STUDIES ON THE TECHNOLOGICAL ASPECTS AND ECONOMIC EFFICIENCY OF TRAWL GEAR OPERATING ALONG THE COCHIN COAST

THESIS SUBMITTED TO
THE COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY
K. C. BELLARMINE M. Sc.

DEPARTMENT OF INDUSTRIAL FISFIERIES COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY COCHIN-682016

1991

CERTIFICATE

```
    This is to certify that this thesis is an authentic
record of research work carried out by Sri. K.C.
Bellarmine, M.Sc., under my supervision and guidance in
the Department of Industrial Fisheries, Cochin
University of Science and Technology, in partial
fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY, and that no part thereof has been submitted for any other degree.
```

Cochin, 682016
August, 1991.

[^0]
DECLARATION

I, K.C. Bellarmine, do hereby declare that the work presented in this thesis is the result of my own investigations and neither the thesis nor any part thereof has been accepted nor is being submitted for any other degree. All the sources of information have been duly acknowledged.

ACKNOWLEDGME'NT

I wish to record my deep sense of gratitude and
indebtedness to Dr. M. Shahul Hameed, Professor and
Head, Department of Industrial Fisheries, Cochin
University of Science and Technology, for his valuable
guidance, encouragement and unfailing support given
throughout the period of my research work.

I am greatly indebted to Dr. Shaju Thomas, Lecturer, Nirmala College, Muvattupuzha, Dr. Asok Kumar. K, Dr (Mrs.) Sophy John, Lecturer, School of Marine Sciences and Mr. K.V. Pauly, for their whole hearted cooperation and help during the preparation of this thesis.

My thanks are also due to M / S Paragon Sea Foods, Cochin 682005 who had readily extended facilities for carrying out experiments from their fishing boat.

I wish to thank all my colleagues, friends and others who had directly or indirectly involved themselves in this work.
parents and brothers for their constant support and encouragement during the course of this work.

I am thankful to the Cochin University of Science and Technology for providing me a Junior Research Fellowship during the tenure of my work.
C O N T E NTS

1. Chapter I INTRODUCTION 1
2. Chapter II
ESCAPEMENT STUDIES 26
$2.1 \quad 1$ 1 Introduction 26
2.2 Objectives 27
2.3 Experimental gear 27
2.4Experimental species28

2.5
2.5 Fishing craft 28
2.6 Materials and methods 28
2.7 Results and Discussions 31
3. Chapter III
DRAG CALCULATIONS 46
3.1 Introduction 46
3.1 .1 Mesh size 49
3.1.2 Towing speed 51
3.1 .3 Twine diameter 54
3.2Objectives55
3.33.3.13.3.23.3.2.1
3.3.2.23.3.33.3.3.13.3.3.23.3.3.33.3.3.43.3.3.53.3.3.63.3.3.73.3.3.83.3.3.9
3.3.3.10
3.3.3.10.1
3.3.3.10.2
3.3.3.11
3.3.4
3.3 .5
3.3 .6
3.3.7Materials and methods56
The gear 56
Operating parameters 57
Horizontal spread 57
Vertical opening 58
Calculation of net drag 59
Drag area 59
Periphery of the cone 60
Setting angle of meshes 61
Angle of attack of netting panel 62
Drag of cone 63
Nominal developed area 64
Calculation of drag coefficients 65
Effect of high solidity panels 69
Codend drag 73
Appendage drag 75
Drag of floats 75
Drag of ropes and sinkers 75
Total drag of trawl 76
Influence of mesh size on total drag 76
Influence of towing speed on total
drag 77
Influence of twine size on total drag 77
Influence of panel depths on totaldrag 77

3.4
3.4 Results and Discussions 78
4. Chapter IV
OPERATIONAL ANALYSIS OF TRAWLERS
4.1 Introduction 113
4.2 Objectives 115
4.3
4.4
4.4.1
4.4.2
4.4 .3
4.4 .4
4.4.4.1
4.4.4.2
4.4 .5
4.4 .6
4.4 .7
4.4.8
5. Chapter V
SUMMARY \& RECOMMENDATIONS
142
6. REFERENCES 150

CHAPTER I

INTRODUCTION

The trawl is a bag shapod net comprising several components viz．conical net with wings at tho front end and codend at tho other，ropes associated with the net and floats and sinkors for achieving vertical opening and otter doors for sproading tho mouth horizontally．Many variations from the typical basic design have evolved and havo been described by many authors．Bullis（1951），Scharfe（1959 a） Glanville（1961 a，b），O＇grady（1951）aad Fridmar ot al．（1973）have dealt with the design aspocti，miile， Garner（1956，1957 a，b，c，d，e，f and 9,1952, 1957），Scoffield（1948），Denisov（1959），Fuss（1963 a， b），Brandt（1954），Dickson（1965），Frascr（1965）， Miyazaki（1964）and Nomura ot al．（1977；have doalt on tho construction；Hodson，（1942），Garner（1955，196i； Scoffield（1948），Margetts（1963 a，b）and Rnistionsson （1958）have described the method of traml oporation．

Easically trawls are considerこd to bo furthor developments of towed bagnets，dredgas and buam travis， to facilitate bigger and broader neta（Brandt，iヨ7』）．

Being a towed gear, tho efficioncy of a trant is directly rolated to the size of the mouth opening and in order to achicve a greater mouth opening, the initial attempts involved the towing of frameless bagnets from cables rigged from two outrigger poles. This method is practiced in some Europoan and nsiatic Fishories. But due to limitations of using longer outrigger poles the size of the mouth of the nets could not be enhanced boyond a certain limit. With the advent of powered fishing, a revolutionary method was doveloped to effect greater horizontal opening in trawls by the use of otter doors. There is evidence indicating the use of otter doors in other type of fishing like stow net, seine net and linc fishing; but Hearder and Musgrave may be credited with for their initial experiments using ottor boards in trayling and Scott of Granton was the first to design a commerdial tranl with otter doors in 1884 (Scoffield, 1948; Eavis, 1958; Brandt, 1972). Tho depioymont of ottor aoors in trawling facilitated the use of bigger nets ard the initial practice of towing from a singlo cabie was replaced by two cable trawing with the introduction of Gallows which paved the way for rapid incroase ir sizc of the net, power and size of vosscle having greator cndurance at sea.

```
Commercial Trawling in India is of rocent origin - probably about threo decades old. Furiyar, (1965), statod that tranling, on a commercial levol commenced at cochin during the sixtics and spread to the other parts of India. Nair et al., (1973), opincd that trawling was introduced in Indiafor tho purposo of ground resource survey, which could be grouped into two - those undertaken during the pre-war period 11900 to 1930), and those lindertaken during the post war period. Chidambaram, (1952), stated that beam trawling was introduced in this country for resource surver around 1900.
```


To snhanco tho efficioncy of fishing operations therc has been a constant offort by fishermon to improve their tools and tochnigues. Various stratogies and mothodologies haサe becr developod by rescarch workers, dopenaing on tha uscfulnoss and availability of rescurcos, tomost this goal.

Abstract

obscrving, undorstanding and effocting modifications with a view to improve the trawling operations was a common methodology adopted by many workers. Observation of tell-tale signs on the gear like distortion of meshes, polishing of parts, vibration, etc., have been profitably used to make changes or alterations, which, after a series of trials and errors, results in an improved gear. The trial and error method adopted, paid ample dividends in the past.

The development of science and technology facilitated gear technologists to make underwater obscrvations for more objective basod inferences. Underwator observations of fishing nots also furnish immense information on the relative position and function of the individual compononts as well as the bohavior of fishos in the region of tho trawl. Indirect obscrvation was resortod to by filming, (EonYami, 1959; Craig and Pu゙icstly, 1953; Eomish, 1967; Parrish et al. 1957), underwator tolovision (sand, 1957 and Livingstone 1959), echo sounding (Scharfe, 1963; Chapman and Hawhins, 1967; Ckonski, 1967, Mohr, 1960; 1967) and scctor scanning (Hardon-Jones, 1967; Hommings, 1974), for dotailod tranl studies.

```
    Dircct obscrvations can bc mado on tho goar,
sither in its actual operation or in a simulated
environmont. The former is normally possiblo only in a
sheltered bay or in clear shallow waters, and were
reported by Parrish et al. 1964, Hemmings, 1967 and
1 9 7 3 \text { and Sangster and Hemmings, 1971. The towed}
underwater vehicles facilitated continuous underwater
observation, filming and recording as reported by Main
and Sangster, 1978b, 1979, 1981 a, b, 1983 a, b, 1984
a, 1985; Korotkow and Martyschenshi, 1977). Modei
testing of fishing gear was acceptod as an excollent
tool in gear designing bocause they are chop,
objective and accurate. (Dickson, 1959; Kawakami 1959).
Chopin and McCallum (1988) analyzed the feasibiiity of
a flume tank vis-a-vis the cost factor. Modcl tests
conducted by many authors (Kawakami, 1955; Takayama and
Koyama, 1959; Dale and Mollor, 1964; A九re0, 1965;
Honda 1979; Wray 1979 a, b, 1930 a, b, c) providod
considerable information in this rogard.
```


1969, 1970, 1978; Scharfe 1959; Fridman 1969; Dickson, 1959; de Boer, 1959; Takayama and Koyama 1959 and Crewe 1964, have made calculations bascd on the measured operating parameters and performance evaluation of the corresponding gear has been made by calculations by Crewe 1964, Carrothers et al., 1959; Fridman 1969; Fâo 1974; Kowalskii and Gianotti, $1974 a$ and b and MacLennon and Galbraith, 1979. Eycept for the work of Sivadas (1968, 1969, 1970 and 1978) who devoloped instruments for monitoring instruments operating parametors, Sathyanarayana and Nair (1965) on warp tension and Deshpande (1960) on warp divergence. no studics have been attempted on any of the travis operating in our country.

```
    Initial cxperiments towards improving the
catching efficiency of trawls rore rclated to rigging.
The use of tickler chain in bottom trawle vore found to
be effective by many workers. Bullis, (195s); Savis,
(1958); Miyamoto, (1957); Deshpando and Sivan, {1962)
and Deshpande and George, (1965). Mukundan and Hamocd,
(1989) reported the usc of a ticklor chain betweon tho
otter doors in the commorcial trawls of cochin. The
effect of lengths of swocp lincs noro invostigatod by
many workors. Greator swoop, bosidus inczoseing the
spread betweon otter doors is found to minimise the
```


Abstract

scaring offect caused by the vossel. The herding effect of sweep lines was studied by Bagenal (1953); Kondratev (1965); Korotkov (1969); Hemmmings (1967, 1973) and Main and Sangster (1978 a, b; 1981 a, b, 1983 b). Crewe (1964) has attributed the herding effect to the vibrations of the sweep lines, while Hemmings (1967) relates it to visual stimulii. Main and Sangster (1981 a) in their study on the sand clouds produced by otter doors emphasises the importance of bride lengths and bridle angles. They have opined that the bridles should be at the inner edge of the cloud thereby roducing the gap through which the fish can escape and hence the bridle needs to be placed alongwith tho sand cloud.


```
            The use of sweep lines incroased shrimp
catch as reportod by Kuriyar (1965). Sathyanarayana
and Narayanappa, (1972) have recorded catch rates of 39
kg/hour and 6e kg/hour by direct (Hoovor rigi and
indirect (v-D rig) rigging respectively. Narayanappa
(1968 a), in his erperiments to ascer=ain the effective
length of swecp line, observed that even though the
spread betweon cttor doors incroasod with incroasing
swecp longths, the catch rate was maximum for a swoep
line length of 20m. Similar experimonts with doublc
sweep lincs by Mathai ct al. (1994), also established
highor catch ratas for 20m choop lorgths. Thoy have
```

also obscrycd that using a 30 m sweep line gave the fishos enough time and space to escape the path of a ビロッフ．

For the officient operation of the bottom trawls，they have to be dragged with firm contact with the sea tottom，and to achisve this，corroct length of the towing warps is an important factor．The marp paid out is acpondent on the depth of operation and is cxpresscd as aratio of the warp length to the sea depth and is roforred to as the Scope Ratio．The normal practico is to maintain a scope ratio of $3: 1$ for doeper waters，while for shallow waters the ratio is about 5：1．Soveral morkers have investigated the effoct of scope ratio on trawl efficiency（Kullenberg， 1951；Ben－Yami，1959；de Boer，1959；Miyamoto，1959； Pereyara，1953；Sathyanarayana and Mukundan，1963；Nair ct al．1966 and Sathyanarayana ct al．，1978）．

Fishing gear research was revolutionised with the advent of man－made fibres．Much of the work in this regard was related to comparison of the efficiency of nets made of different materials．Firth， （1950）compared nylon with cotton trawl．While Miyazaki，（1962）found nylon twines four to five times more cificiont than cotton，Kuriyan，（1965）reported that cotton tranl is better than nylon trawls as cotton
trawls hug tha sea bed better. Kartha et al. (1974) compared the efficiencies of tranls made of cotton, polyethylene and combination (lower panel made of cotton and upper panel made of polyethylene). He has observed that the positive buoyancy of polyethylene contributed to the efficiency of the ret by improving its vertical opening. A fow others have also evaluated the comparative performance of tranls made of different matorials. Klust (1973), has discussed the choice of materials for tranls based on requirsments. Eventhough many materials with differing efficiencies are available for fishing goar construction, polyathylone continues to be tho most popular gear material, mainly due to its advantages in the cost parspective.

```
                    Experiments were carriod out to ascortain tho
correct depths of various parts of a tranl, like idury,
cverhang, stc. by various worbers. Through a scrics of
experiments conducted on shrimp trawle, it was shown
that the belly dopths of a four soam shrimp tranl could
be roduced substantially without cffocting catch.
MMalathkar and IYor, 2956; Mhalathkar and Jagceosan,
1970, 1971). Nair et al. (1971), through a sories of
experiments showed that the nots with an overhang of
1.5m caught better than ones whosc overhang was more
than or less than 1.5m in depth. Furiyan (1955),
```

observod that by adding extra wings to the trawi, the catch of prawns could be enhanced. This was confirmed by Sathyanarayana ct al. (1976).

Many cxperiments have been carried out to improve the vertical opening of trawls, giving duc consideration to the fact that this aspect is a matter of importance as far as efficiency of a tranl is concerned. Brandt (1972), quoted the use of sticks between the upper and lower edges of a net at varying and graded distances. Other references in this regard include the use of mouth stretchers (Hayashi, 1933 quoted by Erandt, 1972); triangular gussets (Takayama and Koyama, 1959); use of kites - either singiy or double (Dickson, 1960); transmitting the pull of tho vessel to the codend through the lastridge lino, thereby relieving the headine from strain, due 0 tho pull of tho vessel and permitring it to riso, insortion of triangular wedges on the wings, splitting the winge along the selvedge (Dickson, 1960, okonsit and Sadowski, 1959); usc of more buoyant and hydrodynamic floats with better lift/drag ratio (Catasta, 1959, Grousclla, 1959, Phillips, 1959); use of sail kito (Anon, 1979, Boopendranath et al., 1986); etc.

```
trawls. Hamuro, {1959, 1964 a ana b, 1967), aftor
extensive studics on two and four seam tramls, reported
the defects of two seam trawls such as highor
resistance, choking of water at the trawl mouth,
difference in waterflow inside and outside the traml,
dragging of the ground by considerable portion of the
wings and swollen belly. As a remedy to these, Hamuro
suggested four seam trawls. Varghese et al.'s (1968)
cxperiments on a now four seam trawl was encouraging in
the catch perspective. Bulged belly trawls wera
compared with cther designs of trawls such as long
winged and four paneled trawl (Pillai et al., 1978),
six seam trawl (Runjipalu et al., 1979 b), six seam and
long wing trawl (Mhalathkar et al., 1985), eight seam
large mesh trawl (Runjipalu et al., 1984), six seam and
high opening trawl (Pillai ct al., 1979), dual purpose
trawl (Kartha and Sadanandan, 1973) split belly trawl
(Wartha et al., 1985).
```

The various types of tranls developed, due to thoir complicated designs were difficult to construct. Hence thoy remainod largely confined at the experimontal level. The Food and Agricultural Organisation (Fro)/Swedish International Developmental suthority (S IDA) aidod Bay of Bongal project (ECBP), recognising the fact that the decline of the shrimp autchos have mada tho cperetion of small class of
vessels uncconomical, after detailed studies, developed four types of trawls, viz.
a) two boat high opening bottom trawl
b) two boat mid-water trawl
c) one boat high opening bottom trawl and
d) two boat fish cum shrimp trawl

The one boat trawls are characterised by large mesh, light construction, dove tailed wings and two seam. These trawls became very popular in Tamilnadu (Pajot and Crocket, 1980; Pajot st al., 1982, 1983), Orissa (Pajot and Mohapatra, 1986) and Gujarat (Raja, 1987). Mukundan and Hameod (1988) romerted that these trawls have replaced conventional trawls in Cochin area as woll. Hameed ot al. (1988) roported the use of a modificd and smali vorsion of tho onc boat, high opening bottom trand for rini tramling.


```
bo manipulatod will docido tho succoss of the fishing
operations and the overall influence of these
components will give rise to selection. Parrish (1963)
has defined selsction in fishing as any process which
give rise to differences in the probability of capture
among the members of the exploitable fish. In the
larger perspective, selection is the act of choosing,
taking, distinguishing or separating a group of
individuals from tho larger group, aggregation or
population of which they are part, on the basis of
difference in one or more recognised characters.
Selection process in fishing may be attributed to the
following three major components :
a) Availability
b)Vulnerability and
c) Inherent gear selectively
```

```
Availability
    Availability has bcen defincd by Widrig (1951)
"as tho number of fish in the population that are
Within the scope of the fishing operations during a
season, to the number of fish in the total population".
This type of selectivity occurs as a result of tho
difforoncos in tho distribution of fishing fleet. This
may be attributed to the following reasons.
```


Economic

Economic operations may restrict the fishing
oporations to cortain regions, advantageous in the
operational perspective. For example regions which are
within daily landing distances will have a greater
fishing intonsity thar grounds farther anay. Also,
economic factors may aircot the fleet's activity to
rogions of particular cizos or gualitios of fish.

Technological
Technological factors may prohibit fishing on
cortain grounds occupiod by the species under
cxploitation. For oxample, limitations of range and
fishing facilitics among the small vessels will
rostrict thefishing offort to grounds compatible to
these vessels, although the distribution of the
cxploitablefish stock may extond well beyond the scope
of these vesscls.

Legislative

Legislative measures like closed seasons, restricted grounds, contract systems, etc. result in an unequal distribution of fishing effort.

R11 of these factors will collectively or individually croate an unequal distribution in the fishing efforts and give rise to sclection.

Abstract

Inhorent gear scloctivity of a goar is its capacity to catch fishes of certain size and species from a mixed population. This factor dopends mainly on the principle of the fishing method used, but is also dependent on design parametcrs of the fishing gear such as mesh size, load on twines, material and thicknoss of twines, hanging ratios, towing specd, etc. Thus, it is evident that, unlike availability and vulnerability, inherent gear selectivity is an intrinsic property of the gear and is hence not influenced by a number of external factors. As such, inherent gear selectivity is the most easily measurable of all selcction processes. This however does not imply that it is of minor importance or that there are no longer any outstanding probloms in rolation to it, but moroly that the field is one in which quantitative evaluation of the procoss can usually bo made. ```Tho onc most popular character that is usod in gaar scloctivity studios is tho longth of fishos. Through goar saloctivity is influcncod by a number of factors, the reason for taking length of fishes as an index to study selcctivity is duc to practical reasons and also bcaausc the other factors related to it are moro difficult and time consuming to moasure.```


```
    The nature of longti selectivity diffors
according to the type of gear used and most commorcial
gears in use today can be placed in one of tho
following two main categories :
    i) those which select at one end of the length
        range.
    ii) those which select at both ends of the length
        range.
        The first of these is the simplest and the
easicst type of situation to handle and is the best
kmown one. Gears like trawls, seines, ringnets,
poundnets, etc. belong to this category. In this type
of selection, all the fishes of lengths less than one
particular value escape. The selection in gears like
gillnets, have a different pattern. Only fishes within
a parcicular length range are retained by the net, i.e.
there is selection at both ends of the length range.
```


Selectivity in Trawls

Sclectivity of catch by tranls operate at various stages in the overall fishing procodure even before mosh selection can come into operation. The availability of fish to gear is a part of the total selection process. The relation between the spatial distribution of fict and the wator swopt by the goar

```
i.c. features of vulnerability, availability and
accessibility may give rise to solection. Within the
gear, selection could occur by escapes occurring
through the various parts and a number of factors
account for this.
```

Mesh size
Trawl selectivity depends largely on the mesh
size. Increasing the mesh size would be sufficient for
effecting the escape of undersized fish. If the mesh
is so small that undersized fish cannot squeeze through
it, the selective effect of such mesh can be
disregarded. However, investigations conducted in the
Soviet Union showed the impossibility of achicving
selective trawling merely by changing the size of mesh.
Since, in a trawl the mesh sizes graduaily
decrease from the frent to the codend, the mout
significant and relevant seloction, the lattor
particularly from the commercial and resource
conservation perspective, occurs in the codend. For
the same reason, almost the entire lot of available
data on selectivity experiments are confined to codend
selectivity.

```
    An increasc of mesh size in sole and plaice
exporiments, roducod tho total catch, rosulting in a
```

```
higher selection factor and smaller selection range. A
significant direct effect of mesh size on the\cdotselection
factor could be demonstrated only in the casc of sole.
Jonsson (1960) in his experiments on Icelandic haddock
with mesh sizes varying over a large range from 67 cm
to }78\textrm{mm}\mathrm{ observed the selection factor to reduce from
3.8 at small to 2.9 at large mesh sizes. Coull (1987)
also conducted selectivity experiments on Cod, Haddock
and Whiting with 80, 90 and 100 mm codends. He
observed a clear increase in sclection factor with
increasing mesh sizes. Treshev (1963) has further
stated that even meshes of codend, double in size, will
not secure a complete elimination of young, though it
will sharply decrease the catches of marketable fish.
```


Catch quantity

Beck et al. (1983) obsorved that the amount of catch in the codend significantly influoncos the selection parameters. A number of other factors, such as mesh sizo, towing spocd rhich is diroctly dopendont on engine horsepower, duration of tod, ctc., also influence indirectly, the codend selectivity i.e. via. codond filling. Bohl (1977) obtained a reduction ir sclection factor from an average of 3.9 to 3.5 when the total catch increasod from the avorage 1.3 tons to 5.3 tons. Eltink (1983) and Howard ot al. (1983) statod

```
that in pelagic and shellfish fisheries, whoro the mesh
size used is very small, there is little or no
sclection when the total catch is large. Howover,
Charuou (1979 b) found the selection factor to increase
with total catch.
```


Gear Material

The effect of gear material on selectivity is chiefly attributable to material stiffness. This is particularly true when there is not much tension on the netting lines and at which times the inherent stiffness of the material is more pronounced. Observations of netting sections, made in flume tanks, have shown that mesh openings are highly dependent on netting stiffness, if the netting is under low tension. Tension in codends are low until catch builds up. Many exporimonts have been conducted to study the influence of gear material on gear selectivity. Bohl (1987) obtaincd a selection factor of 8 y less for polypropylene, in comparison to a polyamide codend. In another experiment which compared polyamide with polyamide-polyethylenc combination codends, Bohl (1931) obtained selection factors 12\% lower for the combination Yarn codend. Alonso-Allende (1981) compared polyamide with polycthylene codends and obtained sclection factors 12% lower for polyethylene.

```
Charuou (1979) on the other hand observed no difference
in selectivity between polyamide and polyethylone
codends. Since most of the above quoted experiments
encompassed only limited hauls and codends, and since
no statistical analysis of significance has been
carried out, perhaps the difference in the selectivity
observed are not-directly influenced by the material
quality, but rather other unrelated factors such as
method of construction, material treatments for the
individual codends, ete.
```


Twine Thickness

Though the influence of twine thickness on
selectivity is rather important, very fow experiments
have been carried out to establish the importance of
this parameter. Bohl (196g a) reports an insignificant
reduction in selection factor, on the basis of an
experiment in which he compared an extra thick R1800
tex doublo nylon with normal pefel tex double nylon
codends. In ancther study carried out by Troschev and
Shevtsov (1975) using polyamide twines of R1122 tex and
R5el tex, selection factors of 3.3 and 4.3
respectively, more obtained.

Hauling Techniques

```
    Stern trawling is obscrved to have lower
sclection factors than side trawling. Bohl (1980) has
suggested that lower factors for stern trawlers are due
to their being continually under tension as they are
always moving ahead. Side trawlers haul the goar
differently, as do trawlers with net drums mounted on
the fore deck and pair trawlers, such that the strain
is taken off the gear at times. Declerck et al. (1981)
observed selection factors to vary with weathor
conditions. Selection factor increased with increascd
wave height, possibly due partly to increased jerking
on the trawls under hauling and awaiting emptying.
```


Type of Gear

Mesh Configuration (shape)

completely curtailed in square shaped meshes. In square shaped meshes, the nettings are mounted cffectively turned through 45 degrees so that the meshes become square shaped with one set of mesh bars parallel to the trawl axis and the other at right angles. Since most of the selectivity occurs at or near the codends, square meshed codends promises to be an excellent tool in regulating the capture of under sized fishes.

The term square mesh refers to the shape the mesh assumes once the wobbing has been cut. The shape is accomplishod by tapering each side of the webbing by a continuous bar cut. When the webbing is stretched in a horizontal and vertical direction, the mosh assumes a square, rather than the traditional diamond shapa. Gilder, in 1929, quotcd by Hearn (198S), patantod a codend hold open by a wooden frame and using square mesh. The concept was to improve the escapomont of small fish. Many sorios of exporimonts portaining to selectivity in codends wore carriod out at the Marine Laboratory in âbordeen. Subsequently, square mesh has boen a topic of very interesting and important experimonts cf several gear technology research institutos of tho worla. Escapoos through tho square meshed codends have shown better survival rates. Josoph and Daniol (1980) have obsorvod that square mosh

```
escapees showed 79% survival after 12 days, while
diamond mesh escapees had only 18% survival after 15
days.
The foregoing indicates that, except for a
very few references, research work on trawls in our
country has largely been confined to comparison of the
catches made by the various types of trawls fabricated,
mainly to compare their efficiencies. There has not
been even a single instance of using the method of
measurement and calculation for estimating traw?
performance. Therefore the present study attempts to
evaluate the efficiency of trawls operating from Cochir.
    an important fishing center along the south-west
coast of India.
```


CHAPTER II

ESCAPEMENT STUDIES

2.1Introduction

```
    For successful gear designing, an important
factor to be considered is the behavicur pattern of the
species sought. Perhaps, the most efficient method for
studying this aspect is by direct bservation. Homever,
due to constraints of facilities available, this method
is not applicable in many cases. An indircot mothod
is to study the behavicural aspects vis-a-vis the
selectivity, is to estimate the escape pattorn of
fishes through the meshes of the trawl net. Escape
pattern studies will give an idea of both tho fish
bohaviour and the selcction ciaracters of tho notting
considered.
```

Excopt for a wori by panicker and Sivam
(1965), who studied the selective action of the codend
meshes of a shrimp trawl, no mork on selectivity has
been attempted in India. This study therefore aims to
analyse the escape pattern of fishos through tho
different parts of a trawl ner.

2.2. Objectives

The various pancls that go into the construction of a trawl have varying functions. While the panels in the anterior regions of a traml have functions chiefly pertaining to guiding the fishes within the mouth of the trawl, those at the posterior regions have selective function. The latter functions also have a bearing on the behavioural aspects of the target species. An analysis of the escape pattern through the various panels will go a long way in designating the role of the respective panels in abetting fish capture. It Nould also throw some light on the behaviour pattern of the species under study.

2.3 Experimental Gear

2.4 Experimental Species

Nemepterus japonicus, which wore available in plenty during the trawl experiments, wore taken as the experimental fish.

2.5 Fishing Craft

The experiments were carried out form a commercially operated mechanised wooden fishing trawler of OAL 11m. These vessels are powered with onboard engines of 90 HP . They are stern trawlers with twin drum hydraulic winches and single gallows resembling the Norwegian Type.

2.6 Materials and Methods

Tho methods commonly employed in mesh
selection experiments include the covered net
experiments and paired tows (hauls). Both the methods
have their own advantages and disadvantages and which
have becn discussed extensively on various occasions.
(sactorsdal, lo63; Templeman 1963). A modified version
of the covered net experiments was employed in the
present study in which pockets were used to capture the
escaped individuals. This methodology is similar to
the one described by Ellis (1963) and clark (1963).

Pockets were attached to six strategic
locations on the trad. Sinco the gear under study was
a bottom trawl, the attachment of pockets to the different parts were confined to the uppor seam only; the escapement through the lower seam, which usually dragged over the bottom, if any, could not be successfully estimated due to limitations of the experimental procedure. Each pocket covered an area of one square metre at the site of attachment and any escapement that occurred in this region gets collected in the respective pocket.

2.2.6.1 Description of pockets

The pockets wore made from knotless polyamide nebbings of mesh size 15 mm . Each pocket was made of two panels - an upper and a lower. Figure 2.1.1 gives the description of a pocket and its attachment. The upper seam was longer than the lower, though both were of equal widths. The two seams were tied together posteriorly so as to form a receptacle which collects the sscaped individuals. The pockets were attached to the trawl panels by means of polyethylene twines.

Seven pockets were attached to the following locations on the trawl (Figure 2.1.2).

Pocket 1	Left Wing (or Right wing)
Pocket 2	Overhang
Pocket 3	Forebelly

```
    Pocket4 Mid belly
    Pocket 5 Lower belly
    Pocket 6 Throat
    Pocket 6 Codond
    Pocket 1 was changed of its position - from
left to right and vice versa, during alternate fishing
days.
```

The experiments were carried out from vessels operating from the Cochin Fisheries Harbour. Tho fishing voyage usually commenced at 2 in the morning; actual trawling however commenced only at 6 a.m. Threc hauls, each of about 150 minutes duration, were made each day. Data were collected from a total of 24 hauls totaling 60 trawling hours. Measuroments of tho standard lengths of N.japonicus wore made. Separato observations were made for the catches in the various pockets.

```
    Length moasuremonts for the sodond catchos
were made through a random sampling technique in which.
the catch was randomly divided into sevoral lots. Tho
lengths of all the individual fishes of a fow lots werc
measured. With a view to quantify the escapement in
terms of thoir woights, a fow sorias of longth-weight
measurements were also carried out.
```

The number of fishes exight in the various pockets were multiplied by a fac:or to get the total number of escapees from that region of the tranl, the factor being a function of the e三Eective working area of the netting in the region.

2.7 Results and Discussions

The results of the escepement experiment are summarised in Tables 2.1, 2.2 anc 2.3. About 75% of the total escapement cccurred at the throat region, the lengths of the escapees being less than 15 cm . Practically no escapement was recorded at the wings, overhang and forebelly. The escapement at the lower belly and midbelly were 14% and 7% respectively, of the total escapement through the various parts. 78\% of tho total fish ontering the net was captured in the codend. Eigures 2.1.7 and 2.1.8 shows tie fate of the fishes entering the net. Figure 2.1.9 shows a diagrammatic representation of the same. In terms of weight, 95% of the fishes that sntered the nez got caught in the codend. 74% of the total number of fishes entering the net was captured. The rate of escapement was maximum at the throat, of the order of 15% of the total fishes ontering the net. The escapoment \bar{s} the belly was 4%. While 5% of the total number of fishes escaped through the codend moshes, in terms of weight, the escape
percentage at this region was only 0.5\%, cxplicating that the escapement at the codend was limited to very small fishes.

The escapement was confined to the lower regions of the trawl. This establishes the fact that the fore regions of a trawl aid in guiding the fishes entering the mouth towards the codend. The meshes of these regions have very little selective function and hence their mesh sizes can be increased without impeding the fish catching capacity of the trawl in any way. Moreover, since trawling efficiency is directly related to the trawl mouth opening, the usc of large moshes at the fore regions of the trawl, facilitates enhancomont of the trawl mouth, which would in turn pave the way to the use of bigger trawls without a consequent incroase in towing powar.

```
    Since tho trawl is an extremoly active fishing
gear, tramling spoce is an important paramotor
influencing trawl cfficienc:. Incroasing tho mesh
sizes would improve the drag characteristics of a trawl
which implies that, with the same towing power, a
greatcr trawling speed can be effocted. Trawling
efficiency is also dependent on the filtration rate,
as the trawl is cssentially a filtering dovice.
Increasing the mesh sizos would thorefore also improve
```

the filtration rate, theroby augmenting tranl efficiency.

The meshes of the throat and codend were so small that the length of the escapees at this region were less than 9 cm. In fact these meshes do not have any selective function at all, to the extent that they do not permit any appreciable and roasonablo escapement. Morcover, the survivability of the escapees are also quite likely to be very low, in view of the fact that the mesh lumen of the conventional diamond meshes range from zero, depending on the various strains on the netting twines.

```
                    Catches of undersized fishes in trawls has
been a matter of coneern in the management of fishery
stocks and studies are on for the development a trawl
With excellent seloctive functions. fin important
brcakthrough in this direction has becn the development
of square mesh codonis. Besides being excellontly
facilitativo in tho escapomont of undorsizod fishes,
the escapees through the square moshed codends have
good survival rates. Joseph and Daniel (1988) havo
observed that the mean survivability of scup
(stonotomus chrysops) that escapod through square and
diamond meshod codends wore 94% and 50% rospectivoly.
Several studies including direct observation
```

```
cxpcriments, carricd out in tho rocont past, have
establishod the superiority of squaro meshed codends
over the convontional diamond moches for most speciss.
```


More studies in this direction is solicited and stress should be emphasised towards the development of more resource specific fishing, rather than the current multispecies exploitation, which would pave the way for a more efficient fishing technique.
thble 2.1 chiches in the various pockets

1					VARIOUS		POCXEIS			
Ilength	1 Codend I.		C A 16	111			POC			
I (c)	1 catch		,	I	,	1		1	1	
1	I (nos) I	1 Codend	1 throdt	1 lover	1 Mid	1	Fore	IOverhang	I	Vings
I	1 I	1	1	I belly	I belly	1 b	belly	I	I	
I <5	123251	1291	1187	18	11	1	0	10	I	0
16	119811	197	I 141	16	12	I	0	10	I	0
11	I 21731	18	I 118	112	10	I	0	10	I	0
18	12688 I	10	I 124	110	1	1	0	10	I	0
19	I 1573 I	10	I 11	I 1	10	I	0	10	1	0
I 10	118271	10	18	19	11	1	0	10	1	0
111	I 2865 I	10	10	I 4	13	,	0	10	1	0
112	I 2136 I	10	10	11	12	I	0	10	1	0
113	137921	10	10	12	11	1	0	10	I	0
I 11	I 4961 I	10	10	I	11	1	0	10	I	0
115	136481	10	10	10	1	I	0	10	I	0
116	3120 I	0	10	10	10	I	0	10	I	0
117	2951 I	0	10	10	10	I	0	10	I	0
118	1878 I	0	10	10	10	I	0	0	I	0
I 19	I 1928 I	0	10	10	10	I	0	10	I	0
120	1872 I	0	10	10	10	I	0	1	I	0
121	1103 I	0	10	10	10	I	0	10	I	0
110191	2319	106	652	12	$1 . . .1$		-			-

table 2.2 escape pattern through the various parts of a travi

trbie 2.3 velght of fish eschaping through the uarious parts of a traul

I	1 I		VEIGHT	Of fISH	ESCAPIM6	throubh (kg)			
1	I Average I.								
Ilength	Iveight ofl	.-.....-.	-		1		--7......-	1 Codend	
I	I a fish I	Codend I	Ihrodt	lover	Mid	fore lou	Overhang I	Vings	catch
I (c1)	I (g)		1 I	belly . 1	belly I	belly			(kg)
I < 5	13.50 I	9.17 I	18.10 I	0.141	0.221	0.001	0.00 I	0.00 I	8.141
1	I 1.80 I	6.81 I	11.62 I	1.231	0.98 I	0.00 I	0.001	0.00 I	15.45 I
11	19.89 I	1.60 I	I 19.15 I	3.131	0.00 I	0.00 I	0.001	0.00 I	21.191
18	I 14.51 I	0.00 I	123.981	3.83 I	0.92 I	0.001	0.001	0.00 I	39.08 I
I	120.62 I	0.001	12.06 I	3.81 I	0.001	0.00 I	0.00 I	0.001	32.41 I
110	129.10 I	0.00 I	I 3.09 I	6.911	1.83 I	0.001	0.00 I	0.001	53.11 I
111	I 38.59 I	0.00 I	10.00 I	4.07 I	1.301	0.001	0.001	0.00 I	110.58 I
112	I 53.18 I	0.00 I	I 0.00 I	5.61 I	6.141	0.001	10.001	0.00 I	146.32 I
113	168.34 I	0.00 I	10.00 I	3.60 I	4.311	0.00 I	I 0.00 I	0.001	259.15 I
111	182.08 I	0.00 I	10.00 I	0.001	5.17 I	0.001	10.001	0.001	107.10 I
I 15	181.131	0.00 I	I 0.00 I	0.001	5.15 I	0.001	10.001	0.001	332.14 I
116	I 100.19 I	0.00 I	I - 0.001	0.001	0.001	0.001	10.00 I	0.001	313.82 I
I 17	I 135.19 I	0.00 I	10.001	0.001	0.00 I	0.001	10.00 I	0.00 I	398.95 I
118	1162.39 I	0.00 I	10.001	0.00 I	0.001	0.001	10.00 I	0.00 I	304.641
119	I 176.24 I	0.00 I	10.00 I	0.001	0.00 I	0.001	10.00 I	0.001	339.19
120	1219.851	0.00 I	I 0.00 I	0.001	0.001	0.001	10.001	0.001	191.111
I 21	I 234.55 I	0.00 I	I 0.00 I	0.001	0.001	0.001	10.00 I	0.001	94.521
1 toin		17.581	181.88 I	32.911	33.22 I	0.001	10.001	0.001	3128.111

FIG. 2.1.1 Details of a pocket

FIG. 2.1.2 Location of pockets

Pig. 2.1.5 Selection curve for escapement through throat

Fig. 2.1.6 Selection curve for encapement through belly

Fig. 2.17
Fate of tishes entering a trawl
($\%$ numbers)

FIG.2.1.9 Fate of fishes entering the net

CHAPTER III
 DRAG CALCULATIONS

3.1 INTRODUCTION

Many attempts have been made to determine the drag of netting pancls. The curvod profils assumed by a netting panel when water flows past it, is a function of the forces acting on it. The determination of this shape and the drag is complicated. The drag of the pancl dopends on the material, type of knot, mesh size, diametor of twino, ratio of diametor to bar size, angle of sctting of mesh, angle of inclination of the panol and viscosity of the medium.

To evaluate the influence of the abcve referred factors on drag, many investigations werc carried out. Terada (1915) and Tauti et al. (1925) quoted by Kawakami (1959) and Earanov (1960) werc probably the first to initiatc studies on drag of netting pancls. Based on their work, formulae have been put forward to calculate the drag of netting panels placed perpendicular to the water flow. Many Japanese workers (Fugita and Yokota, 1951; Miyamoto et al., 1953; Nomuro and Nozawa, 1955
quoted by Kawakami, 1959) have investigated the hydrodynamic interference between knots and twines, the effect of different kinds of knots, shape of mesh and inclination of netting.
Voinikanis-mirskii (1952), investigated
the hanging cocfficients and found that the drag
is inversely proportional to the fanging
coefficients. Fridman (1959) while proposing a
formula to determine the drag of netting placed
perpendicular to the flow, stated that for
calculation of the Reynolds number (Re), the diametor
of the bar alone should bo taken and not tho
overall dimension of tho net.

Stengel and Fishor (1962) gavo rosults of investigations on drag of pancle placed parazlel to the flon Tauti (1925) and Revin (195G), az quotod by Fridman (1969), dotormirad the drag of pancls inclincd at differont anglos.

Fridman \{1959), basca on axperimonts with notting pancls of difforont shapes, conial nets, combined nets etc. stated that the resistance of complete net is approximately aqual to the sum of rosistance of tho simple parts that combine to form anet. This opens up now potentialitios for the caloulation of drag in
similar nets.
Empirical formulae werc used for calculating the total drag of trawl by Koyama (1972 and 1974). An equation for mid water trawl is proposed by Reid (1976). For bottom trawls Mactennon (1981) proposed an equation in which the coefficients are worked out on the basis of drag measurements. Fridman and Dvernick (1973) calculated the drag of tranls, based on drag coefficient of netting panels inclincd at differont angles. But this is more applicablc to mid watcr tranls. A similar approach for the calculation of drag of bottom trawls was folloned by Kowalski and Giannotti (1974 a; b). Dickson (1979) followed an approach of summation of resistance of parts, a mothod that is more comprohonsive. Hore, the calculation of drag is made without considoring the drag of siocp linc, otter board and towing iarps. Dickson's mothod thus offors itsclf as a good mothod for comparing tho infiuences of tho various mesh configurations and mosh sizos on the total drag of the net. Moreover, knowlodge of the forcos acting on the gear and the resistance or drag of the gear would help in improving the performanoo of the oxisting ones. Except for the doctoral thosis by Mukundan (1989), no othor work has beon attomptod in India. Honco, thore is a nood to

```
study trawl drag calculations which could form a
scientific basis for a more efficient gear designing.
```


3.1.1 Mesh size

The mesh size of trawls has a bearing on
two important aspects pertaining to trawl efficiency. They are

1. size of fish caught and
2. the total drag of the net.

Unlike gillnets, which possess knifeedge selection, trawls retain all fishes greater than a particular length. This is guite important in the resource conservation perspective. Another important influence of mesh size, is on the total drag of trawls. As far as mesh size is concerned, the entire trawl may be divided into two regions - the fore region and the aft region - both having different functions. The forward part extending from the wings through the bellies, load the fish towards the aft part comprising the throat and codend, which retain the catch. Experiments and direct observations have shown that the fore regions merely serve to guide the fish towards the codend region where actual selection occurs. It is at this region that the fishes arc really active and try to

```
swim through the meshos andhence, the pancls of
this rogion have high sclective function. It thus
follows that the mesh size of these panels will have
a direct influence on the size composition of the
catch. The relation may be expressed as follows:
```

$m_{c} \approx 2,3 \mathrm{~m}_{\mathrm{g}}$
where $m_{c}=$ mesh size of the panel
$m_{g}=$ mesh size of a gillnet designed to
capture fish of the same species and size
$m_{d}=1 / K \quad \begin{aligned} & l \\ & \quad\end{aligned}$
which is species specific and may be found
by experimental fishing. The value of K varios from
2.5 to 5.0 depending on the body depth of the fish.
Since the panels of the fore part of
the trawls are least selcctive, their mosh sizes will
not directiy influenco the size of the fish caught,
but howevor, will contribute by a fair share to the
total drag of the trawl. Altering the mesh size of
these pancls can to a certain extont favorably
modify the total drag. Stengel and Fischer (1968)
studied the drag of a panel at various d / a (ratio of
diameter of twine to mesh bar). The fact that tha use
of large meshes can considerably reduce trawi dray
led to the development of rope trawle. The latter

```
tranls havo parallel ropes in the front portion and
was first published in the German Democratic Republic
(van Marlen, 1988). In addition to their low
resistance, rope trawls have a greater mouth oponing
- about 20 percent more (Rehme quoted by van
Marlen, 1988) than the conventional net type
trawls. Kwidzinski (1989) stated that the use of rope
tramls with improved rigging could result in a
six fold decrease in resistanco per unit trawl
mouth area. Brabant et al. (1980) cstablished tho
superiority in resistance of rhombic meshed tramls.
van Marlen (1989) stated that a big rhombic mosh
trawl has 25 percent lesscr resistance than a
conventional net of similar size at the same spaed.
The rolc of mesh size on total drag of tranls thus
needs no further smphasis.
```


3.1.2 Towing speed

Being an extromely activo fishing gear, one
of the factors that effect tho efficioncy of
trawling operation is the traning specd. The
fish school sensing an approaching gear gets
frightened and tries to flee. One part of the school
moves away from the trawl mouth, while the othor moves
along the line of trawl motion. For a
comparatively short interval of time the fish swim
between the sweep lines or wings before getting swapt into the trawl mouth. It is in the posterior regions of the trawl that the fishes actually realize that they have been trapped, and depending on their capacity of the fish to strive for freedom, starts swimming back and if the fish succeeds in swimming over the headine, then it swims to freedom. (Wardle, 1984). It thus follows that the towing speed of the net should be in conformity to the swimming speeds of fish - lower towing speeds being uscd to catch slow swimming fishes and higher towing speeds for fast swimming fishes. Direct observations and spocial sxperiments have shown that there is an optimal trawling speed for each species of fish and trawl dosign, which provide the maximum catch, all other things boing squal (Fridman, 1986; . For the same reason, the shape of the curve represonting rolative fiching efficioncy and trawling spoca, is parabolic. Although trawling speod has to be spodific for a particular species, in the ovorall perspective, there are more important concerns that necd attention. Since the trawl has to be towad during operation, a great deal of energy is expended and the two primary elements that influence the trawling operation efficiency are drag of the net and resiztance of the boat. In
order to enhance fish production, there has been a tendency, during the last few decades, towards tho use of very high powered engines for trawling. Today, modern fishing is one of the most energy intensive methods of food production known to man (Endal, 1988). The need to improve energy consumption pattern in fisheries, where the role of fossil fuels is significant, has been gaining considerable momentum in recent years. One of the pertinent suggestions put forward to optimize fuel efficiency in fishing operations is based on the optimization of trawling specds. Burchett (1989) maintained that the fuel consumption is more than doubled when the trawling speed is enhanced from 3.4 knots to 4.8 knots. Furthermore, the developed horsepower required for higher trawling speeds is also highly unbalanced. Schroeder and Roddan (1989) stated that in ordor to anhance the trawling spacd from 9 to 10 lnots, the devolopod horscpowor has to bo incroased by approximately two times.

In this context, the study of trawl drag an important contributing factor towards fuei consumption - at various trawling speeds would be significant. Hence an attempt is made to evaluate the pattorn of drag at various towing spocds.

3.1.3 Twine diameter

The drigg of a netting poncl is
dircetly proportional to the nominal twinc surface area which is dependant on twine diameter. A mater of prime concern in fixing the diametcr of twinc to $b c$ used for trawl construction, is its wet knot breaking strength. Since a knot is the weakest spot on a twine, the wet knot breaking strength of the twine selected, should be sufficient so as to withstand the rigorous strain during trawling operations. Another aspect that necds attention as far as twine thickness is concerned is the capacity of the twinc to withstand abrasion resistance. Thicker twines have highor knot breaking strengths and better abrasion rosistance. But they also have a greater drag. The introduction of synthetic fibers for fishing gear matcrials revolutionized the fishing industry. Synthetic matcrials have greater strengthe at smallor twinc thickness. The use of thinner and stronger twines for trawl construction improved trawling efficiency several fold. The drag saving potential of different netting materials is directly related to the developed twine area which is a function of twinc thickncss. Since twinc diamcter is accountable for the strength of netting matorials, and becauso
different matcriale have different etrengthe, the use of high strength materials for trawl construction promises to be an exccllent proposition to bring about fuel saving. High strength materials can substitute themselves at lower twine thickness without altering other vital propertics of the netting matcrial. In this contcxt it would bc interesting to study the influence of varying twine thickncss on trawl drag. Nlso, the superiority of high strength materials with regard to its drag reducing potential could also form a thoughtful investigation.

3.2 OBJECTIVES

Trawling is the most expensive fishing method as far as operational costs are concorncd. Since the energy expended per unit of time is maximum in trawling, any attempt to alleviate this, would go a long way in improving the overall trawling operation. Morcover, this has grcat implications in the energy conservation porspective. It is in this context that the following objectives desorve adequatc significancc.

3.2.1 To calculate the total net drag of two important fishing trawls being operated from the study area.

3.2.2 To evaluate an influence of a change in mesh size on total drag.
3.2.3 To compare the total drag at various trawling speeds.
3.2.4 To study the influence of twine diameter on total trawl drag.
3.2.5 To study the effect of differing panel depths on the total drag, angle of attack and nominal developed twine surface area of the different panels.

3.3 MATERIALS AND METHODS

3.3.1 The Gear

3.3.2 Operating Parameters

since the calculations were confined to the net proper of the trawl, only two important operating parameters were needed. These included
(i) horizontal spread and
(ii) vertical opening

3.3.2.1 Horizontal spread

Since instrumentation could not ba
employed due to constraints of facility, a
simple method involving floats, a sextant and
some amount of trigonometric calculations wore
employed to measure the horizontai spread betwoen wing
tips from the spread of otter boards. The
methodology adopted may briefly be explained as
follows:
Two marker floats wore attached to to.
otter boards, onc for each door. The longeh of the
float line was adjusted to suit the depth of
operation. The floats gave an idea of the
position of the otter boards undorneath. Using
a sextant, the angle between the two floats were
measured. The distance of the two floats from
the boats were also measured by paying out anothor
float line until this float got alignod with the
floats attached to the otter doors. The length of
the line thus paid out will give the distance of the
floats from the boat. From the angle measured by
the scxtant, and distance of the otterdocrs from the
boat, the distance between the two floats i.e. the
spread between ottor doors may be calculated using
the following trigonometric expression

Spread between otter doors =

$$
\begin{array}{r}
2 \cdot \frac{\tan \theta}{2} \cdot \text { Distance of the otter doors } \\
\text { from the boat }
\end{array}
$$

The spread between wing tips was then
proportioned from the sproad betweon otter doors since
the length of the legs are hnown.

3.3.2.2 Vertical opening

The hoad line toight mossurad asing a
portable echo sounder gave the vortical opening since
both the nets wore bottom trawle. The transiucer of
the echo sounder was fittod to the centor of the
headlinc.

```
3.3.3 Calculation of net drag (according to Dickson, 1979)
    The drag 'D' of a trawl net in operation, is
the resultant of the drag area, 'A' and the
hydrodynamic stagnation pressure, 'q'. The relation
can be expressed as
\[
\mathrm{D}=\mathrm{q} \cdot \mathrm{~A}
\]
where
\[
q=\frac{1}{2} p \cdot v^{2}
\]
Therefore
\[
D=\frac{1}{2} \rho \cdot v^{2} \cdot \lambda
\]
where
\[
p=\text { mass density of nater }
\]
\[
\left(\operatorname{lgf}-\sec { }^{2}-4\right)
\]
\[
v=v o l o c i t y \text { of nator }\left(m \sec ^{-1}\right)
\]
```


3.3.3.1 Drag area 'A’

```
The drag of the various notting panels that make up the net, the fiogt and the ropes together forms the total drag of the net.
The main body of the trawl net can be considercd as a conc with the latter \(25 \%\) of the codond
```

```
completing the apex of the cone. (Fig.3 a.) The rest
of the codend is considered as a cylinder. The =one
proper starts only from the belly, and the winge and
overhang are considered as forward extensions.
3.3.3.2 Periphery of the cone
    For bottom trawls, the mouth of the cone ascumes
an elliptical shape. It is practically impossibis to
directly measure the horizontal (major axis) and
vertical (minor axis) openings of the eliiptical zone
mouth. But the same could be proportioned if we tnow
the spread between wing tips and the headline height.
Spiogel (1962), quoted by Dickson (1979) gives the
method for calculating the perimeter, from the -ajor
and minor axes of the ellipse, in the folvolng
cypression.
```

$$
\begin{aligned}
& \text { Periphery }=a \cdot 2 \cdot \pi\left[1-\left(\frac{1}{2}\right)^{2} \cdot \mathrm{~K}^{2}-\left(\frac{1 \cdot \frac{3}{2} \cdot \frac{1}{4}}{2}\right)^{2} \cdot \frac{\mathrm{~K}^{4}}{3}\right. \\
& \left.-\left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{2} \cdot \frac{\mathrm{R}^{6}}{5}-\left(\frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8}\right)^{2} \cdot \frac{\mathrm{R}^{8}}{7} \cdots \cdots\right] \\
& \text { where } \quad K=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}} \\
& a=s e m i ~ m a j o r ~ a x i s ~ o f ~ t h e ~ e l l i p s e ~ \\
& b=\text { semi minor axis of the ellipse }
\end{aligned}
$$

3.3.3.3 Setting angle of meshes, 'q '

The mosh configuration and the consoy...
netting area is determined by the setting angle ' θ ', of the meshes. This angle is found out from the primary hanging coefficiont $\left(E_{1}\right)$ of the conc, which is the ratio of the mounted length at the mouth of the cone i.e. the perimeter of the ellipse or horizontal length (1), to the stretched length (L) at the mouth of the conc, and is defined as 1/L.

This can also be expressed as a function of the mesh angle,

$$
E_{1}=1 / L=\sin \theta
$$

from this, the setting angle θ is found out.

3.3.3.4 Angle of attack of the netting panel

From angle θ, the vertical hanging coefficient $\left(E_{2}\right)$ can be obtained by finding the cos of the angle θ. This $\cos \theta$ when multiplied with the sum of the products of the number of meshes in depth and mesh size of the corresponding panels that form the conc, gives the hung depth of the cone (H). It will also include 25% of the codend that is considerod to complete the cone, by forming its apex.

Now, to find the angle of attack, the e.s can be considered to be cut open and flattoncd out so that the perimeter is in a straight line (Eig. 3.b), and the flattened sheet aligned at an angle ' α ' to the horizontal or the water flow. The angle ' α ' is tho angle of attack of the netting of the conc. It can be calculated using the relationship,

$$
\sin \alpha=\frac{\bar{r}}{\mathrm{H}_{\mathrm{c}}}
$$

where $H_{c}=$ the hung depth of the cone.

$$
\bar{r}=\text { mean radius of the cllipse, and }
$$

may be calculated from the following expression

$$
\begin{array}{r}
2 \pi a b \\
\text { periphory }
\end{array}
$$

3.3.3.5 Drag of cone

The drag of the conical portion of the net is given by

$$
D_{C}=\Sigma A_{C} \cdot q
$$

where $\quad G=\frac{1}{2} \rho \cdot \mathrm{v}^{2}$
ρ is the mass density of water and is taken from Fridman (1986), and is $103.8 \mathrm{kgf} \mathrm{sec}^{2} \mathrm{~m}^{-4}$ at $30^{\circ} \mathrm{C}$ and salinity 30/00;
v is the velocity of water current.
A is the cone drag arca of individual panels and is the product of the nominal developed area of the
tine (A_{m}) in a netting pancl and tho cocfficiont of drag at the inclination of the pancl.

It is defincd as,

$$
\hat{A}_{\mathrm{c}}=c_{\mathrm{d} \alpha} \cdot \hat{A}_{\mathrm{m}}
$$

3.3.3.6 Nominal developed area, A_{m}

The nominal developed area of nctting yarn (Am) of the various pancls of the nct is worked out using the following formula (Reid, 1976),

$$
\Lambda_{\mathrm{m}}=\mathrm{m} \cdot \mathrm{n} \cdot 4 \cdot \mathrm{a} \cdot \mathrm{~d}
$$

where
m is the number of meshes across. (for trapezoidal picces ' m ' becomes $\left\{\begin{array}{c}m_{1}+m_{2} \\ \ldots 2\end{array}\right\}$
where
n is the number of meshes in depth,
a is the bar size and
d is the twine diameter.

Here the modification of drag due to ti. influence of knots in the netting is not consideres. since the same is accounted for, in the calculation cE drag coefficients.

3.3.3.7 Calculation of drag coefficients

```
    To calculate the drag of cone, l:*
coofficiont of drag at \alpha ( (c,col
Though there are different methods for calculating }\because\therefore
drag cocfficicnt, the approach of crowc (1954) is =i=
most successful and is honce followed.
    As per this method, the drag coefficient E=
```



```
separately. since in practice, the plot of s:`こ==
notting drag is almost linear in the range of angles:"
```



```
the following manner
```

$$
K_{c t}=\left\{1-\left(\frac{d_{k}}{d} \cdot \frac{d}{a}\right)\right\}+\left\{c_{k} \cdot \frac{\pi}{8}\left(\frac{d_{k}}{d}\right)^{2} \cdot \frac{d}{a}\right\}
$$

where
d_{k} is the knot diameter,
d is the bar diameter and
c_{k} is the knot drag coefficient and is taken as 0.47 as for a sphere.a sphere.

The denomination $\left(\frac{1}{1-s}\right)^{2}$ in equation (1) is the speed-up term and cen also be expressed as ($\left.\begin{array}{c}\mathrm{v} \\ \mathrm{v}\end{array}\right)$ where $\frac{\mathrm{v}_{\mathrm{e}}}{\mathrm{v}}=\left(\frac{1}{1-s}\right)$ and is the factor by which the exit velocity of water through the mesh aperture is larger than the approach velocity.
s is the solidity of the mesh and is dofined
as the ratio of the solid or blocked aroa to the
surface area of the mosh, and can be exprossed as

$$
s=\frac{\left[\frac{d}{a}\left(1-\frac{d}{d} \cdot \frac{d}{a}\right)\right]+\left[\frac{\pi}{\varepsilon}\left(\frac{d_{k}}{d}\right)^{2} \frac{d}{a}\right]}{\sin \theta \cdot \cos \theta}
$$

A simpler approach to find solidity of a

panel is to relate the developed area of the twine in a panel (A_{m}) to the actual working area of the panel (\hat{n}_{m}) in the following manner,

$$
\frac{\lambda_{m}}{\lambda_{M}}=\frac{1}{\Xi} \cdot \frac{1}{\sin \theta \cdot \cos \theta}=\text { simplified solidity. }
$$

where $A_{M}=m \cdot 2 a \cdot \sin \theta \cdot n \cdot 2 a \cdot \cos \theta$

```
Thus *dgo takes the following form
```

$c_{d 90}=c_{d s c} \cdot c_{t}\left[\left\{1-\left(\frac{d_{k}}{d} \cdot \frac{d}{a}\right)\right\}+\left\{c_{k} \cdot \frac{\pi}{8}\left(\frac{d_{k}}{d}\right)^{2} \cdot \frac{d}{a}\right\}\right]$

$$
\left[\frac{1}{1-\frac{d}{a}\left\{1-\left(\frac{d_{k}}{d} \cdot \frac{d}{a}\right)\right\}+\left\{\frac{\pi}{8}\left(\frac{d_{k}}{d}\right)^{2} \frac{d}{a}\right\}}\right]
$$

3.3.3.7.2 Calculation of $C_{d o}$

The cosfficient of drag of a netting panel
set at an angle θ° to the water flow is found out in the following manner
$c_{d 0}=c_{d s c} \cdot c_{t}\left\{\sin ^{2} \theta+\left(c_{f} \cdot \cos ^{2} \theta\right)\right\}\left\{1-\left(\frac{d}{d} \cdot \frac{a}{a}\right)\right\}$
$+\left\{\begin{array}{lll}c_{k} & \frac{\pi}{g} & \left(\frac{d}{d}\right)^{2} \\ \frac{d}{d}\end{array}\right\}$

As in the calculation of $C_{\text {dgo' here also }}$ $C_{\text {dsc }} C_{t}$ is taken as 1 and C_{k} to bo 0.47 as for a sphere.
C_{f} is the skin friction cocfficient and \dot{t} vaこuc is taken as 0.07.
3.3.3.8 Effect of high solidity panels In certain panels, the solidity is found to be comparatively higher than that of other pancle. In such cases, when the solidity torm $s \geq 0.3$, thon $\frac{v_{e}}{v}=\frac{1}{1-s}>\sqrt{2}$ and the drag coefficient, dependant on $\left(\frac{1}{1-s}\right)^{2}$, would become 22 . This

```
condition occurs for panels with largo \frac{d}{a}\mathrm{ and small}
setting angle }0\mathrm{ and is indicative of the commencement
of form drag.
```

Such a condition occur in front of and in tho codend. The water entering these panels do not escape by speed-up locally through the restricted mesh openings but rather by speeding up the waterfion through the meshes of preceding panels with lower solidity.

This condition is indicated in Fig. 3.c, which represents the apex of the cone. Panel N can be considered as an high solidity panel and M the preceding panel with lesser solidity, ie. $S_{n}>S_{m}$. Tho approaching flow of water in panels M and N arc represented by \because em and on respectively.

The condition is represented by Dickson (1979) in tho following manner

$$
\begin{aligned}
\text { Flux into panel } N & =\text { Flux out of panel } N \\
v_{n} \cdot A_{D N} & =v_{\text {en }} A_{D N}\left(1-S_{n}\right) \\
v_{n} & =v_{c n}\left(1-s_{n}\right)
\end{aligned}
$$

```
where AiN is the developed area AE the panel \(N\) and \(^{N}\) \(s_{n}\) its solidity.
```

Then,

$$
\frac{v_{n}}{v}=r_{n}=\frac{v_{0}}{v}\left(1-s_{n}\right)
$$

and

$$
\frac{v_{\text {en }}}{v} \text { is not greaser than } \sqrt{2}
$$

Dickson (1979) puts $\frac{V_{n}}{v}=\sqrt{2}$ in order to get rid as much water as posible thrこ̈sin the panel N. Then the drag coefficient for such a panel becomes, $c_{d 90}=c_{d s c} \cdot c_{t}\left[\left\{1-\left(\frac{d_{k}}{d} \cdot \frac{d}{2}\right)\right\}-\left\{c_{k} \cdot \frac{\pi}{8}\left(\frac{d_{k}}{d}\right)^{2}\right.\right.$ Now, the panel ahead of the panel is to bo considered, and for this the flux in: s sud out of the two panels are taken together

Flux into panels M and $N=F l u x=:=$ of panels M and N

$$
v_{m}\left(A_{P M}+A_{P N}\right)=v_{c m} \cdot A_{P M}\left(1-S_{m}\right)+v_{n} A_{P N}
$$

and
$\frac{v_{m}}{v}=K_{m}=\left[\frac{v_{e m}}{v}\left\{A_{P M}\left(1-s_{m}\right)\right\}+F_{n} \cdot A_{P M}\right] \cdot A_{P M}^{1}+A_{P M}$
where

$$
A_{P M} \text { and } A_{P N} \text { are the devcloped arca of the }
$$

panels M and N respectively.
After two or in some cases more pancls are considered in this manner the value of ${ }^{\mathrm{V}} \mathrm{V}$. is found to fall below $\sqrt{2}$. Then all preceding pancle can be considered as uninfluenced by the succecding pancls and the speed of water within them to be the same as that of the water current.

Then the drag coefficient for the intermediate panel is given by
$c_{d 90}-C_{d s c} c_{t}\left[\left\{1-\left(\begin{array}{cc}d_{k} \\ -d & d \\ d\end{array}\right)+c_{k} \cdot{ }_{8}^{\pi}\binom{d_{k}}{d}^{2} \begin{array}{l}d\end{array}\right\}\right] \cdot\binom{v_{c m}}{v}$
where now

$$
\left(\frac{1}{1-s_{\mathrm{m}}}\right)^{2}<\left(\frac{\mathrm{v}}{\mathrm{~cm}}\right)^{2} \leqslant 2
$$

This can be considered as a simplification since in the actual situation velocities in pancls cannot really change in jumps from panel to panel.

When the water specd within and outside a pancl are different, it presumably affects the $C_{\text {do }}$ value and hence, the value used in such coses is

$$
c_{d o l}=0.5 c_{d 0}\left\{1+\binom{v_{m}}{v}^{2}\right\}
$$

Thon the drag coefficicnt at angle α can be calculated in the following manner

$$
c_{d \alpha}=0.5\left(c_{d 90}-c_{d o l}\right) \cdot \frac{\alpha}{30}+c_{d o l}
$$

[^1]rathor than a cone. This cylindrical portion does not contribute to the drag of the net in the same proportion as that of the cone. Hence the drag offered by this part of the codend has to be considered separately as an appendage to the rest of the net. For this calculation an expression formulated by Fridman (1973) for the drag of a netting sheet parallel to the current, is used
$R_{0}=1.4 \cdot 1^{-0.14}\left(1+\frac{5 d}{3}\right)\left(0.9+0.04 \frac{E_{1}}{E_{2}}+0.55^{-2.4 \cdot \frac{E_{1}}{E_{2}}}\right) E$
where
R_{0} is the drag of the cylindrical part in kgf.
1 is the length of the cyiindrical portion of the codend in mo codend in m
d is the twine diameter in mm
E_{1} and E_{2} are the hanging cocfficionte
F is the developed ares of the notting
v is the velocity in $m s^{-1}$ and
-0.14 is the term expressing the entrainmont of the water developed around the last part of the cone and codend.

3.3.3.10 Appendage drag

The appendages to be considered in trawl drag calculations include the floats and ropes.

3.3.3.10.1 Drag of floats

Sincefloats are hollow spheres, for the calculation of their drag the following equation which gives the drag of spheres is used

$$
D_{f}=0.47 \cdot \frac{\pi}{8} \cdot d^{2} \cdot q
$$

where

```
d is the diameter of the float and
q is tho hydrodynamic stagnation proscuro.
```


3.3.3.10.2 Drag of ropes and sinkers

This is mainly due to tho ground friacion and
is calculated by multiplying tho ground friction coefficient whose value is taken as 0.7 with their underwater weight.

```
3.3.3.11 Total drag of trawl
    Summation of the above explained drags such as
            1. drag of cone D c
            2. drag of codend }\mp@subsup{R}{0}{}\mathrm{ and
            3. drag of float Df
            4. drag of ropes and sinkers Dr
    gives the total drag of the net.
```

All calculations were carried out by developing a spread sheet model on Lotus 1-2-3 (Lotus Development Corporation, USA). Corollary to the trawl drag calculations, the following studies were also undertaken.
3.3.4 Influence of mesh size on total drag
In order to study the influcnce of difforont
mesh sizes on total drag, the total net drag was
calculated for a series of mesh sizes for each pancl,
kecping all the other parameters a constant. The
results were represented graphically.

```
3.3.5 Influence of towing speed on total drag
    Kesping all other parameters a constant, the
toこal drag for a series of towing specds worc found and
the results wore plotted.
3.3.6 Influence of twine size on total drag
    The total net drag was calculated for
difseront twinc thicknoss and the rosults obtained were
rapresentcd graphically. In order to demonstrate the
suporiority of high strength materials with regard to
tranl rosistance, the total net drag as a function of
di三ferent trinc thickncss of various netting meterials,
but of squal wet breaking strcngths were calculated.
The results werc plotted to get separate curves for
cach matarial.
3.3.7 Influence of panel depth
    The total net drag, the angle of attack and
the twine surface arca of the different panels were
calculated for various panel depths and the results
were reprosented graphically.
```


3.4 RESULTS AND DISCUSSIONS

3.4.1 Net drag

The results of calculation of net drag for the two nots viz. Netl (Eish trawl) and Not2 (Shrimp trawl) are given in Tables 3.1 and 3.2 respeceively. Parametars like the nominal doveloped twine area, solidity, conc drag arca sto. of the various panels Wero also calculated. For the sake of comparison, tho highlighte of the rosultz of calculation aro given in Tablo 3.

The oylindrical portion of tho codond and the

```
sinker chain contributed 6.56 percont and 2.19 porcent
respectively to the total drag in the case of fish
trawl. Since the shrimp trawl had a heavier tickler
chain, the contribution of the same was 3.77 percent,
while that of the cylindrical portion of the codend was
only 5.49 percent.
    As far as sclidity is concerned, panels F, G
and H of net 1 and panels E, F and G of net 2 (i.c. aft
belly, throat and codend panels) were of high solidity.
As a result, the contribution of these panels to the
total drag was proportionately more than the other
panels especially when their share to the developed
twine area is considered. Tables 3.4 and 3.5 lists the
Am, solidity and drag for the various panels of net i
and net 2 respectively.
    Figures 3.3 and 3.4 gives the contribution of
the various components of the twc nets to the toral
drag.
```

3.4.2 Influence of mesh size on trawl drag
Increasing the mesh size of pancls will


```
mesh sizes, which means smaller the mesh size, greater
is the increase in total drag. Since the curve
flattens out with an increase in mesh size, increasing
the mesh size beyond a particular limit will not alter
the drag appreciably.
```


3.4.3 Towing speed

```
        The total drag of the two nets at various
```

trawling speeds are given in Tables 3.6 and 3.7.
Figures 3.7 and 3.8 gives the plots of drag at various
speeds. The increase in total drag is found to be in
logarithmic proportion to an increase in trawling
speed. At 0.25 knots, in the case of fish tranl, tho
total drag is only $25 \mathrm{~kg} f$ whilo at 1.25 knots, it is
$175 k g f$ and $525 k g f$ at 2.25 knots and so on. Therefore
the noed to maintain optimal trawling speods needs no
cmphasis. Actually, incraasing the towing speod will
lead to an increasc in the cone mouth area which
consequently alters the angle of attack of the netting
pancl. Since the coefficiont of drag is proportional
to the angle of attack, any increase in the latter will

```
increase the drag of netting panel. Since the vertical
headline height was measured for only one trawling
speed, (viz. 1.28 m s
cone mouth area on trawl drag at higher trawling speeds
could not be accounted for. Hence, the total drag of
nets at higher trawling speeds will be a little more
than that estimated in the present study. Even though
trawling efficiency is a function of trawling speed,
the latter has to take into consideration many aspects
concerning gear design and behaviour pattern of target
species. This is possible only if the fishing
operations are directed towards specific specios and
the current system of multispecies exploitation is
curtailed. Research work should be initiated towarde
fish behaviour studies with particular reforonce to
commercially important varieties so that way is paved
for a more objective and scientific gear rescarch.
```


3.4.4 Twine Thickness


```
savings. But the cost factor is a primary constraint
that prohibits the use of high strength materiais iiko
nylon for trawl construction in our country. Thero is
thus a need to develop cheaper and stronger materials
for fishing gear construction which would go a long way
in optimizing trawl efficiency.
```


3.4.5 Pane1 depths

The drag of a netting panel set against a water current is the product of the hydrodynamic stagnation pressure and the drag area of the panel. The latter is depenaant on the twinc surface area and the coofficient of drag at the particular angle at winch the netting pancl is inclined to the wator flow. Tha various panels of a trawl int nato up the conc of tho tranl which sets tho constituent pancls at the ocruseponding angle of attack. Foz a givon conc mouth the angle of attack is dopondant on the cono jungth. Incroasing the panel depth by adding more moshos aill Encrease tho cone length. Sinco the conc mouth romains amost a conctant, the immediate affoct of an incroasod cone length is a lowering in the angle of attack which

```
can lower the net drag. But, increasing the pane:
depth will also increase the total twine surface area
affecting a corresponding enhancement in drag. Thus
the effect of an increase in the panel depth will be a
lowering of the angle of attack with a simultancous
increase in twine surface area. Both these factors are
antagonistic in their effects on total drag. ns lons
as the influence of a lower angle of attack on tota:
drag offsets the influence of an increased twine area,
the total drag will fall. This is particularly eviden=
in panels with bigger meshes. Figures 3.1043.11 shows the
effect of an increasing panel depth on the total drag,
angle of attach and twine area. Since the pancls A, \equiv
and C were having larger meshos, increasing the pane:
depths decreased the total drag initially. But as the
panel depth was further increased, the effect of E:
increased twinc arca overcame the influonce of E
lowerod angle of attack, thereby increasing the tota=
drag. Thus panel dopths form an important factor thet
may profitably be used to improve trawl desig:
especialiy in the drag perspective.
```


table 3.1.a dRag calculation results or hetl (fish tranl)

Thble 3.1.: zrag calculation resulis or net : :isin venl)

table 3.2.a orag calculation resolis op nel a (Shriap trani)

ThaLE 3.2.b drag Calculamion resulis of ner a ishriap tranl\}

table 3.3 highligets of traill drag calcolation resclits or nets $1 \& 3$

highlights of drag chlculations

TABLE 3.4 - FISE TRAKL

THELE J.E - SHRTMP TRAGL

TABLE 3.6
total drag at various toning sfeess

I		Total drag (kgi)			
I	I				
Towing					
I speed					
I		Fish	Shrimp		
I (knots)		trawl	tranl		
I_ 1					
I	0.501	43.73 I	45.		
I	0.75 I	75.041	13		
I	1.00 I	118.85 I	112.		
I	1.25 I	175.13 I	161		
I	1.50 I	243.88 I	226.23		
I	1.75 I	325.10 I	293.		
I	3.00 I	418.77	376.		
I	2.25 I	524.90 I	470.02		
,	2.50 I	643.48 I	574.		
	2.75 I	774.50 I	690.		
I	3.00 I	917.97 I	816.		
,	3.25 I	1073.88 I	954		
	3.50 I	1242.23 I	1102.		
	3.75 I	1423.02	126		
	4.00 I	1616.24 I	143		
I	4.25 I	1821.89 I	1613		
	4.50 I	2039.97 I	183		
	4.75:	2270.49 I	2009		
	5.00 I	2513.42 I	2223		
	5.25 I	2768.73	2449		
	5.50 I	3036.58 I	2685		
	5.75 I	3316.79	2932.		
	6.00 I	3609.42:	319		
	6.25 :	3914.87	3459.23		
	6.50 I	4231.94 I	3739.89		
	6.75 I	4561.83 I	4032.92		
I	7.00 I	4904.13 I	4332.39		
	7.25 I	5258.85 I	4645.		
i	7.501	5625.98 I	4969.7		
	7.75 I	6005.53 I	5304.2¢		
	8.00 I	6397.49 I	5650.40		

table 3.1 total drag for bifferemt thine thicriess for fish traid

		I								
	Twine	Panel I	Pa	Panel I	Pa	Paz	Pa	Pa		
	dia (a) I	A I	B I		0 I	E I				1
		I								
	0.10	594.04 I		621.02 I	621.02 I		555.03 I	577.32		
	0.15	595.69	588.64	621.65 I	621.65 I	546.07	557.37 I	579.19	616.36	624.95
	0.20	597.3	590.59	622.	622.29 I	548.98	559.	58	617.34	
	0.25 I	599.06 I	592.57 I	622.93 I	622.93 I	551.99 I	562	583.35	618.41	
	0.30	600.77	594.5	623.	623.58 I	555.10	56	585	19	
	0.35 I	602.51 I	596.60 I	624.24 I	624.24 I	558.31 I	567.96	588.15	630.86	
	0.40	604.2	598.65	624.9	624.91 I	561.62	570.93	590.82	622.28	
	0.45	606.0	600.	625.5	625.58 I	565	574.04	593.	621.36	
	0.50 I	607.8	602.83	626.26 I	626.26 I	568.	577.30	596.	622.	628.96
	0.551	609.65 I	604.95	626.951	626.95 I	572.21 I	580.	600.02	623.	
	0.60	611.49	607.1	627.65 I	627.65 I	575.97 I	584.2	603.	624.	
	0.65	613.36	609.2	638.361	628.36 I	579.85 I	588.		625.	630.68
	0.70 I	615.24 I	611.4	629.08 I	629.08 I	583.85 I	591.93	608.36	626.60	631.26
	0.75 I	617.15 I	613.	629.8	629.80 I	587.99	596.03	610	627.	
	0.80 I	619.08 I	615.96	630.54 I	630.54 I	592.25 I	600.32	613.56	628.	
	0.85	621.03 I	618.25	631.28 I	31.28 I	596.	604	616	629.52	
	0.90	633.0	620.5	632.03 I	632.03 I	601.20 I	609.53 I		630	
	0.95 I	635.01 I	622.9	632.7	632.79 I	605.	614.	621	631.	
	1.00 I	627.04	625.	633.56 I	633.56 I	I	619		632.	
	1.05 I	689.09 I	627.67	634.34 I	634.34 I	615.76 I	633.	626.78	633.49	
	1.10 I	631.17	630.09	635.13 I	635.	620.	20.91 I	629	634.50	
	1.15	633.27	63	635.93 I	635.93 I	626				
	1.20	635.40	635.	636.74	636	631.	634.	634.	636	636.99
	1.25 I	637.56 I	637.	637.56 I	637.56 I	637.56 I		637.56	637.	
	1.30	639.74 I	840.	638.39 I	638.3	643.49 I	-11	640.2	638.5	
	1.35 I	641.96 I	64	639.23 I	639.2	656		643	639.	
	1.40 I	644.19 I	645.	640.081	640.08 I	650.65 I	648.2	645.7	540.	
	1.45 I	646.45 I	647.96	640.94 I	640.94 I	665	651.80 I	648.		
	1.59	648.76	650.65 I	641.82 I	641.82 I	669.65 I	655.			
	1.55	651.09 I	653.	643.70 I	642.70 I		658.9	656.	643.81	
	1.60	653.45	656.	643.60	643.	678.64 I	602.	656.78		
	1.65	655.84 I	658.98	644.5	644.			659.5		
	1.70 I	658.26	661.75	645.43	645.	687.65 I	669.63	662.		
	1.75 I	660.71	664.61	646.36 I	646.3	692.15 I	673.30	665.	648	643.29
	1.80 I	663.20	667.52	647.30	647.30	696.66 I	676.76	667.9		
	1.851	665.72 I	670.46	648.86 I	648.26 I	701.17 I	680.33	670.7		
	1.90 I	668.27 I	673.45	649.23	649.23	705.68 I	683.90	673.5	651.31	
	1.95 I	670.861	676.47	650.22 I	650.22	710.20 I	687.47	676.37	652.43	
	2.001	673.48	679.54	651.21	651.21	714.71 I	691.03	679.2	653.	
	2.05 I	676.15	682.65	652.22 I	654.22	719.23 I	694.00	682.04	654.63	
	2.10	678.85	685.80 I	653.25 I	653.25	723.74 I	698.16 I	684.88	655.74 I	析
	2.15 I	681.58 I	689.00 I	654.29 I	654.29	728.26 I	701.73	687.73 I	656.85 I	647.88
	2.20 I	684.36 I	692.251	655.35 I	655.35 I	732.71 I	705.291	690.59 I	657.97 I	648.45 I
	2.25 I	687.17 I	695.54	056.42	656.42 I	737.29 I	708.85	693.45 I	659.01	649.08
	2.301	690.33	698.87 I	657.50 I	657.50 I	741.81 I	712.41 I	696.32 I	660.23 I	649.591
	2.351	692.931	702.20	658.60 I	658.601	746.32 I	T15.97	699.20 I	201.36 I	
	2.40 I	695.87 I	735.10	659.72 I	659.72 I	756.84 I	719.53 I	702.09 I	602.50 I	650.74 I
	2.45 I	698.86	709.19 !	660.86 I	660.36 I	755.35 I	723.99	704.98	603	

TABLE 3.8 TOTAL DRAG fOR DIEFBREMT ThINE TGICRMESS fOR SGRIMP TRAKL

	Tw	Panel	Panel	Panel	Panel	Papel	Panel	Pa	Pa
	dia(an)	1 I	B I	C I	0 I	\& I		G1	G
		I			I	I I			
	0.10	45	44	48	39	41	472.04 I	187.95 I	
	0.15 I	458.61 I	450.22 I	482.38 I	401.77	421	473.82 I	I 488.69	49
	0.20	461.60 I	453.78 I	483.79	408.19 I	426.	475.74 I	489.50 I	495
	0.25	464.71 I	457.46 I	485.24 I	414.93 I	431	477.81 I	490.39	49
	0.30 I	467.93 I	461.29 I	486.751	422.00 I	437.67	480.04 I	491.39 I	
	0.35	471.27 I	465.26 I	488.38 I	429.4	443.78	482.44 I	491.98	
	0.40 I	474.75 I	469.38 I	489.95 I	437.17 I	450.34	485.02 I	492.79 I	497
	0.45	478.35 I	473.67 I	491.64	445.32 I	457.09	487.81	493.61 I	498.29
	0.50 I	482.11 I	478.12 I	493.40 I	453.86 I	464.36	490.81 I	494.45 I	498.75
	0.55 I	486.01 I	482.76 I	495.23 I	462.8	472.08 I	494.041	495.29 I	
	0.60	490.08 I	487.59 I	497.13 I	472.28	480.28	495.95	496.15 I	499
	0.65 I	494.38 I	492.62 I	499.18 I	482.08 I	489.01 I	498.391	497.02 I	500.13
	0.70 I	498.74 I	497.87 I	501.19 I	492.451	496.85 I	500.86 I	497.	500.59
	0.75 I	503.36 I	498.78 I	501.05					
	0.80	508.19 I	509.10 I	505.62 I	514.83	509.87 I	505.88 I	499.	501
	0.85 I	511.79 I	514.47 I	508.00 I	523.93 I	516.40	508.42 I	500.59	501
	0.90	514.75 I	518.62 I	509.78 I	531.02 I	522.92	510.98 I	501.50	502
	0.95	517.64 I	523.73 I	511.57 I	537.99	539.	513.56 I	502.43 I	502
	1.00 I	520.47 I	536.82 I	513.36 I	544.84 I	535.98	516.17 I	503.36 I	503.36 I
	1.05 I	523.23 I	530.87 I	515.15 I	551.58	542.5	518.79 I	504.30	503
	1.10	525.94 I	534.90 I	516.94 I	558.22 I	549.05	521.44 I	505.25 I	
	1.15	528.59 I	538.90	518.74 I	564.75	555.58	524.10 I	506.21 I	504
	1.20	531.19 I	542.87 I	520.54 I	571.	562.	526.78 I	507.17 I	
	1.25	533.74 I	546.82 I	522.34 I	577.5	568.63	529.48 I	508.14 I	505.66
	1.30	536.25 I	550.73 I	524.15 I	583.75 I	575.	532.19 I	509.13 I	506
	1.35	538.70 I	554.62 I	525.95 I	589.89 I	581.	534.92	510.11 I	506.
	1.10	541.12 I	558.98	527.76 I	595.96	589.	537.67 I	511.11 I	
	1.45	543.501	562.31 I	529.57 I	601.95 I	594.	540.43 I	512.11 I	
	1.50	545.84 I	566.12 I	531.38 I	607.86	601.1	543.	513.12 I	
	1.55	548.16	569.90 I	533.19 I	613.71	607.	546.00 I	514	
	1.60	550.44 I	573.65 I	535.00 I	619.49	614.	548.81 I	515.	
	1.65	552.71 I	577.37 I	536.81 I	625.22 I	620.6	551.63 I	516.19	
	1.70	554.95	581.08 I	538.62 I	630.90 I	627.12	554.46 I	517.23 I	
	1.75 I	557.18 I	584.75 I	540.44 I	636.53	633.59	557.31 I	518.27 I	510
	1.80 I	559.39 I	588.40 I	542.25 I	642.13 I	640.05	560.17	519.32	
	1.85 I	561.60 I	592.03 I	544.07 I	647.69	646.50	563.05 I	520.38 I	511.
	1.90 I	563.81 I	595.63 I	545.88 I	653.24 I	652.95	565.93 I	521.44 I	511.6
	1.95 I	566.03	599.311	547.70 I	658.76	659.39	568.831	522.51 I	
	2.001	568.23 I	602.77	549.51 I	664.28 I	665.83	571.74 I	523.59 I	
	2.05	570.46	606.31 I	551.33 I	669.80	672.26	574.67 I	534.67 I	513.
	2.10 I	572.70	609.83 I	553.14 I	675.32 I	678.68	577.60 !	525.76 I	513.50
	2.15 I	574.96 I	613.33 I	554.96 I	680.86 I	685.10	580.55 I	526.85 I	513.9
	2.20 I	577.25	616.82 I	556.71 I	686.42 I	691.52 I	583.51	527.96 I	514.4
	2.25 I	579.57 I	620.28 I	558.58 I	692.01 I	697.93 I	586.48 I	529.07 I	514.88
	2.30 I	581.92 I	623.73 I	560.401	697.65 I	704.341	589.46 I	530.18 I	515.34 I
	2.35 I	584.31 I	627.16 I	562.21 I	703.321	710.74 I	593.46 :	531.30 I	515.80 I
	2.40 I	586.75 I	630.58 I	564.02 I	709.06	717.15	595.46 :	532.43 I	516.26
	2.45 I	589.23	633.99 I	565.84 I	714.86	723.55	598.48 I	533.57 I	515

FIG. 3.a Apex of the cone

FIG.3.b Cone flattend out
FIG.3.c Effect of high solidity

$$
\begin{aligned}
& v_{e}>v>v_{m}>v_{n} \\
& \text { for } s_{n}>s_{m}
\end{aligned}
$$

Contribution of various traw
Contribution of various trawl components
to total drag - Fish trawl

Fig. 3.5.1
Mesh size vs. total net drag Panel A of fish trawl

Fig. 3.5.3
Mesh size vs. total net drag Panel C of fish trawl

Fig. 3.5.2
Mesh size vs. total net drag Panel B of fish trawl

Fig. 3.5.4
Mesh size vs. total net drag Panel D of fish trawl

Fig. 3.5.6
Mesh size vs. total net drag Panel F of fish trawl

Fig. 3.5.7
Mesh size vs. total net drag Panel G of fish trawi

Fig. 3.5.5
Mesh size vs. total net drag
Panel E of fish trawl

Fig. 3.5.8
Mesh size vs. total net drag
Panel H1 of fish trawl

Fig. 3.5.9
Mesh size vs. total net drag
Panel H2 of fish trawl

Fig. 3.6.1
Mesh size vs. total net drag
Panel A of shrimp trawl

Fig. 3.6.3
Mesh size vs. total net drag Panel C of shrimp trawl

Fig. 3.6.2
Mesh size vs. total net drag Panel B of shrimp trawi

Fig. 3.6.4
Mesh size vs. total net drag Panel D of shrimp trawl

Fig. 3.6.5
Mesh size vs. total net drag
Panel E of shrimp trawl

Fig. 3.6.7
Mesh size vs. total net drag
Panel G1 of shrimp trawl

Fig. 3.6.6
Mesh size vs. total net drag Panel F of shrimp trawl

Fig. 3.6.8
Mesh size vs. total net drag Panel G2 of shrimp trawl

Fig. 3.9
Drag as a function of breaking strengths for PE, PA and PES twines.

Fig. 3.10.1 Drag variation in relation to angle of attack and twine area with different panel depths. Net1. Panel A.

Fig. 3.10.3 Drag variation in relation to angle of attack and twine area with different panel depths. Net1. Panel C.

Fig. 3.10.2 Drag variation in relation to angle of attack and twine area with different panel depths. Net1. Panel B.

Fig. 3.10.4 Drag variation in relation to angle of attack and twine area with different panel depths. Net1. Panel D.

Fig. 3.10.6 Drag variation in relation to angle of attack and twine area with different panel depths. Net1. Panel E.

Fig. 3.10.7 Drag variation in relation Fig. 3.10.7 Drag variation in relation
to angle of attack and twine area with different panel depths. Panel G

Fig. 3.10.7 Drag variation in relation to angle of attack and twine area with different panel depths. Net1. Panel G.

Fig. 3.10.8 Drag variation in relation to angle of attack and twine ares with different panel depths. Net1. Codend.

Fig. 3.14.1 Drag variation in relation to angle of attack and twine area with different panel depths. Net2. Panel A.

$$
\begin{aligned}
& \text { - Drag(kgf) } \sim \text { Twine area(eq.m) } \\
& \rightarrow \text { Angle of attack(deg) }
\end{aligned}
$$

Fig. 3.11.3 Drag variation in relation to angle of attack and twine area with different panel depths. Net2. Panel C.

Fig. 3.11.2 Drag variation in relation to angle of attack and twine area with different panel depths. Net2. Panel B.

Fig. 3.11.4 Drag variation in relation to angle of attack and twine area with different panel depths. Net2. Panel 0.

> - Drazivil)
> \rightarrow Angio of exreotided

Fig. 3.1L6 Drag variation in relation to angle of attack and iwine area with different panel depths. Net2. Parel E.

$$
\text { - Dradkpi) } \quad+\text { Twine armetocint }
$$

Fig. 3.11.6 Drag variation in relation to angle of attack and iwine area with different parel depths. Net2. Panel F.

Fig. 3.44.7 Drag variation in relation to angle of attack and twine area with different panel depths. Net2. Codend.

CHAPTER IV

OPERATIONAL ANALYSIS OF TRAWLERS

4.1 INTRODUCTION

Abstract

of upto 11m OAL and bottom tranlors of between 9 and 11m OnL being quite a popular class of vessels in this catogory.

With shrimps continuing to dominate the scafood cxports from India and marine shrimp production being primarily effected by bottom trawling, there has been a rapid proliferation of bottom trawlers in the operation along the shallow waters, within depths of 75m, of the Indian coastline. This has led to overcapitalisation and overexploitation of the coastal marine resources of the country resulting in dwindled net returns and diminished catch per unit effort, further aggravated by the ever increasing fuel costs. There has been a tendency in the past fet years to nullify the increasing costs and diminishing catch per unit effort by enhancing the vessel power with the ultimate goal of increasing total catch which has resulted in the operation of these vessels becoming very unstable. Despite being heavily fuel expensive, the operations of these vessels continue to be economically viable, but the extent to which the operations are successful is rather skeptical.

4.2 OBJECTIVES

```
    To analyse the economics of operation of the
mechanised fishing trawlors and to suggest appropriate
measures to improve their efficiency.
```


4.3 Materials and methods

The study was carricd out from the Cochin Fisheries Harbour during the period October 1987 to Scptember 1989.

Through a simple random sampling (SRS) (FAO, 1980), 18 mechanized wooden fishing trawlers operating from Cochin were selected. Care was taken to see that all the units selected were approximately of the same age so as to facilitate easy estimation of their capital investments. Access to real and authentic data pertaining to economic details were given due consideration during the selection of fishing units.

A record kecping cxercise was maintained to collect the following operating details:

1. Fuel expenses
2. Bata charges (Victual charges)
3. Toll charges
4. Commission
5. Repair costs
```
            6. Miscellancous cxpenses
            7. Catch value realized
            8. Owner's share
            9. Crev share
            10. Trips
Weekly statements of the above details were recorded on all Saturdays. Details of the catch and fishing operations were collected by distributing pre-tested schedules to the boat crew. These were collected back two times a week - on Wednesdays and Saturdays. Regular visits were made to the landing centers to cross check the details of catch furnished by the boat crew. Occasional fishing trips were also made on a few boats during the course of the study.
The following details were collected for each day's operation (i.e. each fishing trip)
1. Vessel
(a) LOA
(b) HP
(c) Year built
2. Gear
3. Fishing area
4. Shocting time and
5. Hauling time
```

The collected data were used to work out the economics of opcration including the various

```
profitability ratios. Data on fishing cffort was used
to ascertain the catch per unit effort (CPUE), fuel
expense per unit catch, revenue per unit catch, cost
per unit effort etc.
```

In order to demonstrate the profitability,
viability and plausibility of undertaking two-day
fishing trips, an attempt was also made to analyse
the operations from the two-day voyage perspective
the operations from the two-day voyage perspective

4.4 RESULTS AND DISCUSSIONS

4.4 1 Fishing Operations

4.4.1.1 All the trawlers covered in the study undertook one day fishing trips which started quite early in the morning everyday. Depending on the distance of the fishing ground which varies according to season, the boats set sail for fishing between $0100 h r s$ and $0400 h r s$ and return to the harbour with the catches by 1700 hrs the same day. A trawler normally made three hauls per fishing trip each of about two hours duration. Two predominant types of fishing gear were employed, viz fish trawl and shrimp trawl. Figs 3.1 and 3.2 gives the design details of the more popular versions of these two types of nets. The fish tranl was also used to harvest the abundant
scphalopod řssources eธpcこially during tho post monsoon period.
The catch hauled aboard was sorted
species-wise. since no selective fishing was employed,
sorting was a cumbersome process especially during
shrimp fishing. The fishermen usually takes, along
with them, two blochs of ice. Shrimps, cephalopods and
other priced catches were iced immediately. as the
fish catches were usually very voluminous, icing was a
problem, and hence, the fish catches were brought to
the landing centres in the raw condition.

The entire fishing operation thus comes to a close by 6 or 7p.m. taking the duration of a day's fishing operation around 18 hrs.

The fishing operations were carried cut on all days except Sundays and other important holidays. But there wore a fow operators who undertook fishing even on sundays, provided the season was good.

The catch was disposed off immediately after laniing, by auctioning. Refueling was done the same evening and any minor maintenance required for the engine, water-gland, etc. were immediately attended to, so that the trawler was all set for the next day's £ishing.

Abstract

4.4.1.2 Disposal of catch

The catches brought to the landing centres were disposed off immediately by auctioning. Bid and counter bidding was the method employed for auctioning. Each boat had an auctioning agent who gets six percent of the total catch value realized, as commission. Normally, an agent has a few boats under him. The auctioning agent is responsible for collecting the proceeds once the sale has been finalized. The auctioning agent has the additional role of financing. He normally provides the working capital - namely the common expenses - necessary for a day's operation. Usually the accounts were settled by the weekend, although partial payments may be made by the agent during mid-week depending on the owner's/crew's demand.

Prawns and cephalopods were auctioned as small lots - each lot weighing between 25 kg and 35 kg . In the case of fish, the entire catch was disposed off as a single lot. However, if the catch composition was quite varied, it was divided into convenient groups before auctioning.

4.4.2 Investment costs (Fixed investments)

The major components coming under this head are the following :

1. Fishing craft including accessories
2. Fishing gear and
3. Otter boards

All boats covered in the study were more than five years old. For the purpose of calculating the fixed investments, the current market value of these boats were taken. In the case of fishing gear and accessories including otter boards, the cost of new equipment were considered. The average fixed investment for a single fishing unit was Rs.2,66,500. Fig. 4.1 shows the split-up of the total fixed investments.

4.4.3 Fixed Costs

The various fixed costs were the following :

4.4.3.1 Interest on capital

This was taken at the rate of 12 percent per annum which is the current bank interest rate. This will also account, on a modest rate, the opportunity cost of money invested.

4.4.3.2 Depreciation

 accounting.
4.4.4 Operating costs

The operating costs incurred in trawling included the following :
i) Fuel expenses
ii) Bata charges
iii) Toll charges
iv) Commission
v) Repair costs and
vi) Miscellaneous expenditure

4.4.4.1 Common expenses

Fuel expenses, Bata, Toll, Commission and Miscellaneous expenditure together constitute the common expenses. The common expenses were a conjoint liability of both the owner and the crew. Fig 4.2 gives the split-up of the common expenses

4.4.4.1.1 Fuel Expenses

This included the cost of diesel and lubricating cil and was the most important item as far as operational costs were concerned. The total fuel expenses utilized as much as 46.6 percent of the total catch value realized. (Fig.4.3.). Each boat on an average expended about 200 liters of fuel each day. Fig.4.4 shows the fuel consumption pattern for the various months of the study period. While the monthly fuel expenses remained fairly constant throughout the study period, the average fuel expense per trip showed two conspicuous peaks

```
during May. It was during these months that the
fishing season was at its worst, and hence, the
trawlers had to spend more time to locate their
fishing grounds, which normally lie quite far during
this pericd of the year. The average fuel expense
per haul worked out to 60 liters. Of the total fuel
expenditure, only 58.77 percent is spent for actual
trawling, while 41.23 percent is spent for
cruising to and from the fishing grounds (Fig.4.5).
```


4.4.4.1.2 Bata

This provides for victuals to the crew members. This allowance for meals is not fixed. Only the actual expenditure is provided for, and hence the expenditure on this account depends on the crew strength. As an approximate amount it usually worked out to ten rupees per day per head. Bata charges were arso at times paid to one or two members of the crew, even on days when there is no fishing, but who are retained to attend to any repair or allied work pertaining to the fishing craft. Fig.4.5 gives the monthly bata expenditure, during the study period. The bata expenses contributed to 6.86 percent of the common expenses (Fig.4.2). 4.09 pereent of the total catch value realized is being spent as bata expenses (Fig.4.3).

Abstract

4.4.4.1.3 Toll charges

This is the landing charges levied by the fisheries harbour authorities. For each landing a boat has to pay a sum of Rs.9/-. The latter was the rate for 9.75 m and 11 m trawlers. The toll expenditure worked out to 1 percent of the total common expenses (Fig. 4.2); at the same time it consumed 0.59 percent of the total catch value realized (Fig.4.3). Since the trawlers undertook one day trips and because the boats land their catches after each day's operation, the curve for toll expenses is exactly similar to that of the trips made (Fig.4.7)

4.4.4.1.4 Commission

Fig.4.8 gives the curve for commission charges paid to the auctioneer. An auctioning charge at the rate of six percent of the total auction amount (catch value realized) is paid to the auctioning agent. The auctioning charges amounted to 10 percent of the common expenses (Fig.4.2). Since the auctioneer has the additional role of a short term financier, the 5 percent commission paid to him is reasonable.
4.4.4.1.5 Miscellaneous expenditure

Miscellaneous expenses contributed to
2.29 percent of the total catch value realized (Fig.4.3). This included sundry items like cost of ice, baskets, twine for mending nets, etc. and contributed 2.65 percent of the total costs (Fig.4.9)
The common expenses included those
costs associated with the immediate operation. Apart
from the above discussed heads, minor expenses
such as costs associated with the repair of gear and
accessories were also incurred under the common
expenses. Major accounts like total loss of the net
or of one or both the otter doors will be a
liability on the owner alone. Even though, the
costs associated with mending of nets are a common
liability, it is the responsibility of the owner to get
the same replaced. The common expenses utilized 59.6
percent of the total catch value realized (Fig.4.3).
Its share of the total costs amounted to as much as
68. 81 percent (Fig. 4.9). Fig.4.11 shows the total
common expenditure for the various months during
the study period.

4.4.4.2 Repair costs

All costs asscciated with repair
and maintenance of capital investments come under this head. The liability to meet these expenses rests solely with the owner. Probably because the boats were around five years old the repair costs amounted to as much as 16 percent of the total operating costs. The total monthly repair costs came to Rs. 3626 while the average per trip worked out to Rs.172. Fig.4.11 gives the curves for monthly repair costs. 11.44 percent of the total catch value realized went as repair costs (Fig.4.3). Being a liability that was exclusively on the owner, the repair costs consumed as much as 40.45 percent of the owner's gross profit. The replacement costs also included the cost of replacing gear and accessories in the event of a total loss of the same. However, minor repair and maintenance of the gear were accounted for, in the common expenses.

The sum of the following thus constituted the total operating costs.

1. Fuel
2. Bata
3. TOII
4. Commission
5. Repair and
6. Miscellaneous

The total working overheads consumed 71.04 percent of the total catch value realized. The average monthly operating costs during the study period worked out to Rs. 22,515 while the average per trip came to Rs.1.089. To calculate the gross profit for sharing, only a part of the total expenses (i.e. total expenses less repair costs) is deducted from the total catch. Thus even though the total operating costs amounted to 71.04 percent of the total catch, the profit for sharing approximated to 40 percent of the catch value obtained (Fig.4.3.)

4.4.5 Fixed costs

i) Interest on capital - was calculated at
the rate of 12% per annum. This would also
account for cpportunity cost of money invested.
ii) Depreciation $:$ was estimated at the rate
of 8% for fishing craft, 30% for nets and 20% for
otter boards, their useful service life being 12.s,
3 and 5 ycars respectively.

4.4.6.5 Profit for sharing

4.4 .6 .5 .1	Owner share	$1,03,091$
4.4 .6 .5 .2 Crew share	44,182	
4.4 .6 .5 .3 Owner's gross profit	61,387	
4.4 .6 .6 Total Costs	$3,15,700$	
4.4 .6 .7 Total Catch (Returns)	$3,64.483$	
4.4 .6 .8 Net Profit	48,783	

4.4.7 Catch Details

4.4.7.1	Prawns	Qty (tons kg) Val(Rs lacs)	$\begin{aligned} & 7.87 \\ & 2.07 \end{aligned}$
4.4.7.2	Cephalopods	Qty (tons kg)	3.77
		Val(Rs lacs)	0.73
4.4.7.3	Fishes	Qty (tons kg)	17.93
		Val(Rs lacs)	0.85
4.4.7.4	Total	Qty (tons kg)	14.81
		Val(Rs lacs)	3.65

4.4.8 Operational analysis
4.4.8.1 Fixed cost per kg of catch (Rs) 3.84
4.4.8.2 Operating cost per kg of catch (Rs) 17.49
4.4.8.3 Total cost per kg of catch (Rs) 21.32
4.4.8.4 Fuel cost per kg of catch (Rs) 11.49
4.4.8.5 Average value realized
per kg of catch (Rs)
4.4.8.6 Profit per kg of catch (Rs) 3.29
4.4.8.7 Total Fishing hours (per year) 3341
4.4.8.8 Actual Trawling hours (per year) 1964
4.4.8.9 Fuel consumption per trip (liters) 179


```
they undertake voyages for shrimp fishing, wherein the
catch bulk is comparatively low. The following
analysis will demonstrate the advantage of undertaking
two day fishing trips, over one day fishing
trips.(Fig.4.13)
```

One day trip Two day trip
Total fishing trips $238 \quad 119$
Total hauls 714
714
Fuel consumption for actual
trawling per trip (liters) 106
212
Fuel consumed for cruising
to and from the ground (liters) 7373
Total fuel consumption per trip (liters) 179 285
No of hauls per trip 3 6
Average fuel expenditure per haul (liters) 59.67 47.50
The average fuel saving per haul thus works
out to approximately 12.17 liters. This would mean anoverall saving of 8,689 liters per year per boat.Taking into account that about 2500 fishing units areoperating from the study area, the total savings infuel will be enormous - of the order of 22 millionliters per year. Morecver, almost the entire
saving in terms of value will be accruable as
profit to the respective operator. The various
profitability ratios (Fig.4.14) for the two
schedules of operation are as follows :

	One day trip	Two day trip
1. Return on turnover (\%)	13.38	23.17
2. Return on total costs (\%)	15.45	30.16
3. Return on investment (\%)	18.31	31.69
4. Return on operational costs $(\%)$	18.84	37.83
5. Pay back period (years)	3.62	2.44
6. Break even point (Rs lacs)	1.96	1.47

ECOHOMIC ANRLYSIS Of hOODEN PISHIRG TRARLERS OPERATING PROM COCHIN FISHERIES HARBOUR
 (Average for 18 boats)

MOMTH	PUEL (Rs)	BATA (Rs)	TOLL	COMH (Rs)	MISC (RS)	REPAIRS (Rs)	TOTAL EXPBRSES (Rs)	CaTCH (Rs)	$\begin{aligned} & \text { CRBU } \\ & \text { SEARE } \\ & \text { (Rs) } \end{aligned}$	OHIER SEARE (Rs)	TRIPS (nos)
OCT 87	12464.21	1428.21	189	1886.57	498.21	2054.03	18520.24	31442.86	4492.90	10483.42	21
nov 87	14843.30	1403.57	207	2821.50	388.93	8141.37	27805.67	47025.00	8209.56	19155.64	33
DEC 87	13819.80	1062.86	171	1522.54	385.68	1973.59	18935.41	25375.71	2524.65	5890.85	19
Jan 88	12905.74	1009.71	171	1515.10	539.40	823.57	16964.53	25251.71	2734.31	6380.05	19
FEB 88	18171.24	1211.79	198	1588.79	1501.11	2991.15	25662.08	29932.14	2179.04	5084.43	22
MAR 88	17406.80	1605.36	225	1753.05	1394.17	4248.66	26633.04	29217.50	2048.68	4780.26	25
APR 88	13731.81	1294.29	180	1566.77	1069.03	3064.18	20906.08	26112.86	2482.06	5791.47	20
MAY 88	18038.33	1035.18	171	2155.01	801.46	4895.90	27087.47	35926.79	4131.05	9615.77	19
J0n 88	16486.36	1284.80	198	2427.48	802.56	2049.96	23249.16	40458.00	5777.64	13481.16	22
JUL 88	16742.63	1429.45	307	2729.64	376.05	3871.32	24356.08	45494.00	7202.77	16806.47	23
AUG 88	15477.30	1282.58	162	1653.20	427.50	2810.70	21823.38	27720.00	2612.20	6095.12	18
SEP 88	17155.68	1276.08	216	1987.20	1103.04	5768.40	27506.40	33120.00	3414.60	7967.40	24
OCT 88	12318.60	1425.00	180	2004.00	576.80	3134.60	19639.00	33400.00	5068.68	11826.92	20
ROV 88	15485.28	1474.08	316	3081.60	1314.96	4723.68	36235.60	51360.00	8954.48	20893.66	34
DEC 88	12577.32	978.48	162	1377.00	880.92	2544.48	18520.20	22950.00	2092.28	4882.00	18
JAN 89	14302.80	1402.80	180	1704.00	596.00	4769.80	28855.40	28400.00	3094.32	7230.08	20
FEB 89	18131.74	1367.30	198	1518.00	760.76	7665.90	29641.70	25300.00	997.26	2326.94	22
MAR 89	12974.32	1601.04	189	1575.00	701.82	1214.85	18255.93	26350.00	2762.68	6446.24	21
APR 89	13572.84	1028.85	171	1567.50	546.06	1518.10	18404.35	26125.00	2771.63	6467.13	19
May 89	16556.04	922.68	162	1587.60	459.72	3624.40	22312.44	26460.00	2031.59	4740.37	18
JWH 89	15477.62	1751.45	307	2608.20	425.50	5490.10	25959.87	43470.00	6900.07	16100.16	23
JUL 89	7969.61	750.31	99	973.50	386.87	2029.50	12308.79	16225.00	1813.71	4232.00	11
AUG 89 ------------------------ No operations due to State Government ba											
SEP 89	13669.75	1753.50	235	1917.00	792.50	6000.00	24357.75	31950.00	4077.68	9514.58	25

TOTAL $\quad 340109.03 \quad 29779.46 \quad 428443530.8516728 .9983408 .24517840 .58728966 .5788363 .76 \quad 306182.11 \quad 476$

Fig. 4.1 SPLIT-UP OF FIXED INVESTMENTS

Fig. 4.2 SPLIT-UP OF COMMON EXPENSES

Fig 4.5 FUEL CONSUMPTION PATTERN OF THE TRAWLING OPERATION

 Fig. 4.7 Toll expenses
(average per fishing trip)

Fig. 4.12
Catch composition

CHAPTER V
 SUMMARY
 AND RECOMMENDATIONS

Abstract

Trawling, despite being heavily energy expensive, still continues to be the most energy expensive fishing method particularly so in view of the export oriented nature of the Indian seafood industry. This study therefore aims at analysing the efficiency of trawls operation from Cochin, an important fishing center along the southwest coast of India. The analysis is made along two perspectives - economic and technological. Eventhough technological efficiency complement economic efficiency, in the fishing parlance, parameters like the size composition of the catch, selectivity factors, etc., will have a direct bearing on the technclogical qualities of the trawl, and which parameters will have a significant impact on the effective exploitation of a fishery stock. Whereas the technological analysis aims at improving the efficiency with regard to the effective utilisation of fuel and fishery stocks, economic analysis ascertains the prosent status of the trawling operations from the commercial angle.

Chapter I

The first chapter reviens the research work
done on trawls. Trawls are considered to be further extension of towed bagnets, developed to facilitate sweeping of larger areas more efficiently. The initial attempts at improving tranl efficiency were based on observations of 'tell tale' signs on trawl parts, which were followed by, with the development of science and technology, direct/indirect observation of trawling operations. Measurement of various operating parameters of a trawl, and the subsequent calculations has been a popular method adopted by several workers and many contrivances that facilitate this methodology has been developed.

```
    Comparative fishing to evaluate superiority
of various trawl designs, different with regard to
parameters like rigging, number of seams, length of
sweep lines/bridles, depth of pancls, material for
construction, etc., have been embraced by many workers.
Work has also been directed at improving the vertical
opening of trawls by various means. Mention is also
made on the development of the various trawl designs
and their adoption locally.
    The capacity of a fishing gear to rotain
fishes of a particular length and to effect the
cscapement of the others, is an important factor
```


Abstract

determining the overall efficiency of the gear. The concept of selection in fishing gear, attributable to the various components viz. availability, vulnerability and inherent gear selectivity are dealt with in this chapter. A review of the work done on selectivity analysis is also made, wherein the influence of various parameters like mesh size, catch quantity, gear material, twine thickness, hauling techniques, type of gear, mesh configuration, etc., on the selective properties of a trawl, as analysed by various workers are discussed.

Chapter II

The various components of a trawl
individually and collectively aid and abet fish
capture. The specific role of each component part in
effecting fish capture is of significant importance in
the trawl designing perspective. A study of the escape
pattern of fishes through the various parts of a trawl
revealed that seventy five percent of the total
escapement occurred at the throat region. The length
of the escapees were so small that the meshes of these
regions had little selective function. About seventy
eight percent of the total fishes entering the net got
capcured in the codend. since the escapes were very
small, in terms of weight, ninety five percent of the
fishes entering the net got captured in the codend. Maximum escapement occurred at the throat region, which was of the order of fifteen percent of the total number of fishes entering the net. The escapement at the belly was only four percent. Practically no escapement occurred at the fore regions of the trawl. Being a filtering device, the efficiency of a trawl is dependent on the effective filtration rate. This study has revealed the specific role of the various panels that go into the construction of a trawl. Since the fore regions of a trawl have little selective function, the mesh sizes of these panels can be increased without effecting the fish catching capacity of a trawl. Increasing the mesh sizes would also decrease the total drag of the trawl and the savings thus accrued may be profitably used to tow a bigger net without a consequent enhancement of the towing power.

Chapter III

Trawl drag calculations have been an
interesting topic of research for the past fen decades.
The resistance offered by a tranl and the varicus
factors that influence the total drag are investigated
in this chapter. The studies investigated here include
the calculation of the total drag of two important
tranl designs operating along the cochin coast and the

```
evaluation of a change in the total drag due to a
variation in the mesh size, twine size, trawling speed
and panel depths. Mesh size and twine size were known
to have inverse relation to total drag. This study
revealed that the influence of a change in mesh sizes
is more pronounced when the mesh sizes are small.
Also, increasing the mesh sizes beyond a certain limit
was found to have little effect on trawl drag. The
study on the influence of twine diameter established
the superiority of high strength materials, in the
total drag perspective. It was found that, if, instead of polyethylene, polyamide is used for the construction of a fish trawl, the the total drag would be reduced by 20 percent, other things like wet breaking strengths, towing speed, etc. remaining same. Similarly polyester was a better gear material than polyamide. Increasing the panel depths was found to decrease the total drag initially, due to a lowering of the angle of attack of the netting pancls. But, as the pancl depths were increased further, the influence of an increasing twine surface area offset the influence of the lowered angle of attack, thereby increasing the total drag.
```

Chapter IV

```
    This chapter deals with the economic analysis
of the operation of mechanised fishing trawlors
```

```
operating from the Cochin coast. As much as 47 percent
of the total catch value realised were spent for fuel.
The owner's gross profit worked out to 16 percent of
the total catch value realised. About Rs.11.4 worth of
fuel was spent for effecting a kilogram of catch. A
comparison of the profitability ratios for one day and
two day voyages revealed the superiority of two day
voyages. An average fuel saving of 12 liters per haul
is achieved if the fishing vessels undertook two day
voyages aggregating to a saving of approximately 8,589
liters per boat per year.
```


RECOMMENDATIONS

1. The escapement studies have shown that the fore regions of a trawl mainly aid in guiding the fishes towards the codend. The mesh sizes of these panels should be increased from the current limits of around 150 mm to about 300 mm , which would ensure better filtaration rates as well as savings in gear material.
2. Real size salection occurred at the throat and codond regions. The mesh sizos of thosc pancls will determinc tho size of tho oatches. Due importance
should be given whilc determining the mesh sizes of these pancls. Since the square mesh escapess are reported to have better survivability rates, theso panels should preferably be made of square meshes. Work on square mesh selectivity with special reference to species available along the Indian waters is solicited.
3. Square meshes have better selective propertiss than the conventional diamond meshes. But whether the square meshes have an effect on the drag properties would form a thoughtful investigation.
4. Studies on drag calculations have revealed the importance of maintaining optimal levels of trawling speeds. This aspect should be well understood by the fishermen, as excess speeds would mean axcess wastage of fuel.
5. The influence of twine thickness on the drag qualities have established the superiority of high strength materials. There is therefore nced for tho development of cheaper and stronger materials for Eishing gear construction.
6. In a multi-species fishery liko ours, thore is noed to develop more resource specific fishing.

Sclective Eishing methods with the holp of contrivances like selective shrimp tranl would not only negate the cumbersome process of sorting the catches once they are brought aboard, but would improve the overall fishing efficiency. Moro research along these lines is needed.
8. The operational analysis of trawlers have revealed the very marginal viability of their operations. As this study has shown, undertaking two day voyages, particularly during the shrimping seasons would enhance the overational operational efficiency.

REFERENCES

Akre, A.	1965	Report on Net Model Tests with Quarter and Onesixth Scale Model in Moray Firth, Scotland, JulyAugust. Trondheim, Norwegian Ship Model Experiment Tank Publication (1966) APE.REPT.:734-53
Alonso-Allende, J.M.	1981	Data on Selectivity for Nephrops norvegieus on Bottom Trawl Fishery off Galicia(NW of Spain) ICES Council Meeting ICES-CM-1981/B: 5 (Abstract only)
Anon	1979	The Sail Rite; High Flier is Put to Test. Fish.News.Int., 18(1):26-27
Bagenal, T.B.	1958	An Analysis of the Variability Associated with the VigneronDahl modification of the Otter Trawl by Day and Night and a Discussion of its Action. Journal do Counscil Internationa Pour li Exploration de la Mer, 24(1):62-79
Baranov	1960	Commercial Fishing Techniques. PISCHEPROMIZDAL $695 p .$
Beamish, E.N.H.	1967	Photographic Observations on Reactions of Fish Ahcad of Otter Trawle. Fio Fisheries Report 52(3):511-521

Ben-Yami, M.	1959	Study of the Mediterranean Trawl Net. Modern Fishing Gear of the World Publ. by Fishing Nows (Books) Ltd. Surrey, London, England:213-221
Bohl, H.	1969a	```Preliminary Results of German Mesh Selection Experiments on Codend and Redfish off Icelandic and Newfoundland. ICES Council Meeting ICES-CM-1969/B:18 (Abstract only)```
Bohl, H.	1977	Selection of Saithe by Bottom Trawls in Icelandic Waters. ICES Council Meeting ICES-CM-1977/B:23 (Abstract only)
Bohl, H.	1980	Selection of Cod by Bottom Trawls in the Central Baltic (German Experiments 1978). ICES Council Meeting ICES-CM-1980/B:8 (Abstract only)
Bohl, H.	1981	```Selection of Cod by Bottom Trawl Codends in the Central Baltic (German Experiments 1979 and 1980). ICES Council Meeting ICES-CM-1981/B:13 (Abstract only)```
Bohl, H.	1987	```Bericht uber die 222. Reise des FFK "Solea" (Deutsche Bucht; 12.12-19.12.85) Hamburg, Institut fur Fangtechnik (Abstract only)```

Boopendranath,M.R., N. Subramania Pillai and R.R.Kunjipalu.

1986
Effect of Sail Rite in Improving Trawl Gear Performance Fish Technol., 23(1):45-48

Comparative Fishing Trials with Big Meshes and Rope Trawls. ICES Council Meeting ICES CM 1980/B:9 (Abstract only)

1954 Experiments with Perlon in Portugese Fishery. Die Fischwirtshaft 6(6):148-150

Fish Catching Mathods of the World.
Publ. by Fishing News (Books) Lta. Surrey, England; 240 p

Gulf of Mexico Shrimp Tranl Designs.
Fishery Leaflet, (394):1-16

Preliminary Results of Deep Sea Exploration for Shrimp in the Gulf of Mexico.
Comm. Fish.Rev.,18(12)

Burchett, Ron	1989	Vessel Management : The second Generation. Proc. of the IFEO Working Group August 1989, Paper 2.3:6p

Catasta, L.
1959 Studies to Improve the Efficiency of Otter Boards and Trawl Floats. Modern Fishing Gear of the World Publ.by Fishing News (Books) Ltd., Surrey, London, England: 251-252

Chapman, C.J. and	1967
A.D.Hawhins	The importance of Sound in Fish
	Behaviour in Relation to Capture
	by Trawls.
	FAO Tech.Rep.
	$3(52): 717-729$

Charuau, A.

1979a | Selectivity of Polyethylene | |
| ---: | :--- |
| | Codends in Norway Lobster |
| | Fisheries. |
| | ICES Council Meeting, |
| | ICES-CM-1979/K:30 |
| (Abstract only) | |

1979b Notes on Selectivity Experiments
Annex 2. report to the Working
Group on Assesment of Nephrops Stochs.
ICES Council meeting
ICES-CM-1979/F:2
(rabstract only)

Chidambaram, K. 1952 | The Experimental Introduction of |
| :--- |
| Powered Fishing Vessels within |
| |
| |
| India $a n d$ Ceylon. |
| Proc. Indo-Pac.Fish. Coun. |
| |
| |
| $42(2): 13-15$ |

Chopin, F. and	$1988 \quad$A Justification of Flume Tanks. Proceedings of The World
	Symposium on Fishing Vessel and
	Fishing Gear Designs; St.John's
	Newfoundland, Canada: $430-439$

Coull, R.A. 1987 Scottish Seine Net Selection. Data Collected May - July 1986 Scott. Fish. Working Paper, NC. $5 / 1987$, 43 p .

Craig, R.E. and
R.Priestly

1963 Under Sea Photography in Marine Rescarch. Marine Research 1, 24p

Crewe, P.R.
Some of the General Engineering Principles of Trawl Gear Design. Modern Fishing Gear of the World Publ. by Fishinf News(Books)Ltd. Surrey, London, England:165-181

Dale, P. and
S.Moller

The Development of a Midwater Trawl.
Modorn Fishing Gear of the World Publ. by Fishing Nows (Books)Ltd. Surray, London, England:482-439

Davis, F.M.	1958	An Account of Fishing Gears of England and Wales. Fish. Invest. Ser. II. 21(8) 126p
De Boer, P.A.	1959	Trawl Gear Measurements Obtained by Underwater Instruments. Modern Fishing Gear of the World Publ. by Fishing News(Bcoks)Ltd. Surrey, London, England:225-233
Denisov, L.I.	1959	Protective Gear for Trawls. Rybnoe Rhoziaistivo, $35(11): 46-47$
Deshpande, S.D.	1960	On the Comparative Efficiency of Hand Operated and winch Operated Trawls. Indian J. Fish.,7(2):458-470
Deshpande, S.D. and T.M.Sivam	1962	On the Effect of Tickler Chain on the Catch of a 10 ft . Beam Trawl Net. Fish. Technol.,2(1):82-85
Deshpande, S.D. and N.A.George	1965	On the Effect of Tickler Chain on the Catches landed by a $55 f t$ Trawl Net Fish. Technol., 2(1):82-36

Dickson, W.	1959	The Use of Model Nets as a Method for Developing Trawl Gear Modern Fishing Gear of the World Publ. by Fishing News(Bocks)Ltd. Surrey, London, England:165-174
Dickson, W.	1960	The Problem of Headline Height. World Fishing, 9(9):38-48
Dickson, W.	1965	The wing Trawl on Larger Ships. Scottish Fisheries Bulletin $23: 6-10$
Dickson, W.	1979	Trawl Drag Area and Netting Geometry. ICES Council Meeting ICES-CM-1979/E:26,11\%
Efanov, S.F., I.G.Istomin and A. A. Dolmatov	1987	Influence of the Form of Fish Body and Mesh on Selective Properties of Trawls. ICES Council Meeting ICES-CM-1987/B:13;38p
Eltink, A	1983	Mesh Selection Experiments for Mackerel and Horse Mackerel. ICES Council testing ICES-CM-1993/B:15 (Rbstract oniy)

Endal, Anders	1988	Energy Fishing - Challenge and Opportunities. Proc. World Symposium on Fishing Vessel and Fishing Gear Design, St.John's, Newfoundland Canada: 74-79
F.A.O.	1974	Fishing Manuals - Otter Board Design and Performancs. Publ. by FAO of UN; 79p
Firth, F.E.	1950	Nylon Gillnetting Proves Successful. Atlantic Fisherman, 31(10):16-20
Fraser, P.R.	1965	Two and Four Seam Tranls Commercial Fishing. $4(7): 9-14$
Fridman, A.L.	1969	Theory and Design of Commercial Fishing Gear. Translation - IPST, Jerusalem, Israel, 489p.
Fridman, A.L.	1986	```Calculations for Fishing Gear Designs. FAO Fishing Manual Publ.by Fishing Naws (Bocks) Ltd Surrey, England:241p.```

Fridman, A.L.and A.V.Dvernik	1973	Development of a Method for the Calculation of the Resistance of a Trawl Net. Fischeri Forschung, 11(2):7-13
Fuss, C.J. (Jr)	1953a	```Gulf of Mexico Shrimp Trawls - Part I. Fishing Gazette 80(3):12,13 & 52```
Fuss, C.J. (Jr)	1963b	```Gulf of Mexico Shrimp Trawls - Part II. Fishing Gazette 80(4):38-39```
Garner, J.	1955	Deep Sea Trawling. The Gourock Ropework Co., Ltd., Port Glasgow, Scotland, 89p
Garner, J.	1957a	The Granton Trawl - Part I. World Fishing, 6(4):45-48
Garner, J.	1957b	The Granton Trawl - Part II The Codends. World Fishing, $6(5):$ E2-54

Garner, J. 2957 C	The Granton Trawl - Part III
	The Rope Working Gear.
	World Eishing $6(6): 46-49$

Garner, J.
1957d The Granton Trawl - Part IV Rope Working Gear for Codends. World Fishing 6(7):32-35

Garner, J.
1957e The Granton Trawi - Part V More as Rope Working Gear. World Fishing 5(8):42-44

Garner, J.
1957f The Granton Trawl - Part VI The Wire Working Gear. World Fishing 6(9):55-57

Garner, J.
1957 g The Wire Working Gear of the Granton Trawl.
World Fishing 6(10):87-90

Garner, J.
1951 Deep Sea Trawling and Wing
Trawling.
The Gourock Rope Work Co. Ltd., Port Glasgow,
Scotland

Garner, J.	1962	How to Make and Set Nets. Publ. by Fishing News (Books)Ltd. Surrey, Londo, England, 95p
Garner, J.	1967	Modern Deep Sea Trawling Gear. Publ. by Fishing News (Books) Lta. Surrey, London, England, 79p
Glanville, A.	1961a	The Design and operation of the Wing Trawl - Part I. World Fishing, 10(9):23-25
Glanville, A.	1961b	The Design and Operation of the Wing Trawl - Part II. World Fishing, $10(10): 80-82$
Grouselle,	1959	Considerations on a New Type of Midwater Trawl. Modern Fishing Gear of the Worl Publ.by Fishing News (Books)Ltd. Surrey, London, England: 361-362
Gulland	1955	Estimation of Growth and Mortality in Commercial Fish Populations. Min.Ag.Fish.Fish.Invest.Ser. II,XVII(S)

Hamuro, C. and K.Ishii	1964	Some Japanese Instruments for Measuring Fishing Gear Performance. Modern Fishing Gear of the World Publ. by Fishing News (Books) Ltd. Surrey, London, England:513-518
Harden-Jones, F.R.	1967	Observations of the Behaviour of Fish made with Bifccal Sector Scanner. FAO Fisheries Reports $62(30): 567-570$
Hearn, David	1988	Summary of Square Mesh Trials off Newfoundland : Square Mesh Workshop : November 1988 World Symposium on Fishing Vessel and Fishing Gear Design St. John's Newfoundland, Canada pp.99-110
Hemmings, C.C.	1957	Observations on the Behaviour of Fish During Capture by the Danish Seine Net ICES Council Meeting ICES-CM:1964 Document No. 134, 6p.
Hemmings, C.C.	1973	Direct Observation of the Behaviour of a Eish in Relation to Fishing Gear. Helgclander wissenchaftliche Untersuchungen $24: 348-360$
Hemmings, C.C.	1974	The Feasibility of Studying Demersal Seine Net Efficiency using an Acoustic Sector Scanner DAFS Marine Laboratory, Internal Report IR 74-4, 7p

Hodson, A.	1942	```Introduction to Trawling. Publ. by A. Hodson 80, Soring Bank, Grimsby, England:192p```
Hclden, M.J.(ed.)	1971	Report of the ICES/ICNAF Working Group on Selectivity Analysis. Coop. Res. Rep. ICES, Ser. A, no. 25, 44p.
Honda, K.	1979	Investigations on Model Tests on Shrimp Trawl Net. Bull.Jap.Soc.Sci.Fish./NISSUISHI $45(2): 153-155$
Howard, F.G., Baily, J. and Shanks, A.M.	1983	```Investigations into Codend Mesh Selectivity of Shrimp Trawls. ICES Council Meeting 1983 ICES-CM-1983/K:35 (Abstract only)```
Isaksen, B. and J.W. Valdemarsen	1986	Selectivity Experiments with Square Mesh Codends in Bottom Trawls. ICES Council Meeting ICEC-CM-1986/B:28, Sess.V:23p
Jacobson, T.	1985	Solectivity Experiments with Danish seine on Cod and Haddock in Northern Norway in 1963. ICES Council Meeting ICES-CM-1985/B:25 (Abstract only)

Clark, R.John	1963	Size Selection of Fish by Otter Trawls : Results of Recent Experiments in the North-West Atlantic. ICNAF Spec. Publ., No. 5. pp.24-96.
Jones, R.	1963	Some Theoretical Observations on the Escape of Haddock from a Codend. ICNAF SpEC.Publ. no.5, vol.2, pp.116-127.
Jonsson J.	1950	```Selection Factors for Icelandic Cod and Haddoch. ICES Council Meeting 1950 ICES-CM:1960 Comp.Fish.Cttee., Dcc.134 (Abstract only)```
```Joseph T. DeAlteris and Daniel M. Reifstek```	1988	Selecticvity of Codends on Scup, Stenotomus chrysops and the Survivability of Codend Escapees - a Preliminary Report.   Square Mesh Workshop :   November 1988; World Symposium on Fishing Vessel and Fishing Gear Design, Canada:38-53
Kartha, R.N.   C.Hridayanathan and   P.J.Cicily	1974	Comparative Efficiency of Trawls made of cotton, Polyethylene and Combination of Both the Materials.   Fish. Technol.,11(1):43-49.
Kartha, K.N.   T.P.Gecrge and   K.A.Sadanandan	1985	Development of a Split Eelly Travl.   Proc.of the Symposium on Harvest and post Harvest Technology of Fish.   Publ.by Society of Fishery Technolosists(India):251-253.


Kartha, K.N. and K.A.Sadanandan	1973	On the Design, Operation and Efficiency of a 11m Dual purpose Trawl for Small Mechanised Eoats Fish.Tcchncl.,10(1):79-84
Kawakami, T.	1955	Mechanical Characters of the Drag Net.   Memoirs.Coll.Agri.   Kyoti Univ.(72):5-15
Kawakami, T.	1959	Development of Mechanical   Studies of Fishing Gear.   Modern Fishing Gear of the World   Publ. by Fishing News (Books)itd.   Surrey, London, England:175-184
Klust, $G$.	1973	```Netting Materials for Fishing Gear. Fishing Nevs (Books) Ltd., Surrey, England```
Kondratev, V.P.	1965	On the Length of Trawl Sweep Lines.   Rybnoe Rhozyaistiovo   41(3):44-47
Korotkow, V.K.	1969	Behaviour of Fish in Trawl Net. Rybnoe Rhozyaistiovo $45(7): 55-57$


Rorotkow, V.R. and   W.N.Martyschewski	1977	Results Obtained by use of the Underwater Device "atlant" for the Study of how Fish Behave how how Trawl Net Operate.   Fischerei-Forschung   Schriftenreihe, $15(1): 39-43$
Kowalski, T. and J. Gianotti	19743	Calculation of Fishing Net Drag University of Rhode Island. Marine Technical Report $(15): 1-26$
Kowalski, T. and J. Gianotti	1974 b	Calculation of Fishing Net Drag. University of Rhode Island Marine Technical Report   (15):1-44
Rcyama, $T$.	1952a	Hydraulic Resistance of Trawl Nets Estimated by Approximate Equations.   Bull. Tokai.Reg.Fish.Res.Lab.   37(2):75-81.
Royama, T.	1952 b	Relationship between the Engine Power of a Trawler and the Size of the Otter Board.   Bull. Tokai.Reg.Fish.Res.Lab. $37(33): 29-32$
Royama, T.	1967	Resistance of Trawl Net Bull.Tokai.Reg.Fish.Res.Lab. 42(2):74-80.



Kullenberg, B. 1951 On the Shape and Length of Cable During Deep Sea Trawling. Report of the Swedish Deep Sea Expedition - 2.
Zoology (2):31-45

Runjipalu, K.K., A.C. Kuttappan and P.G.Mathai

1979a A New Large Mesh Trawl for Demersal Fishing.
Fish Technol.,16(1):19-27

Runjipalu, R.K., A.C.Kuttapan and P.G.Mathai

1979b Development of Trawls for Medium Sized Trawlers for Veraval, North West Coast of India. Fish.Technol.,16(2):55-64

Kunjipalu, R.K., M.R.Bcopendranath, K.Gopalakrishnan and
A.C. Ruttappan
1984 A New High Opening Trawl for Veraval Waters.
Fish.Technol., 21(2):86-90

Kuriyan, G.K.	1965	Trends in the Development of Prawn Tranling Techniques in India - A Review.   Fish. Technol., 2(1):54-68


Kwidzinski, Zygmunt	1989	Developments in Pelagic Trawl Construction Aimed at Fisheries Energy Optimisation Proc. of the IFEO Working Group August, 1989, Canada; Paper 2.1;5p.


Livingstone, R. V	1959	Television Observations of the Behaviour of Marine Fish in a Trawl Net.   Bull.Ecol.Soc.,   40(3):86-87


Mac Lennon, D.N.	1979	Performance Test on Large Eour
and	Panel Trawls and Polyvalent	
R.D.Galbraith		Doors.
		Marine Lab., Aberdeen,
	Working Paper No. $79 / 6,63 p$	

Mac Lennon, D.N. $1981 \quad$|  | The Drag of Four Panel Demersal |
| :--- | :--- |
|  | Trawls. |
|  | Fisheries Research, $1(1):$ |

Main, J. and G.I.Sangster

1978a The Value of Direct Observation Techniques by Divers in Fishing Gear Research. Scott.Fish.Res. Rep.No.12:15p

Main, J. and
1978b A New Method for Observing
Fishing Gear Using a Towed Wet Submersible.
Progress in Underwater Science Report of Underwater Association (WS), (3):259-269

Main, J. and G.I.Sangster

Main, J. and G. I. Sangster

Main, J. and G.I.Sangster

Main, J. and
G.I.Sangster

Main, J. and
G.I.Sangster

1979 A Study of Bottom Trawling Gear on Both Sand and Hard Ground.
Scott. Fish. Res. Rep. No.14; 15p.

1981a A Study of Sand Clouds produced by Tranl Boards and their Possible Effects on Fish Capture.
Scott. Fish. Res. Rep. No. 20; 20p

1982b A Study of the Fish Capture Process in a Bottom Trawl by Direct Observation from a Towed Underwater Vehicle. Scott. Fish. Res. Rep. No:23; 24p.

1983a TVY II - A Towed Wet Submersible for use in Fishing Gear Research Scott.Fish.res.Rep.No.29; 19p

1983b, Fish Reaction to Trand Gear - A Study Comparing Light and Heavy Ground Gear.
Scott. Fish. Res. Rep.
No. 27; 22p

1984 Observations on the Reaction of Fish to Fishing Gear Using a Towed Wet Submersible and Underwater Television. Progress in Underwater Science Report of the Underwater Ascociation
(HS) 9:99-114

Main, J. and
G.I.Sangster

Margetts, A.R.

Margetts, A.R. 1963b The Fishing Trawls and Seines-2.

Marlen, B.-van	1988	A Decade of Research and Development of Trawls in the Netherlands.   Proc. of the World Symposium on Fishing Vessel and Fishing Gear Design, St. John's, Newfoundland Canada, November 1988;pp 141-153

Mathai, T.J.,
M.Syed Abbas and
H. Krishna Iyex

Mhalathkar, H.N. and	1971	Belly Depth Studies for Shrimp Tranls.
G.Jagdeesan		Eish.Tesnnol., ${ }^{\text {a (2) }}$ :167-170

Mhalathkar, H.N. and
G.Jagdeesan

1963a The Fishing Trawls and Seines-1. World Fishing 12(12):63-68 World Fishing 13(1):48-49

1984 Towards Optimisation of Bridle
Lengths in Bottom Trawls.
Fish Technol., 21(2):106-108
Nephrops (I) During Trawling. Scott. Fish. Res. Rep. No. 34 :23p

Eish.Technol., s(2):167-170

Mhalathkar, H.N. and $1966 \quad$Belly Depth Studies for Shrimp   H. Rrishna Iyer	Trawls.     IPFC Occassional Paper $67.6 p$.


Mhalathkar,H.N.	1970	Belly Depth Studies for Shrimp
and		Trawls I.
G.Jagdeesan		Fish.Technol.,7(2):177-179

Mhalathkar,H.N., 1985 A Demersal Trawling Gear for T.J.Mathai, T.P.George and M.Syed Abbas Inshore Waters Along the West Coast.
Fish.Technol., 22(2):99-101

Miyamoto, H.	1957	Theory of Fishing Gear and Methods.   Publ. by Kanehara Printing Co.   Ltd., Tokio, Japan.
Miyamoto, H.	1959	On the Relation Between Trawling Gear and Towing Power.   Modern Fishing Gear of the World Publ.by Fishing News (Eocks) Ltd., Surrey, London, England:248-250
Miyazaki, T.	1962	Coastal Sea Fishery.   Publ.by Roscisha Koscikaku Co. Tokyo.


Miyazaki, T.	1964	Small and Medium Trawl in Coastal Waters. A Revien of their Characterestics and Gear Construction in Japan. Proc. Indo-Pac.Fish.Coun., 11(2):172-183

Mohr, H.
1960 On the Behaviour of Fish in Relation to Fishing Gear. Protokoll zur Fischereitechnik Hamburg 6:296-326

Mohr, H.
1967. Detection of Fish and Observation of Fish Behaviour by Echo Analysis and Passive Listening. FAO Fisheries Reports 62(2):101-113

Mukundan, M. $1989 \quad$Studies on the Design,      Construction and Operation of      Bottom Trawls in the Shallow	
	Waters of Cochin.
	Doctoral Thesis submitted to the
	Cochin University of Science and
	Technclogy, Cochin-682 016;189p

Mukundan, M.,
1967 On the Relative Efficiency of Different shaped Otter Boards. Fish. Technol.,4(2):53-61
A.V.V.Sathyanarayana and
H.Nrishna Iyer

Nair, R.S.,
C.P.Varghese,
S.Gopalan Nayar,
M.Syed Abbas and G.R.Kuriyan

Nair, R.S.,<br>C.P.Verghese and G.K.Kuriyan

1971 Studies on the Length of Overhang of Trawls. Fish Technol., 8(1):19-32

1973 Development of Tranling in India Fish. Techncl., 10(2):97-99

1966
On the Operation of Small Shrimp Trawls in Shallow Waters. Scope Ratio and Size Depth Relation. Fish.Technol., 3(1):59-71

## Narayanappa, G.

On the Optimum Length of single Sweep Wire for Otter Trawl.
Proc.Indo-Pacific Fish.Coun., 13(3):437-443

Nichclls, J.
1964
Trawl Gear Instrumentation and Full Scale Testing.
Modern Fishing Gear of the World Publ. by Fishing News(Books) Ltd. Surrey, London, England:497-512

Nomura, M., R. Mori, 1977	Factors of Tranl Net
Y. Tawara, Y. Osawa,	
Y. Shimada and	Heistruction Relating to the
K.Senga	

Okonski, S.
1967 Echo Souniing Observations of Fish Behhaviour in the Proximity of Trawls.
Fic Fisheries Reports 62(2):377-388

Okonski,s. and
1959 S.Sadowski

Pajct, G.
J. Crockett,
S.Pandurangam and
P.V.Ramamurthy

The Headisine, the Footrope and their InEzuence on the Vertical Opening of the Mouth of the Trawl.
Modern Fishing Gear of the World Publ.by Eishing News (Books)Ltd., Surrey, London, England:196-199

Pajot, G.
J. Crockett,
S.Pandurangam and P.V.Ramamurthy

Improved Deck Machinery and Layout for Small Coastal Tranlers.
FAC/SIDAisORP. Development of Small Scaie Fisheries. BORP/WP/21:1-21

Pajot,G. and

Panicker, P.A. and $1965 \quad$ On the Selective Action of the
T.M.Sivam Fish Technol.2(1):220-248

Parrish, B.B. $1963 \quad$Some Remarks on Selection               Irocess in Fishing Operations.	

Parrish, B.B. 1964 Further Observations by Frogmen C.C.Hemmings, C.J.Chapman, J.Main and J.N.Lythgoe on the Reaction of Fish to the Seine Net.
ICES-CM/1964; Document No.134,5p

Parrish, B.B.	1967	Underdater Photography on Fish
J,H.S.Blaxter,		Behaviour in Response to Trawls.
J.A.Pope and	FAO Fisheries Reports.	
R.H.Osborne	$62(3): 873-884$	

Pereyara, W.T. 1963 Scope Ratio, Depth Relationship for Wing Trawl, Shrimp Trawl and Otter Tranl.
Comm.Fish.Rev., 25(7):7-10

Phillips, J.
1959 The Mouth of the Trand
Modern Fishing Gear of the World Publ.by Fishing Nems (Rooks)Ltd., Surrey, London, England:200-203

Pillai, N.S.,	1978	Evolution of Suitable Trawl Nets
V.Vijayan,		for Madium Sized Trawlers :
C.Hridayanathan and		1. Comparative Efficiency
S.Manchardoss		Between 32 m Bulged Belly, Long Belly, Long Wing and Four Panel Trawl.   Fish. Technol., 15(1)71-75
Pillai,N.S.	1979	Evolution of a Suitable Net for
N.A.George and		Medium Sized Vessel - 2.
K. Kesavan Nair.		Introduction of Large Meshed High Opening Fish Trawl.   Fish.Techncl.16(2):55-70
Raja, Anthony B.T.	1987	High Opening Bottom Trawling in Tamilnadu, Gujarath and Orissa: A Summary of Effort and Impact. FAO/SIDA/BOBP/REP/37:1-24
Reid, J.	1977	A Net Drag Formula For Pelagic Trawls.   Scott. Fish. Res. Rep., No.7,12p
Ellis, Robert W.	1963	Experiments to Investigate the Escape of Fish Through the Meshes of Different Darts Trawl. ICNAF Spec. Publ., Nc.5. pp. 97-101.
Sand, R.F.	1957	Application of Underwater Television to Fishing Gear Research.   Transactions of the American Fisheries Society $59: 158-150$


Sangster, G.I. and Hemmings, C.C.	$1971$	A Report on the Gear and Fish Behaviour Experiments Carried cut on the Seine Netter   'Boy Andrew'.   11-27 August, 1970   Marine Laboratory, Aberdeen,   Internal Report, 71-21, 29p
Sathyanarayana A.V.V   G.Narayanappa and   G.D.Chandrapal	1978	Further Investigations on the Relative Efficiency of Different Shaped Otter Boards.   Fish. Technol.,15(1):13-19

Sathyanarayana, A.V.V 1963 Studies on the Otter Boards and
M. Mukundan

Angle of Attachment of Bridles. Indian J.Fish., 10(2):11-14

Sathyanarayana,A.V.V 1965	A Simple Mechanical Instrument   for Measuring Towing Tension of
	Trawl Warps.
Res. \& Ind. 10 (8):229-230	

Sathyanarayana,A.V.V 1965
nad
R.S.Nair

A Simple Mechanical Instrument for Measuring Towing Tension of Trawl Warps.
Rescarch and Industry, 10(8):229-230

Sathyanarayana, A.V.V	1972	A Review of Experimental
and		Trawling from Small and Modium
G. Naraüanappa		Sized Mechanised Vessels off
		Kakkinada.
		Fish. Technol., ${ }^{\text {(2) }}$ (139-145


Sathyanarayana, A.V.V $1976 \quad$ Studies on Long Wing Tranis for	
G.Narayanappa	Shrimps off Kakinada (AD)Coast I
and	Fish. Technol., l3( ):


Sathyanarayana, A.V.V 1978	Further Investigations on the
G.Narayanappa and	
Relative Efficiency of Different	
G.D.Chandrapal	Shaped Otter Boards.
	Fish.Technol. $15(1): 13-19$


Scharfe, J. $1959 \quad$The Use of Echo sounding as a      means of Observing the	
	Performance of Towing Gear.
	Modern Fishing Gear of the World
	Publ.by Fishing News (Books) Lta.,
	Surrey, London, England:241-244

Scharfe, J. 1963
Genaue anzeige der Fangmenge beim Tramlen durch Netzsondenlup Allegemeine Fischoirtschafts Zeitung 16(29/29):34-38 (Abstract)

Schroeder, Don
and
George Roddan

1989
Design and Testing of Beavertail Net Guards on West Coast Drum Seiners.
Proc. of the IPEO Vorking Group Meeting, hugust, 1989, Canada; Paper 3.1:23p.

Scofficld, W.L. 1948 Trawling Gear in California. Fish. Bull.(72):60p

Sivadas, T.		Instrument for the Measurement of Fore and Aft Tilt of Otter Boards.   Fish. Technol.,1(1):27-30
Sivades, T.R.	1969	An Instrument for Measuring the Angle of Attack of Otter Boards in Fishing Boats   Res. \& Ind.,14(1):30-31
Sivadas, T.R.	1970	Underwater Warp Tension Meter. Fish. Techncl.,6(1):48-51
Sivadas, T.R.	1978	Portable Electronic Warp Load Moter.   Fish. Technol.,15(1):69-70

Sivan, T.M.,
S.D.Deshpande and
S.V.S.Rama Rao

Sreekrishna, Y.

Stengel, H . and A.Fischer

1970 Some Observations on the Performance of 10.5 m Mid-water Trawl Operated off Veraval. Fish.Technol.,7(2):207-210

1970 Comparative Fishing Experiments with Two Trawl Designs Used in Inshore Waters off Kakinada, Andhra Pradesh.
Fish. Technol.,7(11):43-47

1968 Results from Studies of Rnotted Net Panels made from Twisted Nylon Twines.
Fischerei-Forschung, 6(3):45-50 1968 Wiss.Schriftenreihe Translated by E.Parsons, March 1980

Takayama, S. and 1959	Increasing the Opening Height
T. Koyama	of a Trawl Net by means of a
	Rite.
	Modern Fishing Gear of the World
	Publ. by Fishing News (Books)Ltd.
	Surrey, London, England:185-195

Treschev, A.
1963 and Drift Nets. ICNAF Special Publication Nc.5, 1963, pp 218-221

```
Selectivity of Trawl Codends in
Fishing for Herring in the
Baltic Sca.
ICES Council Mecting
ICES-CM-1975/B:8.
(risstract only)
```

Varghese, c.P.,
V.Vijayan and G.R.Ruriyan

Vijayan, V and S.V.S.Rao

Voinikanis-Mirskii

Wardle, C.S.	1984	An Outline of Those Points of Fish Behavicur Needed to Interpret, the Effect of Energy Saving strategies on the Reaction of Fish to Towed Gears. FIIT Working Paper on Fish Behariour, Trawl Efficiency 43 p.
Widrig, T.M.	1954	Methods oE Estimating Fish   Populaticns, with Application to Pacific sardine.   U.S. Dept. Int. Fish. Bull., 56,94p.
Wilfred, Templeman	1963	Otter Träl Covered Codend and Alternate Haul Mesh-Selection Exporimer:s on Redfish, Haddock, Cod,Ameriann Plaice and Witch Flounder : Girth Measurements of Haddock C=d and Redfish in the Newfoundland Area.   ICNAF SEcニ. Publ;5:201-217

```
Wray, T.
 1979a, Daesat the Test Tank.
 Fish. News Int.
 18(5):63-55
Wray, T.
1979b Gallop Wing Trawl on Test.
 Fish. News Int.,
 18(6):84-87
Wray, T.
 1980a Stuart Bobbin Trawls.
 Fish. News Int.,
 19(9):74-75
Wray, T.
 1980b Greenland Fishermen Test out
 their Prawn Trawl.
 Fish. News Int.
 19(12):54-55
Wray, T.
1980c On Test - The Eoris Marantha
 Trawl.
 Fish. News Int.
 19(11):46-49
```


[^0]:    (M.SHAHUL HAMEED)

    Supervising Teacher

[^1]:    3.3.3.9 Codend drag

    In the calculation of the cone drag, 25\% of the codend was considered to form a part of the cone. The remaining part of the is considered to form a tube,

