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CHAPTER 1

Introduction

“You know, it would be sufficient to really un-

derstand the electron.”

Albert Einstein [2]

“If I can’t picture it, I can’t understand it.”

Albert Einstein [41]

“I think it is quite likely, or at any rate quite

possible, that in the long run Einstein will turn

out to be correct.”

P. A. M. Dirac [7], [38]



1.1. General Introduction

In this thesis I discuss the work of two physicists, Toyoki

Koga (1912-2010) and Mendel Sachs (1927-2012), on the foun-

dations of Quantum Mechanics.

Both of them offer alternatives to the conventional Copen-

hagen interpretation and each explains, in his opinion, what the

Copenhagen interpretation is all about in terms of his theory.

I do not take up these matters here but concentrate on the

parts of their work related to the Geometric Algebra of W. K.

Clifford and David Hestenes (in the case of Sachs it turned out

that the relationship was somewhat weak,).

The title of this thesis refers to Albert Einstein’s longstand-

ing interest in the structure of the electron. Einstein is gener-

ally considered to be one of the foremost physicists of recent

times and one of history’s greatest scientists. He was a major

early contributor to quantum theory through his work on the

photoelectric effect published in 1905. Later, in the 1920’s,

an axiomatic theory of quantum mechanics came into being,

founded on uncertainty and indeterminism. It was accepted by

most physicists but Einstein was one of the dissenters.

It is well known that Einstein did not have a clear idea of the

structure of the electron. But he had some views on the subject.
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The title is only meant to indicate that it studies theories which

he might have found acceptable.

Some other founders of quantum theory were also unhappy

with quantum mechanics: Planck, Schrödinger and de Broglie.

Each had his own point of view but all of them rejected con-

cepts like wave-particle duality, the uncertainty principle and

quantum jumps. Einstein believed that there was an underlying

deterministic theory waiting to be found.

Most of the dissenters eventually lapsed into silence but

Einstein continued searching for a unified field theory for sev-

eral decades until his death in 1955. Such a theory was to in-

clude general relativity and quantum mechanics as special or

limiting cases.

Meanwhile, quantum mechanics developed into quantum

field theory, a theory which very successfully explains all known

physical interactions except gravity.

Attempts to create unified field theories continue. These can

be classified into two groups: those that are founded on quan-

tum mechanics (and/or quantum field theory) and attempt to

“quantise” general relativity, and other theories that are founded

on general relativity and try to make quantum theory consistent
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with general relativity. The former include string theory, vari-

ous versions of quantum gravity and noncommutative geome-

try. Some of the world’s best known physicists and mathemati-

cians are interested in these subjects and related areas.

It is noteworthy that P.A.M. Dirac, one of the key figures in

the founding of quantum mechanics and quantum field theory,

was, by 1970, a dissenter. After that he was not taken seriously

by mainstream physicists.

This thesis is concerned with the second group of theories

mentioned above. The most famous worker in this area was, of

course, Einstein but there have been many others.

Even before Einstein developed the theory of relativity, there

were attempts by Lorentz, Poincare, Abraham, Mie and others

to describe the electron as an electromagnetic field. These can

be considered precursors of deterministic field theories based

on general relativity. Still earlier, it had occurred to Faraday

that electromagnetism and gravitation may be different aspects

of the same phenomenon.

After general relativity was formulated by Einstein and

Hilbert, several attempts were made to create unified field the-

ories. Some of the early contributors include Kaluza, Klein,

Schrodinger and the great mathematician Hermann Weyl. One

worker was H. T. Flint (now virtually unknown) who published
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in well known journals from the 1920s to the 1960s. R. Pen-

rose advocated a unified field theory based on general relativity

recently but was criticised by the “mainstream”.

There has been some more work on deterministic theories

of matter: the de Broglie-Bohm theory has gained some ac-

ceptance. The paper of U. Enz [13] studied a non-relativistic

deterministic field model of the electron.

In this thesis we introduce the work of two physicists: Toyoki

Koga and Mendel Sachs. Both of them have given determin-

istic field theories of the electron and other “particles”, along

lines that might have been pursued by Einstein.

Our coverage is far from exhaustive, with emphasis on top-

ics related to Geometric Algebra. We discuss only a few basic

aspects of their theories.

The original plan suggested by my guide was to study the

solutions to Sachs’s equations (which generalise the Dirac equa-

tion using Sachs’s ideas about General Relativity) and compare

them with Koga’s results. With hindsight, this was quite unre-

alistic.

In retrospect, the decision to study Sachs was unfortunate

(as will eventually become clear to the reader) but we realised

it too late.
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Koga considers the Schrödinger equation for a single elec-

tron and shows that it has a solution which represents a lo-

calised field which he calls an elementary field (in his earlier

papers, he used the term wavelet for elementary field). A con-

ventional de Broglie wave is, for him, a fictitious representation

of an ensemble of elementary fields.

He infers that the usual solutions of the Schrödinger equa-

tion refer to ensembles, as do the Uncertainty Principle, Wave-

Particle Duality and so on. As mentioned earlier, the latter top-

ics are not the subject of this thesis.

Similarly, Koga obtains a solution of the Dirac equation

which describes a localised field. He considers a free electron

with positive energy, which is assumed to be a constant of na-

ture. The purpose is not to compete with or replace the work

of Dirac and others but rather to lead to a field theory of the

electron including gravitation as an essential component, not

an add-on.

Along the way, Koga tries, using his solution, to give a geo-

metrical picture of the electron including spin. In this I believe

his work was incomplete, as I explain in Section 2.3. I have ap-

plied Geometric Algebra to Koga’s solution and obtained sur-

prising results.
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The term Geometric Algebra refers to the geometrical study

of Clifford algebras which was started in the 1960s by David

Hestenes. In the 1860s, W. K. Clifford studied a class of asso-

ciative algebras which unified the earlier work of W. R. Hamil-

ton on quaternions and H. Grassmann on exterior algebras.

The subject of applied Clifford algebras, or geometric algebra,

which was pioneered by Hestenes (with a view that even if it

does not describe new physics, it should give a new insight into

the underlying physics and improve our understanding) has ex-

ploded in recent years. We translate Toyoki Koga’s treatment

of the Dirac equation into the language of geometric algebra.

This gives a new insight.

In the past, starting with David Hestenes [15], Doran and

Lasenby [8, 9, 10] and many others have studied the conven-

tional theory of the electron using geometric algebra. This

work is possibly the first one in which geometric algebra is

used to study a deterministic theory of the electron.

When I wrote this thesis I was not aware of the very recent

work of Hiley on the application of Geometric Algebra to the

de Broglie-Bohm theory of the electron. It seems that Hiley

does not consider any specific solution of the Dirac equation.
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This thesis can be considered a contribution to Mathemati-

cal Physics (chapter 3) and to the History and (possibly) Phi-

losophy of Science (chapters 2, 4, and 5 and part of chapter

3).

The Copenhagen interpretation of Quantum Mechanics is

generally held to be an established fact. Koga has contributed

to the Philosophy of Science by studying an alternative ap-

proach. The work in this thesis clarifies an important part of

Koga’s theory.

It may be asked why this work has been undertaken by

someone who is not trained in these areas. One answer is that

so far the Physics community has completely ignored the sub-

jects I have dealt with. Koga is practically unknown, although

one of his papers has been plagiarised in a journal from South

America. Sachs is relatively well known but nobody seems to

have made a serious study of his work. The study by Cyganski

and Page [6] was apparently discontinued (I suggest a possible

reason in Section 4.3). I hope I have contributed to a change in

this state of affairs.

Both my supervisor and I had not done any work in Physics

earlier. We were also not aware of any work similar to this

thesis done by others. I am possibly the first in India to take up

such topics.
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Coming from Mathematics, we were also unaware that pub-

lished work in Physics can contain serious errors. It took us

years to realise this.

Thus, I made rather slow progress initially. This seems to

be a consequence of attempting something totally new.

1.2. Summary of the Thesis

For further information, see the Table of Contents.

Chapter 2 is an introduction to Toyoki Koga’s work pub-

lished in the papers [24, 25, 23, 26, 21, 22] and the books [27,

28]. Following a path initiated but abandoned by de Broglie

in the 1920s, Koga found that the Schrodinger equation for

the electron has a solution that represents a localised field (in

Galilean, i.e., classical spacetime). He gave a similar solution

to the Klein-Gordon equation (in Minkowski space).

Using the latter he obtained a solution to the Dirac equation.

Instead of the conventional spinor interpretation of the solution

he asserts that the solution consists of four complex scalar func-

tions. The coefficients (Dirac matrices) are assumed to trans-

form as a 4-vector under coordinate (i.e., Lorentz) transforma-

tions.

A generalisation of this approach has been used by Fock and

others (around 1930) to construct a Dirac equation in curved
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space. Koga does not appear to have been aware of this old

research.

He concludes that the solution represents an anisotropic elec-

tron field localised in spacetime. But his arguments are mathe-

matically not complete or satisfactory. He conjectures that the

electron field has a form similar to that of a spinning top which

has its axis of rotation in a fixed direction. He does not give

clear details or mathematical justification for the spin. I take

up these issues in chapter 3 and provide the required math-

ematical argument. I also obtain some significant additional

information.

It was my intention to study geometric aspects of the theo-

ries of Koga and Sachs. Other topics are not covered in detail;

in the very brief accounts given here, it is not possible to be

self-contained.

Koga also developed a theory of the electron incorporating

its gravitational field, using his substitutes for Einstein’s equa-

tion. We do not go into this in detail although it was his main

goal.

The third chapter deals with the application of geometric

algebra to Koga’s approach of the Dirac equation. We give a

brief history of the concept of spin. Following Koga (but using

geometric algebra) we solve the Dirac-Hestenes equation. Our
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solution suggests that the electron is a localised field which

spins and shudders. Most of this material appears in [33]. The

treatment here is corrected and slightly revised.

Keeping in mind Koga’s experience that standard journals

prefer standard viewpoints, the paper [33] was submitted to a

so-called nonstandard journal established by Louis de Broglie

and run (so far) by his students.

It is found that the electron field is anisotropic; it has an

axis of symmetry and the electron spins about this axis which

has a fixed direction for a free electron. The electron has a

constant angular velocity of the order of 1021 radians per sec-

ond. Using two possible Dirac-Hestenes equations obtained

from the Klein-Gordon equation, we show that for both posi-

tive and negative energy there are two possible orientations (up

and down).

In chapter 4 we study some aspects of the work of Mendel

Sachs [35, 36, 37]. Sachs’s stated aim is to show how quantum

mechanics is a limiting case of a general relativistic unified

field theory. Using 2-spinors and quaternions, Sachs tries to

factorise the field equations of general relativity in a manner

similar to the process of obtaining the 2-spinor Dirac equations

from the Klein-Gordon equation. (Incidentally, we reveal an
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error in Sachs’s equations that may have been overlooked so

far, but is quite serious, even fatal).

An examiner has pointed out that Sachs (like lots of physi-

cists) has misunderstood Mach’s principle. I assumed that the

statement given by Sachs was exactly what came from Mach.

This makes most of my comments on this topic in the thesis

irrelevant. But the conclusion that Mach’s principle can very

well be ignored remains valid.

The error by Sachs mentioned above pertains to the limiting

values of the metric coefficients as curved space becomes flat.

I discuss this in detail in Chapter 4.

According to Koga, the free electron has a definite axis of

symmetry and spin. This differs from the conventional (Copen-

hagen) viewpoint.

Chapter 5 contains a critical study and comparison of the

work of Koga and Sachs. In particular, we conclude that the

incorporation of Mach’s principle is not necessary in Sachs’s

treatment of the Dirac equation.

Koga and Sachs use similar concepts of electronic mass.

In Koga’s fundamental equations, constants such as mass m,

charge e, and Planck’s constant h do not appear. Similarly

these constants do not occur in Sachs’s general relativistic Dirac

equation. Both the theories suggest that the laws of nature are
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governed by non-linear equations, though the observed phe-

nomena are described by linear equations like the Dirac and

Maxwell equations which are good approximations of the non-

linear equations in most situations.

Some open problems are also mentioned in this chapter.

According to several authors, writing from the 1920s to the

present time, electron spin has not been observed, although it

has been used to explain various phenomena and now has many

technological applications. Thus, a very important open ques-

tion is whether spin can actually be experimentally observed

and, if so, how.

The work in this thesis suggests that the electron does spin

about an axis as Koga states.

Another theme from the 1920s is that in the description of

electron spin obtained at that time, the concrete picture of rota-

tion was replaced by an abstract mathematical representation;

visualisation or visualisability was entirely lost. The work de-

scribed here takes a step towards restoring this.
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CHAPTER 2

Toyoki Koga’s “Foundations of Quantum Physics”

“If a spinning particle is not quite a point parti-

cle, nor a solid three dimensional top, what can

it be? What is the structure which can appear

under probing with electromagnetic fields as a

point charge, but as far as spin and wave prop-

erties are concerned exhibits a size of the order

of the Compton wave length?”

A. O. Barut [3]

“We have perhaps forgotten that there was a time

when we wanted to be told what an electron is.

The question was never answered. No familiar

conceptions can be woven round the electron, it

belongs to the waiting list.”

A. Eddington [11]
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2.1. Introduction

In this chapter we give a brief introduction to the work of

Toyoki Koga on the foundations of quantum physics. Koga has

as his aim the development of a field theory of the electron and

other particles that includes gravitation but in which the equa-

tions do not contain Planck’s constant and the mass and charge

of the electron. The “fundamental equations” are covariant in

a non-Minkowski sense and their solutions are expected not to

have singularities.

Koga accepts the Schrödinger equation for a single elec-

tron because of its many successful predictions. But he does

not accept the superposition principle. He obtains a new solu-

tion with a deterministic interpretation. He shows that a con-

ventional de Broglie wave represents an ensemble of free elec-

trons. Thus, a de Broglie wave does not describe an individual

electron but merely an “average” electron.

Koga starts with an analysis of the Schrödinger equation

which has a solution (he calls it an elementary field) represent-

ing a field that is stable and localised in space. A conventional

wave function can be obtained by averaging over an ensemble

of elementary fields.

Koga’s solution of the Schrödinger equation starts with a

modification of old work of de Broglie. It is a field with a
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singularity. He interprets it as meaning that the electron is a

localised field centred around a point. However, he believes

that the singularity should not really be there and that it can

be removed by considering a suitable nonlinear equation rather

than the linear Schrödinger equation.

Koga’s book [27] contains detailed arguments against the

Copenhagen interpretation of Quantum Mechanics and its ex-

planation in terms of his theory. I omit these completely as I

have not done any work on this aspect.

It seems to me that Koga’s work substantiates Einstein’s

view that the electron is a localised field and there is a deeper

underlying theory. This theory implies that the conventional

eigenvalue solutions of Schrödinger’s equation stand for en-

sembles of electrons in static states, rather than individual elec-

trons.

Einstein believed that Quantum Mechanics, namely the Schrödinger

equation, was a purely statistical theory which applied only to

ensembles. But Koga exhibits a solution (for a single electron)

which represents a localised field.

The Schrödinger equation does not describe the electron

completely. It is not consistent with Special Relativity. In

fact, what Schrödinger first obtained (and discarded) was the

Klein-Gordon equation (as it was later called). Later Dirac, by
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factoring the Klein-Gordon equation, obtained an equation that

described the electron relativistically and happened to require

electron spin.

Next, Koga makes a similar analysis of the Dirac equation.

Here the elementary field consists of four scalar complex val-

ued functions on spacetime. The Dirac matrices transform as a

4-vector. They reflect the anisotropy of the electron. (In chap-

ter 3 we use Geometric Algebra to study the elementary Dirac

field in detail.)

Koga uses the formula he obtained earlier (in connection

with the Schrödinger equation) to also solve the Klein-Gordon

equation which, as is well known, leads to a solution of the

Dirac equation. He then interprets it deterministically and re-

interprets electron spin as a real phenomenon in physical space

rather than just an abstract mathematical property.

The Dirac equation, like the Schrödinger equation, is linear

and does not completely reveal the electron structure (its ele-

mentary field solution has a singularity, just like the Schrödinger

field) Hence Koga develops a set of nonlinear equations includ-

ing gravitational effects, for a collection of functions that, un-

der certain assumptions of approximation, lead to the concepts

of mass and charge. These equations reduce to the Maxwell-

Lorentz equations and to the Dirac equation under different
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limiting assumptions. Hence he calls them the fundamental

equations. He uses the same equations, with modified bound-

ary conditions, to study the photon and neutron and the mecha-

nism of strong interaction. We describe in this chapter only the

Schrödinger and Dirac elementary fields. For completeness,

we give a brief account of the general relativistic theory.

An excerpt from the preface of [28] summarises Koga’s

goals and philosophy. These matters are not discussed in this

thesis. They are covered in Chapters VI-IX of [27] (Chapter

VI is based on the paper [26]) along with his ideas on the pho-

ton, quantum-electrodynamical phenomena and other elemen-

tary particles (which are all fields according to Koga).

“If the principle of general relativity is upheld as fundamen-

tal in physics, it appears, according to Einstein, that the unifica-

tion of theories of matter is to be made in a theory of fields. The

governing partial-differential equations are to be non-linear and

inhomogeneous, and to contain no symbols representing quan-

tum, mass and charge. These constants are to be interpreted

only as almost-invariant integrals of fields, and the concept of

action at a distance is an auxiliary device compensating their

deficiencies in representing the reality. Thus, the foundations

of physics may conceptually be purified and simplified. At the

same time, however, it is recognized that those fields cannot be
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defined in any directly operational sense, and their connections

to observed phenomena are to be made only after a process of

reorganizing the conceptual structure; that is to introduce again

those old and once abandoned concepts such as quantum, mass

and charge, on the understanding that the use of them is merely

tentative for ad hoc and pragmatic purposes.”

2.2. The Schrödinger equation

In 1926 Schrödinger gave the following equation for the

electron

i~
∂ψ

∂t
+

~
2

2m
∇2ψ − Uψ = 0

where U is the potential energy and m the mass of the electron

(assumed to be a particle for the time being). Substituting

ψ = a exp(iS/~)

where a and S are real functions of t and the position vector

r = (x, y, z), one gets, on taking real and imaginary parts,

∂S

∂t
+

(∇S)2
2m

+ U − ~
2∇2a

2ma
= 0

and
∂a2

∂t
+ div (

a2∇S
m

) = 0.

The fourth term of the real part above was called the quantum

potential by David Bohm. If it is absent, that equation becomes
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the Hamilton-Jacobi equation with trajectories given by

dr

dt
=

p

m
,
dp

dt
= −grad U,

where p, the momentum, is defined to be ∇S and the energy

of the electron is E = −∂S
∂t which yields

E =
p2

2m
+ U.

In the general case (~ 6= 0) we get

(

∂

∂t
+

p

m
· ∂
∂r

−
(

∇U − ~
2

2m
∇(

∇2a

a
) · ∂
∂p

))

a2 = 0

where the independent variables are r, p and t. Koga calls

this the Liouville equation of a quantum mechanical particle.

Trajectories are obtained by taking p = mdr/dt. The energy

is E = −∂S/∂t which yields

E =
p2

2m
+ U − ~

2∇2a

2ma
.

This is invariant on a trajectory.

Koga points out that there is some resemblance between the

present theory of the Schrödinger equation and the theory of de

Broglie and Bohm [19]. But in Koga’s theory, the de Broglie

wave, rather than being a real wave guiding the electron, is

a fictitious wave constructed by superposing an ensemble of

similar and independent elementary fields.
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I do not go into these aspects in the thesis.

Now consider a free electron: U = 0 up to a constant which

we ignore. By a suitable choice of inertial frame, we take p =

0, and assume ∂a2/∂t = 0. Then the Liouville equation gives

∇(∇2a/a) = 0 and so

∇2a

a
= K (constant)

which has a solution (assuming 0 < K = κ2, κ > 0)

a =
exp(−κr)

r

where r =
√

x2 + y2 + z2. In the 1920s, de Broglie worked

on these lines (but took K < 0).

Here S = −Et, E = −~
2κ2/2m. In general, if the electron

has velocity v, we have

E =
mv2

2
− ~

2κ2

2m
, S = −Et+mv · r.

It should be kept in mind that this solution to the Schrödinger

equation is not considered a quantum-mechanical state but is

supposed to give a pointwise description of the electron field.

There is no superposition principle.

On reading the argument above, it may appear that the en-

ergy of a free electon at rest, according to this theory, is neg-

ative. But Koga explains that the expression for energy here
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(in his theory of the Schrödinger equation) is obtained by ig-

noring the relativistic rest-mass energy in the Dirac equation.

In Koga’s interpretation, the free electron is a localised field

(which he calls an elementary field) rather than a point particle.

The function that represents it has a singularity. Presumably,

if in reality there is no singularity (the view of Einstein and

Koga) then the representation is an approximate one. The rea-

son given by Koga is that a linear equation like the Schrödinger

equation cannot perfectly describe reality.

Koga explains how an ensemble of free elementary fields is

represented by a de Broglie wave. He considers the case when

all have the same velocity, but his result can be extended to the

case of several velocities.

According to Koga, a de Broglie wave only represents an

ensemble of electrons, not a single particle. For a system of

several electrons, one must consider a separate Schrödinger

equation for each of them. There is no such thing as the wave

function of a system.

Wave-Partice Duality has the following meaning in Koga’s

theory: an electron looks like a particle in some experiments

and like a wave in others. But it is neither; it is a localised

field. Koga explains these things in [21, 22] and Chapter IV of

[27]. See also [28].
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According to Koga’s theory of the Schrödinger equation, a

free electron has a spherically symmetric amplitude and has a

singularity at its centre. The size is not given by the theory;

Koga takes it to be about 1/κ, and assumes 1/κ = ~/mc. In

the presence of an external potential, the elementary field de-

forms and there is a “tunnel effect” arising from the interaction

between the elementary field, the external electromagnetic field

and the internal gravitational field of the electron. This is re-

lated to the stability of atoms. (The latter topic is taken up by

him later.)

It should be noted that the energy of the (free) electron and κ

are supposed to be constants of nature. Koga assumes that κ is

closely related to the size of the electron field. As r increases, a

decreases to 0. From some point onwards, a can be considered

“negligible”; this can be taken to be a bound on the electron’s

radius. The larger the value of κ, the smaller the radius.

Koga argues that from these considerations, it follows that

an electron in an atom is at rest relative to the nucleus, and this

“tunnel effect” is complete or maximal when the electron is in

an energy eigenstate of the atom. We do not go into details in

this brief introduction.

Although, for the purpose of determining the electron ra-

dius, we consider a to be negligible beyond some distance from
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the centre, it should be noted that at any point, the Maxwell

field (which Koga obtains from the Dirac field) is the sum of

the fields due to individual particles. For this purpose the value

of a (of each particle) is not negligible.

2.3. The Dirac equation

In this section we describe Koga’s treatment of the Dirac

equation. In Chapter 3 we first review the history of the spin

concept and then study Koga’s theory using Geometric Alge-

bra, which reveals some new information.

Around 1930 several researchers (e.g., Schrödinger, Fock,

Ivanenko) tried to modify the Dirac equation to satisfy General

Relativity. They realised that a change was needed in the con-

cept of spinor. According to their theory, the components of

a spinor field at each point depend only on the point and are

invariant under coordinate transformations. But at each point

a collection of four independent vectors, called a tetrad, is de-

fined and is a continuous function of spacetime. The spinor

transformation law at each point is valid with respect to tetrad

rotations rather than coordinate transformations. (See the books

by Anderson [1] or Lord [29].) Remarkably, Koga’s ideas on

the Dirac equation can be considered a special case of this ap-

proach for flat space and tetrads consisting of orthogonal unit

24



vectors related by Lorentz transformations. Koga gives no in-

dication that he was aware of the old work mentioned above. It

seems he was not.

As in the Schrödinger case, in Koga’s theory of the Dirac

equation the solution is not a quantum-mechanical state but

gives the properties of the electron field at each point of space-

time.

Koga shows that at points far from the electron the (Dirac) ψ

field reduces to an electromagnetic field, satisfying Maxwell’s

equations, if properly interpreted (see [25] or [27], Chapter V).

For an electron in an (external) electromagnetic field, the

Dirac equation is, in modern notation,

iγ̂µ(∂µ − ieAµ)|ψ〉 = m|ψ〉

where, in the Copenhagen interpretation, |ψ〉 is considered a

4-spinor and the matrices γ̂µ are invariant under Lorentz trans-

formations. Koga argues that |ψ〉 must be a collection of four

scalar functions of spacetime and the Dirac matrices must trans-

form as the components of a 4-vector (a generalisation of this

was used by Fock and others in the 1920s in an attempt to make

the Dirac equation general relativistic). This will ensure that

the anisotropy embodied in the equation (his words) does not
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rotate together with the coordinate system when we make a co-

ordinate transformation.

Koga gives a solution to the Dirac equation for a free elec-

tron (Aµ = 0) starting with a solution to the Klein-Gordon

equation

(

~
2 ∂

2

∂t2
− ~

2c2
( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)

+m2c4
)

ϕ = 0

where we work in Minkowski space: a point is given by

(ct, x, y, z) = (x0, x1, x2, x3) and the metric is ηijdx
idxj =

(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.

Koga studies the Klein-Gordon equation like he did the Schrödinger

equation. He gives the following solution:

ϕ = a exp(iS/~)

where S = −Ect+ p · r

and a =
exp(−κ|r′|)

|r′| .

Here r′ =
r− ut

√

1− u2/c2
(r = xi+ yj+ zk = position vector),

p =
uE

c
(u = 3-velocity of the electron),

E2 =
m2c2 − ~

2κ2

1− u2/c2
(cE = energy).

26



As in the case of the Schrödinger equation, here also E and

κ are closely related. But the energy of the electron is now cE.

The energy cE is defined by E = −∂S/∂(ct). The momen-

tum p is ∇S (here ∇ is the 3-dimensional gradient).

Koga gives a justification for considering E to be indepen-

dent of t and p independent of r. I omit it here.

For a free electron at rest, we haveE2 = m2c2−~
2κ2. Since

κ is a constant of nature, so is E2.

The Klein-Gordon equation yields the Dirac equation as fol-

lows: it can be written as

D0D1ϕ = 0 = D1D0ϕ.

In Koga’s notation, we take

D0 = β(~
∂

∂t
) + βα · i~c ∂

∂r
−mc2,

D1 = β(~
∂

∂t
) + βα · i~c ∂

∂r
+mc2.

Here β is a 4 × 4 matrix and α is a triple of 4 × 4 matrices

satisfying well-known commutation relations.

Then, if ϕ is a solution of the Klein-Gordon equation (more

precisely, a 4-tuple of scalar solutions) and |ψ〉 = D1ϕ then

|ψ〉 satisfies D0|ψ〉 = 0, which is the Dirac equation.
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It should be noted that although Koga uses D0 to get the

Dirac equation it would be equally justified to use D1 to write

an equation for the electron. For each of these “Dirac equa-

tions”, there are two possible energies: positive and negative.

Koga takes ϕj = a exp( iS
~
)Aj exp(iθj) for j = 1, 2, 3, 4 as

four solutions to the Klein-Gordon equation, and

|ψ〉 =

















ψ1

ψ2

ψ3

ψ4

















= D1

















ϕ1

ϕ2

ϕ3

ϕ4

















.

Koga concludes that the field representing a free electron (as

above) is circularly symmetric only about the axis which passes

the point r = ut and is parallel to the z-axis. We omit the de-

tails. His arguments are mathematically not complete or satis-

factory [32] as will be explained shortly.

Koga’s solution to the Dirac equation, as I understand it, is

not meant to be a replacement of the work done by Dirac in the

1920s, which culminated in the prediction of the positron.

Rather, it is an improvement of Koga’s solution of the Schrödinger

equation and is a step towards his goal of a theory including

gravitation.
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It gives information about the electron field, including the

field in the very small region which many consider a point. He

wanted, among other things, to prove that a free electron has

an axis of symmetry and spins around it like a top.

For this purpose, Koga considers a rotation of the coordi-

nate system about the z axis by an angle ϕ. He looks at what

happens to the four complex components of the solution: ψ1,

ψ2, ψ3, ψ4.

For instance, the expression for ψ1 has four terms, each con-

taining only one of the angles θj in its argument.

After the rotation, he shows that in the case of ψ1, θ4 gets

replaced by θ4 − ϕ.

But at this point, he asserts that since the angles θj are arbi-

trary, we can simply ignore the effect of ϕ!

I consider this unsatisfactory.

In chapter 3 we analyse the Dirac equation and Koga’s so-

lution using geometric algebra. Our analysis suggests that the

electron spins and shudders. However, there is no interference

between states; in fact there are no states in Koga’s theory, only

pointwise descriptions of the electron field.

The theory discussed above is, of course, only approximate.

It suggests a single spin frequency although, in reality, there

may be terms with several frequencies.
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Koga shows that the Dirac equation implies the Maxwell-

Lorentz equation of the electromagnetic field, provided the com-

parison of the two is restricted to their time-independent (or

slowly varying) solutions. The reason for this restriction is

that the Dirac field may contain some high frequency terms

which are averaged out in the Maxwell fields (he uses the term

“coarse-grained”) . He derives the correct value of the mag-

netic moment of the electron (which, as is well known, equals

the Bohr magneton). The only assumption he makes here is

that the Dirac field is localised, and no specific solution is used.

2.4. Koga’s general relativistic theory of the electron

Koga considers the Schrödinger equation, and also the Dirac

equation, inadequate to describe the structure of the electron.

For him these theories are merely pointers to a theory that in-

cludes gravitation: specifically, the gravitational field of the

electron itself. Here I am only trying to give a very brief glimpse

of Koga’s work. Hence there is no complete explanation of the

notation, etc. A reader unfamiliar with general relativity can

omit this section.

Koga assumes a geometry that is more restricted than gen-

eral Riemannian geometry but more general than the geometry

of Minkowski spacetime (which he calls Euclidean geometry).
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For the matter field he gives the following two sets of non-

linear equations:

1√−g
∂(
√−gF ij)

∂xj
− gij

∂η

∂xj
= 0 (1)

1√−g
∂(
√−gF ∗ij)

∂xj
− gij

∂ξ

∂xj
= 0 (2)

Here g is the determinant of the metric tensor gij; F ij is an anti

symmetric tensor and F ∗ij is conjugate of the F ij; ξ and η are

scalars.

Koga further considers that Einstein’s equations:

Rij −
1

2
gijR = −KTij

are not useful to study the internal field of the electron because

they are quite complicated and have not been verified on a mi-

croscopic scale. He replaces them by a set of four equations

containing only first order derivatives of the metric tensor,

1√−g
∂
√−g
∂xi

= agij(F
∗jk − gjkξ)

∂η

∂xk
+ bgij(F

jk − gjkη)Ak

(3)

(Here a and b are constants and Ak represents an external elec-

tromagnetic field of macroscopic scale.)

Koga calls all these the fundamental equations. The fun-

damental equations given by (1) and (2) reduce to the Dirac
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equation (as an approximation) and to the Maxwell-Lorentz

equation (in another approximation).

In order to get the Dirac equation or the Maxwell-Lorentz

equation from (1) and (2), the equation for the metric tensor

field given by (3) is used to linearise the nonlinear terms occur-

ring in (1) and (2).

Koga further notes that none of the above fundamental equa-

tions (1), (2) and (3) contain the constants such as mass m,

charge e and the Planck’s constant h. By substituting the sym-

bol of mass for a certain function which is assumed to be almost

invariant, and making other approximations he gets the Dirac

equation for the electron. By changing the boundary condi-

tions, similar equations are obtained for nucleons. Similarly,

by substituting the symbol of electric charge for another func-

tion and applying an averaging process the Maxwell-Lorentz

equations are obtained.

Koga rejects Mach’s principle (which, according to many

physicists, states that the mass of a body is entirely due to its

interaction with the rest of the universe, but mainly nearby mat-

ter) on the ground that the concepts of mass, force and action at

a distance have no place in the fundamental equations and the

Mach principle is only conceivable in terms of such classical
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mechanical concepts and is hence not compatible with relativ-

ity. We will see more of Mach’s principle in Chapter 4.

An examiner has pointed out that the statement above is

not Mach’s principle, but only a misunderstanding of it that

is widespread among physicists including Sachs (who I got it

from). A correct version (given by the examiner) is that iner-

tial forces (and hence inertia, not mass) arise due to interaction

with other matter.

Actually, Koga states (and rejects) the Mach principle as

“the inner structure of the electron is a reflection of the external

universe”. He does not give any reference for this statement.

This seems just an example of the misunderstanding mentioned

above; it is even possible that Koga got it from Sachs.

Koga gives arguments for rejecting his version of Mach’s

principle. I don’t go into this in detail.

All this is the subject of the paper [26] and Chapter 6 of

the book [27]. In the book he also studies the photon, quan-

tum electrodynamical phenomenon and other particles like the

proton, neutron and pions using the same ideas.
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CHAPTER 3

Geometric Algebra and its application to Koga’s approach

to the Dirac equation

“The lack of a concrete picture of the spin leaves

a grievous gap in our understanding of quantum

mechanics.”

H. C. Ohanian [31]

“A consistent interpretation of fermion spin seems

to be that it has a definite direction, much like

the polarization direction of a classical electro-

magnetic field.”

W. E. Baylis [4]

“Experimental procedure involving static and slowly

rotating magnetic field can be devised to mea-

sure the spin direction.”

W. E. Baylis [4]
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3.1. Introduction

In this chapter we first introduce Clifford algebras and their

geometrical aspects to the extent we need. We then take up the

Dirac equation in the form introduced by Hestenes. We adapt

Koga’s method of solution of the Dirac equation (given in the

last chapter) to this context. Our solution reveals some aspects

of the electron: we get a spinning and shuddering field which

is localised in spacetime.

The purpose of Koga’s solution to the Dirac equation is to

describe the electron as a localised field. It is not meant to

replace the work of Dirac but instead looks at aspects which

Dirac did not touch.

I use geometric algebra which was developed by Hestenes

in the 1960s using ideas of Clifford from the 19th century.

The notation here is mostly that of Doran and Lasenby [10]

except that the specific solution to the Klein-Gordon equation

comes from Koga; its origin lies in de Broglie’s work on the

Schrödinger equation.

The solution to the Dirac equation using Geometric Alge-

bra and its interpretation (Sections 3.5 and 3.6) was not what I

expected.

I thought I would just get a spinning field as Koga stated.
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The first surprise was the Klein-Gordon term (which, with

hindsight, I should have expected).

Then the rest of the solution also did not represent a spin-

ning field.

Almost miraculously, it turned out that it could be broken

up into a spinning term and another term showing a one dimen-

sional oscillation modulated by a scalar factor, which makes it

a localised field.

The last two terms (as mentioned above) can be considered

corrections to the Klein-Gordon term, which stands for a parti-

cle (or field) without spin.

This seems roughly parallel to the history of the subject:

Schrödinger first considered (and rejected) the Klein-Gordon

equation, and spin was discovered a bit later. Zitterbewegung

or shudder came still later.

In the second section we give the definition and some basic

properties of Clifford algebras. In the third section we intro-

duce the examples of geometric algebras that we need. After

that we describe the Dirac-Hestenes equation and our solution

which is based on Koga’s work in [24],[23], [27] (Chapter V)

and [28] (Chapter V). Finally we estimate the angular velocity

of the electron, show that the theory gives two opposite values

of spin, and estimate the size of the electron.
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In order to put the results of this chapter in perspective we

now give a brief (and very incomplete and greatly oversim-

plified, but adequate for the present purpose) summary of the

history of the spin concept. Much of this material is taken from

the paper by Morrison [30].

To explain the anomalous Zeeman effect Pauli found it nec-

essary to assume that the electron has, in addition to the mag-

netic moment of orbital motion, another magnetic moment in-

dependent of orbital motion. Uhlenbeck and Goudsmit as-

serted that this arises from spin, i.e., the angular momentum

of a spinning electron. The magnetic moment in any direc-

tion, when measured, can only take two possible values; the

mechanical spin momentum is always ±~/2. In the absence

of an external magnetic field the energy effect of spin is small

compared to that of charge and mass.

So the electron (considered a point particle) has three space

coordinates and at least one more degree of freedom. Its wave-

function can be written as ψ(x, y, z, σ) where σ = ±1 or

ψ =

(

ψ1

ψ2

)

where ψ1 = ψ(x, y, z,+1) and ψ2 = ψ(x, y, z,−1).

This was the starting point of Pauli’s approach to spin: he

showed that it requires the splitting of the wavefunction into
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two components. Presumably, at this stage nobody suspected

that relativity was involved.

Very soon afterwards (from our perspective) Dirac obtained

his relativistic equation which requires a further splitting of

each of the two components of Pauli’s wavefunction. The math-

ematical formalism of the Dirac equation and group represen-

tation theory require the existence of spin to guarantee conser-

vation of angular momentum and to construct the generators

of the rotation group. Now spin was far more than an ad hoc

hypothesis required to account for specific effects. However, a

physical understanding of spin was still lacking.

The above account does not reveal a large part of the his-

tory of spin. Specifically, it should be noted that the pioneers

of quantum mechanics like Pauli, Heisenberg and Bohr each

first rejected and then accepted the spin hypothesis, each for

his own reasons (we need not go into them) without any the-

oretical consensus. Neither relativity nor classical mechanics

nor quantum mechanics gave a full understanding of what spin

is.

This state of affairs prevails even now, although spin has

become a fundamental feature of scientific and medical tech-

nology: consider, for instance, electron spin resonance (ESR)

or magnetic resonance imaging (MRI).
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Various authors, from the 1920s to the present (for example,

[5, 16, 35, 31, 30]) have mentioned that spin has neither been

completely understood nor observed explicitly, although there

are now extensive applications of spin.

There seems to be only one exception (other than Koga).

According to Ohanian [31], Belinfante in the 1930s proved, in

the context of conventional quantum mechanics, that spin may

be regarded as a circulating flow of energy in the wave field of

the electron. For some reason, this has been ignored.

In this situation, Koga’s solution to the Dirac equation and

its refinement using geometric algebra possibly hold the key to

understanding what spin really is: maybe the mysterious phe-

nomenon that various observations hint at is really a spinning

and shuddering electron field.

3.2. Basic concepts of Geometric Algebra

Except for the definition in terms of the tensor algebra, Sec-

tions 3.2, 3.3 and 3.4 are the work of Hestenes as described by

Doran and Lasenby.

The notation I for an ideal of the tensor algebra should not

be confused with its use later in this chapter for the unit pseu-

doscalar.
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Let V be a real, finite dimensional vector space with a qua-

dratic formQ or equivalently a symmetric bilinear formB. The

Clifford algebra Cl(V ) of V (with the bilinear form B) is the

quotient of the tensor algebra T (V ) of V by the ideal I gener-

ated by all elements v ⊗ v − B(v, v) where v is a vector in V .

In Cl(V ), any two elements a and b have a product called the

geometric product, denoted ab. This is the image of the tensor

product a ⊗ b (which is in T (V )). The members of Cl(V ) are

called multivectors. We have v2 = B(v, v) for any vector v. If

u and v are vectors then

(u+ v)2 = u2 + uv + vu+ v2.

is a scalar. We define the inner product u · v by

u · v =
1

2
(uv + vu) =

1

2
((u+ v)2 − u2 − v2).

Then uv = u · v + u ∧ v, where u ∧ v = 1
2(uv − vu) is called

the outer product, which is antisymmetric.

It turns out that the outer product generalises to the whole

of Cl(V ), and gives an associative algebra. It is antisymmetric

on vectors.

The outer product records the dimensionality of the object

formed from a set of vectors, for instance, two vectors deter-

mine a plane (though the origin).
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Any multivector which can be written purely as an outer

product of a set of vectors is called a blade. If the number of

vectors is r, the blade is said to have grade r. It is a fact that

every blade can be written as a geometric product of orthogonal

unit vectors with a scalar coefficient. (u and v are orthogonal

if u · v = 0.)

Let (e1, . . . , en) be an orthogonal basis for V . Then a basis

for Cl(V ) can be built up as

{1}∪{ei}∪{eiej|i < j}∪{eiejek|i < j < k}∪· · ·∪{e1e2 . . . en}

The rth set here is a basis for the subspace of grade r multivec-

tors and has
(

n
r

)

numbers. Thus Cl(V ) has dimension 2n.

3.3. Some important geometric algebras

Here we look at the specific geometric (Clifford) algebras

that we will use to study the Dirac equation.

The Dirac algebra or spacetime algebra (STA) [15] is the

Clifford algebra of Minkowski spacetime. It is generated by

four orthogonal unit vectors (which are taken parallel to the

coordinate axes). These are denoted by γµ (µ = 0, 1, 2, 3). We

take γ0 to be timelike with γ20 = 1 and γi spacelike, with square

−1, for i = 1, 2, 3. The bilinear form is the Minkowski metric
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ηµν . Here we take η00 = η00 = 1, η11 = η11 = −1 and so on.

Hence γ0 = γ0, γ
1 = −γ1 etc..

We have

γµγν + γνγµ = 2ηµν

We note that Minkowski spacetime has a reciprocal basis {γµ},

where γµ = ηµνγν and γµ = ηµνγ
ν (the Einstein summation

convention applies). A vector space basis for STA is

{1} ∪ {γµ} ∪ {γµγν|µ < ν} ∪ {Iγµ} ∪ {I}

where I = γ0γ1γ2γ3 is called the pseudoscalar. The elements

γµγν are bivectors and Iγµ are trivectors. In the given basis,

the vectors and trivectors are odd (they have odd grade) and

the rest are even.

The even multivectors form a subalgebra of STA, called its

even subalgebra. It has dimension 8 whereas STA in 16 di-

mensional. If we write σi = γiγ0 (i = 1, 2, 3) then the even

subalgebra of STA is generated by σ1, σ2, σ3. They are orthog-

onal unit vectors of the subalgebra and bivectors of STA. We

have

σ1σ2 = Iσ3, σ2σ3 = Iσ1, σ3σ1 = Iσ2
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and I = σ1σ2σ3. This algebra can be considered the geomet-

ric algebra of 3-dimensional Euclidean space with σi being the

unit vectors along the coordinate axes. It is frequently called

the Pauli algebra.

Let ψ be a function defined on Minkowski space, taking val-

ues in STA. Then the (4 dimensional) gradient of ψ is defined

as

∇ψ = γµ
∂ψ

∂xµ
.

The Laplacian of ψ is ∇2ψ = ∇ · ∇ψ which gives

∇2ψ =
∂ψ

(∂x0)2
− ∂ψ

(∂x1)2
− ∂ψ

(∂x2)2
− ∂ψ

(∂x3)2
.

The contravariant and covariant coordinates of a point sat-

isfy x0 = x0 = ct, x1 = −x1 = x, etc..

We have mentioned earlier that γ0 is timelike and γ1, γ2, γ3

are spacelike. What we mean by this is that there is an inertial

observer following a timelike path with unit speed, where the

velocity vector is taken to be γ0. Then γ1, γ2, γ3 are chosen

so that they form a right-handed set of orthogonal spacelike

vectors perpendicular to γ0. Thus we split any event (which

means a point of spacetime) into time and space components.

Another observer with a different velocity would perform a dif-

ferent split.
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3.4. The Dirac-Hestenes equation

We now consider the Dirac equation in the form given by

Hestenes (sometimes called the Dirac-Hestenes equation [8, 9,

10]) and its relation to the conventional Dirac equation which

is written in terms of matrices and column vectors of complex

functions.

We use the term spinor below but it may be a bit inappro-

priate. We are just concerned with complex vector spaces, not

with any transformation law.

Firstly, there is an isomorphism (of real vector spaces) be-

tween 2-dimensional complex space (“spinor space”) and the

subspace of STA spanned by 1, Iσ1, Iσ2 and Iσ3 given by

|ψ〉 =
(

a0 + ia3

−a2 + ia1

)

↔ ψ = a0 + a1Iσ1 + a2Iσ2 + a3Iσ3.

This extends to an isomorphism between 4-dimensional com-

plex space (“4-spinors”) and the even subalgebra of STA:

|ψ〉 =
(|ϕ〉
|η〉

)

↔ ψ = ϕ+ ησ3

where |ϕ〉 ↔ φ and |η〉 ↔ η as stated earlier. Fix k ∈
{1, 2, 3}. Consider the linear operator ψ 7→ σkψσ3, where

ψ ∈ span(1, Iσ1, Iσ2, Iσ3). It turns out that this corresponds

to the operator |ψ〉 7→ σ̂k|ψ〉 on complex 2-space where σ̂k is a
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Pauli matrix:

σ̂1 =





0 1

1 0



 , σ̂2 =





0 −i
i 0



 , σ̂3 =





1 0

0 −1



 .

Similarly, for µ = 0, 1, 2, 3 consider the following operator:

ψ 7→ γµψγ0

on the even subalgebra of STA. In complex 4-space this corre-

sponds to

|ψ〉 7→ γ̂µ|ψ〉

where γ̂0 =





I2 0

0 −I2



 (I2 = 2× 2 identity matrix)

γ̂k =





0 −σ̂k
σ̂k 0





for k = 1, 2, 3. Similarly the operator

ψ 7→ ψIσ3

corresponds to

|ψ〉 7→ i|ψ〉.
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Now we come to the Dirac equation in its two forms. We note

that |ψ〉 satisfies the Dirac equation

iγ̂µ
∂|ψ〉
∂xµ

= m|ψ〉

if and only if ψ satisfies the equation

∇ψIσ3 = mψγ0.

The latter is the Dirac-Hestenes equation. We leave the sim-

ple proof to the reader (note that γ20 = 1 is used).

The explicit map given is for column spinors written in the

so-called Dirac-Pauli representation. Some other representa-

tions also occur in the literature. Similar expressions can be

given for other representations since they are equivalent via

unitary transformations.

The gradient operator ∇ here is 4-dimensional and is de-

fined in Section 3.3. It should not be confused with the 3-

dimensional gradient used earlier.

The Dirac-Hestenes equation above comes from the oper-

ator that Koga calls D0. A similar equation is obtained from

Koga’s D1:

∇ψIσ3 = −mψγ0.

This is an equally legitimate equation. Considering both equa-

tions yields four combinations of spin and energy.
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3.5. A solution to the Dirac-Hestenes equation

We now look at a solution of the Dirac equation using geo-

metric algebra, i.e., the Dirac-Hestenes equation. For conve-

nience we take c = 1 and ~ = 1.

Let ϕ be a multivector field, namely a function on spacetime

taking values in STA. The Klein-Gordon equation for a free

electron is

∇2ϕ+m2ϕ = 0

where m > 0 is the electron’s rest mass.

As stated in Chapter 2, de Broglie and Koga took as a solu-

tion to the original Klein-Gordon equation (which happens to

have the same form as the Geometric Algebra version)

ϕ = aeiS

where a and S are real scalar fields in spacetime. Expressions

can be written out for a and S:

S = −Et+ p · r,

a = exp(−κr′)/r′

where r = xi + yj + zk = x1γ1 + x2γ2 + x3γ3,

r′ = (r− ut)/
√
1− u2 where u is the electron’s velocity, κ
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is a positive constant, p = uE the momentum and E2 =

(m2 − κ2)/(1− u2) where E is the energy of the electron.

We now consider an inertial frame in which the electron is

at rest: u = 0, p = 0, r′ = r. We assume that the origin is, in

some sense, the ‘centre’ of the electron.

We write ϕ = aeSIσ3 for a solution to the Klein-Gordon

equation. We can do this because (Iσ3)
2 = −1 in STA. By

replacing i by Iσ3, we are giving a special role to the x3-axis

as we shall see soon.

It was Hestenes’s idea to replace i =
√
−1 with Iσ3.

The function ϕ given here is a(cosS + (sinS)Iσ3). It is

even-valued since a cosS and a sinS are scalars while Iσ3 =

γ2γ1 is a bivector.

To solve the Dirac-Hestenes equation, we use the following

fact. If ϕ is a solution to the Klein-Gordon equation, and ψ =

∇ϕIσ3 +mϕγ0, then ψ satisfies the Dirac-Hestenes equation.

If ϕ is odd then ψ is even and vice versa.

This can easily be verified. We omit the proof.

We want ψ to be even because of the correspondence men-

tioned earlier between complex 4-space and the even subalge-

bra of STA.
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We now ensure thatϕ is an odd solution of the Klein-Gordon

equation by taking

ϕ = aeSIσ3γ0.

Obtaining the expression for ψ involves the application of

the usual rules of calculus to the 4-dimensional gradient oper-

ator ∇: the product rule, the chain rule and so on. It should be

borne in mind that some of the products are not commutative.

In our context, p = 0 and so S = −Et is a function of t alone.

Similarly, from u = 0 it follows that r′ = r is independent of

t. Thus a is a function of x, y and z. The relations between co-

variant and contravariant vectors and components were stated

in Section 3.3.

We have

∇ϕ = (∇a)eSIσ3γ0 + a∇(eSIσ3)γ0

where a = e−κr/r, r =
√

x2 + y2 + z2 and S = −Et.
The computation of ∇a has to be done carefully observing

the covariant-contravariant relationships mentioned above.

Let R = r( 1
r2 +

κ
r ).

We get ∇a = aR and ∇(eSIσ3) = (∇S)eSIσ3Iσ3 with

∇S = −Eγ0 = −Eγ0.
All these put together yield the solution
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ψ = RϕIσ3 + (E +m)ϕγ0.

The quantities a and R were defined by Koga. The rest of

the notation comes from Doran and Lasenby [10].

With hindsight, all this work seems simple and obvious but

it was not so easy when we worked on it!

We will interpret this equation in the next section.

3.6. Interpretation of the solution

We now rewrite the expression for ψ obtained in the last

section,

ψ = RϕIσ3 + (E +m)ϕγ0,

as a sum of terms, each with some physical (or geometrical)

significance.

The solution complements the information about the elec-

tron given by Dirac rather than replacing it. It is not similar

to any well known solution. For example, Doran and Lasenby

only talk about plane waves. So does Baylis ([4], Section 19.6).

Hestenes considers a point electron moving along a helix in

Minkowski space, corresponding to uniform circular motion in

3-space. He calls it the zitterbewegung interpretation of quan-

tum mechanics.
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All these authors accept at least part of the Copenhagen in-

terpretation of quantum mechanics, e.g., the uncertainty prin-

ciple. It should be remembered that in Koga’s theory, there is

no superposition (or, rather, superposed states represent ensem-

bles, not individual electrons).

The solution given in this thesis is, of course, only a linear

approximation to a nonlinear phenomenon. It has a singular-

ity at the centre which must be presumed to be un-physical.

Therefore it does not accurately describe the electron field at

points very close to the centre. Also, it assumes a single fre-

quency which must be approximately true at best. Hopefully,

it is fairly accurate at other points (not too far from the centre)

and can someday get some experimental support.

Hestenes has done a great deal of work on the Dirac theory

over several decades, including zitterbewegung, using Geomet-

ric Algebra (his work on zitterbewegung has not been accepted

by physicists, probably because it significantly modifies the

original theory of Schrödinger). A lot of his work is related

to this thesis, although he does not give any similar solution.

Hestenes only considers plane wave solutions.

The second term-above, (E +m)ϕγ0, is just an even mul-

tivector solution of the Klein-Gordon equation. It stands for

a ‘particle’ (actually a localised field) without spin. The other
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term is

a(
1

r2
+
κ

r
)reSIσ3γ0Iσ3.

Here a( 1
r2 +

κ
r ) is a spherically symmetric scalar field. We now

concentrate our attention on the rest of the term:

reSIσ3γ0Iσ3.

We see that γ0 commutes with Iσ3 and with eSIσ3 and that

rγ0 = (x1γ1 + x2γ2 + x3γ3)γ0

= x1σ1 + x2σ2 + x3σ3.

This is a vector in 3-dimensional Euclidean space. Thus we get

rγ0e
SIσ3Iσ3

= rγ0e
SIσ3e(π/2)Iσ3

= (x1σ1 + x2σ2 + x3σ3)e
(S+π/2)Iσ3

= (x1σ1 + x2σ2)e
(S+π/2)Iσ3 + x3σ3

+ x3σ3(e
(S+π/2)Iσ3 − 1)

In the last expression, the first line stands for the vector ob-

tained by rotating x1γ1+x
2γ2+x

3γ3 in the σ1σ2 plane through

the angle S + π/2.
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This can be written using a rotor (this is a general method

of describing a rotation of a multivector in an arbitrary plane;

see [10], Section 2.7.1):

e−
(S+π/2)

2 Iσ3(x1σ1 + x2σ2 + x3σ3)e
(S+π/2)

2 Iσ3.

Since S = −Et and E is constant, this gives a field rotating

with uniform angular velocity in the σ1σ2 plane, i.e. about the

σ3 axis. (It must be noted that a rotation is always in a plane, in

a space of any dimension. It is only in a 3 dimensional space

that there is an axis of rotation.)

The last term

x3σ3(e
(S+π/2)Iσ3 − 1)

is a field whose value at each point x1σ1 + x2σ2 + x3σ3 is in-

dependent of x1 and x2 and proportional to x3. It represents an

oscillatory motion that gets larger with |x3|. That is not strictly

true because it is multiplied by the scalar factor a( 1
r2 +

κ
r ). It

is thus a localised field which vanishes at infinity. This motion

seems vaguely similar (or at least analogous) to Schrödinger’s

Zitterbewegung.

In 1930 Schrödinger analysed the wave packet solutions of

the Dirac equation for a free electron. An interference between

positive and negative energy states produces what appears to
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be a fluctuation (at the speed of light) of the position of the

electron (assumed to be a point particle).

Hestenes introduced what he called the zitterbewegung in-

terpretation of quantum mechanics. He also assumed that the

electron is a sizeless point but moving along a helix.

Neither of these bears much resemblance to the shudder de-

scribed here (which has nothing to do with negative energy).

It seems unlikely to me that there is anything similar to this

work in the literature.

One difference between this theory and Koga’s should be

pointed out: here, the fields are all in a real Clifford algebra.

Complex numbers have been eliminated. Like Koga, we inter-

pret the solution as suggesting that the electron is a localised

field, with the value of ψ at each point giving the properties of

the electron at that point, at least in principle.

Koga shows how Maxwell’s equations in differential form

can be obtained from the Dirac equation at points far from the

centre. He does this by identifying various components of the

solution with appropriate components of Maxwell fields. He

does not use his solution or any other, but only the assumption

that the solution is a deterministic localised field. Using this,

Koga derives the correct value for the magnetic moment of the

electron.
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3.7. Some information obtained from the solution

If we include ~ and c, our solution to the Dirac-Hestenes

equation can be written as

ψ = ~cRϕIσ3 + (Ec+mc2)ϕγ0,

and the term expressing the spinning field is given by

e−
1
2 (

S
~
+π

2 )Iσ3(x1σ1 + x2σ2 + x3σ3)e
1
2 (

S
~
+π

2 )Iσ3.

Since S = −Ect, the angular velocity is

ω = −Ec
~
.

It should be noted that the negative sign in the expression

for ω is not a typographical error. But I omit it later because I

am only interested in the absolute value.

We have

E2c2 = m2c4 − ~
2c2κ2 > 0.

Here Ec stands for the energy of the electron. Thus we obtain

0 < κ <
mc

~
.
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Taking

m = 9.1094× 10−31Kg,

c = 2.9979× 108m/S

and ~ = 1.0546× 10−34J.S.

We find that κ < 2.5896× 1012 per metre.

The theory assumes that κ is constant but the value of κ is

not given by the theory. Now we can roughly calculate the spin

angular velocity. With the above values of mass m and speed

of light c, the value of m2c4 is of the order of 10−27. Similarly

the value of ~2c2 is of the order of 10−52. Taking the value of κ

in the above range, the spin angular velocity is roughly of the

order of 1021 radians/second, by using the relation

ω =
Ec

~
= (

m2c4 − ~
2c2κ2

~2
)1/2.

Now we come to the well known concept of spin up and down

states.

Let c = 1 and ~ = 1.

The equation ∇ψIσ3 = mψγ0 has solutions

ψ = RϕIσ3 + (E +m)ϕγ0
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with ϕ = aeSIσ3γ0 and

ψ = RϕIσ3 + (−E +m)ϕγ0

with ϕ = ae−SIσ3γ0.

Similarly, the equation ∇ψIσ3 = −mψγ0 has the solutions

(for the same values of ϕ as above)

ψ = −RϕIσ3 + (∓E +m)ϕγ0

(using the same method and multiplying the right hand side by

−1).

These give us all four combinations of energy and spin as

follows. Because of the relation between energy and phase,

and between phase and angular velocity in Koga’s theory, we

are forced to consider both Dirac equations. That is not suffi-

cient to get all possibilities. But multiplying by -1 changes the

sign of the energy while leaving the spin direction unchanged.

For positive energy, the solutions of the two equations have

conjugate Klein-Gordon terms and opposite spins. Similarly

for negative energy. (We are considering an analogue of com-

plex conjugation, treating Iσ3 as i.)

In Koga’s view, the motion of a single electron is always

causal and continuous. There are no acausal jumps from posi-

tive to negative energy states. One should abandon the idea of
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a vacuum filled with negative energy electrons and pairs of vir-

tual electrons and photons ([27], Chapter III, Sections 3.2 and

3.3).

Sachs ([38]) also mentions that energy is defined in his field

theory in terms of continuous change only, which rules out

jumps from positive to negative energy.

Finally, the present theory enables us to put a bound on the

size of the electron field.

Assuming that speeds greater than c do not occur, we must

have ωr < c for any point in the electron. Here r is the distance

from the point to the axis of rotation. Thus

r < c/ω.

As an examiner pointed out, the classical electron model

of the early 20th century implied a bound on the electron size

from that on the surface velocity. I was unaware of this. But the

spin angular velocity is obtained here from the present theory.

This is not a classical electron.
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CHAPTER 4

Mendel Sachs: General relativity leads to quantum

mechanics

“As Einstein originally anticipated, quantum me-

chanics is a derivative feature of matter in the

local domain, where the curved spacetime ap-

proaches the flat spacetime representation, as an

approximation.”

M. Sachs [37]

“Of course, empirical verification is a necessary

requirement of any scientific theory. But it is

not sufficient. For a true scientific theory must

also be both logically and mathematically con-

sistent.”

M. Sachs [36]



4.1. Introduction

In this chapter we try to give an idea of the core of Sachs’s

work [35, 36, 37], namely his argument that “General Rela-

tivity implies Quantum Mechanics.” (Actually, what he tries

to prove is that general relativity and the Dirac equation imply

quantum mechanics.) We only give an outline and do not go

into details.

In Sachs’s work there is some ambiguity in the mathematics

(for instance, in the choice of conjugate or in the correspon-

dence between Pauli matrices and unit quaternions) but, hope-

fully, not in the physical implications. This ambiguity is visible

at some places in this chapter. Anyone who finds it worthwhile

to do further work following Sachs needs to remove the ambi-

guity.

In the next section we give a brief introduction to the quater-

nions.

Then we describe how he tries to use quaternions to fac-

torise the metric of general relativity and remove unnecessary

symmetries (symmetries which are not required by the postu-

lates of general relativity).
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After this we come to Sachs’s field equations, which are a

factorisation of Einstein’s equations. These involve his quater-

nion metric coefficients which are introduced in the previous

section.

Next we see Sachs’s derivation of generally covariant two

component spinor equations corresponding to the Dirac equa-

tions in two component form, namely the Majorana equations.

Finally we come to the derivation of quantum mechanics as

a limiting case.

An examiner has revealed that Sachs’s interpretation of the

Mach principle (which I took for granted) is wrong, and is, in

fact, a widespread misconception among physicists. Mach as-

serted that inertial forces (i.e., inertia, and not mass, as Sachs

assumes) arise due to interactions with other matter. This re-

moves the basis for Sachs’s interpretation of his derivations. It

does not affect the validity of his predictions; they may be cor-

rect or wrong. Unfortunately, it also makes parts of this thesis

irrelevant!

I believe that Sachs’s derivation is fatally flawed because his

generalised Dirac equations do not reduce to the ordinary ones

in the flat space limit. Therefore the discussion in this chapter

is only hypothetical: it is based on what would be true if the

argument was correct.
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4.2. The Quaternions

We begin with a convenient approach to the quaternions.

Our notation resembles that of previous chapters but is not nec-

essarily the same.

The quaternions form a 4-dimensional real algebra. A vec-

tor space basis for the quaternions is (1, i, j,k). We have i2 =

−1, ij = k = −ji and so on.

The conjugate of a quaternion a01+ a1i+ a2j+ a3k is de-

fined by analogy with the complex conjugate: it is a01− a1i−
a2j−a3k. This is the usual conjugate and corresponds to space

reflection. Another conjugate, defined by Sachs as the negative

of the above, corresponds to time reversal.

The quaternions form a division ring which is not commu-

tative. It can be represented by 2 × 2 complex matrices as we

now describe.

Let σ0 =





1 0

0 1



, σ1 =





0 1

1 0



, σ2 =





0 −i
i 0



, σ3 =





1 0

0 −1



 where i =
√
−1. These are called the Pauli spin

matrices. They satisfy σ1σ2 = iσ3 = −σ2σ1 and so on.

The real algebra generated by these matrices is 8 dimen-

sional. It is isomorphic to the geometric algebra of 3 dimen-

sional space. A vector space basis for it is {σ0, iσ0, σ1, iσ1, σ2,
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iσ2, σ3, iσ3, }. In this basis the subset {σ0, iσ1, iσ2, iσ3, } gen-

erates the even subalgebra which is isomorphic to the algebra

of quaternions. We have (σ1)2 = σ0 and hence (iσ1)2 = −σ0.
An isomorphism between this algebra and the quaternions is

obtained, for example, by taking σ0 ↔ 1, iσ1 ↔ i, iσ2 ↔ j,

iσ3 ↔ −k. Alternatively, we can take σ0 ↔ 1, iσ1 ↔ −i,

iσ2 ↔ −j, iσ3 ↔ −k.

Incidentally, the algebra generated by σ0, σ1, σ2, σ3 is iso-

morphic as a real algebra to the algebra of all complex 2 ×
2 matrices, sometimes described as the algebra of “complex

quaternions”. This is the structure we get if, in the definition

of quaternions above, we allow complex coefficients. It is not

a division algebra.

We will identify the quaternions with the 4-dimensional al-

gebra described above. We identify 1, i, j, k with σ0, −iσ1,
−iσ2, −iσ3 respectively as Sachs does in his introduction to

quaternions in [35].

It should be noted that the i factor is essential in the corre-

spondence between quaternions and matrices given here. Sachs

ignores this when taking the limit of his metric as the curvature

of space vanishes. This is totally unjustified.
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4.3. Factorisation of the metric

Sachs tries to factorise the metric of General Relativity and

Einstein’s equations. This is the only factorisation that I am

aware of. Sachs states that it is motivated by some work of

Einstein and Mayer in the 1930s [12].

The approach of Sachs to the generalisation of general rela-

tivity starts with the observation that the structure of the 10 pa-

rameter Poincaré group is represented by the metric tensor gµν .

This includes reflection symmetry, which is not required by the

postulates of general relativity. By removing these symmetries

from the underlying group he gets a 16 parameter group which

he calls the Einstein group. Sachs tries to achieve this by fac-

torising the expression for ds2. Write

ds = qµ(x)dxµ,

ds∗ = q∗µ(x)dxµ

where the asterisk stands for the quaternion conjugate. Then

we have

ds2 = gµνdxµdxν = dsds∗

which gives (with a normalisation factor)

gµν = −1

2
(qµq∗ν + qνq∗µ).
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In the limit of flat spacetime (special relativity) the metric gµν

must approach the Lorentz metric ηµν . Sachs assumes that this

corresponds to the following limits on the fields qµ(x):

q0(x) → σ0 = 2× 2 identify matrix

q1(x) → σ1 =





0 1

1 0



 ,

q2(x) → σ2 =





0 −i
i 0



 ,

q3(x) → σ3 =





1 0

0 −1



 .

The latter are the Pauli spin matrices. One reason why this

is not justified is that the quaternion algebra is 4 dimensional

whereas the Pauli algebra is 8 dimensional.

The assumption that the quaternion metric coefficients ap-

proach the Pauli spin matrices in the flat space limit is crucial

to Sach’s arguments.

But it is not true; the Pauli spin matrices are not quater-

nions, as I have explained. This is a serious, even fatal, flaw

in his derivation. Anyone who wishes to work on Sachs’s the-

ory needs to correct this, possibly by adding some i factors at

various places.
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The resulting expressions may be quite different from what

Sachs has obtained. It is surprising that this has not been com-

mented on so far. I suspect that it has been noticed by others.

For example, why did Cyganski and Page abandon their study

[6]?

It may be appropriate to mention that I spent a long time

(months) trying to understand (i.e., derive) Sachs’s limit before

I realised (near the end of my thesis period) that it was irrepara-

bly wrong.

4.4. Factorisation of Einstein’s equations

We are concerned with spinor variables in a curved space-

time. A spinor field has a covariant derivative

η;µ = ∂µη + Ωµη

where the spin affine connection is

Ωµ =
1

4
(∂µq

ρ + Γρ
τµq

τ)q∗ρ

= −1

4
qρ(∂µq

∗ρ + Γρ
τµq

∗τ).

It transforms as follows when xµ → x′µ:

Ωµ → Ω′
µ = SΩµS

−1 − (∂µS)S
−1
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where {S(x)} are the spinor transformations of the Einstein

group:

S(θµν (x)) = exp
qµqνθ

µ
ν (x)

2

where θµν (x) define the sixteen continuous transformations of

the Einstein group.

Sachs obtains the following field equations. A reader unfa-

miliar with General Relativity need not bother about the pres-

ence of Einstein’s equations here since I do not deal with them

in this thesis.

The equations below constitute a factorisation of Einstein’s

field equations

Rµν −
1

2
gµνR = KTµν,

just as the Klein-Gordon equation in special relativity

�ϕ = m2ϕ

(where � is the 4-dimensional Laplacian in Minkowski space

defined in Section 3.3) factors into 2-component spinor equa-

tions:

σµ∂
µη = −mψ,

σ∗µ∂
µψ = −mη.
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Sachs’s field equations are

1

4
(Kρλq

λ + qλK†
ρλ) +

1

8
Rqρ = kTρ,

− 1

4
(K†

ρλq
∗λ + q∗λKρλ) +

1

8
Rq∗ρ = kT ∗

ρ

where the asterisk denotes the quaternion conjugate and the

dagger stands for the Hermitian adjoint. Here Kρλ is the spin

curvature tensor defined by

Kρλ = Ωλ;ρ − Ωρ;λ,

R is the scalar curvature field and the right hand sides of the

two equations are the source terms.

4.5. A general relativistic Dirac equation

In the late 19th century, the physicist and philosopher Ernst

Mach made the assertion (according to Sachs) that a body’s

mass is a measure of its coupling to all of the other matter in

a closed system. Strictly speaking, the only closed system is

the universe. Einstein called this view the Mach principle [40].

Sachs argues that the Mach principle (as stated by him) holds

in a generalised form: all the intrinsic qualities of a body (or

what are usually considered intrinsic) such as mass and electric

charge are only measures of the coupling between the observed

matter and the rest of the closed system.
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As clarified by an examiner, the principle that Mach stated

was that inertial forces arise due to interaction with other mat-

ter. Thus it is the inertia of a body, not its mass, that arises like

this. Consequently, there does not seem to be any nontrivial

“generalised Mach principle” in the sense of Sachs: that is just

a generalisation of a misunderstanding of Mach’s principle.

We now consider Sachs’s “derivation of quantum mechan-

ics”, which is the core of his study of the properties of matter

and spacetime.

This section is only a brief review of Sachs’s work, not

a full-fledged derivation. As stated earlier, in order to pass

from the Majorana equations to the generalisation attempted

by Sachs, one needs to add i factors at various places which

would totally change the expressions.

The relativistic equation

E2 = p2c2 +m2c4

leads to the Klein-Gordon equation which factors into the fol-

lowing pair of 2-component spinor equation called the Majo-

rana equations:

(σµ∂µ + I)η = −mχ

(σ∗µ∂µ + I∗)χ = −mη
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where χ = ǫη∗, η∗ being the complex conjugate of η. Here χ

and η are time reversed spinor variables and ǫ is the Levi-Civita

matrix





0 1

−1 0



. We follow the convention that ~ = 1, c = 1.

The inertial mass of the particle is m.

Sachs does not precisely state what he means by a spinor.

Are its components fixed at each point of spacetime or do they

change with coordinate transformations?

What do the Majorara equations (in Sach’s work) mean?

What is the “particle”? Is it a point mass? What is electron

spin, in terms of his equations? Sachs does not consider such

questions at all.

In Sachs’s view the function I is the interaction term due

to all the other matter of the closed system. (More conven-

tionally, I is considered to be the effect of, for example, a

background electromagnetic field.) Sachs points out that Dirac

brought back reflection symmetry by combining the above 2-

spinor equations into a ‘bispinor’ wave equation (the usual Dirac

equation)

(γµ∂µ + I)ψ = −mψ.

Now we consider what happens to the Majorana equations when

we pass from Minkowski spacetime to Riemannian (curved)

spacetime (assuming the correctness of Sachs’s argument). We
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need to replace σµ∂µη by

qµη;µ = qµ(∂µ + Ωµ)η.

Then we get the equation

qµ(∂µ + Ωµ)η + Iη = 0,

q∗µ(∂µ + Ω†
µ)χ+ I∗χ = 0.

Define matrix fields Λ+ and Λ− by

Λ+ = qµΩµ + its hermitian conjugate,

Λ− = qµΩµ − its hermitian conjugate.

Let τ denote the time-reversal operation. Using τqµ = q∗µ we

get

τΩµ = −Ω†
µ

and then

τΛ± = ±ǫΛ̄±ǫ

which gives

(τΛ±)Λ± = ±|detΛ±| exp(iδ)σ0
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where δ = 0 if det Λ± < 0, δ = π if det Λ± > 0. We write

these as a matrix equation

|(τΛ±)Λ±|η = ±(2α±)
2η exp(iδ)

where (2α±)2 = |detΛ±|. After factorisation (of which we

omit the details)

qµΩµη = (α+ + iα−)χ = λ exp(iγ)χ

where

λ = |α+ + iα−| =
1

2
(|detΛ+|+ |detΛ−|)1/2.

This plays the role of the inertial mass in the quantum mechan-

ical equations.

Thus we have a pair of equations of which the second is the

time-reversal of the first:

qµΩµη = λ exp(iγ)χ

− q∗µΩ†
µχ = λ exp(−iγ)η.

Here γ = tan−1(α−/α+).

The generally covariant extensions of these are

qµη;µ = qµ∂µη + λ exp(iγ)χ = −Iη,

72



and its time-reversal

q∗µχ;µ = q∗µ∂µχ+ λ exp(−iγ)η = −I∗χ.

Sachs now shows that the phase factor exp(±iγ) in the above

equation can be transformed away. The equation of continuity

in special relativity is

∂µ(η
†σµη) = 0.

Using the product rule for covariant differentiation and for or-

dinary differentiation, the following equation is obtained:

qµη′;µ = qµ∂µη
′ + λχ′ = −I ′η′

where

η′ = η exp(−iγ/2),

χ′ = χ exp(iγ/2)

, I ′ = I +
1

2
iqµ∂µγ.

The corresponding time-reversed equation is

q∗µχ′
;µ = q∗µ∂µχ

′ + λη′ = −I ′∗χ′.
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Sachs now considers what happens to the above equations (his

generalisation of the Dirac equations) in various limits. We see

this in the next section.

4.6. Quantum mechanics from general relativity: the

limiting cases of the generally covariant equations

Sachs actually tries to take the reader in a circle from the

Dirac equation to the Dirac equation, although he first suggests

that he is going to derive quantum mechanics from general rel-

ativity.

The fundamental equations obtained by Sachs are (without

the primes)

(qµ∂µ + I)η = −λχ,

(q∗µ∂µ + I∗)χ = −λη.

In the limit as gµν → ηµν (the special relativistic limit as grav-

ity is reduced to zero) Sachs assumes that qµ → σµ, and thus

gets the Majorana 2-component spinor equations. These lead

to the Dirac equation. In the limit of low velocities he gets the

Schrödinger equation.

If η and χ represent ‘one particle’ (in the covariant equation)

then I represents the effect of all the ‘other matter’. This makes

the equations nonlinear.
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One possible limiting assumption is that there is ‘weak cou-

pling’ or ‘low recoil’: the matter we are interested in has a neg-

ligible impact on the ‘other matter’. For example, a particle in

an accelerator has essentially no effect on the accelerator. Then

the interaction term I can be taken to be a function of space-

time, which makes the equations linear. In this limit he as-

sumes that the spin affine connection Ωµ → 0 and λ → mc/~.

This is the usual situation in all applications of quantum me-

chanics.

According to Sachs, another limit is possible. This was

originally a speculation of Einstein. If some matter is isolated

from the rest of the ‘closed system’, then, as the remaining mat-

ter is removed, I approaches 0. In this limit he assumes that the

spin affine connection Ωµ → 0 and λ → 0. In this case, rather

than the usual description of a free particle, Sachs believes that

not only the mass but the charge of the particle also goes to 0.

This would be in full accord with the generalised Mach princi-

ple.

As mentioned earlier, an examiner has explained that Sachs

misunderstands Mach’s principle. His generalised Mach prin-

ciple is the result of this misunderstanding.
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CHAPTER 5

Comparison and conclusions

“There is no quantum world, there is only an ab-

stract quantum physical description. It is wrong

to think the task of physics is to find out how na-

ture is physics concerns what we can say about

nature.”

N. Bohr [20]

“Do you really belive that the moon exists only

when you look at it?”

A. Einstein

“Physicists do want to find out ‘how nature is’

and feel they are doing this with quantum me-

chanics, yet the official view which most work-

ers claim to follow rules out the attempt as mean-

ingless!”

P. R. Holland [19]



5.1. Introduction

In this chapter we first make some comments about the work

of Toyoki Koga (in Section 5.2) and Mendel Sachs (in Section

5.3). We then compare the two in Section 5.4 and consider

what information the two put together give us. We also say a

few words about the aspects of their theories that we do not

discuss. Finally we consider some unsolved problems.

5.2. The Field Theory of Toyoki Koga

Koga states that his study of the Schrodinger equation was

done around 1952. But he then heard about David Bohm’s

work and gave up the idea of getting his research in this area

published. About 20 years later he happened to see Bohm’s

paper for the first time. He felt that Bohm had not done very

much and sent his old paper for publication [21]. This led to his

study of the Dirac equation and his “general-relativistic” the-

ory in which he uses his substitutes for Einstein’s equation. In

Koga’s view, his work on the Schrodinger and Dirac equations

was of value mainly as clues to the latter theory. In fact, he does

not give much importance to his solutions to the Schrodinger

and Dirac equations. It appears that for him their significance is

merely as a proof that deterministic solutions exist. However,
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in chapter 3 we have been able to extract some significant infor-

mation about the electron using both his approach to the Dirac

equation and geometric algebra. This is a branch of mathe-

matics of which he seems to have been unaware, as I explain

below.

Koga commented on various topics about which he had strong

views, especially the use of mathematics without a clear phys-

ical understanding.

He also commented on several physicists. For instance, he

described David Bohm (referring to his later work with Hiley)

as “an eloquent purveyor of bizarre fantasy”. Another example

is his comment on the Generalised Mach Principle given later

in this chapter.

Koga condemned the use of spinors in physics but had noth-

ing to say about Clifford algebras. It seems that he was not

aware of their existence. In particular, he was surely not aware

of the geometric interpretation of Clifford algebras due to Hestenes.

It is a remarkable fact that Koga’s substitute for spinor fields

in the Dirac equation is consistent with the work of Fock which

was done almost 50 years earlier.

In the last chapter of his book Foundations of Quantum

Physics [27] Koga mentions some unresolved problems in his

scheme. One more point, also mentioned by Koga, is that the
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Dirac equation does not give any information about the pre-

cession of the electron’s spin axis; nor does his more general

theory.

One aspect we have ignored is the role of probability the-

ory. According to Koga, the principles like uncertainty, sponta-

neous tranitions and wave-particle duality are the consequence

of mistaking an ensemble representation of a physical system

for a single-sytem representation. He makes a similar criticism

of Bell’s arguments for his inequalities. In his opinion, in view

of the successes of quantum mechanics, these ideas can only

be treated as working rules and not as fundamental principles.

Heisenberg’s equations, according to Koga, are only equivalent

to Schrödinger’s theory for steady or static states.

5.3. Mendel Sachs’s Derivation of Quantum Mechanics

Sachs starts with the Dirac equation in the Majorana form

and tries to change it (unsuccessfully as I have explained) so

as to make it general-relativistic. He then takes this modi-

fied Dirac equation and considers the limit as the curvature of

spacetime vanishes, i.e. the flat space limit. The interaction

term in his generally covariant equations makes them nonlin-

ear since it partly depends on the solutions to the equations.
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He considers two limits: firstly the case in which the inter-

action term has a negligible dependence on the solution which

makes it a function of spacetime alone, thus making the equa-

tion linear, and secondly the limit as the interaction term ap-

proaches 0, corresponding to a free particle. (He says that the

latter limit is unachievable in principle).

Sachs gives an argument to show that the continuous distri-

bution of mass values approaches a discrete mass spectrum in

the limit of uncoupling. We omit the details of all this.

To conclude, we would like to mention that Sachs’s deriva-

tion do not appear to reqire the use of the Mach principle at

all.It must also be noted that Sachs does not consider the mean-

ing of his solutions. The question of the shape and size of the

electron and whether it has an axis of symmetry or rotation are

completely ignored by Sachs. Thus, although he makes a large

number of predictions, he does not give any insight into the

basic nature of the electron.

5.4. Conclusions from a comparison

What can we conclude from reading the work of both Toyoki

Koga and Mendel Sachs?

As an examiner mentions, the only connection between the

works of Sachs and Koga is through the Dirac equation. Koga
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does not use Geometric Algebra but I used it to study his solu-

tion. I found, in addition to a term that agrees with his view (the

electron is like a spinning top), a sort of shudder, the existence

of which he did not suspect.

Sachs uses the quaternions, an example of a geometric al-

gebra, but he doesn’t treat them as geometric objects. In order

to make a comparison, one would have to re-do Sachs’s work

correctly; the mathematical derivation needs to be corrected

and the physical meaning clarified.

Both believe that Einstein was on the right track in advocat-

ing a unified field theory based on General Relativity.

Koga states that Einstein made a serious error in assum-

ing that the Schrödinger equation has only ensemble solutions.

Einstein therefore discarded quantum mechanics at the outset

of his search and apparently intended to express the existence

of matter immediately in terms of the metric tensor. He was

unsuccessful.

Koga feels that considering a field of matter may be an

essential “scaffold” for reaching the ultimate representation.

Koga shows that the Schrödinger and Dirac equations do have

deterministic solutions. This suggests necessary properties of

the general nonlinear equations. We do not deal with this mat-

ter in detail here.

81



In contrast, the main goal of Sachs appears to be to prove

that by starting from a generalisation of General Relativity (and

the Dirac equation, although he prefers not to mention it) one

can obtain Quantum Mechanics as a limiting case.

Sachs does not bother much about the meaning of his equa-

tions or of their solutions. For instance, he does not state whether

the solutions are deterministic or not!

He also does not consider the geometric meaning of a spinor

field. Thus he never mentions what electron spin is or might be,

except that in one place he states that the electron is not a hard

little spinning object.

Unlike Koga, who believes that matter has intrinsic prop-

erties and an electron is like a small universe, Sachs empha-

sises the Generalised Mach Principle that matter has no intrin-

sic properties and all properties are due to interactions, mainly

with nearby matter. (Koga commented that if this were applied

to people it would imply that an individual is just a manifesta-

tion of the surrounding society!) It seems impossible to prove

or disprove Mach’s principle. There does not seem to be much

justification for accepting it. Although Sachs states that his re-

sults are in full accord with this principle, it seems that they

don’t imply it.
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Sachs appears to achieve his goal of formally explaining

quantum mechanics (if his derivation can be corrected, of course)

but without giving any geometrical insight. He does make nu-

merous predictions about phenomena involving various scales

from the microscopic to the astronomical but does not give any

real understanding of what is going on. In this respect he seems

to be no better than the physicists who believe in the Copen-

hagen interpretation which he criticises.

Both Koga and Sachs believe that matter consists of fields.

Koga thinks that an electron field (for instance) has a boundary,

although it may not be sharply defined. Thus one can talk about

the size of an electron (it must be very small since the electron

is conventionally considered a point particle). Sachs, on the

other hand, thinks that electrons are like waves, which have

no boundary. It should be mentioned that he explains away

entanglement on this basis.

Koga seems to be a master of physical approximation. He

states that every equation used in physics is an approximation

(which may be very accurate in some situations but not in oth-

ers). Sachs does not seem to be aware of this. He puts great

stress on the importance of finding exact solutions.

Putting the two theories together, it seems that electrons and

other “particles” are actually fields. Whether they are actually
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bounded or are like waves, it seems obvious that each electron

is located almost entirely in the neighbourhood of a point. Spin

and shudder appear to be real physical phenomena. A theory

of matter must involve gravitation.

Electron spin, although it has not been directly observed, is

a reality and is extensively applied. The electron apparently

has some other intrinsic motion. This, according to some, is

the cause of spin. The analysis given in this thesis, based on

ideas of de Broglie and Koga, suggests that there is a one-

dimensional shuddering motion parallel to the axis of spin, and

it has no connection with negative energy.

We close this section by reminding the reader that both Koga

and Sachs did a great deal more than what it described in this

thesis. Koga’s work was published in the 1970s but it was pre-

ceded by decades of thought about these questions. Sachs has

been publishing papers for more than half a century.

5.5. Open Problems

On reading Koga and Sachs, some questions occur almost

inevitably.

• Is there any evidence for deterministic electrons?

• How does one explain the stability of atoms and molecules?

What role does gravity play?
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• What is the relation between eigenvalue solutions and sta-

ble states? Koga’s explanation is not very clear while Sachs’s

is worse.

• A theory which explains transitions between stable states

is needed.

• An experimental verification of spin would be very desir-

able.

• How to explain the precession of the axis of spin?

• Why does the electron spin?

According to many physicists, in papers and books written

from the 1920s onwards to the 21st century, the consequences

of electron spin have been observed but not spin itself.

It is widely asserted that nobody knows what spin is.

The work of Belinfante on spin and circulation is, according

to Ohanian [31], unknown to the world of physicists.

For instance, Mendel Sachs says that an electron is not a

hard little spinning object but stops there and does not say what

it is according to him!

A significant exception is Toyoki Koga. According to Koga’s

theory, as clarified here, an electron is a soft little spinning and

shuddering object.
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