
DESIGN AND SYNTHESIS OF

EFFICIENT MAC ARCHITECTURES FOR

HIGH SPEED DECIMAL PROCESSOR

'11iesis su6mittetf 6y

REKHA K. JAMES

f or tlie award of tlie dearee of

DOCTOR OF PHILOSOPHY

tUlde. fife Il,dtiol'ce 0/

K. POULOSE JACOB, Ph.D. and SREELA SASI, Ph.D.

OEPARTMENT OF COMPUTER SCIENCE
FAClIl TY OF TECHNOLOGY

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

KOCHI - 682 022

INDIA

JANUARY 2010

DESIGN AND SYNTHESIS OF

EFFICIENT MA-C ARCHITECTURES FOR

HIGH SPEED DECIMAL PROCESSOR

Ph.D. thesis in the field of Architectures for Decimal Computations

Author

REKHA K. JAMES
Research Scholar
Department of Computer Science
Cochin University of Science and Technology
Kochi-682022, Kerala, India
Email: rekhajames@cusat.ac.in

Research Advisors
K. POULOSE JACOB, Ph.D.
Professor and Head
Department of Computer Science
Cochin University of Science and Technology
Kochi-682022, Kerala, India
Email: kpj@cusat.ac.in

SREELA SASI, Ph.D.
Associate Professor
Department of Computer & Information Science
Gannon University
PA, USA
Email: sasi001@gannon.edu

January 2010

Qedicatecf

to

My Tamify

@e1:1ifi1:tI11e

This is to certifi/' that the thesis entitled “DESIGN AND SYNTHESIS

OF EFFICIENT tWAC ARCHITECTURES FOR HIGH SPEED

DE CIMAL PROCESSOR” is a bonafide record o_/the research work carried

out by Ms. Re/(ha K. James under my supervision in the Department of

Computer Science, Cochin University o/Science and Technology, Kochi with

Dr. Sreela Sasi, Associate Professor, Gannon University, PA, US/I as co

guide. The results presented in this thesis or parts of it have not been

presented/or the award of any other degree.

~ t

41“ January 2010 K. POULOSE JACOB, Ph.D.
(Supervising Guide)
Professor and Head

Department of Computer Science
Cochin University of Science and Technology

Kochi-682022, Kerala

CERTIFICATE

This is to certiflw that the thesis entitled “DESIGN AND SYNTHESIS

OF EFFICIENT AIAC ARCHITECTURES FOR HIGH SPEED

DE CIJUAL PROCESSOR” is a bonafide record of the research work carried

out by Ms. Rekha K. James under the supervision and guidance of

Dr. K. Poulose Jacob, Professor and Head, Department of Computer Science,

Cochin University of Science and Technology, Kochi with myself as co-guide.

The results presented in this thesis or parts of it have not been presented for

the award of any other degree. .

5%
4"‘ January 2010 SREELA SASI, Ph.D.

Associate Professor

Department of Computer & Information Science

Gannon University, PA, USA

.@/\
I hereby dec/are that the work presented in this thesis entitled

“DESIGN AND SYNTHESIS OF EFFICIENT 11/IAC ARCHITECTURES

FOR HIGH SPEED DECIMAL PROCESSOR” is based on the original

research work carried out by me under the supervz'sz'0n and guidance of

Dr. K. Poulose Jacob, Prqfessor and Head, Department of Computer Science,

Cochin Um'versz'ly of Science and '1"echn010gy 1-1-=z't/2 Dr. Sreela Susi, Associate

Professor, Gannon Ul"2l‘1--‘@)'.S‘l'f}’, PA, USA as co-guide. The results presented in

this thesis or parts ofit have not been presented _/Or the award Qf any other

degree.

Kochi - 682022
4"‘ January 2010 REKHA K. JAMES

-e E e n~ 5 1 e ~ 0
I am deeply indebted and grateful to many people who supported me during the

research work and preparation of the thesis.

First and foremost, 1 give special thanks and glory to the God Almighty for giving me

the wisdom and health to complete this endeavour.

.l would like to express sincere gratitude and appreciation to my supervising guide

Dr. "K. Poulose Jacob, Professor and Head, Department of‘ Computer Science, Cochin

University of'Science and Technologyfor his constant encouragement, support and guidance..

llis sincerity, positive and supportive attitude, calmness and scholarly advice have been a

steady source of‘inspiration to me.

My deepest gratitude and respect also goes to Dr. Sreela Sasi, Associate Professor,

Department of Computer and information Science, Gannon University, PA, USA for her

guidance and assistance as co-superx-'isor. Her creative comments and suggestionsfrom the

initial conception till the completion of this H--'0i’l\' are highly appreciated. l am greatly

indebted to her for the financial assistance which enabled me to register for several

international conferences, and also for the strenuous effort in reviewing the. research papers

and the thesis.

I am thankful to Dr. R. Gopikakumari, Head, and all my colleagues in Division of

Electronics Engineering, School of‘ Engineering, Cochin Unit-'e.rsity of Science and

Technology for their encouragement and support. 1 am very grateful to Dr. liinu Paul, Dr.

Mridula S., Dr. Shahana T. K., Dr. Sheena Mathew-_for their cooperation, support and care

which helped me to pursue the research. l ackntm-‘ledge the contribution of the technical and

non-technical staff in the Department of Computer Science, Cochin Unit-'ersity of'Science and

Technology.

l owe heartfelt thanks to my parents and my mother-in-law for their motivation,

encouragement and understanding when it was mostly required. I specially mention my

husband George Raphael, and my daughters Shilpa and Alkafor their love, understanding,

support and encouragement that helped me tofulfil my dream.

REKHA K. JAl\"'TES

ABSTRACT

Most of the commercial and financial data are stored in decimal fonn.

Recently, support for decimal arithmetic has received increased attention due

to the growing importance in financial analysis, banking, tax calculation,

currency conversion, insurance, telephone billing and accounting. Performing

decimal arithmetic with systems that do not support decimal computations

may give a result with representation error, conversion error, and/or rounding

error. In this world of precision, such errors are no more tolerable. The errors

can be eliminated and better accuracy can be achieved if decimal

computations are done using Decimal Floating Point (DFP) units. But the

floating-point arithmetic units in today's general-purpose microprocessors are

based on the binary number system, and the decimal computations are done

using binary arithmetic. Only few common decimal numbers can be exactly

represented in Binary Floating Point (BF P). ln many; cases, the law requires

that results generated from financial calculations performed on a computer

should exactly match with manual calculations. Currently many applications

involving fractional decimal data perform decimal computations either in

software or with a combination of software and hardware. The performance

can be dramatically improved by complete hardware DFP units and this leads

to the design of processors that include DF P hardware.

However, the hardware implementation for decimal operations has

been limited due to the increase in cost and complexity. VLSI
implementations using same modular building blocks can decrease system

design and manufacturing cost. A multiplexer realization is a natural choice

from the viewpoint of cost and speed. By suitable selection of variables or

functions as control inputs, the number of modules and/or delay can be

reduced for realizing logic functions.

Although DFP arithmetic is well-suited for the financial computations,

it occupies more area than binary leading to more power when implemented in

hardware. Low power designs with high performance are given prime

importance, since power has become an important design consideration. While

efforts are being made to reduce power dissipation due to leakage currents,

alternate circuit design considerations are also gaining importance. In recent

years, reversible logic has emerged as one of the most important approaches

for power optimization. So, reversible logic is in demand for high-speed

power aware circuits.

This thesis focuses on the design and synthesis of efficient decimal

MAC (Multiply ACeumulate) architecture for high speed decimal processors

based on IEEE Standard for Floating-point Arithmetic (IEEE 754-2008). The

research goal is to design and synthesize deeimal'MAC architectures to

achieve higher performance. The main objectives of the research are to:

0 Design a new fixed point iterative double digit decimal multiplier to

improve performance compared to single digit decimal multiplier

O Develop a novel algorithm for fixed point iterative decimal multiplier to

increase speed

O Design an improved Binary Coded Decimal (BCD) multiplier for digit by

digit multiplication of signifieand digits of Decimal Floating Point (DFP)

inputs

0 Design modified parallel fixed point decimal multipliers to attain high

speeds

v Design floating point decimal multipliers using modified iterative and

parallel fixed point decimal multipliers

O Design different implementations of DFP adders aiming at reducing the

delay

0 Implement DFP MAC with fused multiply-add architectures using the

modified multiplier designs and DFP adder units for high performance

decimal processors

Q Design optimized reversible logic implementation of BCD adders in terms

of number of reversible gates and garbage outputs

Q Design reversible decimal adders suitable for multi-digit BCD addition

using Frcdkin gates (FRG) and Toffoli gates (TG)

0 Develop a new algorithm to implement any given logic function using

only multiplexers to decrease system design and manufacturing cost

/

Efficient design methods and architectures are developed for a high

performance DFP MAC unit as part of this research. The major achievements

ofthe research are the following.

v The speed of fixed point decimal multiplier in DFP unit is increased by

using double digit decimal multiplier.

0 A novel RPS algorithm for fixed point iterative decimal multiplier is

developed to increase speed. In this approach, partial products generated

using BCD digit multipliers are accumulated from the least significand end

in a column manner.

0 An improved BCD multiplier is designed with reduced area and delay for

digit by digit multiplication of significand digits of DFP inputs. Improved

BCD digit multipliers are used in the iterative decimal fixed point

multiplier that employs novel RPS algorithm.

Modified parallel decimal fixed point multiplier design is done using both

row and column partial product accumulations. The column accumulation

approach gives a decrease of area and delay over the row accumulation

method.

The iterative DFP multipliers are designed using floating point extensions

of the iterative decimal fixed point multiplier using double digit decimal

multiplier and RPS algorithm. A delay reduction is achieved using RPS

algorithm because of the initiation of rounding process during the fixed

point multiplication.

The parallel DFP multiplier is designed with the floating point extensions

of the parallel fixed point multiplier design and is compared with the

iterative designs using double digit decimal multiplier and using RPS

algorithm.

Floating point MAC unit implements the fused multiply-add operation

with a single final rounding after add operation. The fused multiply add

unit uses parallel and iterative multipliers and a floating point adder unit.

The DFP adder is implemented using ripple carry BCD adders, kogge

stone adders and reduced delay BCD adders.

The modified reversible BCD adder implementations presented are highly

optimized in tenns of number of reversible gates and garbage outputs.

The performance comparison of carry select and hybrid BCD adders with

conventional BCD adder is also done. It shows that the hybrid BCD adder

attains speed up over carry select and conventional BCD adders, for any

input length in a reversible implementation; unlike in classical logic gate

implementation.

The performance comparison of VLSI implementations of different BCD

adders reveals that the implementations using Toffoli gates are superior in

terms of quantum cost, garbage count and gate count, compared to Frcdkin

gate implementations.

The new exhaustive branching algorithm is developed to obtain reduced

hardware and/or delay for synthesizing logic functions using multiplexers.

Cgantentw

LIST DF FIGURES

LIST OF TABLES

LIST DF ABBREVIATIONS

1. INTRODUCTION

1.1 Decimal arithmetic

1.2 Early Computer Arithmetic Systems

1.3 Decimal Encodings

1.3.1 Trailing Signilicand Field

1.3.1.1 Densely Packed Decimal Encoding

1.3.2 Combination Field

1.4 Dvervievv of Research

1.5 Layout of the Thesis

2. DECIMAL FIXED PDINT MULTIPLICATIDN

2.1 Decimal Fixed point multiplication

2.2 Iterative DFxP Multipliers

2.2.1 Double Digit Decimal Multiplication (DDDMl

2.2.1.1 Secondary Multiple Generation Block

2.2.1.2 Multiplier Shift Register

2.2.1.3 Multiplexer Block

2.2.1.4 Carry Save Adder Block

2.2.1.5 Partial Product Register

@218 We

v

xi

xv

1

3

7

1D

12

13

15

16

18

21

23

23

26

26

29

29

31

33

2.2.1.6 Decimal Carry Propagate Adder

2.2.2 Decimal Fixed Point Multiplication using RPS Algorithm

2.2.2.1 BCD Digit Multiplier

2.2.2.2 Binary Multiplier

2.2.2.3 6-bit Binary to BCD Converter

2.2.2.4 HexlDecimal Multiplier

2.2.2.5 Multi-operand Decimal Adders

2.2.2.6 RPS Algorithm

2.3 Parallel DFxP Multipliers

2.3.1 Row Accumulation

2.3.2 Column Accumulation

2.4 Summary

DECIMAL FLOATING POINT MULTIPLIERS AND MAC UllllT

3.1 Decimal Floating Point Multipliers

3.2 DFP Multiplication using RPS algorithm

3.3 DFP Multiplication using DDDM

3.4 DFP Multiplication using Parallel DFxP Multiplier

3.5 DFP MAC Unit

3.5.1 DFP Adders

3.5.1.1 Ripple Carry BCD Adder

3.5.1.2 Kogge-Stone Adder

3.5.1.3 Reduced Delay BCD Adder

3.6 Summary

REVERSIBLE CIRCUITS FUR DECIMAL ADDERS

4.1 Reversible Logic

4.2 Reversible Gates

4.3 Reversible Full Adders

4.4 Reversible Decimal Adders

4.5 Reversible Fast Decimal Adders

4.5.1 Duick Decimal Adder

4.5.1.1 Parity Preserving Reversible Duick Decimal Adder

4.5.2 Carry Select BCD Adder

4.5.2.1 Parity Preserving Reversible Carry Select BCD Adder

4.5.3 Hybrid BCD Adder

4.5.3.1 Hybrid Reversible BCD Adder

4.5.4 Tofloli Gate implementation

4.6 Nevv Reversible RPS Gate

4.6.1 Fully Reversible RPS Gate

4.6.2 4-bit Binary to BCD Converter using RPS Gate

4.6.3 4-bit Binary to BCD Converter using other existing

Reversible Gates

4.6.4 4-bit Binary to BCD Converter using HNG Gate

4.6.5 Partially Reversible RPS Gate

4.6.6 Reversible Implementations of BCD Adder

4.6.6.1 BCD Adder using HNG-RPS Gates

4.6.6.2 BCD Adder using RPS Gates

4.6.6.3 BCD Adder using HNG Gates

4.7 Reversible Error Correcting Code Generation and Detection

4.8 Summary

LOGIC SYNTHESIS USING MULTIPLEXERS

5.1 Delay Reduced Combinational Logic Synthesis using Multiplexers

5.2 N-ary Exhaustive Branching Technique

iv

5.3

5.4

Exhaustive Branching Technique

Summary

E. SIMULATION RESULTS AND ANALYSIS

6.1

6.2

6.3

6.4

6.5

6.6

Simulation Results and Analysis

Simulation Results of Decimal Fixed Point Multipliers

6.2.1 DDDM: Synthesis and analysis

6.2.2

6.2.3

6.2.4

Simulation Results for Decimal Floating Point Units

Simulation Results ol BCD Digit Multiplier

Simulation Results of DFxP Multiplication using RPS Algorithm

Simulation Results for Parallel Decimal Multipliers

6.3.1 Simulation Results for Decimal Floating Point Multipliers

6.3.2 Simulation Results ol Decimal Floating Point MAC Unit

Performance Comparison of Reversible Circuits for Decimal Adders

Logic Synthesis Simulation using Multiplexers

Summary

7. CONCLUSION AND FUTURE WORK

7.1

7.2

REFERENCES

Conclusion

Suggestions for Future Work

LIST OF PUBLICATIONS OF THE AUTHOR

APPENDIX

INDEX

Figure 1.1

Figure 1.2

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 2.17

Figure 2.18

Figure 2.19

Figure 2.20

Figure 2.21

Figure 2.22

Figure 2.23

Figure 2.24

Figure 2.25

Figure 2.26

usr OF FIGURES

Survey on Commercial databases

Decimal floating-point format

Block Schematic of Decimal Fixed Point Multiplication

Block Diagram of the Fixed Point DDDM

Secondary Multiple Generation

Multiplexer Block

Decimal lncrementer

Block Diagram for the Partitioned DDDM for 34-digits

Conventional Paper and Pencil View of Digit Multiplication

3 X 3 Multiplication

4 >< 3 Multiplication of BCD inputs

4 >< 4 Multiplication of BCD inputs

4 >< 4 Multiplication of BCD inputs generating 8-bit BCD output

The principle of 6-bit binary to BCD conversion

Addition of first and last lower BCD digits

Addition of othertwo lower BCD digits to get a BCD Sum

6-bit Binary to BCD converter

BCD Digit Multiplier

4 >< 4 Hex Multiplication

Hex/Decimal multiplier

Partial product generation and accumulation in different cycles

One-digit, 15-operand Non-speculative Adder

One-digit, 5-operand Non-speculative Adder

DFxP multiplier using RPS algorithm

Decimal Fixed Point multiplier controller block

Register array for storing output of BCD-digit multiplication

Selecting inputs for multi-operand BCD addition

BCD adder array

V

Page No

3

11

23

27

29

30

34

35

36

38

38

38

39

40

40

41

41

42

43

44

49

50

51

52

52

53

54

55

vi

Figure 2.27

Figure 2.28

Figure 2.29

Figure 2.30

Figure 2.31

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Partial Product accumulation using carry save adders

Partial Product accumulation of 7-digit X 7-digit multiplier

Decimal 4:2 Compressor Block for a 7-digit X 7-digit multiplier

Column Adder array for 16-operand BCD addition

Adder array for accumulating partial products column wise

Decimal Floating Point (DFP) Multiplier

Block Schematic of DFxP Multiplier using RPS and Rounding Unit

Block diagram of a Decimal Floating Point MAC unit

Block diagram of a Decimal Floating Point Adder unit

Concatenated BCD Adders

Kogge -Stone Adder

Adder and Analyzer Unit

Adder, Analyzer and Carry Network

Reduced Delay BCD Adder

3X3 New Gate (NG)

Toffoli Gate (TG)

3X3 New Tofioli Gate (NTG)

4><4 TS Gate (TSG)

Fredkin Gate (FRG)

2><2 Feynman Gate (FG)

3X3 Feynman double Gate (F2G)

A reversible full adder with NG and NTG

Reversible full adder using NG

Reversible full adder using NTG

Reversible full adder using TG

Reversible full adder using TSG

Reversible Full adder using Fredkin Gates

BCD Adder

Reversible Implementation of 6-correction Circuit

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25

Figure 4.26

Figure 4.27

Figure 4.28

Figure 4.29

Figure 4.30

Figure 4.31

Figure 4.32

Figure 4.33

Figure 4.34

Figure 4.35

Figure 4.36

Figure 4.37

Figure 4.38

Figure 4.39

Figure 4.40

Figure 4.41

Figure 4.42

Figure 4.43

Figure 4.44

Reversible Implementation of Special Adder

Reversible lmplementation of BCD Adder

Modified Implementation of BCD Adder

4><4 HN Gate (HNG)

BCD adder for Quick Addition of Decimals (QAD)

4-Digit Quick Decimal Adder

Half adder using Fredkin Gates

Full adder using Fredkin Gates

Generation of ‘L’ bit using Fredkin Gates

Generation of ‘K’ bit using Fredkin Gates

Carry Select BCD adder

Generation of ‘K’ bit using K0 and kl

Hybrid N-digit Decimal Adder

Half Adder

Full Adder

4-bit Binary Adder using Tofioli Gates

6-Correction Circuit using Toffoli Gates

Modified Special Adder of Conventional BCD Adder

Toffoli Gate implementation of Conventional BCD Adder

4-bit Binary Adder for QAD

K-bit Generation using Toffoli Gates

Toffoli implementation of Special Adder for QAD

Toffoli Gate Implementation of QAD

K-bit generation of Carry select BCD Adder

4 >< 4 Fully reversible RPS gate

4-bit Binary to BCD converter using Fully Reversible RPS gate

4-bit Binary to BCD converter using HNG and NG

4-bit Binary to BCD converter using only HNG gates

4 X 4 Partially Reversible RPS Gate

Vlll

Figure 4.45

Figure 4.46

Figure 4.47

Figure 4.48

Figure 4.49

Figure 4.50

Figure 4.51

Figure 4.52

Figure 4.53

Figure 4.54

Figure 4.55

Figure 5.1

Figure 5.2

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Reversible implementation of Conventional BCD adder

Conventional BCD adder using RPS gates

Conventional BCD adder using HNG

Reversible 4 x 4 HCG

Reversible 4 x 4 PPHCG

Reversible (7, 4) Hamming code generator using HCG

Reversible (7, 4) Hamming code generator using F2G

(7, 4) Hamming Code Generator using parity preserving gates

(7, 4) Hamming Code Generator using F26

Reversible (7, 4) Hamming code error detector using HCG

Reversible (7, 4) Hamming code error detector using F26

1-control line multiplexer module

Implementation of a 9-variable function using exhaustive branching

technique

Area for different blocks of Double Digit Decimal Multiplier
(7-digit X 7-digit)

Delay for different blocks of Double Digit Decimal Multiplier

(7-digit >< 7-digit)

Area for different blocks of Double Digit Decimal Multiplier
(16-digit >< 16-digit)

Delay for different blocks of Double Digit Decimal Multiplier

(16-digit X 16-digit)

Area for different blocks of Double Digit Decimal Multiplier
(34-digit >< 34-digit)

Delay for different blocks of Double Digit Decimal Multiplier

(34-digit X 34-digit)

Area for various blocks of Double Digit Decimal Multipliers
(7, 16, & 34-digits)

Delay for various blocks of DDDM (7,16 & 34 digits)

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18

Figure 6.19

Figure 6.20

Figure 6.21

Figure 6.22

Figure 6.23

Figure 6.24

Figure 6.25

Area comparison of DDDM and SDDM

Delay comparison of DDDM and SDDM

Delay Break up of different components of DF P Multiplier using RPS

Algorithm

Delay Break up of DFxP Multiplier (using RPS) and Rounding Unit

Delay break up of 32-bit DFP Multiplier using RPS Algorithm

Delay analysis of Conventional, Carry Select and Hybrid

BCD Adders using classical logic gates

Analysis of area-delay product of Conventional, Carry Select

and Hybrid BCD Adders using classical logic gates

Speed up factor for Carly select and Hybrid BCD adders vs.

conventional BCD adder for classical logic gates

Delay analysis of reversible BCD adders using Fredkin gates

Speed up factor for reversible implementations of fast BCD adders vs

Conventional BCD adder

Optimum block size of Hybrid reversible BCD adder for

different input lengths

Exhaustive branched network implementation for

F = Z(4,7,9,10,12,13, 14,15)

Tree implementation for F = Z (4, 7, 9, 10, 12, 13, 14, 15)

Exhaustive branched network implementation for

F='Z(3,5,7,9, 11,15)

Tree implementation for F = Z (3, 5, 7, 9, 11, 15)

Exhaustive branched network implementation for

F = Z(3, 7, 8, 15, 19, 23, 24, 26, 27, 31)

Tree implementation for F = Z(3, 7, 8, 15, 19, 23, 24, 26, 27, 31)

Table 1.1

Table 1.2

Table 1.3

Table 1.4

Table 1.5

Table 1.6

Table 1.7

Table 2.1

Table 2.2

Table 3.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.5

LIST OF TABLES

Error caused in decimal computations done using binary arithmetic

Early Computer Systems

Contemporary Processor Support of Decimal Arithmetic

Decimal Format Parameters

Compression:(abcd)(efgh)(ijkm) to (pqr)(stu)(v)(wxy)

Expansion: (pqr)(stu)(v)(wxy) to (abcd)(efgh)(ijkm)

Encoding format for 5 bits of Combination field

Recoding of Digits of bi

Sum and carry correction values for 5-operand BCD adder

Selection of the Value to be added for Correction

Comparison of Reversible Full Adders

Truth Table of Fully Reversible RPS Gate

Truth Table of 4-Bit Binary to BCD Converter

Truth Table ot the Partial Reversible RPS Gate

Truth Table of the 4 X 4 HCG

Truth Table of the PPHC Gate

Area and Delay for various blocks of Double Digit Decimal Multiplier

(7-digit >< 7-digit)

Area and Delay for various blocks of Double Digit Decimal Multiplier

(16-digit >< 16-digit)

X1

Page No

4

7

9

12

14

14

15

30

51

83

98

126

127

130

136

136

157

159

Area and Delay for various stages of Double Digit Decimal Multiplier

(34-digit >< 34-digit) 161

Area and Delay for various blocks of 34-digit partitioned Double Digit

Decimal Multiplier

Comparisons for different designs of 34-digit Decimal Double

Digit Multipliers

163

164

xii

Table 6.6

Table 6.7

Table 6.8

Table 6.9

Table 6.10

Table 6.11

Table 6.12

Table 6.13

Table 6.14

Table 6.15

Table 6.16

Table 6.17

Table 6.18

Table 6.19

Table 6.20

Table 6.21

Table 6.22

Table 6.23

Comparison of DDDM and SDDM

Simulation results of Double Digit Decimal Multipliers

(7-digit) on F PGAs

Simulation results of Double Digit Decimal Multipliers

(16-digit) on FPGAs

Simulation results of Double Digit Decimal Multipliers

(34-digit) on FPGAs

Comparison of area and delay of BCD digit multipliers

Area and Delay for different stages of Decimal Fixed Point

Multiplier using RPS Algorithm (7-digit >< 7-digit)

Area and Delay for different stages of Decimal Fixed Point

Parallel Multipliers

Comparison of DFxP Parallel Multipliers for different lengths

Area and Delay for different stages of Decimal Fixed Point

Multiplier (7-digit X 7-digit) Column Accumulation

Area and Delay for different stages of DFP Multiplier using

RPS algorithm (32-bit)

Area and Delay of Rounding Unit and DFxP Multiplier using

RPS algorithm (7-digit X 7-digit)

Comparison of DFxP multipliers using RPS algorithm with existing one

(7-digit >< 7-digit)

Comparison of DFP Multipliers using RPS algorithm with existing

one (32-bit >< 32-bit)

Comparison of Iterative DF P Multipliers for 32-bit input

Comparison of DFP Multipliers (using parallel, DDDM & of Erle)

for 32-bit Input

Comparison of DFP Adders (16-digit)

Comparison of DFP MAC units (32-bit)

Comparative Analysis of the Reversible BCD Adders

Table 6.24

Table 6.25

Table 6.26

Table 6.27

Table 6.28

Table 6.29

Table 6.30

Table 6.31

Table 6.32

Table 6.33

xiii

Comparative analysis of Reversible BCD Adders implemented using

Toffoli and Fredkin Gates 190
Comparison of Reversible 4-Bit Binary to BCD Converters 191

Comparative Analysis of Reversible BCD Adders for logical complexity 192

Comparison of Reversible Hamming code Generation andDetection Circuits 194
4-bit binary minterm table 195
The reduced minterm table for x3= 0 195
The reduced minterm table for x3 = 1 196
The reduced minterm table for (x269 xi) = 1 196
The reduced minterm table for (x;® x1) = 0 196
Comparison in terms of delay and hardware for standard implementation,

tree implementation and exhaustive branched network implementation 200

ALU

ASIC

BAP-SC

BCD

BFP

BID

CADAC

CC

CMOS

CPA

CPU

CSA

DCA

DDDM

DFP

DFxP

DG

DP

DPD

DSP

FA

FG

F2G

FPGA

FRG

GC

LIST OF ABBREVIATIONS

Arithmetic and Logic Unit

Application Specific Integrated Circuit

Bit-slice Arithmetic Processor for Scientific Computing

Binary Coded Decimal

Binary Floating Point

Binary Integer Decimal

Controlled-Precision Decimal Arithmetic Unit

Carry Counter

Complementary Metal Oxide Semiconductor

Carry Propagate Adder

Central Processing Unit

Carry Save Adder

Decimal Carry-save Adder

Double Digit Decimal Multiplier

Decimal Floating Point

Decimal Fixed Point

Digit Generate

Digit Propagate

Densely Packed Decimal

Digital Signal Processing

Full Adder

Feynman Gate

Feynman double Gate

Field Programmable Gate Array

FRedkin Gate

Garbage Count

XVI

HA

HCG

HNG

LSB

LSD

LUT

MAC

MSB

MSD

MSR

MUX

NaN

NG

NTG

PPHCG

PPRM

QAD

QC

RBCD

RC

RM

RTE

SEC

SDDM

SMG

TC

TG

TPR

Half Adder

Hamming Code Gate

HN Gate

Least Significant Bit

Least Significant Digit

Look Up Table

Multiply ACcumulate

Most Significant Bit

Most Significant Digit

Multiplier shift Register

Multiplexer

Not a Number

New Gate

New Toffoli Gate

Parity Preserving Hamming Code Gate

Positive Polarity Reed Muller

Quick Addition of Decimals

Quantum Cost

Redundant Binary Coded Decimal

Reversible Circuit

Reed Muller

Round To Even

Single Error Correction

Single Digit Decimal Multiplier

Secondary Multiplier Generation

Temporary Carry

Toffoli Gate

Temporary Product Register

TS

TSG

ULM

UNIVAC

VHDL

VHSIC

VLSI

Temporary Sum

TS Gate

Universal Logic Module

UNlVersa| Automatic Computer

\/HSiC Hardware Description Language

Very High Speed Integrated Circuit

Very Large Scale Integration

xvii

Chapter 1

Introduction

_ I _'__ I 7 1'
This chapter explains the motivation behind the decimal computer arithmetic.

It brings out the importance of decimal arithmetic over binary arithmetic for

financial, commercial and all other applications where data is given in decimal form.

T he chapter also explores the histor_v of computer arithmetic systems. Different

decimal encodings for IEEE 754- 2008 standards are discussed as well. The chapter

also gives an overview of the research work detailed in the thesis.

3

1.1 Decimal arithmetic

Most of world's commercial and financial data are stored in decimal

form . A survey done on commercial databases show that most data are

decimal as shown in Figure 1. J [A. Tsang and M. Olschanowsky, J 99 1].

' Decimal - 55% ' Small 1nl - 26.40%

t Integer - 17.30% t Floating - 1.30%

Figure 1.1: Survey on Commercial dalabases

Current ly. decimal computations are done using binary arithmetic by

general purpose computers. Many earl y computers (such as ENIAC and IBM

650) were decimal machines (IBM Decimal arithmetic ~FAQ]' However. in

the 19505, most computers turned to binary representations of numbers as thi s

made useful reduct ions in the complex ity of arithmetic units. This reduction in

turn led to greater reliability al lower costs. This is because binary data can be

stored effic iently and processed quickly on two-Slate computers.

Chapter 1

4

Binary arithmetic is appropriate for mathematical analysis and requires

less hardware to implement the same filnction. Even then there are compelling

reasons to consider decimal arithmetic, particularly for business computations.

The reasons include human’s natural affinity for decimal arithmetic and the

inexact mapping between some decimal and binary values. Binary floating

point (BFP) values cannot represent all decimal numbers. For example a

value of 0.1 requires an infinitely recurring binary pattem of zeros and oncs

while, a decimal number system can represent 0.1 exactly, as one tenth (that

is, 10"). When an average user performs a calculation such as addition of 0.1

and 0.9, the expected result is 1.0. The user would find it very confusing to be

presented with an answer of 0.999999. Errors caused in binary results of

repeatedly dividing 9 by ten is a good example of the problem of using binary

arithmetic for decimal computations as shown in Table l.l[lBM, Decimal

arithmetic - FAQ]

Table 1.1: Error caused in decimal computations done using binary arithmetic

} Decimal Binary l‘r 0.9 0.9
iJ or ____ ..0.09 0.089999996

0.009 0.0090
. 0.0009 9.0E—4

__1
T

i 0.00009 9.0E-5
li 0.000009 T 9.05-6

4 _'._ 44_

’ Wi9E—7 9.0000003E;TT
9E—8 9.05-8 l

J 9E—QWg 9.0E-9
9E—10 i 8.9999996E-l0

introduction

5

Binary calculations can apparently make some predictable results

erroneous. Such errors may accumulate unnoticed and then surface after

repeated operations. Hence, binary arithmetic is not suitable for financial,

commercial, and human-centric applications or for any calculations where the

results achieved are required to match those which are calculated by hand.

Due to these reasons, calculations are to be carried out using decimal

arithmetic for data which are in decimal form. Moreover, in many cases, the

law requires that results generated from financial calculations performed on a

computer exactly match with manual calculations. The legal requirements (for

example, in Euro regulations) demand the working precision in decimal digits

and rounding method to decimal digits to be used for calculations. All these

requirements can only be met by radix l0 arithmetic which preserves

precision. Recently, decimal arithmetic has received increased attention due to

this growing importance in financial analysis, banking, tax calculation,

currency conversion, insurance, telephone billing and accounting. In

engineering, exact measurements are often kept in a decimal form and

processing such values in binary can lead to inaccuracies. This was the cause

of the Patriot missile failure in 1991, when a missile failed to track and

intercept an incoming Scud missile. The error was caused by multiplying a

time (measured in tenths ofa second) by 0.1 (approximated in binary floating

point) to calculate seconds [M. Blair er al. 1992]. This makes it difficult to

develop and test applications that use exact real-world data using binary

floating point arithmetic. But there are some disadvantages of using decimal

arithmetic over binary. Decimal numbers are traditionally held in a Binary

Coded Decimal (BCD) form that uses more storage than a purely binary

representation. Calculations in decimal can therefore require more circuitry

Chapter 1

6

than pure binary calculations, and will typically be slower. Currently, binary

floating-point is usually implemented by the hardware in a computer, whereas

decimal floating-point is implemented in software. This means that decimal

computations are typically about 100 to l000 times slower than binary

operations [IBM Decimal arithmetic —FAQ].

Hardware support for decimal operations has been limited. This is

because decimal arithmetic operations are more complex and occupy more

area leading to more power and less speed compared to binary arithmetic

when implemented in hardware. But the scenario is set to change with the cost

of die space continually dropping and the significant speedup achievable in

hardware. Yet there is little in the way of hardware assist that perform

operations on data stored in decimal form.

The relevance of research in the area of decimal computer arithmetic,

is emphasized by the following observations. There are a number of

established computer languages now supporting Decimal floating point (DF P)

arithmetic, including C/C++, COBOL, Java, PERL, Python etc [M. A. Erle,

2008]. Further the IEEE Standard for Binary Floating-Point Arithmetic (IEEE

754-1985) and the IEEE Standard for Radix-Independent Floating-Point

Arithmetic (IEEE 854-1987) have been merged, expanded and approved as a

new standard named the IEEE Standard for Floating-Point Arithmetic or IEEE

754-2008 standard. Finally the decreasing cost of die space [G. E. Moore,

1965] allows new features to be added such as the introduction of decimal

arithmetic.

lnfloducflon

7

1.2 Early Computer Arithmetic Systems
The earliest electronic computers, for example ENIAC [H. H.

Goldstine and A. Goldstine, 1996], UNIVAC [R. Head, 2001], and IBM 650

[D. E. Knuth, 1986], performed arithmetic functions in base ten [N. Stern,

1981]. But the EDSAC [M. V. Wilkes, 1997], EDVAC [M. R. Williams,

1993], and the ORDVAC [T. Leser and M. Romanelli, 1956] used binary

base. Even with the advent of solid state computers based on the two-state

transistor, some computer manufacturers continued to process data in base ten

by simply encoding each decimal digit in four binary bits (e.g., binary coded

decimal (BCD)). Table 1.2 provides list of early computer systems [M. A.

Erle, 2008].

Table 1.2: Early Computer SystemsYear System Base
1913 6 1 anallyticalflengine [B._Rande1l, 1982], C 1 decimal

1938 1 Z1 l binary
L

1

1939 [J. V. Atanasoff, 1984] binary"
1943 Colossus [J. Copeland, 2004] 61661;
1944 IBM ASCC/MARKI [R. Campbell, 1999] binary

1945 ENIAC [H.p Goldstine and A. Goldstine, H decimal

1949 Ens/1c [M. v. Wilkes, 1997] binary
I 1951 UNIVACI [R. Head, 2001] decimal

1 1952 E1)vAc [M. R. Williams, 1993] binary

1952 A oaov/ac [T. Leser and M. Romanelli,l956] 1l A 9 l binary
1953 IBM 650 [11 12. Knuth, 1926] decimal

1956 ,UNIVAC [R1 Head, 2001] C ___ 6 decimal

1959 9 NEC NEAC 2201 A " decimal

1960 UNIVAC LARC decimal

1961 IBM 7030 (Stretch) [W. B. et a1., 1962] binary

M”.

1964 IBM System/360 [(1. M. Amdahl,”C. A. Blaauw, and F. P.Brooks, 1964] _ _binary

, 1964 CDC 6600 E. ‘Thornton, 1980] 6 binary

Chapter 1

8

Some of the more recent computer systems providing hardware

support of decimal arithmetic described in [M. A. Erle, 2008] are given below.

A Controlled-Precision Decimal Arithmetic Unit (CADAC) is described in

[M. S. Cohen, T. E. Hull, and V. C. Hamacher, 1983]. In [T. E. Hull, M. S.

Cohen, and C. B. Hall, 1991], this work is extended with a software system

that supports "variable-precision decimal arithmetic. Even though consideration

is given to the hardware for exception handling, it does not give any drastic

improvement in the actual hardware implementation. In [G. Bohlender and T.

Teufel, 1987], a Bit-slice Arithmetic Processor for Scientific Computing

(BAP-SC) is described that implements DFP ADD, SUBTRACT,

MULTIPLY, and DIVIDE and provide significant acceleration over pure

software solutions. Several commercial microprocessors offer some fixed

point BCD arithmetic instructions. The Intel x86 processor series offers eight

decimal instructions, the Motorola 68k processor series provides five decimal

instructions, and the HP PA-RISC processor series offers two decimal

instructions [G. Kane, 1996]. All three of these processors have instructions to

correct the result of a binary ADD and binary SUBTRACT performed in a

bias and correction manner on packed-BCD data. Additionally, the Intel x86

processors has instructions to correct binary ADD, SUBTRACT, MU LTIPLY,

and DIVIDE on unpacked-BCD data. More extensive support of decimal

arithmetic in hardware is found in IBM's mainframes, such as the S/390 and

System 2900 [F. Y. Busab er al., 2001]. Support for DFP arithmetic can be

found in IBM's System 29 [A. Y. Duale et al., 2007] and System Z10 [E. M.

Schwarz, J. S. Kapemiek, and M. F. Cowlishaw, 2009] mainframes, and in

IBM's Power6 [L. Eisen er al., 2007] server. The S/390 processor offers

decimal fixed point ADD, SUBTRACT, MULTIPLY, and DIVIDE via a

Introduction I I I w it T

9

dedicated decimal adder employing the direct decimal addition scheme. The

MULTIPLY, and DIVIDE instructions involve iterative additions and

subtractions. The System Z900 processor offers the same instructions but

employs a combined binary/decimal adder. The IBM System z9 is the first

commercial platform to offer DFP arithmetic in conformance with IEEE 754

2008. The fixed-point arithmetic unit on the 2:9 processor supports binary and

decimal fixed-point operations. Recently, SilMinds corporation [SilMinds,

2008] has made available its synthesizable VHDL and Verilog code which

performs DFP ADD, SUBTRACT, MULTIPLY [R. Eissa er al., 2008],

FUSED MULTIPLY-ADD, DIVIDE, and SQUARE ROOT in conformance

with IEEE 754-2008. The customers can use these off-the-shelf codes when

developing commercial processors or Application Specific Integrated Circuits

(ASICS). Table 1.3 contains a list of contemporary processor support for

decimal arithmetic [M. A. Erle, 2008].

Table 1.3: Contemporary Processor Support of Decimal Arithmetic

Processor I Support
Intel x8 6 family instructions to correct binary +,-, ><, /p

L Motorola 68k family instructions to correct binary +,

HP PA-RISC family instructions to correct binary +,

Early IBM mainframes firmware-assisted Decimal fixed point

IBM System 29
In compliance with IEEE 754-2008

firmware-assisted DFP

I IBM Power6
In compliance with IEEE 754-2008

complete DFP hardware unitQ 7
IBM System 210

In compliance with IEEE 754-2008
extension of IBM Power6 DFP unit

pl

~ SilMinds DFP cores
In compliance with IEEE 754-2008

partial implementation
(+2 -1 X9 X+: /1 xi/2) by

Chapter 1

l0

The new hardware support is much faster than sofiware, but is still

somewhat slower than binary floating-point hardware. However, the

programming and conversion overheads and other costs of using binary

arithmetic suggest that hardware decimal arithmetic is now the more

economical option for most applications.

1.3 Decimal Encodings
In the early days of electronic computers a great variety of both fixed

point and floating-point decimal encodings were used. Over the years, most of

these encodings were abandoned, but the form of decimal encoding that

endured is the dual—integer encoding. Dual-integer encodings describe a

decimal number using two integers: a significand and an exponent. The value

of a number encoded with these two parameters is significand >< l0°x'°‘me"'.

These encodings allow for a range of positive and negative values together

with values of i0, ilnfinity, and Not-a-Number (NaN). Standard
specifications for decimal representations are recently added to the IEEE 754

2008, which was officially approved in June 2008. The specifications include

the choice of precision, exponent base and range, significand representation

and encoding. These are approved for IEEE 754-2008 based on the

considerations and reasoning presented by [Cowlishaw er al., 2001] and the

Decimal Subcommittee of the committee revising IEEE 754-1985.

Three formats of decimal floating point numbers suggested were:

0 A decimal32 number, which is encoded in four consecutive

bytes (32 bits)

0 A decimal64 number, which is encoded in eight consecutive

bytes (64 bits)

Introduction

ll

0 A decimal128 number, which is encoded in 16 consecutive

bytes (128 bits)

In IEEE 754-2008, the value of a finite DFP number with an integer

significand is

v=(—l)’><C><l0"

where ‘S’ is the sign, ‘q’ is the unbiased exponent, and ‘C’ is the significand.

The precision or the length of the significand is denoted as ‘p’, which is equal

to 7, l6, or 34 digits, for decimal32, decimal64, or decimall28, respectively.

Figure 1.2 shows the Decimal Floating Point format.

Width l bit w+5 bits t= (lO><J) bits4 >4 » F ~ ><~ _ >
=(3><J) digits

Field }Sign l Combination Trailing SignificandS G T
Figure 1.2: Decimal floating-point format

The l-bit Sign Field, S indicates the sign of a number. The (w+5)-bit

Combination Field, G provides the most significand digit (MSD) of the

significand and a non-negative biased exponent, E such that E = q + bias. The

exponent is almost always encoded in binary. The G Field also indicates

special values, such as Not-a-Number (NaN) and infinity (00). The remaining

digits ofthe significand are specified in the t-bit Trailing Significand Field, T.

Chapter 1

12

1.3.1 Trailing Significand Field

The number of bits in T field is an integer multiple of 10, indicated as

l0><J where J is an integer that can be 2, 5 or ll in the decima132, decimal64

or deeimall28 formats respectively.

IEEE 754-2008 specifies two encodings for the Trailing Signifieand

Field. The first encodes its significand using a decimal encoding, also known

as the Densely Packed Decimal (DPD) encoding based on the encoding of

three BCD digits into ten bits [M. F. Cowlishaw, 2002]. The other encoding

uses a binary integer signifieand, and is commonly referred to as the Binary

Integer Decimal (BID) encoding. IEEE 754-2008 refers to the BID encoding

as the binary encoding of DFP numbers and it refers to the DPD encoding as

the decimal encoding of DFP numbers. This research makes use of DPD

encoding.

Table 1.4 gives the important parameters for each decimal format. In

this table, widths are given in bits, and emax and emin indicate the minimum

and maximum unbiased exponents, respectively, in each format.

Table 1.4: Decimal Format Parameters

2 Type ofFormat Deeimal32 ; Decimal64 ‘ Decimall28Storage width 32 64 128
t Trailing Signifueandwfield width 20 50 B ‘iv l.lO in_g I I (I) » up D I

Number of signifieand digits
§ (precision : p) 7 digits 16 digits ; 34 digits I‘ I

Combination field width (w+5) ’ 11 i 13 17
j Exponent bias 101 39s "I 6176

I emax BB +96 +384 +6144 Ii B emin B -M95 -383 -6143
lntroductionnm I I W I I I

\

13

1.3.1.1 Densely Packed Decimal Encoding

Densely Packed Decimal (DPD) encoding, encodes three decimal

digits in 10 bits, giving a 20% more efficient encoding than simple BCD (one

digit in 4 bits). The specific encoding preserves much of the identity of the

three decimal digits, and allows simple processing. The primary advantage of

the encoding over a pure binary representation in ten bits is that no arithmetic

is needed for conversion to or from BCD. ln hardware, encoding or decoding

can be achieved with only 2-3 gate delays. In addition, the encoding has other

advantages. For example, the least—significant bit of each digit is retained as

such. Compression of one or two decimal digits (into the optimal four or seven

bits respectively) is achieved as a subset of the 3-digit encoding. The DPD

encoding, considers each of the three digits as either being small (0-7,

requiring 3 bits to distinguish) or large (8 or 9, requiring one bit).

The possible combinations of these ranges are then:

0 All digits are small (51.2% of the possibilities). This requires 3+3+3

bits for the digits, leaving l bit to indicate this combination.

0 Two digits are small (38.4%). This requires 3+3+l bits for the digits,

leaving 3 to indicate this combination.

0 One digit is small (9.6%). This requires 3+1+l bits for the digits,

leaving 5 to indicate this combination.

0 No digits are small (0.8%). This requires il+1+1 bits for the digits,

leaving 7 (only 5 are needed) for the indication.

W 1 1 Chapler1

14

and decoding (expansion to BCD); the letters a—k and m represent the 12 bits

The Tables 1.5 and 1.6 describe the encoding (compression from BCD)

of three BCD digits, and p—y represent the 10 bits of the encoded digits.

Table 1.5: Compression:(abcd)(efgh)(ijkm) to (pqr)(stu)(v)(wxy)

aei pqr stu v wxy Comments

000 bcd fgh Ojkm All digits are small

O01 bddifgh 1 00m Right digit is large [keeps 0-9 unchanged]

010 bcdjkh101m Middle digit is large

100 5 jkd rgii 1 lOm Left digit is large

I10 jkd_t)0h 1 llm MRigl1t digit is small [L & M are large]

5 101 fgd Olhl 11m Middle digit is small [L & R are large]
O11 bed 10111 llm Left digit is small [M & R are large]

ll] ’00d1lh1llm
I

V

i All digits are large; two bits are unused

Table 1.6: Expansion: (pqr)(stu)(v)(wxy) to (abcd)(efgh)(ijkm)

vwxst i abcd efgh ijkm

0.... Opqr Ostu Owxy

100.. Opqr Ostu l00y

101.. Opqr lO0u Osty

110.. l00r Ostu Opqy

11100 l00r lO0u Opqy

11101 l00r Opqu l00y

‘11110 i Opqr lO0u l00y

lllll 1001' lO0u l00y

Introduction

15

1.3.2 Combination Field

In IEEE 754- 2008 standard there are 7 significand digits for the 32-bit

format, 16 digits for the 64-bit format and 34 digits for the 128-bit format. In

all three cases there is one digit more than a number divisible by 3. The most

significant digit (MSD) of the significand is intermingled with two bits of the

binary written exponent into five bits of ‘Combination Field‘. Also the non

numerical values Infinity and Not-a-Number (NaN) are encoded into this field.

Table 1.7 shows the format of coding 5 bits of the combination field. The

exponents bits a, b are the most significant exponent bits and can take the

values 00, Ol and 10. The rest of the exponent bits are represented as ‘w’ bits

of the combination field. The exponent is stored as a binary number. Since the

first two bits of the exponent are not allowed to be 1 simultaneously its

greatest allowed integer value is (2“-l)—2 (W2) = 3 >< 2 (W2) — l where n is the

number of bits in the exponent.

Table 1.7: Encoding format for 5 bits of Combination field

i Type of Combination Exponent Significand’svalue of the field bits MSDnumber Jr s s \ 2Finite abcde it ab C Ocde
1 Finite llabe ab 100eto J 1 . _% 1 . a .. 1 .Infinite 1 11110 . ..

NaN

Further details of IEEE 754-2008 standard are listed in Appendix.

C Chapter 1

16

1.4 Overview of Research

This thesis focuses on the design and synthesis of efficient decimal MAC

(Multiply Accumulate) architecture for high performance decimal processors based

on IEEE Standard for Floating-point Arithmetic (IEEE 754-2008). The design makes

use of Binary Coded Decimal (BCD) coding for decimal representation. The decimal

MAC unit has a DFP multiplier fused with a DFP adder module.

The DFP multiplier has to be an efficient, high speed multiplier, for the MAC

unit to achieve high performance. The DFP multiplier can be designed using iterative

and parallel approaches. This thesis presents two novel techniques for iterative DFP

multiplication. The first approach has a Decimal Fixed Point (DFXP) multiplier using

a novel Double Digit Decimal Multiplication (DDDM) technique that performs two

digit multiplications simultaneously. The second approach does DFXP multiplication

using a novel RPS algorithm. In this approach partial products for column

accumulation are generated from the least significant end in an iterative manner using

BCD digit multipliers. A novel design for BCD digit multiplication that reduces the

critical path delay and area is also presented in this thesis. The thesis also presents a

parallel DFP multiplier having a parallel DFXP multiplier for significand digit

multiplication. Parallel designs are adopted when latency and throughput are

considered more important than area. All these floating point multipliers presented

incorporate exponent processing, rounding and exception detection capabilities.

Different designs of DFP adders are also implemented aiming at reducing the delay.

In recent years, reversible logic has emerged as one of the most important

approaches for power optimization with its significance in quantum computing and

nanotechnology. There is considerable difference in the synthesis of logic circuits

using classical logic gates and reversible gates. Design of reversible circuits for

decimal arithmetic provides a low power approach for MAC implementation.

An improved design for a reversible logic implementation of BCD adder that

is highly optimized in terms of number of reversible gates and garbage count (GC) is

Introduction

17

presented. This research also presents a reversible fault tolerant implementation for

quick addition of decimals (QAD) suitable for multi-digit BCD addition. The design

makes use of reversible conservative Fredkin gates (FRG) only and presents a

performance analysis of carry select and hybrid decimal adders. Toffoli Gate (TG)

implementations of conventional BCD adders, adders for QAD, and carry select BCD

adders for multi-digit addition are also presented. This thesis presents two new

universal 4 >< 4 ‘reversible RPS gates’ that can function as a reversible 4-bit Binary to

BCD converter with a garbage count of zero. The reversible implementations of BCD

adder using fully reversible RPS gates, using combination of HNG-RPS gates and

using HNG gates are presented as well. The reversible circuits presented forms the

initial step in the building of complex reversible systems, which can execute more

complicated operations for a reversible Decimal ALU.

Low power circuits designed in reversible logic for Hamming code

generation and error detection circuit is also presented. Reversible logic is suitable for

implementing error correcting code generation and detection circuits. The design is

done using a new 4 >< 4 reversible gate, Hamming Code Gate (HCG). A parity

preserving HCG (PPHCG) that preserves the input parity at the output bits is used for

achieving fault tolerance for the Hamming code generation and error detection
circuits.

This thesis also presents an approach to obtain reduced hardware and/or delay

for logic functions using multiplexers. Replication of single control line multiplexer is

used as the only design unit for defining any logic function specified by minterms. A

new algorithm is presented that does exhaustive branching to reduce the number of

levels and/or modules required to implement any logic function. The algorithm

identifies a single variable or a function at the control input of the multiplexer which

leads to an implementation with reduced number of levels and/or hardware. A VLSI

design using same modular building blocks can decrease system design and

manufacturing cost for MAC implementation.

T Chapter ‘I

1 5 Layout of the Thesis

The layout of the thesis is as follows:

Chapter 2 describes the different iterative and parallel decimal fixed point

multipliers. It includes the double digit fixed point decimal multiplication for

iterative approach. The use of a novel RPS algorithm for the fixed point

decimal multiplication is explained in the next session. The chapter also

presents a BCD digit multiplier design with reduced critical path delay and

area. The design can be used in iterative and parallel decimal fixed point

multipliers. Different parallel DFxP multipliers are also introduced. All these

fixed point multipliers are used to multiply the significands of the floating

point inputs in a DFP multiplier.

Chapter 3 presents the different schemes of decimal floating point

multiplication, decimal floating point adders and floating point fused

multiply-add units.

Chapter 4 presents reversible logic implementation of improved decimal

adders suitable for low power designs.

Chapter 5 presents new exhaustive branching algorithm to obtain reduced

hardware and/or delay for logic functions using multiplexers.

Chapter 6 presents the simulation results of various designs described in

Chapters 2, 3, 4 and 5. The performances of the new systems are compared

with that of existing systems and the results are tabulated.

|fllf0dUCl|Ofl

19

Chapter 7 sums up the thesis by drawing conclusions from the results, and

suggests possible extensions of the research work for further investigation.

References are listed following this chapter along with the details of

publications by the author.

i Chapter 1

Chapter 2

Decimal Fixed Point Multiplication

‘ I 7 I - D _
Decimal floating point multiplication is an integral part o_/l'_financial, and

commercial computations. The multiplication ofsignificand digits 0f_/loating point

numbers are done by Decimal F ixed Point multipliers. Decimal Fixed Point

multipliers are typicall_v implemented using an iterative approach because of their

complexity. This chapter presents a novel Double Digit Decimal Multiplication

(DDDM) technique for iterative _fi.1'ed point multiplication that performs 2-digit

multiplications Slt7IZlllGI7€0ltSl_\'. A novel RPS design for iterative decimal fixed point

multiplication is also presented in this chapter. ln this design the partial products are

generated using BCD digit multipliers, and are accumulated based on a novel RPS

algorithm. A novel design for BCD digit multiplication that reduces the critical path

delay and area is presented as well in this chapter. The design is extended to a

Hex/Decimal multiplier that gives either a decimal output or a binary output

depending on the requirement. Parallel multipliers are used at the expense of area to

attain high speeds. This chapter also presents three approaches for parallel fixed

point decimal multiplication.

23

2.1 Decimal Fixed Point Multiplication

A Decimal Fixed Point (DFXP) multiplier multiplies an n-digit

multiplicand, A, by an n-digit multiplier, B, producing a 2n-digit product, P.

The block diagram of a DFxP multiplier is shown in Figure 2.l. The two

main components in the DFXP multiplier design are: generation of partial

products and accumulation of partial products. The generation of partial

products can be done by three different ways: digit by digit multiplication,

word by digit multiplication or word by word multiplication. In digit by digit

multiplication, each digit of the multiplicand is multiplied by each digit of

the multiplier by a decimal digit multiplier. In word by digit multiplication,

the multiplicand as such is multiplied by each digit of the multiplier. ln word

by word multiplication the multiplicand is multiplied by the multiplier as a

whole. The accumulation of partial products can be done in two ways: Row

accumulation or Column accumulation.

‘N Operand Partial Product Partial Product , Product
Recoding Generation (digit by 7*‘ Accumulation Ln Recod- _>

_> (multiplicand -F digit, word by digit, (row wise or ing ;I and./or word by word) column wise) ‘' multiplier) A '>l
Figure 2.1: Block Schematic of Decimal Fixed Point Multiplication

2.2 Iterative DFXP Multipliers

DFXP multipliers are typically implemented using an iterative

approach because of their complexity. Several iterative designs for DFxP

multiplication have been proposed by [Larson, 1973], [Hoffman and

I Chapter 2

24

Schardt, 1975] and [Bradley er al., l986] in seventies and eighties. Such

designs either successively add the current multiplicand as many times as the

value of multiplier digit, or add a multiple of the multiplicand to the

previously accumulated partial product. In an iterative DFXP multiplier

presented in [Ohtsuki er al., 1987], decimal partial products are generated by

creating two partial products for each multiplier digit. Multiplying two n

digit Binary Coded Decimal (BCD) numbers requires n iterations, where all

iterations consist of two binary carry-save additions and three decimal

corrections. After n iterations, the carry and sum are added using a decimal

carry propagate adder to produce the final product. The multiplier presented

in [Ueda, 1995] generates the partial products by a costly retrieval of product

of BCD digits from look-up tables (LUT). Several existing designs for DFxP

multiplication generate and store multiples of the multiplicand before partial

product generation. The multiplier digits are then used to select the

appropriate multiple as the partial product [Busaba er al., 2001]. The primary

multiples 2A through 9/I are calculated initially, and stored along with A to

reduce the delay. The enormous area and delay required for generating all

the eight multiples is a disadvantage of this approach. Eight additional

registers are also needed to store these multiples.

An alternative method is to find a reduced set of secondary multiples.

For example, if 2A, 5A, and 8A are computed and stored along with A, all the

other multiples can be obtained with a single addition of two members from

the set. Another reduced set of multiples, comprising A, 2A, 4A, and 8A has a

one-to-one correspondence with the weighted bits of a BCD digit. The

disadvantage is that certain missing multiples can be generated only by the

addition of three multiples from the reduced set. For example, the generation

Decimal Fixed Point Multiplication T T T

25

of 7A requires the addition of three multiples: A, 2A, and 4/1. Although the

secondary multiple approach reduces the area and register count, it

introduces the overhead of potentially one more addition for each iteration.

The multiplier design proposed by [Erle and Schulte, 2003] uses decimal

carry-save addition to reduce this overhead. It gives a DFXP multiplication

algorithm suitable for high-performance with short cycle times. The

multiplier in [Kenney, Schulte and Erlc, 2004] stores intermediate product

digits in a less restrictive, redundant format called the overloaded decimal

representation that reduces the delay of the iterative portion of the DFXP

multiplier. The partial product generated is then added to an intermediate

product register that holds the previously accumulated partial product.

This chapter presents two new iterative designs for DFxP
multiplication to improve latency and speed. The throughput of these designs

is less than one multiply per cycle because of the iterative method. The

iterative nature implies a high degree of hardware re-use and these designs

are most applicable to systems in which area is more important than

throughput. The first approach presents a novel Double Digit Decimal

Multiplication (DDDM) technique for iterative DFXP multiplication that

pertionns 2-digit multiplications simultaneously. A novel RPS design for

iterative DFXP multiplication is presented as the second approach. In this

design the partial products are generated using Binary Coded Decimal

(BCD) digit multipliers. (In this research the decimal digits are coded in

BCD. BCD encoding of decimal digits is the simplest and most popular code

for decimal data.) A new design for BCD digit multiplication that reduces

the critical path delay and area is presented. The design is then extended to a

Hex/Decimal multiplier that gives either a decimal output or a binary output

depending on the requirement.

Chapter 2

26

2.2.1 Double Digit Decimal Multiplication (DDDM)

The DDDM method for DFXP multiplier iterates over the digits of

the multiplier operand and successively produces partial products by a word

by digit multiplication. The method uses a reduced set of secondary

multiples comprising of 2A, 4A and 5A for partial product generation. The

novel approach is that the multiplier generates multiplicand multiples for 2

digits of the multiplier simultaneously in each iteration cycle. The DDDM

method uses decimal carry save addition, to reduce the iterative delay, for

row accumulation of partial products as in [Erle and Schulte, 2003]. This

DFXP multiplication algorithm is suitable for high-performance with less

number of cycles and short cycle times.

The DDDM technique is explained with the help ofa block diagram

shown in Figure 2.2. The main blocks of the multiplier are the ‘Secondary

Multiple Generation Block’, ‘Multiplier Shift Register’, ‘Multiplexer Block’,

‘Carry save Adder Block’ (comprising of Decimal Carry Save adder and

Decimal 4:2 compressor), ‘Temporary Product Registers’, ‘Partial Product

Shift Register’, and the ‘Decimal Carry Propagate Adder’.

2.2.1.1 Secondary Multiple Generation Block

The ‘Secondary Multiple Generation’ block generates the reduced set

of secondary multiples ofthe multiplicand A. For an n-digit multiplication it

generates 2A, 4A and 5A multiples oflength (n+1) digits. The 2/1, 4A, and 5A

secondary multiple set is selected since they can be generated with least

delay compared to other secondary multiple sets. This is because, doubling

(ZA) and quintupling (5A) of BCD numbers do not require carry propagation

beyond the next digit.

Decimal Fixed Point Multiplication H

Multiplier Shilt Register

iA LB
I Secnnrlnrv Mnitinle Generation I Iit i i i I 'i'”ZA 4A 5A I I

1 i + i ,
_ I 4* M“lti:leXcr+ ‘D. A 4:lMultiplexer

+0 +2/\ +4A I fl+0“ +2A +4/\
Iv

I_I 3:] Mu“. lexer I‘ i ‘I1 3:1 Multiplexer
i‘—

ii Mi‘ i\"(i~l)I M2.
I Decimal Cany Save Adder I I Decimal Cany Save Adcler I

I Decimal (4:2) Compressor__ Sil IQ _ S“*]’I I c"<'I’ Carry SaveAdder Block

I Temporary Product Register I4_ rm

i

Decimal (4:2) Compressor4 I PSI Pi
PS{i+l1 PC-mu

cu‘ {I Nv:p;1|i\-c ulgi: lripgurui P;||'li;|| PI'\)(l\lL'l Sllill R('1li$l(T J Finn] Prudncl Sllili R‘-‘iii-"15 J

I’ Decimal C any Propagate Adderit * I R
I

I Final Product Register

Final Pr

Figure 2.2: Block Diagram of the Fixed Point Double Digit Decimal Multiplication

Chapter 2

28

When any BCD digit is doubled, its Least Significant Bit (LSB)

initially becomes zero. Thus, if a cany-out of one occurs (for digit values in

the range 5-9), it does not propagate beyond the next digit’s, LSB which is

always zero. The ‘Secondary Multiple Generation’ block is purely a

combinational block with a maximum delay of 6 gates [Erle and Schulte,

2003]

Let at (05i<n) be the n digits of the multiplicand A,

a2t (0SiSn) be the n+1 digits of 2A and

a5i (05i<n) be the n+1 digits of 5A.

The equations for generating a2t of 2A are as follows (bit 0 is the LSB):

flZi(0) (3i—l(2) - 3i—l(1) - 3i—l(0)) + (ai—l(2) - as-1(0)) ‘l’ 3i—l(3) (2-1)

32i(l) (3i(3) . 3i(2) ~ fli(0)) + (fl1(2) - 11i('l) - at(0)) + (ai(3) . at(0)) (2-Z)

32i(2) (flt(1) - at(0)) + (i1i(2) - ai(1)) + (@i(3) - 81(0)) (2-3)

a2,~(3) = (at(2) . at(1l~ 3i(0)) + (ai(3) . 3i(0)) (2-4)
where a2i(j) indiC£lt6S the j“‘ bit ofthe i‘“ digit of 2,4

ai_;fi) indicates the j"‘ bit dfthe previous digit of at

Quintupling a digit whose value is odd will give a 2-digit result with

lower significant digit as five (‘0l01’). But, when digit is even, the 2-digit

result will have the lower significant digit as zero. Further, any digit whose

value is 2 2 will produce a carry-out in the range 1---4. Thus, when a carry

out does occur, it will not propagate beyond the next significant digit, which

has a maximum value of five before adding the carry. The equations for

generating a5i of 5A are as follows (bit O is the LSB):

a5t(0) 011(0) - at-1(3) . at-1(1)) + (fli(0) - at-1(1)) + (fli(0) - at-t(3)) (2-5)

35i(l) (into) - at-1(2)) + (fli(0) - at-1(2) - at-t(1))+(£1i-1(2) - at-1(1)) (2-6)

a5i(2) (ai(2) . ai_1(3) . ai_|(1)) + (ai(O) . ai_1(2) . ai_1(1)) + (ai(0) . a;_1(3)) (2.7)

a5i(3) = (ai(O) . a;_|(2) . a;_|(1)) + (ai(O) . a;_|(3)) (2.8)
Decimal Fixed Point lvlultipllcation i L

29

where a5i[j] indicates the jth bit of the ith digit of 5A

ai_|[_i] indicates the jth bit of the previous digit of at

All the secondary multiples are available after 6 gate delays as seen

in Figure 2.3 (2A can be generated from A in three gate delays, 4A can be

generated from 2A in three more gate delays, and in parallel 5A can be

generated from A). All the multiples are generated using combinational

logic, and also the value of A does not change throughout the iterations [Erle

and Schulte, 2003].
Aole v e

‘ Logic for 2A 1 I Logic for 5A U(3 gate delays) (3 gate delays)

Logic for 2A
(3 gate delays) =l .2A 4A 5/l

Figure 2.3: Secondary Multiple Generation

2.2.1.2 Multiplier Shift Register

The multiplier input, /3 is loaded into the ‘Multiplier Shift Register’

using an asynchronous load input. Let bi (05i<n) be the 11 digits of the

multiplier B. For each clock cycle, 2 digits of the multiplier B (bi and bi+1)

are shifted out by the ‘Multiplier Shift Register’ block.

2.2.1.3 Multiplexer Block

Suitable secondary multiples are selected using a pair of multiplexers

for each digit of the multiplier (bi) according to Table 2.l[Erle and Schulte,

2003}W Chapter 2

30

Table 2.1: Receding of Digits of b,. ,~ t \bi M: M’: p bi M: M’:, 4Q _ i . ‘ _i 0 l 0 0 l 5 5/1 0 A
1 A 0 6 j 4A 2Adz 0 2/i 7 l 5,4 2A

F

3lA 2A84A4A}(4)7074/1*9 5A 4/1‘l
A 4:1 Multiplexer selects one out of the 4 possible values from (0, A,

4A, 5A) at M,-, and a 3:1 Multiplexer docs the selection of one of the 3

possible values from ((), 2A, 4A) at M ’,-. For example if the multiplier digit

(bi) is 9 then 5A and 4A are selected by the multiplexer pair. The control

logic at the control inputs of the multiplexers are shown in Figure 2.4. The

same process is repeated for the second digit of the multiplier (bi+|) using

another multiplexer pair.

5/14A A0ll ll3 2 10 1 bi3+bi2bi0+bi2bi|

\ 4: l Mux O F: bio
3;1MuX j 1 i bi3+bi2Fil?i0

2 1 0 0 bu
i i i
4A ZA 0

Figure 2.4: Multiplexer Block

Decimal Fixed Point Multiplication

31

2.2.1.4 Carry Save Adder Block

The secondary multiples selected by the multiplexer block are to be

added to get the missing multiples of the multiplicand A using a BCD adder.

For example, the 5/1 and 4A secondary multiples selected by the multiplexer

pair (when the multiplier digit (bi) is 9) are to be added to get the multiple

9A. This is done by a decimal carry save adder that use direct decimal

addition [Schmookler and Weinberger, l971]. A direct decimal adder

accepts two 4-bit BCD digits, xi and yi, along with a l-bit carry-in, ci(0). It

directly produces a 4-bit BCD sum digit, si, and a l-bit carry-out, c;+i(0),

such that

(c;+1(()), si) I xi + y; + Ci(0) (2.9)

The equations for performing the direct decimal addition of two BCD digits

are given below, where bit 0 is the LSB ofthe 4-bit BCD digit.

8i(i) = Xi(.l) - yi(i) 05) 5 3 (2-10)
Pi(i) :Xi(.l)+ Yi(_l)05.1§3 (2-11)
hi(j) = X10) ea yi(i) 051 S 3 (2-12)
kt = gi(3) + (Pi(3) - Pi(2)) + (Pi(3) - 11(1)) + (gi(2) - Pi(1)) (2-13)

la = Pi(3) + 81(2) + (Pi(2) - gi(1)) (2-14)
Ci(1) = 81(0) + (Pi(0) - 01(0)) (2-15)
s;(0) = hi(0) (D c;(()) Z fli (2.16)
5i(1):((_11i(l @1<i) - ¢i(1)i((11i(1)(TE.Ci(1)) (2_-11
3i(2)l(I3i(3)-__gi(1)) + (Pi(3) - hi(2) - Pi(1)) + ((8i(3) + (ha(2) . hi(1))) - ¢i(1)) +

(((pi(3) 3(2) _ i3i<_1_)_; + (gm . gi(1))+ (pi<3i.pi(2>>> . cm) <2-18>
Si(3) = ((ki - la) - Ci(1)) + (((ga(3) - 11i(3)) + (hi(3) - hi(2) - 11i(1))) - Ci(l)) (2-19)

Ci+l(0)= ki + (li. ci(l)) (2.20)
Chapter 2

32

A direct decimal adder forms the basic functional block of decimal

carry save addition, and is referred as a decimal (3:2) counter [Erle and

Schulte, 2003]. Two decimal carry save adders (each of (n+1) digits) are

used to add the secondary multiples selected by the multiplier pairs. Each

decimal carry save adder gives an (n+l)-di git sum and (n+l)-bit carry. These

two sums and the carrys are added by a decimal (4:2) compressor. A decimal

(4:2) compressor’s basic functional block accepts two 4-bit BCD digits, xi

and yi, and two 1-bit carry-ins, ci(O) and 01(0) as inputs [Erle and Schulte,

2003]. It produces a 4-bit BCD sum digit, si, and a 1-bit carry-out ci+|(0).

The decimal (4:2) compressor uses a standard decimal (3:2) counter to

compute

(<>’i+1(0)> $1): Xi + Yr + Ci(0) (2-21)
where c’;+|(0) is an intermediate carry-out and s’i is an intermediate sum.

A simplified decimal (3:2) counter is then used to compute the final sum and

carry as:

(ci+|(0), si) = s’i + c’i(0) + c’;+|(0) (2.22)

ln the Figure 2.2 the ‘Carry save Adder Block’ comprises of two

‘Decimal Carry Save Adder’ blocks and a ‘Decimal 4:2 compressor’.

Decimal carry save adder adds the two secondary multiples of (n+l)-bits

selected by the multiplexer block using decimal 3:2 compressor. It generates

an (n+1)-digit sum output (Si) and an (n+1)-bit carry output (Ci). Similar

addition is done by the second decimal carry save adder to produce S(;+1; and

CM). These four outputs are now added by a decimal 4:2 compressor to give

temporary sum (TS) and temporary carry (TC) values.

Decimal (Fixed Point Multiplication)

33

2.2.1.5 Partial Product Register

The TS and TC values are stored in the ‘Temporary Product

Registers’. The stored values are added with the shifted output of the

previous partial product (PS; and PCi) in the ‘Partial Product Register’ using

a decimal 4:2 compressor to get a new partial product. The last two digits of

the partial product formed is a part of the final product. The new partial

product is stored in the ‘Partial Product Shift Register’ at the negative edge

of the clock in shifted form. For this purpose, the data in the ‘Final Product

Shift Register’ is shifted for two digits during the previous positive edge,

giving room to store the new two digits of the final product during the

negative clock edge.

For each iteration cycle, the multiplicand is multiplied by two digits

of the multiplier. The partial product formed is shifted by two digits, and the

process is repeated for I-(n/2)_|iterations. After I-(n/2)_| iterations the final

product in the form of ‘carry save’ sum and carry is available at the output of

the ‘Partial Product Shift Register’. This is then passed to a ‘Decimal Carry

Propagate Adder’.

2.2.1.6 Decimal Carry Propagate Adder

‘Decimal Carry Propagate Adder’ is a Decimal lncrementer, and is

shown in Figure 2.5. It is a circuit that adds a single bit (Ci) to a decimal

digit (Xi) along with the carry in Com), and gives the result in BCD with a

carry out (Coi).

C01’ I Xi(3)CiC0(i—l) T Xt(3)X:(o)C: + Xi([])C0(i—l) (223)

Chapter 2

34

The Coi is generated after two gate delays for each digit the

maximum complexity of the gate being a 5-input AND gate. For an n-digit

multiplication, the ripple delay for CO; at the final Decimal Propagate Adder

is 2n gate delays. The Boolean expressions for a single digit Decimal

lncrementer are given in equations 2.24-2.27.

Cn{i-ll

ii

Ci Decimal YWD
lncrementer

XHLIH + _ ______________

Coi

Figure 2.5: Decimal lncrementer

Yri31= .Xi'i3)CsC0(r-1)+(/\i(2)/\’i(|)Xi(0)+ Xi'i_i)Xi"(0))(Cz ('9 Coir - 1)) + Xi(3)Xi"(2)Xi'r|)CrC0(r-1;

(2.24)q ii hi-iii
liizi = Xi2)C'C0u - 1; + (Xii|;Xii0i + X<s1Xir2:)(Ci' @Co<r - l)) + (/‘firs;/Yiizi/‘Kiri; + .XI(21Xii|)Ci"Coii-1).;

(2.25)i ii
Yam — Xri3)CiC0n - I) + (Xri1;Xri0; + X:i3>Xri|;Xri0))(C'i Q“) Coir - 1;) + XrmXi"(|>CrC0(r-1;

(2.26)

Yam = Xrio) 69 C169 C00 - 1» (2.27)
Total delay of the ‘Decimal Carry Propagate Adder’ is the delay of

one digit Decimal lncrementer and 2n gate delays. This is much less than the

delay of an n-digit BCD ripple adder. The adder output is then stored in the

‘Final Product Register’. The final product is available after

|_(n/2)+1lclock cycles.

DFxP multiplication of significand digits is an integral component of

floating point multiplication. Decimal floating point has 3 representations:

32-bit format with 7 significand digits, 64-bit format with 16 significand

Decimal Fixed Point Multiplication

35

digits and 128-bit format with 34 significand digits. DDDM for 7-digit, 16

digit and 34-digit are simulated using Leonardo Spectrum from Mentor

Graphics Corporation using ASIC Library 0.l8micron, 1.8V CMOS

technology. The designs are then compared with single digit decimal

multipliers (SDDM) in terms of area and delay. Since the floating point

multiplier may need to handle operands up to 34 decimal digits improvement

in latency is an important factor to be considered. This is achieved by a

double digit decimal multiplication technique.

Further improvement in speed is achieved for a design using

partitioned blocks. 34-digit multipliers arc implemented as a combination of

17-digit multipliers also. The block diagram for 34-digit implementation

partitioned into 17-digit multipliers is given in Figure 2.6. The design for 34

digit implementation partitioned into l7—digit multipliers is simulated using

Leonardo Spectrum from Mentor Graphics Corporation using ASIC Library

and compared with DDDM in terms of area and delay.

Am-mBm-in Am-in Bin,-m /\m~_-1; B{.1."l-1?) Aria“, Bur»-0;

l7xl7 l7xl7 l7xl7 l7xl7

34 digit Decimal CSA._ f V r i
‘ 34 digit Decimal Compressor J

I CPA i
Final Product

Figure 2.6: Block Diagram for the Partitioned DDDM for 34-digits

Chapter 2

36

2.2.2 Decimal Fixed Point Multiplication using RPS Algorithm

The second approach for iterative DFxP multiplication uses a novel

RPS algorithm. This design differs from the DDDM technique in the mode of

partial product generation and accumulation. In this approach partial products

for column accumulation are generated from the least significant end in an

iterative manner using BCD digit multipliers. The BCD digit multipliers

perform the digit by digit multiplication on the digits of the multiplicand and

multiplier. The partial products are then accumulated in a column manner

using multi-operand decimal adders.

2.2.2.1 BCD Digit Multiplier

A general conventional paper and pencil view of digit by digit BCD

multiplication is given in Figure 2.7. Each BCD digit product, A, >< B, is

represented by two BCD digits, Pi,-H and P.-,-L such that the weight ofP.-,1; is ten

times as much as P,-,1.

A2/11140 X
32 B130

P201 P101. P001.

P2011 P1011 P0011

P211. P111 P011
P2111 P1111 P0111

P221. P121 P021

P2211 P1211P02H g M M Hi
P5 P4 P3 P2 P1 P0

C5 C4 C3 C2 C1
——k¢¢——Iv$Il-v_a—-——¢$n-:—1rwI$@—_»—¢—4n¢$1@¢__—-Qbn-—¢—;@—;'@—_

FP6 FP5 FP4 FP3 FP; FP; FPO
Figure 2.7: Conventional Paper and Pencil View of Digit by Digit Multiplication

Decimal Fixed Point Multiplication

37

BCD digit multiplier is the basic building block of a digit by digit

decimal multiplication process. A BCD digit multiplier accepts two BCD

inputs (A, B) that can take values from (0-9). It realizes a function P=F(,1_ B),

giving a product in the range (0, 81) represented by two BCD digits. The

function may be realized, using an 8-input, 8-output combinational logic, or

using a 256 >< 8 look-up table in a straightforward manner. But, the practical

constraints on area and latency call for more optimum designs. An alternate

method is to use a standard 4 >< 4 unsigned binary multiplier generating an 8

bit binary output that needs to be corrected to two BCD digits.

A novel design for BCD digit decimal multiplication that reduces the

critical path delay and area is presented. It has been observed that there are

one hundred possible combinations of BCD inputs for multiplication, out of

which only 4 combinations require 4 >< 4 multiplication, 64 combinations need

3 >< 3 multiplication, and the remaining 32 combinations use either 3 >< 4 or 4 ><

3 multiplication. This design makes use of this property. The BCD digit

multiplier consists of two parts: a binary multiplier that gives a binary product

p{7-0), and a binary to BCD converter. Since the multiplier accepts only BCD

inputs, the maximum value of the 4-bit input is 9 (10012). This restricts the

binary product bits to p(<,-@).

2.2.2.2 Binary Multiplier

The binary multiplier consists of a 3 >< 3 multiplier, a 4 >< 3 multiplier,

and a 4 >< 4 multiplier. Figures 2.8, 2.9 and 2.10 show the 3 >< 3, 4 >< 3 and 4 ><

4 multiplications for BCD inputs respectively. In 4 >< 3 multiplication for BCD

inputs, one ofthe inputs is either 8(l 0002) or 9(l00l2). So, the 4 >< 3 multiplier

gets simplified to three 2-input AND gates. In 4 >< 4 multiplication for BCD

A 2 A A Chapter 2

38

inputs, both inputs are either 8(l000;) or 9(10012). S0 the 4 >< 4 multiplier gets

simplified to a half adder (a 2-input AND gate and a 2-input XOR gate) as

seen in Figure 2.10.

Q——@$—1n-—qn§Q—@

X2Y1

Xzyz X1 Y2

P5 P4 P1

1

yi
0Y2 0

Y2 Y1 yo

yo
0

Figure 2.8:

0

Y2

0
O

Xoyz

Xoyz

X2

Y2

Xzyo

X1 Y1

Xoyz

P2

X1 X0
Y1 Y0

X1Y0 X0)’0
XOY1

P1 P0
3 >< 3 Multiplication

0 X0 X
Y1 Y0

0

Xoyi

XOY1

X0)/0

Xuyo

X

—_q——_——_—

—I-$_Qh—q__

Figure 2.9: 4 >< 3 Multiplication of BCD inputs

—&—q$—&-——$—¢-_—$—m—-u——n————

q——&1—I——Qn--———_—-—¢b—q-¢—m—¢— _¢m—q|—Q|n

1 O

1 O 0I 0 O
y() 0 0I 0 0 X0

X0)/9 X05 yo 0 O

X0

Y0
—__-u——Q

X0Y0

Q__—$——__

Xoyo

Figure 2.10: 4 >< 4 Multiplication of BCD inputs

Decimal Fixed Point Multiplication

39

The 3 >< 3 and 4 >< 3 multipliers give a 6-bit binary product, while a 4><4

multiplier produces a 7-bit binary result. The binary to BCD converter,

following the binary multiplier, should be a 7-input converter. The design can

be further simplified if conversion needs to be done only for 6-bit products.

The 6-bit converter converts the binary output of the 3 >< 3 multiplier or 3 >< 4

multiplier outputs to its corresponding BCD. Instead of using a 7-bit binary to

BCD converter, the 4 >< 4 multiplier is designed to produce an 8-bit BCD

output as shown in Figure 2.11. The 4 >< 4 multiplier and the binary to BCD

conversion circuit of its product now gets reduced to a 2-input AND, NAND,

XOR and NOR gates.

1 0 0 X0 X1 0 0 yr)
__———__—_————~n—————————_——————————a~ &_—_—_——npa-—————————a_ln————_—_uIn|-————————&&ln§——————c-—

Xo)’0 (X0y0)i (><0y0)’ X0'33y0 0 (X0 + Y0)’ X0$y0 Xoyo

Figure 2.11: 4 >< 4 Multiplication of BCD inputs generating 8-bit BCD output

2.2:2.3 6-bit Binary to BCD Converter

Binary product can be converted to an equivalent BCD by a 6-input, 8

output eombinational logic. Although the general binary-to-BCD conversion is

extensively addressed in the literature [Schmookler 1968], [Rhyne, 1970],

[Arazi and Naccache, 1992] a special, simpler and faster, binary-to-BCD

converter depicted in [Jaberipur and Kaivani, 2007] for a 6-bit input is used

for this research. The first row in Figure 2.12 shows the BCD weights. The

weights of p3, pg, pl and pg are the same as the corresponding weights in the

original binary number p(5-(;). But, weights 16 and 32 of p4 and p5 have been

decomposed to (10, 4, 2) and (20, 10, 2) respectively. The four BCD digits in

Chapter 2

40

the right four columns (lower BCD digits) are added using a single decimal

adder to get the sum (D3D_;D;D(,) and the carry. The first (0 pg pl pg) and last

(O 0 p5 0) two lower BCD digits are added using a binary adder. Binary adder

is enough since the result will never exceed 9. This binary adder can be

implemented using two XOR gates and two AND gates as shown in Figure

2.13.

80 40 20 10 8 4 2 I

©®®CT>

OGCDCD

<'.'DC>CD"'U
LII

CI>"UCD"U1.» A

©©"C$CD
U-I

©"C$CD"U4:. no

CD<D©"U
ca

P1

0

P4

P5
———q\I__D____h———————Q§———_———hh——————_—_————DS——————————I-_UI1_—_¢__——|nno—¢q-_———¢_

D7 D6 D5 D4 D3 D2 D1 D0

Figure 2.12: The principle of 6-bit binary to BCD conversion

0 P2 P1 P0 T0 0 p5 0
----——————--—o------_——--____-_----_-Q---av---_—-

Pipzps P2®P|l3s P1®P5 P0

Figure 2.13: Addition of first and last lower BCD digits

The other two lower BCD digits, (p3 O O 0) and (0 p4 p4 0), are added to

get a BCD sum and a carry-out using three AND gates and two NOT gates as

shown in Figure 2.14. Hence the 6-bit converter gets reduced to a single digit

BCD adder and a 2-bit Adder as shown in Figure 2.15. The BCD adder finds

the sum of results of Figure 2.13 and Figure 2.14. The carry-out p3p4 in Figure

2.14 is added to the two higher BCD digits (“O 0 p5 p4” and “O O 0 pg”) along

Decima|iFixed Point Multiplication

4l

with the carry from the BCD adder using a 2-bit adder to get (D7D6D5D4). If

the product were a 7-bit number then product term will have a p6 bit with

weight 64 that has to be decomposed into (40, 20, 4). This increases the depth

of BCD addition required by one more level in both lower and higher digit

levels. So, the depth of addition is reduced by making use of a 6-bit converter.

p3 0 O 0 +
0 p4 p4 O

----_____----_----_---___----_-__-------‘--———-—

q__ _-.._111. P4 pm P4 P394 0

Figure 2.14: Addition of other two lower BCD digits to get a BCD Sum

P1 P4 111112;);
P4 P2 @P1P.<

|P_zP4 Ll P5 () P“
-2-bit Adder Single digit BC D adderl i i at its
D6 D; D4 D; D; D1 Du

Figure 2.15: 6-bit Binary to BCD converter

The block diagram of the proposed BCD digit multiplier is shown in

Figure 2.16. The 4-bit 2:1 multiplexer selects the inputs to 4 >< 3 multiplier

depending on x3 bit. The 6-bit 2:1 multiplexer does the selection between the

3><3 multiplier output and the 4 >< 3 multiplier output depending on the status

of x3 and y; bits. If x3 and y; are different then the output of 4 >< 3 multiplier is

passed to the BCD converter, else the output of 3 >< 3 multiplier is passed.

After the 6-bit binary to BCD conversion the third multiplexer (8-bit 2:1

M it it Chapter 2

42

vector Mux) selects the BCD converter output or the 4 >< 4 multiplier output

(which gives an 8-bit BCD result) depending on x3 and y3 bits. If both are ‘l ’

then the 4 >< 4 multiplier output is selected, else the BCD converter output is

passed as the -final product.

X2 X‘ X" yz y‘ y" X0 Y2 Y1 yo yum XI Xi» Xn yo

£ 4"?“ k 4-bit
3X3 x-‘ ‘ 2 Z l T 2:lvcctorMux OJ 1I2 _ ,

6-bit 6-bit A— 8-bit /
Sum 2:l \-'ccto1'Mux 1 J2 T T T *_*__*}F-birjif __ __ _ _ i l

C3117 I Binary to BCD convutel I_ l
& 8-bit

~ - - I 0 2:l vector Mux Y]

=94 -\

BCD Pfiuct

Figure 2.16: BCD Digit Multiplier

2.2.2.4 Hex/Decimal Multiplier

The single digit decimal multiplier design is extended to a

Hex/Decimal multiplier that gives either a decimal output or a binary output

depending on the requirement. Digital Signal Processing (DSP) applications

require binary multipliers while financial and commercial applications require

decimal multipliers. A Hex multiplier accepts two 4-bit binary inputs and

gives an 8-bit product. The single digit decimal multiplier has a 3 >< 3

multiplier block. This can be extended to realize a 4 >< 4 multiplier with some

Decimal Fixed Point Multiplication T W T T T K it 2 T Z 2

43

extra hardware. The terms marked as bold in Figure 2.17 indicates the

additional AND products that are required for a 4 >< 4 multiplication compared

to a 3 >< 3 multiplication.

X3 X2 X1 Xg X
Ya Y2 Y1 Yo
——--—~~-----——-—---------------------_____

X3y0 X2Y0 Xi)/0 Xo)’0
X33’! X2)’: XIY1 X0)/|

X3Y2 X2)/2 XIY2 X0Y2
Xays Xzys Xiys X0)/3
---------——-———-———~-_~—----—-—-—————--————--—-w-_-__---——___--__—-_--.__

l17 h(, hs h4 h 3 ll; h, ho
Figure 2.17: 4 >< 4 Hex Multiplication

Hence to realize a 4 >< 4 multiplication only those terms which arc

marked in bold need be added to the result of a 3 >< 3 multiplication. The

design for the single digit BCD multiplier is modified as shown in Figure 2.18

to make it a Hex/Decimal multiplier. The additional hardware required is

seven AND gates, and an adder that adds three 4-bit numbers. The adder can

be realized by five filll adders and one half adder. The AND array works in

parallel with the 3 >< 3 multiplier, and the adder works in parallel with the rest

of the BCD multiplier circuit. Hence, no additional delay is added up due to

the additional hardware. Finally, a 2:1 vector multiplexer selects one of the

two products (Hex/Decimal) based on a control input.

A comparison of the Hex/Decimal multiplier design with one designed

using the multiplier in [Jaberipur and Kaivani, 2007] in tenns of area and

critical path delay is done with the logic synthesis tool Leonardo Spectrum

from Mentor Graphics Corporation using ASIC Library 0.18 micron, 1.8 V

CMOS technology.

M Chapter 2

44

Km yw X2 Xi Xi» Y2 Y1 Y1»t i it | | ti.
l ANDar|uy 1 ll 7 M 7 Ll1 l

[A‘MP.': i <1-bit
|

8_bit// Hex Product Rest of BCD
Multiplier

BCD Product Mi‘1 Y i
[2:1 vector Mux 1

i Hcx.-‘BCD Product$ 84°“

Figure 2.18: Hex/Decimal multiplier

2.2.2.5 Multi-operand Decimal Adders

The partial products of a DFxP multiplication generated by the BCD

digit multipliers are then accumulated in a column manner using multi

operand decimal adders. Efficient multi-operand decimal addition is essential

for the implementation of fast decimal multipliers. Many techniques have been

developed to speed up the process of decimal addition for multi-operand

decimal adders. Direct decimal addition is one of the efficient techniques for

two-operand decimal addition [Schmookler and Weinberger, I971]. A variant

of direct decimal addition to produce intermediate results in a decimal carry

save format for an iterative decimal multiplier is proposed in [Erle and

Schulte, 2003]. ln another approach, a correction value of six is added to each

digit of the first partial product using a binary carry save adder [Ohtsuki et al.,

1987]. A technique for constant time decimal addition, called Redundant

Decimal Fixed Point Multiplication

45

Binary Coded Decimal (RBCD) was proposed in [Shirazi, Yun and Zhang,

1988], [Shirazi, Yun and Zhang, 1989].

Multi-operand decimal addition is also perfomied by adding each

operand repeatedly using two-operand decimal addition. This approach,

however, is very slow since each addition has carry propagation. A faster

approach introduced by [Kenney and Schulte, 2005], use binary carry-save

addition to compute intermediate results. When several operands are added

together, the intermediate results are kept in binary carry-save format, to delay

the carry-propagate addition until the end. Three algorithms were introduced

by [Kenney and Schulte, 2005] for performing fast decimal addition on

multiple BCD operands: non-speculative tree, double correction speculation

array, and single correction speculation array. Two of the techniques speculate

BCD correction values, and correct intermediate results for the addition ot

input operands. The first technique, Single Correction Speculation, speculates

over one addition. The second technique, Double Correction Speculation,

speculates over two additions. The third technique, Non-speculative Addition,

uses a binary carry-save adder tree and produces a binary sum. Combinational

logic is then used to correct the sum, and determine the carry into the next

significant digit. The non-speculative tree algorithm that gives the minimum

delay with same area among the three algorithms is best suited for multi

operand decimal addition. This technique is used in this research.

Non-speculative Addition:

Non-speculative adders add BCD input operands in a binary carry-save

tree, passing carries generated along the way to the next significant digit.

Preliminary binary sums and carry-outs from the carry-save adder tree are fed

Chapter 2

\

46

into the combinational logic, which produce a decimal sum and carry

corrections, if needed. These values are determined based on the carry out of

the current digit position and the preliminary sum digit.

In the non-speculative addition, efficient combinational logic can be

designed to produce sum and carry correction for a given number of input

operands. A l-digit, m-operand Non-speculative Adder requires (m-2) 4-bit

carry-save adders, one 4-bit carry~propagate adder, one 5-level combinational

logic block to generate the carry-out and correction digits (for up to l6 input

operands), and one 3-bit carry-propagate adder to add the correction digit to

the binary sum. ln this research, non-speculative multi-operand adders are

used for column accumulation of partial products generated by the BCD digit

multipliers. The partial products that are to be generated and accumulated are

selected using RPS algorithm.

2.2.2.6 RPS algorithm

A DFXP multiplier unit using RPS algorithm accepts two n-di git

operands, calculates n2 partial products, and returns their sum as a Zn-digit

integer. This design uses n BCD digit multipliers for partial product generation

for an n >< n digit DFxP multiplication. The RPS algorithm selects appropriate

inputs for n BCD digit multipliers for generation of partial products in each

cycle. The inputs are selected in such a way that the partial products can be

accumulated column wise from the least significant end in an iterative manner.

Column accumulation is done using multi-operand decimal adders. The

process repeated n times, generates a 2n-di git product after the (n+1)‘h cycle.

The steps for RPS algorithm to multiply two n-digit numbers are as follows.

Decimal Fixed Point Multiplication

For partial product generation."

Step 1: lnitia1izei,j, k, m, c to 0. (i - to select Ai,j - to select Bj)

Step 2: i=k, j=m

47

Step 3: o = c + ll, Select At and Bj as inputs to the cm BCD digit multiplier

Find Pij = A; X B)‘

Step 4: If c = n then set c = O and wait until next clock

Step5:Ifi>0 then i=i-1, j=j+landgotostep3
Step 6: l<—k+1, if k<n then go to step 2

Step 7: k =n-l, in =1

Step 8: i=k, j=m_ th
Step 9: c — c + l, Select A5 and Bi as inputs to the c BCD digit multiplier

Find Pij = A5 X Bj

Step 10: lfc = n then set c = 0 and wait until next clock

Step ll: lfj<n-1 then i= i-l, j =j+l and go to step 9

Step 12: m = m+l, if m<n-l then go to step 8

For Partial product accz.mzulari0n.'

Step 1 1 Multi-operand BCD addition:

Addfifx = (ZPyzL + 2PnbH) + cLil(l(lL‘l'(X-l) + CH8dd6l'(X—2)

Ifx<n,theny=xto O,z=0t0 x,a=(x-l)to O,b=0to (x-l)
lfx = n, then

= (n-1) to x-(n-l), Z = x-(n-1) to (n-1), a = (x-1) to 0,17 = O to (x-l)Y

ll f x > n, then

Y

b

= (n-l) to X-(n-l), Z = x-(n-1) to (n-1), a = (n-1) to (X-n

= (X-71) to (n-1)

CL,,dd@r(x-|) is the lower carry digit from the previous addition

CHadd@,(X-2) is the higher carry digit from the addition prior to previous addition

Chapter 2

48

The algorithm is explained for a (7-digit >< 7-digit) DFxP multiplication

as shown in Figure 2.19. This example is considered since it is an integral

component of a 32-bit decimal floating point multiplication that has 7

significand digits. For a 7-digit >< 7-digit multiplication the partial product are

generated in 7 cycles and the final product (14-digit) after the 8"‘ cycle. A (7

digit >< 7-digit) multiplication results in 7 >< 7 (49) partial products, each

having 2 digits given by P0-L and PW. This design makes use of only seven

single digit BCD multipliers. Usually, the partial product of the complete

multiplicand is generated with a single digit of the multiplier in each cycle.

But this design generates those partial products that are necessary for early

accumulation using the RPS algorithm. The multiplication using RPS

algorithm is explained with the help of Figure 2.19. The first iteration

generates seven partial products as seen from the right most end of the partial

product array of Figure 2.19. Hence after the first cycle, the partial products

generated are P00, P10, P0|, P30, P| 1, P02, P30 (both PL and PH), as shown in red

in the array. Similarly during the second cycle, seven more partial products are

generated. The partial products that are generated in first cycle are added

simultaneously using multi—opcrand decimal adders to generate the final

products FP0, FP| and FP2.

For a 7-digit >< 7-digit multiplication, the maximum number of BCD

operands to be added in a column is l5. The block schematic of a one-digit l5

operand BCD adder that adds l5 one digit operands is shown in Figure 2.20.

Non-speculative adder for 15 operands makes use of three one digit 5-operand

BCD adders, two 3-operand BCD adders and a 2-operand BCD adder. The

design of a one-digit 5-operand BCD adder is shown in Figure 2.21.

Decimal Fixed Point Multiplication T T 9 7

A6 As A. A3 Al AI Ao x

B, 8 5 B .. DJ 8 2 8, Bo

P 60I. P :'iOl P~OL P lOL 1'2111. P lOt.. P OOL

P MlII 1'5011 1'.,011 1'30 11 P 20 11 1'1011 P OO II

.. 1'511 Pm P 311. Pll L 1'111. P OlL

faH PSII1 P.W1 1'3 111 Pm l P IIII POll!

~Ul 'r;;;;l P.m. P l l 1 Pm. Pi lL Pm.

1'.,211 P J21t PUll P I2I1 Pow

P 6JL P SJ L P p.nL 1)2.lI P UL 1'03 1

P 6JH P 5311 U P JJII P Bl1 P U li P O)u

P s.tL P ;WL P pw. P UL POJ•

PWI r im PO.HI

fuIi PI SH P Il:'i1i

1'061.

49

-------------".------------------------------
P, p. P, P, P, P, P, P,

C C, C C, C, C, C, C, C,

C C611 C!" II

FP, P FP, FP!" FP, FP, FP l FP, FP,

Figure 2.19: Partial product generation and accumulation in different cycles

Cflapter 2

50

The intermediate result, z’, and the carry from each carry-save adder

(CSA) determine the sum correction, g, and the carry correction, com values.

Table 2.2 gives g and com values for a 5-operand adder, where z’ is the

intermediate sum. The design of a one-digit 3-operand BCD adder has only

one CSA and a Carry Propagate Adder (CPA). The combinational logic for

‘sum and carry correction logic’ of a 3-operand BCD adder is a simplified

version of that of 5-operand BCD adder. The 2-operand adder is a normal

BCD adder with 6-correction logic when sum exceeds 9. The remaining BCD

adders for column accumulation of partial products require multi-operand

adders of size 14, 13, ll, l0, 8, 7, 5 and 3. The designs for multi-operand

BCD adders for 14, 13 and l l inputs are the same as that of 15-operand adder.

For [0, 8 and 7-operand adders, only two 5-operand adders, and three 2

operand adders are required.

all al al ai a4 a5 ab a7 ah a‘) alllall all afial-4it ii 1 ghi it J it it __,
5~operand 5-operand 5-operand
BC D adder Q] FBCD addcr BCD adder

3-operand BCD 3-operand BC Di fladder adder
Z-operand BCa(ldcr fl[C H C Sum

Figure 2.20: One-digit, 15-operand Non-speculative Adder

Diecirina|7Fixed PointMultipIication T T T T T : T T T T K K T

51

Table 2.2: Sum and carry correction values for 5-operand BCD adder

U12

<;1(%1)+<>2(4)+<>.i(4) H mo) pea.O OOSz’(4:0)<l0

O

O ___, 10sz’(4=0)€2'0i l

O\

Q

20$z’(4:0)<30

l\.)

1-1
l\)

O

gggg_30sz*(4;0)'<_3gb 1

DJ

I\J

fqfl

05z’(4;0)<2i

C)

O\

'1}

4Sz‘i(?4:O)<l4

r—l

>—1

l\J

M

l4§z’(4:0)<24

l\.)

l\J

,_4

24Sz’(4:0)<32

DJ

O0

IQ

OSZ’(4:O)<8

>-¢

l\)

Ix)

8Sz’(4:O)<l6

l\J

O0

For a 7-digit >< 7-digit multiplication the partial product accumulation

using such multi-operand BCD adders starts accumulation from the second

cycle onwards, and is completed in the eighth cycle. The final product is

available after the eighth cycle.

Cil

Z

Figure 2.21: One-digit, 5-operand Non-speculative Adder

Z10 3| flu E11 34

O- tn3 >
an

(“E
U3

la}

4)C')(4)C1(4) CPA

1 i i

K-1

Sum and Carry
Correction Logic

Chill

z’(4:O) ; z’(3IO)

fl i
CPA

Chapter 2

52

The block diagram of an n-digit DFXP multiplier using RPS algorithm is

shown in Figure 2.22.

CLK 1/\(n digit} lB(n digit)A g Controller J.i .i e - .i .i it
I Single digit BCD multiplier array ofn tt‘lLllliplit3l‘S 1

‘I ii H VT Register array (112 8-bit) “MI
-4 ~ 1 1 — 1 F er F =9£--_t5£-J BCD Adder Block ‘

£Final Product (Zn digit)

Figure 2.22: DFxP multiplier using RPS algorithm

The controller block uses RPS algorithm to determine the flow of

inputs to n BCD digit multipliers for each cycle. The detailed design of the

controller block is shown in Figure 2.23.

iA\(, A< A4 A1 A2 Al Ar) B5 Bf. B4 B] B2 B| Br;

cu< is ~ use _ _ _

Mod 7 counter l T1 3-1-,it vector MU); 7;] ff — — 8-bit vector Mux 7:]

| Single digit BCD multiplier arrav of 7 multipliers |
Figure 2.23: Decimal Fixed Point multiplier controller block

Decimal Fixed Point Multiplication T T

53

The controller block is followed by an array of n BeD digit multipliers

that give the set of panial products. These are stored in n registers of an n x n

8·bit register array as shown in Figure 2.24. During the first cycle, data stored

in registers are marked as red. The inputs to the multi-digit BeD adders are

se lected using the RPS algorithm from this stored data as shown in Figure

2.25.

Roo Ro, R ill R03 R" Ro, R"
RI. R" Ru Ru R I-I ill s

RlO R I 1 Rn R" RN fu. R"

R" RJI Rn IlJ3 R"
Ro, R" RH ~ Ro. Ro,

R :'II R5I R" R,.

R" • RoJ

Figure 2.24: Register array for storing output of BCO-digit multiplication

The complete multi-operand BeD adder array is shown in Figure 2.26.

During the eighth cycle FP9, FPIO, FPI! , FP12. and FPu are generated. This is

done using It-operand (9-panial products and two carrys (Cs and Cm) that are

generated in previous cycles), 7-operand, 5-operand, 3-operand decimal

adders, and a 4-digit high speed decimal adder. The 4-digit high speed decimal

adder is used to add all the corresponding carrys generated. The maximum

depth of addition occurs at the eighth cycle, and this detennines the maximum

operating frequency. Simulations are done using Leonardo Spectrum from

Mentor Graphics Corporation using ASIC Library 0.) 8micron, 1.8V CMOS

technology. When multiplying two n-digit operands to produce a 2n-digit

Chapler 2

55

cycle

Q " uclc 7"‘ cycle 6"‘ cycle 5"‘ cycle 1 4"‘ cycle 3"‘ cycle 2"“ cycle ‘Hl4 l l l03 5 1 | 1 13 15 s 5 3°P- °P- op. op. op. op. op. op. op. op. op. op.add add 'l(lCl add add add add add Lldd add ma add pmtl ClCer cr Cr - ~er er er - er er er cr1I l
FP, FP"

FP. FP1 ’FP | | FP |-"P. * ‘ "I I I 2 digit BCD4 digit high speed BCD adderadder 4 i adderl l I l "PP{

FP|_I FP|_» FPH FP|.;

Figure 2.26: BCD adder array

ln design using RPS algorithm 2n-digit result of an n-digit >< n-digit

DFxP multiplication is available after (n+1) clock cycles. For example for the

7-digit multiplication the final 14-digit result is available after 8 clock cycles.

If the result has to be rounded to 7-digits then rounding process should be

done after the multiplication process. Usually, for iterative multipliers the

rounding process can begin only after completing the DFXP multiplication

process. But, since the design using RPS algorithm generates the digits from

the least significant end of the final product in each cycle, the rounding

process can be initiated during the DFXP multiplication process itself. Hence

the rounding process works in parallel with the DFXP multiplication process.

This speeds up the floating point multiplication that in tum reduces delay. This

iterative approach is suitable for high speed applications.

Chapter 2

56

2.3 Parallel DFXP Multipliers
This chapter also presents three new approaches for parallel DFxP

multiplier. Parallel designs are adopted when latency and throughput are

considered more important than area. These multipliers attain high speeds at

the expense of area. The first implementation of a parallel decimal multiplier

was presented by [Lang and Nannarelli, 2006]. Two architectures for parallel

decimal multipliers based on decimal carry save multi-operand addition that

used a BCD—422l recoding for decimal digits were introduced by [\/azquez,

Antelo and Montuschi, 2007]. Instead of using, a tree of carry save adders the

partial product accumulation is done using the multi-operand decimal addition

by [Dadda, Nannarelli and Milano, 2008]. Dadda obtained the sum of each

column of the partial product array in binary form and then converted it to

decimal. This scheme gives slight reduction in delay keeping the area almost

constant compared to the design by [Lang and Nannarelli, 2006]. In all the

parallel decimal multiplier designs published so far, generation of partial

products was done by some recoding scheme of decimal digits and then

generating multiples of multiplicand. An altemative approach is to generate

the partial product using BC-D digit multipliers. The accumulation of partial

products can be done in two ways: Row accumulation or Column

accumulation. As the accumulation ofpartial products occurs in parallel, these

designs are pipelined to allow a throughput of one.

2.3.1 Row Accumulation

Decimal Carry Save Adder (DCA) described in Section 2.2.1.4 is an

integral building block of partial product accumulation. The partial products

Decimal Fixed Point Multiplication

57

generated by using BCD digit multipliers are added using a tree structure 01°

DCAS as shown in Figure 2.27. Level 1 is a set of simplified DCA that adds

two BCD digits to generate the ‘Intermediate Sum’ and ‘Carry’ outputs. The

‘Intermediate Sum’ and ‘Carry’ outputs are added using two different design

schemes. ‘Design 1’ uses Decimal (4:2) Compressors for accumulation of

‘Intennediate Sum’ and ‘Carry’ outputs. A Decimal (4:2) Compressor is

shown in Figure 2.27 as D4:2C. It accepts two 4-bit BCD digits, xi and yi, and

two l-bit carry-inputs, c; and cl, as inputs, and produces a 4-bit BCD sum

digit, si, and a I-bit carry-out c;+| as described in Section 2.2.1.4. The last level

is also a DCA of (Zn-1) digits for an n-digit >< n-digit multiplication.

é-Partial products—>

flit Vii/\ |‘_L|D¢r ffi [Jfi,,,,.m_ -.;;.r3 ,,,,,,,,,,,, __'_'I'_'_' --1'Jii'jii rrrrrr

,, O0Lcvc] 2 __T;}.l.T|.-§§. -

Level 3 -- -

l D4I2C N l D4I2C I
Level (L-I) --- --------------- --U --- -

Level L --- --_ --- -
Final Sum & Carry

Figure 2.27: Partial Product accumulation using carry save adders

D D D ‘Chapter 2

58

The Fixed Point Parallel Decimal Multiplier for row accumulation

using ‘Design 1’ is verified for a (7-digit >< 7-digit) multiplication. All partial

product digits are generated using the BCD digit multipliers. The partial

product row accumulation for a (7-digit >< 7-digit) fixed point multiplier is

shown in Figure 2.28. It consists of a decimal carry save adder block with six

7-digit decimal carry save adders and a Decimal 4:2 Compressor block.

Decimal 4:2 Compressor block has three 7-digit Decimal (4:2) Compressors,

two 9-digit Decimal (4:2) Compressors and one l3-digit DCA as shown in

Figure 2.29. The Final Sum and Carry are then added using a ‘Decimal Carry

Propagate Adder’, which is a Decimal Incrementer. The adder output is then

stored in the ‘Final Product Register’.

Phi1H- -PIHIH PML .Pim. TLl l l Cany-Save Adder Blockl _ _ _ _ _ _ _ _ _ _ __ _ J
[decimal cany save 11(l(l€l‘SSl60iCl6 T 2* C ’ ‘, Q $100, CIOO ‘\ \ i Pblll -- Pnlll P(,3L .. Pi|g|_» ii l Ll k

i \ decimal cany save adders J

si61,c|mJ, Sl()l?|Ol F ______ - -_.__--
ll _____ .._l l

‘ i ¢P(»$ll PUSH ¢ £P'¥(\L P061. ‘‘ i — _ — _ — _ — _ _ — — _
\ ‘ ii i L decimal cany save addersl ~ . , _ _ _ . ,

SI 5 [(1 F § 5;ClO*5 W7* ’*;.‘£ 2 fill; T_ T; Ti; T; 7; 31‘; T; __ Q T T:T_
‘ Decimal 4:2 Compressor Block
K Z K K £816-0510-0 P P P F P

[T Fast Decimal Cany Propagate Adder 1
; Product

Figure 2.28: Partial Product accumulation of 7-digit >< 7-digit multiplier

Decimal Fixed Point Multiplication T T _

59

s1i0,ci]0_L siijiil Sli2 Clij | slnciiz-J L sii4c|il| Sli5 Tlil

o4;2c T l T T 0412c T (04:20 T 1
SIIQFIIO snzl lc|32 T $.54 c154

s|3-0‘ c13-0 K K
SE60 _g _ _ . _ _ [D4;2C U- l - -_ 8'5-0| lot-<1i DCA i
T T T sis-of cié-0 U T T

Figure 2.29: Decimal 4:2 Compressor Block for a 7-digit >< 7-digit multiplier

‘Design 2’ uses BCD digit multipliers for partial product generation

while retaining the design by Lang and Nannarelli (2006) for partial product

accumulation. In ‘Design 2’, partial product accumulation is done using

Decimal carry save adders and Carry Counters in place of Decimal 4:2

Compressors. Carry Counter is a combinational circuit that generates BCD

equivalent of number of ‘l’s at its input. The verification of a 7-digit

multiplier using this modified design is done. The use of BCD digit multipliers

for partial product generation makes it a more regular implementation with

lesser delay. The simulation results show that the design using Carry Counters

(Design 2) has reduced area and delay compared to the design using Decimal

4:2 Compressors (Design 1). The design is extended to 16-digit and 34-digit

multipliers since they form integral components of 64-bit and 128-bit decimal

floating point multipliers.

T T T Chapter 2

60

2.3.2 Column Accumulation

In column accumulation, the partial products in each column are added

simultaneously to generate an ‘Intermediate Sum Digit’ and ‘Intermediate

Carry digit/s’. This is implemented using multi-operand decimal adders. The

method uses a scheme in which the decimal digits in each column are addcd

using Decimal Carry-save Adders (DCA), and the carry out for each column

are accumulated using Carry Counters (CC). The realization of an N-operand

decimal adder using tree structure of decimal carry save adders will have N

decimal carry save adders at L levels where 2”“) < N 3 2L and a carry counter

for generation of ‘carry out’. The complete tree structure for L=4 for the

addition 01°16 operands is shown in Figure 2.30.

— — "T Pii Pk]
CARRY COUNTER I-bit £ldti<:‘I‘S_4 4'4t 2-bit adders i _J_I- u

3-bit adders l 2 |
' Binary 4 3w CCUBCD _ s
Cm Ci T I I __ DCA I

I
IIF'IF‘
Fl
I

I

I t:;I;ll

F

\)

I
5|!“

In 7 up I
I-L‘ DC/\ IJI- DCA

no "COM]4 ,1/S.
Figure 2.30: Column Adder array for 16-operand BCD addition

Bécimal Fixed Point Multiplication T

61

Partial product accumulation is implemented column wise for a (7

digit >< 7-digit) fixed point multiplier, and is shown in Figure 2.31. The multi

operand adder block for a (7-digit >< 7-digit) fixed point multiplier consists of

two 3-operand, 5-operand, 7-operand, 9-operand, ll-operand, 13-operand

decimal adders. For a (7-digit >< 7-digit) fixed point multiplier, the maximum

delay to obtain the sum is that of 4 stages of carry save adders (for 13-operand

addition) along with the additional delay for accumulating the carry digits. The

final stage of partial product accumulation uses a fast decimal adder that

generates the final products (FPi). This fast decimal adder is a fixed block

adder with a block size of four.

_ucdIe_e\,fi‘pT_[{__..__1.fi.____
Przsvo __ <>l7t53(I . In ‘ i ‘ i Pilll ll I3 I3 lll ‘ “

A T it T T T T
Fixed Block Fast Decimal Adder

Flt FP|g FPH FPHI in Fpy, lp-i ill

Figure 2.31: Adder array for accumulating partial products column wise

it Chapter 2

62

2.4 Summary
The DFXP multipliers are designed using iterative and parallel

approaches. For iterative designs two design approaches are presented. The

first approach makes use of a double digit decimal multiplication (DDDM)

technique that performs two digit multiplications simultaneously. In one cycle

the entire multiplicand is multiplied by two multiplier digits. The partial

products are generated by selectively adding the secondary multiples

depending on the multiplier digit. DDDM for 7-digit, l6-digit and 34-digit are

simulated using Leonardo Spectrum from Mentor Graphics Corporation using

ASIC Library O.l8micron, 1.8V CMOS technology. The designs are then

compared with existing design in terms of area and delay. The area and delay

comparison for implementations of 7-digits, 16-digits and 34-digits DDDM on

different families of Xilinx, Altera, Actel and Quick logic FPGAs are also

tabulated. FPGAs are increasingly being used for improving performance by

scientific computing community to implement floating—point based hardware

accelerators.

The second approach performs DFXP multiplication using a novel RPS

algorithm. The partial products for column accumulation are generated using

BCD digit multipliers from the least significant end in an iterative manner.

The design for DFXP multiplier using RPS algorithm has n BCD digit

multipliers for an n >< n multiplication. This design leads to a more regular

VLSI implementation, and does not require special registers for storing easy

multiples. The latency for the multiplication of two n-digit BCD operands is

(n+1) cycles and a new multiplication can begin every n cycle. The design

was validated using a 7-digit >< 7-digit DFXP multiplier that is required for a

32-bit DFP multiplication. Area and delay analysis is done using logic

Decimal Fixed Point Multiplication T T

63

synthesis tool Leonardo Spectrum from Mentor Graphics Corporation with

ASIC Library 0. 1 Smicron, 1.8V CMOS technology.

This chapter also presents parallel decimal multipliers that offer

reduced area and delay compared to the existing implementations. BCD digit

multipliers are used for partial product generation. The design is synthesised

for (7-digit >< 7-digit) fixed point decimal multiplication. Partial product

accumulation was done row wise using carry counters along with decimal

carry save adders, and using decimal 4:2 compressors. The designs were then

extended to 16-digit and 34-digit multipliers since they form integral

components of 64-bit and 128-bit decimal floating point multipliers. The

comparison between column and row accumulations shows that the column

accumulation gives a reduction in delay with decrease in area. This parallel

fixed point multiplier can be used for implementing parallel decimal floating

point multipliers. The simulation results of different decimal ‘fixed point

multiplier designs are given in Section 6.2.

Chapter 2

Chapter 3

Decimal Floating Point Multipliers

and MAC Unit

F loating-point representation can support a much wider range of values over

fixed point representation. In this chapter, iterative and parallel decimal floating

point multiplier designs in IEEE 754-2008 format are designed. The design also

incorporates the necessary decimal floating-point exponent processing, rounding and

exception detection capabilities. Floating point MAC unit implements the jitsed

multiply-add operation with a single final rounding after add operation. The fused

multiply-add unit uses parallel or iterative multipliers and a floating point adder unit.

The DF P adder is implemented using ripple carry BCD adders, kogge-stone adders

and reduced delay B CD adders.

67

3.1 Decimal Floating Point Multipliers
Many hardware designs for Decimal Floating Point (DFP)

multiplication [L. Eisen et. Al., 2007], [E. M. Schwarz, J. S. Kapernick, and

M. F. Cowlishaw, 2009], [Cohen et al., 1983] and [Bolenger er al., 1987] are

available in literature. Hardware design that follow IEEE 754~2008 standard

for DFP multiplication are given in [M. A. Erle, M. J. Schulte, and B. J.

Hickmann, 2007], [Hickmann er al., 2007], [M. A. Erle, B. J. Hickmann and

M. J. Schulte, 2009], [Charles Tsen er al., 2009] and [H. A. H. Fahmy er al.,

2009]. The design in [M. A. Erle, M. J. Schulte, and B. J. Hickmann, 2007],

uses decimal carry save adders of [M. A. Erle and M. J. Schulte, 2003] for

DFXP multiplication of its significand digits. The design in [M. A. Erle, B. J.

Hickmann and M. J. Schulte, 2009] uses partial product accumulation based

on non~pipelined iterative technique using decimal carry save adders. A

combined decimal and binary floating-point multiplier is presented in [Charles

Tsen er al., 2009]. Parallel DFP multipliers using parallel DFXP multipliers are

presented in [Hickmann er al., 2007] and [H. A. H. Fahmy et al., 2009].

In this chapter two approaches for iterative decimal floating point

multiplication complying with the IEEE 754-2008 standard are presented.

The first approach has a DFXP multiplier using RPS algorithm. In this method,

partial products for column accumulation are generated from the least

significant end in an iterative manner. The second approach has a DFXP

multiplier using Double Digit Decimal Multiplication (DDDM) technique that

performs two digit multiplications simultaneously in one cycle. A parallel

decimal floating point multiplier having a parallel DFXP multiplier for

significand digit multiplication is also presented in this chapter.

T Chapter 3

Compute pSign i i

68

3.2 DFP Multiplication using RPS Algorithm

DFP multiplier design of first approach extends the iterative DFXP

multiplier design desclibed in Chapter 2 and is shown in Figure 3.1.

I Read operands l

Compute
Exponcnt (PE)

Handle i
Exception l

Handle
Exception 2

l DccodeOpe1ands J

l Ti ,'__i__" ""'
i Fixed

Point

Decimal

Multipli
E1"

i

‘I.

111111

Roun

ding
Unit l

i

i

____._'i CH i lncre i
Unit H lncre l i-€—> 2 L ment

= mente1'2
i .______
f Adjust Exp chm '1k MSD MS“

R_oun d_g_d_f1'o_dtLct

I, SctExceptio11s I
II L lEncode 7

DFP Product

Figure 3.1: Decimal Floating Point (DFP) Multiplier

-1

Decimal Floating Point Multipliers and MAC Unit

69

The operands encoded in DPD are decoded to get BCD significand

digits and binary exponents. Then the product of significand digits of the two

operands is generated using RPS algorithm for iterative DFXP multiplication.

The maximum precision or the maximum length of the significand is denoted

as ‘Plimit’, which is equal to 7, 16, and 34 digits, for decimal32, decimal64, and

decimall28 fonnats respectively. Rounding is required when all the essential

digits of the 2n-digit product of an n-digit >< n-digit DFXP multiplication

cannot be accommodated in ‘P|imi,” digits. This is accomplished by selecting

either the product truncated to ‘Plimit’ or its incremented value based on Sticky

bit (Sb), Round digit (R) and Guard Digit (G). The least significant (n-2) digits

determine the sticky bit (Sb). It is desirable to generate sticky bit on-the-fly

with DFXP multiplication to improve the speed of DFP. When the final

product of the DFxP multiplication is one digit less than the total length, it

may be necessary to shift left the product by one digit to make the Most

Significand Digit (MSD) a non-zero number. The corrective left shift of one

digit necessitates maintaining an additional digit to the right of the decimal

point. This digit is referred to as the guard digit. The corrective left shift may

lead to an overflow to the (n+l)m digit while rounding the result. This situation

is demonstrated below using an example of 7-digit >< 7-digit DFXP

multiplication for a 32-bit DFP multiplier.

Let Cl be the significand of operand 1, and C2 the significand of

operand 2.

If Cl=“3333330”
and C2=“3000003”

70

Then the l4 digit result of Cl ><C2=“O9999999999990”

Since the MSD is zero a left shift is performed to avoid leading zero,

and the exponent is adjusted accordingly.

NOW the I16“ “9 9 99 <>9‘<>l))S)9 9900"0 Sb=‘l’

Since G >5, the first 7 digits are to be rounded up, and results in an 8

digit number “IOOOOOO”. This overflow to the eighth digit has to be corrected

again. This additional correction or shift can be overcome by doing the shift

after rounding. So, in this case the rounding is done initially for the product

and the result is shown below.

“‘099999“)/@§)‘99990",G R Sb=‘l’

In this case, since G > 5, the most significant 7 digits are rounded up to

get a value “IOOOOOO”. The MSD of the rounded result is not zero anymore,

and hence left shift is not required.

Now consider another example.

If C1=“233333O” and C2=“3000003”

The l4 digit result ofCl ><C2=

“()69999‘<i@§),9999()”,0 R Sb='l‘

Decimal Floating Point Multipliers and MAC Unit

71

Since G >5, the first 7 digits are rounded up, which results in a number

“070000O00”. The MSD of the rounded result is a zero, hence a left shift is

done, and the exponent value is adjusted. The shifted result is now “7000000”

if the ‘shifted in digit’ is zero, or a more erroneous result, “7000006” if the

‘shifted in digit’ is the Guard digit (G). Shifting before rounding would have

given a result “6999997”. This result is equivalent to rounding the 7 digits

excluding the MSD. It also performs the actual purpose of retaining the Guard

digit. The error generated is more if rounding of the result is done before

shifting. So, in such cases shifting has to be done first. In other words, select

the result after rounding the n digits excluding the MSD. A suitable selection

method is required to determine if rounding is to be done before shifting or

vice versa.

In the DF P multiplier using RPS algorithm, the Sticky bit (Sb), Round

digit (R) and Guard digit (G) generation are done in parallel with DFxP

multiplication process. Rounding is accomplished by selecting either the

product truncated to ‘Phmil’ digits or its incremented value. Initiation of the

rounding operation along with the DFxP multiplication speeds up the entire

process. After rounding, a ‘zero’ at MSD leads to a single digit shift towards

left. The shifter module is a major component that contributes to the critical

path delay of a floating point multiplier. So, a second rounding module is used

to round the product, excluding the MSD. Then a selection is made between

the two rounded results based on l\/ISD. The exponent is adjusted, exceptions

are set accordingly, and the result is encoded back in DPD.

The algorithm is explained using a 32-bit DFP multiplication. Initially,

the two 32-bit operands are read from registers, and decoded to generate 7

significand digits, 8-bit biased exponent (E) and a Sign bit (S). The exceptions

Chapter 3

72

such as ‘NaN’ and ‘Infinity’ are also decoded out from the 32-bit input. The

output exceptions are set at the logic block named ‘Handle exception 1’

depending on the input exceptions. There are four exceptions that may be

signalled during multiplication: Invalid operation, overflow, underflow, and

inexact. The exponent is computed, and the sign bit of the result is determined

as the XOR operation of the sign bits of the input operands. The significand

digits are multiplied using a DFXP multiplier. A 7-digit >< 7-digit DFxP

multiplier is used for 32-bit DFP input. This DFxP multiplier makes use of the

RPS algorithm of Chapter 2 that generates the final product (FP) in (n+1)

cycles. Figure 3.2 gives the detailed schematic of the blocks included in the

dashed box in Figure 3.1, for a 7-digit >< 7-digit DFxP multiplication.

The MSD ofthe significand of each input operand is suggested to be a

non-zero number. This leads to a unique representation of the DFP inputs

avoiding the need to count the number of leading zeroes. The smallest number

that can be represented in this format for a 32-bit representation is

1000000>< l0"0' and the largest number is 9999999><l0+9O. Any number that is

greater than the largest number is encoded as ‘Infinity’ with an ‘Overflow’

exception. Similarly, any number that is less than the smallest number are

truncated to ‘Zero’ with an ‘Underflow’ exception. If the result from an

operation needs more digits than ‘Plimit’ which is the maximum precision of

the significand, then the result will be rounded. If this rounding causes

removal ofnon-zero digits then, the ‘Inexact’ exception is set. The sticky bit

(Sb) generation is done in parallel with the DFxP multiplication. It is seen

from Figure 2.26 that for a 7-digit >< 7-digit DFxP multiplication, the least

significant product digits FP4- FPO are available after the fourth clock cycle.

Hence, the sticky bit (Sb) can be generated after the fourth clock cycle. In

Decimal Floating Point Multipliers andll/IIBIC Unit F I I I

73

general, for an n-digit DFxP multiplication using RPS algorithm, sticky bit

generation can be done after |F(n/2)_| cycles.

I

8"] 7"! 61h Sillcvclc cvcle t cvcle cvcle

3 5 7 ill l 13 is it 14
OP OP op * op ~ op op 4 op

, _

ad adi -» <—;.d--;,dhdc de de dc do de4_Y r r i't'r 1's rPM ‘ ll ‘ ' k pi liii i _'

Cu
Q

CD
O

' l
PP‘, PPR FP7 FP6

4 digit high speed
BC D adder

FPN Fptz FP11 Fpm pis Y i i i
lncreinentcv 2 V‘ V + pl g

lncreincntcr l

PPM‘? FPI3'n
Mux FPL1

4") 3fll
cvcle cvcle

l_
l

On

fad
dc

tr

2 digit
BCD
adder

FP

Rouiidin

E1.

Unit l
8:2

I -l0‘tH8il
op op

fad ‘4*ad4'ide dc i
I‘ t I‘

L__.___

Y

FP4 FP1

20:1

cvcle

in
5

OP

l

2 digit
BC D

adder

FF;

"jg ad r—t addc dcI‘ 1' 1

lsl

A cycl
C

it
3

ll Op

' Pun

._1_l

vi
Sticky bit

FP

Figure 3.2: Block Schematic of DFxP Multiplier using RPS algorithm and Rounding
Unit

In this DFP multiplier, rounding is done for both the most significant n

digits (using Incrementer 2 of Figure 3.2) and for the n digits excluding l\/[SD

Chapter 3

FP1 PP!»

74

(using Incrementer l of Figure 3.2). The appropriate result is selected based on

the MSD of the Incrementer 2. This improves the accuracy of the result if a

left shift is required. Also, it avoids the need for a shifter module, and reduces

the critical path delay. After rounding, the required ‘exponent adjust’ is done,

and the exceptions are modified if necessary. The final result is then encoded

back to DFP format.

3.3 DFP Multiplication using DDDM
The second approach for DFP multiplier design extends the iterative

DFxP multiplier design using DDDM technique described in Chapter 2. The

design for DFP multiplication is similar to the first approach except for the

difference that DFxP multiplication is done using DDDM.

The operands encoded in DPD are decoded to get BCD significand

digits and binary exponents. Then the product of significand digits of the two

operands is generated using the iterative DDDM for DFxP multiplication. The

least significant n digits of the 2n-digit DFxP product are available after

|—n./2_| cycles. The most significant n digits are generated in |—(n/2)+l_|”'

cycle by the ‘Decimal Carry Propagate adder’. The Sticky bit (Sb), Round

digit (R) and Guard digit (G) generation depend on the least significant n

digits, and so are generated in l_(n/2)+l_l”' cycle. Rounding is done in the

[(n/ 2) + 21”’ cycle, and it is accomplished by the two rounding modules as

explained in Section 3.2. The rounded result is selected between these two

results based on the MSD. The exponent is adjusted, exceptions are set

accordingly, and the result is encoded back in DPD.

Decimal Floating Point Multipliers and MAC Unit

75

3.4 DFP Multiplication using Parallel DFXP Multiplier
The parallel approach for DF P multiplier design uses the parallel DFxP

multiplier described in Chapter 2. The operands encoded in DPD are decoded

to get BCD significand digits and binary exponents. Then, the product of

significand digits of the two operands is generated using parallel DFxP

multiplication. The Sticky bit (Sb), Round digit (R) and Guard digit (G) are

generated from the DFxP result. Rounding is accomplished by selecting either

the DFxP product truncated to ‘Pumil’ digits or its incremented value depending

on the status of Sb-bit, R and G digits. The exponent is adjusted, exceptions

are set accordingly, and the result is encoded back in DFP format.

3.5 DFP MAC Unit

Decimal Floating Point MAC units perform the floating point fused

multiply add operations ((A><B)+C) of three DFP inputs that are in compliance

with IEEE 754-2008 standard. The general block diagram for a Decimal

Floating Point MAC unit is shown in Figure 3.3. The encoded inputs A, B and

C are decoded to get the sign, exponent and signiiicand parts of each input.

The significands are then multiplied by the fixed point multiplier unit. The

multiplied output is added with the C input. The result is corrected to the

required number of digits and encoded back to standard decimal floating point

format.

Chapter 3

76

A C igonection bitss >4 C“ r
l S Multiplier SM ' CFl SA Unit , CSM ’C _’ ii Eneoding_>Fl . B ———> °_"‘-' SF Unit Fina]lg Decoding _ won if_>@ Unit ii’ Adder Unit ResultB 1 E C_ Unit ‘ E1: lEB L i>> 1' ;if Sc> l- ‘*4Est»: IC E—> c_ :5

ll

lam 1--ni-_-,

Figure 3.3: Block diagram of a Decimal Floating Point MAC unit

Multiply operation is performed by using the different methods

described earlier. DFP adder using ripple carry BCD adders, kogge-stone

adders and reduced delay BCD adders are implemented aiming at reducing the

delay. The performances of these adders are compared in terms of area and

delay in order to find the best configuration. The correction unit consists of the

hardware for rounding, shifting, exponent correction and setting infinity, NaN,

inexact flags. The correction unit also checks for error conditions such as

overflow and underflow. lmplementing error detection and correction in a

design adds significant delays to the circuit since it requires the exponent

and/or significand values to be modified.

Decimal Floating Point Multipliers and MAC Unil

77

3.5.1 DFP Adders

Addition is the most basic arithmetic operation of an ALU through

which subtraction, multiplication and division can be realized. The decimal

floating-point adder includes an alignment unit that aligns the significands (the

part of a decimal floating-point number that contains its significand digits) of

two floating-point numbers so that the exponents associated with the floating

point numbers have equal values. A binary adder adds the aligned

signifieands. A correction unit and a rounding unit are also included in the

floating-point adder to produce the final decimal floating point result. The

different types of binary adders available in literature are brent-kung adder,

kogge-stone adder, Carry-skip adder, carry look ahead adder, carry-select

adder, Ling adder etc; the fastest being the kogge-stone adder.

The block schematic of a DFP Adder is shown in the Figure 3.4. A

DPD to Decimal converter performs the conversion from Densely Packed

Decimal form to the corresponding BCD significands and biased binary

exponents. The module can be bypassed if the adder inputs are in BCD as in

the case where the adder is a subsystem of a DFP system. The exponent

difference module finds the difference between the exponents and gives the

magnitude and the sign of the result. The multiplexer module then selects the

final exponent of the result depending on the sign of the difference of the two

exponents. The second multiplexer selects the suitable significands depending

on the sign bit of the difference of the exponents. The output from this

multiplexer is given to the ‘shift right’ module. The number of shifts of the

shifter is determined by the magnitude of the difference of the exponents. The

shifted output is then given to the adder unit. The adder performs the addition

of the two inputs and gives the sum and carry. The scheme used for rounding

i Chapter

78

is ‘Round to even’ (RTE). The Decimal to DPD conversion module performs

the conversion from BCD back to the IEEE 754-2008 floating point format.

The module is not required if the output in BCD is to be fed in as BCD inputs

to another subsystem such as in the case where the adder is a subsystem of

another DFP system.

' signi Exponent Lsigliificalld I |——i Sign[_Exponent Significand '

ExponentDifference Mm
a

@ Shift right

L Decimal Adder J

Exponent I Shift right/'lel't Iadjust
l Rounding Unit i

Y__ _
| Sigrq Exponent I Significand

Figure 3.4: Block diagram of a Decimal Floating Point Adder unit

ln this research three different types of 16-di git decimal floating point adders

are implemented.

v DF P adder using concatenated ripple carry BCD adders

0 DF P adder using kogge-stone adders.

0 DFP adder using a Reduced Delay BCD Adder

Decimal Floating Point Multipliers and MAC Unit

'79

The DF P implementations differ in the method in which the addition is

done for the aligned significands. The rest of the modules of the DFP adder

are the same for all the implementations. The adders implemented are of

length l6 digits which can be used for the DFP MAC unit for 32-bit DFP

input.

3.5.1.1 Ripple Carry BCD Adders

In this implementation, the addition of the aligned significands is done

by 16 BCD adders. Each BCD adder is made of 2 ripple carry adders. The

carry output of the BCD adder ripples to the next more significant adder. The

ripple carry BCD adder is slow due to the rippling of carry through each adder

stage.

6316]] N1[63:60] N :4 N1|7:4l N :0 N1[3:D]

4-bitbiriary 4-bitbinary 4-bitbinaryadder adder adder
S32 S1 S0 53525150 S3 S2 S1 S0 CimrlnCarrvfllt Q- U .—-U .--l(—}.:. . . . 11:‘ l—|i:‘11 I 11 1“it tr Ii“ ‘Ir
adder adder adder83828180 53528180 83828150

Figure 3.5: Concatenated BCD Adders

Chapter 3

80

3.5.1.2 Kogge-Stone Adders

The Kogge-Stone adder is a parallel prefix form carry look-ahead

adder and is considered as a faster adder design. The Kogge-Stone adder

concept was developed by Peter M. Kogge and Harold S [Kogge, P. and

Stone, H., 1973]. Stone. Figure 3.6 shows the an example of a a 4-bit Kogge

Stone adder [kogge-stone_adder/ freebase].

The implementation of the DFP adder using Kogge-Stone makes use of

BCD adders implemented using 4-bit Kogge-stone adders as proposed by

[Thompson er al., 2004]. The adder consists of a pre-correction unit, a Kogge

Stone binary adder, which adds two pre-corrected operands, and a post

correction unit. The speed is further increased by using ‘reduced delay BCD

adders’ for decimal addition and is explained in next section.

A=1011 B=11OU Sum=10101

O .'i§?~.‘ . _; >(§ _'.:_' . ‘D,

O
N
O

A2B2 A1B1 A0809 1 0 9 To

24”’:= = C1=0 C0=0 Cin=0

fL°9°"d Pie-i Pi.=...<3i.=... PiGi \A|B| 5®; 1‘_-i1:41-.:Z;l%i1.';‘=‘»i

i P=AiXOF and Prev P:pi_ p
G: and Bl and Prev) or Gt G:G' _'Ci=Gi ‘

\Si=Pixor Ci-1 H /
Figure 3.6: Kogge —Stone Adder

Decimal Floating Point Multipliers and MAC Unit

81

3.5.1.3 Reduced Delay BCD Adder

This DFP adder uses reduced delay BCD adder by [A. A. Bayrakci and

A. Akkas, 2007]. The sum of a BCD addition can fall in any of the 3 cases:

Case 1." The sum of two BCD digits is smaller than 9. In this case, it is certain

that there is no carry output, even if there is a carry input. Furthermore, the

result for this digit does not require a correction.

Case 2: The sum of two BCD digits is greater than 9. ln this case, a correction

is required. Moreover, a carry output is produced regardless of the carry input.

Case 3: The sum of two BCD digits is exactly 9. ln this case, the input carry

determines whether a correction is required and whether a carry output is

produced.

For the first two cases, the incoming carry has no effect on determining

the carry output; therefore, the carry output can be determined without

knowing the existence of the carry input. On the other hand, if the addition

result is 9 (Case 3), then the input carry determines the existence of the carry

output, which may ripple even up to the most significant digit. Therefore, Case

2 and Case 3 can be represented by a digit generate (DG) and a digit propagate

(DP) signals, respectively. Figure 3.7 shows how the DG and DP signals of a

digit are computed in the design [A. A. Bayrakci and A. Akkas, 2007]. After

having all the DG and DP signals, the output carry for each digit is found by

Equation (3.1).

OutputCarry = DG + DP ' lnputCa1ry (3. l)
The combination of the first level 4-bit adders and the Carry Network

is shown in Figure 3.8 [A. A. Bayrakci and A. Akkas, 2007]. The carry value

for each digit is computed inside the Carry Network using Equation (3.1).

Chapter 3

82

4 4
A2 A1

Co 4-bit binary CLA Adder

Srum[3§O]2 4
Digit Generate Digit Propagate

Figure3.7: Adder and Analyzer Unit

N2{63;60] N1[63t6O] N2[71-4] N1[7i4] N2[3:0] N1 [3101

A2 A1 A2 ‘ A1 i A2 A1
Adder + Analyzer ' ' . Adder + Analyzer Adder + AnalyzerDG _DP Binary sum yDG DP ljinary sum y DG_yDP Bil'!3l'y‘i i 1%

Binary sumlt-33:60} Binary sum[7:4] Binary sum{3;0]

I Carry Network ~
16

Ca|Ty{15:0]

Figure 3.8: Adder, Analyzer and Carry Network

The carries computed by Carry Network are used in the correction

step. Correction is done by adding 0, 1 6 or 7 t, , 0 the binary sum from the first

Decimal Floating Point Multipliers and MAC Llnit i i I i fi

83

level adder. For each digit, the output carry and the input carry determine the

value to be added for correction. Figure 3.9 shows the complete BCD adder

including the 4-bit adders used for correction. Table 3.1 shows the correction

value to be added for all cases [A. A. Bayrakci and A. Akkas, 2007].

Comparison of different DFP adder implementations using different

BCD adders is given in Section 6.3.

N2[63;0] N1[s3:0|
64

Cin

Adder + Analyzer + Carry NetworkBinary Binary Bhary
C3fl'Y[15] sut'r|[63;6U] ' ° ‘ C3[TY[1] sum]7:4] Carry[O] 5um[3:O

Cout 0 0 0 ~ if‘O. IO. I0,
4-bit binary adder 4-bit binary adder 4-bit binary adder

corrected result[63:6O] corrected result[?:4] corrected result[3:U]4 4 4
Figure 3.9: Reduced Delay BCD Adder

Table 3.1: Selection of the Value to be added for Correction

The value added for i _ Possible C3599
Correction l Input cary from prev. digit Output carry to next digit0 0 06% 0 11 1 i O7 1 l ll W l

Chapter 3

84

3.6 Summary
The DFP multipliers presented includes the floating point extensions to

the iterative DFxP multiplier design using RPS algorithm, DDDM and the

parallel DFXP multiplier designs. These DFP multiplier designs are in

compliance with IEEE 754-2008 standard. 32-bit DFP multipliers are

synthesized to find the area and delay using Leonardo Spectrum from Mentor

Graphics Corporation with ASIC Library. These designs and the design in [M.

A. Erle, B. J. Hickmann and M. J. Schulte, 2009] for the DFP Multiplication

are synthesized in the same environment.

A delay reduction is achieved for the approach using RPS algorithm

because of the initiation of rounding process during the DFxP multiplication.

This parallelism decreases the delay of the last cycle, which in turn reduces the

worst case period and increases the throughput. When multiplying two DFP

numbers with n-digit significands using this approach, the worst case latency

is (n+2) cycles, and initiation interval is (n+1) cycles. The DFP design using

DDDM for DFXP multiplication requires lesser number of clock cycles

compared to first approach and that in [M. A. Erle, B. J. Hickmann and M. J.

Schulte, 2009]. The latency to complete n-digit >< n-digit multiplication is

almost halved compared to single digit design with an increase in area of 50%.

The latency for the multiplication of DFP numbers with n-digit significands

using DDDM is [(11/2) + Zlcycles, and a new multiplication can begin every

l_(n/ 2)+h|cycle. This in tum reduces the total delay even though the worst

case cycle time is more, giving a delay reduction compared to the delay in [M.

A. Erle, B. J. Hickmann and M. J. Schulte, 2009]. Compared to the first

Decimal Floating Point Multipliers and MAC Unit

85

approach using RPS algorithm, the second approach is more regular and

occupies lesser area, but has more delay.

Parallel designs are adopted when latency and throughput are of more

importance than area. Comparison of parallel design with the iterative designs

and that of [M. A. Erle, B. J. Hickmann and M. J. Schulte, 2009] is done.

Decimal Floating Point MAC unit implements the fused multiply-add

operation with a single final rounding after add operation. The fused multiply

add unit uses parallel and iterative multipliers and a floating point adder unit.

The DFP adder is implemented using ripple carry BCD adders, kogge stone

adders and reduced delay BCD adders. Comparison of DF P adders shows that

the ‘reduced delay adder’ achieves the highest speed. The simulation results of

different decimal floating point multipliers, adders and MAC unit are given in

Section 6.3.

C Chapter 3

Chapter 4

Reversible Circuits for Decimal Adders

7 __I7 _7 ;_7 _,7 _I.7 _7 T _l7 _l'7 _l7 417 _7 _J7 _ 7 Q7 *7 C17 *7 _l7 *7 _'l7 _l7 _l7 CI7 77 J7 _‘7 _fI7 _J7 77 I g

Low power designs with high performance are given prime importance, since

power has become an important design consideration. In recent years, reversible

logic has emerged as one of the most important approaches for power optimization.

So, reversible logic is in demand in high-speed power aware circuits. In this chapter

different designs for reversible logic implementation ofBCD adder are presented.

This chapter also suggests two new universal 4 >< 4 ‘reversible RPS gates’ that can

function as a reversible 4-bit Binary to BCD converter with a garbage count of zero.

The reversible circuits presented here forms the initial step in the building ofcomplex

reversible systems. Complex reversible systems can execute more complicated

operations for a reversible Decimal MAC unit. L-ow power circuit designed in

reversible logic for Hamming code generation and error detection using a new 4 >< 4

reversible Hamming Code Gate (HC-G) is also presented.

—7_l7*7&l7;7 _7 _7 _ _' _7_J77,77,7_,7 7777747 7 777 74747; 74l74l74l74[777_,777_l7_I

89

4.1 Reversible Logic

Low power designs with high performance are given prime importance

by researchers, as power has become a first-order design consideration. While

efforts are being made to reduce power dissipation due to leakage currents,

altemate circuit design considerations are also gaining importance. Energy

loss during computation is an important consideration in low power digital

design. Landauer’s principle states that a heat equivalent to kTln2 is generated

for every bit of information lost, where k is the Bolt2mann’s constant and T is

the temperature [R. Landauer, 1961]. At room temperature, though the amount

of heat generated may be small it cannot be neglected for low power designs.

The amount of energy dissipated in a system bears a direct relationship to the

number of bits erased during computation. Bennett showed that energy

dissipation would not occur if the computations were carried out using

reversible circuits [Bennett C., 1973] since these circuits do not lose

information. lnfonnation is lost when the input data cannot be uniquely

recovered from the output data. A gate that does not lose information is called

a reversible gate (for example, an inverter). A completely specified n-input, n

output Boolean function is called a reversible function, if it maps each input

vector to a unique output vector and vice versa. There is a significant

difference in the synthesis of logic circuits using conventional gates and

reversible gates [T. Toffoli, 1980]. While constructing reversible circuits with

the help of reversible gates, fan-out of each output must be 1 without feedback

loops. As the number of inputs and outputs are made equal there may be a

number of unutilized outputs in certain reversible implementations. The

unutilized outputs from a reversible gate/circuit are called “garbage”. This is

Chapter 4

90

the number of outputs added to make an n-input k-output function reversible.

For example, a single output function of n variables will require at least (n-1)

garbage outputs. An important aspect for evaluating reversible circuits is the

garbage count. Hence, one of the major issues in designing a reversible circuit

is in garbage minimization.

Classical logic gates such as AND, OR, and XOR are not reversible.

Hence, these gates dissipate heat and may reduce the life of the circuit. In

recent years, reversible logic has emerged as one of the most important

approaches for power optimization with its importance in nanotechnology and

quantum computing.

4.2 Reversible gates
This section describes reversible logic gates that are used in various

implementations of a BCD adder.

4.2.1 New Gate (NG)

Figure 4.1 shows a 3><3 New Gate [Md. M. H. Azad Khan, 2002]. New

Gate can be used as a gate that generates an AND gate, an OR gate or an XOR

gate. If B=‘0°, then Q=C and R=(A’C’)@l=A+C. Similarly, when C=’0’, then

Q=AB and R=A$B which are the carry and sum outputs of a half adder.

A =
C :AaC¢$Ba

Figure 4.1: 3><3 New Gate (NG)

7°01
>

Reversible Circuits for Decimal Adders

91

Any Boolean function can be written in Positive Polarity Reed Muller

(PPRM) form. A New Gate can be considered as a universal gate since any

Boolean function in PPRM form can be realized using only New Gates.

4.2.2 Toffoli Gate (TG)

Figure 4.2 shows a 3><3 Toffoli Gate [E. Fredkin, T. Toffoli, 1982].

Like New Gate, Toffoli gate can also be used to generate an AND gate or an

XOR gate. If C=‘0’, then R=AB and if B=’1’ then R=A€BC. TG can also be

considered as a universal gate since any Boolean function in PPRM form can

be realized using only TGs.

_'1r:n>

wow
aw
H90

Figure 4.2: Toffoli Gate (TG)

4.2.3 New Toffoli Gate (NTG)

Figure 4.3 shows a 3><3 New Toffoli Gate [H. Md. H.Babu, 2003] or

Peres Gate. New Toffoli gate can also be used to generate an AND gate or an

XOR gate. If C=‘O’, then Q=Ah‘3‘B and R=AB.

AB NTG =C =

770'?’

av
ea?
F)

Figure 4.3: 3><3 New Toffoli Gate (NTG)

NTG is also a universal gate since any Boolean function in PPRM

form can be realized using only NTGs.

Chapter 4

92

¢L4TSG

Figure 4.4 shows a TS Gate [H. Thapliyal and M.B Srinivas, 2005]. A

full adder circuit can be implemented completely by a single TSG. TSG is also

a universal gate since any gate can be implemented using only TSGs.

P=A

TSG Q= A’C’EBB’
R= (A’C’ EBB’) $0
s= = (A’C’ 1% B’) D EB(ABI:Bc)

COED}

Figure 4.4: 4X4 TS Gate (TSG)

4.2.4 Fredkin Gate (FRG)

Figure 4.5 shows a Fredkin Gate (FRG) [E. Fredkin, T. Toffoli, 1982]. This

is a parity preserving reversible logic gate which satisfies the condition

AHEBEB C=PIi3 QEB R.

In general, the following condition is valid for a parity preserving

reversible gate:

@ZK=$Z“
where ‘X’ indicates an input, ‘Y’, an output, and ‘i’ the number ofinputs or

outputs of the reversible gate.

A circuit implemented using parity preserving gates makes it suitable

for fault detection. The ‘Q’ or ‘R’ output expression of FRG is same as that of

a 2:1 multiplexer. Any Boolean function can be realized using 2:1 multiplexer.

So FRG is also a universal gate.

FRG = -A EBAC
= i?BA’C

-"3U7D>

WOT

awCU

Figure 4.5; Fredkin Gate (FRG)

Reversible Circuits for Decimal Adders G I

93

4.2.5 Feynman Gate

Figure 4.6 shows a Feynman Gate [R. Feynman, 1985]. Feynman Gate

can be used as a copying gate. Since a fanout greater than one is not allowed,

this gate is useful for duplication of the required outputs. If B=’O’, then P=A

and Q=A.

B Q=AEB B
Figure 4.6: 2><2 Feynman Gate (FG)

A 3><3 Feynman Double Gate (FZG) [B. Parhami, 2006] has 3 inputs A, B,

C and 3 outputs P=A, Q=AEBB, R=Afl3C as shown in Figure 4.7. F2G is a

copying gate as well as a parity preserving reversible gate.

B F2G =

."3 D>

7701
>>>
Q5551
QUJ

Figure 4.7: 3><3 Feynman double Gate (F26)

4.3 Reversible Full Adders
A full adder is an integral component of a BCD adder and has 3 inputs

and 2 outputs. To make a full adder reversible some garbage outputs are to be

added. A reversible full adder circuit is proposed which can be realized with

two garbage outputs [H. Md. H. Babu, A. R. Chowdhury, 2006]. In the full

adder circuit, there are three input combinations (O, 0, l), (0, l, 0) and (1, O, 0)

for which the output is same (l, 0). So, at least two garbage bits are required to

make a unique output combination for each input combination.

Chapter 4

94

4.3.1 Full adder using NG

Figure 4.8 shows the implementation of full adder using NG and NTG

gates with 2 garbage outputs. It is seen that the implementation requires 2

gates at 2 levels with 2 garbage outputs to generate the sum and carry outputs.

So, this is an optimum solution in terms of number of garbage outputs. The

full adder gives an additional delay of one NTG to generate ‘Carry’ after

receiving Cm. The total delay for generating the Com for an n-bit ripple adder

using such full adders in terms ofnumber of gate delay is

T¢(;u[: 1 +11 1)
A Cin

A AEB B
B NO I I NTG AEB BEBCin=Sum
“ (AEBB)CinEBAB=Cout

Figure 4.8: A reversible full adder with NG and NTG

4.3.2 Full adder using NG

The reversible implementation of full adder using only NG is shown in

Figure 4.9. It is seen that the implementation requires 3 gates at 3 levels with 4

garbage outputs to generate the sum and carry outputs. So, this is not an

optimum solution. Cm is the last input to be received for the full adder. The Ci"

input passes through a maximum of 2 NGs to generate the ‘Carry’ output.

Thus the full adder gives an additional delay of 2 NGs after receiving Cm. The

total delay for generating Com for an n-bit ripple adder implemented using such

full adders in terms of NG delay is

Reversible Circuits for Decimal Adders

95Tcout :
A

(1? NC I Cin NQO 0 —~ NC,
Sum

Ca ny

Figure 4.9: Reversible full adder using NG

4.3.3 Full adder using NTG

The reversible implementation of full adder using only NTG is shown in

Figure 4.10. It is seen that the implementation requires 2 gates at 2 levels with

2 garbage outputs to generate the sum and carry outputs. This is similar to the

implementation in Figure 4.8 and the total delay for generating the CW1 for an

n-bit ripple adder using such full adders in terms of NTG delay is

T.,O.,t= l+n (4.3)
A

B NTG IO Cin NTG Sume Czury
Figure 4.10: Reversible full adder using NTG

4.3.4 Full adder using TG

The reversible implementation of full adder using only Toffoli Gates is

shown in Figure 4.11. The implementation requires 4 gates at 4 levels with 4

garbage outputs to generate the sum and carry outputs. So, this is not an

optimum solution. The full adder gives an additional delay of one TG to

generate ‘Carry’ after receiving Cm. The total delay for generating the Com for

Chapter 4

96

an n-bit ripple adder implemented using such full adders in terms of TG delay

is

Tcom = 2+n (4.4)
Here ‘Sum’ is generated after one more TG delay. So the total delay in

generating the ‘Sum’ output for an n-bit ripple adder is 3+n.A I0 o ohi T 1 TG G
Cin

Carry Sum

Figure 4.11: Reversible full adder using TG

4.3.5 Full adder using TSG

The reversible implementation of full adder using only TSG is shown

in Figure 4.12.

QUJ>

TSG
SumCin CHITY

Figure 4.12: Reversible full adder using TSG

The implementation requires only l gate with 2 garbage outputs to

generate the sum and carry outputs. So, this is an optimum solution in terms of

number of gates and garbage outputs. But, TSG is a 4 >< 4 gate and has a more

complex structure compared to the other reversible gates so far discussed. The

Reversible Circuits for Decimal Adders

97

total delay for generating the Com for an n-bit ripple adder implemented using

such full adders in terms ofTSG delay isTcout : n
4.3.6 Full adder using F RG

Fredkin gate is a parity preserving reversible logic gate. A number of

parity preserving reversible full adders are available in literature [B. Parhami,

2006], [Dmitri Maslov, 2003]. Figure 4.13 shows an implementation of full

adder using parity preserving Fredkin gates.

l I Sum0

C in
I

OCarly
Figure 4.13: Reversible Full adder using Fredkin Gates

This full adder implementation requires only 5 Fredkin gates at 3

levels compared to 3-level 6-gate (5 Fredkin gates and 1 Feynman gate)

implementation in [B. Parhami, 2006], and 5-level 5-gate implementation in

[J .W.Bruce et al., 2002] while observing the fanout restrictions. The Fredkin

gate implementation in Figure 4.13 generates 5 garbage outputs. So, this is not

an optimum solution in terms of gates or garbage. But the use of parity

preserving Fredkin gates makes it a reversible fault tolerant implementation

Chapter 4

98

suitable of single error detection. Total delay for generating the Com for an n

bit ripple adder using such full adders in temis of FRG delay isTCOut= l+2n (4.6)
Table 4.1 shows a comparative analysis of different implementations

of full adders using universal reversible gates.

Table 4.1: Comparison of Reversible Full Adders

' | " ’ ’ ’ ’ ’ '7 ' 7 '7 7 ti 7 7 "
it Type of gate p Number of 4 Delay for n- Parity .,

, ‘ bit adder preservationits ___.lc -__, 2 ,
\ gatel level garbage Com , Sum ___.__,___],_. orNG&NTGl 2 2 2 l+n pl+n‘ No ,
—— _ 7 _' _' A-1, _* _7 9+ 7 _j _*' W7 7 '4 7' _" _' _* Q _’ 7. NG 3 v 3 ‘ 4 l l+2n " 2n 0 No
r“ * * * * * L T]L es * ” * T ” " ;l ” * J" * * *2 J”l NTG 2 2 2 A l+n l+n NO Al %_ . .l - - .. 2 _ _ _1. _ _ _ _ t: _ , _ ie _ , _,. ._ _ . .
‘ TG . 4 J 4 l 4 2+n 3+n l Noi __. _ _L, l_l_ . __ ___ é, _. ___ __ ,_ _ \TSG l 1 ~ 1 2 n M n No

l‘,__ _ _i, __ __ ___. .%_ ,__ _ W; ,_ 1 _ _,, __ ll
ll *2 FRGJ 2!” 5 3 4 5 Y l+2n ‘l+2n 2 ‘Yest:_.__ ‘_4l___.._J..__lf._ _ _

Several other reversible implementations of full adders are available in

literature in [Md. M. H. Azad Khan, 2002], [H. Md. Hasan Babu er a1., 2003],

[H. Md. Hasan Babu er al., 2004], [Dmitri Maslov, 2003], [J . W. Bruce ct al.,

2002]. But the implementation of a full adder using TSG takes least number of

gates, and produces least number of garbage outputs.

Reversible Circuits for Decimal Adders 2 2 2 2 2 2 2 1 2 2 2 7

99

4.4 Reversible Decimal Adder

A conventional BCD adder shown in Figure 4.14 has three blocks: 4

bit binary adder, 6-correction circuit and a modified special adder. 4-bit full

adder adds the BCD inputs and generates a binary sum, S (S3-<;).This output is

checked for a value greater than ‘9’ or for a carry out, by the 6-correction

circuit which generates a ‘6-correction’ bit, ‘L’ using Equation 4.7.

L= Com + S3 (S|+S;) (4.7)
The inputs to the second adder stage are S (S3-()) and 4-bit number N

(N3-0) whose value is 6 (01102) or 0 (00002) depending on ‘L’ bit. So, N0 and

N3 are always zero, and N1 and N; is ‘L’ bit. To reduce the hardware and to

increase the speed of the circuit, the final adder stage (special adder) is a

modified version of the 4-bit binary adder with two half adders and one full

adder.

H3 bi {I1 l‘); 8| bi Eli; bu
4 bit Binary

CUIII I S] S2 S] SH
6-correction circuit I

Decimal Cout S; IS; L S|

Y4.1 dz dl do
BCD Sum

Figure 4.14: BCD Adder

M 00000007 Chapter 4

100

A reversible conventional BCD adder was proposed in [Hafiz Md.

Hasan Babu and A. R. Chowdhury, 2005] using conventional reversible gates.

In [Hafiz Md. Hasan Babu and A. R. Chowdhury, 2005], a full adder design

using two types of reversible gates, NG (New Gate) and NTG (New Toffoli

Gate) with 2 garbage outputs was implemented. The BCD adder was then

designed using these full adders. The implementation was improved in

[Himanshu. Thapliyal, S. Kotiyal and M.B Srinivas, 2006] using TSG

reversible gates. But, this approach was not taking care of the fanout

restriction of reversible circuits, and hence it was only a near-reversible

implementation. In this research, a modified version of decimal addition using

reversible gate is designed which is a fully reversible circuit with a fanout of

l. The reversible design of the BCD adder is done using the reversible gates

such as TSG, FG and NG. Since a full adder can be implemented using one

TSG, a 4-bit binary reversible adder implementation using TSG gates requires

4 TSG gates and produces 8 garbage outputs. Reversible implementation of

the 6-correction circuit is given in Figure 4.15. For reducing the number of

gates, the 6-correction circuit output ‘L’ can be modified as in Equation

(4.8).

L= Cout + S3 (S1+S2) = Cout 53$; (S|+S2) (4.8)

$1 5| 5.1 5.10 cs s no FG- O =Cou1 S; (S1+S;)
Cout

Figure 4.15: Reversible implementation of 6-correction Circuit

[-012

Reversible Circuitsfor Decimal Adders it

101

It can be seen that the implementation requires 3 gates (2 NGs and 1

FG) to produce the 6-correction output, ‘L’, and the sum outputs (S34) along

with 2 garbage outputs. The S1, S; and S3 outputs produced without using any

copying gate (FG) can be used as inputs for the next stage. This gives a

reduction of 3 gates and 4 garbage outputs compared to the implementation in

[Hafiz Md. Hasan Babu and A. R. Chowdhury, 2005].

Special adder is implemented using 4 gates of 3 types (NG, TSG, 2

FGs). It is already seen that a 3 >< 3 NG can implement a half adder, and a 4><4

TSG can implement a full adder. An FG replaces the final half adder in the

special adder. This is because only the sum bit (d3) is required as decimal sum

output, and the carry is discarded from the final addition. So, using an NG will

give rise to 2 garbage outputs while an FG will produce only one garbage

output. The BCD sum is indicated as d3-0 and carryout from the stage as

‘Decimal Com’ in Figure 4.16. The complete circuit of the new BCD adder is

given in Figure 4.17.L FG =<1 S1 no so rsc
r1

Decimal C out
s2 0

st

Figure 4.16: Reversible Implementation of Special Adder

C-000’
NI

A modified version of decimal addition using reversible gates that

further reduces the number of gates and garbage outputs with a fan-out of 1 is

designed. The design is implemented using 3 types of reversible gates. The

modified design of this special adder speeds up the addition process with a

reduction in the number of gates as shown in Figure 4.18.

Chapter 4

I02

0 33 b3 O 32 bz 0 il1b| Ci“ 0 80 buIII III III
Cm.‘ ‘B3 gig; S1 gigs Si g4 8.1 SI gzgi

doSI 5.1
NG : F0 gLm

0

z
ca

III_I
.5."

@

‘L?

EnFG 211O I IDecimal Coul d| O " dz a,
Figure 4.17: Reversible Implementation of BCD Adder

“Q
_§-3

N)

__,'3"-I

-©
-2
-5’

0 83 bx _ Cm O Ila] I30I I I I I I IIII III III
C()\lI g3 g7 S2 g6 g5 S E4 gl Si! g2 gl

$1
»0 I .I N 32 N L 6-COITCCIIOD- G I. G circuit

Q l II
0 z

‘I III II
‘L’

--"* gu
gmI Special

I
O .

d I d2 D\\,'illlF|I Cmnl d3

Figure 4.18: Modified Implementation of BCD Adder

Reversible Circuits for Decimal Addersi I

103

The reversible BCD adder implementation is done using this modified

special adder with all the features of reversible logic synthesis. The restrictions

of reversible circuits are also taken care of in this design while achieving a

reduction in the number of gates. The design is done using 3 types of

reversible gates and results in lesser number of garbage outputs.

Further reduction in number of logical computations was achieved by

using HNG gates in the implementation by [M. Haghparast and K. Navi,

2008]. Figure 4.19 shows an HNG gate. A full adder circuit can be

implemented completely by a single HNG similar to a TSG. The logical

complexity counted in terms of number of logical computations such as

number of XOR, NOT, AND operations are less for HNG compared to TSG.

HNG is also a universal gate since any gate can be implemented using only

HNGs

HNG 2 .= $590
= EBB)CEB/\B|£D

Ur'1w>

C/),';U;C)"U

";';>w>

Figure 4.19: 4 >< 4 HN Gate (HNG)

All these implementations are for conventional BCD adders. These are

relatively slow, and are implemented using different types of reversible gates.

Next section deals with the implementation of fast decimal adders with only

one type of reversible gate.

Chapter 4

104

4.5 Reversible Fast Decimal Adders

This research presents reversible implementations of three different

fast decimal adders: Quick Addition of Decimals (QAD), carry select, and

hybrid decimal adders. These implementations result in reduced number of

gates and garbage outputs compared to the reversible implementation of carry

skip BCD adder proposed in [Himanshu Thapliyal, S. Kotiyal, and M. B.

Srinivas, 2006]. These multi-digit BCD adders are implemented using parity

preserving reversible Fredkin gates. Fredkin gates are conservative reversible

gates. A gate is conservative if the Hamming weight (number of logical l’s) of

its input equals the Hamming weight of its output. If a gate is conservative and

reversible then it is parity preserving. Fault detection can be done by using

parity-preserving reversible logic gates. The feasibility of the parity

preserving approach in the design of reversible logic circuits was

demonstrated by [B. Parhami, 2006] with examples of adder circuits. Parity

checking is one of the oldest as well as one of the most widely used methods

for error detection in digital systems. The parity preservation proves useful for

ensuring the robustness of reversible logic circuits.

4.5.1 Quick Decimal Adder

The BCD adder shown in Figure 4.20 consists of a 4-bit binary adder,

a 6-correction circuit, and a modified special adder along with a circuit (3

input AND, 2-input OR) to generate decimal carry out (doom).

Reversible Circuits for Decimal Adders K

105

3_ bi Z1 b 3| l)| E111 bi]

binary

I S1 S2 S: $11
adder

6-correction circuitl L C11
ll

XOR FA FA HA SpecialE i AdderK d_ d_ d| dr,
Declnlal Cunt SUITI

Figure 4.20: BCD adder for Quick Addition of Decimals (QAD)

On receiving Cm the circuit checks whether the sum, S is ‘9’ and Ci“ is

‘l’. It then generates ‘K’ bit using Equation (4.9).

K = S3S0Ci,, + L (4.9)
The inputs to the second adder are S (S 3-0) and 4-bit number, N (N3-0)

whose value is depending on ‘K’ and ‘Cm’ as given below.

If K=l then N=6 (01102) ifCin=‘0’

N=7 (01112) ifCin=‘l’

else N=0 (00002) if Cin=‘0’

N=1 (00012) if Cin=‘1’

S0, N3 is always zero. N2 and N1 is K-bit and N0 is ‘Cm’. The final

adder stage (4-bit special adder) is a modified version of the 4-bit binary adder

consisting of a half adder, 2 full adders and an XOR gate. This will reduce the

Chapter 4

106

hardware, and will increase the speed of the circuit. The implementation of the

special adder is shown in Figure 4.20.

A 4-Digit Quick Decimal Adder accepts two 4 digit decimal numbers

as inputs in BCD (16 bits), and generates the BCDSUH1. Figure 4.21 shows the

4-digit QAD implementation. The shaded parts indicate the critical path.

a15-12 b16-12' 311-3 1311-5 a7-4 b7_4 a3'0 b3'0
4 bit binary . . 4 bit b. 4 bit binaryadder :::;marY addermary adder S3 0is-12 $7-4 ' '--- --- sit-8 --- --I

Eecorrection 5_C0"eCmn 5C0fT8C1i0l‘I_ _ I B-correction ' 1 . itCIFCUR ‘ Circuit Cifcun l: clrcu

FU

L4 i 2 i L3 i L2 L1 2 CIDS15-12 A S1 LB * SM s3-0. 2 I l | I . 2 I
K4 4 bit special adder _ 4 bit gpecjal addgr 4 bit special adder ' bu Special adder

COUT K3 K2 K1aco1s-12 ac011-a BCDM 5°03-U
Figure 4.21: 4-Digit Quick Decimal Adder

The first stage addition is carried out in parallel for all digits, and a ‘6

correction’ bit (Li) is generated simultaneously by all the stages. S0, the delay

up to this stage is given as

Tdélay = Tadder + T6-c011'€cli0l1 (4-10)

where Tadde, is the delay of the 4-bit binary adder, and T6-c01m,i0,, is the delay

of 6-correction circuit

On receiving the Cm, the Decimal Com bit (Ki) is generated after the

delay of a 3-input AND gate and a 2-input OR gate at each stage as given in

(4.11).

Tdcout = Tand + Tor (4- 1 1)

Reversible Circuits for Decimal Adders 7

107

So, the delay in generating Decimal Com (doom) after receiving Cm is

4TdcOu, for a 4-digit adder . In general, for an N-digit BCD adder the delay for

generating the Decimal CW, (dcout) after receiving ‘Cm’ is mTd¢Om. The total

delay ofthe m-digit adder is given in (4.12).

Tmdigit = Taddcr + T6-correction + NTdcou1+ Tsp-adder (4-12)

where TSp-adde]‘ is the delay of the special adder.

The total delay for an m-digit ‘Quick Decimal Adder’ is ‘N’ times thc

delay of the additional logic required (a 3-input AND and a 2-input OR) along

with the delay of single stage BCD adder which is

Tlstage: (T&1d(le1‘+ T6-concction + Tsp—adde1') (413)

4.5.1.1 Parity Preserving Reversible Quick Decimal Adder

The reversible implementation of the new quick decimal adder is done

using Fredkin gates. The basic component of any adder is a full adder. Figure

4.22 and Figure 4.23 show the implementation of a half adder and a full adder

using parity preserving Fredkin gates. The full adder implementation requires

only 5 Fredkin gates at 3 levels, compared to 3 level 6 gate (5 Fredkin gates

and l Feynman gate) implementation in [B. Parhami, 2006], and 5 level 5

Fredkin gate implementation in [J .W. Bruce et a1., 2002] while observing the

fanout restrictions.

5 A??? B=Sum

0 AB=Carry

Figure 4.22: Half adder using Fredkin Gates

Chapter 4

108

l ‘ I Sum0

C
lO Cany

Figure 4.23: Full adder using Fredkin Gates

The 4-bit binary adder realized using one half adder and 3 full adders

will achieve a reduced delay by using these implementations. The least

significant half adder requires a path delay of two FRGs to generate C0 from

the addends. Then the carry ripples through the subsequent full adders with a

path delay of two FRGs per bit. This is because the first Fredkin gate of all full

adders works in parallel with the first Fredkin gate of the half adder in an n-bit

binary adder. But in the implementation in [B. Parhami, 2006] the delay is of 3

levels. So, an advantage of single delay level/bit is achieved in the

implementation presented. The delay to generate Com in the n-bit binary adder

is

T C-“-m,|e= 2+2(n-1) (4.14)
For a conventional n-bit adder, the delay is

T c-ripple (conventional) = 311 (4-15)

For a BCD adder this delay is the delay with n=4 for each digit. In

QAD adder the delay remains the same as the delay of a single digit for m

digit addition, since all digits are added in parallel.

The parity preserving reversible implementation of the 6-correction

circuit is shown in Figure 4.24. The implementation requires 3 FRGs to

Reversible Circuits for Decimal Adders

109

generate the ‘L’ output where L=CO,,l+S3(S|+S;). This circuit takes only 2

more delays after generating the Sum to generate the L bit. The delay to

generate ‘L’ bit from the inputs for QAD adder is as given in Equation (4.16).

TL= 4+2(n-1) (4.16)
The delay for ‘L’ bit generation for conventional BCD adders is given in

Equation (4.17).

T L(conventionall I 2+3“ (4-17)
s3 s3 Cout

Sl
S2l L

0 1
Figure 4.24: Generation of ‘L’ bit using Fredkin Gates

Figure 4.25 shows the reversible implementation for generating

Decimal Com (dcoul) or ‘K’ bit. The design makes use of three F RGs. It is seen

that the first gate generate S3S() as soon as the sum output ‘S’ is produced.

When Cm is received the next two FRGs generate the Decimal Com or ‘K’ bit.

So, the additional delay in each stage is only due to the two FRGs.

s3 cm
cmS3 LS0 I

0 —
K=Decimal Cout

O I
Figure 4.25: Generation of ‘K’ bit using Fredkin Gates

For an N-digit BCD addition the delay for the generation of ‘K’ bit or

Decimal CW, from the BCD inputs is

Td_COut= 4+2(n-1) +2N (4.18)

Chapter 4

ll0

Special adder implemented using one half adder, two full adders and

one XOR gate requires 15 Fredkin gates (3 for half adder, 5 for each full

adder, 2 for XOR gate) to generate the BCD sum d3-0. The Decimal Com or the

‘K’ bit is the last input for the special adder. The ‘K’ input passes through a

maximum of 5 Fredkin gates to generate the BCD sum d3_0. So, the special

adder gives an additional delay of 5 Fredkin gates. The total delay in

generating the BCD sum (d3-0) from the inputs in tenns of Fredkin gate delay

is

Td_5um= 9+2(n-l) +2N (4.19)

For a conventional BCD adder the final adder is a 4-bit binary adder

with delay as given in (4.19) with n=4. So the total delay given by an N-digit

conventional BCD adder is

T d-sum (conventional) = (3+3I1 + 3")N = (2+6n)N (4-29)

4.5.2 Carry Select BCD Adder

The carry select BCD adder is shown in Figure 4.26. On receiving Cm,

a ‘K’ bit is generated using Equation (4.21).

K = S3S{)Cin + L = P{)Cin+ L (4.21)

l

where P0 is the carry propagate signal (S3S0) 4
1

l

1

Reversible Circuitsifoir Decimal Adders T H

111

83103 a2 b2 at b1 all I00i i 4-bit
g u g u u at sadder53 52 s-:1 soccut

=-<~ ' ‘WA

E

h- mi:Q LO
L-J

'\.Q 4H ‘.
my-LQ li l

CIQ

B-correction circuitas L cinT
_,-J FA F.-'1'-. HA "Special

adder

K BCD *Decimal Cout bum
Figure 4.26: Carry Select BCD adder

If the carry select techniquc is adopted for ‘K’ bit generation then kl

denotes the ‘K’ bit with Cm = 1 and l(() with Cm = 0. This is given by k|=P@+L

and k0=L. After computing both bits (k| and k0) a selection is done using a 2:1

multiplexer.

An N-digit carry sclect adder will have a total (worst case) delay (Tdsm

(my Salem) equal to the sum of the ‘carry delay’ through the first digit (Tdcom),

the carry select delays through the next (N-l) digits, and the ‘sum delay’

through the last digit (TSu]n_(]igit). This is given in Equation (4.22).

Tdsum(c£1ny select) = T(l—CL)ul +(N'1)T1nux + Tsum-digit (4-22)

where Tdcom is the delay to generate ‘K’ bit from the BCD inputs for the first

digit

Tmux is the delay ofa 2:1 multiplexer

TSuIn-digi[is the delay of special adder for the last digit

Chapter 4

ll2

4.5.2.1 Parity Preserving Reversible Carry Select BCD Adder

The design of a carry select BCD adder is same as that for QAD till the

‘L’ bit generation. Figure 4.27 shows the generation of ‘K’ bit or the Decimal

Cout. The generation of kl and l((} takes the delay of only one Fredkin gate after

receiving ‘L’ bit as shown in Figure 4.27. A selection is done by a single FRG

After computing both values (kl and K0). An FRG works as a 2:l multiplexer

with ‘A’ input as control input and ‘B’ and ‘C’ as data inputs. So, the

additional delay in each digit to generate ‘K’ bit after receiving Cm is due to

Cin Cin
S3 L

k0S3 K=Decimal CoutS0 kl
0

l

Figure 4.27: Generation of ‘K’ bit using ko and k1

only one FRG.

The delay in generation of ‘K’ bit (Decimal Cout) for one digit is given

in Equation (4.23), where n=4.

Tdmut = 6+ 2(n- l) (4.23)
Special adder implemented using one half adder, two full adders and

one XOR gate requires l5 Fredkin gates (3 for half adder, 5 for each full

adder, 2 for XOR gate) to generate the BCD sum (d3-0). The Decimal Com or

the ‘K’ bit is the last input to be received for the special adder. The ‘K’ input

passes through a maximum of 5 Fredkin gates to generate the BCD sum (d3-0).

But, Cm is received by the special adder along with the ‘K’ bit. The half adder

of the special adder generates the carry bit after one Fredkin gate delay on

Reversible Circuits for Decimal Adders T

113

receiving Cm. So, the delay of special adder (Tsurn-digi[) is the delay of 6 Fredkin

gates.

For an N-digit BCD adder, Decimal Com at Nth digit (K(N_|)) is

generated after a delay equal to the sum of delay of ‘K.’ bit generation for the

first digit (Tdcom) and the multiplexer delays through the next (N-l)digits. It is

given in Equation (4.24).

TNd-cout = Tdcoul + (N_1)T1flUX = 6+2(11-1) + (N-1) (4-24)

Substituting the delays in Equation (4.25), the total worst case delay

(T,1Su,,,(C,,,,y Sclwq) in terms of Fredkin gate delay is

Td-_,um (Cm, Select) = 6+2(n-1) + (N-l) + 6 (4.25)

4.5.3 Hybrid BCD Adder

Hybrid logic for N-digit BCD addition can be used for delay reduction

and is shown in Figure 4.28. The N-digit BCD input is divided into m-digit

fixed blocks. Each m-digit adder consists of ‘m’ single digit carry select

adders. Carry lookahead logic is included in m-digit blocks to speed up

addition. For an m-digit adder, Decimal Com at ml!‘ digit (Km_|) can be

computed as given in Equation (4.26) using Equation (4.21).

m-1 m-1 m-1
Km-1 Z Ciu l_l Pk + Z Li [H Pi] (4-26)

1<=0 i=0 j—i+I
where L; is the ‘L’ bit ofith digit; P, is the propagate bit for in‘ digit

This can be written as

Km-I : k0(m-I) Cin’ + kl(m-l) Cin
Wh€I'€ l(()(m-|) = Km-| With Ci“ : OI, l(;(m-1) = Km] With Cg“ =l

Chapter 4

114

The computations up to the generation of ‘Li’ and ‘Pi’ bits at each digit

are carried out in parallel for all digits. The delay for ‘L’ bit generation is

given as

TL = Taddcr + T6-correction (428)
where Tfldder is the delay of the 4-bit binary adder, and

T6-¢O,,-M0,, is the delay of the 6-correction circuit

b(N—l)-(N-m) a{N-l)-(N~m) b(2m—l)-m a(2m-I)-m b(m-I)-0 a{m-I)-O

_s + + + t-__ +s + ,
C;u'r_\- lnnk In \<I (‘an1'yl0ulr ha, Ill Q Carry ln0k;lhc:!1l_, . __ . l._ .._ _ (‘

l" - 111 ~ || ii -1 um
dwul no V; g + at __i_m s s in

B(D Sum (dI\I—l)-{l\'-m)) BCD Sum (d{2m-1)-m) BCD Sum (d(m-I)-0)

Figure 4.28: Hybrid N-digit Decimal Adder

k0(m-1; and k1(m-1) for an m-digit block are computed using ‘Li’ and ‘Pi’

as given in Equation (4.26) after a delay of Tk|(m-|)_ Tk1(,,,-|) is the delay of an

in-input AND gate and (m+1) input OR gate. On receiving Ci“, the Decimal

Com at mm digit (KM) is generated after an additional delay of a 2:1

multiplexer (Tmwr), and is given as

Tm—dcout = TL + Tkl(m-I) + Tmux (4-29)
The total (worst case) delay of an N-digit hybrid BCD adder (Tdsum

{hybt-id)) with fixed size carry look ahead block is the sum of the ‘carry delay’

through the first m-digit lookahead adder block (T,,,-dcOu¢), the carry select

Reversible Circuits for Decimal Adders

ll5

delays through the intermediate blocks, and the ‘sum delay’ through the last

m—digit block (TSum_m_d;g;1). This is given in Equation (4.30).

Tdsum (hyblid) I Tm-deoul + [(N/m)'2l Tmux + Tsum-In-digit (4-30)

Where Tsum-m—digit = 111+ Tsum-digit (4-31)
While the total (worst case) delay of an N-digit conventional BCD

adder (Tdsum (c(,,mn,iOm;)) given in equation (4.32) is the sum of ‘N’ times the

‘carry delay’ through one digit and the ‘sum delay’ through the last digit (Tsum

digit)

Tdsum (t:0nvcl1liOna|) = NT(lcout + Tsum-digit (4-32)

4.5.3.1 Hybrid Reversible BCD Adder

The total (worst case) delay of an N-di git hybrid BCD adder with fixed

size carry look ahead block is the given in Equation (4.30). The first term in

equation (4.30) requires a delay as given in Equation (4.29). In reversible

implementation using Fredkin gates the delay to generate all ‘Li’ bits is TL

(given in Equation (4.16)) with n=4. All ‘Pi’ will be available when the

generation of ‘Li’ gets over. Tk|(m-|) is the delay of an m-input AND gate and

(m+l) input OR gate. A 2-input AND or a 2-input OR can be implemented by

a single Frcdkin gate. Higher order AND and OR gates can be constructed

using Fredkin gates arranged in a binary tree. An m-input AND gate or an m

input OR gate requires (m-1) Fredkin gates. An input passes through a

maximum of (logz ml Fredkin gates [B. Parhami, 2006]. On receiving Cm, the

selection of k|(m-|; or kO(m-|) requires one more Fredkin delay for each m—di git

block. Hence the ‘carry delay’ through the first m—digit lookahead adder block

is

T,.,_dm = 10 + (log; ml+(1Og2 (m +1)l + 1 (4.33)

Chapter 4

116

The delay for carry select for intermediate blocks is E -2.
m

The sum delay through the last m-di git block is (m+6).

Total delay in generating N-digit BCD sum is given as

N
Td-,.,mU,,b,.,d,=11+[1@g, m]+[10g,(m+1)l+-H: -2+m+6 (4.34)

However, the assumption llogz m_|=m/2 is valid for the small block sizes

applicable to carry look ahead adder designs. Thus, (4.34) can be written as

NTd-sum (hybrid): 15+2ln+ '_
m

Minimizing Td-su1n(]])Ib1]'Ll) with respect to block size m

mom: \/0.5N (4.36)

Substituting (4.36) into (4.35) gives the shortest delay for a fixed block size

hybrid BCD reversible adder.

Td~sum(hybrid): + V

4.5.4 Toffoli Gate Implementation

In this section, Toffoli Gate (TG) reversible implementations of

conventional and fast decimal adders are presented. Implementations using

TG and that using Fredkin Gates (FRG) are compared based on quantum cost

(QC), number of gates, garbage count and delay. Quantum cost analysis is

done to compare the equivalent number of two-qubit quantum gates required

for the implementation.

Figure 4.29 and Figure 4.30 show the implementation of a half adder

and a full adder using Toffoli gates simulated using RC viewer. The

Reversible Circultstor Decimal Adders W it T

117

implementation of half adder makes use of 2 TotToli gates: 3-input Toffoli

(T3) and 2-input Toffoli (T2) with one garbage output. Full adder

implementation makes use of 4 Toffoli gates (two T3, two T2) and results in 2

garbage outputs (This is same as Figure 4.11). These are optimum solutions in

terms of number of garbage outputs. The RC Viewer gave the quantum cost of

the full and half adders as 8 and 4 respectively.

"i! Garbage
b &m

o C~rry

Figure 4.29: Half Adder 0EE Go,boge
b Garbage

c S.m

o c."Y

Figure 4.30: Full Adder

A 4-bit binary adder for the conventional BeD adder realized using 4

full adders is shown in Figure 4.31 . The least significant bit requires a path

delay of three TGs to generate Co (cany) from the addends. Carry ripples

through the subsequent full adders with a path delay of one TG per bit. This is

because the first two TGs of all full adders work in parallel in an n-bit binary

adder. The ' Sum' is generated after one more TG delay after generating Carry.

The delay to generate 'Sum' in the n-bit binary adder is given in Equation

(4.38).

T sum-ripple(con~enl ional) = 4+(n-I) (4.38)

Chapter 4

118

.D
bD
.1
b1 .,
b' .,
b'

".
D
D
D
0

,l-

Qu,,,,'."" Cost (""lu.r.,I .. ~

Gate caunt: 16
Garbage bits : 9
Tot ... ~cost' 3Z

Garbage

Garbage

Garbage

Garbage

Garbage

Garbage
Garbage

Garbage

SO
so
~

" Co«

Figure 4.31. 4-bit Binary Adder using Toffoli Gales

For a BeD adder this delay is the delay with n=4 for each digit. The

implementation gives a gate count of 16, with 8 garbage outputs at a quantum

cost of 32. The Toffoli reversible implementation of the 6-correction circuit is

shown in Figure 4.32. The implementation requires 4 TGs to generate the ' L'

output, with 1 garbage output at a quantum cost of 12. This circuit takes only I

more delay after generating the 'S)' to generate the ' L' bit and is given in

Equation (4.39).

T L{conven1ional) = 5+ (n-I) = 8 (with n=4) (4.39)

Special adder shown in Figure 4-20 requires 8 TGs to generate the

BCDsum, dsum. The first T2 is used to duplicate 'L' bit or Decimal Cout, d.:out.

So, the total delay in tenns of one TG delay for generation of d.:out for an N

digit conventional BCD adder is given in Equation (4.40).

(4.40)

Reversible Circuits for Decimal Adders

119

"ii ., s 2 9 2

93 5 3

COU

o
' ,

Garbage

Gate otIU'"It : 4
GarbaQe bits: I
T~ QU«1tI.m cost: 12

OK

Figure 4.32: 6-Correction Circuit using Toffoli Gates

,'. 0' 82 G".b " g "

0 3 G .. . b " IJ "
L Garb a g e

o D2

o 0 '
o « _

Gat .. c......-.: : a
~bb: ,
TOI;"'~(_, 11

Figure 4.33: Modified Special Adder of Conventional BCD Adder

The modified special adder gives an additional delay of 6 TGs to

generate BCDsum . Figure 4.34 shows the schematic of the reversible circuit for

the conventional BeD adder implemented using Toffoli gates given by the RC

Viewer. The circuit uses 28 gates and results in 12 garbage outputs. The

quantum cost of the implementation is 58. The total delay for generating the

SeDsum. dsum from the inputs in terms ofTG delay for N-digit BeD addition is

given in Equation (4.41),

T d-sum(convenl iooal) = 6 + 9N (4.41)

Chapter 4

120

.. ..

. 1 ., .,
" " "

, ,{,

d.
I

I

I

I

I

I

I

... "'" _ ...
lcUU'tAtc«:

~

,
• • •

Gllblge

GllblUt

GOIDe

G.b'geI

G.~,ge

G"blgc
Gllblge

G"bl!IC
~

•
CdlUt

Gllblge

G.rblge
Glrbage ...

Figure 4.34: Toffoli Gate implementation of Conventional BeD Adder

Reversible implementation of QAD is also done using TGs. A 4·bil

binary adder realized using one half adder and 3 full adders is shown in Figure

4.35. The least significant bit requires a path delay of two TGs only. The carry

ripples through the subsequent full adders with a path delay of one TG per bit.

This is because the first two TGs of all fu ll adders work in parallel with the

least significant bit half adder. 'Sum' is generated after one more TG delay

subsequent to generating the final carry. The delay to generate 'Sum' in the 4·

bit binary adder in QAD is given in Equation (4 .42).

T sum.rippJeQA D) :: 3+(n·1) = 6 (with n=4) (4.42)

Reversible Circuits for Decimal Adders

·0
bO
. 1
bl
. 2
b 2

.3

b3

o
o
o
o

•
Gate c",":
Gao-bage bits :
Total quontum cost:

I '" I

;J:.

.!<l .. ,
'"

Garbege

SO

Garbage

Garbage

Garbage

Garbage

Garbage

Garbage

S> .,
'" eo.<

Figure 4.35: 4-bit Binary Adder for QAD

121

The delay to generate 'L' bit from the BeD inputs in a QAD adder is

given in Equation (4.43). The circuit takes only I more delay after generating

the 'S) ' to generate the 'L' bit as in conventional BeD adder.

T l (QAO) = 4+ (n-1) = 7 (with n=4) (4.43)

Figure 4.36 shows the reversible implementation for generating

Decimal COUI (d.:Ol,lt) or ' K' bit in a QAD.

L K

. 0 . 0

.3 .3
c ln c ln

1 Ge , baoe
0 Gar bage

0 Ga r bage

(J .. ant Co .. , c .. I.- .. lnt<>~

Gote count: ...
Gorbegoe bits, 3
Tot"alquant c05t, 16

Figure 4.36: K-bit Generation using Toffoli Gates

Chapter 4

122

The design makes use of 4 TGs. It is seen that S)So is generated after 3

TG delays followed by the generation of sum output 'S'. So, the additional

delay after receiving Cin is due to one TG in each stage. Special adder for

QAD requires 12 TGs to generate the BCDsum d)_Q as shown in Figure 4.37.

The first T2 is used to duplicate ' K' bit for ~OUI' For an N-digit BeD addition

the delay for generation of K-bit or Decimal Cout from the BeD inputs for

QAD adder is as given in Equation (4.44).

T d-coot(QAD) "" 7+3+ 1+N = II+N (4.44)

The 'en' input or ' K' bit passes through a maximum of 7 TGs to

generate the BeD sum d3-O. So, the special adder gives an additional delay of 7

gates. The total delay for generating the BCDsum, dsum from the inputs in tenns

ofTG delay is

T d'$um(QAO) = 11 +7+ N = 18+N (4.45)

., ~

•• C,rb,ye ., C,rb,ye ., C,rh'g"

• CR rb"oe
cl. G .. b'ge

0 0'
0 ~

0 0.

0 *-

'" Got , " c;..,~t:c,., • TQl.oj __ ~:
~

~

Figure 4.37: Toffoli implementation of Special Adder for QAD

Reversible Qrruits for Decimal Adders

123

Figure 4.38 shows the schematic of the reversible circuit for the QAD

implemented using TGs given by the RC Viewer .

•• ..
•• ..
" " " .,
•

Figure 4.38: Toffoli Gate Implementation of QAD

G.,~.gc

G'''''oge
G"UIlC
C ge

G""II<
C.'hll<
Gvbol~

Co,b 0l!<'

Gorb.ge

Gorhge

Go.hgc
Gorhge

G.rhlC

G.rhge
C.,hgc -

The circuit uses 33 gates and results in 16 garbage outputs. The

quantum cost afthe implementation is 81.

Reversible implementation of carry select BeD adder differs from

QAD implementation only in the generation of 'K' bit from 'L' bit and C in.

Figure 4.39 shows the generation of K-bit using kl and ko for a carry select

BeD adder. The generation of kl and ko takes the delay of four TGs after

receiving 'L' bit as shown in Figure 4.39. 'K' bit is computed after a delay of

one TG after receiving en. So, the additional delay in each stage to generate

'K' bit on receiving C in is due to only one TG. One more T2 is used to

Chapter 4

124

duplicate ' K' bit for <lea"". Now, the delay gets modified as in Equations (4.46

and 4.47).

T d<out(cal'1)' select) = 7+4+ I +N = 12+N

T d-sum(carry se lect) = 12+7 + N= 19+N

L ---4~'-$

s O --4>-- -+- t--+
s3 --4>-- +-+-+-
cin -t---1~~-4~

" s O

s3

dn

Garb age

Garb age

Gate count : 5
Garbage bits : 2
Total q u .entum cost: 17

OK I

Figure 4.39: K·bit generation of Carry select BeD Adder

4.6 New reversible RPS gate

(4.46)

(4.47)

This part of the chapter presents a new fully reversible RPS gate and a

new partially reversible RPS gate used for the design of reversible

conventional BeD adder.

Reversible Circuits for Decimal Adders

125

4.6.1 Fully Reversible RPS Gate

A number of 4><4 reversible gates are available in literature. For a 4

input/4-output truth table, ZMX4) output combinations are possible. Out of

these a one-to-one mapping of inputs with outputs (essential condition for

reversibility) is observed only for '16! combinations only. Hence, 16!

combinations of 4><4 gates are reversible. But it is difficult to find an

appropriate application for each of these reversible gates. This research uses

one of these combinations as a 4><4 fully reversible RPS gate that filnctions as

a 4-bit Binary to BCD converter. The RPS gate is shown in Figure 4.40. It can

be verified from the truth table given in Table 4.2 that the input pattern

corresponding to a particular output pattem has a unique mapping. RPS gates

can be considered as universal gates since any Boolean function can be

realized by using the combination of RPS gates. The fully reversible RPS gate

is an optimized gate for the implementation of a reversible 4-bit binary to

BCD converter. It can also be used as the offset correcting circuit after the

addition of 2 single digit BCD numbers. It works as the hardware equivalent

ofthe logic function, ‘decimal adjust after BCD addition’.

Chapter 4

126

Table 4.2: Truth Table of Fully Reversible RPS Gate

glnputs Outputs g4 {Q R .

._.._---------»-ooooc>¢>o<:~>_

»-----»—-ooc>oj-A->---—-c>c>o<:>w

-»-<3-0»---00:-—-00»-—-ol_<;(‘)

i-c>»--c>»-Q»-Q-—-<9-—-Q--0»-¢>U

o0cl>—-—-----—--—>—*»—-»—-o0“c—>—c:o"'d

i---»-A.-»-»—->-0000»-coco

>->-c>~—-»--'—c—>o---coca»---00

-—*C>*—-—*®v—-C)»-C>*—*©C>t—*O-—*<DfI2

-. .._ » ._ -V Ll l
I

Uffivvl

P= /i'59Bl33Bc"0"

RPS Q= AKDI33 CD ylffi BC *0‘
R= A0'l3BC(1>I33B-'0';
s= AEBB'D$BCD’

Figure 4.40: 4 X 4 Fully reversible RPS gate

4.6.2 4-bit Binary to BCD Converter using RPS Gate

For a 4-bit Binary to BCD converter, let the binary input be B3-B0 and

the corresponding BCD outputs are D3-D0 with D4 as the carry to the next

higher digit. Hence 4-bit Binary to BCD conversion is a logic function with 4

inputs and 5 outputs as shown in Table 4.3. To make it reversible the circuit

requires at least 5 inputs since there are 5 outputs. But it can be seen from

Table 4.3 that D0 output is same as B0 input. Hence, only the remaining 4

outputs need to be generated. Now, Table 4.3 becomes a 3-input/4-output

Reversible Circuits for Decimal Adders

127

truth table, and hence there is a possibility that it can be realized using a 4><4

reversible gate with one of the inputs as constant

The fully reversible RPS gate with A input as ‘O’, B as B3, C as B2 and

D as B1‘ gives a 4-bit output pattern at P, Q, R and S, same as the D4 ...D| bits

of Table 4.3. Thus, a single fiilly reversible RPS gate functions as a 4-bit

Binary to BCD converter as shown in Figure 4.41. It can also be noted that the

garbage count is zero.
C/l='

B=B3 RPS
C_B'>
Dle,‘

i/>kf’€)W:

B-1 ————; 0..

9.9.99

Figure 4.41: 4-bit Binary to BCD converter using Fully Reversible RPS gate

Table 4.3: Truth Table of 4-Bit Binary to BCD Converter_ V _ _
i Inputs g__ g Outputs
lB_HB2B,lB.,lD4D,yD2D,’D0

Q

,, ‘O l 0i_|_ lfi

Q

Q

Q

L

Q

Q

. . ‘ V t
O 1. .

Q

Q

Q

Q

Q

l

Q

Q

Q

Te

i

Q

Q

O

_ 7 _ _ i

Q

pi

Q

l

Q

T ._.

c>

O

<3

A7
c>

Q

I-1‘

'1-I

J

Q

i-

Q

Q
ll_

Q

Q

yi

l

Q

Q

Q

Q

Q

Q

Q

Q

be-I

‘.. '7 . _ _ _

Q

_

._

Q

CD

O

hi

|_¢

Q

Q

i-~

--I

(D

Q

Ii

H

Ix!

iiii lib

Q

Q

O

Q

i

Q

I t
l

Q

Q

bl

P—l

Q

Q

-F
Q

Q

J

Q

L

H

‘I-*

‘o

Q

o

CD

Q

Q

l

I

_

O

1.
1
1
s

Q

Q

~

‘ , he h t. cl y

i-A

'_‘__

Q

Q

>

Q

Q

Q

Q

i-—

i -4.
Q

r-I

I-l

Q

1-I

Q

l

l'

inn!‘

pi

>-

I—-5

-

Q

i--

Q

> I l h y

)1J

Q

Q

l‘ iv is h ptA l4 _ J

P-11

F:

I15

V I11

_ Iii

7Q

F

Q

Q

i

Chapter 4

128

4.6.3 4-bit Binary to BCD Converter using other existing
Reversible Gates

4-bit Binary to BCD converter can be designed using other universal

reversible gates such as Toffoli gates, Fredkin gates or HNG gates. But such

implementations require more number of reversible gates, and produce more

garbage outputs. The converter designed using RPS gate requires only one

reversible gate without any garbage outputs. Figure 4.42 shows the reversible

implementation of a 4-bit Binary to BCD converter using a suitable

combination of these reversible gates. The implementation requires 5 gates

with a garbage count of4 at 5 levels.

B3 D4 23
B. ° g‘ ° "' 0 — °
5.. ~ ~ ~ ~ 4 4 F —
Figure 4.42: 4-bit Binary to BCD converter using HNG and NG

4.6.4 4-bit Binary to BCD converter using HNG gates

Figure 4.43 shows an implementation of 4-bit Binary to BCD

converter using HNG gates. The implementation requires 5 gates with a

garbage count of 8. The critical path delay is that of 5 reversible gates. This

implementation makes use of only one type of gate, making it suitable for

regular implementation compared to the implementation in Figure 4.42. HNG

gate is most suitable for reversible full adder implementation, but it is not apt

for the implementation of 4-bit Binary to BCD converter, since it requires

more number of gates, garbage and levels compared to RPS implementation.

Reversible Circuits for Decimal Adders

129

The logical complexity is also more in HNG gate implementation for 4-bit

binary to BCD converter. The combination of HNG and RPS can be used in

the design of a BCD adder that requires full adders and Binary to BCD
converters.

H 11 H H_\] . 1,. D40 0 G O Q Q (. _.Bu ' P P T —' — ' I ' ml)“

=>—:=::[~40

, I

_W-D

'75
1

Figure 4.43: 4-bit Binary to BCD converter using only HNG gates

4.6.5 Partially Reversible RPS Gate

The concept of partial reversible gate was first introduced in [H.

Thapliyal er al., 2007] for the implementation of BCD to Excess 3 converter.

The new partially reversible RPS gate can be used for partial reversible

implementation of a BCD adder. The new partially reversible RPS gate

satisfies the reversibility criteria for some specific inputs such as BCD inputs.

This can be effectively utilized in BCD arithmetic circuits. Such gates can

minimize the logical complexity, and sometimes gate and garbage count,

while designing the reversible BCD arithmetic circuits.

The partially reversible RPS gate is shown in Figure 4.44, and its truth

table in Table 4.4. This gate is reversible only in Part l that consists of all

valid BCD inputs as shown in Table 4.4. The outputs are ‘don’t cares’ for Part

2 since the remaining combinations are not valid BCD inputs. So, this gate

functions as a circuit that accepts only BCD inputs.

Chapter 4

130

DF3%3>

Pmfiflh
Reversible

RPS

P= AEBBEBBCD’

Q=,10ffiBc'0'
1e= /1l)’E?c(1Jfii*a'0)
s= A EBB"0EBaC0'

Figure 4.44: 4 >< 4 Partially Reversible RPS Gate

Like fully reversible RPS gate, partially reversible RPS gate can also

function as a reversible 4-bit Binary to BCD converter. Let the binary 1nputs

be B3-B0 and the corresponding BCD outputs are D3'D[] with D4 as the cany to

the next higher digit as shown in Table 4.3.

Table 4.4: Truth Table of the Partial Reversible RPS Gate

hiputs ()utputsABC!DPQRS'
PART I

iiii M0 0 0 0 0 0 0 O
0 0”? ‘ti 1 0 0 0 ;i0 0 1 _ O It 1 0L 10 0 1 0 0 i 1 l

1 0 To W14 0 0 1 O*lt0t0
04 T 0 ii 1 0 ‘ 00 I A O 1 0 l 0

P011 i“1I 1 1.010,I O O 0 . I
1:0 O l 1 0 0_l._el 0 I

“W l
PART 2

g1§0 0 X X X Xwi
0 ilx Ax xlxu

1 1 O 0 X X 1
1"‘ 1 1 0 k,,,_

A xixxxx
0;xxxx"W1 1
lXX=Xl,, , ex

Reversible Circuits for Decimal Adders

l3l

For a partially reversible RPS gate if/1 input is ‘O’, B is B3, C is B2 and

D is B1, then, a 4-bit output pattern at P, Q, R and S, is the same as the D4

...D| bits of Table 4.3. D0 output is same as B0 input. Hence, only the

remaining 4 outputs need to be generated. Thus a single partially reversible

RPS gate functions as a 4-bit binary to BCD converter. lt can also be noted

that the garbage count is zero.

The partially reversible RPS gate can also function as ‘decimal adjust

after BCD addition’. The 5-bit binary result obtained after the addition of 2

single digit BCD numbers is to be adjusted for its BCD equivalent. Pan l of

Table 4.4 contains the most significant 4 bits of the 5-bit binary result. The

maximum possible binary value after the addition of 2 BCD numbers is

‘l00lO’. Excluding the least significant bit makes it ‘I001’. Hence Pan 1 of

Table 4.4 realizes the most significant 4-bits of an ‘offset correction’ function.

Since the remaining combinations never occur in the most significant 4 bits of

the binary result, Part 2 of Table 4.4 are ‘don’t cares’. Thus, a partially

reversible RPS gate can be used to design a ‘Decimal adjust’ after the addition

of BCD numbers. The partially reversible RPS gate has lesser logical

complexity compared to the fully reversible RPS.

4.6.6 Reversible Implementations of BCD Adder

A BCD adder accepts 2 BCD inputs (4-bits each) and a carry input, Ci“

and produces 4-bit BCD Sum and a Decimal Com. So the total number of

inputs to the circuit is 9 and the number of outputs is 5. In the truth table of a

BCD adder, there are 19 input combinations for which the output is same

‘l0000’. At least five garbage bits are required to make a unique output

Chapter 4

132

combination for each input combination. So the optimum realization of a

reversible BCD adder will produce at the least 5 garbage outputs.

4.6.6.1 BCD adder using HNG-RPS Gates

The reversible implementation of BCD adder using HNG-RPS gates

use 5 reversible gates and produces 8 garbage outputs. The reversible

implementation of the 4-bit adder used in conventional BCD adder makes use

of 4 HNG full adders producing 8 garbage outputs. A number of reversible full

adders are available in literature, but the implementation of a full adder using

HNG takes least number of gates with less complexity and produces least

number of garbage outputs. This gate is preferred over TSG due to the lesser

number of logical computations involved in it. The ‘six-correction’ circuit and

the ‘4-bit binary adder’ are replaced by a single fully reversible RPS gate. The

complete circuit of the reversible BCD adder is shown in Figure 4.45. The use

of fully reversible RPS gate optimizes the offset correction part of the BCD

adder architecture. The garbage count is also reduced to 8, which is very near

to the optimum garbage count of 5 for a BCD adder. The delay for one stage

of the new reversible BCD adder is that of 4 HNGS and one fully reversible

RPS gate. This implementation makes use of only 2 types of gates, making it

more suitable for regular implementation.

Partially reversible implementation of a BCD adder is done by

replacing the fully reversible RPS gate in Figure 4.45 with partially reversible

RPS gate. This reduces the computational complexity even though the number

of reversible gates, the garbage count and number of levels of delay of the

conventional BCD adder remain unchanged.

Reversib1eiCircuits ior Decimal Adders P

133

0 a; b; O a; b; 0 :11 bi 0 Cin alibi,I. I. -
COUI S3 git g7 S g(, g5 S| g4 gg Sn g2 gl

RPS I
De°“““_'C"“‘ (DO D-‘ lmpleiiientatii D‘ Ionver D" BCD adder

4.6.6.2 BCD adder using RPS gates

Figure 4.46 shows the implementation of a BCD adder using only fully

reversible RPS gates. The implementation makes use of 9 RPS gates with l2

garbage outputs. The delay for one stage is that of 9 fully reversible RPS

gates. For an N-digit BCD adder the delay is 9N. This implementation makes

use ofonly RPS gates, making it suitable for regular implementation.

1l bi E11 1 h‘ 3" 1 |')| 3 ('i" 1 b" ail‘1 - ~ iu \ l
i (I ° (I ° ll ° ll 01 i

l

6 2.1: l-’.|r gin 7.-iii 8‘: 1-Ya 11.? Er» $4 gi g; g;iiI RPS \ #s e r ' e * — DI!Decirnavflu, (D4) Di D3; Div

Figure 4.46: Conventional BCD adder using RPS gates

Chapter 4

134

4.6.6.3 BCD adder using HNG gates

BCD adder is implemented using only 10 HNG gates with 19 garbage

outputs as shown in Figure 4.47. The delay for one stage of Decimal CW1 and

BCD Sum is 7 and 10 HNG gates respectively. For an N-digit BCD adder the

delay is 7N for Decimal Com and 7N+3 for final BCD Sum. Though this

implementation uses only HNG gates, but has more gates and garbage

compared to the implementation using RPS gates.

0 a; b; 0 Z13 bg O 211 b| O Cin Bob“II II II
gs gv gs gs g4 -- g2 2|

O l
0 gel iH ((811 gm7 I3"‘ g" 00 0 00

L HNG HNG
gm gm E-'.|7 33,10 215 I 214

Decimal CW, (D4)+ D3 D; D, D4,;

Figure 4.47: Conventional BCD adder using HNG

4.7 Reversible Error Correcting Code Generation and
Detection

Error correcting codes are traditionally used to battle the corruption of

transmitted data by channel noise. The encoded data or code words are sent

Reversible Circuits for Decimal Adders it

135

through the channel, and decoded at the receiving end. During decoding the

errors are detected and corrected if the error is within the allowed, correctable,

range. This range depends on the extra information, parity bits, added during

encoding. Single Error Correcting (SEC) codes are generally used for this

purpose. There are many ways to construct SEC codes, and one of the most

commonly used codes is the Hamming Code. As power has become a first

order design consideration, researchers have begun looking at techniques to

reduce power consumption in error correcting code generation and detection

circuitry. Fault detection can be done using parity-preserving reversible logic

gates. The feasibility of the parity-preserving approach in the design of

reversible logic circuits was demonstrated by [B. Parhami, 2006] with

examples of adder circuits. Parity checking is one of the oldest as well as one

of the most widely used methods for error detection in digital systems. lt’s

most common use is for detecting errors in the storage or transmission of

information.

In this part of the chapter, a new reversible 4 >< 4 HC gate (HCG) is

presented for implementing hamming error coding and detection circuits. The

parity of the outputs matches with that of the inputs in this gate. This can be

used to generate the parity preserved / fault tolerant hamming code along with

other parity preserving reversible logic gates. Parity preserving characteristic

of such gates allows the detection of single fault at the eircuit’s primary

outputs in reversible logic design.

HC gate (HCG) is shown in Figure 4.48. Table 4.5 shows the

corresponding truth table. It is obvious from the truth table that the input

pattern corresponding to a particular output pattem can be uniquely

determined. The reversible Parity Preserving HC gate (PPHCG) is shown in

Chapter 4

136

Figure 4.49. Table 4.6 shows the corresponding truth table. It can be verified

from the truth table that the outputs preserve the input parity.

GUI},

’°=5 P=5E]}C'E}}D
H35 O=’qBC Q=A$55}C

R=A'$ B EB 0 PPHCG R=A$ 5 EB. 0

C1

D<'>'1=:|=.

Figure 4.48: Reversible 4 x 4 HCG Figure 4.49: Reversible 4 x 4 PPHCG

Table 4.5: Truth Table of the 4 X 4 HCG Table 4.6: Truth Table of the PPHC Gate

l J i j lilttputs i Outputs _i
fi A l B_ wk __ Q V 7

b—\iIl$$$===‘$$>

co»-l-ll-»-~@c<=c>@L'§‘_- f _ ___ _. l:
<36:-ml-ICC»--ll-lQQ(j;>
l—\¢P-l$i-I-_$l—l$l-fl$U

ca»-ll--it-ll--cc>ioic:>t-5

(Q:-at-ma»-hr-16v-<DzE_
- ‘J ._J-4 _.— 1 __14e . ae ___~—— 7! M

Q‘-*¢r—*»—¢=~¢\-*4»-edvyfi/J_ “Au . (__ J __ __ Qgu.

l-L»--<:>=::l¢::.c>cc><:ll ..s . .4 j .V
©@I—\\—lI-ii-\©¢©®.

*H——~ __t-—.a_‘,-eZil-ll-l$Zih-ll—l$$('}
--(cl--ch--c>-c--cagg_ V_. _J,. u p _‘_
IIli:#§ZcFIi=liF"";=iw

- ,_— ,__.l~ -, . __— <. _é
v-1»-*QQl--ll--ll-tr-©¢

ca»-cl»-c>-it-o A
u— _i— A;-— AQ»-Q»-~h-Q19»-l-*Q€A.l_ .J _»- _

i _ 1 ?_
l. . _ _ _ _. l 1%,.. .t .. ii l __ l —— - — - . _ _ __ __ 7 . 4 ': 7‘. . V , _ _ _i - ' — '* —._ l_ | i 4 i —»
.i_ T 7 _, T ‘ 1 . , . __ 7 .

I-Iil—li—lIIiJ-ll—i

i-an-an-an-~@Q

|-an-IQQ»-All-n

I-*©l—*©l-*©

-an-ll—r-r©¢

F-lli$Z¢=
v—*©\—*®¢.l—*
.4 _-l—~ .4-—
l-PO Q I-1 I--* Q

l-an-Ir-in-n'v—-l-I

QT ‘._
I-lb—l l-1»-¢@©

l—l r-- OTAQ l-I D-I

»—*I—\.O©®©

1-A ©h-b @@>—A

»-a@@|- 1--AQ

J ' Tl Tls. i ._ A ._ .
Figure 4.50 shows (7, 4) Hamming code generator designed using 4><4

HCG and three F Gs. The three bits to be added are three even parity bits (P),

where the parity bit is computed on different subsets of the message bits using

Equations (4.48 — 4.50). It is seen that the circuit requires 4 gates at 2 levels

and generates the 7-bit hamming code (H7 to H1) without any garbage outputs.

Reversible Circuits for Decimal Adders

137

Pi = D063 D163 D3 (4.48)
P2 = DOEB D; EB D3 (4.49)
P3 = DIE} D2 EB D3 (4.50)

The reversible hamming code generator designed using FZG and FG

gates is shown in Figure 4.51. On comparing the two implementations it is

evident that the implementation using FZG and FG requires 6 reversible gates

at 4 levels while the implementation using HCG and FG requires only 4 gates

at 2 levels. However both implementations attain minimum number of garbage

outputs. The types of gates used in these two implementations are not parity

preserving gates except for FLZG, and hence are not fault tolerant

D3 gID. L"?D2 H6
implementations.

H5
D? HCG H4 (P 1]-| I ii 3ID! 1- ‘*2 <' P2)

Hi (9,)
C‘

O

Figure 4.50: Reversible (7, 4) Hamming code generator using HCG

O3 V H
'_ F

FG -"5
F213 N £1” P3 JIUI 3D’ FG H2 [I P2).0. : H1 f 9,)-'30 , ,

Figure 4.51: Reversible (7, 4) Hamming code generator using F26

Chapter

138

Figure 4.52 shows the implementation of reversible hamming code

generator circuit designed using parity preserving gates. The implementation

makes use of 5 gates at 2 levels and produces 5 garbage outputs. The input and

output parity will be the same since the design is done using parity preserving

gates. A single fault can be detected by checking the parity of the inputs and

outputs at each level. The design uses 2 types of reversible gates. Figure 4.53

shows the implementation using six F2Gs at 4 levels with 4 garbage outputs.

The implementation uses a single type of reversible gate, and produces less

number of garbage outputs. But this results in increased delay, and makes use

of more number of gates.93‘OI Q?5'2 HPOI s ?'0' .-25 I? H6I0!0 PP!-.1'CG -~ H (P J.0? Q H5‘ 3.0. W H3 (1%)Q3 H1 (Q)
5'0.0. F2 = so W
IOI

g4

Figure 4.52: (7, 4) Hamming Code Generator using parity preserving gates

3 » a g —i_H;.'.32 1 L H.'|]' F26 F29 F26 H5IUI |U| { ,1D? Q4 H3FZG s H2 (P)I 2'I Q2 I H1

C3"mo-Q

Figure 4.53: (7, 4) Hamming Code Generator using F2G

Reversible Circuits for Decimal Adders

139

Figure 4.54 shows the (7, 4) hamming code error detector designed

using 4><4 HCG and three FGs. It is seen that the circuit requires 4 gates at 2

levels and generates the check bits (C3 to C1) with 4 garbage outputs. Check

bits are computed on different subsets of the hamining code bits using the

Equations (4.51 - 4.53).

C1 = Hifli‘ H3 fl?! H553 H7 (4.51)
C2 = H252‘ H3 EB H61? H7 (4.52)
C3 = H45 H5 EB H659 H7 (4.53)

If all the check bits are zeros it indicates a ‘no error condition’,

otherwise it indicates the position of error. This implementation is not done

using parity preserving gates, and hence is not capable of detecting any faults

in the circuit.

,3-2
Ft;H 03

[#31

if-2
-A

um N ‘lg:I I I
(Q (E:Q Dili

1-)
-.~..

7He H _GHCG r CH5 2
I3

Figure 4.54: Reversible (7, 4) Hamming code error detector using HCG

Figure 4.55 shows the implementation of reversible hamming code

error detector designed using parity preserving gates. The implementation uses

5 gates at 3 levels, and produces 6 garbage outputs. The advantage of this

implementation is the use of only one type of reversible gate; but it results in

increased delay and makes use of more number of gates. Since the

implementation uses only one type of reversible gate, the design is more

suitable for VLSI design.

Chapter 4

140

H g2 Q47 CH F26 76 ._ 9'5M)0!
T, H3 .93 gt?-CW 2'i! C 3
. H?HF .‘“H r ‘— *— — *— — "f.E‘@1

"0

Figure 4.55: Reversible (7, 4) Hamming code error detector using F2G

4.8 Summary
In this chapter a reversible BCD adder implementation for a

conventional BCD adder is presented first. The architecture is specially

designed to make it suitable for reversible logic implementation. A modified

version of decimal addition using reversible gates which results in further

reduction in number of gates and garbage outputs with a fan-out of 1 is

designed. It is demonstrated that the proposed design is highly optimized in

terms of number of reversible gates and garbage outputs. The design makes

use of 3 types of reversible gates. For VLSI implementation, circuits using

only one type of standard reversible gate as the basic building block are

adopted. This research also presents reversible implementations of three

different fast decimal adders. An implementation for a reversible fault tolerant

logic, using Fredkin gates, for quick addition of decimals (QAD), suitable for

fast multi-digit BCD addition is presented. The performance comparison of

reversible fast BCD adders with conventional BCD adder is also presented.

This chapter also describes reversible implementations of several BCD adders

using only Toffoli gate. Toffoli gates are also suitable for implementations of

ReversibleCircuits for Decimal Adders

l4l

Reed Muller expressions. VLSI implementations using only one type of

modular building block can decrease system design and manufacturing cost.

This thesis also presents two novel 4><4 reversible logic gates 1 fully

reversible RPS gate and partially reversible RPS gate. The new reversible 4-bit

Binary to BCD converter circuit requires only one RPS gate and does not have

any garbage outputs. A reversible BCD adder is designed in which the ‘6

correction circuit’ and the ‘final 4-bit binary adder’ are replaced by a single

RPS gate. The performance comparisons of different reversible BCD adder

designs are given in Section 6.4.

Different implementations for the reversible (7, 4) hamming error code

generation and detection circuits are presented as well. lt is demonstrated that

the design using 4 >< 4 HCG is highly optimized in terms of number of

reversible gates and/or garbage outputs. This approach also provides a way of

incorporating fault tolerance into reversible circuits without much extra design

effort and with modest hardware overhead. The comparisons of different

reversible hamming code generation and detection circuit designs are given in

Section 6.4.

Chapter 4

Chapter 5

Logic Synthesis using Multiplexers

I 1 _ J _T _T _ 7 17 J J I ,7 I J I J T

This chapter presents an approach to obtain reduced hardware and/or delay

for logic functions using multiplexer universal logic modules. Replication of single

control line multiplexer is used as the only design unit for defining any logic function

specified by minterms. A novel algorithm is formulated that does exhaustive

branching to reduce the number of levels and/or modules required for implementing a

logic: function. The algorithm identifies single or double variable function at the

control input of a multiplexer that will result in reduced number of levels and/or

hardware. This approach can be adopted for the design of a more regular BCD digit

multiplier.

_ 7 7 7 7 7 _7 _T

145

5.1 Delay-Reduced Combinational Logic Synthesis

using Multiplexers
The use of multiplexer as Universal Logic Module (ULM) for

realization of logic functions has already been explored by researchers. An

algorithm was developed by [A. Pal, 1986] to obtain single multiplexer

realization of logic functions with a minimal size multiplexer. The limitation

of this approach is that the size of the module changes with changes in

function to be realized due to a non-modular implementation. An iterative

method for cascade realization using I-control line multiplexer was presented

by [R. K. Gorai and A. Pal, 1990]. This method terminates if the function is

not cascade realizable. Further, as the number of variables increases, the

number of levels also increases drastically, resulting in increased delay. A

programmed algorithm that implements logic functions using tree structure

was presented by [A.E.A. Almaini, J.F. Miller and L Xu, l992]. This

algorithm does not explore all the possible branching options of the tree

structure, and hence the delay of the circuit synthesized may not be minimal.

Also, it does not guarantee the global optimality in all the cases. Genetic

programming approach to synthesize logic functions using multiplexers was

presented by [A.H. Aguirre, C.A.C. Coello and B.P. Buckles, 1999] and [A.H.

Aguirre and C.A.C. Coello, 2004]. Even though the number of multiplexers

used in the delivered circuit had an improvement over standard
implementation, the circuit was not minimal or optimal.

Chapter 5

146

In this chapter, a novel tree-structured exhaustive branching network

using l-control line multiplexer is designed. It implements logic functions

described by minterms that reduces delay and/or hardware. A tree network is

very suitable for VLSI realization because of the uniform interconnection

structure and the repeated use of identical modules. A logic function with n

variables can be implemented using 2“-l, l-control line multiplexers in n

levels in standard implementation. Any implementation using less than 2“-I

number of modules and/or lesser number of levels can be considered as an

improvement in cost and/or speed. VLSI implementations using only one type

of modular building blocks can decrease system design and manufacturing

cost. A multiplexer realization is a natural choice from the viewpoint of cost

and speed.

5.2 N-ary Exhaustive Branching Technique

For a given number of input variables n, there is 22”well defined

number of functions available. Standard implementation of a tree network

requires n levels to implement these functions. Almaini presented a

programmed algorithm to reduce the complexity of the network in terms of

number of modules and levels. In his approach l’s, 0’s, x°i (where x°i is a

variable xi or its complement, l 3 i 5 n) or an n-variable function can be given

as a data input. The control inputs accept only variables. In this research, the

performance is further improved by an exhaustive branching technique using

n-variable functions at control input. Since functions are also given to the

control input, the utilization of all branching options is possible. This

Logic Synthesis using Multiplexers

147

decreases the number of levels, and hence reduces delay for a logic function

implementation using multiplexers.

The first level (output stage) will have a single multiplexer module, the

second level will have a maximum of (2° + c) multiplexer modules, where c

is the number of control inputs (c = 1 in this case). In general, the maximum

number of modules in a level can be expressed as (2° + c)(L’l) where L

indicates the number of levels. The maximum number of modules in the

complete network having L levels will be

1-:
‘M
L

,_.

(2C+ C)(K

A network with l level can realize functions up to 3 variables, since

there are 3 inputs as shown in Figure 5.1. By connecting xi to the control

input, the remaining x°_i variables (j ¢ i) or constants (0 or 1) can be connected

to each of the 2 data input lines. So, there are 6 possible values for each data

input line, resulting in 62 combinations. There are 3C1 combinations for

selecting a variable as control input from the total of 3 variables. Hence, a total

of 62 >< 3C1 combinations are possible for level l. Among these, 24 are 3

variable functions, and only one level is required using the new exhaustive

branching tree implementation. But, 3 levels are required for standard

implementation and 2 levels for tree implementation.

do O.1, 1 T
control

Figure 5.1: 1-control line multiplexer module

Chapter 5

148

Functions with a maximum of 9 variables can be implemented using

two level multiplexers with 3 control lines and 6 data lines. There are 9C3 ><

3! combinations for selecting 3 variables as control inputs from the total of 9

variables. The remaining 6 variables and its complements or constants (0 or l)

at 6 data lines give rise to 146 functions. Hence l46>< 9C3 >< 3! input

combinations are possible at this level. In the tree structure given by [A.E.A.

Almaini, J .F . Miller and L Xu, 1992], at level 2, maximum number of

variables possible is only 7, which results in lO4 >< 7C3 >< 3! combinations. The

exhausting branching approach increases the number of variables and

functions that can be implemented in 2 levels. As the levels increases this

difference becomes more and more significant and hence reduction in delay

can be achieved especially for functions with large number of variables. In

general, with L levels the number of combinations possible in the proposed

method is

{[2(y+1)l’} >< {ZLCZL"}>< {W1}

wherey=[zL-Z] and z=2° + c
Maximum number of variables at level L is

nmm, = 2L

For a given function if there are n dependent variables, the levels L required

for implementation is given as

ilog<2°+c)nl s L s(n-1)

Whereas in the tree structure, L can be in the range

ilog(2°)nl 5 L 3 (n- 1)

This clearly demonstrates a reduction in delay attained by this exhaustive

branching technique. The following example illustrates the delay improvement

achieved for a 9 variable function.

Logic Synthesis using Multiplexers

149

Consider the function,

F =X§x{X§>a +X{X4»e5q +J<§><{x4'»e +w<6x4>é +X§X7><6>c{ +1<8'm,>e' +

Xe X8354 xz +x<>xsx5-X4 +9?» x4Xs*‘5 +x<>x5x49%

This function is implemented by a network of 4 modules using the

proposed exhaustive branching technique that reduces the number of levels to

2, and is shown in Figure 5.2.

XI 0
Xe 1

X?

0X2 0 1 T
X5 1

X9

Xe 0
X3 1

X4

Figure 5.2: Implementation of a 9-variable function using exhaustive branching

technique

it W Chapter 5

150

5.3 Exhaustive Branching Technique
Behavior of a 1-control line multiplexer can be expressed

as FQFJ. + F317,, , where F5, F]-, Fk are functions of t variables (1 3 t é n). The

number of variables of F5, Fj and F k varies according to the complexity of the

function to be realized. The maximum number of variables in F5, Fj or Fk

determines the delay of the network. The network terminates when F5, Fj and

Fk are l’s, 0’s or x'; (1 5 i 3 n). If all inputs except one terminates with a

variable x‘; or a logical constant and only one input continues into the next

level, a cascade is generated where a single module is used in each level.

The algorithm presented aims to identify variables or functions of 2

variables at each control input, that eliminates as many branches as possible,

and reduce the number of levels and modules required. This algorithm requires

minterms as well as the number of variables of the function as inputs in order

to implement the exact function. For example the mintenns <0, l, 2, 3> result

in F = 1 for a two variable function; but for a 3 variable function F = x_,'

where x3 is the most significant variable.

The algorithm for exhaustive branching technique for a function given by

mintenns is as follows:

Step 1: Get the minterms and number of variables, n of the given function. Set

the level, L = 1 and number of modules M = 1.

Logic Synthesis using Multiplexers T

151

Step 2: List the minterms as minterm table. Check whether number of

variables prior to L, n — (L - 1) S 2. If so, the tree is completed with any choice

of remaining variables, and terminate.

Step 3: Check if there is any variable xi for which the number of occurrences

xc in the minterm table is 0 or 2"'L.

For x;= l, ifxc = 0 then data input l (d|) = 0

else if xc = 2“'L then data input 1 (d|) = l .

For xi = 0, ifxc = 0 then data input 0 (do) = 0

else if xc = 2“‘L then data input 0 (do) = 1.

If both data inputs are constants, terminate.

Step 4: Check if there is any variable X; for which number of occurrences, say

xc in the mintenn table is 0 or 2“‘L"'. If so, check whether there is some

variable Xj (j 75 i), for which xj remains constant for that xi. If so, tenninate.

Step 5: L = L + 1, M = M + 1. Get the reduced minterm tables for each

variable and find the xi for which the following conditions are satisfied.

(i) One reduced minterm table corresponds to a constant (0 or 1) or

x'j (j ¢ i)

(ii) The other reduced minterm table is a single module
implementation by repeating step 4

Step 6: Get reduced minterm tables for each possible (X; G) xj) or X.jX.j, and

check whether the reduced minterm tables corresponds to constants or x'k_ If

so, terminate.

Chapter 5

152

Step 7: M = M + 1. Get the reduced minterm tables for each variable, and find

the xi for which the reduced minterm tables are single module
implementations by repeating the step 4.

Step 8: Get the reduced mintenn tables for each possible (xi (B Xj) or x'ix°j_

and check whether the reduced minterrn tables corresponds to a variable or

constant, and a single module implementation by checking the conditions of

step 5.

Step 9: M = M +1. Get the reduced minterm tables for each possible (xi CB Xj)

or x'ix'j_ and check whether both reduced mintenn tables are single module

implementations by repeating the step 4.

Step l0: L = L +1 and go to step 2.

Simulation is done up to 9-variable functions using 2 levels. The synthesis

results obtained for various combinational logic functions implemented using

l-control line multiplexers with exhaustive branching algorithm are given in

Section 6.5.

5.4 Summary
A novel algorithm for the synthesis of delay reduced multiplexer

network is described. By suitable selection of variables or functions as control

inputs, the number of modules and/or delay can be reduced. The reduction in

number of modules results in reduced area of the synthesized network. Since

Logic Synthesis using Multiplexers M mp H S iiiiiii it W“

153

the number of variables is also given as input, exact functions are realized.

The computation time is not always directly proportional to the number of

variables, but increases with the complexity of the function to be realized.

Since the topology of the delivered network is that of a tree, VLSI

implementation of this network requires very few extra efforts in routing

algorithms to redesign or for circuit layout. This approach can be adopted for

the design of a more regular BCD digit multiplier.

Chapter 5

Chapter 6

Simulation Results and Analysis

1 T I T — I I l I I I
This chapter presents the simulation results of various multipliers and adders

designed for decimal fused multiply-add unit as part of this research. This include

simulation results of Double Digit Decimal Multiplier, BCD digit multiplier, fixed

point multiplier using RPS algorithm, parallel decimal fixed point multipliers,

floating point decimal multipliers and fused multiply—add unit. Performance analysis

of different reversible BCD adders is also presented. The combinational logic

synthesis results obtained using new exhaustive branching algorithm is presented.

The salientjeatures o/the new system over other existing systems are compared and

the results are tabulated.

6.1 Simulation Results and Analysis

157

This chapter presents the simulation results of various multipliers and

adders designed for decimal fused multiply-add unit as part of this research.

6.2 Simulation Results of DFXP Multipliers
The designs for DFXP multipliers presented in Chapter 2 are

implemented in VHDL using Leonardo Spectrum 0.18 micron, 1.8 V CMOS

technology from Mentor Graphics Corporation with ASlC Library.

6.2.1 DDDM: Synthesis and Analysis

The design for Double Digit Decimal Multiplication (DDDM) is

synthesised for 7-digit, 16-digit and 34-digit multipliers. The simulations

results are given in Tables 6.1, 6.2 and 6.3. Figure 6.1 and Figure 6.2 give a

comparison of area and delay respectively for various blocks of the DDDM for

7-digits.

Table 6.1: Area and Delay for various blocks of Double Digit Decimal Multiplier
(7-digit >< 7-digit)

1 (umz) ‘i area (I15)
Component (7 digit) Areaim %of total ii Delay %ofTotal

delay

Secondary multiple generation 1355 ii 10.67%§ block (SMG) l A 7 3.12 "li5T97%

f Mult_ipli_e_r shift register (MSR) 648 4 f;"5.09%g 0.56 2.87%

Multip1exerblocks(MUX) l270mm_ 9.98% 1.96 10.03%
Carry save addition block (CSA) 4894 38.49% 6 8.28 42.37%

Temporary Product register(TPR) 387 ; 3.04% 1 0.44 2.25%
Decimal 4:2 comp_ressor (_4:2C) T24'42 ii iTl9.2l% 5.45 17.89%

4 Partial Product shitTregisterl _ (PPR) 913 7.18% 0.79“ 4.05%
l

i iiDecimal carry propaigateiadder
(CPA) inn A 84_4g_g_ 6.64% * 18.16 92.94%

jg 12713 1”00%*__gg1 Complete design 19.54

T

1 00 %

Chapter 86

158

'M'

'"

Figure 6.1: Area for different blocks of Double Digit Dedmal Multiplier
(7 -digit le 7 -digit)

''''

'"

4:2C

'"
Figure 6.2: Delay for different blocks of Double Digit Decimal Multiplier

(7-<:1igit)(7-digit)

Simulation ResuHs and Analysis

159

Table 6.2: Area and Delay for various blocks of Double Digit Decimal Multiplier
(16-digit >< 16-digit)

; Component Areaj % of total Delay
(16 digit) 1 (_p.m2) area (ns)

% of
total

delay

I

I

‘J

(SMG)

Secondary multiple
generation block 3106 11.7% 3.12 8.19%

Multiplier shift
register (M SR)

l 643 1
l

2.44%iM 0.56

ii

1.47%

(MUX)
Multiplexer blocks 1 2694 10.15% 2.16 5.67%la_._. 1
Carry save addition 10550

block (C SA)
39.75% P5123 21.73%

Temporary Product
register (TPR)

l 714 119296 7 l 0.44 1.15%

Decimal 4:2 4883 7
ll c0mpressor(4:2C)

18.39% 5.45 Parishes

Partial Product shift 1838
register (PPR)

6.92% 1 .04 ii73as

UIPAJ

‘ 1)ecnna1can3' 1688
1. propagate adder

63695

l

l .

34.88 91.54%

Complete design 26539 100% 38.10 100».

Figure 6.3 and Figure 6.4 give a comparison of area and delay respectively

for various blocks of the DDDM for 16-digits.

Cnapter 6

160

'"G OP.

'"
Figure 6.3: Area for different blocks of Double Digit Decimal Multiplier

(16-digitx 16-digit)

""

Figure 6.4: Delay for various blocks of Double Digit Decimal Multiplier
(16-digitll 16-digit)

Table 6.3: Area and Delay for various stages of Double Digit Decimal Multiplier

Simulation Results and Analysis

161

(34-digitx34-digit)

Component Area %of Delay % oflolal
(34 digit) (Jlm2

) total (ns) delay
area

Secondary multiple
generation block (SMG) 6607 11.86% 3. 12 4.10%
Multiplier shift register 2664 4.78% 0 .73 0.96%

(MSR)
Multiplell.er blocks MUX} 5564 9.99% 2.18 2.86%
Cany save addition block 21417 38.44% 8.28 10.88%

(CSA)
Temporary Product register 1548 2.78% 0.44 0.59%

(TPR)
Decimal 4:2 compressor 10045 18.03% 5.45 7.16%

(4:2C)
Partial Product shift 3858 6.93% 0.92 1.2 1%

rel!ister (PPR)
Decimal carry propagate 3471 6.23% 70.20 92.27%

adder (CPA)
Complete 55714 100"10 76.08 100%

Desi2Tl

Figure 6.5 and Figure 6.6 give a comparison of area and delay respectively

for various blocks of the DODM for 34-digits.

Figure 6.5: Area for various blocks of Double Digit Decimal Multiplier
(34-digitx34-digit)

Chapter 6

162

Figure 6.6: Delay for various blocks of Double Digit Decimal Multiplier
(34-digitx 34-digit)

Figure 6.7 and Figure 6.8 give a comparison of area and delay respectively

for various blocks of the DODM for different lengths . The comparisons show

that the maximum area is occupied by the Carry Save Adder block, and

maximum delay is for Decimal Carry Propagate Adder block for all lengths.

j
f

" ' 0' ,.
,

,.

0 . ' Ls 0 ,
'SMO' 'MSR'

u , •
~ux 'CSA' •

~R'

.., dlgl.
' 6 dig!!
34 dlgl .

Figure 6.7: Area for various blocks of Double Digit Decimal Multipliers
(7,16, & 34-digits)

Simulation Results and Analysis

l
!

~

'"
~

~

<0 -

=
~

'0 _

0

7 digit

H5 dlgll
~dlgll

- - --- - _ 1 1 __ 1 1 ___ 1 j
23"5678

'SMG' "MSFt' 'MUX 'CS.... 'TPR' ·", 2C· 'PPR' 'CP'"

Figure 6.8: Delay for various blocks of DOOM (7,16 & 34-digits)

163

34·digit multipl iers are also designed as a combination of 17-digit

multipliers. The simulation results are given in Table 6.4.

Table 6.4: Area and Delay for various blocks of 34-digit partitioned Double Digit
Decimal Multiplier

Component Area % Orl01al Delay % of total
(34 digit) (.m') area ("') delay

Secondary multiple 6600 5.20% 3.12 3.03%
generation block

Multiplier shift register 1296 1.02% 0.56 0.54%

Multiplexer blocks 11336 8.93% 2. 18 2.11%

17 digit Can;' save addition 37256 29.]5% 5.66 5.49"10
block

Temporary Product register 3268 2.57% 0.44 0.43%

17 digit Decimal 4:2 20620 16.24% 5.45 5.29%
compressor block

Partial Product shift register 8132 6.4 1% 0.82 0.79%
Decimal carry propagate 7128 5.62% 36.74 35.68%

adder
34 digit carry save adder 5961 4.70% 2.83 2.75%

34 digit Decimal 4:2 9495 7.48% 5.45 5.29%
comoressor

5 1 digit Decimal carry 6773 5.34% 97.98 95.16%
orooalZate adder

Complete design 126908 100°/. 102.96 100%

Chapter 6

164

Table 6.5 shows the comparison of the two designs for 34-digit
DDDM.

Table 6.5: Comparisons for different designs of 34-digit Decimal Double Digit
Multipliers

No: of
1 Digits

Parameters Double Double Ratiodigit digit 3 l
M1 WA" Janitioned

1% Area (um') lW557pl_4 126908 é0._4‘39_
Delay for 1 cycle 76.08 = 102.96 0.7391 _- (HS) N i-__

T. 34- Delay to complete
1 Digit

multiplication (ns)__
34 digit x 34 digit 1295.28 1029.6

l .

1.26

It is noted that even though the area is almost double, the partitioned

multiplier design gives a speed advantage of 1.26 times compared to the

iterative DDDM for 34-digit multiplier. Table 6.6 indicates the comparison of

area and delay parameters of DDDM with SDDM in [M. A. Erle and M. J.

Schulte, 2003].

Table 6.6: Comparisons of DDDM and SDDM

Digits g g Parameters digit
No: of l Double Single digit Ratio

D Area (um?) 12713 8268 1.53‘/T

Delay for 1 cycle (ns) l9.54__ 17.29 1.13

i ldigi‘ .imDe1ay to complcte7digitx A 90.8
. ii 7digitmultipl_ic_a__ti0n (ns) '

130.4 0.696

gAr_ea (pm!) A 26539 g 18717 l .42

Delay for 1 cycle (ns) 38.10 36.24 1.05
16-digit Delay to complete 16 digit x J“

p N_ 16 digit multiplication (ns) 313.92 591.26

1 LL Area (pm?) t 557147 39063
0.531 _l1.42

Delay for 1 cycleM(_ns) 76.08 Q9.-.33 1.09

. . Delay to complete 34 digit x
g 3‘l'flfg“ 34 digit multiplication (_ns)__ or 1295.28 2388.4 0.542

Simulation Results and Analysis

165

It is noted that even though the area is increased by 50%, the speed to

complete n-digit x n-digit multiplication is almost doubled as in the case of

16-digits and 34-digits. But, the speed is on ly 1.44 times for 7-digits because

the number of cycles required is r(n I 2)+ ll which is equal to 5 cycles,

compared to a single digit multiplier that requires 8 cycles.

Figure 6.9 and Figure 6.10 give a comparison of area and delay

respectively of DD OM and SDOM for various lengths.

" '0' •
_ Double dig"

, _ S lnogie digit

• ,
i ,
I

:1
7 0Ig11 1t1 00g;t JA Oigolt

Figure 6.9: Area comparison of DOOM and SOOM

,~

[_~"""t
_ SlngIediglt -

f
.~

!
.~

~ . 1 0 --• , , "",. 16 OIgIt ~ "",.

Figure 6.10: Delay comparison of DOOM and SOOM

Chapter 6

166

The designs are synthesised in different families of various FPGAs as

well and the results are tabulated. Table 6.7 shows the results for 7-digit

DDDM on different families of various FPGAs.

Table 6.7: Simulation results of Double Digit Decimal Multipliers (7-digit) on FPGAs

if FPGA Family Speed Utilized Area Maximum Delay
Grade (Logic Cells) F rcquency(iM (ns)

MHZ) ..l
1 APEX 20 145 pg

I
L»-I

1109 22” A 47.04

ALTERA APEX 20K

|
UJ

1110 20.9 49.665 ACEXIKF

Lo-J

1072 it Ag 32.9 29.46
_ ; FLEX 10 KE _3 7 1072 25.2 _37-54' Fainily

I

P

Speed Utilized Area
Grade (Core Cel1s*

/Modules)

Maximum
Frequency

(M Hz)

Delay
(HS)

3200px -35 5 _g 1544 F ____ l0.1 98108
T A5O0K sroi 2071* _Z0.7 47.6‘

ACTEL ‘g 54sxA -3 if 1526‘ l 15.6 63.78
5 RT54SX 5 ‘-1 1819 15.-.1. 65.86 l

1

l

if Family Speed Utilized Area Maximum Delay

Grade (*Gates/CLBs) Frequeney(M (ns)Hz)
Cool Runner 1 3

O\

*6804i 0.5 2145.80 l

-i>~

-_ Spartan 3 75- iii 504 *5 18.7
1.

:

i
54.64

Spartan2 _Mg W

U1

A 525 31.5 is 33.35

g Spartan XL

1

-l>~

504 1 18.7 54.64

5 XILINX J1 vmex

-B

525 1 30.4 34.1!

1]g_ VirtexE

I
O\

0 525 45.2 25.23 7
% xc9500xv l

_-.-7g 4425 5 g 28.6 35.005 Family
Quick _

Speed
Grade

Utilized Area
(Logic Cells)

Maximum
F requeney(M

Delay
(ns)

Logic T pASlC3 I139
! Hz)1 8 5 l32.46

Family if 7

Luccnt 5 g

Speed
Grade

Utilized Area
(LUTs)

Maximum
F requency(M

Hz)

Delay
(I18)

- A 1074 O 7 7ORCA-3C/3T 5 2. ,1 50.3
Table 6.8 shows the simulation results of double digit multiplier for 16

digits on different families of various FPGAs.

Simulation Results and Analysis

167

Table 6.8: Simulation results of Double Digit Decimal Multipliers (16-digit) on FPGAs

Family Speed Utilized MMaximum Delay
FPGA Grade Area (Logic Frequency(MHz) (ns)J_ g g H _ ; t Cells) ;

1 ALTERA A
APEX20 -3 1 2446 7*"

H KE
229 107.38

APEX20! -3 2447 l 20.9 M 113.60

lgg.cEii1 K -3 2405 32.9 34.95

KE
FLEX 10 -3 ; 240525.1 85.07

_ /Modules) 1
Speed Utilized Maximum

Family Grade ; Area (Core i Frequency
Cells* (MHZ)

Delay
(I18)

F

ACTEL. 3200px ; -3 3343 10.1” 206.39

J

M gA5001<

54S_XA
“STD i 4469* S

-3 g 3357
20.1 7 if

15.0
83.14
127.20

RT54$X -1 3937 lV 14.6 129.88

Family

.\ (*Gates/ K
Speed Utilized Maximum
Grade Area Frequency(MHz)

7 M__ CLBs)

Delay
(I18)

XILINX Cool
Runner

-15 l *1558s . 50.5 2129.30

Spartan 2 -6 1152 _ 36.0 759.00

\g/firtex -6 1152 iiii it 40.1" 1 51.92
Virtex E. -8 i H1152 53.6 it 36.75

Quick Logic

Family Speed Utilized Maximum 5 1
Grade 4 Area (Logic A Frequency(MHz)W Cells) _

Delay
(HS)

<1

pASIC3 -1 2500 3.6 i 297.14

Table 6.9 shows the simulation results of double digit fixed point

multiplier for 34 digits on different families of various FPGAs. The study

reveals that efficient mapping of the double digit multiplier is achieved when

Xilinx FPGA devices are used.

Chapter 6

Table 6 9 S|mu|at|0n results of Double Digit Decimal Multipliers (34-digit) on FPGAs

FPGA Family Speed
Grade

Utilized Area
(Logic Cells)

Maximum
Frequency

(M Hz)

Delay
(I18)

APEX 20 KEG

I
U.)

8 12279 22 306.82

ALTERA y APEX 20K

DJ

12283 20.9 325.57
ACEX 1 K

DJ

12191 877372.977 it 1712.54

FLEX 10 KE _,|__,(-3 12191 32.7 194.33

Family Speed
Grade

Utilized Area
(Core Ce1ls*
/Modules)

Maximum
Frequency

_ (M Hz)

Delay
(I18)

73T200DX -3 17134 9.5 616.70
ACTEL A500K STD 22048* 19.6 255.36

54SXA g it 176213 “Tm15.2 343.90

Rr54sX 1 W. 1.3.759..- .2 1 1 346.58

Family Speed
Grade

Utilized Area
(*Gates/ CLBs)

Maximum
Frequency

(M Hz)

Delay
(HS)

XILINX Cool RLlI111€l'
Virtex E

-15
-s 5765

_ -_".‘Z72.l§.- 2_4 (0.5
59.977

12.1517.-£13
1 99.49

Family Speed
Grade

Utilized Area
(Logic Cells)

Maximum
Frequency

(M Hz)

Delay
(I18)

8.6 870.73Quick Logic p pASIC3 -1 12427

The double digit decimal fixed point multiplier presented can be used

in floating point multiplier circuits. Summarising the simulation results of

DDDM design: It is noted that even though area is increased by 50%, the

speed to complete n-digit >< n-digit multiplication is almost doubled. The

design was validated using lengths of 7-digit, 16-digit, and 34-digit multipliers

that are required for all the three formats of floating point decimal

multiplication. The synthesized design has a latency of 90.8 ns, 313.92 ns,

1295.28 ns respectively for 7-digit, 16-digit, and 34-digit fixed point

multipliers. Also, 34-digit multipliers are designed as a partitioned

(Stimulation Results and Analysis

169

combination of four 17-digit multipliers. It is seen that for the partitioned

design, the speed is increased by 1.26 times compared to the iterative double

digit decimal multiplier design. The area and delay comparisons for 7, 16 and

34—digit fixed point multipliers on different families of Xilinx, Altera, Actel

and Quick logic FPGAS are also presented.

6.2.2 Simulation results of BCD Digit Multiplier

The design for BCD digit multiplication presented in Chapter 2

reduces the critical path delay and area that in turn allows for a fast multiplier

design. A comparison of the new BCD digit multiplier design with the existing

design by [Jaberipur and Kaivani, 2007] in terms of critical path area and

delay is done and is tabulated in Table 6.10. The simulation is done using the

logic synthesis tool Leonardo Spectrum from Mentor Graphics Corporation

with ASIC Library 0.18 micron, 1.8 V CMOS technology. The simulation

results show significant improvement over the design by [Jaberipur and

Kaivani, 2007].

Table 6.10: Comparison of area and delay of BCD digit multipliersl 8 %
Type of Area i %reduction Delay T reduction

Multiplier A (umz) (area) (ns) (delay)
__ _ V _ L _ _____l___ _l_ 6 _.‘ lProposed A =

Multiplier X 489 7.56
Multiplier A 8% 18%[Jaberipur 532 6 9.26
Kaivani ‘
(2007)] Tl 6 l

Chapter 6

170

The design is then extended to a Hex/Decimal multiplier that gives

either a decimal output or a binary output depending on the requirement. A

comparison of the Hex/Decimal multiplier design with one designed using the

multiplier in [Jaberipur and Kaivani, 2007] in terms of area and critical path

delay. The comparison shows that the proposed design has a reduction in

delay of 16.52% with an extra hardware of 17.24% compared to the

Hex/Decimal multiplier designed using the multiplier in [Jaberipur and

Kaivani, 2007].

6.2.3 Simulation results of DFXP Multiplication using RPS

Algorithm

The decimal fixed point multiplier using RPS algorithm presented in

Chapter 2 was coded for a (7-digit >< 7-digit) multiplier in VHDL, and

synthesized to evaluate the area and delay of the design. Synthesis was done

using Leonardo Spectrum from Mentor Graphics Corporation with ASIC

Library of 0.18 micron, 1.8 V CMOS technology. An area and delay

breakdown for an approximate contribution of major components of the design

is given in Table 6.11. Even though the delay for the complete circuit is

30.2ns, the next cycle can start after 17.27 ns since the multi-operand BCD

addition takes place simultaneously with the single digit multiplication of next

set of inputs.

The new RPS algorithm generates and accumulates the partial products

in an efficient manner for fixed point decimal multiplication. The design was

validated using 7-digit >< 7-digit fixed point decimal multiplication that is

required for a 32-bit floating point decimal multiplication. The latency For the

multiplication of two n-digit BCD operands is (n+1) cycles, and a new

Simulation Results and Analysis“ 0 0

171

multiplication can begin every n cycle. The simulation results show that the

RPS design gives a reduction in delay of 7.29% at the expense of area

compared to the single digit implementation for 7-digit >< 7-digit fixed point

multiplier. This iterative approach is suitable for high speed floating point

multiplication since rounding can be initiated during the fixed point

multiplication process.

Table 6.11: Area and Delay for different stages of Decimal Fixed Point Multiplier

using RPS Algorithm (7-digit >< 7-digit)

Component Area Delay
1.11112 i % ns %

Controller 2719 15.01% 4.85 16.05%

‘Single digit multiplierarray 3465 19.15%? 7.81 25.s6%t

BCDadderarray 5791 32.01% 12.93 42.81%

Registerarray 6ll4 33.8% 4.61 l 15.26%
_______ .l

Fixed point multiplier _ 18089 100% 30.2 100%

6.2.4 Simulation Results for Parallel Decimal Multipliers

The Fixed Point Parallel Decimal Multiplier presented in Chapter 2 is

realized for a (7-digit >< 7-digit) fixed point multiplication. The simulation

results of this design are shown as ‘Design l’ in Table 6.12. The simulation of

the modified design for partial product generation using BCD digit multipliers

Chapter 6

172

while keeping the same DCA and Cany counters for partial product

accumulation by [Lang and Nannarelli, 2006] is also done. The realization of

7-digit multiplier using this modified design is simulated, and is shown as

‘Design 2’ in Table 6.12. The simulation results show that the design using

Carry Counters (Design 2) has reduced area and delay compared to the design

using Decimal 4:2 Compressors (Design 1) by 3.52% and 9.79% respectively.

The designs are extended to 16-digit and 34-digit multipliers since they fonn

integral components of 64-bit and 128-bit decimal floating point multipliers.

The simulations are done using the logic synthesis tool Leonardo Spectrum

from Mentor Graphics Corporation with ASIC Library of 0.18 micron, 1.8 V

CMOS technology. A comparison of area and critical path delay for ‘Design

1’ and ‘Design 2’ is done, and is tabulated in Table 6.13. Even though the area

is more for 16-digit and 34-digit realizations in ‘Design 2’, the delay is always

less than that for ‘Design 1’. Parallel multipliers are used when the constraint

is delay compared to area, and hence ‘Design 2’ is the more suitable design.

Comparison of 16-digit multiplier using ‘Design 2’ with the designs by [Lang

and Nannarelli, 2006] shows a reduction in area and delay. The area occupied

by the partial product generation block in ‘Design 2’ is only 141,504 um‘

while that for [Lang and Nannarelli, 2006] and [Dadda, Nannarelli and

Milano, 2008] is 155,000 um‘. The delay for the generation of partial products

is only 20.13% of total delay for ‘Design 2’, while the delay in the design of

[Lang and Nannarelli, 2006] is 26.41%. So, there is a reduction of 8.71% in

area and 6.28% in delay for ‘Design 2’ compared to the design of [Lang and

Nannarelli, 2006].

Simulation Results and Analysis

Table 6.12: Area and Delay for different stages of Decimal Fixed Point Parallel

Multipliers

Component Area Delay
Hmz .%. ns %

Generation of Partial Products A 23961 52.24% 7.56 16.63%

Decimal DCA Block4 7140 15.56% 2.83 ; 6.23%
Carry *e__..__-4 2

28.06% 21.19 46.610/YSave Rest D4:2C Block 12870 I \Adder of the (Designl) A A A l
Block levels DCA& CC 11256 25.43% ; 16.74 40.82%(_* y (Design 2) 1Fixed Block Fast Decimal Adder 1898

45869 A 45.46Fixed point (Design 1) 1 100% 100%
mul_1i1>li@r(7-digit X DCA & cc 44255 41.01y 74113") y (Design 2) 1

4.14% i13.88 30.53%
D4:2C Block

Table 6.13: Comparison of Decimal Fixed Point Parallel multipliers for different
lengths

Area(11m2) iii“-8i8888Delay(ns) 1

Mulupherusmg ' 7-digit 16-digit 734-‘digit 7— 16- l 341 -.¢ig.il. ...digi£@._ dig" _; 1I 1
D4:2C(Designl) 45869 l 243449 llll8l7 45.46 52.78 67.18

DCA&CC 44255 256753 3.1147097 41.01 51.6 62.56(Design 2) A ‘ ;,2 .1 1 l
Partial product accumulation was also done column wise for a (7

digit><7-digit) fixed point multiplier. The area occupied and delay caused by

major components for 7-di git >< 7-digit multiplier is given in Table 6.14.Chapter 6

174

Table 6.14: Area and Delay for different stages of Decimal Fixed Pont Multiplier

(7-digit><7-digit) Column Accumulation

Component

Area Delay
umz \ % ns %

1 Generation ofPartia1 Products T 1 23961 S 3 54.92% 1 A _1,56 1 ‘16.63%*
DCA & CC 16108 36.92% 17.62 47.34%

Fixed Block Fast Decimal Adder 3558 8.16%” 12.042 30.53%

43627 100% I 37.22 T00%Fixed point multiplier g A pp A
Comparison of 7-di git multiplier using column accumulation with row

accumulation (‘Design 1’ and ‘Design 2’) shows a reduction in area and delay.

The results show that there is a reduction in delay of 22.14 % and 10.18% for

column accumulation compared to that of ‘Design 1’ and ‘Design 2’

respectively. The decrease in area for column accumulation compared to

‘Design 1’ and ‘Design 2’ is by 5.14% and 1.44% respectively. This

comparison shows that the better design for a parallel decimal multiplier is the

one using single digit multipliers for partial product generation, and column

wise approach for partial product accumulation using carry counters and

decimal carry save adders.

6.3 Simulation results for Decimal Floating Point
Units

6.3.1 Simulation results for Decimal Floating Point Multipliers

Two approaches for iterative decimal floating point multiplication are

presented in Chapter 3. The first approach has a decimal fixed point multiplier

using RPS algorithm. The DF P multiplier using RPS algorithm is synthesized

for a 32-bit input using Leonardo Spectrum from Mentor Graphics

Simulation Results and Analysis 3 S _ i in SS

175

Corporation with ASIC Library of 0.18 micron, 1.8 V CMOS technology. An

area and delay breakdown for an approximate contribution of major

components of the design is given in Table 6.15.

Table 6.15: Area and Delay for different stages of DFP Multiplier using RPS
g_ g Algorithm (32%-bit) _ i 8

Area Delay
Component 5* En? ‘ 2* Hg 21 C Decoding Logic 14359 3.26_ 1

Exponent generation 229 _ 4.42
l Exception handling W 66* 4.21
" DFxP multiplier&Roundir1g Unit ‘ C 25481 41.8

Encoding Logic 600 5.25D Total 5 527926 53.67
Even though the total area is the sum of area of different stages, the

total delay for the complete circuit is only 53.67ns, which is less than the sum

of delays of all stages. This is because of the inherent parallelism in the

design. Table 6.16 shows the synthesis results of DFxP Multiplier and

rounding unit.

Table 6.16: Area and Delay of Rounding Unit and DFxP Multiplier using RPS

Alggorithm (7-digit><7-dig?) gArea , Delay l_ __1,_ _ .. ‘i 1Component dim J ns
l1)1={P Multiplier 18089 30.2
1 lncremeterl X 3536 22.71 l
lncremetcr2 A 13536 122.71 A

;*Mux 205 0.24Stickybit " 1 51 1.15 l
Rounding CC A H 1.96 ATotal 25481 41.8

C Chapter 6

176

Here, also the total delay is less than the sum of delays of each

component as rounding starts before the DFxP multiplication is completed.

This is possible since the sticky bit (Sb), the round digit (R) and the guard

digit (G) are generated on-the-fly during the DFxP multiplication process. For

a 7-digit x 7-digit DFxP multiplication, the sticky bit (Sb) is generated after

the fourth cycle; round and guard digit generation is done in the next 2 cycles.

The delay break up of different components of DFP multiplication is shown in

Figure 6.1 t. Figure 6.12 gives a detailed delay breakup of the DFxP Multiplier

and the rounding unit. The delay break up for one DFP multiplication of 32-bit

inputs is shown in Figure 6.13 . OFP multiplication takes 9 cycles to complete

one 32-bit DFP multiplication with worst cycle time being 19.97 ns. Hence,

the total delay is 179.73 ns.

•

,
" •

TIIIII (III)

_ Oecoi..., lDgic

_ Of.P MIAtipW & IIn.nIiog Ulil
_ EJpo ~1 & Set EJctplioo

Encodong lDgic
_E~~

_ Ex~ion fWdIing

•

"
Figure 6.11 : Delay Break up of different components of DFP Multiplier using RPS

Algorithm

Simulation RestJlts and Analysis

_DFlI' r.I~

.- --,
~5------------'" _ _ ,
go -
~ _ Slicky Bd IjIIWIIIoo
~. •
~ _Rcu1d"GtuII~

i,-------~~~
• , , '
• c

• ,
"

177

1

..
Figure 6.12: Delay Break up of DFxP Multiplier (using RPS) and Rounding Unit

6

I '

Delay of:32 bit DFP Multiplier
---------------- _ Decoding logic

_ QF .. P Multiplier

_ Incremenler 2

_ Expo Adjust & El(ception Set

_ Encoding Logic

! . ~--'
~ 3.

~ 2

o 20 '" 60 60
lime (ns)

•

' 00 '20 '" '60

Figure 6.13: Delay break up of 32·bit OFP Multiplier using RPS algorithm

Chapter 6

178

When multiplying two DF P numbers with n-digit significands, using

RPS algorithm, the worst case latency is (n+2) cycles, and initiation interval is

(_n+l) cycles. The design differs in partial product generation and in rounding

logic from the iterative approach for the DFxP multiplication by Erle. For

comparing the performance, both these designs are synthesized in the same

environment. Table 6.17 shows the comparisons of the DFXP multiplier

designs using design of RPS and the design of [Erie er a!.,2003]. The design

using RPS needs double the area for almost the same latency. But when the

design using RPS is used as the DFxP Multiplier of a DFP multiplication, the

speed is increased as tabulated in Table 6.18. This is because the rounding

process is initiated before the DFxP Multiplication cycles are over. This

parallelism achieved in the DFP multiplier design using RPS algorithm

decreases the delay of the critical path. This in tum reduces the worst cycle

time. A delay reduction of 25.12% is achieved using this approach compared

to the DFP multiplier using the design of Erle.

Table 6.17: Comparison of DFxP multipliers using RPS algorithm with existing one
(7-digit><7-digit)

Design of Ratio iParameters i RPS Erlc iJ _, _ ,__l

Area (ttml) 13089 1 8268 2.18 T
y Delay of ‘
3 7-digit >< 7-digit l33.55 i 130.4 ‘~ 1.024
‘ multiplication (ns)

_ " —i _ '7" ; __ V :‘

simulation Results and Analysis —

179

Table 6.18: Comparison of DFP Multipliers using RPS algorithm with existing one
(32-bit >< 32-bit)

i Parameters RPS , DFP multiplier using Ratio i_ 7 W design of Erle, J
Worst cycle time (ns) 19.97 1 26.67 0.749 1- . . , . ._i__ . . .- ,11 Maximum frequency ‘ 50 1 37.5 1.3331 (MHz) , , ._ . __ .4Delay of 32~bit DFP 1 1
multiplication in terms 179.73 240.03 . 0.749of worst cycle time . i. (I18) _ g M. .

The DFP multiplier using DDDM, for a 32-bit input is synthesized to

find the area and delay associated with the design. Synthesis was done using

Leonardo Spectrum from Mentor Graphics Corporation with ASIC Library of

0.18 micron, 1.8 V CMOS technology. DFP multiplication takes 6 cycles to

complete one 32-bit DFP multiplication with worst cycle time being 31.56 ns.

Hence, the total delay is 189.36 ns. This design requires lesser number of

clock cycles for DFP multiplication compared to that of Erle using single digit

design. This in turn reduces the total delay by 21.10% even though the worst

case cycle time is more compared to the single digit design. Compared to the

first approach (using RPS algorithm), the second approach (using DDDM) is

more regular and occupies 26% lesser area, but it has more delay. The delay

comparison of these two approaches for a 32-bit input with DP P multiplier

design using the design of Erle is given in Table 6.19. Extending the iterative

DFxP multiplier design to support DFP multiplication affects the area, cycle

time, latency, and initiation interval.

Chaplerfi

180

Table 6.19: Comparison of Iterative DFP Multipliers for 32-bit input

._, , j__.____~j-____.__. .i i i
Parameters ‘ DDDM RPS DFP multiplier using A

F i_ __ __ _ JP __ __ __h? __ __ designof Erie
" Worst cycle time (I18) 1 31.56 ‘ 19.97 i 26.67

1 Maximum frequency l 31.68 ‘ 50 37.5
j. 1 tMH2)_ _- . __ __ - _- if _ _ _ ._ _
i Delay 01°32-bit DFP7 ii .
‘ multiplication in ‘i 189.36 ‘~ 179.73 240.03\ terms of worst cycle A‘ time (ns) FX \ \ ll ll
The parallel DFP multiplier is synthesized for a 32-bit input using

Leonardo Spectrum from Mentor Graphics Corporation with ASIC Library of

0.18 micron, 1.8 V CMOS technology. Synthesis results show that the parallel

DFP multiplication takes 69.54ns to complete one 32-bit DFP multiplication.

The parallel DFP design, the design using DDDM and DFP multiplier using

design of Erie is synthesized in the same environment and the comparison of

delays is given in Table 6.20.

Table 6.20: Comparison of DFP Multipliers (using parallel, DDDM & of Erie) for 32-bit

input

Parameters ii Using Parallel l Using l‘ DFP multiplier using design

i i multiplier i DDDM of Erie
1. Delay of32-bit ~ ‘ “
DFP multiplication l" 69.54 " 189.36 240.03 '

(118)ii_ __ __ _ . I . _\ _ _ _ __ __ __ _- _;ii
Simulation Results and Analysis 7 7 7 7 7

181

6.3.2 Simulation results of Decimal MAC unit

The fused multiply-add unit uses parallel and iterative multipliers and a

floating point adder unit. The DFP adder is implemented using ripple carry

BCD adders, Kogge-Stone adders and reduced delay BCD adders.

6.3.2.1 Simulation results of DFP Adders

Different designs of DFP adders are presented in Chapter 3. Analysis

done on different implementations of DFP adders are tabulated in Table 6.21.

Comparison of DFP adders shows that the ‘reduced delay adder’ achieves the

highest speed.

Table 6.21: Comparison of DFP Adders (16- digit)

DF P Adders Delay (ns) Area (um?) i

A Ripple Carry Adder 1 124.62 » 654321 " '- . t 6 _
” Kogge-Stone Adder 127.42 59358; _ . 2 1
1 ReducedDelayAdder' D 109.76 1 60327L
Comparison of different designs of 32-bit DFP MAC unit is

summarised in Table 6.22. Both iterative and parallel multiplier designs are

used for different DFP MAC designs. DDDM design and design using RPS

algorithm are the iterative multipliers used. For parallel multiplier, the ‘Design

2’ for row accumulation and the design for column accumulation are made use

of. The 7-digit significands of 32-bit DF P inputs are multiplied by the 7-digit

DFXP Multipliers. This result in 14-di git output since rounding of the result is

not performed after multiplication. The adder unit accepts this as input and

should be able to accommodate this length. Hence adder length should be

Chapter 6

182

greater than 14 digits. The MAC designs presented in this research uses 16

digit adders. This is because, 16-digit adders form the integral part of a 64-bit

DFP adder unit. Three different DFP adders are used in MAC implementation:

Ripple carry adders, Kogge-stone adders and ‘reduced delay DFP adders’.

Designs are simulated using using Leonardo Spectrum from Mentor Graphics

Corporation with ASIC Library of 0.18 micron, 1.8 V CMOS technology. The

comparison results show that for a high speed fused multiply-add unit the best

suited multiplier is parallel multiplier using column accumulation fused with a

‘reduced delay DF P adder’. Such high speed units are of great importance in

real time computations such as in military applications.

Table 6.22: Comparison of DFP MAC units (32-bit)

Unit Delay (ns) Area (umz) A
Decoding Unit A 7.68 1845

‘_DDDM 90.8 12713 ‘
Iterative

A Multiplier A p RPS Algorithm l 133.55 18089
Row Accumulation 41 .01 44255

Parallel
Column Accumulation 1 37.22 43627

Ripple Carry 124.62 65432
1 Adder

Kogge-Stone A 127.42 l 5935587“

Reduced Delaiyilifiiadder 109."/6 60327

Correction Unit 54.17 9640__ lEncoding Unit 5.25 ‘ 600

Simulation Results and Analysis M

183

6.4 Performance Comparison of Reversible Circuits
for Decimal Adders

Improved designs for reversible logic implementation of BCD adder

are presented in Chapter 4. Results of analysis done on reversible

implementations of BCD adders in [Hafiz Md. Hasan Babu and A. R.

Chowdhury, 2005], [Himanshu. Thapliyal, S. Kotiyal and M.B Srinivas, 2006]

compared with the two designs presented in Chapter 4 are tabulated in Table

6.23.

Even though this delay analysis will not give exact results because of

the difference in complexity of the gates used, it gives a good estimate of the

delay reduction attained by reversible implementation of BCD adders

presented. The Table 6.23 also shows a comparison in terms of number of

reversible gates and garbage outputs for the complete circuit. lt is clear that the

implementation in Figure 4.18 uses least number of gates, produces least

number of garbage outputs and gives least delay compared to all other

implementations.

Reversible implementations of three different fast decimal adders are

also presented in Chapter 4.

A comparison of classical logic gate implementation of conventional,

carry select and hybrid (with m=4) BCD adders is done to study how the speed

and area of the different designs vary with number of digits. Designs are

simulated with the logic synthesis tool Leonardo Spectrum from Mentor

Graphics Corporation using ASIC Library. The critical path delay and area are

normalized with respect to a full adder critical path delay of 1.98 ns and area

of 38um2. Figure 6.14 shows the delay, and Figure 6.15 shows the area-delay

i Chapter6

184

product normalized to that of a full adder. The area overhead of carry select

and hybrid adders is compensated by the speed advantage compared to the

conventional adder.

Table 6.23: Comparative Analysis of the Reversible BCD Adders

g _ W 7 Complete Circuit
Reversible BCD l N0: of No: of l Delay of
Adders gates A garbage l Decimal Cout for

o/p 1 N-digitBCD

Delay of BCD Sum
for N-digit BCD
adder

BCD Adder in 1
[Hafiz Md. Hasan
Babu and A. R.

Chowdhury, 2005] .

NG-1 1
NTG-8
FG-3

Total-22

22 l2N l2N+7

BCD Adder using
TSG [Himanshu.

Thapliyal, S. Kotiyal
and M.B Srinivas,
2006] (fanout>l)

TSG-8
NG-3

Total-1 1

22 7N 7N+3

BCD Adder using A
TSG [Himansl1u.

Thapliyal, S. Kotiyal
and M.B Srinivas, 1
2006] (fanout=l). rv

TSG-8
NG-3
FG-5

Tota1- l 6

22 9N 9N+4

BCD Adder
presented in Figure

4.17 (fanout=l)

TSG-5
NG-3
FG-3

Total-l 1

13 7N 7N+3l l
BCD Adder

presented in Figure .
4.18 (fanout=l)

TSG-5
NG-3
FG-l

Total-9

11 7N 7N+l

Simulation Results and Analysis

; ~ -

• ,
i ~
!20
"
'. ,

185

" " " "*>: ddigits

Figure 6.14: Delay analysis of Conventional , Carry Select and Hybrid BeD Adders

using classical logic gates

--~ BCOIddIr

'. 10 15 " No: d digitI

Figure 6.15: Analysis of area-delay product of Conventional, Carry Select and

Hybrid BeD Adders using dassicallogic gates

Chapter 6

186

Figure 6.16 demonstrates the speed up factor of carry select and hybrid

BeD adders compared to conventional BeD adder as the number of digits

increases. Hybrid decimal adder is three times faster than the conventional

BeD adder as the number of digits increases above 12 while the carry select

BeD adder attains a speed up factor of 2.5 at this level. It is noted that the

hybrid adder attains speed up over carry select BeD adder only when the

number of input digits increases above 8 for a classical logic gate

implementation. The delay comparison graphs show that hybrid adder is 5

times faster than that for the conventional BeD adder, when the input word

length is above 25.

5 --====='===::0 ~_Carry selecl Ill , ~ BCOaddEW' I

... - Hybrid IS. CcrMrtionaI BCD JOjer

3,5- _ -'-

~ 2.5
• •
• 2
~

\.5

0.5

00 5 10 15
No: cri ligits

20 25

Figure 6.16: Speed up factor for Carry select and Hybrid BCD adders vs.

conventional BCD adder for dassical logic gates

Simulatioo Results and Analysis

187

Figure 6. 17 shows a comparative delay analysis of conventional, carry

select and hybrid BeD adder reversible implementations nonnalized to that of

a Fredkin gate. Figure 6.18 demonstrates the speed up factor of reversible

Fredkin gate implementations of carry select and hybrid BeD adders

compared to conventional BeD adder. It can be noted that the hybrid adder

attains speed over carry select BeD adder for all values of N in reversible

implementation. Speed up factor of hybrid adder increases above 10 when the

number of decimal digits is more than 25 for reversible logic implementation

using Fredkin gates.

Delay analysis 01 drtl!renl re'oeIS ible BCD adders
3.2

--"""""'" = 3-- -CanySelect ~----------
~

.!!! - Hybrid E. 28 · - '---,----==----~ --- ----:
~

.2 2.6
~ •
~2.4
~

~

! 2.2
•
E 2
~ •
" ~1.8
§
o
c 1.6
~ • -.
o 1.4

----'
01020~40

I
50 60 70

No: c(digits

r,--

--+- ----l
- --- -_.-;

I
80 90 100

Figure 6.17: Delay analysis of reversible BCD adders using Fredkin gates

ChapterS

188

35

[
~ Carry Select '4 Corr.e1ic:1'1a1

30 _ - Hytrid '4 C'.orNentionaI

25

• .20
~
• ,
• i 15 --- --~ --
~

10

5
, ,

. , -~.

00 L ----'--- ---'-
ro ~ 30 ~ ~ 00 ro 00 ~ 100

No: of digils

Figure 6.18: Speed up factor for reversible implementations of fast BCD adders vs.
Conventional BeD adder

The shortest delay for a fixed block size hybrid BeD reversible adder

is derived in Section 4.5 and is given in Equation (4.37). Optimum block size

for different input length (number of digits) is given in Equation (4.36). Figure

6.19 shows the graphical representation of optimum block size (corresponding

to shortest delay) of hybrid reversible BeD adders for different input lengths.

Toffoli Gate (TG) reversible implementations of conventional and fast

decimal adders are also presented. Table 6.24 shows a comparison of

implementations of different BCD adders using FRGs and TGs in tenns of

quantum cost, number of reversible gates, garbage outputs and delay. The

percentage reduction attained in quantum cost is computed as [QC(FRG) -

QC(TG) Jf QC(FRG).

Simulation Results and Analysis

189

""~--------------.---~=====-,

~
..., j

--.....
--.... ..

-- - ---i

. _ ~ .. . ,

'" :

5 10 15 " ttx r:I ~s I» IXdI

Figure 6.19: Optimum block size of Hybrid reversible BCD adder for different input

lengths

Conventional BeD adder implemented usmg TGs shows 45%

reduction in quantum cost, 67% reduction in garbage count and J 8% reduction

in gate count compared to FRG implementation. QAD gives a corresponding

reduction of 38%, 63% and 15%. For carry se lect BeD adder the respective

reduction factors are 37%, 64% and 12%. The implementation using TGs

gives a reduction in delay for conventional BeD adder and QAD compared to

FRG implementation.

The performance comparison of implementations using FRG and TO

for different BeD adders reveals that the implementations using Toffoli gates

are superior in terms of quantum cost, garbage count and gate count, compared

to Fredkin gate implementations. Toffoli gates are also suitable for

implementations of Reed Muller expressions. Hence decimal adders can be

Chapter 6

l90

implemented in reversible logic using lesser number of gates and garbage

count when the logic is expressed in Reed Muller form.

Table 6.24: Comparative analysis of Reversible BCD Adders Implemented using

Toffoli and Fredkin Gates

Reversible BCD adders " 31 BQD
A Convention l i' Carry

QAD i select BC Dadder adder
Quantum cost 5 78S8 79

l

No: of gatesToffoli to g_ I 28 34 35
i

Implement 'i j it
ation Garbage count 12 16 15

Delay for 1 C-Out i 9N
an N-digit
adder

Decimal ll+N l2+l\'

BCD Sum i 6+9N 18+N l9+N
Quantum cost ii 1o5 l 126 D 1264 i ,

Fredkin M
No: of gates 42 ‘ 4235”

Implement Garbage count 36
ation _ i

45 D 44”
l7 .|_ _Decimal ! M it

Delay for i C0111 l IN l0+2N I l+Nan N-digit W __adder F l
BCD$um 6+1»: l5+2N 7 l7+l\‘___ _ I _ __ , g

implementations for 4-bit Binary to BCD converters. Table 6.25 shows the

comparison of 4-bit Binary to BCD converters using various universal

RPS gates presented in Section 4.6 are substitutes for reversible

Simulation Results and Analysis

191

reversible gates and RPS gates. Fully reversible RPS gate gives minimum

delay, optimum number of gates with least logical complexity and optimum

garbage for the implementation of a fully reversible 4-bit binary to BCD

converter. The use of partially reversible RPS gate makes circuit partially

reversible but decreases the logical complexity further compared to its fully

reversible gate.

Table 6.25: Comparison of Reversible 4-Bit Binary to BCD Converters

Type of gate
Number of Logical

1 Gates level garbag Complexitys e ‘
Any gate

(One
; possible

implementat
i O11)

i

NG-4
HNG

1

‘ 5 4 13a+l0B+l25 6
FRG is 5 9 1 16u+32B+85

HNG 1 5 P 5 8 25a+l0B
l

Fully
Reversible

RPS g
l I NIL 8a+10B+35

Partially
l Reversible
" i§Ps

l 1 NIL 7u+9B+35

(1 = A two input XOR gate calculation B= A two input AND gate calculation 5 = A NOT calculation

Comparative analysis of BCD adders implemented using fully and

partially reversible RPS gates, HNG gates and HNG-RPS combination is done

for garbage count, number of gates, delay and logical complexity. Similar

analysis is done on reversible implementations of BCD adders in [H.

I Chapter 6

192

Thapliyal, S. Kotiyal and M.B Sn'nivas, 2006] and [M. Haghparast and K

Navi, 2008], and are tabulated in Table 6.26.

Table 6.26: Comparative Analysis of Reversible BCD Adders for logical complexity

COlT1p*l§i*C__CiI‘C11li 2 j Delay of

No: of No: of Decimal Cout Sum for i

- - <><’p

Delay of BC D l

Reversible BCD Adders _ gates garbage foran N-digit an N-digit ;
adder _ ___ adder '

Logical complexity

_.__ _,_____fil_

BCD Adder using TSG [H. ‘
l Thapliyal, S. Kotiyal and 5
; M.B Srinivas, 20061 Zi (fanout>l) 1
l

V

l

TSG-8
NG-3

Total-l 1
22 7N 7N+3

54a+3O a+33 5

BC D Adder using TSG [H.

E Thapliyal, S. Kotiyal and A
? M . B Srinivas,2006]

(l‘an0ut= l)

TSG-8
NG-3
FG-5

Total-16

22 9N 9N +4
59<1+30 B+33 as

l BC D Adder using HNG [1
l M. Haghparast and K.
e Navi, Z008] (fanout=l) ;

_.|__

HN FG-l
HNG-8
NO-2
FG-2
TG-l

Total-14

22 9N 9N+4 49a+2lB+66

BCD Adder using HNG
gates only (fan0ut=l)

IINC-10 I9

I

l

7N 7N+3 50u+20B

BCD Adder using RPS
gates only (fauout=l)

Fully
Reversible

RPS-9
Total -9

I2 9N 1 9N 72t1+90B+275

BCD Adder using PING
RPS (fan0ut=l)

HNG-4
Fully

Reversible
RPS-1

Total -5 __

SN 5N 28a+18|3+36

A Partial Reversible BCD
' Adder (fanout=l)

I Eta! -5 LL %
IING-4
Partially

Reversible
RPS-1

8 SN 5 N

i

27u+l7B+36

calculation

l

01 = A two input XOR gate calculation, B = A two input AND gate calculation, 6 = A NOT

Simulation Results andAnalysis

193

The implementations using combination of HNG-RPS gates give a

reduction of 63% in garbage count compared to the implementation [H.

Thapliyal, S. Kotiyal and M.B Srinivas, 2006] and [M. Haghparast and K.

Navi, 2008] the reduction factor in garbage count is 63%.

Comparison in number of gates gives a reduction of 68% for [H.

Thapliyal, S. Kotiyal and M.B Srinivas, 2006], and 64% for [M. Haghparast

and K. Navi, 2008] respectively. BCD adder implementation using only RPS

gates makes use of 9 RPS gates with 12 garbage outputs. This implementation

gives a reduction of 10% in number of gates and 36% for garbage count when

compared to the implementation using HNG gates only. It is shown that the

reversible BCD adders presented have lower hardware complexity and it is

much better and optimized in terms of number of reversible gates, garbage

count and delay when compared with the existing counterparts. The logic

designs are simulated in VHDL using the logic synthesis tool Leonardo

Spectrum from Mentor Graphics Corporation.

Different implementations for the reversible (7, 4) hamming error

coding and detection circuits are also presented. Table 6.27 shows the

comparisons between different implementations of hamming code generation

and detection circuits in terms of number of gates, garbage outputs and levels.

It is seen that the design using 4 >< 4 HCG is highly optimized in terms of

number of reversible gates and/or garbage outputs. The approach using

PPHCG also provides a way of incorporating fault tolerance into reversible

circuits without much extra design effort and with modest hardware overhead.

7 Chapter 6

194

Table 6.27: Comparison of Reversible Hamming Code Generation and Detection

Circuitsi ll’ 6 e i" 6 "1 " *
A No. of No. of N 0. of

Reversible 7-bit Hamming Code circuit reversible Garbage levels
4 gates ‘ outputs 4_ _ 7 V 7* 7 ,. __ill

HC generator using HCG and PG i 4 NIL \ 2_ _ in it, , ,, i V ,, , ,HC generator using FZG and PG 6 NIL
Parity preserving HC Generator using l ifPPHC gate 5 5 2

Parity preserving HC Generator using F 2G p A 4
HC error detector using HCG and PG 4 4 4 G i G *2 G lls I]

Parity preserving HC error detector using 1 lF2G 5 6 4 3__ _ 6 _ 6 6 H I 1
6.5 Logic synthesis simulation using Multiplexers

An exhaustive branching technique to obtain reduced hardware and/or

delay for synthesizing logic functions using multiplexer universal logic

modules is presented in Chapter 5. The technique is demonstrated using the

following examples.

Example l:

Implementation of the 4-variable function, F = Z (4, 7, 9, l0, l2, l3, l4, l5)

Step l: mintem1s=(4,7,9,l0,l2,l3,l4,l5), n=4, L=l, M=1.

Step 2: Form a 4 bit binary minterm table as shown in Table 6.28.

Simulation Results and Analysis G 1 G G 1

195

Table 6.28: 4-bit binary minterm table

i X4 X1 X2 X1

O 0

-— -— -—- -1 -- »- O Q

;——- C @ —~ ® ;

-— C) '—- £3 O '—- -—

l

Here, n = 4 and L = l. S0, n — (L — 1) 5 2 is not satisfied.

Step 3: Let i I 4. For x4 = 1, x¢= 6 which is neither O nor 2"'L (=8).

For x4 = 0, xc =2 which is neither 0 nor 2“'L (=8).

Similarly no other variable satisfies the conditions.

Step 4: Consider X2 . Then, Kc: 4 which is 2"'L‘l (=4).

But none of the remaining variables are constant for x;_ Checking the same

conditions for other variables it is found that none of the variables satisfies the

conditions.

Step 5: L=2, M=2. Consider x3_

The reduced minterm table for x3 = 0 is given in Table 6.29 and for X3 = 1 in

Table 6.30 respectively.

Table 6.29: The reduced minterm table for x3 = 0

X4 X2 T X|

1 1 0

Chapterfi

196

Table 6.30: The reduced minterm table for X3 = 1

X4 X2 X1

-—-'-<D<Dv—~<D

'—*<D*—'@*—‘@

l

Here, none of the minterm tables corresponds to the condition (i). So try for

another variable. No other variable satisfies the conditions.

Step 6: Therefore, consider (X2 (-3 xi), The reduced minterm table for

(X2®X1):1 is given in Table 6.31 and for (x;®x1)=0 is given in Table 6.32

respectively.

Table 6.31: The reduced minterm table for (x2 G) x1) = 1

X4 X3

p-A,-lptnpta

p-aim @5@

_
This table reduces to x4_ for a 2 variable truth table with x4 and X3 as variables.

Table 6.32: The reduced minterm table for (x2 ® x1) = 0

X4 X3. i _

---00
|-nl|1l|1l|-I

This table reduces to X3. for a 2 variable truth table with x4 and X3 as variables.

Since all conditions are satisfied, tenninate.

Simulation Results and Analysis T TM

197

The implementation has only 2 modules in 2 levels, as shown in the

Figure 6.20, while in the tree implementation [A.E.A. Almaini, J .F . Miller and

L Xu, 1992], the synthesized network will have minimum of 3 modules in 2

levels as in Figure 6.21.

X3 0 Fat
X2 O

X:
X1

Figure 6.20: Exhaustive branched network implementation for

F =Z (4, 7, 9, 10, 12, 13, 14, 15)

X3 0
OX4 1 F
1

X2

T1

X4
X3 1

X2

Figure 6.21: Tree implementation for
F =Z(4,7,9,10,12,13,14,15)

It is noted that there is a reduction in number of modules which in turn

reduces the area.

9 J Chapter;

198

Example 2:

The implementation of a 4-variable function, F = Z (3, 5, 7, 9, 11, 15) has 3

modules using only 2 levels in this approach as shown in Figure 6.22, while

the tree implementation [A.E.A. Almaini, J .F . Miller and L Xu, 1992] requires

3 modules in 3 levels as shown in Figure 6.23.

0 L 0 0
2:2 1 X1 1 F

X1

X3 _O

X; 1

X4

Figure 6.22: Exhaustive branched network implementation for

F=Z(3, 5, 7, 9, 11, 15)

U 0X11 0 0 1 F>1, 1 1 1
X3 X2 X1

Figure 6.23: Tree implementation for
F =Z(3,5,7,9, 11,15)

Simulation Results and Analysis

l99

Example 3:

The implementation of the 5-variable function, F = Z (3, 7, 8, 15, 19, 23, 24,

26, 27, 31) is given in Figure 6.24.

The delivered network has only 4 modules in 2 levels, whereas the tree

implementation requires more levels using at least 5 modules. One possible

implementation is shown in Figure 6.25. This example clearly indicates the

reduction in delay and hardware for a 5-variable function using the exhaustive

branching technique.

0-0
XI 1 _ 1_lx2 I

I
/<5 1

iii .__.i-._l

Nw_

l--\

X_____-"
4

Figure 6.24: Exhaustive branched network implementation for
F = Z(3, 7, 8, 15, 19, 23, 24, 26, 27, 31)

Xi :10 '0 -0
1 1 .0 J ‘JX 0 1:X3 4 I

Kl 0 - 0 X2
X5 .1 xi .1

x4 X3
Figure 6.25: Tree implementation for

F = Z(3, 7, 8, 15, 19, 23,24, 26, 27, 31)

T 2 Chapter 6

200

Table 6.33 shows the reduction in delay and/or hardware for certain

functions. The reduction in number of modules required will lead to reduced

power consumption.

Table 6.33: Comparison in terms of delay and hardware for standard
implementation, tree implementation and exhaustive branched network

implementation

Standard Tree Exhaustive
1 Functions , Implementation 1 Implementation Branched

Implementation ;D / M D / M D / M
F=Z(l,2,4,7) *3/7 H "2/3 T D 2i/2

I

I

l 1==Z(1,z,3,5,6,7, 4/ 15 3/4 l 2 / 4
9,10,11,15) “
F=Z(4,7,9,10, 4/ 15 2 / 3 2 / 2
12,13,14,15)

I r=g(3,5,7,9, 4 .1 15 3 /3"” 2 .1 3 1
11,15)

i r=§(3,7,s,15,19, 5 / 31 3/5 2/4
i 23,24,26,27,31)

D /' M — Delay (number of levels) / Number of multiplexers

An algorithm for the synthesis of delay reduced multiplexer network is

presented. By suitable selection of variables or functions as control inputs, the

number of modules and/or delay is reduced. The reduction in number of

modules results in reduced power consumption of the synthesized network.

This technique can be used to design a BCD digit multiplier for a more regular

implementation using multiplexers only.

Simulation Results and Analysis

201

6.6 Summary

A DFP MAC unit involves design of efficient DFP multiplier units.

The speed of fixed point decimal multiplier in decimal DFP unit is increased

by using DDDM. The latency for the multiplication of two n digit BCD

operands is [(n/ 2)+llcycles, and a new multiplication can begin every n/2

cycle. 34-digits multipliers are designed as a partitioned combination of l7

digits multipliers as well. It is seen that for the partitioned design, the speed is

increased by 1.26 times compared to the iterative DDDM design. The area and

delay analysis on different families of Xilinx, Altera, Actel and Quick logic

FPGAs for DDDM reveals that efficient mapping is achieved when Xilinx

FPGA devices are used.

Improved BCD digit multipliers for partial product generation are used

in the iterative DFXP multiplier that employs novel RPS algorithm. The BCD

digit multiplier design attains 8% savings in area and l8% savings in delay.

The design leads to a more regular design, and does not require special

registers for storing multiples of multiplicand. The design for a BCD digit

decimal multiplier is extended to a Hex/Decimal digit multiplier. The

comparison shows that the new design of Hex/Decimal multiplier has a

reduction in delay of l6.52% with an extra hardware of 17.24%.

In the approach using RPS algorithm, partial products generated using

BCD digit multipliers are accumulated from the least significand end in a

column manner. The latency for the multiplication of two n-digit BCD

operands is (n+1) cycles, and a new multiplication can begin every n cycle.

The simulation results show that the RPS design gives a reduction in delay

compared to the single digit implementation for 7-digit >< 7-digit DFXP

Chapter6

202

multiplier. The iterative DFP multipliers are designed using floating point

extensions of the iterative DFxP multiplier using DDDM and RPS algorithm.

When multiplying two DFP numbers using RPS algorithm with n digit

significands, the latency is (n+2) cycles, and the initiation interval is (n+1)

cycles. The DFP design using DDDM for DFxP multiplication requires lesser

number of clock cycles for DFP multiplication compared to RPS approach.

The latency for the multiplication of DFP numbers with n-digit significands

using DDDM is l'(n/ 2) + Zlcycles, and a new multiplication can begin every

|_(n/2)+l_|cycle. These DFP multiplier designs are synthesized using

Leonardo Spectrum from Mentor Graphics Corporation with ASIC Library.

ln the modified parallel DFXP multiplier design partial product

accumulation is done using both row and column accumulations. The column

accumulation approach gives a decrease of area and delay over the row

accumulation. Parallel decimal multipliers for 7-di git, 16-di git and 34-di git are

simulated and the results are tabulated. A 32-bit DFP parallel multiplier and

compared with the iterative designs using DDDM and that using RPS

algorithm.

The fused multiply-add unit uses parallel and iterative multipliers and a

floating point adder unit. The DFP adder is implemented using ripple carry

BCD adders, Kogge-Stone adders and ‘reduced delay BCD adders’.

Comparison of DFP adders shows that the ‘reduced delay adder’ is the fastest.

The improved reversible BCD adder implementations presented are

compared with existing designs in literature. The performance comparison of

carry select and hybrid BCD adders with conventional BCD adder is also

done. When the number of digits is more than 25 the hybrid BCD adder can

operate 5 times faster than conventional decimal adder using classical logic

Simulation Results and Analysis it P

203

gates. But for a reversible logic implementation using FRG gates the speed up

factor of hybrid adder increases above 10 when the number of decimal digits

is more than 25. It is shown that the optimum block size for a fixed block size

hybrid BCD adder is given as mOpt= where N is the number of digits.

Toffoli gate implementations are superior in terms of quantum cost, garbage

count and gate count, compared to Fredkin gate implementations and are also

suitable for implementations of Reed Muller expressions. The designs were

verified using Reversible Circuit (RC) viewer/ analyzer.

A new reversible 4-bit Binary to BCD converter circuit that requires

only one gate without garbage output is designed using a novel reversible 4><4

RPS gate or a partially reversible RPS gate. Six different implementations oi

the reversible (7, 4) Hamming code generation and error detection circuits are

also presented. The new exhaustive branching algorithm to obtain reduced

hardware and/or delay for logic functions using multiplexers can handle any

number of variables for a completely specified logic function. A VLSI design

using same modular building blocks can decrease system design and

manufacturing cost for MAC implementation.

Chapter 6

\

Chapter 7

Conclusion and Future Work

' ii’ ‘.

. Ejjicient designs are developed for high performance decimal floating point

ll/[AC unit as part of this research. The modified reversible BCD adder

implementations presented are highly optimized in terms of number of

reversible gates and garbage outputs. The new exhaustive branching

algorithm obtains reduced hardware and/or delay for logic implementation

using multiplexers for a VLSI design. The simulation results and the

performance analysis show that the designs presented in this research are

suitable for improving the performance of architectures for decimal

computations. Hence these design techniques and circuits are dependable

alternatives that could be used for high performance decimal processors.

Suggestions for further work in this _/ield are also presented.

207

7.1 Conclusion

Efficient design methods and architectures are developed for a high

speed Decimal Floating Point (DFP) Multiply Accumulate
(MAC) unit as part of this research. The decimal MAC unit has a multiplier

fused with an adder module. The multiplier has to be an efficient, high speed

multiplier for the MAC unit to achieve high performance. This research

presents two novel techniques for iterative DFP multiplication. The first

approach has a Decimal Fixed Point (DFxP) multiplier using a novel Double

Digit Decimal Multiplication (DDDM) technique that performs two digit

multiplications simultaneously. The speed to complete an n-digit >< n-digit

multiplication is almost doubled compared to a single digit design at an

expense of 50% increase in area for this design. The design was validated

using lengths of 7-digit, l6-digit, and 34-digit multipliers that are required

correspondingly for decimal32, decimal64, and decimall28 formats of DFP

multiplications. In addition, 34-digit multiplier is designed as a partitioned

combination of l7-digit multipliers. For the partitioned implementation, the

speed is increased compared to the iterative DDDM implementation.

The second iterative approach does DFxP multiplication using a novel

RPS algorithm. In this approach, partial products generated using BCD digit

multipliers are accumulated from the least significand end in a column

manner. This design leads to a more regular implementation, and does not

require special registers for storing multiples of multiplicand. The simulation

results show that the RPS design gives a reduction in delay compared to the

single digit implementation for 7-digit >< 7-digit DFXP multiplier. This

Chapter 7

208

iterative approach is suitable for high speed DFP multiplication since rounding

can be initiated during the DFxP process.

A novel design for BCD digit multiplication that reduces the critical

path delay and area is also presented in this research. The design for a BCD

digit decimal multiplier is extended to a Hex/Decimal digit multiplier that

gives either a decimal output or a hex output depending on the requirement.

The comparison shows that the new design of Hex/Decimal multiplier has a

reduction in delay compared to the existing design.

The iterative DFP multipliers using floating point extensions of the

newly designed iterative DFxP multipliers use DDDM technique and RPS

algorithm. A delay reduction is achieved using RPS algorithm because of the

initiation of the rounding process during the DFxP multiplication. This

parallelism decreases the worst case time period. The design using DDDM is

more regular and occupies lesser area, but has more delay compared to the

design using RPS algorithm.

The research also presents parallel DFP multiplier using modified

parallel DFxP multiplier for significand digit multiplication. Parallel designs

are adopted when latency and throughput are considered more important than

area. The parallel DFP multiplier includes the floating point extensions of the

parallel DFxP multiplier design. ln this modified parallel DFxP multiplier

design partial product accumulation is done using both row and column

accumulations. The column accumulation approach gives a decrease of area

and delay over the row accumulation.

Floating point MAC unit is designed for fused multiply-add operation

with a single final rounding after add operation. The fused multiply-add unit

uses parallel or iterative multipliers and a floating point adder unit. The DFP

Conclusion and Future Work W

209

adder is designed using ripple carry BCD adders, Kogge-Stone adders and

‘reduced delay BCD adders’. Comparison of DFP adders shows that the

‘reduced delay adder’ achieves the highest speed.

ln recent years, reversible logic has emerged as one of the most

important approaches for power optimization. So, reversible logic is in

demand in high-speed power aware circuits. The modified reversible BCD

adder designs presented in this research are highly optimized in tenns of

number of reversible gates and garbage outputs. The comparison with existing

designs in literature shows that the modified designs use least number of gates,

produce least number of garbage outputs, and give least levels of delay. Speed

of reversible design for carry select and hybrid BCD adders are compared with

a conventional BCD adder. The results reveal that the hybrid BCD adder

attains spccd up over other two designs, for any input length in reversible

implementation. This research also presents a reversible fault tolerant design

using Fredkin gates (FRG) for conventional BCD adders, adders for QAD, and

carry select BCD adders for multi-digit BCD addition. Toffoli Gate (TG)

designs for multi-digit addition are also presented. The implementations using

Toffoli gates give superior results in terms of quantum cost, garbage count and

gate count, compared to Fredkin gate implementations.

A new reversible 4-bit Binary to BCD converter circuit that requires

only one gate without garbage output is designed using a novel reversible 4><4

RPS gate as part of this research. A reversible BCD adder is also designed

using this RPS gate that replaces the ‘6-correction circuit’ and the ‘final 4-bit

binary adder’. In addition, a new partially reversible RPS gate that satisfies the

reversibility criteria for BCD inputs is designed. This gate can further reduce

the number of logical computations involved in BCD arithmetic reversible

Chapter 7

210

circuits. The reversible implementations of BCD adder using combination of

HNG-RPS (fully and partially) gates and using HNG gates are also presented

in this research. A reduction in logical complexity is achieved by HNG-RPS

design compared to the existing reversible BCD adder designs. It is also seen

that the combination of HNG-RPS gates makes the BCD adder design more

compact and reduces the number of garbage to a near optimal value.

Low power circuits designed in reversible logic for (7, 4) Hamming

code generation and error detection circuits are presented in this research. The

logic gates of a classical logic implementation of Hamming code generation

and error detection circuits are replaced with reversible equivalents. Among

these designs, the one using new 4 >< 4 HCG is highly optimized in terms of

number of reversible gates and/or garbage outputs. The use of new parity

preserving HCG (PPHCG) gate provides a way of incorporating fault

tolerance into reversible circuits with modest hardware overhead. Parity

preservation by itself proves useful for ensuring the robustness of reversible

logic circuits in their various application domains.

The new exhaustive branching algorithm suggested in this research

obtains reduced hardware and/or delay for logic functions using multiplexers for

a VLSl implementation. Exact functions are realized since the number of

variables is also given as an input.

The simulation results and the performance analysis show that the

design approaches and the architectures presented in this research are suitable

for improving the performance of decimal computations. Hence these design

techniques dependable altematives that could be used for high performance

decimal processors.

Conclusion and Future Work

211

7.2 Suggestions for Future Work
Suggestions for further investigations in the field of architectures for

decimal computations in continuation with the present work are listed below.

0 The designs presented use BCD encoding for decimal representation

which is the simplest and most popular code for decimal data.

Altematively, other decimal representations such as BCD Excess-3

(BCD XS3) representation may be used which may possibly allow

more efficient decimal addition/subtraction.

° The use of specialized encodings such as 4221, 5211, 5421 codes that

may improve the speed of computation in a decimal ALU can also be

explored. If these specialized codes are suitable only for certain

computations in the decimal ALU then the use of efficient intermediate

encodings for processing decimal data may also be researched.

° Signed digit encodings that may reduce the number of partial product

accumulations may be investigated. This may increase the speed of

computations.

° The development of decimal/binary processor using these new designs

may be explored.

° Future research may focus on incorporating more pipelining to

improve the speed of multipliers and fused multiply-add computations.

° Custom layout design that takes advantage of high-speed and low

power circuit techniques may be developed.

¢ The reversible circuits presented in this research may be used to

develop a decimal ALU for a reversible CPU.

0 Further investigation into determining reversible implementations

using logic synthesis methods [A. Agrawal and N. K. Jha, 2004],

Chapter 7

[Dmitri Maslov, 2003], [P. Gupta, A. Agrawal, N.K. Jha, 2006], [G.

Yang er al., 2006] may be studied.

Design modifications to reduce the total worst case delay may be

investigated by varying the size of carry look-ahead blocks in a hybrid

reversible adder.

The investigation may focus on architectures for multipliers,

comparators, etc using the fully and partially reversible RPS gates.

Additionally, it is noted that there is a lack of simulation tools that

support reversible gates, and this is most definitely an area worthy of

attention.

The exhaustive branching algorithm may be extended for the synthesis

of incompletely specified functions. Research may be done for an

altemative deign of logic functions using different size multiplexers.

Conclusion and Future Work

213

REFERENCES

1.A. Agrawal and N. K. Jha, “Synthesis of reversible logic,” in Proc. Design

Automation & Test in Europe Conf., Feb. 2004, pp. 21 384-21 385.

2.A.H. Aguirre and C.A.C. Coello “Using genetic programming and

multiplexers for the synthesis of logic circuits”, Engineering Optimization,

Vol. 36, No. 4, August 2004, pp. 491-511

3.A.H. Aguirre, C.A.C. Coello and B.P. Buckles, “A genetic programming

approach to logic function synthesis by means of multiplexers”,

Proceedings of First NASA/DOD workshop on Evolvable Hardware, IEEE

Computer Society Press, Los Alanitos, California, July 1999, pp. 46-53

4.A.E.A. Almaini, J.F. Miller and L Xu, “Automated synthesis of digital

multiplexer networks”, IEE Proceedings-E, Vol. 139, No. 4, July 1992, pp.

329-334.

5.G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, “Architecture of the IBM

System/360," IBM Journal of Research and Development, vol. 8, April

1964, pp. 87-101

6.Arazi, B., and Naccache, D.: ‘Binary-to-decimal conversion based on the

282 l by 5’, Electron. Lett., I992, 28, (23), pp. 2151-2152

7.]. V. Atanasoff, “Advent of Electronic Digital Computing," IEEE Annals of

the History of Computing, vol. 6, no. 3, 1984, pp. 229-282

8.Md. M. H. Azad Khan, “Design of Full-adder With Reversible Gates”,

Intemational Conference on Computer and Information Technology,

Bangladesh, 2002, pp. 515-519

References

214

9.H. Md. H. Babu , A. R. Chowdhury, “Design of a compact reversible binary

coded decimal adder circuit” Joumal of Systems Architecture 52, 2006,

pp. 272-282

l0.H. Md. H. Babu and A. R. Chowdhury, "Design of a Reversible Binary

Coded Decimal Adder by Using Reversible 4-bit Parallel Adder”, VLSI

Design 2005, Kolkata, India, Jan 2005, pp 255-260

ll.H. Md. H Babu, Md. Rafiqul Islam, A. R. Chowdhury, S. M. Ali

Chowdhury, “Synthesis of Full-adder Circuit Using Reversible Logic”,

17th International Conference on VLSI design 2004, India, 2004, pp. 757

760.

l2.H. Md. H.Babu, Md. Rafiqul Islam, A. R. Chowdhury, S. M. Ali.

Chowdhury, “On the Realization of Reversible Full-Adder Circuit”,

International Conference on Computer and Infonnation Technology,

Bangladesh, 2003, Vol. 2, pp. 880-883.

l3.H. Md. H. Babu, Md. Rafiqul Islam, A. R. Chowdhury and S. M. Ali

Chowdhury, “Reversible Logic Synthesis for Minimization of Fulladder

Circuit”, IEEE Conference on Digital System Design 2003, Euro

Micro’O3, Turkey, 2003, pp. 50-54

l4.F. Batista, “Decimal Data Type." World Wide Web.
http://www.python.org/dev/peps/pep-0327, version 62268.

l5.A.A. Bayrakci, A. Akkas “Reduced Delay BCD Adder” IEEE International

Conf. on. Application -specific Systems, Architectures and Processors,

ASAP, 2007, pp. 266-271

l6.Bennett, C., “Logical Reversibility of Computation,” IBM Joumal of

Research and Development, l7, 1973, 525-532.

References

215

l7.G. Bohlender and T. Teufel, “BAP-SC: A Decimal Floating-Point

Processor for Optimal Arithmetic", Computer Arithmetic: Scientific

Computation and Programming Languages, Stuttgart, Germany: B. G.

Teubner, 1987, pp. 31-58

l8.M. Blair, S. Obenski, and P. Bridickas, “Patriot Missile Defense: Software

Problem Led to System Failure at Dhahran, Saudi Arabia," Tech. Rep.

GAO/IMTEC-92-26, United States General Accounting Office,

Washington, D.C. 20548, February I992

19.]. J. Bradley, B. L. Stoffers, T. R. S. Jr., and M. A. Widen, “Simplified

Decimal Multiplication by Stripping Leading Zeros,” U.S. Patent,

#4,6l5,0l6, Jun 1986

20.J.W.Bruce, M.A.Thomton, L.Shi\/akumariah, P.S.Kokate, X.Li, "Efficient

Adder Circuits Based on a Conservative Logic Gate", Proceedings of the

IEEE Computer Society Annual Symposium on VLSI, PA, USA, April

2002, pp 83-88

2l.F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and S. R.

Carlough, “The IBM Z900 Decimal Arithmetic Unit,” in Asilomar

Conference on Signals, Systems, and Computers, vol. 2, November 2001,

pp. 1335- 1339

22.R. Campbell, “Mal<in' Numbers: Howard Aiken and the Computer, ch.

“Aiken's First Machine: the IBM ASCC/Harvard Mark I", Cambridge,

MA: MIT Press, 1999, pp. 31-63

23.E. O. Carbames, “IBM System Z10 Enterprise Class Mainframe Server

Features and Benefits." World Wide Web, February 2008.

http://WWW.ibm.com/systems/Z/hardware/z1Oec/features.html.

References

216

24.Charles Tsen, Sonia Gonzalez-Navarro, Michael Schulte, Brian Hickmann,

Katherine Compton, "A Combined Decimal and Binary Floating-Point

Multiplier," 20th IEEE Intemational Conference on Application-specific

Systems, Architectures and Processors, 2009, pp.8-15

25.M. S. Cohen, T. E. Hull, and V. C. Hamacher, \CADAC: A Controlled

Precision Decimal Arithmetic Unit," IEEE Transactions on Computers,

vol. C-32, April 1983, pp. 370-377

26.C. Cole, “The Remington Rand Univac LARC." World Wide Web.

http://www.computerhistory.info/Page4.dir/pages/LARC.dir/LARC.Cole.h

tml.

27.]. Copeland, “Colossus: lts Origins and Originators," IEEE Annals of the

History of Computing, vol. 26, no. 4, , 2004, pp. 38-45

28.M. F. Cowlishaw, “Densely Packed Decimal Encoding", IEE Proceedings

Computers and Digital Techniques, vol. 149, May 2002, pp. 102-104

29.M. F. Cowlishaw, E. M. Schwarz, R. M. Smith, and C. F. Webb, “A

Decimal Floating-Point Specification", 15th IEEE Symposium on

Computer Arithmetic, IEEE Computer Society, July 2001, pp. 147-154

30.M. F. Cowlishaw, “Decimal Arithmetic FAQ." World Wide Web.

http://speleotrove.com/decimal/decifaq1 .html.

31.Dadda, L. Nannarelli, A. Politec. di Milano (2008)“A Variant of a Radix

10 Combinational Multiplier”, IEEE Intemational Symposium on Circuits

and Systems, ISCAS May 2008, pp. 3370 - 3373

32.L. Dadda, ‘Multioperand Parallel Decimal Adder:A Mixed Binary and

BCD Approach’, IEEE Transactions on Computers, Vol. 56, No. 9, Sept

2007

References

l

,

l.
§

“An-1;-1~_,.-_ ._._-_—.n in

1

i

i
I
I

l

i

'1

!

l

217

33.Dadda, L.: ‘Some schemes for parallel multipliers’, Alta Frequenza, 34,

l965,pp.349—356

34.Decimal Arithmetic FAQ, 2009.04.02 IBM Corporation,
http://speleotrove.com/decimal/decifaq1 .html

35 .Dmitri Maslov, "Reversible Logic Synthesis”, PhD Dissertation, Computer

Science Department, University of New Brunswick, Canada, Oct 2003

36.A. Y. Duale, M. H. Decker, H.-G. Zipperer, M. Aharoni, and T. J. Bohizic.

Decimal floating-point in Z9: An implementation and testing perspective.

IBM Joumal of Research and Development, 5l(l/2), 2007, pp. 217-228

37.R. Eissa, A. Mohamed, R. Samy, T. Eldeeb, Y. Farouk, M. Elkhouly, and

H. Fahmy, “A Decimal Fully Parallel and Pipelined Floating Point

Multiplier", Asilomar Conference on Signals, Systems, and Computers,

2008

38.L. Eisen, J. W. W. lll, H.-W. Tast, N. Mding, J. Leenstra, S. M. Mueller, C.

Jacobi, J. Preiss, E. M. Schwarz, and S. R. Carlough, \lBM POWER6

Accelerators: VMX and DFU," IBM Journal of Research and

Development, vol. 51, , November 2007, pp. 663-684

39.M. A. Erle, B. J. Hickmann and M. J. Schulte, “Decimal Floating-Point

Multiplication”, IEEE Transactions on Computers, Volume 58 , Issue 7,

July 2009, pp. 902-916, ISSN:0018-9340

40.M. A. Erle, “Algorithms and Hardware designs for Decimal
Multiplication”, Ph. D Thesis, Nov 2008

4l.M. A. Erle, M. J. Schulte, and B. J. Hickmann, Decimal Floating-Point

Multiplication Via Carry—Save Addition," in 18th IEEE Symposium on

Computer Arithmetic, pp. 46-55, IEEE Computer Society, June 2007

References

218

42.Erle, M.A. Schwarz, E.M. Schulte, M.J, “Decimal multiplication with

efficient partial product generation”, 17"‘ IEEE Symposium on Computer

Arithmetic, 2005, ARITH-17 2005, June 2005, pp. 21- 28

43.M. A. Erle and M. J. Schulte, “Decimal Multiplication Via Carry-Save

Addition,” IEEE 14th International Conference on Application-specific

Systems, Architectures and Processors, June 2003, pp. 348-358

44.ESA/390 Principles of Operation, ch. 8: Decimal Arithmetic Instructions.

IBM, 2001.

45.H. A. H. Fahmy, R. Raafat, A. M. Abdel-Majeed, R. Samy, Tarek ElDeeb,

Y. Farouk, "Energy and Delay Improvement via Decimal Floating Point

Units," Proceedings on19th IEEE Symposium on Computer Arithmetic,

2009, pp. 221-224

46.R. Feynman, “Quantum Mechanical Computers”, Optical News, 1985, pp.

11-20

47.Floating-Point Working Group, ANSI/IEEE Std 854-1987: IEEE Standard

for Radix-Independent Floating-Point Arithmetic. New York: The Institute

of Electrical and Electronics Engineers, October 1987. 16 pages.

48.Floating-Point Working Group, ANSI/IEEE Std 754-1985: IEEE Standard

for Binary Floating-Point Arithmetic. New York: The lnstitute of

Electrical and Electronics Engineers, August 1985. 17 pages.

49.Free Software Foundation, “GNU C Compiler (GCC) 4.3 Release. "World

Wide Web. http://gcc.gnu.org/gcc-4.3.

50.E. Fredkin, T. Toffoli, Conservative logic, Intemational Joumal of

Theoretical Physics 21, 1982, pp. 219-253

51.A. Gough (Maintainer), “PERL BigNum Library." World Wide Web.

http://dev.perl.org/per16/pdd/pdd14 bignum.html, version 1.5

References

219

52.H. H. Goldstine and A. Goldstine, “The Electronic Numerical Integrator

and Computer (EN1AC)”, IEEE Annuals of the History of Computing, vol.

18, no. 1, 1996, pp. 10-16

53.R.K. Gorai and A. Pal, “Automated synthesis of combinational circuits by

cascade networks of multiplexers”, IEE Proceedings-E, Vol. 137. No. 2,

March 1990, pp. 164-170

54. P. Gupta, A. Agrawal, N.K. Jha, “An algorithm for synthesis of reversible

logic circuits”, IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems”, Volume: 25, Issue 1 1, Nov. 2006, pp.

2317-2330

55.M. Haghparast and K. Navi, “A Novel Reversible BCD Adder For

Nanotechnology Based Systems”, American Journal of Applied Sciences 5

(3): 2008, pp. 282-288, ISSN 1546-9239

56.R. Head, “Univac: a Philadelphia Story", IEEE Annals of the History of

Computing, vol. 23, no. 3, 2001, pp. 60-63

57.Hickmann, B. Krioukov, A. Schulte, M. Erle, M. A, “Parallel IEEE

P754 decimal floating-point multiplier”, Proceedings of the IEEE

International Conference on Computer Design 2007, October 2007, pp.

296-303

58.R. L. Hoffman and T. L. Schardt, “Packed Decimal Multiply Algorithm,”

IBM Technical Disclosure Bulletin, vol. 18, October 1975, pp. 1562-1563

59.T. E. Hull, M. S. Cohen, and C. B. Hall, “Specifications for a Variable

Precision Arithmetic Coprocessor", 10th Symposium on Computer

Arithmetic, IEEE, IEEE Computer Society, May 1991, pp. 127-131

60.IA-32 Intel Architecture Software Developer's Manual, vol. 2: Instruction

Set Reference, ch. 3: Instruction Set Reference. Intel, 2001

References

220

61.lEEE Working Group of the Microprocessor Standards Subcommittee,

IEEE Standard for Floating-Point Arithmetic. New York: The Institute of

Electrical and Electronics Engineers, 2008

62.lEEE 754-2008 floating point standards,
http://www.rapidsharemegaupload.com/ieee-754-2008-rapids.htm

63.I. P. S. of Japan, “Historic Computers in Japan: [NEC] NEAC 2201."

www.http://museum.ipsj.or.jp/en/computer/dawn/0018.html.

64.Jaberipur, G.; Kaivani, A, “Binary-coded decimal digit multipliers”,

Computers & Digital Techniques, IET Volume 1, Issue 4, July 2007, pp.

377 — 381

65.JTC 1/SC 22/W G 4, ISO/IEC l989: Information technology-Programming

languages - COBOL. New York: American National Standards Institute,

first ed., December 2002

66.G. Kane, PA-RISC 2.0 Architecture, ch. 7: Instruction Descriptions.

Prentice Hall, 1996

67.R. D. Kenney and M. J. Schulte, ‘High-Speed Multi-operand Decimal

Adders’ IEEE Transactions on Computers, vol. 54, No. 8, Aug 2005, pp.

953-963

68.R. D. Kenney, M. J. Schulte and M. A. Erle, “A High-Frequency Decimal

Multiplier,” IEEE 14th International IEEE international conference on

Computer Design (ICCD’04, Oct 2004), pp. 22-29

69.D. E. Knuth, “The IBM 650: An Appreciation from the Field", IEEE

Annals of the history of Computing, vol. 8, no. 1, 1986, pp. 50-55

70.Kogge, P. & Stone, H. "A Parallel Algorithm for the Efficient Solution of a

General Class of Recurrence Equations". IEEE Transactions on

Computers, 1973, C-22, pp. 783~79l

References

221

71.R. Landauer, “Irreversibility and Heat Generation in the Computational

Process”, IBM Journal of Research Development, 5, 1961, pp. 183-191

72.T. Lang and A. Nannarelli, “A radix-10 combinational multiplier” 40th

Asilomar Conference on Signals, Systems, and Computers, Oct. 2006, pp.

313-317

73.R. H. Larson, “High Speed Multiply Using Four Input Carry Save Adder,”

IBM Technical Disclosure Bulletin, December 1973, pp. 2053-2054

74.T. Leser and M. Romanelli, “Programming and Coding for ORDVAC",

October 1956. http://www.bitsavers.org/pdf/ordvac/ ORDVAC

programming, Oct56.pdf

75.G. E. Moore, “Cramming More Components onto Integrated Circuits",

Electronics, vol. 38, April 1965, pp. 1 14-1 17

76.Motorola, “Motorola M68000 Family Programmers Reference Manual."

World Wide Web, 1992

http://www.freesca1e.com/files/archives/doc/refmanual/M68000PRM.pdf

77.Nation Master Encyclopedia, “Z1 (Computer)." World Wide Web.

http://www .nationmaster.com/ encyclopedia/ Z 1 -(computer).

78.T. Ohtsuki, Y. Oshima, S. Ishikawa, K. Yabe, and M. Fukuta, “Apparatus

for Decimal Multiplication,” U.S. Patent, #4,677,583, Jun 1987

79.A. Pal, “An algorithm for optimal logic design using multiplexers”, IEEE

Transactions on Computers, Vol. 35, No. 8, August 1986, pp. 755-757

80.B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,

Oxford University Press, 2000.

81 .B. Parhami, “Fault Tolerant Reversible Circuits” Proc. 40th Asilomar Conf.

Signals, Systems, and Computers, Pacific Grove, CA, Oct. 2006.

References

222

82.B. Randell, “From Analytical Engine to Electronic Digital Computer: The

Contributions of Ludgate, Torres, and Bush", IEEE Annals of the History

of Computing, vol. 4, no. 4, 1982, pp. 327-341

83.Rhyne, V.T.: ‘Serial binary-to-decimal and decimal-to-binary conversion‘,

IEEE Trans. Comput., 19, (9), 1970, pp. 808-812

84.M. Schmookler and A. Weinberger, “High Speed Decimal Addition,” IEEE

Trans. Computers, vol. 20, no. 8, Aug. 1971, pp. 862-867

85.Schmookler, M.: ‘High-speed binary-to-decimal conversion’, IEEE Trans.

Comput, 17, (5), 1968, pp. 506-508

86.E. M. Schwarz, J. S. Kapernick, and M. F. Cowlishaw, “Decimal Floating

Point Support on the IBM System z10 Processor," IBM Journal of

Research and Development, vol. 53, no. (1), 2009.

87.B. Shirazi, D.Y. Yun, and C.N. Zhang, “RBCD: Redundant Binary Coded

Decimal Adder,” IEE Pr0c.—Part E, vol. 136, no. 2, Mar. 1989

88.B. Shirazi, D.Y. Yun, and C.N. Zhang, “VLSI Designs for Redundant

Binary-Coded Decimal Addition,” Proe. Seventh Ann. Int’l Conf.

Computers and Comm., Mar. 1988, pp. 52-56

89.SilMinds, “Decimal Floating Point Arithmetic IP Cores Family." World

Wide Web, 2008. http://www.silminds.com/resources/SilMinds-DFPA-IP

CoresFamily.pdf.

90.N. Stem, “From ENIAC to UNIVAC - An Appraisal of the Eckert

Mauchly Computers. Bedford, MA: Digital Press, 1981.

91.Sun Microsystems, \BigDecimal Java Class." World Wide Web.

http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html.

References

223

92. A. Tsang and M. Olschanowsky, .A Study of DataBase 2 Customer

Queries,. IBM Technical Report TR 03.413, IBM Santa Teresa

Laboratory, San Jose, CA, April 1991.

93.H. Thapliyal, ,H. R. Arabnia, R. Bajpai ,K. K. Shanna, “Partial Reversible

Gates (PRG) for Reversible BCD Arithmetic” Intemational Conference on

Computer Design (CDES'07), Las Vegas, U.S.A, June 2007, pp. 90-91

94.H. Thapliyal, S. Kotiyal and M.B Srinivas, “Novel BCD Adders and their

Reversible Logic Implementation for IEEE 754r Fonnat”, VLSI Design

2006, Hyderabad, India, Jan 4-7, 2006, pp. 387-392

95.H. Thapliyal and M.B Srinivas, “A Novel Reversible TSG Gate and Its

Application for Designing Reversible Carry Look-Ahead and Other Adder

Architectures”, Tenth Asia-Pacific Computer Systems Architecture

Conference, Singapore, Oct 24 - 26, 2005

96.]. Thompson, M. J. Schulte, and N. Karra. “A 64-bit decimal floating-point

adder”, Proceedings of the IEEE Computer Society Annual Symposium on

VLSI, Lafayette, LA, Feb 2004, pp. 297-298

97.1. E. Thornton, “The CDC 6600 Project", IEEE Annals of the History of

Computing, vol. 2, no. 4, 1980, pp. 338-348

98.T. Toffoli., “Reversible Computing”, Tech memo MIT/LCS/TM-151, MIT

Lab for Computer Science, 1980.

99.C. Tsen, S. Gonzalez-Navarro, and M. J. Schulte, “Hardware design of a

binary integer decimal-based floating-point adder”, Proceedings of the

IEEE International Conference on Computer Design, 2007.

l00.Ueda, T.: “Decimal multiplying assembly and multiply module” .U.S.

Patent 5379245, January 1995

References

224

101.A. Vazquez, E. Antelo and P. Montuschi (2007)“A New Family of High

Performance Parallel Decimal Multipliers”, 18"‘ IEEE Symposium on

Computer Architecture, June 2007, pp. 195-204

102.Wa1lace, C.S.: ‘A suggestion for fast multiplier’, IEEE Trans. Electron.

Comput., 13, 1964, pp. 14-17

103. L.K. Wang, M. J. Schulte, J. D. Thompson, and N. Jairam, “Hardware

designs for decimal floating-point addition and related operations”, IEEE

Transactions on Computers, 58(3), March 2009.

104. L.-K.Wang and M. J. Schulte. Decimal floating-point adder and

multifunction unit with injection-based rounding. In Proceedings of the

18Y_ IEEE Symposium on Computer Arithmetic, Montpellier, France,

June 2007.

105. W. B. et al., “Planning a Computer System: Project Stretch” New York:

McGraw-Hill Book Company, 1962. http://ed-thelen.org/comp-hist/lBM

7030-Planning-McJones.pdf.

106. C. F. Webb. IBM 210: The next-generation mainframe microprocessor.

IEEE Micro, 28(2):19.29, March/April 2008.

107. M. R. Williams, “The Origins, Uses, and Fate of the EDVAC", IEEE

Annals ofthe History of Computing, vol. 15, no. 1, 1993, pp. 22-38

108. M. V. Wilkes, “Arithmetic on the EDSAC" IEEE Annals of the History

0fC0mputing, vol. 19, no. 1, 1997, pp. 13-15

109. G. Yang, Fei Xie, Xiaoyu Song, Hung, W.N.N., Perkowski, M.A., “A

constructive Algorithm for Reversible Logic synthesis” IEEE Congress on

Evolutionary Computation, July 2006, pp. 2416- 2421

References

LIST OF PUBLICATIONS OF THE AUTHOR

Book Chapters and,Internatio_n_al Journals:

[1] Rekha K James, K. Poulose Jacob and Sreela Sasi “Reversible Binary Coded

Decimal Adders using Toffoli Gates”, Advances in Computational Algorithms

and Data Analysis, Springer, Netherlands, Book Series - Lecture Notes in

Electrical Engineering, ISSN 1876-1100, Volume 14, Book DOI 10.1007/978

1-4020-8919-0, Copyright 2008 ISBN 978-1-4020-8918-3 (Print) 978-1-4020

8919-0 (Online) DOI 10.1007/978-1-4020-8919-0_9, September, 2008, pp. 117

131

[2] Rekha K James, K. Poulose Jacob and Sreela Sasi, “Fast Reversible Binary Coded

Decimal Adders”, International Journal of Electrical, & Electronics

Engineering (IJEEE), onlinejournal, Vol. 3, No. 4, Fall 2008, pp. 254 — 266

Journal Papers_Communicated:,

[3] Rekha K. James, K. Poulose Jacob, Sreela Sasi, “iterative and Parallel Decimal

Floating Point Multipliers”, communicated to IET Computers and Digital

Techniques, previously published as IEE Proceedings Computers and Digital

Techniques.

[4] Rekha K. James, K. Poulose Jacob, Sreela Sasi, “Design of Compact Reversible

Decimal Adder using RPS Gates”, Communicated to IETE Journal of Research

S List of Publications of the Author

International conferences:

[5] Rekha K. James, K. Poulose Jacob, Sreela Sasi, “High Performance, Low

Latency Double Digit Decimal Multiplier on ASIC and FPGA”,

International Symposium on Innovations in Natural Computing 2009,

Dec l2-13 2009, Cochin, India, In conjunction with World Congress in

Nature and Biologically Inspired Computing (NaBIC2009), pp. 1445-1450

[6] Rekha K. James, K. Poulose Jacob, Sreela Sasi, “Double Digit Decimal Multiplier

on XILINX FPGA”, International Conference on Embedded Systems and

Applications - ES/V09: July 13-16, 2009, USA, pp. 47-53

[7] Rekha K. James, K. Poulose Jacob, Sreela Sasi, “An Alternate Approach to

Enhance Parallel Decimal Multiplier Perfomiance”, Thirteenth IEEE VLSI

Design and Test Symposium, July 8-l O, 2009, Bangalore, India, pp. 86-95

[8] Rekha K. James, K. Poulose Jacob, Sreela Sasi, “Performance Analysis of Double

Digit Decimal Multiplier on Various FPGA Logic Families”, V Southern

Programmable Logic Conference (SPL 2009), Sao Carlos, Brazil, April I-3,

2009, pp. 165-170

[9] Rekha K. James, Shahana T K, K. Poulose Jacob, Sreela Sasi, “Fixed Point

Decimal Multiplication using RPS Algorithm”, 2008 IEEE International

Symposium on Parallel and Distributed Processing with Applications (ISPA

2008), Sydney, Australia, Dec 10 ~12, 2008, ISBN:978-0-7695-3471-8, pp. 343

350

[l0] Rekha K. James, Shahana T K, K. Poulose Jacob, Sreela Sasi, “Decimal

Multiplication using compact BCD Multiplier”, International Conference on

Electronic Design (ICED 2008), IEEE Malaysia Chapter, Penang Malaysia,

Dec1—3,2008, Page(s):l-6, Digital Object Identifier 10.1109/ICED.2008.
4786744

Listiofiljublications of the Author

[11] Rekha K. James, Shahana T K, K. Poulose Jacob, Sreela Sasi, “Quick Addition

of Decimals using Reversible Conservative Logic”, 15th International

Conference on Advanced Computing & Communication (ADCOM 2007),

ACS, 18- 21 December 2007, IIT Guwahati, India, pp. 191-196

[12] Rekha K. James, Shahana T K, K. Poulose Jacob, Sreela Sasi, “A New Look at

Reversible Logic Implementation of Decimal Adder”, IEEE International

Symposium on System-on-Chip Tampere (SCO 2007), Finland Nov 20-22,

2007, page(s): 1-4, ISSN: 07EX1846, ISBN: 978-1-4244-1367-6

[13] Rekha K. James, Shahana T K, K. Poulose Jacob, Sreela Sasi, “Fault Tolerant

Error Coding and Detection using Reversible Gates”, IEEE TENCON 2007, Oct

30 - Nov 2, 2007 Taiwan, page(s): 1-4, ISBN: 978-1-4244-1272-3

[14] Rekha K. James, Shahana T K, K. Poulose Jacob, Sreela Sasi, “Perfonnance

Analysis of Reversible Fast Decimal Adders”, Lecture notes on International

Conference on Computer Science and Applications (ICCSN07)-World

Congress on Engineering and Computer Science 2007 (WCECS 2007).San

Francisco, USA Oct 24-26 2007 ICCSA, pp. 234-239

[15] Rekha K. James, Shahana T K, K. Poulose Jacob, Sreela Sasi, “lmproved

Reversible Logic Implementation of Decimal Adder” 11th IEEE VLSI Design

and Test Symposium, Aug 8-11 2007, India, pp. 70

[16] Rekha K. James, Shahana '1" K, K. Poulose Jacob, Sreela Sasi, “Delay-Reduced

Combinational Logic Synthesis using Multiplexers” ESA’06 — The 2006

International Conference on Embedded Systems & Applications, Las Vegas,

Nevada, USA, June 26-29, 2006, pp. 105-110

List of Publications of the Author

_ Appendix
IEEE Standard for Floating-Point
Arithmetic

IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or environmental
protection in all circumstances. lmplementers of the standard are responsible for determining appropriate safety,
security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use strbject to important notices and legal disclaimers. These notices
and disclaimers appear in all publications containing this document and may be found under the heading
“Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents”. They can also be
obtained on request from IEEE or viewed at http://standards.ieee.org/lPR.4iisclaimers.html.

1. Overview

1.1 Scope
This standard specifies formats and methods for floating-point arithmetic in computer systems—standard
and extended functions with single, double, extended, and extendable preeision—and recommends fonnats
for data interchange. Exception conditions are defined and standard handling of these conditions is
specified.

1.2 Purpose
This standard provides a method for computation with floating-point numbers that will yield the same result
whether the processing is done in hardware, software, or a combination of the two. The results of the
computation will be identical, independent of implementation, given the same input data. Errors, and error
conditions, in the mathematical processing will be reported in a consistent manner regardless of
implementation.

1.3 Inclusions

This standard specifics:

— Formats for binary and decimal floating-point data, for computation and data interchange.

— Addition, subtraction, multiplication. division, fused multiply add, square root, compare, and other
operations.

— Conversions between integer and floating-point fomiats.

— Conversions between different floating-point formats.

— Conversions between floating-point formats and external representations as character sequences.

— Floating-point exceptions and their handling, including data that are not numbers (NaNs).

l

Copyright © 2008 IEEE. All rights reserved.

1.4 Exclusions

This standard does not specify:

— Formats of integers.
— Interpretation of the sign and significand fields of NaNs.

1.5 Programming environment considerations
This standard specifics floating-point arithmetic in two radiccs, 2 and l0. A programming enviroruncnt may
conform to this standard in one radix or in both.

This standard docs not define all aspects of a conforming programming environment. Such behavior should
be defined by a programming language definition supporting this standard, if available, and otherwise by a
particular implementation. Some programming language specifications might permit some behaviors to be
defined by the implementation.

Language-defined behavior should be defined by a programming language standard supporting this
standard. Then all implementations confomiing both to this floating-point standard and to that language
standard behave identically with respect to such language-defined behaviors. Standards for languages
intended to reproduce results exactly on all platfomis are expected to specify behavior more tightly than do
standards for languages intended to maximize perfonnancc on every platform.

Because this standard requires facilities that arc not currently available in common programming languages,
the standards for such languages might not be able to fully conform to this standard if they arc no longer
being revised. If the language can be extended by a function library or class or package to provide a
conforming environment, then that extension should define all the language-defined behaviors that would
normally be defined by a language standard.

Implementation-defined behavior is defined by a specific implementation of a specific programming
environment eonfonning to this Standard. Implementations define behaviors not specified by this standard
nor by any relevant programming language standard or programming language extension.

Conformance to this standard is a property of a specific implementation of a specific programming
environment, rather than of a language specification.

However a language standard could also be said to confonn to this standard if it were constructed so that
cvely conforming implementation of that language also confonncd automatically to this standard.

1.6 Word usage
ln this standard three words are used to differentiate between different levels of requirements and
optionality. as follows:

-- may indicates a course of action permissible within the limits of the standard with no implied
preference [“may” means “is pcnnitted to")

— shall indicates mandatory requirements strictly to be followed in order to conform to the standard
and from which no deviation is permitted (“shall" means “is required to”)

— should indicates that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not
necessarily required; or that (in the negative fonn) a certain course of action is deprecated but not
prohibited (“shou|d" means “is recommended to”).

Further:

— might indicates the possibility ofa situation that could occur, with no implication ofthc likelihood
ofthat situation (“might" means “could possibly”)

— see followed by a number is a eross—reference to the clause or subclause of this standard identified
by that number

— NOTE introduces text that is informative (that is, is not a requirement ofthis standard).

2
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

2. Definitions, abbreviations, and acronyms

2.1 Definitions

For the purposes of this standard, the following terms and definitions apply.

2.1.1 applicable attribute: The value of an attribute govcming a particular instance of execution of a
computational operation of this standard. Languages specify how the applicable attribute is determined.

2.1.2 arithmetic format: A floating-point format that can be used to represent floating-point operands or
results for the operations of this standard.

2.1.3 attribute: An implicit parameter to operations of this standard, which a user might statically set in a
programming language by specifying a constant value. The term attribute might refer to the parameter [as in
“rounding-direction attribute”) or its value (as in “roundTowardZero attribute").

2.1.4 basic format: One of five floating-point representations, three binary and two decimal, whose
cncodings are specified by this standard, and which can be used for arithmetic. One or more of the basic
formats is implemented in any conforming implementation.

2.1.5 biased exponent: The sum of the exponent and a constant (bias) chosen to make the biased
exponcnt’s range nonnegative.

2.1.6 binary floating-point number: A floating-point number with radix two.

2.1.7 block: A language-defined syntactic unit for which a user can specify attributes. Language standards
might provide means for users to specify attributes for blocks of varying scopes, even as large as an entire
program and as small as a single operation.

2.1.8 canonical encoding: The preferred encoding ofa floating-point representation in a format. Applied to
declets, significands of finite nuinbcrs, intinities, and NaNs. especially in decimal formats.

2.1.9 canonicalized number: A floating-point number whose encoding (if there is one) is canonical.

2.1.10 cohort: The set of all floatin '- oint re rescntations that rc resent a ivcn fl0atiiw- oint number in a_ _ _ _ 1: P P _ P _ _ 8 _ o_ P
given floating—point format. In this context -l.l and +0 are considered distinct and are in different cohorts.

2.1.11 computational operation: An operation that can signal floatiiig-point exceptions, or that produces
floating-point results, or that produces integer results by rounding them to Fit destination fonnats according
to a rounding direction nile. Comparisons are computational operations.

2.1.12 correct rounding: This standard’s method of converting an infinitely precise result to a floating
point number, as determined by the applicable rounding direction. A floating-point number so obtained is
said to be correctly rounded.

2.1.13 decimal floating-point number: A floating-point number with radix ten.

2.1.14 declet: An encoding of three decimal digits into ten bits using the dcr1sely—packcd-decimal encoding
scheme. Of the 1024 possible declets, I000 canonical declets are produced by computational operations,
while 24 non-canonical declets are not produced by computational operations. but arc accepted in operands.

2.1.15 dcnormalized number: See." siibnormal number.

2.1.16 destination: The location for the result of an operation upon one or more operands. A destination
might he either explicitly designated by the user or implicitly supplied by the system (for example,
intcnnediate results in subcxprcssions or arguments for procedures). Some languages place the results of
intcnnediatc calculations in destinations beyond the user's control; nonetheless, this standard defines the
result of an operation in tcmis of that dcstination’s fortnat and the operands’ values.

2.1.17 dynamic mode: An optional method of dynamically setting anributcs by means of operations of this
standard to set, test, save, and restore them.

2.1.18 exception: An event that occurs when an operation on some particular operands has no outcome
suitable for cvcry reasonable application. That operation might signal one or more exceptions by invoking
the default or, if explicitly requested, a language-defined altematc handling. Note that event, e.reeptr'0ri, and
signaf are defined in diverse ways in different programming environments.

3

Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for F|oating- Point Arithmetic

2.1.19 exponent: The component of a finite floating-point representation that signifies the integer power to
which the radix is raised in determining the value of that floating-point representation. The exponent e is
used when the significand is regarded as an integer digit and fraction field, and the exponent q is used when
the significand is regarded as an integer; e=q+p— I where p is the precision of the fonnat in digits.

2.1.20 extendable precision format: A format with precision and range that are defined under user control.

2.1.21 extended precision format: A format that extends a supported basic fomiat by providing wider
precision and range.

2.1.22 external character sequence: A representation of a floating-point datum as a sequence of
characters, including the character sequences in floating-point literals in program text.

2.1.23 flag: See: status flag.

2.1.24 floating-point datum: A floatirtg~point number or non-number (NaN) that is representable in a
floating-point fonnat. in this standard, a floating-point datum is not always distinguished from its
representation or encoding.

2.1.25 floating-point number: A finite or infinite number that is representable in a floating-point format. A
floating-point datum that is not a NaN. All floating-point numbers, including zeros and infinities, are signed.

2.1.26 floating-point representation: An uncncoded mcmbcr of a floating-point Format, representing a
finite number, a Signed infinity, a quiet NaN, or a signaling NaN. A representation of a tinite number has
thrcc components: a sign, an exponent, and a significand; its numerical value is the signed product of its
signifieand and its radix raised to the power of its exponent.

2.1.27 format: A set of representations of numerical values and symbols, perhaps accompanied by an
encoding.

2.1.28 fnsedl\1ultiplyAtld: The operation fusedMul|jplyAdd(.r, y, 2) computes (X ><_i-')+z as if with un
bounded range and precision, rounding only once to the destination fomiat.

2.1.29 generic operation: An operation of this standard that can take operands of various formats, for
which the formats of the results might depend on the formats of the operands.

2.1.30 homogeneous operation: An operation of this standard that takes operands and retums results all in
the same format.

2.1.31 implementation-defined: Behavior defined by a specific implementation of a specific programming
environment eonfomiing to this standard.

2.1.32 integer format: A format not defined in this standard that represents a subset of the integers and
perhaps additional values representing infinitics, NaNs, or negative zeros.

2.1.33 interchange format: A format that has a specific fixed-width encoding defined in this standard.

2.1.34 lattgtlage-defined: Behavior defined by a programming language standard supporting this standard.

2.1.35 NaN: not a numbcr—a symbolic floating-point datum. There are two kinds of NaN representations:
quiet and signaling. Most operations propagate quiet Nal\'s without signaling exceptions, and signal the
invalid operation exception when given a signaling NaN operand.

2.1.36 narrower/wider format: If the sct of floating-point numbers of one fonnat is a proper subset of
another fomtat, the first is called nattower and the second wider. The wider format might have greater
precision, range, or (usually) both.

2.1.37 non-computational operation: An operation that is not computational.

2.1.38 normal number: For a particular forrnat, a finite non-zero floating-point number with magnitude
greater than or equal to a minimum b"""' value, where b is the radix. Normal numbers can use the full
precision available in a format. In this standard, zero is neither nonnal nor subnormal.

2.1.39 not a number: See: NaN.

2.1.40 payload: The diagnostic information contained in a NaN, encoded in part of its trailing signifteand
field.

4
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

2.1.41 precision: The maximum number p of significant digits that can be represented in a format, or the
number ofdigits to that a result is rotmdcd.

2.1.42 preferred exponent: For the result of a decimal operation, the value of the exponent q which
preserves the quantum of the operands when the result is exact.

2.1.43 preferredwidth method: A method used by a programming language to determine the destination
formats for generic operations and functions. Some preferrcdwidth methods take advantage of the extra
range and precision of wide formats without requiring the program to be written with explicit conversions.

2.1.44 quantum: The quantum of a finite floating-point representation is the value of n unit in the last
position of its significand. This is equal to the radix raised to the exponent q, which is used when the
significand is regarded as an integer.

2.1.45 quiet operation: An operation that never signals any floating-point exception.

2.1.46 radix: The base for the representation of binary or decimal floating-point numbers, two or ten.

2.1.47 result: The floating-point representation or encoding that is delivered to the destination.

2.1.48 signal: When an operation on some particular operands has no outcome suitable for every reasonable
application, that operation might signal one or more exceptions by invoking the default handling or, if
explicitly requested, a language-defined alternate handling selected by the user.

2.1.49 significand: A component of a finite floating-point number containing its significant digits. The
significand can be thought of as an integer, a fraction. or seine other fixed-point form, by choosing an
appropriate exponent offset. A decimal or subnomtal binary significand can also contain leading zeros.

2.1.50 status flag: A variable that can take two states, raised or lowered. When raised. a status flag might
convey additional system~dcpcndcnt information, possibly inaccessible to some users. The operations of
this standard, when exceptional, can as a side effect raise some of the following status flags: inexact,
undcrflow, overflow, divideBy-Zero, and invalid operation.

2.1.51 subnormal number: In a particular format, a non-zero floating-point number with magnitude less
than the magnitude of that fonnat’s smallest nonnal number. A subnormal number does not use the full
precision available to nomial numbers of the same format.

2.1.52 supported format: A floating-point format provided in the programming environment and
implemented in confomiancc with the requirements of this standard. Thus, a programming environment
might provide more formats than it supports, as only those implemented in accordance with the standard are
said to be supported. Also. an integer fonnat is said to be supported if conversions between that format and
supported floating-point formats are provided in conformance with this standard.

2.1.53 trailing significant! field: A component of an encoded binary or decimal floating-point format
containing all the significand digits except the leading digit. In these formats. the biased exponent or
combination field encodes or implies the leading significand digit.

2.1.54 user: Atty person, hardware. or program not itself specified by this standard, having access to and
controlling those operations of the programming environment specified in this standard.

2.1.55 width of an operation: The format of the destination of an operation specified by this standard; it
will be one of the supported fonnars provided by an implementation in conformance to this standard.

2.2 Abbreviations and acronyms

LSB least significant bit
MSB most significant bit
NaN not a number
qi\‘a-N quiet NaN
sNaN signaling NaN

5
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for F loating-Point Arithmetic

3. Floating-point formats

3.1 Overview

3.1.1 Formats

This clause defines floating-point formats, which are used to represent a finite subset of real numbers (see
3.2). Fonnats are characterized by their radix, precision, and exponent range, and each fomiat can represent
a unique set offloating-point data (sec 3.3).

All fomiats can be supported as arithmetic formats; that is, they may be used to represent floating-point
operands or results for the operations described in later clauses of this standard.

Specific fixed-width encodings for binary and decimal fonnats are defined in this clause for a subset of the
fonnats (see 3.4 and 3.5)- These interchange formats are identified by their size (see 3.6) and can be used
for the exchange of floating-point data between implementations.

Five basic formats are defined in this clause:

— Three binary formats, with cneodings in lengths of 32, 64, and I28 bits.
—- Two decimal fomtats, with eneodings in lengths of 64 and I28 bits.

Additional arithmetic formats are recommended for extending these basic fomrats (see 3.7}.

The choice of which of this standard‘s formats to support is language-defined or, if the relevant language
standard is silent or defers to the implementation, implementation-defined. The names used for fomiats in
this standard are not necessarily those used in programming enviromiients.

3.1.2 Conformance

A conforming implementation of any supported format shall provide means to initialize that format and
shall provide conversions between that fonnat and all other supported formats.

A conforming implementation of a supported arithmetic format shall provide all the operations of this
standard defined in Clause 5, for that format.

A conforming implementation ofa supported interchange format shall provide means to read and write that
format using a specific encoding defined in this clause, for that format.

A programming environment conforms to this standard, in a particular radix, by implementing one or more
of the basic formats of that radix as both a supported arithmetic fomrat and a supported interchange format.

6
Copyright © 2008 IEEE. All rights reserved.

lEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

3.2 Specification levels

Floating-point arithmetic is a systematic approximation of real arithmetic, as illustrated in Table 3.].
Floating-point arithmetic can only represent a finite subset of the continuum of real numbers. Consequently
certain properties of real arithmetic, such as associativity of addition, do not always hold for floating-point
a.riI.hmetic.

Table 3.1 -Relationships between different specification levels for a particular format

, Level l I {-00 0 +00} Extended real numbers.
. many-to-one 1 rounding I 1 projection (except for NaN) ,
, Level 2 - {—:e -0} U {+0 +11} U NaN Floating-point data—anL algebraically closed system. l- —' —' 7- _

Sled<-'
.1
U)

I

l
‘O

c-to-many 1 reprc.s'enrritiun specification - T many-to-one ‘
(sign, erpnnenr, srgntjrcanrf) U {—-tr +1.-} U q]\'aN U Representations of floating- *W sNaN point data.

one-to-many - encoding for representations offiotrting-poirtr data T many—to-one,

§._

\ Level 4 M11000... Bit strings. J

qi

The mathematical structure underpinning the arithmetic in this standard is the extended teals, that is, the set
of real numbers together with positive and negative infinity. For a given format, the process of rotmdmg
(see 4) maps an extended real number to a floating-point number included in that format. A_/looting-point
datum, which can be a signed zero, finite non-zero number, signed infinity. or a NaN (not-a-number), can
be mapped to one or more repi'e.scmatt'on.9 of/Ioaring-point dam in a format.

The representations of floating-point data in a format consist of:

—- triples (sign, C'_\'p0!7¢-mt, significand); in radix b, the floating-point number represented by a triple is
(__1).u_g-n X bLR|.Jr/fltfil X $.ign!'fi(,and

1 +|Xj.
— qNaN (quiet), sN:iN (signaling).

An encoding maps a representation of a floating-point datum to a bit string. An encoding might map some
representations of floating-point data to more than one bit string. Multiple NaN bit strings should he used to
store retrospective diagnostic information (see 6.2).

3.3 Sets of floating-point data
This suhelause specifies the sets of floating—point data representable within all floating-point fomiats; the
encodings for specific representations of floating-point data in interchange formats are defined in 3.4 and
3.5, and the parameters for interchange fonnats are defined in 3.6.

The set of finite floating-point numbers representable within a particular format is determined by the
following integer parameters;

— b = the radix, 2 or ll)

— p = the ntmiber of digits in the signifieand (precision)

—~ emax = the maximum exponent e

— emin = the minimum exponent e
emin shall be l -emux for all fonnats.

The values of these parameters for each basic format are gi\'Cn in Table 3.2, in which each format is
identified by its radix and the number of bits in its encoding. Constraints on these parameters for extended
and extendable precision formats are given in 3.7.

7
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

Within each format, the following floating-point data shall be represented:

— Signed zero and non-zero floating-point numbers of the form (— l)‘ >< b‘ >< m, where
-— s is 0 or l.

— e is any integer emin 5 e5 r.'max..

— m is a nttmber represented by a digit string of the form
d0'd;d_>. . . ti, 1 where d; is an integer digit (l§6f;</.7 (therefore 05m< h).

— Two infinities, +0; and —~'.i.

- Two NaNs, qNaN (quiet) and sNaN (signaling).

These are the only floating-point data represented.

In the foregoing description. the signifieand in is viewed in a scientific form, with the radix point
immediately following the first digit. It is also convenient for some purposes to view the signifleand as an
integer; in which case the finite floating-point numbers are described thust

— $igned zero and non-zero floating-point numbers efthe fonn (-l)"><h"><c, where
—- sistlor I.
— q is any integer eminiq +p -— l fiemax.

—- c is a number represented by a digit string of the form
dgdgdg. ..d,, , where d,- is an integer digit Ofid,-<b (c is therefore an integer with 0 5c< /1*’).

This view of the significand as an integer c. with its corresponding exponent q, describes exactly the same
set of zero and non-zero floating-point numbers as the view in scientific form. (For finite floating-point
numbers, e=q +p— l and m=c X b"".)

The smallest positive normal floating-point number is b°""" and the largest is b"""“><(b b’ "). The non-zero
floating-point numbers for a format with magnitude less than b"""' are called .~.-nhnormrt! because their
magnitudes lie between zero and the smallest normal magnitude. They always have fewer than p significant
digits. Every finite fl0ntittg—point number is an integral multiple of tlte smallest subnorntal magnitude
beminx bl pi

1-'or a floating-point number that has the value zero, the sign bit s provides an extra bit of infonnation.
Although all formats have distinct representations for +0 and -0, the sign ofa zero is significant in some
circumstances. such as division by zero, but not in others {see 6.3). Binary interchange formats have just
one representation each for +0 and -0, but decimal formats have many. in this standard, 0 and ~.~ are written
without :1 sign when the sign is not important.

Table 3.2—Parameters defining basic format floating-point numbers

Binary format [h=2) Decimal fnrmat (11-10)

parameter binar}-'32 5 hi||ar_y64 i binaryl28 _ tleeinialli-1 i tleeimnlllflp,tligilt~‘. zli st it in _ 16 5.4
emax '*l27 I 4-I023 H6383 +384 +6144

8
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

3.4 Binary interchange format eneodings
Each floating-point ntunber has just one encoding in a binary interchange fommt. To make the encoding
unique, in tcnns of the parameters in 3.3, the value of the significand m is maximized by decreasing e until
either e-emin or m21. After this process is done, if e=cmi'n and ()<m< l, the floating-point number is
subnormal. Subnormal numbers (and zero) are encoded with a reserved biased exponent value.

Representations of floating-point data in the binary interchange formats are encoded in It bits in the
following three fields ordered as shown in Figure 3.| :

a) I-bit sign S
b) W-bit biased exponent E= e+ bias
c) (r-—p- 1)-bit trailing significand field digit string 1'=d, d;...d,, I; the leading bit of the significand,

<1“, is implicitly encoded in the biased exponent E.

1 bit _~tsa w bjls rse use t= p-1 bits tseS E T
(__s1'gn_)§ tbiased exponent) l ____ (traili_r|g sig nificand field) __

E0 "EM d1 .. Haw

Figure 3.1—Binary interchange floating-point format

The values 0fk,p, I, w, and bias for binary interchange formats are listed in Table 3.5 (see 3.6).

The range of thc enc0ding’s biased exponent E shall include:

— every integer between I and 2"~2, inclusive, to encode normal numbers
— the reserved value 0 to encode ill and subnormal numbers
— the reserved value 2“'- I to encode :t:1. and NaNs.

The representation r of the floating-point datum, and value v of the floating~point datum represented, arc
inferred from the constituent fields as follows:

a) lf};' = 2"'— I and Tl I), then r is qNaN or sNaN and v is Na.\l regardless ofS (see 6.2.1].
b) If/-.'= 2“— I and 'I'=() , then r and v (—l)“><(+-1=).

e) If I 5155 2“--2, then r is (S, (1:‘—b1'as), (I —2"">< 7}); _ _
the value ofthc corresponding floating-point number is v = (—l)°' >< 2" “"“>< (I +2‘ PX 7);
thus nonnal numbers have an implicit leading signiticand bit of l.

d) lfE-O and 1'40: then r is (S, emin, ((}+2' "X 1));
the value ofthe corresponding floating-point number is v = (—l)” >< >< (()+2' "X 7);
thus subnormal numbers have an implicit leading significand bit oft}.

e) If'1:‘=t) and T=0 , then r is (S, emm, 0) and v = (- -I)“ >< (+0) (signed zero, sec 6.3).

NOTE—Where k is either 64 or a multiple of 32 and 2 I28, for these encodings all of the following are
true (where r0und() rounds to the nearest integer):

k -- I I w I r — w tp -" 32><eeiling((p - r0t1nd(_4><l0g;(p round(4><l0g:lp)) 13)} l3)B2)
w k—!— 1 k -- p roundt4><log;(k)) — I3
1- k w—l - p — -k—round(4><log;(k))+ I2

k — round(4 >< l0gi(k)) I I3

.%€

R‘

I-T

r\.>r~_3~i‘“'
N :-—-

emux — bias " “I
emin I emax ‘“ "

9
C0pyright© 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

3.5 Decimal interchange format encodings

3.5.1 Cohorts

Unlike in a binary floating-point format, in a decimal floating-point format a nurnber might have multiple
representations. The set of representations a floating-point number maps to is called the floating-point
number's cohort; the members of a cohort are distinct repr€.se)1!(IIir)n.$' of the same floating-point number.
For example, if c is a multiple of 10 and q is less than its maximum allowed value, then (s, q, c) and (s,
q+ l, c." I0) are two representations for the same floating-point number arid are members of the same cohort

While numerically equal, different members of a cohort can be distinguished by the decimal-specific
operations (see 5.3.2, 5.5.2, and 5.7.3). The cohorts of different floating-point numbers might have different
numbers of members. lf a finite non-zero number's representation has n decimal digits from its most
significant non-zero digit to its least significant non-zero digit, the reprcscntation's cohort will have at most
p n+l members where p is the number of digits of precision in the format.

For example, a one-di git floating-point number might have up to p different representations while a p-digit
floating-point number with no trailing zeros has only one representation. (An n-digit floating-point number
might have fewer than p —n+l members in its cohort if it is near the extremes of the format’s exponent
range.) A zero has a much larger cohort: the cohort of +0 contains a representation for each exponent, as
docs the cohort of -0.

For decimal arithmetic. besides specifying a numerical result, the arithmetic operations also select a
member of the rcsult's cohort according to 5.2. Decimal applications can make use of the additional
information cohorts convey.

3.5.2 Encodings

Representations of floating-point data in the decimal interchange fonnats are encoded in ll’ bits in the
following three fields, whose detailed layouts and canonical (preferred) encodings are described below.

a) l-bitsign-S’.
b) A w+5 bit combination field G encoding classification and, if the encoded datum is a finite

number, the exponent q and four significand bits (l or 3 of which are implied). The biased
exponent E is a w+2 bit quantity q+hia.s, where the value of the first two bits of the biased
exponent taken together is either (J, l, or 2.

c) A r-bit trailing significand field T that contains J X I0 bits and contains the bulk of the significant].
When this field is combined with the leading significand bits from the combination field, the
format encodes a total ofp = 3 ><.l+ l decimal digits.

1 bit nee w+5 bits tsa M58 t= J~1_0 bits LSB. S G T
|{sign)_ (combination field) (trailing signiticand field)

Go----~------------'-Gm decimal encoding: J declets give 3vJ = p - 1 digits
binary encoding; I bits give values from O through 2‘-1

Figure 3.2-Decimal interchange floating-point formats

The values of fr, p_ i, w, and bras for decimal interchange fonnats are listed in Table 3.6 (see 3.6).

The representation r of the floating-point datum. and value v of the floating-point datum represented. are
inferred from the constituent fields as follows:

a) If Go through G; are lllll, then v is NaN regardless of S. Furthermore, if G5 is l, then r is sNaN;
otherwise r is qNaN. The remaining bits of (1' are ignored, and '1' constitutes the NaN's payload,
which can be uscd to distinguish various NaNs.

The NaN payload is encoded similarly to finite numbers described below, with 0' treated as though
all bits were zero. The payload corresponds to the significand of finite numbers, interpreted as an

It]
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

integer with a maximum value of l0""”— l, and the exponent field is ignored (it is treated as if it
were zero). A NaN is in its preferred (canonical) representation if the bits G6 through Gm-4 are zero
and the encoding of the payload is canonical.

If G0 through G4 are 1 l I I0 then r and v = (—l)‘>< (+00). The values ofthe remaining bits in G, and
T, are ignored. The two canonical representations of infinity have bits (J, through (Ia... =0, and 'I'=
0.

For finite numbers, r is (S, If-bias, (1') and v = (—l)*'>< lO“‘" ““"‘>< (T, where (‘ is the concatenation ot
the leading significand digit or bits from the combination field G and the trailing significand field
'1', and where the biased exponent 11' is encoded in the combination field. The encoding within these
fields depends on whether the implementation uses the decimal or the binary encoding for the
signifieand.

I) If the implementation uses the decimal encoding for the significand, then the least significant
w bits of the exponent are G; through (§.....,. The most significant two bits of the biased
exponent and the decimal digit string do d....d,,_1 of the significand are formed from bits Gr,
through Gt and T as follows:

i] When the most significant five bits of (I are i ltlxx or l l ltix, the leading significand digit
do is 8+(?i_. a value 8 or 9, and the leading biased exponent bits are 2(i;+(i, , a value 0, 1,
or 2.

ii) When the most significant live bits of G are (lxxxx or ltlxxx, the leading significand digit
dti is 4Gz+2Gi+ G1, a value in the range 0 through 7, and the leading biased exponent bits
are 260+ Gt, a value 0, l, or 2. Consequently if T is 0 and the most significant five bits of
Gare 00000, 01000, or 10000, then v = (--1)-"><(+0).

The p---1 =3 XJ decimal digits di. . .d,,-| are encoded by T, which contains.) dcclcts encoded in
densely-packed decimal.

A canonical signifieand has only canonical declcts_ as shown in Tables 3.3 and 3.4.
Computational operations produce only the 1000 canonical declcts, but also accept the 24
non-canonical deelcts in operands.

2) Alternatively, if the implementation uses the hinarjv encoding for the significand, then:

i) lf(io and (ii together are one oftlt], 0|, or It), then the biased exponent If is formed from
(ii, through 0,... and the significand is fomied from bits (;,,.._, through the end of the
encoding (including I’).

ii) lf (in and G1 together are ll and G; and G; together arc one of (it), (ll, or 10, then the
biased exponent If is formed from G; through GI.-at and the signifieand is formed by
prefixing the 4 biLs (8 +(}'..--4) to '1‘.

The maximum value of the binary—enC0ded significand is the same as that of the
corresponding decimal-encoded significand; that is, l(l‘-""”“—l (or ltl"'""—l when '1' is used
as the payload of a \’aN). If the value exceeds the maximum, the significand c is non
canonical and the value used for e is zero.

Computational operations generally produce only canonical signifieands, and always accept non
canonical significands in operands.

NOTF—Whcrc k is a positive multiple of32, for these cneodings all ofthe following are true:

It " l I 5 I w i r 32><eeili11g((p+2).i'9)w k I 6 k./l6+4
I-— k w 6 —l5><k/l6 ltl

p "" 3><!,-'l0+l — 9*ki'32 2
nux — 3X 2°" "

emm 1 emax
ms emax + p — 2.

l l
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating- Point Arithmetic

Decoding densely-packed decimal: Table 3.3 decodes a deelet, with I0 bits hm, to hm, into 3 decimal
digits dm, dq), do, The first column is in binary and an “x” denotes a “don’t care” bit. Thus all 1024
possible l0-bit patterns shall be accepted and mapped into I000 possible 3-digit combinations with some
redundancy.

Table 3.3—De-coding 10-bit densely-packed decimal to 3 decimal digitsl = |>

* bro» bu» bum bu)» bu) dot I dm dun
it

4b(n) + Zbrti '4' bi-3) 4b(_t; 4' 213(4) '1’ bra] i 4b{7) + Zbrg) + bio)! . .
l ll 0 X X ' 4bw) + Zbri) + but 413(3) + 21311; + bis] = 8 + box)

Uxxxx

1Olxx
llilxx
IIHH)

0

4b(n) "' 2.b(1) + b(3; 8 + btfi

8 + bg) 4b(_t) i 2b(-I) + btfi}

8 + but 3 + bl5}

4bm + 25(4) '*' be»

4b[0) + Zbg) i‘ b(9_;

4bw) + zbtn '-“ bwi

lll01
llll0
lllll

I 4-bro)

8 + biz) 4btm + 2btn_+ btsi

+ 2b(I) + hm 8 + I,->6,

8 + but 3 + but

3 + bra)

8 + bro)

3 + bm

Encoding densely-packed decimal: Table 3.4 encodes 3 decimal digits din, rim, and dm, each having 4 bits
which can be expressed by a second subscript d¢1,»,;,, dt;_¢>,i,, and dwm, where bit 0 is the most significant
and bit 3 the least significant, into a dcelet, with l0 bits bw, to hm. Computational operations generate only
the I000 canonical l0-bit patterns defined by Table 3.4.

Table 3.4—Eneoding 3 decimal digits to 10-bit densely-packed decimal

[Iii-")9 dun», dram bum bun bin bin, bu» bt5) bu-1 bra» bun, bi-n
U00

00]
(H0

d(l,l:3l

dttl-1)

d(l\].3)

am .. 0
d-(3tl..'iJ I

d(3 L2)‘ dill) I

dill-3;

0, 0, din,

(J, I’
U11

IOU

I01

d(l.l.J)

d-‘.1.|':)~ d'(

_ 1. 0. dag, l
1.5» dt:.1..=t 1

dt2.|.2>. du 1) 0, |, dc: =1 I
llO
Ill

.. .-.. - - 4_ ..__

i, i, (hint)

ls U) d('Ul

Is I1 (113.3!

50.1.2). dim 0. 0. dim 1
0, 0, dn 1] I, I, d(-_»__1, i

1, i, d(3..1)

1, I, dI.l,.§l

The 24 non-canonical pattems of the form Ulxllxlllx. ltlxl ixl I Ix, or llxllxl l Ix (where an ‘x"
denotes a “don’t care” bit) are not generated in the result of a computational operation. However, as listed
in Table 3.3, these 24 bit patterns do map to values in the range 0 through 999. The bit pattern in a NaN
trailing signifieand field can affect how the NaN is propagated (see 6.2).

l2
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

3.6 Interchange format parameters
Interchange fonnats Support the exchange of floating-point data between implementations. In each radix,
the precision and range of an interchange format is defined by its size; interchange of a floating-point datum
of a given size is therefore always exact with no possibility of overflow or underflow.

This standard defines binary interchange formats of widths 16, 32, 64, and 128 bits. and in general for any
multiple of32 bits of at least 128 bits. Decimal interchange formats arc defined for any multiple of 32 hits
ofat least 32 bits.

The parameters p and emax for every interchange format width are shown in Table 3.5 for binary
interchange formats and in Table 3.6 for decimal interchange formats. The encodings for the interchange
formats are as described in 3.4 and 3.5.2; the encoding parameters for each interchange fomiat width are
also shown in Tables 3.5 and 3.6.

Table 3.5--Binary interchange format parameters

Parameter hinarylfi hinary32 binary-'64 luinarylltl binary{k} (£2128)
k, storage width in hits l6 32 64
p p, precision in bits ll 24 53
l enmx, maximum exponent e l5 l27 1023

Eritrodirrg parameters

I28

ll3

I638

multiple 0l'32

k - mund[4 X ln_t_:2(k)) + l3

lam, 1-.‘ 0 i 15 127 1023signbit 5 l l l I638

l

3 zap n_|

3 mnux
l

W, exponent field width in bits _ 5 3 ll 15 mund(4 >< log2(k}) — 13

r, trailing signitiezind lit.-Id width in bits ltl Z3 S2

k, storage width in hits I6 32 (14
H2

128

k—n*—l

l+t1‘+f

The finiction round() in Table 3.5 rounds to the nearest integer.

For example, binaty256 would havcp = 237 and cmar = 262143.

Table 3.6—DeeimaI interchange format parameters

deeimal{l'} (k 2 32)

It‘, .\"t0l':tgL‘ Wttltll in l)tl$ 32 (14 1
p. precision in digits 7 16

K -Pararneterzzz ‘K T zdeeim'a_l32—%deei|ir1al64 l tleeimallltl
!

I23

34

multiple til‘ 32

9 -<1:/32 — 2

96 384enmx I
I

6l44

lfncodirig parnnuzrem

hl(l.\', if - q _ lO| 398r t? sign bit I 1 l
w+5. cmnhinalitm lield width in bits ll l3

r, trailing signilieand field width in bits 20 50 iIr, storage width in bits 32 64 |

6176

1

I7

llt)

I23

-*X2(l.'.l6'3) |

emux + p — 2

l

It/'16 + 9

l5><k.-"l6— 10

1+$+w+t

For example, decimal256 would have p = 70 and emax = l572864

13

Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard tor Floating-Point Arithmetic

3.7 Extended and extendable precisions
Extended and extendable precision formats are recommended for extending the precisions used for
arithmetic beyond the basic fomiats. Specifically:

— An extended precision format is a format that extends a supported basic format with both wider
precision and wider range.

— An extendable precision format is a format with a precision and range that are defined under user
control.

'l'hcse formats are characterized by the parameters b, p, and emax. which may match those of an interchange
format and shall:

-— provide all the representations of floating-point data defined in tcnns of those parameters in 3.2
and 3.3

— pl'OvidC all the operations of this standard, as defined in Clause S, for that fomiat.

This standard does not require an implementation to provide any extended or cxtendablc precision format.
Any encodings for these formats are implementation-defined, but should be fixed width and may match
those ofan interchange fomiat.

Language standards should define mcclianisms supporting extendable precision for each supported radix.
Language standards supporting extendablc precision shall pennit users to specify p and cmax- Language
standards shall also allow the specification of an extendable precision by specifying p alone; in this case
emax shall be defined by the language standard to be at least 1000 Xp when p is 2 237 bits in a binary
format orp is Z 5l digits in a decimal format.

Language standards or implementations should support an extended precision fomtat that extends the widest
basic format that is supported in that radix. Table 3.7 specifies the minimum precision and exponent range
of the extended precision format for each basic format.

Table 3.7—Extended format parameters for floating-point numbers

Z Elxtcndetl formats associated with: L 7

Parameter binar}'32 binaryfi-I hinaryl28 tlet:inml64 Ttleeim:|ll28
ptligils—Z A 32 if 64 A i 12s L M22 ‘t -to

E 'i§},iri.iz ioza z tgiiii @5535 (>144 ii 24510 U
NOTE l—For extended formats, the minimum exponent range is that of the next wider basic format, if
thcrc is one, while the rninimum precision is intermediate between a given basic fonnal and the next wider
basic format.

NOTE 2—For interchange ofbinary floating-point data, the width It in bits ofthc smallest standard format
that will allow the encoding ofa significand of at leastp bits is given by?

k - 32><eeiling((p + round(4><Iog;[p + round(4><Iog;{p)) — 13)} - l3)i'32), Whcrc f0ll"d(') FORMS I0
the nearest integer and p 2 l l3; for smaller values ofp, sec Table 3.5.

For interchange of decimal floating-point data, the width It in bits of the smallest standard format that will
allow the encoding ofa significand ofat leastp digits is given by:

k — 32 X ceiling{(p + 2)/'9), wherep Z l.

In both cases the chosen format might have a larger precision (see 3.4 and 3.5.2).

14
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

4. Attributes and rounding

4.1 Attribute specification
An attribute is logically associated with a program block to modify its numerical and exception semantics.
A user can specify a constant value for an attribute parameter.

Some attributes have the effect of an implicit parameter to most individual operations of this standard;
language standards shall specify

— rounding-direction attributes (see -1.3)

and should specify

—- altematc exception handling attributes (sec R).

Other attributes change the mapping of language expressions into operations of this standard; language
standards that permit more than one such mapping should provide support for:

— prefcrrcdwidth attributes (see l0.3)
— value-changing optimization attributes (see ltJ.4)
— reproducibility attributes (sec ll).

For attribute specification, the implementation shall provide language-defined means, such as compiler
directives, to specify a constant value for the attribute parameter for all standard operations in a block; the
scope of the attribute value is the block with which it is associated. Language standards shall provide for
constant specification ofthe default and each specific value ofthe attribute.

4.2 Dynamic modes for attributes

Attributes in this standard shall be supported with the constant specification oi‘-'4. I. Particularly to support
debugging, language standards should also support dynamic-mode specification of attributes.

With dynamic-mode specification, a user can specify that the attribute parameter assumes the value ol‘ a
dynamic-mode variable whose value might not be known until program execution. This standard docs not
specify the underlying implementation mechanisms for constant attributes or dynamic modes.

For dynamic-mode specification, the implementation shall provide language-defined means to specify that
the attribute parameter assrnnes the value of a dynamic-mode variable for all standard operations within the
scope of the dynamic-mode specification in a block. The implementation initializes a dynamic-mode
variable to the default value for the dynamic mode. Within its l:tnguagc—defined (dynamic) scope, changes
to the value ofa dynamic-mode variable are under the control ofthe user via the operations in 9.3.1 and .

The following aspects of dynamic-mode variables are language-defined; language standards may explicitly
defer the definitions to implementations:

— The precedence of static attribute specifications and dynamic-mode assignments.

— The etTcct of changing the value ot‘ the dynamic-mode variable in an asynchronous event, such as
in another thread or signal handler.

— Whether the value of the dynamic-mode variable can be determined by non-programmatic means,
such as a debugger.

NOTE ---A constant value for an attribute can be specified and meet the requirements of 4.| by a dynamic
mode specification with appropriate scope of that constant value.

l5
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

4.3 Rounding-direction attributes
Rounding takes a number regarded as infinitely precise and, if necessary, modifies it to fit in the
destination’s formal while signaling the inexact exception, underflow, or overflow when appropriate (see 7).
Except where stated otherwise, every operation shall be perfonncd as if it first produced an intennediate
result correct to infinite precision and with unbounded range, and then rounded that result according to one
of the attributes in this clause.

The rounding-direction attribute affects all computational operations that might be inexact. lnexaet numeric
floating-point results always have the same sign as the unrounded result.

The rotmding-direction attribute affects the signs of exact zero sums (see 6.3), and also affects the
thresholds beyond which overflow (see 7.4) and underflow (see 7.5) are signaled.

Implementations supporting both decimal and binary formats shall provide separate rounding-direction
attributes for binary and decimal. the binary rounding direction and the decimal rounding direction.
Operations retuming results in a floating-point fomtat shall use the rounding-direction attribute associated
with the radix of the results. Operations converting from an operand in a floating-point format to a result in
integer format or to an extemal character sequence (see 5.8 and 5_l2) shall use the rounding-direction
attribute associated with the rfltlix of the operand.

Nal\‘s are not rounded (but sec 6.2.3).

4.3.1 Rounding-direction attributes to nearest

ln the following two rounding-direction attributes, an infinitely precise result with magnitude at least
b""“‘(b " '/25' ") shall round to -r.= with no change in sign; here emax and p are determined by the destination
fonnat (see 3.3)- With:

— roundTiesToEven, the floating-point number nearest to the infinitely precise result shall be
delivered; if the two nearest floating-point numbers bracketing an unrepresentable infinitely
precise result are equally near, the one with an even least significant digit shall be delivered

—- r0undTiesToAway_ the floating-point number nearest to the infinitely precise result shall be
delivered; if the two nearest floating-point numbers bracketing an unrepresentable infinitely
precise result are equally near_ the one with larger magnitude shall be delivered.

4.3.2 Directed rounding attributes

Three other user-selectable rounding-clireetion attributes are defined, the directed rounding attributes
roundTowardPositive, roundTowardNegative, and roundTowardZero. With:

—- roundTowardPositive, the result shall be the format's floating-point number [possibly +1.-) closest
to and no less than the infinitely precise result

— roundTowardNegative, the result shall be the format’s floating-point number [possibly —-'r.-) closest
to and no greater than the infinitely precise result

— roundT0wardZero, the result shall be the formafs floating—p0int number closest to and no greater
in magnitude than the infinitely precise result.

4.3.3 Rounding attribute requirements

An implementation of this standard shall provide roundTiesToEven and the three directed rounding
attributes. A decimal format implementation of this standard shall provide roundTiesToAway as a riser
seleetable rounding-direction attribute. The rounding attribute roundTies'l'oAway is not required for :1
binary format implementation.

The roundTiesTOEven rounding-direction attribute shall be the default rounding-direction attribute for
results in binary formats. The default rounding-direction attribute for results in decimal formats is language
defined. but should be roundTiesToEven.

I6
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5. Operations

5.1 Overview

All eonfomting implementations of this standard shall provide the operations listed in this clause for all
supported arithmetic fomiats, except as stated below. Each of the computational operations that retum a
numeric result specified by this standard shall be perfonncd as if it first produced an intennediate result
correct to infinite precision and with tmbotu-tdcd range, and thcn rotmdcd that intermediate result, if
necessary, to fit in the destination's format (see 4 and 7). Clause 6 augments the following specifications to
cover :0, ion, and NaN. Clause 7 describes default exception handling.

In this standard, operations are written as named functions; in a specific programming environment they
might be represented by operators, or by families of fonnat-specific functions, or by operations or functions
whose names might differ from those in this standard.

Operations are broadly classified into four groups according to the kinds of results and exceptions they
produce:

— General-computational operations produce floating-point or integer results, round all results
according to Clause 4, and might signal the floating-point exceptions ofClausc 7.

— Quiet-computational operations produce floating-point results and do not signal floating-point
exceptions.

— Signaling-computational operations produce no floating-point results and might signal floating
poiut exceptions; comparisons are signaling-computational operations.

—- Non-computational operations do not produce floating-point results and do not signal floating
point exceptions.

Operations in the first three groups arc referred to collectively as “computational operations".

Operations are also classified in two ways according to the relationship between the result format and tltc
operand formats:

— homogeneous operations, in which the floating-point operands and floating-point result are all of
the same format

- _fi)rmm0f operations, which indicate the fonnat of the result, independent of the formats of the
operands.

Language standards might permit other kinds of operations and combinations ofopcrations in expressions.
By their expression evaluation rules, language standards specify when and how such operations and
expressions are mapped into the operations of this standard. Operations (except re-encoding operations} do
not have to accept operands or produce results ofdiffcring cncodings.

ln the operation descriptions that follow, operand and result formats are indicated by‘.

— .s'0urce to represent homogeneous floating-point operand formats

—— smrrcel, s0urce2, s0urce3 to represent non—homogeneous floating-point operand formats

-— mt to represent integer operand formats

—- hooletm to represent a value of jitlsc or rme (for example, 0 or 1)

— enum to represent one of a small set of enumerated values

—- /0gBFOrmttt to represent a type for the destination of the log}? operation and the scale exponent
operand of the scale}? operation

— inregmllbrinur to represent the scale factor in scaled products (sec 9.4)
— dccitnnI('haructerScquence to represent a decimal character sequence

— ht:r(“haracter$'eqr1ence to represent :1 hexadecimal-significand character sequence

—- converxion.$)2er‘{fir.'a1irm to represent a language dependent conversion specification

— decimal to represent a supported decimal floating-point type

— riecinztrllinr-riding to represent a decimal floating-point type encoded in decimal

l 7
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

-— hinnrylfncoding to represent a decimal floating-point l)'Pc encoded in binary

— e.rcepti0n(}r0r/p to represent a set of exceptions as a set of booieans

— flags to represent a set of status flags
— binurjyR0itndingDirecti0n to represent the rounding direction for binary

— decimalltoundingbircction to represent the rounding direction for decimal
— modeflroup to represent dynamically-specifiablc modes
— void to indicate that an operation has no explicit operand or has no explicit result; the operand or

result might be implicit.

_f?;rmatOf indicates that the name of the operation specifics the floating-point destination format, which
might be different from the floating-point operands’ formats There are f0rmar()_/' versions of these
operations for every supported arithmetic format.

r'm}~'orinat(Zf indicates that the name of the operation specifies the integer destination format.

ln the operation descriptions that follow, languages define which of their types correspond to operands and
results called int, i'nrF‘0rma!()fi characrcrfrequcnce, or convcnsion.S}Jee{/ic'ari0n. Languages with both signed
and unsigned integer types should support both signed and unsigned in! and mtF0nnci!Of operands and
results.

5.2 Decimal exponent calculation
As discussed in 3.5, a floating-point number might have multiple representations in a decimal format.
Therefore, decimal arithmetic involves not only computing the proper numerical result but also selecting the
proper mcmbcr of that floating-point number's cohort.

Except for the quantize operation, the value of a floating-point result (and hence its cohort) is determined by
the operation and the operands’ values: it is never dependent on the representation or encoding of an
operand.

The selection of a particular representation for a floating-point result is dependent on the operands’
representations, as described bclow, but is not affected by their encoding.

For all computational operations except quantize and roundToIntcgralExact, if the result is inexact the
cohort member of least possible exponent is used to get the maximum number of significant digits. If the
result is exact, the cohort member is selected based on the preferred exponent For a result of that operation,
a function of the exponents of the inputs. Thus For finite .r, depending on the representation of zero, 0+1"
might result in a different member of .r’s cohort. If the result’s cohort does not include a member with the
preferred exponent, the member with the exponent closest to the preferred exponent is used.

For quantize and roundTOIntcgralExact, a finite result has the preferred exponent, whether or not the result
is exact.

In the descriptions that follow, Qtx) is the exponent q of the representation of a finite floating-point number
x. lfx is infinite, Qtx) is +111.

18

Copyright © 2008 IEEE. All rights reserved.

IndexA ' so 5 8 * s
Arithmetic processor 8
ASIC 9

B

BCD adder 3,40,41,48,50,53,78,81,85,90,93,102,104,107,1 10
116,140,183,192,210

BFP 4
BID 12
Binary arithmetic 3,4,5,6, 1 0,
Binary floating point 51
BCD Digit Multiplier 36,169
Binary Multiplier 37
Binary to BCD Converter 39,126,128

C

Carry counter (CC) 59,60,63,172,174
Carry propagate adder (CPA) 74,157,159,161,162,163
Carry select BCD l7,110,1l1,112,124,209
Carry save adder (CSA)
Combination field 1 1,12,15
Conventional BCD 17,99,100,103,109,110,115,117, 119,120,121, 125,186,

187, 189,l91,202,209
Critical path delay 16,18,37,43,71,128,169,170,183,208
Carry Save Adder Block 31
Carry Select BCD Adder 110
Column Accumulation 60
Combination Field 15
Computer Arithmetic Systems 7

D

DDDM 16,25,26,35,36,62,67,84,157,159,161,207
Decimal carry save adder (DCA) 56,57,58,172,174
DPD 12,13,69,71,75,77
DSP 42

Decimal arithmetic 3
Decimal Carry Propagate Adder 33
Decimal Encodings 10
Decimal Fixed point multiplication 23
Decimal Floating Point Multipliers 67,174
Densely Packed Decimal Encoding 13
DFP Adders 77
DFP MAC Unit 75,181
DFP Multiplication 68,74,75
Double Digit Decimal Multiplication 26,157

E
ENIAC 3, 7
Error detection 17, 76 , 104, 136, 203, 210
Exception 8, 71, 72, 175
Exhaustive branching 17,18,146,147,l48,149,150,152

F
Fault tolerant 17,98,135,137,l40,193,209
FPGA 62,166,l67,168,169,201
Fredkin gates 17,187,189,190,203,209
Fully Reversible RPS Gate 125

G
Garbage output 118, 183,188,l93,l94,203, 209,210

H

Hammingcode 17,135,136,137,140,141,193,l94,203,210
HNG 17,103,l28,129,132,l33,l34,191,l92,193,2l0
Hex/Decimal Multiplier 42
Hybrid BCD Adder 113
Hybrid Reversible BCD Adder 115

I

IEEE 754-2008 - 6,9,10,11,12,15,l6,75,78,84
Iterative DFxP Multipliers 23

K

Kogge-Stone Adder 80

L
Latency 16,25,35,37,54,56,62,85,168,170,178,179,201,202,208
Low power l6,l7,l8,89,210
LUT 24,166
Logic synthesis using multiplexers 145,194

M
Minterms l7,146,150,l51,194
Multiplexer 209
Multi-operand Decimal Adders 44
Multiplexer Block 29
Multiplier Shift Register 29

N

NaN 10,11,15,72,76
Nanotechnology 16
N-ary Exhaustive Branching Technique 146,149
New Reversible RPS Gate 124

P
Parallel DFP multiplier 16,18,56,67,75,84,180,202, 208
Partially reversible 125,129,130,131,132,l41,191,192,203,209,212
Patriot missile 5
PPRM 91
Parallel DFXP Multipliers 56,172
Parity Preserving Reversible Carry Select BCD Adder 1 12
Parity Preserving Reversible Quick Decimal Adder 107
Partial Product Register 33
Partially Reversible RPS Gate 129

Q
QAD 17,104,l05,106,112,120,121,124,140,189,190
Quantum computing 16,90

Quantum cost 1 16,117,118,120,124,188,189,190,203,209
Quick Decimal Adder 104

R
RBCD 452
Reed muller 91, 141
Rounding 69, 171, 175, 177, 181, 208
RPS a1gorithm16, 18, 36, 46, 52, 53, 55, 62, 67, 68, 170
Reduced Delay BCD Adder 81
Reversible Decimal Adders 99
Reversible Error Correcting Code 134
Reversible Fast Decimal Adders 104
Reversible Full Adders 93
Reversible Gates 90
Reversible Logic 89
Ripple Carry BCD Adder 79
Row Accumulation 56
RPS Algorithm 46

S

SDDM 35, 164, 165
Secondary multiple 25, 26
Secondary multiple generation block 26, 157, 159, 161, 163

T
Throughput 16, 25, 56, 84, 208
Toffoli gate 17,91, 95, 100, 116, 140, 188, 189, 203
Trailing significand field 11, 12
TSG 92, 96,100,101,l32,184,192

U

Universal Logic Module (ULM) 145

V

VHDL 9, 147, 170, 193

	DESIGN AND SYNTHESIS OF EFFICIENT MAC ARCHITECTURES FOR HIGH SPEED DECIMAL PROCESSOR
	CERTIFICATE
	Declaration
	Acknowledgement
	ABSTRACT
	Contents
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	REFERENCES
	Index

