn),

n E N0 }constitutes a Markov renewal process with the

underlying semi-Markov process .{Zt, t e R+ } where

Zt = (Xn,Yn) for Tn 3 t < Tn+l

The semi—Markov kernel is given by

Q((i.I).(j.J).t) = P {(x Yn+1) = (j.J). Tn+l-T 5 t/n+l’ n
<xn.vn) = (1.1) }
i,je 5,1,3 e N°
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Now.

Q((i9I)a(j9J)9t) = Ql((i9I)9(j9J)9t) +(5°2°l)
where Ql( .,.,t) and Q2(.,.,t) correspond to, respectively,
transition from (1,1) to (j.J) in time t without and with
a dry period in between. Note that if I 3 c then j = I
and for I > c, j = c. Further, if i > I, then

o<<i.:). <5.J).t) Q1((i.I).(j.J).t)

and if 1 < 1, then5.:

llQ((ioI)9(j$J)9t) Q2((i9I)9(jtJ)9t)

where j = min {c,I}.

Now Ql((i,I),(j,J),t) is given by

t t t w * *(S-21) _
Ql((i9I)1(IsJ)9t) = f.f f f 9 I(U)f(V) ?_G(v;u)(w U1OUVW

.g*J(x-w) [1-F(x-w)]dx dw dv du

which is valid for i > I.
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For c > I Z i, we have

t t t w * *(S-i-I) _
Q2((i.I).(I.J)»t) = J J J i g I(u) f(v) §_ G(v_u)(W ”)

g*J(x-w) [l—F(x-w)]dx dw dv du

Finally for I Z c, we have

t t t w *1 g*(S—i-C)(w_u)Q2((i.I). (c.J).t) = J J J J g (u) fcv)o u v w 1- G(v-u)
g*J(x-w) [1-F(x-w)]dx dw dv du.

Now we are in a position to find the system size
probability distribution at arbitrary time point t. For
this purpose consider the Markov renewal function

R( (s,I), (j,J),t) of the process under consideration.

This is given by

a<<s.1>.<j.J).t>= 35 Q*”‘((s.I).(j.J).t) <s.2.2)
m=o

Note that R((s,I), (j,J),t) represents the number of visits
to (j,J) from (s,I) in (o,tj.

Let its density be represented by r((s,I),(j,J),t).
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Let PE:’§g (t) = Pr {Inventory level at time t is n9

and the last reorder level is j
given that initially the system
was in state (s,I) 3.

Then for c < n <_ 5,

(3,1) t t-t j-1 *k
P(n j) (t) = J J J R: r(<s.I).(j.k>.u)g (w—u) f(v-u)' o u w :0

[ G*(S-k-n)(t_w) _ G*(S~k—n+l)(t_w)]d d dv w u
1 - G(v-w)

t t t *k
+ J J I kgj r((59I)9(j9J)9u)g (W“U)f(V“u)o u w

[ G*(S-j-n)(t_W)_G*(§—j-n+l)(t_w)]d d dl — G(v-w) V W U
For j < n g c,

(s,I) t t t *k
P(n j) (t) f f f kg r((s.I).(j.k).u) g (w~u)f(v~u)’ o u w n

G*(S—k-n)(t_w)_G*(S—k-n+l)(t_w)[ ]dv dw du
l — G(v-w)
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For 1 g n < j

(5,1) _ t t t . *kP (t) — f f f 2 r(s,I),(3,k),u)g (w—u)f(v—u)(n,j) o u w k<j—n
G*(S—k-n)(t_w)_G*(S-k-n+l)(t_w)[ -— ] dv dw du

l — G(v-w)

I((5;I)9(jok)ou)9*(j-n)(W"U)

G*k“(j‘n)(V_w)_G*k'(j‘n)+l(V_w)[ ]f(v—u)dv dw du
1 ~ G(t—w)

Finally for n = 0,

(s,I) t t . *j
P(0,j, (t) = g { r(s.I).(J.k).u)g (w-u)Z

kzj

e*k‘5(v-w)—e*k'j*l(v-w)

[ 1 G( ) ] f(v-w)dv dw du— t-w

503 CORRELATION BETWEEN THE NUMBER OF DEMANDS DURING A

LEAD TIME AND THE INVENTORY DRY PERIOD

Let J be the random variable reoresentino an orderino
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level and 2 be the length of the subsequent dry period.
Then J=j, for j=O,l,2,...,c-l if the number of demands
during the previous lead time was j and J=c if the number
of demands during the previous lead time was larger than
or equal Lo C.

Now for 0 g j 3 C-1,

Pj = Pr{J=J'}=:: f(y) [G*j(Y)-G*(j+l)(Y)]dY

and pc = Pr {J=c] = Z f(y) G*°(y)dy

For 0 g j g c,

Pr {J = 3°. 2 = 0}: pj  rm E:7‘3<y>dy
and

Pr {J =-- 3'. z < Z 5 mix} = pj( I fmg*3'<y-z)dy>dzZ

for z > O and O 3 j g c.

Then C oo —-r
E(e'aZrJ) = E P-rj f f(Y)G*J(Y)dYj=o 3 o

C 00 -. CO * ,
+ 2 p rj f e aZ( ff(y)g 3(v-z)dv)dzJ=O J 0 Zc c w

= Z p.rJ - a 2 p.rJ f e-ayf(y)j=0 J j=O J O
( } eax G*j(x)dx)dy. (5.2.3)

o
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From this we have

E(Z) = - a E (e r )
azo, r=lc Q y ,= 2 p. J f<y> ( J e*J<x>ax>dyjzo 3 o o

2 O2 -aZ JE(Z ) = ——g E (e r )
Ga a=o, r=lc e x *.= 2 E p. Jy f(y) f G J(u)du dyj=o 3 o 0

Similarly,
O -aZ JE(J) = E (e- r )6-1: |(I=O, I‘=l

c
= 2 J Pj=o 3

2 ° . .
and E(J ) = ‘Z 3(3-l)pj.J-=0

Finally,

C . ‘F’ Y -x-°E(zJ) = 2 J p. f f(y) ( f G 3(x)dx)dvjzo 3 o 0
Substituting these values in Cov(Z,J) = E(ZJ)-E(Z) E(J) and
using the fact that correlation coefficient between Z and J
is Cov(Z,J) / V Variz) U VarIJ) we get the required expression.
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AN ILLUSTRATION

Assume that G(x) = l~e—X

F(x) = 1-e”2X, and
C :30

Then one easily computes

po = 2/39 pl 2 2/99 p2 = 2/279 P3 = 1/27

E(Z) = O.489026063, E(Z2) = o.e52537722

5(3) = 13/27 , E(J2) = 10/27
Cov (2,3) = - O.l88l3l89
Var (J) = O.l38545953
Var (2) = O.6l339l23l

and Correlation coefficient = - O.64535208.
jgiggg-1-jjnu-j—@¢nnnfi—_——‘_*—

The negative correlation indicates that when the
ordering level increases the length of the subsequent
dry'period decreases.



Chapter—6

TRANSIENT SOLUTION OF Ek/Ga’b[l QUEUE

WITH VACATION *

601 INTRODUCTION

This chapter is devoted to the study of the
following single server queueing model with finite
capacity.

We assume that the interarrival times of customers

(units) at a counter are distributed as an Erlang of
order k, the density being

pk xk-l e—ux
, x > O, u > O, k 1 2

e(x) : (k—l)£
O , otherwise

We may consider each arrival as consisting of k
stages O,l,2,...,k—l in each of which the customers spend
an exponentially distributed time (p) before proceeding
to the next stage. The physical arrival of a customer to
the system corresponds to his reaching the kth stage.

* ThiS_appeared in Proc. ICMMST-88, Vol.2, World
Scientific (Singapore).

96
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The capacity of the waiting room (N.R) is assumed
to be equal to b (finite). _The customers who arrive
when W.R is full are deemed to be lost. Customers are
served in batches of size lying between a and b (a < b)
(both included). We assume th t the successive service
times are independent random variables, but their distri
butions depend on the batch sizes. We denote the distribution
function of service time for a batch of j (a 3 j S b)customers

by Gj(.) and the corresponding density function by gj(.).

when a service terminates with less than a customers

waiting in the system the server leaves for vacation. On
return from vacation if the server finds again less than
a units he extends his vacation. This process continues
until on return he finds at least a units waiting. The
vacation times are i.i.d random variables with probability
distribution function H(.) and density h(.).

It is of interest to give some actual situations which
may be described by this model. Many types of transporta
tion processes involving buses, trains, aeroplanes, ships
etc. all have a feature of bulk service in common. The
incorporation of vacation to the server in these situations
might be more realistic. If an item entering the system is
considered to have a set of k phases of arrivals, all of
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them have identical exponential distributions, the afore
mentioned situations could be best approximated by the
present model.

Queueing systems with general bulk service rule
with range (a,b) has been studied in great detail by
Neuts (1967), Kambo and Chaudhry (1982), Medhi (1984)

and others. ~The system Ek/Ma’b/l has been discussed in
Easton et al.(l982) and Holman et al.(l98l). An extensive
survey of vacation models is given in Doshi (1986). An
attempt to find the time dependent solution of M/Ga’b/l
queue can be seen in Jacob, Krishnamoorthy and
Madhusoodanan (1988). Jacob and Madhusoodanan (1987)

extend the above to a vacation model, having arbitrary
distribution. The virtual waiting time is also discussed
in these papers.

In this chapter we analyse the queueing model
described at the beginning of this section. Section 6.3
gives the transient system state probability distribution
and in section 6.4 we derive the virtual waiting time
distribution in the queue at time t given the state of
system at that instant. The renewal theoretic argument
is used throughout the analysis.



G;4¢ZOA}
99

6.2 NOTATIONS AND PRELIMINARIES

Let * denote the convolution operators f*n(.)
stands for the n—fold convolution of f(.) with itself(r °(°)':.1). .,.'

fiflmm

1 if 1 = J
51. = {3 0 1f 1 ;é 3

Let A(x) = [ aij(x) ] is an m x p matrix, and

B(x) = [ bij(x) ] is a p x n matrix, then

(A*B)(x) = [ cij(x) ] is an m x n matrix whose

elements are given by

P *

Let the state of the input process (arrival) be
represented by (.E,n), where Q.gives the stage number of
arriving customer since the last physical arrival and n
is the number of units present in the system. Thus
0 3 E < k and the transition (k—l,n)--9 (O,n+l)
characterizes the input scheme. If we write i = kn+£ ,
the total number of stages in the system, then (.Q,n) is
defined by
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[ i/k 1

1 — [i/k]k

D H

and
(‘a

II

where [x] denotes the greatest integer less than or equal
to x.

Write

pn(x) = e-“x(px)n / n1, n=O,l,?,...,bk-l
(602.2)

X

“bk(x) = Xbk e””x(ux)" / n1n:

Define for any real x > 0.

f1j(x)dx = Probability that, starting at time
zero, the service of a batch of size
[i/k] terminates in (x,x+dx) and
j—(i~[i/k]k) stages arrive during (o,x];
ak g 1 3 bk, j = i—[i/k] k, ..., bk

Then we havef. : .iJ(x) gn(x) uJ_£(x). a _ 1 _ (602.3)
E S J 3 bk

where n = [i/k] and 2.: i—[i/k] k
and f..(x) = 0, otherwise.
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Let f:(x) : [fij(x)j, i,j = ak, ak+l,...,(a+l)k,
..., bk;

be a square matrix of order [ (b~a)k+l] andltflbe a
matrix of order [(b~a)k+lj x ak given by

tfl(x) = [fij(x)], 1 = ak, ak+l,...,(a+l)k, ..., bkj O,l,...,k, k+l,..., ak-lll

Also write

:(f31 i,ak(x)’ f i,ak+l(X)""’fi,bk(X));
ak 3 i g bk

Let f:*°(x) be the identity matrix of order (b—a)k+l
ano for n 1 1, f:*n(x) be the n-fold convolution of W:(x)
with itself.

Denote by Q§(x) the jth co-ordinate of the row

vector (ii * Z [F:*n)(x) (ak S j g bk).n=0

Then Q;(x)dx is the probability that starting with i stages
initially (at time 0), several batches of customers were
served out continuously and the last batch service terminates
in (x,x+dx) with j stages remaining in the W.R.
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Now consider the ak—component row vector. 00 *
_l$l(><) = (_f,i * I1 [F n *H])(x). n:O

and write

ki(x) = §i(x) l, where l is an ak—component
column vector of ones.

The time interval during which there were uninterupted
service is termed as a busy period.

If bi(x) is the probability density function of a
busy period initiated by i customers, then

ak l
bi(x) = fij(x) + ki(x) (e.2.4)

KIM!j 0

Assume that at time 0, the process starts with the
commencement of service of a batch of size m (agmgb)
customers. The termination of a busy period leads to a
vacation period for the server. By our assumption the

process starts with a busy period. Let Tl,T2,T3, ...
be the successive epochs at which busy periods terminate
(or vacation period begins). That is, these are the time
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points at which the total number of stages waiting
at the completion of a service is an element of the set

.{0,l, ..., k, k+l, ..., ak—l }o Then the sequence {Tn}
forms a delayed renewal process.

The probability density function of T1 is bm(X)o
Let Z be the time between any two consecutive renewal

points. Then the probability density function of Z is
given by

¢(z) 2 Pr { 2 3 Z S z+dz }

_ ak-l Z w *m ak-j-l Z= >3 f >3 h (u) >3 u (U) f h(v-u)=0 0 m=o p=O p U

bk"j"p < > < )2 p (V-u)b. z—v dv du 6.2.5q:ak_j_p q J+p+q

Then the renewal density function of the delayed renewal
process is given by

X* 2 ¢*“ ><u) (6.2.e)
n=om(u) = (bm

6.3 TRANSIENT STATE PROBABILITIES OF THE SYSTEM

The state space of the continuous time stochastic
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process underlying the model can be described as

s = -{(p,q) : a g p g b, o 3 q 3 bk } U
{(o.q> 2 o<.q<.bk}

where (p,q) denotes the state that the service of a
batch of size p is in progress and there are q stages
in the W.R., state (o,q) denotes that the server is on
vacation and there are q stages in the w.R.

Let P (t) = Pr {state of the system at time t(p,q) .
3:-5 (psq) } 

Considering the mutually exclusive and exhaustive cases
and making use of renewal theoretic argument, we derive
the following expressions for transient state probabilities.

i) For a S p S b and o S q g_bk

t R" mk
p(p q) i JED Qpk+j(u) [l—Gp(t—u)] uq_j(t-u)du

t ak~l t w *m ak-j-1 t
+ m(u) E f 2 h (v—u) Z pr(v~u) fh(w-V)o j=o u m=o r=o v
bk—j-r t k-l_ j+r+s _ _ _
S=§k_j_r us(w V) i 230 Qpk+£ (X w)[l Gp(t x)]

uq_l(t-x)dx dw dv du

+ 8pm[1-Gm(t)] uq(t).
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(ii) For 0 3 q 3 bk

% t ak—1 t
p‘°»q)(t) : g m(u) j;¢ a

w *m ak—j—l
E h (v-u) Z pr(v-u)III 0 I‘=0

[1-H(t-v)] pq_j_r(t-v)dv du.

6.4 VIRTUAL WAITING TIME IN THE QUEUE

Let the random variable wq(t) denote the virtual
waiting time at time t (see for example Takac's (1962)).

Wq(t) is the interval of time that a unit would have to
wait in the queue before starting its service, if it
were to arrive at time t. Here we find the probability

distribution of Wq(t) conditioned on the state of the
system at time t.

Let “ft(z/(p,q)) = Pr{Wq(t) < z I state of the system
at time t is (p,q)}, z > 0

Then,

(i) a 3 p g b, ak-l Q q 3 bk—l

knl
’°.

fiFt(Z/(P.q))u= é jio Q§fi+j(u)uq_j(t—u)[Gp(t+z-u)-Gp(t~u)]du
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ak l 8 ak—j~l tt - t
+ f m(u) 2 f 2 h*m(v—u) Z pr(v-u) f h(w-v)o j=o u mzo r=o v

bk—j—r t k~l .‘ _ - 3+r+s _ t_
S:§k_j_r uS(w V) £ Ego Qpk+£ (X w) uq_fl ( X)

[ Gp(t+z-x)-Gp(t~x)] dx dw dv du

The virtual waiting time distribution conditioned
on other different states (p,q) of the system can be
easily obtained on similar lines.



Chapter—7

A SERVICE SYSTEM WITH SINGLE AND BATCH SERVICES

7.1 INTRODUCTION

In this chapter we consider the following single
and batch service queueing system. For convenience in
describing the model we assume that the system consists
of a waiting room (W.R) and a service station (8.8) both
of unlimited capacity. The service station is manned by
a single server. Customers (units) arrive according to
a Poisson process with rate u. Upon arrival a customer
enters the W.R. This is the first stage of the queue.
The second stage of the queue resides in the 8.8. As
soon as all units in the 8.8 are served out the server
scans the W.R. If he finds less than or equal to c
(fixed number) customers, he will serve them at the 8.8,
one at a time, according to FCF8 rule, with service time
of each customer i.i.d random variables with distribution

function Gl(.) and density function gl(.). If the server
finds more than c customers in the W.R., he will serve
them in batches with batch service times i.i.d random

variables with a distribution function G2(.) and density
g2(.), independent of the batch sizes. The time required
to transfer customers from the W.R to the 8.8 is assumed to
be negligible.

107
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If, at the time when the servicesof all unitsin
the 8.8 are completed and the W.R is empty, the server
goes on vacation of random duration, independent of the
number of units served. The vacation times are i.i.d
random variables with distribution function H(.) and
density function h(.). On return from vacation, if the
server finds the W.R again empty he goes for another
vacation independent of and identically distributed as
the previous one; else he starts service.

There are many real—life queueing situations in
which service is rendered with a control limit policy
(see for eg. Crabil et al.(l977) and Ignall and
Kolesar (1974)). For example, it may be possible to
process jobs manually or by machine. When the number
of jobs to be processed is not more than a fixed number
it will be profitable to do them manually. When the
number of jobs exceeds a certain quantity, processing
by machine turns out to be cheaper.

In this chapter we consider three models. In Model—I
we analyse the situation where the server is always present
at the service station, serving or ready to serve. Model—1I
deals with the case where the server goes on vacation when
the system becomes empty. These are to be analysed separately
since the regeneration points of the processes corresponding



109

to the models differ. We derive the transient system
state probabilities and virtual waiting time distribution
of a customer in the queue corresponding to Model-I and
Model-II in Section 7-3 and Section 7.4, respectively.
The renewal theoretic argument is used throughout the
analysis. In Section 7.5 we analyse the third model
which is a variant of the standard M/G/l queue with
single and batch services. The transient as well as the
steady state distribution of the number of customers in
the systemaue obtained for this model. The ‘c’ considered
here has significance in problems concerned with control
of queues.

Neuts and Ramalhoto (1984) discuss a process with
Poisson arrival and arbitrary service time distribution.
After each service the server locates the next customer

to be served and the location times has exponential distri
bution. This location time can be regarded as the rest time
discussed in Model-II of this chapter. Ali and Neuts (1984)
discuss a queueing problem with a waiting room and a service
station. To ensure uninterrupted service they assume the
addition of ‘overhead customers‘ to the service station and
obtained stationary distribution of queue length and waiting
time distribution.
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NOTATIONS AND PRELIMIHARIES

Let * denote convolution. Then f*n(°) stands
for the n—fold convolution of f(o) with itself (f*O(.) 5 1).

Denote S(x) = 2 h (X) qO(x)m:o

Let A(x) = [ aij(x) ] be a matrix of order m x p
and B(x) = [ bij(x) ] be a matrix of order p x no

Then the convolution product of A and B is defined as

A * B(x) = [ E a. *b .(x) J which is a matrixkzl 1k kg
of order m x n.

Let qj(x) = Probability that there are j
arrivals in (o,x]

-ux J
= e jg“) , j = 0,1,1/’,...,c (7.201)

3 stands for
i 1 c+l

q£(><)

the set [c+l, c+2, ..o3 and i = 3 means that

_ ; e"“*<ux)5_. ,_j=c+l 3’ (7.202)
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Define for 1 ;‘1,2,...,c, 5 ; j = o,1,2,..., c, 5

fij(x)dx = Probability that starting at time zero,ththe service of the 1 customer terminates
in (x,x+dx) and there are j arrivals in
(09X]°

For i = l,2,..., c, 5 let

“'1 I''\ X
x...’

H (fil(x), fi2(x), ..., f.1C(x). ri£<x)>

Also let

:o<x> = <rlO(x>, f20(X)y ..., fCo<x>. r£O<x>>T

Define the matrix

f:(x> II [fij(X)]i,j = 1,2 ’OoO,  -90

Let E:*°(x) be the identity matrix of order c+l and for n 1 l,

f:*n(x) = the n-fold convolution of E:(x) with itself.

The basic model is a semi-Markov process which refers
to the process of transitions at the times when the customers
move from the W.R to the S.S. The state of this process is the
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number of customers which entered the S.S at the last

transition. In order to calculate state probabilities
one uses standard techniques.

Let us define a different state (i,j), where i and j
are the number of customers in service and waiting room,
respectively. We call these states "micro—states". The
probabilities of these micro—states can be calculated by
conditioning on the last transition time and state.

i = l,2,coo, C’ 2  1,2, 090-, C’ C,

let Q%(x) be the 1th coordinate of the vector (ji* 2 *n)(x).n:

This is the probability that the semi-Markov process is at
state I at time x, given that at time 0 it was in state i,
and that it did not visit state 0 in the interval (o,x].

Also let k§(x) = (31% f3*“* ;o)(x).

If bi(x), ( i=l,2,..., c, 3) is the probability density
function of a busy period initiated by i customers, then
we have,

bi(x) = fio(x) + k§(x) (702.3)
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7.3. MODEL—I: SERVER WITHOUT VACATION

In this model we assume that the server is always
available for service. We have

Ho

*1
91 (X)qj(X)y 51929‘-°vC3 j=O9lv2v°-*9 C92fij(x) = (7.3.l)
g2(X) qj(X)9 1:2; j=O!l92v°-'9 C92

The state space of the process is

{(i,j) :1-.-1,2,..., c,_g; j=O,l,2,..., c,_c_} U {0}

where (i,j) is the state that there are i units in the S.S
(including the one being served) and j units in the W.Ro
State 0 means no unit in the W.R. (hence the server is idle).
Clearly the time at which an idle period is terminated
(commencement of busy period) is a regeneration point of
the stochastic process under consideration.

Assume that initially there were 'a' units in the W.R.
Then the probability density function of the initial busy
cycle (busy period + idle period) is

3' (ba * 9“) (X)

where ep(.) denotes the exponential density function with
parameter p.
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Probability density function of a busy cycle other
than the initial one is

h2(X) = (bl*ep)(x)

Therefore, the renewal density function of the delayed
renewal process is

m(u) = (hl * : h2*n)(u) (7.3.2)n=o

TRANSIENT PROBABILITIES OF THE SYSTEM STATE

Let Pij(t) be the probability that the system is
in state (i,j) at time t. Considering the mutually
exclusive and exhaustive cases and making use of renewal
theoretic arguments the following expressions are obtained.

(i) For i=l,2;...,a and j=O,l,2,..., c,g

Pij(t) = [ Gl*(a'i)(t) — Gl*‘a‘i*1’(t)J qj(t)

g. oi(u) LGl*(Q’i’(t-u)-61*‘9“i*1’(t-u)1=1

qj(t-u)du

_ Qf(v-u)LGl*(£‘i’(t-v)—Gl*(£‘i*l)(t-v)]1

qj(t-v)dv du.
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(ii) For i=a+1, a+2, ..., c and jw0,1,2,...,c,g

t C a * 1 ' * K
Pij(t) 3 é :.QL(“)[G1 ( ’1)(t-u)—Gl ( ‘i*l)(t-u)]qj(t—u)du

o§<v-u) Lel*‘”“i’(t-v)-el*‘£‘i*1’<t-v)J

qj(t—v)dv du.

(iii) For 1:5 and j=O,l,2,..., c,£

t
Pij(t) = g Q:(u) [1-G2(t-u)]qj(t—u)du

t t 1
+ f m(u) f Qi(v-U) ll—G2(tevflqj(t—v)dv du0 1.1

Finally,

(iv) *3 t
Po(t) = G1 (t) q0(t) + J ba(u) q0(t-u)du0

+ Q:(u) G2(t—u) q0(t—u)du
t

m(u) f bl(v—u)qo(t-v)dv duU .+

o*~u+ o95awo%aa

t
m(u) f Qi(v—u) G2(t—v) q0(t-v)dv duU _
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VIRTUAL WAITING TIME IN THE QUEUE

Let Wq(t) denote the virtual waiting time at time t.
It is the amount of time that a unit would wait (in queue)
before starting its service, if it were to arrive at time t.

We shall obtain the distribution of Wq(t) conditioned on
the state of the system at time t.

Let ¢t(x/(1.3)) H Pr.{Wq(t) 5 x I state of the system
at time t is (1,3) }

i=l,2’Ooo,  j:O,l,2,ooo, C,Co
and

II¢t(x/0) Pr{Wq(t) 3 x | state of the system
at time t is O }

Then

i 7-7 l’2,ooo’C 3 j =O,l,2,ooo, C"".].o

t
0

*3gl (t+x-v)dv du

t t c 1 t+x *Q c-j-l
+ J m(u) J E Q£(v-u) f gl (w-v) Z qk(w-t)O u 9:1 t k=o

gl*3(t+x—w)dw dv du



(ii) For i:l,2,...

¢t(x/(1.3)) =

+

(iii) For 1 = g

¢t(x/(i.j)) =

+

+
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(v-u) Z qk(v—t)dv du
k=C-j

a tfx *Q

t+x
f 9t

*31 (W'''V) 0;;Q:(v-U)
k=C-j

dw dv du

O,1,2,.. c—l.'9

a t+x c—j-1 *.
QC(u) { g2(v—u) Z qk(v—t)gl J(t+x—v)dv duk 0

c-j-1
k=o

t+x

:(v-u) { g2(w—v)

t
m(u) f Q

UO“~cr

gl*J(t+x-w)dw dv dq
X
Z

J=C-j

t+xt
f Q:(u) { g2(v-U) qk(v-t) dv du0 _

t+xt w
}m(u) f Qfi(v—u) f g2(w—v) Z qk(w-t)dw dv du0 u — t =ck J
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(iv) For i = 3 and j = c, 5

t a
¢t(x/(i.j)) = J QC(u) ga(t+x~u)du. 0 _t t.

+ f m(u) J Q:(v) g2(t+x—v)dv du0 u 
Finally,

I I r~(V) ¢t(x/0)

704 MODEL-II: WITH MULTIPLE VACATION POLICY

Here we assume that the server goes on vacation
as soon as the system becomes empty. The vacation times
are i.i.d random variables with distribution function H(o)
and density function h(.). On return from vacation if the
system is again found to be empty, the server extends his
vacation by a time having the same distribution and independent
of the previous vacation duration. This process continues
until on return from vacation there is at least one unit in
the waiting room.

As in the first model, here again, we have

i':l,2,ooo’C; j=O,l,2,ooo,C’_C_
" g2(x) qj(x) for i=2; j=O.l.2.»o.. 6.2
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The state—-space of the process is{(i,‘j)]i,j:=0,l.,2,...c,_g}
where by state (i,j) we mean that there are 1 units in the S.S
(including the one being served) and j units in the W.R. State
(o,j) j=O,l,2,...,g, indicates that the server is on vacation
and there are j units in the W.R.

If we denote by T1,T2, 0.. the successive time points
at which the server goes for rest after a busy period, then

the sequence {Tn} forms a delayed renewal process.

The probability density function of T is ba(x). Let1

Z be the time between two such renewal points. Then the
probability density function of Z is given by

71(2) = Pr{z <. Z<_z+ dz}

= j'S(u) } h(v-u) E qi(v-u)bi(z—v)dv duo u i=l
Then the renewal density function of the delayed renewal
process is given by

X

m(u) s (ba * 2 n*" )(u) (704.2)n=o

TRANSIENT PROBABILITIES OF THE SYSTEM STATE

Let Pij(t) = Pr {system is in state (1,1) at time t }
i,j -'5-O,l,2,0on, c’£0
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Considering mutually exclusive and exhaustive cases we

get the expressions for Pij(t) as follows:

(i) For i=l,2,...,a; j=O,l,2,..., c,g

PiJ.(t> = LGl*(“"'”(t) - c;l*“"“i"”(t)]qJ.(t)

. Q:(u) [G:(Q—i)(t~u)-Gl*(£'i+l)(t-U)]qj(t-u)du1
+

O“-36+‘

a
2

2

(w-v)
t t t C

+ fm(u) f S(v—u) f h(w—v) 2 qo u v 3:1 3
[G:(1-i)(t—w)~G:(Q’i+l)(t—w)]qj(t~w)dw dv du

titan

t t t
+ fm(u) fS(v-U) J h(w-v) qQ(w-V)0 u v I 1

Qfi(y-w) lG:(k'i)(t-Y)-G:(k'i+l)(t-y)]
5+5" néaok i

qj(t—y)dy dw dv du.

(ii) For i = a+l, a+2, ..., c and j=O,l,2,...,c,g

Qi(u)[G:(Q_i)(t—u)-G:(£-i+l)(t—u)]qj(t-u)du
<3k5a llbdo

9

1Q



121

HMO

t t t
+ f m(u) f S(v—u) f h(w-v) q£(w—v)0 u v I i

[Gl*(£-i)(t-w)-G:(p“i+l)(t—w)]qj(t—w)dw dv du

qltw-v)
HMO

p t t
+ Jm(u) f S(v—u) f h(w-v)o u V E 1
t C Q _- _.
i kfii Qk(Y-W) [G:(k l)(t*Y)-G:(k 1+l)]qj(t~y)

dy dw dv du

(iii) For j=O,l,2,..., c, 3

t a
Pgj = i Q£(u) [l-G2(t-u)] qj(t-u) dut t t c

+ f m(u) f S(v—u) f h(w~v) 2 q£(w-v)O U V £21
’° 2
f Qc(y-w) [1-G2(t-Y)]qj(t*Y)dY dw dv duW _

and finally

(iv) For j=O,l,2,..., c,£

C“nd

t
P0j(t) = f m(u) S(v~u)[l-H(t-v)]qj(t-V) dv du .O .
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VIRTUAL WAITING TIME IN THE QUEUE

The expressions for the distribution of virtual

waiting time Wq(t) conditioned on the state of the process
at time t are obtained below.

(1) For i=l,2,...,c and j=O,l,2,..., C-l.t+x .. c— -1
Qi(u) f gilkv-U) qi v-t)

O'%_(+

'7'
Htvo II Mt.»

(1 k kI 0
g:j(t+x-v)dv dut t 3t

+ fm(u) fS(v_u) f h(w~v) 2o u V £21q£(w-V)

c-j—l2=0

t+x
ofity-w) I g§“(z-y)i t kE‘ad llbaok

g:3(t+x~z)dz dy dw dv du

(ii) For i=l,2,...,c and j=c, 3.

Qi(u)g:%t+x-u)duH

C3“sd'
{IP10£ 1t t t

+ f m(u) f S(v~u) f h(w—v) q (w—v)o u v 1
(‘Ia

Ilbflo t-'

t C 1 *k
f k2_ Qk(y-w) gl (t+x—y)dy dw dv du.vv :1
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(iii) For i=g and j:O,l,2,...,c—l.t -'—1 *.
¢t(x/(i.j)) = JQ:(u)t{xg2(v-u)C % qk(v-t)glj(t+x-v)dv duo — *0.1t t t c t Q

+fm(u) f S(v-u) fh(w-v) E q£(w-v) J QC(Y-W)o u v .921 w —
t —'—l .
}xg2(z-y)C g qk(z—t) g:3(t+x~z)dz dy dw dv du1'. kz--0
t a t+x w

+ f Qc(u) f 92(v—u) E qk(v—t)dv du0 ~ t k=c—jt t t c t Q+ fm(u) jS(v-u) fh(w—v) Z q (w-v) fQ (y-w)o u v £21 £ w 9
t+x w
J g2(z-y) 2 qk(z-t)dz dy dw dv dut kzc-j

(iv) For 1:2 and j = c, 3

Ht 8
¢t(x/(1.3)) = f Qc(u) 92(t+x-u)duO _t t t c

+fm(u) fS(v-u) fh(w-v) E q (w-v)o u v 9:1 9
t
J Q£(y-w) g2(t+x—y)dy dw dv du.W _
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(v) For i=0 and j=O,l,2,...,c—l

t+x c
S(v—u) f h(w—v)t

-1¢t(x/(i.j)) = m(u) qk(w-t)
O "‘-364' C £61’ W’ H PIL-I O

g:j(t+x—w)dw dv du

t t t+x m
+ fm(u) fS(v—u) fh(w-v) 2 qk(w-t)dw dv duo u t =c—'k J

and finally,

(vi) For i=0 and j=c, g

¢t(x/(i,j)) = jm(u) }S(v-U) h(t+x—v)dv du.O U

705 MODEL 111: A VARIANT OF STANDARD M/G/l QUEUE NITH
SINGLE AND BATCH SERVICES

In Model—I we have discussed an M/G/1 queueing

system with two stages of services, one at the waiting
room and the other at the service station. The type of
service to be rendered is decided at the waiting room
single service or bulk service~according as there are
less than or equal to 'c' customers or there are more
than c customers. In this model we assume that
customers arrive at the service station according to a
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Poisson process with parameter p. At the end of each
service, if the server finds more than c customers waiting
he serves them all together in a batch according to a

general service time distribution G2(.) which is independent
of the batch size and if there are less than or equal to c
customers, he serves them one at a time according to FCFS
rule, with service time of each having a general distri

bution Gl(.), independent of the system size.

We are interested in the transient as well as steady
state distribution of the number of customers in the system
at time t.

Let 0 = To < Tl < T2 ... be the successive epochs
of completion of services (single or batch) and X(t) denotes
the number of customers present in the system at time t.
Then X(t) assumes values in the set

1-: = {o,1,2, ...}

Let X(Tn+) = X , n 2 0.II

By our assumption, the discrete paraneter stochastic

process (X,T) = {(Xn,Tn), n g 0} is a Markov renewal process
with statespace E and the corresponding Semi-Markov kernel
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{Q<i,;i.t). in e E. t 2. 0} whore

Q(i,j,t) = Pr.[Xn+l=j, Tn+l-Tn g t/ Xnzii}

is given by

t t-s —pu j
f;¢e'“‘°’ I ‘’ j$“”14~*G1<U>d$; 1:0. 120O .O

t -pu j-i+1
Q(i,j.t)= I e (gfiffi. deltu) zlsisc. J31-1 (7.5.1)0 .

t -nu J
J e (E?) dG2(u) ;i>c, jZO0

Now {X(t),t Z O} is a semi-regenerative process with
state space E with embedded Markov renewal process (X,T)

described above. Let {R(i,j,t), i,j(EE, t g 0:} denote the
Markov renewal kernel corresponding to the semi-Markov
kernel in (7.3.l).

For each i,k 63 E, t 1 0, define

P(i,k,t) = pr.[x(t) = k | X(o) = 1_}

Then it is easy to see that
k t

P(i,k,t) = .2 f R(i,j,ds) K(j,k,t-s) (7.5.2)
_] =0 0
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K(j,k,t) = Pr {X(t):k, T >t | x(o)=j }l

and it is given by

STEADY

number

Markov

process (X,T).

{ [1-elm] 9

, , j=O,t _ ~ps k—l- - t—- .
Jpe “( q)[l-Gl(s)]e (£E:%: ds, 3:0, k>O;o

“Ht(utl(k’j)(k_j), . 1<J<c. kzj; (7.s.3)
k""j_ e pt)- , . _[.]~"GQ{~1*)]  9 .]>C9 kZJ 9O , otherwise

K.

STATE ANALYSIS

In order to obtain the limiting distribution of the
of customers in the system, consider the underlying

chain X 2 {Xn, ngO‘}associated with the Markov renewal
The transition probability matrix P = [P(i,j)]

is given by

P(i9.j) =

where

1 . .
qj 1:09 3 .>_O 3(. . ) _ 1 .<.< . . 1, Q 1.1.” ~ qj_i+1 1_1_c. 321- . (705.4)2 . .qj 1>c, 3; O

. m —pu n
qr];  f e nggu) dGJ.(Ll), i-11,2, T1 10.O .
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ie, the matrix P has the form

0 1 2 . .. c. c+1 C+1
f“""O 1 1 1 1 1 1 -7qo ql q2 '°' qc qc+l qc+2 ’1 1 l lqo ql q2 '°' qc qc+l qc+2 "I 1 l 12 0 qo ql ’ ' qc-1 qc qc+1 ‘ '

p: I I

1 l lc O 0 O .. ql q2 q3 ...1 2 2 2 2 2 2C+ qo ql q2 "’ qc qc+l qc+2 ’°°9 2 2 2 2 2 2_C+ qo ql q2 '°' qc qc+l qc+2 °''

0 h-H-—-O .-J
The stationary probability vector n = (no,nl,...,nC,nC+l,...)

is the unique solution of n = nP, Z nizl.

1 5+1 1 '’°
1e° nj = no qj + IE1 nr qj_r+l + qJ r:C+l nr,



( 2 l ) ( 2“ _ 1 ) +( 2 _ 1 )n + +( 2 _ 1)“ +fl _5 qc+2"qc+2 no+ qc+2 qc+2 nl qc+2 qc+l 2 °°‘ qc+2 q3 c c+2 "qc+2
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and
X

n. = n q; + Z n q% + q? 2 n , j > c.J 0 J r=l r J_r+l 3 r=c+l I ‘
The above system of linear equations, after some rearrange

ments and using the condition 2 ni = 1, reduces to

(l+ 2- l)n + ( 2- 1)n + 2n + 2n + + 2n - 2qo qo 0 Q0 qo 1 qo 2 qo 3 "' qo c —qo
( 2- 1)n + (l+ 2- l)n + ( 2- l)n + 2n + + 2n — 2Q1 Q1 0 Q1 Q1 1 Q1 Q0 2 Q1 3 °°' Q1 c “Q12 l 2 l 2 l 2 l 2 2
(q2—q2)nO + (q2-q2)nl + (l+q2-ql)n2 + (q2-qo)n3+...+q2nC =q2

2 1 . 2 1 2 1 2 l 2
(qc-qC)n0+(qc-qC)n1+(qC-qC_l)n2 + ...+ (l+qC-ql)nC =qC2 l 2 l 2 l 2 l 2
(qc+l_qC+l)flo+(qc+l-qc+l)“l+(qc+l_qc)“2+’"+(qc+l-q2)nc+“c+l = c+l

2

O 0 to
000000

Solving the first c+l equations we can find nO,nl, ..., nc, which
then determine nC+l, nC+2, ... from the remaining equations.
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LIMITING DISTRIBUTION OF NUMBER OF CUSTOMERS IN THE SYSTEM

Let {pk} denote the limiting distribution of the
number of customers in the system

ie., pk = lim P(i,k,t)t-—9w

If the Markov chain X is transient, then from equation
(7.5.2) we have

pp = lim p(irk9t) 5 R(ioj9”) K(j9k9”). _t___’ on 0ll MK‘

: 0.
Suppose that X is recurrent. From the form of P it is
clear that X is irreducible. The sojourn time in state 0
has an exponentially distributed component. ie, Q(o,j,t)
is not a step function and therefore, all states are
aperiodic in (X,T).

One can easily see that the function t——9K(j,k,t)
is directly Rieman integrable for every j,k E E. Applying
the key renewal theorem to each one of the terms in (7.5.2)
(see Cinlar (l975b)), we have

“k mk
Z n.mpp = lim P(i,k,t) =_....._’x j J j\ (7.5.6)
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independent of the initial state i, where m is the meanJ

sojourn time in state j of the Markov renewal process (X,T).

Here

[‘ll;+lll»J-‘-0 .
mJ.= Jul .1s.Jsc.

K p2 , 3 > c

where pi f x dGi(x)0

Therefore the limiting probabilities are given by

l
f --'no( '5 + H1 )

k = OC 00p E n +p Z n.ljzo 3 2j=c+l 3

‘HRpk = 1 < k < c (7.5.7)C 00 “ “"p 2 n + p E n1 j=o j j=c+l 3

W Pk 2C M k 1 c.
pl 2 n. + p2 Z n\ jzo 3 j=C+l J



Chapter—8

A FINITE CAPACITY PH/PH/1 QUEUE

8.1 INTRODUCTION

A GI/G/l queue in which the interarrival and
service time distributions are both of phase type (PH
distribution) is called a PH/PH/1 queue. It is a
particular case of both PH/G/l and GI/PH/1 queue which
are treated through various approaches by various
researchers in the past (See for eg: Neuts (1981) ).
There are merits in presenting these approaches separately.
Some quantities of interest are easier in one setting than
another. Particular features of PH—distributions could
be exploited in obtaining algorithmically tractable
solutions of the system.

In this chapter a single server queueing system
with a waiting room of finite capacity N is studied.
There can be atmost N+l customers present in the system,
including the one being served. Arrivals of customers
is according to a PH-renewal process with the probability
distribution F(.) of the interarrival times has the
irreducible representation (a,T) of order m and is given
bY

F(x) 2 l — a exp(Tx)e, for x Z O (8.l.l)

132
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The row vector a and the matrix T are of dimension m.

The vector e is a column vector with all its components
equal to l. The vector To is defined by To 2 ~ Te.

The successive service times are mutually
independent with common probability distribution G(.)

of phase type with the irreducible representation (fi,S)
of order n and is given by

G(x) H l - p exp(Sx)e for x Z_O (8.l.2)

The row vector 5 and the matrix S are of dimension n.
The vector 80 is defined by S0 2 — Se.

Here T and S are generators of Markov processes
describing the generation of customers and their service.
The PH—distribution has a probabilistic interpretation,
by its ihrfinitficnl so limit they Cdlilfl: consinunwxl as

arrivals and service processes in some networzs where
the sojourn time at each node has an exponential distri
bution. F(x) and G(x) could be interpreted as the
distribution of time spent by the customer until its
departure from the network. So the results in this
chapter may be applied, for example, for modelling
computer networks etc. Many researchers have been
invtmytiqyitirmy PH—tListriJ;utitn1s gum} chNJelc4)ingsgxroctnhnres
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to fit these distribution to given data sets (See
Harris and Sykes (1984), Altiok (l98b), Khoshgoftaar
and Perros (1985) etc. J. Also, various algorithms
have been already developed for problems in applied
probability, where these distributions are involved
(See Neuts (l98l), Kao (1988) etc.).

in this chapter we analyse the queueing system
PH/PH/1/N+l. An arriving customer finding the system
full is assumed to be lost. Section 8.2 introduces the
notations used and some preliminaries. In Section 8.3
the system is analysed in detail to obtain the stationary
distribution of queue length. Using matrix theoryalgo
rithmically tractable solution is obtained. The result
is illustrated in Section 8.4 by some numerical examples.

8.? NOTATIUNS AND PRELIMINARIE8

I denotes the identity matrix

A (3 B denotes the Kronecker (tensor) product of
the matrices A and B:

If A = [gij] and B = [bij] are rectangular matrices
of dimensions ml x nl and mo x n2, their Kronecker product
IX (3 B is the matrix of dimensions mlm2 x nlnz, written
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in block partitioned form asr“ d ‘W
allB al2B ... aln1B

a B a B . . a Bmil ml? m1“1L. _J
f30mr vlwwfdrl prwnwfirtirmz of {Jun K[THV‘CkOI‘f7rOihlCt limit

are repeatedly used in the sequel are the following
(Ref. Bellman (1974) ).

(1) A (3 (B+C) = A g; B + A (3 C

(ii) (A+B) ® (C+D) 2 A Q) C + A cg) D + B Q9 C + 8 690

(1-11) (A ® B) ((3 ® D) ~_~ AC ® BD

8.3 BTATIUNARY DISTRIBUTION OF QUEUE LENGTH

In this section we derive the stationary distribution
of the system at arbitrary instants of time.

Let X(t) denote the state of the system at time t.

Then {X(t), t Z 0} may be considered as a homogeneous
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Markov process on the state space

5  {(o.;i) I j=1.2..--.m}u{(i,j.1<) I

where state (o,j) represents that the system is empty and the
arriving Customer is at phase j, while the state (i,j,k)
represents and that there are i customers in the system and
the arriving and the being served customers are at phases j
and k respectively. The states are labeled in the lexicographic
or:-tier.

The infinitesimal generator of the process is (in block
partitioned form):0 ale 2 3  N N+lF“ 0 O ,1O T T atg B O O "" 0 ’
1 1®s° T®I+I®S I°a®I 0  0 0
2 0 1®s°;5 ‘r®1+1®s TOa®l  o 03 0 o T®I+I®S I°a®1  o o

N 0 0 0   T®1+1®sI°a@1N-+1 o 0 o   1®s°;3 (T+Toa)
851 +L 1®s_J



Let ng denote the stationary probability of the state

7-1 H ( flol’ W

( “;L,1,1'

02 , Q00 9 nom)

i :1.’?.,0oO

TI‘ .9. 1t. 7!. ...19192, ’ lolvm’ 1:291’
N+l.

TI’ i,m,n ).
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Under our assumption, the stationary distribution us, 8 e S
is the unique solution of the steady state equilibrium
equation [See Neuts (l981)].

where

ie.,

1:0

1! II

1:01» 1r.l( I ®s°)

nO(TOa <3 6) + 1tl(T (2; 1+1 (2; s) + n2(1 ® 5%)

1ti___l(TOa co 1) + 1ti(T ® 1+1 (8 s)+ni+l(1 ® 3%)

i 0O’N‘

1tN(TOa ® I) + 1l:N+l((T-+-TOOL) (9 1+ I (E S)

H+i
L

.120
TI .

1
F3

1|

(8.3.l)

(8.3.2)

(8.3.3)

(8.3.4)

(8.3.5)
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Multiplying on the right both sides of (8.3.2),
(8.303) and (8.304) by the matrix I(3 e and using the
properties of Kronecker product we get

1tO(TOcc) +1tl(T <2; e — 1 (9 so) + n2(1 69 5°) -.-.- 0 (8.3.6)

nj__l(T°a ® e)+1ti(T (9 e - 1 <3 s°)+ni+l(1 ® s°)=o (8.3.7)

i=2’3,ooo’No

1tN(TOa ® e)+1tN+1((T + T°a) (59 e — 1 ® 5°)  o (8.3.8)

Adding equations (8.301), (803.6), (8.3.7) and (8.3.8) we
get

IcO(T+T°a)+1tl[(T+TOa) (3) e] + 1t2[(T+T°oc) ® e]+ ...

+nN[(T+TOa)(3 e] + nN+l[(T+TOa) 8J9]: 0.

Since A ® e = (1 ® e)A, we can write the above equation as

N+l
[110 + 2 :ci( 1 ®e) ] (T+T°cI) = 0 (53.3.9)i=1

Now multiplying on the right both sides of (8.3.l),
(8.3.6), (8.3.7) and (8.308) by the m—component vector e,
we get

"1t0TO + 1I1(e ca s°) : 0



139

1:010 - 1:l[_(TO ® e) + (e (2) SO)] + 1t2(e ®SO) :: O

ni_l(I° 6.0 e) - ni[(r° ® e>+<e <2 s°)J

+1ti+l(e (2) S0) = O
1 = 2,3,..., N.

and nN(T° ® e) — nN+l(e ® S0) = O

From the above equations we have

1tl(e @350) = 1tOT° (8.3.lO)
Hand ni+l(e ® 80) ‘Iti(TO (R) e), i==1,.’2,...,N

Again, multiplying on the right both sides of
equations (R.3.2) and (8.3.3) by the matrix I(2)(eB—I),
we have

nl moi) + (I®s)) (I®(eB--1)) =0
and 1ti_l(TOcz (3) (ep—1))+ni(I (9 1+1 (3; S)(I <3) (efi-1)): 0

1 -_- 2,3,...,N.

The first equation reduces to

nl LT 09 (efi-I) + I ®S(el3-1)] = 0
ie. nl [T ® (e;3—1) — 1 638] = nl(1 ®S°p‘)

== nl[(I ®s°)(I ® 6)]

-1tO(T ® 8) (using(8.,3.l))
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and the second equation becomes,

1tiLT ® (e6-I)-I 09 SJ =

Putting
become.

:1 Ln * 2|

ni(1 cg SOB)+1ti_l('1”°a ® 1)

"' ni___l(T0a ® ep’)

II «in ® s°rs)+n,.__l(T°a ® I)-ni_l(T° <2» e)(a cs) B)

1ti(I 02> S°fi)+ni_1(T°a ® I)-1ri(e ® S°)(tr 69 B)

(using (8.3.lO))

ni(1 ® S°6)+ni_l(TOa <9 I)-1ti(eoc ® 5%)

i=2,3,ooo,No

8* = 1' ® (efs-I)-I ()3) S, the above equations

—1tO(T ®B) (8o3o.1..1.)
ni(1 ® S0fi5)+1ti_l(TOcz ® I)-1ti(eo< (3) 3%) (8.3.l2)

0 O’NO

Similarly after multiplying on the right both sides
of (80302) and (80393) by the matrix (ea-I)<® I, and
putting T* =

TtiT* = 1t.l(TOa ® I)+7t

(ea-I) ®S —- T ® I, we get

(<1-ea) ®s°B). (63.3.13)i+l

if-1,2, o n o o ,I\lo
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Now combining (8.3.ll)-(803.13) and (8.3.4), we have

n1S* 2 — nO( Tca B) (8.3.l4)
I  j.=2,3,ooo,T'\‘

and

izml = [(T+T°a) :2; 1+1 Q; s] = —1tN(TOa cg) I) (8.3.l6)

Following Neuts (l98l), we see that the irreducible
matrix Q* 2 T+TOa is the generator of a homogeneous Markov

process and it is substable (A matrix is stable if all its
eigen values have their real parts strictly less than zero;
it is substable if their real parts are less than or equal
to zero). The eigen value of Q*<® I + I€)S are the sum of‘
the eigen values of the substable matrix Q* and the stable
matri>?. S (see Bellman (1974)). Hence Q* (3 I + I®S is stable
and invertible.

Next we prove that T* and 5* are invertibleo Consider
T* = -(T all + (l—ea) Qus). By our assumption T and S are
stable matrices. T* can be rearranged as

l1"? :-.-: -(T oz) 1) [1 :3: s” +T'l(1-ea) Q9 1] (I e s) (8.3.l7)

Firstly we prove that T_l(I—ea) is substable.



142

Let ?\be an eiqen value of T—l(I—ea) and v be the
corresponding eigen vector. Assume that Re(A) > O.

l"lv — (av)T- eWe—have Av = T

Since T and Tfil are stable, l/3 cannot be an eigen value
of T and 3Kcannot be an eigen value of T-1.

Hence av £ 0.

Further v = ( 9} ) ( §1-T)”1 e

.°. av = ( %¥ )a (-% I~T)“l e

:2) -%\a( §1-T)"1 e -.—. 1 (8.3.l8)

The Laplace—Stieltjes transform of F(x) is given by* _F (5) = 1-5 a(sI-T) le

p*(1/A): 1- % a( -15‘ 1-T)"1e = 0 (by (8.3.l8))

But the Laplace-Stieltjes transform of a non-negative
random vuriable is strictly positive in the right plane.

0

Hence T"l(I—ea) is substable.
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Since 5-1 is stable and T‘l(I~ea) is substable,

1 + T-l(I~ea)(3 I is stable and invertible. More1595“

over T<3 I and I QJS are invertibleo Hence from (8.3.l7)
we conclude that T* is invertibleo

By the same arguments 8* is invertible.

Now the stationary distribution ni(i = l,2,...,N+l)
is given by

*—1
711 2 “' “O (T ®  S-1 .‘Hi 1-‘  T* S* , 1=2,3,oo ,No

arid

n —- - :1 (Tea ® I)[(T+T°a) ® I + I Q; s]"lN+l ‘ N '
By defining the matrices

Mo = —(T(3 5) s*’l (8.3.l9)
M = T* s*”l (803.20)
MN = —-(r°a ® I)[(T+TOa) @ I + 1 Q) s]'1 (23.3.21)

which are respectively of dimensions m x mn, mn x mn and

mn x mn. It is clear that the mn—comp0nent row vector ni
can be obtained by the following formulae.

n MoMi'1 , 1 = 1,2,...,un. = ° (8.3.22)
° n+1
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In order to calculate no, we substitute the above
values in (8.3.9) to get

N-1 .
1»: [ I + ( 2 M M1 + M MN"lM )(1@ e)] (T+T°o:) = o0 i=0 0 0 N

ie., no W(T+T0a) = 0 (8.3.23)
where

“*1 1 N—lw = 1+ ( 2 M M + M M M\I)(I ® e). (83.24)1:0 0 0 - I
5 so 0 o 4Since T+1 a 18 lrreducible, the system

u(T+TOa) : O, ue : 1 (8.3.25)
has a unique solution. Therefore from (8.3.23) we get

now = cu, where c is a constant.
On applying the normalizing condition (8.3.5) we get
C7:-‘I-9

Hence in order to obtain no we need to solve for
the system

and the stationary probabilities can be calculated using
the formulae (8o3o22)o

III D
If we Genote pi = jil kil nijk (1=l,2,...,N+l)

mand p = Z n .o j=l 03
then {p1, i=O,l,2,...,N+l} represents the stationary
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distribution of the system size

804 NUMERICAL EXAMPLES

"He illustrate the results of this chapter by
giving numerical results for certain queueing systems.
The calculations are done on a computer with programs
written in Pascal.

Example (1)

F(.) is hyper exponential with

on .-2 (o./Pi, 003, 095) and T = o -2.0 o

G(.) is an Erlang distribution with{"' -7"300 3.0 O O
B: (l,0,0,0) and S = 0 “3'O 3'0 0O O ~3.0 3.0

O O O ~3.0L. ._
and assume that N = .10.

Example (2)

F(.) is an Erlang distribution of order 3 and with
parameter 2.5, G(.) is an Erlang distribution of order 4
and with parameter 3.5. Assume N = 10.

a = (1,0,o) B = (1,0.o.0)



205 O     O
T = 0 -2.5 2.5 and S = 0 "3°5 3'5 OO O “.2 5 O O ""305 305L -1 o o o -3.5
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L- ._.
The stationary system size probabilities corresponding to
Examples (1) and (2) are given below.

Pk k
Example (1) Example (2)

0 0.3555503 0.28571511 0.2486521 0.43150602 0.1626867 0.18954253 0.0978271 0.00344144 0.0573769 0.02031015 0.0334362 0.00646906 0.0194558 0.00205937 0.0113212 0.00065738 0.0066011 0.00020859 0.0038559 0.000066110 0.0022790 0.000021211 0.0009621 0.0000051
2 pk 1.0000044 1.0000016



Chapter-9

A FINITE CAPACITY M/G[l QUEUE WITH VACATION

901 INTRODUCTION

In the ordinary M/G/l queue, a poisson stream of
customers with i.i.d. service times of arbitrary distri
bution enters a single server facility with continuous
service. when the system capacity is finite with room
for atmost N customers in the system, ie. in queue or
in service, the system will be designated by M/G/l/N.

Queueing systems with server vacations arise
naturally as models of many diverse fields such as
computer, communication and production systems. Under

specified conditions, the server after finishing the
customer in service, discontinues service for an independent
vacation period. when a vacation period ends, either
customers are present in the queue or the queue is empty.
If customers are present, service is resumed. Otherwise,
a new vacation period, having the same distribution as the
previous one and independent of it, begins. Customers are
served in the order of their arrival. Different models are
distinguished by the rules which determine when service
stops and a vacation beginso For an M/G/1 vacation system
with exhaustive service, i.i.d vacations are performed

147
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whenever the queue is empty. In a single service discipline
a vacation period begins after every service completion, or
after any vacation period if the queue is empty. In a
Bernoulli schedule discipline the server begins a vacation
if the queue is empty. If at a service completion epoch
the queue is not empty, the service is resumed with
probability p and with probability l-p a vacation commences.

An extensive literature on single server vacation
systems has been developed in recent years. Notable among

them are Courtois (1980), Scholl and Kleinrock (l983),
Fuhrman and Cooper (1985), Keilson and Servi (l986a), Levy
and Yechiali (l975), Heymann (1977), Ramachandran Nair (l987)

etc. For a survey of Queueing vacation models one may refer
to Doshi (l986). While various server vacation policies

have been considered for the M/G/l system withinfinite capacity,
very few papers deal with the finite system. Finite capacity
systems hawebeen studied previously in Hoskstad (l977),
Miller (1975), Levenberg (l975), Courtois (l980) and Loris
Teghem (l988). Lee (1984) studied an M/G/l queue with
finite waiting space and server vacation where he considered
two types of service discipline: viz. l) exhaustive service
discipline, and 2) limited service discipline ie., the server
will begin a vacation if either the queue has been emptied
or M customers have been served during a visit. In all these
studies the steady state behaviour of the system is of major
COHCGITH o
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In this chapter we consider a rather large class
of vacation policies which contains, in particular, the
policies described above. A precise description of the
model is given below. The model is analysed, using Markov
renewal theory, in section 9.2. The time dependent queue
size distribution is obtained in section 9.3 and virtual
waiting time distribution is attempted in section 9.4.

We consider an M/G/l/N queueing system where an

arriving customer finding N customers present in the system
may not enter the system and is lost. Customers arrive
according to a Poisson process of rate p. The successive
service times are i.i.d random variables with distribution
function G(o) and they are also independent of interarrival
times. The queue discipline is FIFO. The server goes for
vacation either when the queue becomes empty or after
serving a random number of customers. ie, if the queue is
empty after a service completion then the server begins a
vacation period for a duration having a general distribution.
At the end of a vacation period service begins if at least
one customer is present in the queue. Otherwise, one or
more additional vacations are repeated until at least one
customer is present (multiple vacation). If k units were
served continuously since his arrival to the system after
the last vacation, the server may go for vacation with
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probability pk and resumes his service with probability
l-pk. We have pl ( p2 < ... < pM = 1, where M is the
maximum number of customers served in a busy period. The
vacation times are i.i.d random variables with a common

probability distribution function H(.) and they are
assumed to be independent of the interarrival times and
service times. Without loss of generality we assume that
N < M.

One can model many service systems using the

present model. In certain cases it often happens that
the service rate decreases with the increasing number of
units served. In that case the service time of customers
also increases and thereby results in increased cost to
the system. Hence there will be an optimal number of
unmits the srmmnrr can be aldxxwmd to serve cxnitinuously

so as to make the system most efficient and least expensive.

The following notations are used in the sequel:—

The lower case letters denote the probability density
functions (assuming that they exist).

-px n
pn(x) = .e ngpx) , n = 0,1,2, ..., N—l

-px n
“N(X) : 2 e nguxln=N



* denotes the convolution

f*n(.) = n—fold convolution of f(.) with itself (f*0(.)EEl)

NO ={mLa””}
E =[mLgu”N}
b(x) : Z h*m(x)

m=o

< r > '= max(o,r).

9.2 ANALYSIS OF THE MODEL

Let us denote by X(t) the number of customers present
in the system at time t. Then the process

x ={mw,t;o}
is a semi~regenerative process with state space E ={_O,l,2,...bI}
and the following embedded Markov renewal process.

Let 0 = TO,T T2, ... be the instants of successive1:

busy period terminations, and Xn be the number of customers
left behind at the termination of the nth busy period. Then

(X,T) = -[(Xn,Tn); n E NO } is a time homogeneous Markov
renewal process. The associated semi—Markov kernel over
the set E is

Q ={Q(i-rjvt) 7 i9jEE9t>O]



152

where Q(i,j,t) = Pr {Xn+l=j, T -Tn g t [ Xn=i:} isn+1

given by

K t M—i+j * . .- (1+k—3)E h* . .d ,i k:<j_i> uk(u)( 9 )(u)pl+k_J U
i # 0, j 6 E;Q(i.j.t) = (9.2.1)t _ M * k_.

g e uub(u) kio pj+k(t—u)(h#g ( J))(t—u)pk_j du,

1 2 0, j e E

Let  ‘-' [Q(iojst)]i  E E

Define for n E N0

Q“(i.j;t) I ‘U H
Ha

><
:3

ll
L4.

«-1 g t | xozi} , i,jE.E, tgo.

Then

Q°(i.j.t)
1 if 1 = j

for all t 5 0,0 if 1 ¢ j

and we have, for n IV 0, the recurrence relation

t
(i,k,t) = 2 f Q(i,j,du)Qn(j,k,t-u)

jE E 0
Qn+l
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Then the Markov renewal functions are given by

R(i,j.t) = 2: Q“(i,j.t). i.jeE. t >_0 (90202)
I120

Denote R(t) = [ R(i,j,t) 11 j E E. It is the Markov9

renewal kernel corresponding to Q(t).

Here we note that, since the state space E is
finite we can compute the Markov renewal kernel by the
relationA A 1Ra =—. ( 1- Ga )" (9.2.3)

A A 0 0 A A 0 0
Where Qa 7' [Qa(17J)]i,J-EE and Ra 2 [Ra(19J).]i,jeE9

A °° __
oa(1.j) = f e atQ(i.j.dt).

OA I
Ra(i.j) = I e °"“R<i.j.dt>.

0

9.3 THE STATE SPACE AND TRANSIHQT SYSTEM SIZE PROBABILITIES

Our basic concern is with the process X(t), the
number of customers in the system at time t. Consider the
trivariate stochastic process fl(t) = (X(t), Y(t), Z(t)),
where

X(t) = number of customers in the system



wt)
(number of customers served upto t since

and Z(t) = %

This process m

S 7: {(i9j

We assu

a busy period
state of the p

fl(0) =

For eac

t > 0 define

P{t,a,i

Then we have
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0 if a vacation is in progress at time t
1 if a service is in progress at time t

the commencement of the current busy
period (termination of the last vacation
period), if a service is in progress at
time t

KO, if a vacation is in progress at time t.

ay be discussed on its state space

.k); 0 S i S N, J 1! 0,1, 0 _<_ k <_ M-1}.

me that at time t = O, the server just completes
and enters a vacation period so that the initial
rocess is

(X(O), Y(O), Z(0)) = (a,0,0) for some a e E

n a,i e E, je{o,1], ke {o,1,2,...,M-1},

,j,k) = Pr {v_g(t) 2 (1,j,k)|gg(o) .-; (a,o,o)}
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Theorem 9.3.1. For any a,i e E, j€i‘{O,l3, 0 g_k g_M-1
and t Z O,

t
P(t9a9isj9k) = E f R(a9Q-ydu) K(t"U9Q-9i9j9k)“ .£EE o

where

K(t,£.i.j,1<) = Pr{_vg(t)=(i.j.k), Tl>tIv_v(o)= (!i.0.o)}

are as given below.

V;e-”ub(u)pi(t—u)[l—H(t-u)]duo
for 1:0, ogigm, j=O, k=O;

je"“ub(u) }h(v-u)ui+k(t-U)[G*k(t-v)-G*(k+l)(t-v)JO U
(l—pk)dv du

for E20, lgigw, j=l, ogkgM—1;

K(t 9 i 3‘ k)=<' ' ' ’ [l—H(t)]ui_1(t) for lsflsw. Rsisw. j=o. k=o;t ‘E *
ui+k_l(t) £n<u> [G “(t-u)—e ‘“*1’<t-u>]<1-pk)du

for 1 gQgN, lgigu, 3:1, 1gkgM-1

ui_£(t) }h(u)[l-G(t-u)]dU
O

for 1gQgN, flgigw, j=l, k=O

0 otherwise
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Proof:

IIp(t9a9j-sjvk) 3 pr-['_':J_(t)=(i9.j)k)9 Tl>t I  (a9OvO)}

+PI‘{_'fl(t):-(j-9j)k)9 Tl..<.t I  Z (F-19090)}

t
2 K(t,a,i,j,k) + 2 fQ(a,£,du) P(t—u,Q,i,j,k)

ESE 0

which is a Markov renewal equation (see for eg. Cinlar (l975b))
and its solution is given by

t.P(t.a.i.j.k) = 2 JR(a.E.du) Ktt-u.£,i.j.k)
QEE 0

Since there are only finitely many states, this solution is
unique.

Now the expressions for K(t,Q,i,j,k) can be seen to
be as given in the statement of the theorem by considering
different possible values of Q,i,j,ko

[Q.E.D.]

9.4 VIRTUAL WAITING TIME DISTRIBUTION

Let n(t) be the virtual waiting time of a customer
in the queue. Here we obtain the probability distribution
of n(t) conditioned on the state of the system at time t.
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HDenote ¢t(x/(i.j.k)) = Pr {n(t)§x I fl(t) (i.j.k),
fl(O) = (39090) }

Then we consider the following cases separately.

Case (1): i=0, j=O, k=O,

t
R(a,O,du) pO(t—u)fb(v-u)

UoL~a

¢t(><l(i.;i.k)) =

[H(t+x~v)-H(t-v)]dv du

Case (ii): lgigw, j=O, kzot t t+x
¢t(xl(i,j.k) = fR(a.O.du)ui(t—u) fb(w~u) { h(v—w)O Ui .

X (G*l*H*k)(t+x-v)dv dw du
kzo

1 t
+ Z fR(a.E.du)u._£(t~u)[=1 0 1

t+x i *1 *nfh(v—u) 2 (G *H )(t+x—v)dv dut n=o
and finally,

Case (iii): lgigN, jzl, OgkgM—l

_ . ‘ t j+k tfx
¢t(Xl(l,Jat) = £ ail R(~.Q.du)ui+k_E(t~u) {h(v-U)

i+k
Z (G*(k+i)*H*n)(t+x—v)dv du



158t t t+x
+ J R(a,O,du) pi+k(t-u) fb(w—u) f h(v—w)o u t
i+k .
Z (G*(k+l) * H*n)(t+x-v)dv du.

I1-=1

Remark:

In this model if we put M21 and plzl we get
single service discipline and if we put Mzm and pizp
(i=l,2,...) we have the Bernoulli schedule discipline
and when p=O it becomes the exhaustive service discipline.
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‘CONCLUDING HERVJHGS

In this thesis, (s,S) inventory systems with non
identically distributed interarrival demand times and
random lead times, state dependent demands, varying
ordering levels and perishable commodities with
exponential life times have been studied. The queueing
system of the type Ek/Ga’b/l with server vacations,
service systems with single and batch services, queueing
system with phase type arrival and service processes and
finite capacity M/G/l queue when server going for vacation
after serving a random number of customers are also
analysed.

In inventory theory, one can extend the present
study to the case of multi-item, multi—echelon problems.
The study of perishable inventory problem when the commodi

ties have a general life time distribution would be a quite
interesting problem. The analogy between the queueing
systems and inventory systems could be exploited in
solving certain models.

Consider an inventory system with more than one
ordering levels and more than one server. Assume that
some of the servers take vacation when the inventory
is less than a prescribed quantity. Here again one can
investigate the transient as well as steady state solutions.
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The techniques used to derive the time dependent
solutions may be of special interest to any stochastic
system having regenerative or semi—regenerative structure.
The most important problem one can think of is to develop
an algorithm to compute the given transient solutions
numerically. To the application point of view this is
a quite worthwhile work. For developing the algorithm,
possibly one can effectively use some fast transform
techniques (see, Elliott and Rao (1982) ) because here
we cannot use the usual procedure of Laplace transforms.

In vacation models, one important result is the
stochastic decomposition property of the system size
or waiting time. One can think of extending this to
the transient case. The distribution of virtual waiting
time may he used for the decomposition property of the
waiting time, since it can be defined as the unfinished
work (see Kleinrock (1975) ).
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