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Preface
In the processing and analysis of images it is important to be able to extract

features, describe shapes and recognize patterns. Such tasks refer to

geometrical concepts such as size, shape, and orientation. Mathematical

morphology uses concepts from set theory, geometry and topology to analyze

geometrical structures in an image.

The word ‘morphology.’ originates from the Greek words morfh and logos,

meaning ‘the study of fonns’. The term is encountered in a number of

scientific disciplines including biology and geography. In the context of

image processing it is the name of a specific methodology designed for the

analysis of the geometrical structure in an image. Mathematical morphology

was invented in the early 1960s by Georges Matheron and Jean Serra who

worked on the automatic analysis of images occurring in mineralogy and

petrography. Meanwhile the method has found applications also in several

other fields, including medical diagnostics, histology, industrial inspection,

computer vision, and character recognition. Mathematical morphology

examines the geometrical structure of an image by probing it with small

pattems, called ‘structuring elements’, of varying size and shape, just similar

to a blind man explores the world withhis stick. This procedure results in

nonlinear image operators which are suitable for exploring geometrical and

topological structures.



A series of such operators is applied to an image in order to make certain

features more clear, distinguishing meaningful information from irrelevant

distortions, by reducing it to a sort of caricature (skeletonization). The

resulting multi resolution techniques (quadtrees, pyramids, fractal imaging,

scale-spaces, etc.) all have their merits and limitations. For example, fractals

are great success in image compression but to a much lesser extent for

segmentation problems.

In the earliest multi resolution approaches to signal and image processing, the

method was to obtain a coarse level signal by sub sampling a fine resolution

signal, after linear smoothing, in order to remove high frequencies. A ‘detail

pyramid’ can then be derived by subtracting from each level an interpolated

form of the next coarser level. The resulting difference signals (known as

detail signals) form a signal decomposition in terms of band pass-filtered

copies of the original signal. The htunan visual system indeed uses a similar

kind of decomposition. This tool has been one of the most popular multi

resolution schemes used in image processing and computer vision. The

emergence of wavelet techniques has boosted the multi resolution approach.

Application of wavelets to problems in image processing and computer



vision is sometimes hindered by its linearity. Coarsening an image by means

of linear operators may not be compatible with a natural coarsening of some

image attribute of interest (shape of object, for example), and hence use of

linear procedures may be inconsistent in such applications.

Mathematical morphology (nonlinear) is complementary to wavelets (linear).

In this it considers images as geometrical objects. It is not like elements of a

linear (Hilbert) space. Many of the existing morphological techniques, such

as granulometries, skeletons, and alternating sequential filters, are essentially

multi resolution techniques. There are relationships between the existing

linear (wavelets) and nonlinear (morphological) multi resolution approaches.
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Chapter 0= ABOUT THE THESIS

About the Thesis

Chapters in the thesis are organized as follows.

Chapter 1 is Introduction to Mathematical Morphology. In this chapter, Birth

of Mathematical Morphology, Image processing using Mathematical

Morphology are included.

Dilation and erosion are the elementary operators of Mathematical

Morphology, that is, they are building block for a large class of operators.

Application of these operators in image processing is aimed initially to

improve the visual quality of the features of interest in digital grayscale

images, which will then afterwards be extracted.

Increasingly seeking to get improvement in quality of the extracted feature,

the image was binarized through the binary operator with threshold. Image

skeletonization is one of the many morphological image processing

operations. skeletonization is very often an intermediate step towards object

recognition, These operators are widely using in Medical Imaging also.
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Chapter 2 is Binary Morphology and Morphological

operators. In this chapter, Binary Morphology , Dilation and Erosion ,Opening

and Closing ,Properties of Operators are included.

Binary mathematical morphology consists of two basic operations dilation and

erosion and several composite relations like closing and opening.

All the images actually process by computer will be digital. That is, they will

be defined on an R row by C column grid of pixels. Typically, all the FG

pixels will be black and the BG pixels, white, or vice-versa. All pixels are

represented by squares. All FG and BG objects or regions are made up of

these squares.

In the memory of the computer, all FG pixels are represented by a number, f,

and all BG pixels by another number, b. Typically (fi b) = (1,0) or (fl b) =

(255,0), or the opposite.

The key process in the dilation operator is the local comparison of a shape,

called structuring element, with the object to be transfonned. When the

structuring element is positioned at a given point and it touches the object,

then this point will appear in the result of the transfomiation, otherwise it will

nO't.
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Similarly, In Erosion operation, if, when positioned at a given point, the

structuring element is included in -the object then this point will appear in the

result of the transformation, otherwise not. Other operators can be defined by

using these two fundamental operators. These operators also satisfy several

important properties. Properties of Dilation operator listed are i) Translation

Invariance ii) Distributivity over union iii) Increasing property.

Chapter 3 is Gray Value Morphology and other
Morphological Operators. In this chapter, properties of operators defined on

gray value images are discussed.

Chapter 4 is Morphological operators defined on a Lattice.

In this chapter, Lattice, Properties of Lattices, Operators defined on a Lattice

are included.

A lattice is any non-empty poset Lin which any two elements Iliand y have a

least upper bound and a greatest lower bound. The operation /\(is called

meet), and the operation \/(is called join) are meant for greatest lower bound

and least upper bound. A sublattice of Lis a subposet of Lwhich is a lattice,

that is, which is closed under the operations /‘sand Vas defined in L.

The operations of meet and join are idempotent, commutative, associative and

absorptive.

In Chapter 5, Morphological Slope Transforms, Translation

Invariant Systems, Legendre Transform, Slope Transforms, Properties of

3



Slope Transforms are included. The slope transfonn is considered as the

morphological counterpart of the Fourier transform.

A type of non linear signal transforms that can quantify the slope content of

signals and provide a transform domain for morphological systems, is called

slope transforms. Slope transforms are based on eigen functions of

morphological systems that are lines parameterized by their slope.

The three types of slope transforms are

i) a single valued slope transform for signals processed by erosion

systems.

ii) a single valued slope transform for signals processed by dilation

systems.

iii) A multi valued transform that results by replacing the suprema and

infima of signals with the signal values at stationary points.

A-ll three transforms coincide when we consider continuous-time signals

(which are convex or concave and have an invertible derivative) and become

equal to the Legendre transform.(i1-respective of the difference due to the

boundary conditions).

4



Chapter 6 is Generalized Structure for Mathematical

Morphology. In this chapter

Different structures for Morphological Operators, Generalized Structure for

Mathematical Morphology, Results in Generalized Structure are included.

In Chapter 7, Partial Self Similarity, Mathematical Morphology

and Fractals:r- the following are discussed. Fractals and Self similarity,

Scaling, Cross section, Partial self similarity, Mathematical Morphology and

Fractals. In a Morphological space, KQX is called Partial self similar or

asinulllzzr if 3K1,K2, .....K, such that K= U§=1K,~ and for each

Kijcontraction maps qmjk, for i=l..... t,r=l t ,j=l,....t and k==l. w‘-(i,f)with

w(i,j)>0 such that K, --= UM <pM.,§,,(Kj).Fractals are very useful in medical

imaging. Mathematical Morphology and Fractals plays very important role in

many image processing applications.

Adjunctions are pairs of operators which satisfy some mathematical property.

In mathematical Morphology Dilationand erosion are fundamental operators.

In Chapter 8, Morphological operators termed as adjunctions is

discussed. Operators Dilation and erosion form an adjunction between two

spaces. These operators are dual operators. In this chapter, Translation

Invariance property, Binary Adjunctions, Various Adjunctions in

Mathematical Morphology, Generalized Adjunctions are included.

5



Some definitions and results given in this chapter are listed below.

Dilation: Let l/L» fill be a complete lattice, with infimum and minimum

symbolized by /\and V respectively. A dilation is any operator 5 : L -—> L-that

distributes over the supremum, and preserves the least element,

\‘/50(1) =5(\‘/Xuond  =

An erosion is any operator E 2 L --—> Lthat distributes over the

infimum/.’\ “X” 2 6  Xi), <‘3(U) ""'= U.

Dilations and erosions form Galois connections. That is, for all dilation 8 there

is one and only one erosion ézithat satisfiesx '5 <‘5(Y) 4*’ 5(X) 5 Yfor all

X, Y 6 L_

Similarly, for all erosion there is one and only one dilation satisfying the

above connection.

Furthermore, if two operators satisfy the connection, then 5 must be a dilation,

and 8 an erosion. Pairs of erosions and dilations satisfying the above

connection are called "adjunctions", and the erosion is said to be the adjoint

erosion of the dilation, and vice-versa.

Concluding Remarks and Areas using Morphological

operators are given in Chapter 9. Important applications like Image

Processing, Signal Processing, Robotics, Medical Imaging and Computer

Graphics etc are included.

6



Chapter 1

Introduction to Mathematical Morphology

CONTENTS
1.1 Introduction
1.2 Birth of Mathematical

Morphology
1.3 Image Processing using

Mathematical

Morphology

1.1 Introduction

Mathematical Morphology is the analysis of signals in terms of shape. This

simply means that morphology works by changing the shape of objects

contained within the signal. In the processing and analysis of images it is

important to be able to extract features, describe shapes and recognize

patterns. Such tasks refer to geometrical concepts such as size, shape, and

orientation. Mathematical morphology uses concepts from set theory,

geometry and topology to analyze geometrical structures in an image.

Mathematical morphology is about operations on sets and functions. It is

systematized and studied under a new angle, precisely because it is possible to

actually perform operations on the computer and see on the screen what

happens. The need to simplify a complicated object is the basic impulse

7



behind mathematical morphology. Related to this is the fact that an image

may contain a lot of disturbances. Therefore, most images need to be tidied

up. Hence another need to process images; it is related to the first, for the

border line between dirt and of other kind disturbances is not too clear.

Consider Euclidean geometry, and consider cardinalities. The set N of

nonnegative integers is infinite, and its cardinality is denoted by card(N) = N0

(Aleph zero). The set of real numbers R has the same cardinality as the set of

all subsets of N, thus card(R) = 2&0. The points in the Euclidean plane have

the same cardinality:

card(R2) = ca_rd(R). But the set of all subsets of the line or the plane has the

larger cardinality. There are toomany sets in the plane. Consider a large

subclass of this huge class, a subclass consisting of nice sets. For instance, the

set of all disks has a much smaller cardinality, because three numbers suffice

to determine a disk in the plane: its radius and the two coordinates of its

center. Similarly, four numbers suffice to specify a rectangle [al, bl] >< [a2,

b2] with sides parallel to the axes; a fifth is needed to rotate it. This leads to

the idea of simplifying a general, all too wild set, to some reasonable, better

behaved set. Euclidean line containing denumerably many points. Consider a

line as the set of solutions in Q2 of an equation alxl + 8.2X2 + a3 = 0 with

integer coefficients. Then two lines which are not parallel intersect in a point

with rational coordinates. The cardinality of the set of all subsets of Q2 is 2&0,

so there are fewer sets to keep track of than in the real case.

8



So there are too many subsets in the plane. Consider digital geometry. On a

computer screen with, say, 1,024 pixels in a horizontal ,row‘and 768 pixels in a

vertical column there are ,1, 024 >< 768 = 786, 432 pixels. On such a screen a

rectangle with sides parallel to the axes is the Cartesian product R(a, b) = [ah

b1]Z X [32, b2]; Of IWO lI1t6I‘V3lS.

There are only finitely many binary images. But the number of binary images

must be compared with other finite numbers. Thus, although the number of

binary images on a computer screen is finite, it is so huge that the conclusion

must be the same as in the case of the infinite cardinal: there are too many; it

is not possible to search through the whole set; for simplifying this leads,

again, to image processing and mathematical morphology, with subsets of Z2,

or, generally, of Z“, the set of all n~tuples of integers. When consider

mathematical morphology both the cases are important. i.e., both the vector

space R" of all n-tuples of real numbers (the addresses of points in space) and

the digital space Z“ (the addresses of pixels). R“ and Z" form an abelian group.

Therefore the space, called image carrier, is just an abelian group.

Serra (1982) lists “four principles of quantification.” These are about the ways

to gather information about the external‘ world. They apply also, but not

exclusively, to image analysis.

Serra’s first principle is “compatibility under translation.” For a mapping, this

means that f(A + b) = f(A)+b, which is expressed as f 0Tb = Tb o f, where o

9



denotes composition of mappings defined by (f oTb)(x) = t'('l‘b(x)), thus a kind

of commutativity, writing Tb for the translation Tb(A) = A+b. It means that f

commutes with translations. On a finitescreen like {x eZ2; O < xl < l, 024, 0

< x2 < 768} almost nothing can commute with translations. Therefore

consider the ideal, infinite, computer screen with sets of addresses equal to Z2.

The principle is equally useful in R“ and'Z“.

Serra’s second principle is “compatibility under change of scale.” For a

mapping this means that it cormnutes withhomotheties (or dilatations).

The third principle is that of “local knowledge.” This principle says that in

order to know some bounded part of f(A), there is no need to know all of A,

only some bounded part of A. Mathematically speaking: for every bounded set

Y , there exists a bounded set Z such that f(A A Z) rw Y = f(A) (W Y .

Serra’s fourth principle of quantification is that of “semi continuity.” It means

that if a decreasing sequence (Aj) of closed sets tends to a limit A, thus A =

r\Aj , then f(Aj) tends to f(A). Thus if Ajiis close to A in some sense and Aj

contains A, then f(Aj) must be close to f(A). To express this property as semi

continuity, one must define a topology. In this thesis an attempt is made to

derive some meaningful results by introducing some topological properties to

the theory of morphological operators.
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Over the last 10-"15 years, the tools of mathematical morphology have become

part of the mainstream of image analysis and image processing technologies.

The growth of popularity is due to the development of powerful techniques,

like granulometries and the pattern spectrum analysis, that provide insights

into shapes, and tools like the watershed or connected operators" that segment

an image. But part of the acceptance in industrial applications is also due to

the discovery of fast algorithms that make mathematical morphology

competitive with linear operations in terms of computational speed. A

breakthrough in the use of mathematical morphology was reached, in 1995,

when morphological operators were adopted for the production of

segmentation maps in MPEG-4.

J .Serra and George Matheron worked on image analysis .Their work lead to

the development of the theory of Mathematical Morphology. Later Petros

Maragos contributed to enrich the theory by introducing theory of lattices

.Firstly the theory is purely based on set theory and operators are defined for

binary cases only .Later ,the theory extended to Gray scale images also .He

also gave a representation theory for image processing. Heink J .Heijmans

gave an algebraic basis for the theory. Heink J .Heijmans extended the theory

to Signal processing also. He also defined the operators for convex structuring

elements. Rein Van Den Boomgaard introduced Morphological Scale space

operators. In this thesis, an attempt to link some topological concepts to

operators is made.
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Morphological scale space operators can be linked with Fractals. A general

Morphological algebraic structure is also introduced in this thesis. An attempt

to characterize morphological convex geometries, using the definition of

Moore family is made in this thesis.

The Moore family stands for the family of closed objects. There exist inter

relationships between Moore family, adjunctions and Morphological

transforms. Adjunctions are pairs _ of operators which satisfy, some

mathematical property. In mathematical Morphology Dilation and erosion are

fundamental operators. These operators form an adj unction between two

spaces. These operators are dual operators. All morphological adjunctions can

be defined using a general rule .

1.2 Birth of Mathematical Morphology

Mathematical morphology (MM) originates from the study of the geometry of

binary porous media such as sandstones. It can be considered as binary in the

sense it is made up of two phases: the pores embedded in a matrix. This led

Matheron and Serra to introduce in 1967 a set formalism for analyzing binary

images.

Mathematical morphology is a non-linear theory of image processing. Its

geomet1y- oriented nature provides an efficient method for analyzing

object shape characteristics such as size and connectivity, which are

not easily accessed by linear approaches.
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Mathematical Morphology (MM) is associated with the names of Georges

Matheron and Jean Serra, who developed its main concepts and tools.

(Matheron, 1975; Serra, 1982; Serra, 1988), They created a team at the Paris

School of Mines. Mathematical Morphology is heavily mathematized. In this

respect, it contrasts with different experimental approaches to image

processing.

MM stands also as an alternative to another strongly mathematized branch of

image processing, the one that bases itself on signal processing and

information theory. Main contributors in this area are Wiener, Shannon,

Gabor, etc. These classical approaches has a lot of applications in

telecommunications. Analysis of the information of an image is not similar to

transmitting a signal on a channel. An image should not be considered as a

combination-of sinusoidal frequencies, nor as the result of a Markov process

on individual points .The purpose of image analysis is to find spatial objects.

Hence images consist of geometrical shapes with luminance (or colour)

profiles. This can be analyzed by their interactions with other shapes and

luminance profiles. In this sense the morphological approach is more relevant.

MM has taken concepts and tools from different branches of mathematics

like algebra (lattice theory), topology, discrete geometry, integral

geometry, geometrical probability, partial differential equations, etc.

I3



1.3 Image Processing using Mathematical Morphology

Mathematical morphology is theoretically based on set theory. It

contributes a wide range of operators to image processing, based on a few

simple mathematical concepts. MM started by considering binary

images and usually referred to as standard mathematical morphology. It

also used set-theoretical operations like the relation of inclusion and the

operations of union and intersection.

In order to apply it to other types of images, for example grey-level ones

(numerical functions), it was necessary to generalize set-theoretical notions.

Using the lattice-theory it is generalized. The notions are, the partial order

relation between images, for which the operations of supremum (least upper

bound) and infimum (greatest lower bound) are defined. Therefore the main

structure in MM is that of a complete lattice. All the basic morphological

operators are defined by using this framework.. Nowadays, most

morphological techniques combine lattice-theoretical and topological

methods.

The computer processing of pictures led to digital models of geometry.

Azriel Rosenfeld has contributed in this field after having contributed to

digital geometry and image processing for 40 years. Mathematical

morphology is perfectly adapted to the digital framework.
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The operators are particularly useful for the analysis of binary images ,

boundary detection ,noise removal, image enhancement, shape extraction,

skeleton transforms and image segmentation. The advantages of

morphological approaches over linear approaches are

1)Direct geometric interpretation,2) Simplicity and 3) Efficiency in hardware

implementation.

An image can be represented by a set of pixels. A morphological

operation uses two sets of pixels, i.e., two images: the original data

image .to be analyzed and a structuring element which is a set of pixels

constituting a specific shape such as a line, a disk, or a square. A structuring

element is characterized by a well- defined shape (such as line, segment, or

ball), size, and origin. Its shape can be regarded as a parameter to a

morphologicaloperation

l5



Chapter 2

Binary Morphology and Morphological operators

CONTENTS
2.1 Introduction

2.2 Preliminaries
2.3 Structuring Element
2.4 Binary Operations
2.5 Binary Morphology
2.6 Dilation and Erosion

2.7 Opening and Closing
2.8 Properties of Operators
2.9 References

2.1 Introduction

Mathematical Morphology is a tool for extracting image components that

are useful for representation and description. It provides a quantitative

description of geometrical structures. Morphology is useful to provide

boundaries of objects, their skeletons, and their convex hulls. It is also

useful for many pre- and post-processing techniques, especially in edge

thinning and pruning.

Most morphological operations are based on simple expanding and

shrinking operations. Morphological operations preserve the main

geometric stmctures of the object. Only features ‘smaller than‘ the

structuring element are affected by transformations.

16



All other features at ‘larger scales‘ are not degraded. (This is not the case

with linear transformations, such as convolution).

The primary application of morphology occurs in binary images, though

it is also used on grey level images. It can also be useful on range

images. (A range image is one where grey levels represent the distance

from the sensor to the objects in the scene rather than the intensity of

light reflected from them).

2.2 Preliminaries

2.2.1 Notation and Image Definitions

Types of Images

An image is a mapping denoted as I, from a set, Np, of pixel coordinates

to a set, M, of values such that for every coordinate vector, p =(pl,p,) in

NP, there is a value I(p) drawn from M. Np is also called the image

plane.[1]

Under the above defined mapping a real image maps an n-dimensional

Euclidean vector space into the real numbers. Pixel coordinates and pixel

values are real.

A discrete image maps an n-dimensional grid of points into the set of real

numbers. Coordinates are n-tuples of integers, pixel values are real.

l7



A digital image maps an n-dimensional grid into a finite set of integers.

Pixel coordinates and pixel values are integers.

A binary image has only 2 values. That is, M= {mfg , mbg}, where mfg, is

called the foreground value and mbg is called the background value.

The foreground value is mfg = O, and the background is mbg = —oo. Other

possibilities are {mfg mbg} == {0,oo}, {0,1}, {1,0}, {0,255}, and {255,0}.

2.2.2 Definition

The foreground of binary image I is

=  '=  2 mf'g'
The background is the complement of the foreground and vice-versa.

2.2.3 Definition

The support of a binary image, I, is

5“PP(1)*“{P "-= ‘(P1_~P;)6Np/KP) = rm,

That is, the support of a binary image is the set of foreground pixel

locations within the image plane.

The complement of the support is, therefore, the set of background pixel

locations within the image plane.

{$Hvr>(I)}° = {P = (p'1-'p2.)€NplI(p;): mtg»
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All the images actually process by computer will be digital. That is, they

will be defined on a R row by C column grid of pixels. Typically, all the

FG pixels will be black and the BG pixels, white, or vice-versa.

All pixels are represented by squares. All FG and BG objects or regions

are made up of these squares.

A Binary Image

-@

M“ '“ %$@+%l‘ ~w~wm+u figW M M
'Q"“""V '"""‘

III...‘ 'hi M II MI :III III. _ ,
. . ._.§..... .._.;

III 'mé“ 3.'II ' ! 1 ¥'I if *. - M _. ..g
II FY ...- .. ..... ....x..,. ....-_

2TI In .,..<,,..».I I I I 3‘ r. _.   .,. f,..._;. . ".2,I F s iI ,  . .. I-'-xvI  a a I = > iI = : - lfl i._\»- I-.,-.,---,5... ..-jIIII i , l. l W ,,,,
IIIILWWWWWW ,@¢@¢¢III ' '=- '» II 6 i " Y ‘ '. I

I.  4-»..-.§.-.1-... .. -..¢..?..........€,....f...,.. -  .,w',-.§w.i2 I s ’ I  it r II" ~:I . ; { 5 .
~\ u \~ - _ flAn~.. _ ( ‘Y  .:

. .. VVO v-A%»v-l-v~'~4v\-'Al:‘.A\A M;IIIII 5 * E ‘ 5 ‘' -- .5 i ! ‘ I = 5 E‘.t..K_......v:\..,.-_-,;,.,c.,-,.....5. -.... - . ,......»...~ .....;-.~..:.,-..?....§.,., .-,.g= E  i HI(- ..‘a..,.....__- J9, .4. ,g‘......4L < ..i,.._.$...~,--x...

W ., ;,. M
,,...,......., Mr.

III ,___ ,,
A4

v~-~e>-~'-~o~ '-1~A?-»»'{:(‘. 1an 1*IIIII a s M ""Y IIIIII -, _ < , _.,,_ .,_,@:'-::::  . ~H  Iif  E. ‘mi,  ’D ‘ :_II_II.II1_ H IIII:I:... III 1I I  _ I,IIII:,_,§,_.,g,,..~;__ ill  , _ .  ..:IIIIIII III, I = ‘I:

I

IIIIIIInI;1  s L IIIIIIIIII! ,..;.§,..i= ,
! '  ' ~ .' Z  _I

::::::**?f*‘?T?""*%*s'%*?“‘ii‘i’i:::$::l,__ IIIIIIII  EIIIIIIIIII. 1
.::::§55::.:5:5:5§55 ~v\I-k

In the memory of the computer, all FG pixels are represented by a

number, f, and all BG pixels by another number, b. Typically (f, b) =

(1,0) or (f, b) = (255,0), or the opposite.
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2.3 Structuring Element

2.3.1 Definition

The processing consist of the interaction between an image A (the object

of interest) and a structuring set B, called the structuring element. It can

be of any shape, size.

2.3.2 Example

In the figure, the location of the structuring element’s origin is marked as

circles which can be placed anywhere relative to its support.I" " ' -.-.> »_ ». .. . - — - 11 ..<_ I 2 - - F  . I ""‘\:' 5‘;.  . . _ ‘:=- - I-I " ~;";_ :;r';:- E'5-551-5-" ' - . O'_-I----_5 .   ,1, _:1:_<;;; j,;;*  .5, “:2  ;0  pfl 0  ‘I  Q   Q 213; ‘?:"'i_i?iil.  I11; I ii-1%? €I I
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Fat Plus 2.x 3 sq. Shift Op.

The image and structuring element sets need not be restricted to sets in

the 2D plane, but could be defined in 1, 2, 3 (or higher) dimensions.

Note: The structuring element is to mathematical morphology what the

convolution kemel is to linear filter theory
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2.4 Binary Operations

2.4.1 Definition

Given two sets A and B , the Minkowski addition is defined as

A69B=U(A+fl)
/3&8

2.4.2 Definition

Minkowski subtraction is defined as

A@B'=n(fi+fi)Res _
2.4.3 Definition

Let I be an image and Z a Structuring Element. Z + p means that Z is

moved so that its origin coincides with location p in NP.Z + p is the

translate of Z to location p in Np.

2.4.5 Definition

The set of locations in the image denoted by Z+ p is called the Z

neighborhood of p in I denoted N {I, Z} (p).

The complement of A is denoted A“, and the difference of two sets A and

B is denoted by A - B.
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2.4.6 Definition

Let A and B be subsets of Z2. The translation of A by x is denoted Ax and

is definedas A, = {oz c: a i-lé :!:,for ca E

2.4.7 Definition

Let B be a Structuring Element and let S be the square of pixel locations

which contains the set{(ip1,p;,_)_,(— p,_,—- I12)’, E Supp(B)], then

reflection of B is é'(s,s) = B(—-B_,~» s)v (3,5) e S.[1],[2],[3].Or, in

other words, the reflection of B is defined as

§= {:.¢:: 2: = -b.,for I26

2.4.8Examples
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‘J

3
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2.5 Binary Morphology

2.5.1 Binary representation

An image is defined as an (amplitude) function of two, real (coordinate)

variables (x, y) or two, discrete variables [m, n].

An image consists of a set (or collection) of either continuous or discrete

coordinates. The set corresponds to the points or pixels that belong to the

objects in the image.

2.5.2 Example

This is illustrated in Figure which contains two objects or sets A and B.

In the coordinate system, consider the pixel values to be binary.[1]
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Figure: A binary image containing two object sets A and B.
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The object A consists of pixels which share some common property:

Object B in Figure consists of {[0, 0], [l ,0], [0,l]}.

2.5.3 Description of Image regions

The basis of mathematical morphology is the description of image

regions as sets [1]. For a binary image, consider the “on” (1) pixels to all

comprise a set of values from the “universe” of pixels in the image. An

image A, we mean the set of “on” (l) pixels in that image.

The “oft” (0) pixels are thus the set compliment of the set of on pixels.

By Ac, we mean the compliment of A, or the off (0) pixels.

The background of A is given by AC (the complement of A) which is

defined as those elements that are not in A:

2.5.4 Example

7‘ 1. rmfw

iii‘ §-L‘.-s.-l]§

x -s -a ..'| ,;

la j-st.-um.-sli-slf -;

t 1 t .w? 5
-A 4 j.--s}-saia; -saga;

-A -sag.-s
-up-.5  -s -st

..i  -L -s -s i-s

“  A ‘_f_'1‘l__i‘i“
l -0 -s_ -1; ii"l ' 7.

.4 -it .ajl.-it -A

-a O ur   -s
-~ -@, -A  I

_   1 t._______.~." W K K Z
_V___]i - 5‘ . . ~ J  -  -‘  “ __ __’__'_¢,. I. -.'..'_'.;.-_».~J- ._i..  fmé is

lixarnples of structuneing elements

24



2.6 Dilation and Erosion

Morphology uses ‘Set Theory’ as the foundation for many functions [1].

The simplest functions to implement are ‘Dilation’ and ‘Erosion’

2.6.1 Definition Dilation of the object A by the structuring element B is

given by   3“  I  Fl
Usually A will be the signal or image being operated on A and B will be

the Structuring Element’

2.6.2 Example 1 Dilate (B,S) takes binary image B, places the origin of

structuring element S over each 1-pixel, and Ors the structuring element

S into the output image at the corresponding position.

l l Ell  i

OOO
OI-*0
OI-*0
OOO

OOOi
or-1|-by
Oi-in-P
OI-‘O;

B T S B G9 S
origin

25



Example 2

A = [ (9.1), (1,1). (2,1). (2,2), (3,9)} B

B ={w,v),w,1>=1 I
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iii
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\> M4 L  r - JA A (9 B

2.6.3 Basic effect of Dilation

Gradually enlarge the boundaries of regions of foreground pixels on a

binary image.

‘°‘w,1>

Dilation, in general, causes objects to grow in size
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2.6.4 Example Binary Signal

Figure shows how dilation works on a 1D binary signal.[l] The

structuring element shown in. Figure uses the value of the elements

immediately to the right and left of the current element (the structuring

element in this case looks for ones on the input sequence)[3]. Any shape

or size-structuring element can be used, where an element with the value

of 0 indicates that the corresponding element in set A is not to be used,

and a value of 1 indicates that it is to be used.

For example, the structuring element shown could be considered to have

0’s on the extreme left and right, as the corresponding inputs would be

ignored.

In the figure, Structuring element (B) with shaded showing the origin. A

is an input signal and C ,an output signal. Set the output to be the

intersection .Slide the structuring element along A. Get the intersection

for the new position. Repeat this until all elements have been done.
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,1“ 1%" I1 0 J 1 io 0 01 Ill 0 T1‘ Input signal (A)

II Structuring element (B)
.2" i.

‘1 ,1 ‘1 ,1 0 1} 1“ 111 ll ’ Outputsignal(C)

Figure: Example of how dilation works

The output is given by (1) and will be set to one unless the input is the

inverse of the structuring element. For example, ‘O00’ would cause the

output to be zero. The output is placed at the origin of the structuring

element as shown.

From Figure, it can be seen that dilation operation completely removes

any runs of zeros less than the length of the structuring element (this is

only for this type of structuring element though). Longer runs of zeros

are shortened at their extremities.

2.6.5 Example

Let x =tc1,o),<1,1,>,<1z1,(2,21.<o.a>,<o,u}m-1 B = £<o.o>,<1,o>}

Then

X @ 5’ = {(113). (1,1),(1,-?),(3,2),(6;3),(0.4),(2‘.9), (2,1), (3,2), (3,2), (1,3), (1 4)}
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2.6.6 Definition Erosion

The opposite of dilation is known as erosion. Erosion of the object A by a

structuring element B is given by A 9 B 3  : B1‘ g A}'

Erosion of A by B is the set of points x such that B translated by x is

contained in A.

2.6.7 Example 1 Erode(B,S) takes a binary image B, places the origin of

structuring element S over every pixel position, and ORs a binary 1 into

that position of the output image only if every position of S (with a 1)

covers a 1 in B[l].

__ __ 1_
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H-DOC

00000000
OI--I-HO
0|-I-H00000

erode to

B s BeS
Example 2

‘y I ‘ C) 3 Deletedf‘  .2 Left
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pounceQ 0 0

000 0
000000
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,,qo0oo
$00000
000 0
oooooo
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tm. * ...A A of’l O_OO
Leflzij Qié

_ . l~ K -, ~  ;

29



2.6.8 Effect of Erosion Erosion causes objects to shrink. The amount

and the way that they grow or shrink depend upon the choice of the

structuring element.

Basic effect: Erode away the boundaries of regions of foreground pixels

(i. e. white pixels, typically).

. I
‘ ..

I

I
1

i

T” '  ” T T
——-—r-
H _..,i.~i_-ia--1----l-2

Q$b—lu—_QQ1—dn_1QQ111

, —~ ‘Q i i -b .@~ Z i <1» Q-I i
rl 1
2.6.9 Example Binary Signal

Figure shows how erosion works on a 1D binary signal [1],[2]. This

works in exactly the same way as dilation. For the output to be a one, all

of the inputs must be the same as the structuring element. Thus, erosion

will remove runs of ones that are shorter than the structuring element.
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Structuring element (B) with shaded showing the origin.

Set the output to be the translation of B contained in A.

Slide the structuring Element along. Get the intersection for
the new position. Repeat this until all elements have been
done.

Figure: Example of how erosion works

l‘l‘l'l° l‘l°T°l°l‘l‘ l°I‘

Structuring element (B)

[1 T0T0 L0 ‘ 0 lo [0 lo] 0Y0] Out put signalC

2.7 Opening and Closing

Two very important transformations are opening and closing. Dilation

expands an image object and erosion shrinks it. Opening, generally

smoothes a contour in an image, breaking narrow isthmuses and

eliminating thin protrusions. Closing tends to narrow smooth sections of

contours, fusing narrow breaks and long thin gulfs, eliminating small

holes, and filling gaps in contours.

2.7.1 Definition Opening

The opening of A by B, denoted by/1 0 B , is given by the erosion by B,

followed by the dilation by B, that is A ° B ‘-*'-'~' (A 9 B) @ 3
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2.7.2 Binary Opening Example

This simply erodes the signal and then dilates the result as shown in

Figure. As can be seen, the zeros are opened up. Any ones that are

shorter than the structuring element are removed, but the rest of the

signal is left unchanged.

r I‘ mm mm W
1 Structuring element

‘I (lit)‘£1,010’@’0l0'0?foJourpu¢0r@msi0n(AeB)

i 2 0 0 [010 L0 0 Outputofdilati0n(A9B)® B

Figure: Example of how an opening works

2.7.3 Example:

Opening Separate out the circles from the lines

A mixture of circle and lines.
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The lines have been almost completely removed while the circles remain

almost completely unaffected.

Opening is the compound operation of erosion followed by dilation (with

the same structuring element)

2.7.4 Example Figure The opening (given by the dark dashed lines) of A

(given by the solid lines. The structuring element B is a disc. The internal

dashed structure is A eroded by B. [3]
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Opening is like ‘rounding from the inside’: the opening of A by B is

obtained by taking the union of all translates of B that fit inside A. Parts

of A that are smaller than B are removed. Thus

AqB==U{B,:B,gA}.

Opening an image isachieved by first eroding an image and then dilating

it. Opening removes any narrow “connections” between two regions.
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Example:

----a>. i . i
l Morphological

2.7.5 The Basic Effect

Somewhat like erosion in that it tends to remove some of the foreground

(bright) pixels from the edges of regions of foreground pixels. To

preserve foreground regions that has a similar shape to stmcturing

element.

2.7.6 Closing

The opposite of opening is ‘Closing’ defined by

Closing is the dual operation of opening and is denoted by A0 B . It is

produced by the dilation of A by B, followed by the erosion by B:
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2.7.7 Example

s A

Figure: The closing of A by the structuring element B.

Closing on imoge is done by firsi diioting the irnoge ond ihen

eroding ii. The order is The reverse of opening. Closing fills up ony

norrow block regions in The image.

Example:

r

i

Mcrphdogiul Uosirg

Closing is the compound operation of dilation followed by erosion (with

the same structuring element)

Closing is one of the two important operators from mathematical

morphology.
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Closing is similar in some ways to dilation in that it tends to enlarge the

boundaries of foreground (bright) regions in an image [1].

2.7.8 Example Binaryclosing

I1 I1 '1 '0 ,1 [OIOJOJI I1 |0 In Inputsignal(A)

1  Structuring element

1 1 ' 1 Illltl 1111 1 11 I1 Output ofdilation (A <9 B)

Figure : Example of how a closing works

2.7.9 Example: Figure shows how this works. It can be seen that this closes
gaps in the signal in the same way as opening opened up "gaps.
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2.7.10 Example :T t
Original image Result of a closing with a 22 pixel diameter disk.

If it is desired to remove the small holes while retaining the large holes,

then we can simply perform a closing with a disk-shaped structuring

element with a diameter largerthan the smaller holes, but smaller than

the larger holes.

Just as with dilation and erosion, opening and closing are dual

operations. [12] That is (A ' Blc 2 (Ac ° B6)

(AoB)oB=AoB and AOB=(A@B)6B

The opening operation can separate objects that are connected in a binary

image, The closing operation can fill in small holes. Both operations

generate a certain amount of smoothing on an object contour given a

"smooth" structuring element. The opening smoothes from the inside of

the object contour and the closing smoothes from the outside of the

object contour. [l],[l2]
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2.8 Properties of Operators

2. 8.1 Dilation

Dilation has several interesting properties [l],[3], which make it useful

for image processing.

a) Translation invariant:

This means that the result of A dilatedwith B translated is the same as A

translated dilated with Bas given by:(A E9 B)x = Ax 69 B

b) Order invariant:

This simply means that if several dilations are to be done, then the order

in which they are done is irrelevant. The result will be same irrespective.

(A@B)®c=A@(B®c)

c) Increasing operator

This means that if a set, A, is a subset of another set, B, then the dilation

of A by C is still a subset of B dilated by C:

(A;B)=> (A <9 c)‘;(B <9 c)

d) Scale invariant

This means that the input and structuring element can be scaled, then

dilated and will give the same as scaling the dilated output:
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rA 6-9 rB = r(A@ B) where r is a scale factor.

e) Commutative - A £9 B = B ® A

t) Associative - A 65 (B® C) = (A G3 B)€B C

g) Translation Invariance -  GB (B (-B x) = (A @ B) G9 x

2.8.2 Erosion

Erosion, like dilation also contains properties that are useful for image

processing:[2,3,4,5]

a) Translation invariant

This means that the result of A eroded with B translated is the same as A

translated eroded withiB as given by:(A 6 B)x = Ax 6 B

b) Order invariant

This simply means that if several erosion are to be done, then the order in

which they are done is irrelevant. The result will be same irrespective.

(A9B)9C=A9(B6C)

c) Increasing operator

This means that if a set, A, is la subset of another set, B, then the erosion

of A by C is still a subset of B eroded by C:
39



(A6B)9C=A9CcontainedinB6C

d) Scale invariant

This means that the input and structuring element can be scaled, then

eroded and will give the same as scaling the dilated output:

rA 9 rB = r(A 6 B) where r is a scale factor.

Dilation and erosion are duals of each other with respect to set

complementation and reflection. That is, (A 9 3)‘: "-= Ac @ $

e) Non-Commutative -— A O B ¢ B G) A

2.8.3 The decomposition theorems

a) Dilation - A®(BuC) = (A® B)uC-= (BuC)(-BA

b) Erosion - 5515 '--* C) == (A95) *""*(*'-193)

c) Erosion - (31%)9C == 5-QB 45 C)

rzB  (Vs 63 B as Be?»--er-a}d) Multiple Dilations 

2.8.4 The opening and closing operation satisfies the following

properties

a) A0 Bis a subset ofA. [12]

b) If C is a subset of D, then C‘ 0 Bis a subset of D 0 B.
40



(AoB)oB.-.=.-Ao.B
c) Idempotency.

d) Similarly, A is a subset of A 0- B .

e) If C is a subset of D, then (,7 0 Bis a subset of D 0 B

(AOB)OB=AOB
fl Idempotency.

It means that any application of the operation more than once will

have no further effect on the result.

g) Opening is anti extensive, i.e., A O B Q. A, whereas the closing

is extensive, i.e., A Q A " B.

h) Opening and closing satisfy the duality A ' B = (A Q B

i) Duality Relationships

1) Erosion in terms of dilation:

2) Dilation in terms of erosion

3) Opening in tenns of closing

4) Closing in terms of opening

I-Z=lIC®Z]

1@z=:1C-Z]

102 =-Q16-2]

1-z =»L1C<>z]
T C
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Chapter 3

Gray - value Morphology and other Morphological operators

CONTENTS

3.1 Gray - value Morphological
Processing

3.2 Other operators
3.3 Applications of

Morphological Operators
3.4 Vincent’s decomposition

Theorem

3.5 Mathematical Morphology
and Boolean Convolution

3.6 References

3.1 Gray-value Morphological processing

Grayscale morphology is a multidimensional generalization of the binary

operations. Binary morphology is defined in terms of set-inclusion of

pixel sets. So is the grayscale case, but the pixel sets are of higher

dimension.

3.1.1 Set Inclusion in Grayscale Images

1 Y
T[A]

ii—i—$MM—fl
—_\st}

E lU[T[-All

1 ! X
D
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For morphological operations on gray level images sets like EN is using.

The first (N-1) coordinates conventionally form the spatial domain and

the last coordinate is for the surface. For gray level images N=3, the first

two coordinates of an element "in a set are the (x, y) in the image and the

third is the gray level.

Concepts such as top or top-surface of a set and the shadow (umbra) of a

surface are used in the definitions of the operations.

Let A be QEN. The domain ofA is defined as:

D = {ex G Em | there is a y€E, (x ,y)€A}

The top or top~surface of A is a function T[A] : D -> E: is defined as

TlA](X)=MflX{Y|(X,Y)€A}

In grayscale morphology, set inclusion depends on the implicit 3D

structure of a 2D image.

3.1.2 Example
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3.1.3 Grayscale Structuring Elements

A grayscale structuring element is a small image that delineates a volume

at each‘ pixel [p, I(p)] throughout the image volume

3.1.4 Definition: Gray-level dilation, D¢,(*), is given by: [2]Dilation 
0,(A,;B) = maxm.]e3{a[m -- ;, rt - R} + b[j, .t:]}

3.1.5 Definition: Gray-level erosion, EG(*), is given by:Erosion 
Ea (A B) = ??‘=§‘?{;;iéea{¢£?"' + 1. R +11] * b[iJ¢l}

3.2 Other Operators

The definitions of higher order operations such as gray-level opening and

gray-level closing are given below.

3.2.1 Definition Opening

06(A@ 3) = Ds(Ea(A:B)l» 5)

3.2.2 Definition Closing

ct.-(11.8) = ~0¢(~A.~B>
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The important properties such as idempotence, translation invariance,

increasing in A, are also applicable to gray level morphological

processing.

Complexity of gray level morphological processing is significantly

reduced through the use of symmetric structuring elements. It is denoted

by bli, kl = bl-J}-kl~

The most common of these is based on the use of B = constant = 0. For

this important case and using again the domain [j, k] CB, the definitions

above reduce to:

3.2.3 Dilation using symmetric structuring elements:Dilation 
= \ntax[fJi"}EB{a[n1‘ '-jtln —'  =

3.2.4 Effects of Grayscale Dilation

Generally brighten the image

Bright regions surrounded by dark regions grow in size, and dark regions

surrounded by bright regions shrink in size.

3.2.5 Erosion using symmetric structuring elements:Erosion 
Ea“: 3) r‘ minfiktesifl-[m '"’ L 11 " kl} “‘" mma (14)
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3.2.6 Effects of Grayscale Erosion

Generally darken the image

Bright regions surrounded by dark regions shrink in size, and dark

regions surrounded by bright regions grow in size.

3.2.7 Definition Opening

06 (A. B) =2 emaxgmins (3%))

3.2.8 Definition Closing

C'G.(A,  = min-9(inax3(.4.;))

3.2.9 Example

The adjunction opening [2] and closing create a simpler function than

the original. They smooth in a nonlinear way.

The opening (closing) removes positive (negative) peaks that are thinner

than the structuring element.

The opening (closing) remains below (above) the original function.
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The remarkable conclusion is that the maximum filter and the minimum

filter, are gray-level dilation and gray-level erosion for the specific

structuring element given by the shape of the filter window with the gray

value "0" inside the window. Examples of these operations on a simple

one-dimensional signal are shown in Figure.
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Effect of 15 x 1 dilation and erosion b) Effect of 15 x 1 opening and

closing
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3.2.10 Definition Morphological gradient

The morphological gradient [2],[3] is the difference between the dilation

and the erosion of the image.

This gradient is used to find boundaries or edges in an image

Grnadrient(A, B} =-3 ((06 (A,B)) -—~ (E6 (A,B}))

= -2 ((max(A) - min(A) ))

3.2.11 Definition Morphological Laplacian

The morphologically-based Laplacian filter [2] ,[3] is defined by:

Laptacian ow) =. -Q ((n¢(A_,s) - .4) - (,1 -- E5 (.4,a)))

=§ ((1%-(A,B)) + (Ea (ABJ) - 24)

=2 ((mw<(.4) + manta) - 2.4))

3.2.l2'Definition Top hat

The top hat is the difference of the source image and the opening of the

source image. It highlights the narrow pathways between different

regions.
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Example

......._.;‘

Monuholqgtcai top hat

3.2.13Definiti0n Black hat

The black hat is the difference between the closing of an image and the

image itself. This highlights the narrow black regions in the image.

Example

--->

Morpholagkal Black hat
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3.3 Applications of morphological operations

Erosion and dilation can be used in a variety of ways, in parallel and

series, to give other transformations including thickening, thinning,

skeletonization and many others.

The morphological filter(A°*B).B can be used to eliminate ‘salt and

pepper‘ noise. Salt and pepper noise is random, uniformly‘ distributed

small noisy elements often found corrupting real images. It will appear as

black dots or small blobs on a white background, and white dots or small

blobs on the black object. The background noise is eliminated at the

erosion stage, under the assumption that all noise components are

physically smaller than the structuring element B. Erosion on its own will

increase the size of the noise components on the object. However, these

are eliminated at the closing operation.

3.3.1 The boundary of a. set A, denoted (914, can be obtained by first

eroding A with B, where B is a suitable structuring element, and then

performing the set difference between A and its erosion. That is

3'4 = A - (A 9 B)-Typically, B would be a matrix of ls.

3.3.2. Region filling algorithm

Region filling [1], [2], [3] can be accomplished iteratively using

dilations, complementation, and intersections.
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Step 1: Let A be an image containing a subset whose elements are 8

connected [1] boundary points of a region.

Step 2: Let p be a point inside the boundary.

Step 3: The objective is to fill the entire region with ls. Assume that all

non-boundary points are labeled 0, assign l to p,

Where X0 = p, and B is the ‘cross’ structuring element shown in figure .

Step 5: When Xk = XM, the algorithm terminates.

The set union of Xk and A contains the filled set and its boundary.

.. 1; .. F
-_i_-|-_

l

-intuit}

-nnnnnnnqn-1 ‘i
1 lT in

#¢ L, A

Figure {The region in A is filled using the structuring element B.
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3.3.3 Algorithm for extracting connected components in an image

Cormected components [1], [2]can also be extracted using

morphological operations.

Step 1: Let Y represents a connected component in an image A and a

point p in Y is known.

Step 2: Iterate

Xfi = (-X5!-1 55 B)n Atfor k = 1121" ‘ whereX0==pandBisa

matrix of ls.

Step 3 :

If Xk = Xk.1 the algorithm has converged and let Y = Xk.

3.3.4 Definition

Thinning and Thickening operators are defined as follows:
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Example:

Thickenning: -X   =  U (‘X  B)

3.3.5 Definition

An important step in representing the structural shape of a planar region

is to reduce it to a graph. This is very commonly used in robot path

planning. This reduction is most commonly achieved by reducing the

region to its skeleton.

The skeleton [1], [2] of a region is defined by the medial axis

transformation MAT. The MAT of a region R with border B is defined as

follows: for each point p in R, find its closest neighbour in B.

If p has more than one such closest neighbour, then p belongs to the

medial axis (or skeleton) of R. Closest depends on the metric used.

Figure shows some examples with the usual Euclidean metric.
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Figure: The skeletons of three simple regions

The skeleton of a set can be expressed in terms of erosions and openings.

K

5' (A) = U .S';¢(A),
Thus, it can be shown that k~.=0

s,,(A) = fj{(A e rs) -~ [(A9 3:8) O B],where k=0

3.3.6 Reconstruction using Skelton:

. . (A 9 l<>B) . . . .
B 1S a structuring element, indicates k successive erosrons of

A, and K is the last iterative step before A erodes to an empty set.

Thus A can be reconstructed from its skeleton subsets Sk(A) using the

equation

KI!

A = kL*]0(g$k(A) @ EB},

Sk(A) H3} kg
where T represents k successive dilations of Sk(A).
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3.4 Vincent’s decomposition theorem

3.4.1 Definition

A convex set (in R2) is one for which the straight line joining any two

points in the set consists of points that are also in the set.

3.4.2 Definition

A set is bounded if each of its elements has a finite magnitude, in this

case distance to the origin of the coordinate system.

3.4.3 Definition

A set is symmetric if B = -B. The sets N4 and N3 in Figure are examples

of convex, bounded, symmetric sets.

3.4.5 Theorem

Vincent's theorem, [l]when applied to an image consisting of discrete

pixels, states that for a bounded, symmetric structuring element B that

contains no holes and contains its own center, : [Om E B

D(‘4’B) xfigg =AU(a’d‘@B) where BA is the contour of the object.

That is, HA is the set of pixels that have a background pixel as a neighbor.
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3.4.6 Implication of the theorem

The implication of this theorem is that it is not necessary to process all

the pixels in an object in order to compute a dilation or (using eq. ) an

erosion but have to process the boundary pixels. This also holds for all

operations that can be derived from dilations and erosions.

3.5 Boolean Convolution

3.5.1 Definition

An arbitrary binary image object (or structuring element) A can be

represented as: [1]

A H Z§=_,_gE;§§,_pwa[j, k].8[m -j_,~n -— k]

where Sand * are the Boolean operations OR and AND , a[j,k] is a

characteristic function that takes on the Boolean values "1" and "0" as

follows:

M={z;;'::::}

and d[m, rz] is a Boolean version of the Dirac delta function that takes on

the Boolean values " l " and "0" as follows:
- 1~'=k=01

amklai giitjhmxvm  ‘ei
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3.5.2 Definition

Dilation for binary images can therefore be written as:

D(A_, B) =  Za[j,lc]~b[m-- j,n - k] = a ® h
)7--=-mj--ca

which, because Boolean OR and AND are commutative, can also be

written as

-_+a:- -ms

D(A_,B) = V gza[rn--_;’,n-k']*b[_],k"]= b ®a = D(B,A)

iv

3.5.3 Definition

Using De Morgan's theorem:lfii-r i- . -4. ---_ 1
(a+b_)=a ~b and (_a"b)=cft+b

on eq. together with eq. , erosion can be written as:

4*"? +00

E(A, B) =   u[m -~ j, n -~ It] +l b [—_;‘,-kl’)
if--¢A>_g~ -on

Thus, dilation and erosion on binary images can be viewed as a form of

convolution over a Boolean algebra.
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When convolution is considered, choice of the boundary conditions for

an image is essential. The two most common choices are that either

everything outside the binary image is "0" or everything outside the

binary image is "1".
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Chapter 4

Morphological operators defined on lattices

CONTENTS
4.1 Lattices

4.2 Properties of Lattices
4.3 Morphological Operators

defined on Lattice
4.4 References

4.1 Lattices

4.1.1 Definition Binary Relation

A- binary relation from set A to set B is a subset R of A KB. Thus for any

pair (x,y) in A XB, x is related to y by R, written xR y, if and only if (x,y) 6

R. [9]

4.1.2 Definition

Let R be a binary relation on a set A.

F R is reflexive if for all x GA, xRx.

Iv R is symmetric if for all x, y EA, ifxRy, then yRx.

D» R is transitive if for all x, y, z GA, if xRy and yRz, then xRz.

Iv R is antisymmetric if for all x, y EA, if xRy and yRx, then x=y.
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Ir R is a partial order relation if R is reflexive, antisymmetric and

transitive.

4.1.3 Definition

Let R be a partial order relation on set A.

Two elements a,b GA are comparable if either aRb or bRa, i.e. either a lib

Of b

4.1.4 Definition

Let R be a partial order relation on set A. If all elements of A are

comparable with each other, then the partially ordered set A (w.r.t. R) is

Said to be a totally ordered set.

4.1.5 Definition

LetR be a partial order relation on set A. An element a EA is a maximal

element of A if b ‘.50 holds for every b GA whenever b and a are

comparable.

4.1.6 Definition

Let R be a partial order relation on set A. An element a GA is a greatest

element of A if b fa holds for all b GA.

4.1.7 Definition
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Let R be a partial order relation on set A. An element a GA is a minimal

element of A if a Ifb holds for every b €A whenever b and a are

comparable.

4.1.8 Definition

Let R be a partial order relation on set A. An element a GA is a least

element of A if a "_'Sb holds for all b GA.

4.1.9 Example

Let A be the set of all subsets of set { a, b, c}. The “subset” relation Qon

A, i.e. Vu,v GA, u ‘.5 v or uRv , iff u Qv, is a partial order relation.

4.1.10 Definition

A lattice (Lg) is an ordered set in which any two elements X1 and X2

have both a sup. (X1 VX2) and an inf (X1 A X2).

The lattice is complete if any family of element Xi has both a supremum

and infimum [9].

Complete lattices are partially ordered sets, where every subset has an

infimum and a supremum. In particular, it contains a least element and a

greatest element.
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4.2 Properties of Lattices

4.2.1 Idempotency

x A x "-=_ x, x V x = x

4.2.2 Commutativity

xl'\y=inf(x,y)=inf(y,x)=y ftx.

X V}’=$'1P(X>Y)=$11P(Y>X)=)’V x

4.2.3 Associativity

x V(y1’\z)=(xVy) Az,x l\(y V z)=(x Ay)V z

4.2.4 Absorption

x V(xA.y)=.x, x1'\ (x y)=x

4.2.5 Definition

An algebraic lattice (L, V’ , A ) is a non empty set L with two binary

operations A (meet) and V (join), which satisfy the following conditions

for all x, y, z [9]

L1. x fiy = y Ax, x Vy = y V x..(Commutative)

L2 .x V (y A2) = (xiV y) A 2, x A (y V z) = (x Ay) V z (Associative)

L3. ~x V (x A y) = x, x A (x V y) = x (Absorption)

L4. (Idempotent) x A xi = x, XV x = x
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4.2.6 Definition

Let (L, V , A) be a lattice and let S be subset of L. The substructure (S, V , A )

is a sub lattice of (L, V , A ) if and only if S is closed under both operations V

and A.

4.2.7 Definition

A lattice L is said to be modular if for all x, y, 2 , xSz then

xV(y Az)=(x\! y) /5-Z.

4.2.8 Definition

A lattice (L, V , H) is called a distributive lattice if for any a, b, c e L,

a V(b 1“ic)=(aVb)1‘\(aVc)

a l\(bVc)=(a /\b)V(a Ac)

4.2.6 Definition Compliment

In a lattice L with universal bounds 0 & 1,an element ‘Y E 3‘ is said to have

sf‘!-J'“_ 1._§=;
acomplimentfi Ea if ‘M’ X E Z'and3'f‘x 0

4.3 Morphological Operators defined on a Lattice

4.3.1 Definition Dilation

Let (Li be a complete lattice, with infimum and minimum

symbolized by f\and V, respectively.[l],[2].[11]
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A dilation is any operator 5 t L --> Lthat distributes over the

Er

6 ‘X, = 6 .X-.i ____
supremum and preserves the least element.  ( )  J, 6  _

4.3.2 Definition Erosion

An erosion is any operator 6 I L -—~—>s Lthat distributes over the infimum

4.3.3 Galois connections

Dilations and erosions form Galois comections. That is, for all dilation 5

there is one and only one erosion Ethat satisfies

X S <‘-'70’) <='> 5(.X) § Yfor all X3}; 5 L.

Similarly, for all erosion there is one and only one dilation satisfying the

above connection.

Furthermore, if two operators satisfy the connection, then 5 must be a

dilation , and Eran erosion.

4.3.4 Definition Adjunctions

Pairs of erosions and dilations satisfying the above comiection are called

"adjunctions", and the erosion is said to be the adjoint erosion of the

dilation, and vice-versa.

4.3.5 Opening and Closing
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For all adjunction (515), the morphological opening "r = L —--» Land

morphological closing ¢£> I L -—> I/are defined as foll0ws:[2]

'7' : '55, and Q5 2 56.

The morphological opening and closing are particular cases of algebraic

opening (or simply opening) and algebraic closing(0r simply closing).

Algebraic openings are operators in L that are idempotent, increasing,

and anti-extensive. Algebraic closings are operators in L that are

idempotent, increasing, and extensive.

4.3.6 Particular cases

Binary morphology is a particular case of lattice morphology, where L is

the power set of E (Euclidean space or grid), that is, L is the set of all

subsets of E, and fiis the set inclusion. In this case, the infimum is set

intersection,‘and the supremum is set union.

Similarly, grayscale morphology is another particular case, [2] where L is

the set of functions mapping E into R U {Dov '"OO}, and cg, V, and /\,

are the point-wise order, supremum, and infimum, respectively. That is,

is f and g are functions in L, then f '.§ Qif and only if

5: g(_33):V33 E E; the infimum  Agis given by
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(ffl 9) (33) :  /\9(37); and the supremum f V Qis given by

oi v 9)(117) = re) v 9(1*5).[1]

4.3.7 Definition Morphological filter

A morphological filter is an increasing and idempotent transformation of

a complete lattice into itself. [2]

Image filters are useful for removing image components. Morphological

dilation is used to smooth small dark regions. Morphological erosion is

used to smooth small light regions. Altemating sequential filters are a

combination of iterative morphological filters with increasing size of

structuring elements.

Let X denote a binary image and let B denote a binary structuring

element. The Altemating Filter is defined as an opening followed by a

closing or a closing followed by an opening i.ie. AF B (X ) = (X 0 B) 0 B or

AFB(X) = (X¢B)<>B.

An Altemating Sequential Filter is an iterative application of AFB (X)

with increasing size of structuring elements denoted as

AFBN (X)AFBN_l(X)......AFBl (X) whereN is an integer and BN,BN_1,....B,

are structuring elements with decreasing sizes. BN = BN4 69 B], N 2 2
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Chapter 5

A g Morphological Slope Transforms
CONTENTS
5.1 Introduction
5.2 Translation Invariant

Systems
5.3 Legendre Transform
5.4 Slope Transforms
5.5 Upper and Lower Slope

Transforms
5.6 References

5.lIntroduction

Fourier transforms are among the most useful linear signal

transformations for quantifying the frequency content of signals. It is

useful for analyzing their processing by linear time ~ invariant systems

.They enable the analysis and design of linear time invariant systems

(LTI)in the frequency domain.

Slope transforms are non linear signal transforms that can quantify the

slope content of signals and provide a transform domain for

morphological systems. They are based on eigen functions of

morphological systems that are lines parameterized by their slope.

The operation of tangential dilation, describes the touching of

differentiable surfaces. It generalizes the classical dilation, but is

7l



invertible. It is shown that line segments are eigen functions of this

dilation, and are parallel-transported, and that curvature is additive. The

slope transform is a re-representation of morphology onto the

morphological eigen functions. As such, the slope transform provides for

tangential morphology the same analytical power as the Fourier

transform provides for linear signal processing. Under the slope

transform dilation becomes addition (just as under pa Fourier transform,

convolution becomes multiplication).

The slope transform has emerged as a transform which has similar

properties with respect to morphological signal processing. Fourier

transform does this with respect to linear signal processing .Main

property of slope transform is that it transforms a supremal convolution (

morphological dilation) into an addition ,which is similar to the concept

in Fourier transform transfonns. In Fourier transform a linear

convolution changed into a multiplication.

There is an important difference between the Fourier transform and its

morphological counterpart ,the slope transform. The Fourier transform is

invertible but the slope transform only has an adjoint in the sense of

adjunctions. This means that the ‘inverse’ of the slope - transformed

signal is not the original signal but only an approximation within the sub

collection of convex or concave signals. Hence convex analysis plays an

important role in the study of the slope transform. Concepts from the
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theory of convex sets and functions, such as the Legendre transform ,the

(Young — Fenchel ) conjugate ,the support function ,the guage function

,and set polarity are listed. The complete lattices considered in this

chapter are either lattices of sets or of functions.

5.2 Translation Invariant Systems

In convex analysis and optimization the nonlinear signal operation GB is

usually called supremal convolution. A dual operation is the so called

infimal convolution given by (ft:1g)(x)= /kt’ f (x — y) + g( y) .ye

ciis closely related to the morphological erosion 6), because

f (fig: f c1(~—_§) where §is the reflection of g given by

§(x) = g(—x) .Denote EB and u as the supremal and infimal convolution,

respectively, to distinguish them from the concept of a dilation and

erosion operator on a lattice.

5.2.1 Definition DTI system

A mapping A which sends a signal f to a transformed signal A() is

called dilation translation invariant(DTI) system if

i) it is a dilation, ie, A(v,. fl.) = v,.(Af,.) ,

ii) if it is translati0n- invariant, ie. A(fy + c) = A( f) y + c for any

shift y and any real constant c .
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A system is DTI if it is a horizontally shift-invariant and obeys the

morphological supremum superposition principle

AL;/I ft. (x) +c,] =  [A(f,(x) + c,.], where{fi}is any signal collection and

c, e R .

Many important aspects of a DTI system[l],[1 1] can be determined in

the time or spatial domain .

O,x=0

The morphological lower impulse qA given by qA (x) :={ 0—0O,JC ¢ .

Let the corresponding output of the D T I system A when the input is the

lower impulse be its lower impulse response: g := A(qA) .

This uniquely characterizes a DTI system in the time domain, because

any DTI system is equivalent to a supremal convolution(also called

‘morphological dilation’) by its lower impulse response: A( f ) = f (-9 g

5.2.2 Definition ETI system

A signal operator s : f t-—> s( f ) is called an erosion translation invariant

(ETI) system [1 l] if

i)_ it is horizontally shift —invarian_t
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ii) obeys the morphological infimum superposition principle

5|:/\_f,(x)+c,]= _/\1[8(f,-)(X)+C,-1 where C, G R.

Let the upper impulse response h of an ETI system 8 as its response

h I: flqv) to the upper impulse h = —§.

O,_x=O

qv(x)r={ O*°°=” ‘then it follows that s(f)==f|:1h.

5.3 Legendre Transform

Let the signal x(t) be concave and have an invertible derivative

x’ = 55- .The Legendre transform of x is based on the following concept:

Imagine that ,a graph of x ,n0t as a set of points (t,x(t)) but as the

lower envelope of all its tangent lines .The tangent at a point (t,x(t)) on

the graph has slope and intercept equal to X = x(t) - a(t)

XL (oz) = x[(x')"' (a)] — a(x')“(a) where f " denotes the inverse. The

function X L of the tangents intercept versus the slope is the Legendre

transform [1],[11] ofx and x(t) = XL[(XL')"(—r)) +t(XL')“ (-1)] 0
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tangent.

Note:

If the signal x is convex, then the signal is viewed as the upper envelope

of its tangent lines.

5.4 Slope transforms

5.4.1 Definition Upper Slope Transform

For any signal x: R —> I-Q its upper slope transform is the function

X V : R —> I? with X V(a) = \1Qx(t)-—at,a e R .The mapping-between the

signal and its transfomi is denoted by AV : x -—> X V .

If there is one to one correspondence between the signal and its

AV

transform, then it is denoted by x(t) -—>XV (a)
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For continuous-time signals that are convex or concave and have an

invertible derivative, all three transforms coincide and become equal to

the Legendre transforrn.(irrespective of the difference due to the

boundary conditions).

The morphological signal operators are parallel or serial inter

connections of morphological dilation and erosions, respectively, defined

(f + g)(x) = ylgd f (x —y)+ go»)

as and (f + g)(r) = Q, f (X + y) — g(y)
where v denotes supremum and

/\ denotes infimum.
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- (1) Original parabola signal .r(t) = —t"/2 (in dashed line) and its morphological opening (in solid line) by a fiat stmcluiing clcmem [-5, 5]
ppcr slope transform of the parabola (in dashed line) and of its opening (in solid line).
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5.4.2 Upper Slope Transform and Concave function

Let x(t) is concave and has an invertible derivative. For each real a , the

intercept of the line passing from the point (r,x(t)) in the signals graph

with slope 0: is equal to x(r) — at .

Let 0: be fixed and t is varying. Then there exist a time instantt' for

which the intercept attains its maximum value. This happens when the

line becomes tangent to the graph, then x'(t') = a .Corresponding to the

variation of a , the tangent changes ,and the maximum intercept

becomes a function of the slope a .By its definition ,the upper slope

transform isequal to this maximum intercept function. Thus, if the signal

x(t) is concave and has an invertible derivative ,then the upper slope

transform is equal to its Legendre transform.

The three types of slope transforms are

i) a single valued slope transform for signals processed by erosion

systems.

ii) a single valued slope transform for signals processed by dilation

systems.

iii) A multi valued transform that results by replacing the suprema

and infima of signals with the signal values at stationary

points.
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5.5 Upper and lower slope transforms

To analyze morphological systems in a transform domain, The following

two signal transforms are useful to analyze morphological systems in a

transform domain .

Given a signal f ,its upper slope transform [l],[l l] is defined as

3V(f)(v):== v f(x)—<x v> veRdxeR" , ,

and its lower slope transform is

$$'A(f)(v):— /\ f(x)—<x,v> vezr’.— 3
xeRd

These slope transforms provide infonnation about the slope content of

signals and a description of morphological systems in a ‘slope domain’,

with functionality similar to the use of Fourier or Laplace transforms in

linear systems.

5.5.1(Properties of Upper slope transform).

For f, g e Fun(R") , y e Rd , w e Rd ,r>0 ,the following are the properties

[1 1] of upper slope transform X (oz) and the signal x(t).
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T

E 7 .  Signals   'IFa"s{°.'m  T:
w m@s  ; s>1‘<sk¥>r= v;&i>.f%;@l

V;-fi + $10) ! Vi Ci 4' Xi(a)
L s" ow ~51  lmssi
\

. |

>

xt+ozot Xa-0:5Li U  %  ,4 s “(L _s V) % , _;1'1"?)  "J X (Q/T) 5
iM“¢(—¢1# K   L X(¥a) 5

___I

"|

V==(#) 5=?f(:¢5 1 %'“%X(a)= X(-Q)
I

' |
-I

1' (t) r > O rX(a/r) ri

' I

z ‘ — -~ -~_- '_‘.* __' ,- - M ,, _ _.
:z:(i)€By(t) i X(a) + Y(a) r

gs

J sssv¢=<+>,+w+1>s  7f(+<1)+Y(o=)
:1

4. _ ='3(?Y5"i1(i)W s K %iX(<1) $,¥(¢1) Vs!
‘\@==<¢>=X(o>  M  /\,,><r(<~)s2==<v>

T or %i='{¢)L/§§(¢) A  —| L 5 X(Er%)%/§Y(a)
¢%(f)L+%s?(?3     S X(d)%@Y“(5)L

{iii ?‘

H F

m+ ya) 4 y is sqnveif” sssxv(a>@Y,\g<»>__ ___|

\

J1  = {x((2)’  fig.‘ % ‘L Y(a)  (a)Cl;I'|a] ¢4_7

The proof of two properties are given below where 2%, denotes the upper slope

transform

— 1 > _ I: A i‘ _i___p_

Signal Dilation in Time:

Amt) e y<¢>1<a> = \/ (V xv) + ya - T>) - w

= \/:z:('r) +   — 1') —
= \/¢(¢) + 1/(Q) + (IT

= X:(a) + Y(a).



Signal Addition in Time: For any signals 1:, y

Avlr(¢).,:p.e/(t.)1(a)_=.\/=1:(t).+_u(¢) - at , _ y -,. t ~ ~ ' I
S \/y(t)+/\X(b)+bt-an 't b
5 /\X(b)+\'/y(t)-(cx-—b)t”b t
= /\X(b)A+Y(cx-—b).

b

f is majorized by the affine function x|—-><x,v>+b. Therefore, by

computing the infimum of all affine functionsxH<x’v> +f (v)’ a

function which majorizes the original function f is obtained. This is

known as Adjoint upper slope transform and is given by

3V"(g)(x) = /Rd g(v)+(x,v), for a function g 1R“ —> R .The upper

slope transform maps the affine function x:—> <x,v0>+b onto an upper

impulse which equals b for v=vo and oo elsewhere. By multiplying

Sf to this upper impulse,the original input function x+—> (x,vo>+bis

again obtained.

5.5.2 Proposition Let Sf be the adjoint upper slope transform,

then (Sf, fiv) is an adjunction on Fun(Rd) .

Proof. To show that fsv (f) 3 g <:> f 5 .‘"s'v“(g).

‘ :> ’; the other implication is proved similarly.
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I5 . ' 5 ' \; ’
‘\‘ -..‘ -\ \ ~  ifl  1:‘, 1 _lAssume that Sv (f) s g :this it means that

f (x) — (x, v> 5 g(v:),x e Rd, v eRd .This yields that

f(x) $ /\veRdg(v) + <x,v>f0r x e Rd, i.e ,f 3 i'§“v(g).

5.5.3 Lower slope transform

Let f e Fun(Rd) ,the lower slope transform of f is

f"<v> = $.<f)(v) =  f(x) —(r.v)

There exists the following relationship with the upper slope transform

and the Young — F enchel conjugate :

1“ <10 = ~f' o) = -t-fr (-10 _

5.5.4 Proposition (Properties of SA ).

For f,ge Fun(R"),yeRd,we Rd,r >0 and CG R:

a) (f,,)" =(f“)[-,]

b) tfm)“ =(f")..

C) (f+¢)“ =f“+<1

<1) trf)“ =rf“(-/r)

6) f(r-)“ =f“(-/F)
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D f(--)“ = f “ (--)

g) (f@g)“ =f“ +2“

Analogous to the result, define 3‘"A (g)(x) = v€\;d g(v) + (x, v) as the

adjoint lower slope transform.

5.5.5 Proposition (SA , Sf) is an adjunction on F un(R") .

5,5.6 Morphological transform system

A system (M,X,S)is said to be a morphological transform system if

i)5[X(I)@y(l)l = X(a) +Y(a)

in 5I>e(r)]=X(a)*T(a)

Where M is the collection of Morphological operators definedion set of

functionals X and S is a transform.

If S = AV upper slope transform then (M, X, AV) is called

morphological slope transform system .Also, if X is a concave class then

A'(x(t)) = xt where A' = AA (Av).
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5.5.7 Definition

Let f be an element of Fun(R" ). The function f is u.s.c (upper semi

continuous) if ‘v’t,x e R” , f (x) < trimplies that f ( y) < t , for ever in some

neighbourhood of x.

The function f is l.s.c (lower semi-continuous) if, Vt and x inR" ,

f (x)>t

Implies that f ( y) > t , for every y in some neighobourhood of x.

The collections of u.s.c and l.s.c functions are denoted by Fun(Rd) and

Fun(Rd), respectively.

5.5.85 Proposition

The set Fun(Rd) is a complete lattice under the pointwise partial ordering

with the point wise infimum ,and with supremurn .

5.5.9 Convex and concave functions.

A function f is concave if its hypograph is convex.

The concave and convex functions are denoted by Fun(Rd) and FLm(Rd)

respectively. Note that the subscript characterizes the shape of a concave

function.
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5.5.10 Proposition

If f is concave ,then dom (t) is a convex set.

If f is convex,then dom(f) is a convex set.

5.5.11 Proposition

a) f is concave iff is a convex set in Rd R

b) f is convex if is a convex set in Rd R.

Concavity and convexity are dual notions in the sense that f is concave

iff —f is convex.

As grey scale morphology is usually based on the notion of the hypo

graph. Consider concave ratherthan convex functions. From the duality

principle ,it follows that both approaches are equivalent.

The infimum of an arbitrary collection of concave functions is concave

.This doesnot hold for the supremum. Define the concave hull of an

arbitrary function f as the infimum of all concave functions which lie

above f. This is a concave function ,the smallest concave function above

f. Dually define the convex hull as the supremum of all convex

functions below f.
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5.5.12 Proposition

a) The set Fun(Rd) is a complete lattice [1],[2][11] under the

pointwise ordering ,with the point wise infimum f1 and with

supremum .

b) The set Fun(Rd) is a complete lattice under the pointwise

ordering ,with the point wise supremum fi and with infimum .

Proposition gives that is an opening with invariance domain Funi(Rd)

Fun(R d) ,the l.s.c convex functions.

5.5.l3‘Proposition

a) The operator is an opening on Fun(Rd) with invariance domain

the l.s.c convex functions.

b) The operator is a closing on F un(Rd) with invariance domain

the u.s.c concave functions.

5.5.14 Corollary

(a) S"V5v is a closing on Fun(R‘i)with invariance domain the u.s.c

Cl
T

concave functions, 1.e V2s'V= flu_,6A.

(b) Svfif is an opening on F un(R") with invariance domain the l.s.c

(“*t‘*"'(-—_..
convex functions, i.e, Jvov afav
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I

Apply Proposition to the adjunction (S“V,3V)then it implies that

Sv (IQ! fl.) = a¢av(jé\J Sv ( )) ,if  is u.s.c and concave for every j e J .

5.5.15 Proposition

Forf,g f“ and ceR:

a) 3‘i,(fw) = (5‘1(f ))M,

b) i'*‘Z(1’[y1) = (3‘1(f))_,,

C) 3"v(f+@) = 5‘Z(f)+c,

<1) 3‘1('"f) = P33 (f )(-/ r) ,

6) 3T,(f(r-)) = 3‘T,(f)(-/ r),

0 3?, (f (—-)) = 31 (f )(—~) ,

g) 5“v(f\1g) = i§“v(f) + 3‘"v(g)

Further, it is easy to verify that S"V (— f) = —-i"5V (f); (

In other words, Sfl is the negative operator of Sv. For, the upper slope

transfonn acts on functions of the spatial variable x, whereas the adjoint

upper slope transform acts on functions of the slope variable v.
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5.5.16 Definition Indicator Function

The upper and lower indicator function [11] corresponding to a set X are

0 X
defined as 1V(X)(x) ={ ’x 6 E X and+OO,x ,

0,x E X . . . .
IA (X )(x) = respectrvely. It 1s evldent that X 1s closed

—Cnax € X9

Q 1V(X)l.s.c Q IA (X)u.s.c.

X convex Q I V (X )c0nvex Q I A (X )c0ncave .

5.5.17 Let a e Rdand r e R7 & H(a,r) - the hyperplane

H(a,r) ={x e Rd /<a,x> = r}

Note that H(a,r)= ¢ if 1= ioo.

H'(a.r) = {x 6 R” /(<1, xo) s r}

H+(a.r) = {x e Rd /<a,x) 2 r}.

If r= —oo then H‘(a,r) = ¢ and H*(a,r) = Rd ;dually ,if r = +oo then

H '(a,r) = Rd and H *(a,r) = ¢ .The hyper plane H(a,r) supports the set

X Q R” at h if /1 6 XmH(a,r) and X Q H'(a,r) or Xg H+(a,r).
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5.5.18 Definition Sub linear functions

A function f : Rd —-> R is said to be positively homogeneous[l 1] if -00

for r>0 and xe R".lt is sub linear if it is both convex and positively

homogeneous. For any sub linear function , f(0)=O,-ooor +00 .Note that

f I-E -oo if f(0)= -00 .

The epigraph UV( f) is a convex cone .Every sub linear function

satisfies the inequality f (x + y) 3 f (x) + f ( y);

A function with this property is called sub additive.

Example

If K Q Rd is a convex cone ,then the upper indicator function 1V(K) is

Sub linear.

5.5.19 Definition

A function  : Rd -—> R+ = [0, +oo] is called a norm if

i)  = 0 iff x=0;

ii) "rx" = |r|."x",r e R,x 6 Rd;

iii) llx + yll -é Ilxll + llyllx» Y G Rd;

Every norm is a (nonnegative) sub linear function.
89



5.5.20 Slope transform for sets: the support function

For a set X g Rd its support function [11] is defined by

0'(X)(t»=) -'= V,“ <1 x, v 2:», 125R‘: and a(X) = --0:1 if X='2.5 and the

operator  Fun (Rd)-—->P(Rd) is defined as  = flame (vi, f(v)

Note that 0(X) =-oo if X=¢.

From the observation that the support function is the point wise

supremum of the affine functions v I-> (x,v> , x e X .

5.5.21 Proposition The support function o'(X) of a set X Q Rd is l.s.c

and sub linear.

The operat0r0':P(Rd)—>Fun(Rd), which maps a set X to the

corresponding support function, the slope transform for sets.

There is a simple correspondence between the slope transform for

functions and that for sets, namely,

3\/(I/\ (X ))(v) = gr, 1. (X Xx) — (x. v) = J;/X— (x. v)

o'A(X)(v)= /\ (x v).>

xeX

Remark. 0" can be consideredas the ‘upper’ slope transform. The lower

slope transfonn should then be defined as o"A (X )(v) = AX (x, v).
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5.5.22 Distance transform

The distance transform is an operator normally only applied to binary

images.

The result of the transform is a grey level image showing the distance to

the closest boundary from each point.

Let  denote the norm on Rd given by

Hxup = (lxllp +|x2]p +.....+|xd|p)””.

Given a setX Q Rd ,its distance transform (also known as its distance

function) with respect to p-norm is given by DP (X )(x) = AXHJC — y||p.ye

The distance transform [1 1] has various applications in image analysis

and computer vision. For example, its thresholds at levels r>0 yield the

multi scale dilations of X by the balls rBp ,where Bp is the unit ball with

respect to the p- norm. Further (for p=2) , its local maxima provide the

points of the skeleton(medial) axis of X " .

Consider the upper indicator function Iv (X) ,and the convex conical

structuring function g(x) =

D,,(X)(X) = yQd(1v(X)(y)+||X - yllp) = ([v(X )'118)(x);
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The distance transform of X can be obtained as the infimal convolution

of the upper indicator function of X with the conical nonn function. This

infimal convolution is equivalent to passing the input signal , i.e ,the

set’s upper indicator function IV (X) ,through an ETI system with slope

response

g"(v) =xQd||x P —(x,v).g“(v)SO .

By using Holder’s inequality ,|(x,v)] 5 "x . v|[ where the exponent q is

. l 1
determlned by —- + — =1P q

That is, the distance transform is the output of an ideal cutoff slope —

selective filter that rejects all input planes whose vector falls outside the

unit ball with respect to the norm , and keeps all the others unaltered.
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Chapter 6

Generalized Structure for Mathematical Morphology *

CONTENTS
6.1 Introduction
6.2 Different structures for

Morphological Operators
6.3 Generalized Structure for

Mathematical Morphology
6.4 Results in Generalized

Structure
6.5 References

6.1 Introduction

When the ETI and DTI systems are related via an adjunction, then there

is also pa close relationship between their impulse responses. Namely ,let

sbe an ETI system, and letA be its adjoint dilation. It is easy to show

that A is a DTI system[11], and therefore A( f ) = f G9 g ,where g is the

lower impulse response. Since it is the generalization,no seperate proof

is required for most of the results. However, proofs are given for new

propositions. Examples are given for some generalizations. This

generalization is helpful for developing the theory of Mathematical

Morphology. This chapter give the relation between combinatorial

convexity, mathematical morphology and image processing.

*Published in International Journal of Computer Applications (0975 ~ 8887), Volume 6- No.3, September

2010.
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6.2 Different Structures for Morphological Operators

Moore family is defined by using a partially ordered set L .It also

satisfies certain properties on L.

6.2.1 Definition Moore family

Let L be a poset.

A subset M of L is a Moore family if every element of L has a least

upper botmd in M.

Vxx E LL, 33'}! Es M,yM3* 2 xandx and Vzz E MM,z z 3 xx =?> zfz I3, yy]

A closure operator on L is an increasing, extensive and idempotent

operator from L —~>L.

6.2.2 Proposition

Let L be a poset. There is a one to one correspondence between Moore

families in L and closings on L, given as follows.

To a Moore family M, associate the closing defined by setting for every

xt-EL; (x) is equal to the least yEM such that y.2"x.

To a closing, one associates the Moore family M which is the invariance

domain of M = Inv (i.e. M={qp(x)/x E. L}.

96



6.2.3 Convex geometry

Let S be a set ,consider the family T of subsets of S with the following

properties:

(MT, S67‘,

A, B57‘ inmiiesfl. G Be?‘

This family defines a closure operator ¢(X) ='- fi{Ae’I’,X Q Ad}.

Every closure operator defines a family T’ with the above properties.

Elements of T or elements defined by rpm will be called convex. We call

the pair (545) is a Convex geometry if ¢verifies the anti-exchange

axiom[6]

V11. 3' E ¢(X)..x* # }’,:|: E ¢(X U y)implies y E ¢(X U x)

In the .sa'm8way,.If ¢(X)  S, 3p E $\_¢(X),¢(X U p) =  U p

Corresponding to a partially ordered set ,we have a graphical

representation, known as Hasse Diagrams. So we can infer that Poset

give some geometrical representation. In view of this we can define

Poset Geometry.
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6.2.4 Poset geometry

Let P be a partially ordered set and X be a subset of P, Define

Dp,(X) ={yeP,3/$2 xfoir some .1:eX}, (P, DP] is a convex geometry

called Poset geometry which are characterized by the following:

The convex geometry (S,¢)arises from the poset geometry on a Poset P

if and only if ¢>(A U Bl) = ¢>{A) U ¢-(3) V.-4,8 Q S.

Definitions of Dilation and Erosion is given below. We also give the
I . , ~

definition of Alexandroff space ,in order to link it with Morpholgy.

6.2.5 Dilation

A dilation is defined by an operator 8:P(S) —-Q P(S) with the following

pr0perties:<'i(¢) === <11, A.B eP($),5( A U B] = 5{ A\) U 6(8).

6.2.6 Erosion

An erosion is defined by an operator 2; P(S) -—-Q P(_S) with the following

properties:  = 5.fi.B£*P($)_, D 5’) =  112(3)

6.2.7 Alexandroff space

A topological space is an Alexandroff space if the intersection of any

familyof open sets is open(resp.the union of any family of closed sets is

closed)
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Let 5 be a dilation on S. For any dilation, define a binary relation as

fOHOWSI  ~. (H:--’._ A ‘ =1 ~__§__':_
"~'l.r'\._

xRy is equivalent to xs5(y) , for ;z',ye$ or xR‘y is equivalent to

8(x_) Q 8{3.*),eV:t<; 3? E S

6.2.8 Result

Let 8 be a dilation on S. R its binary relation canonically associated with

it. Then the following are equivalent.

i) R is reflexive and transitive

» e ~( us "'“'\1%‘
i"  ,. '¢l\?l -38.23”

11) xRy IS equivalent to 6(x} Q 8(}')  ~ ‘ ’
\ \ I

iii) defines a dual Moore fam'

/Q '
_,,\_ \_ /$7

\ \ " _ y . “"“

11y.

_ /
. mi‘-A" /' I I \ , I

__-I-""’/I

Proof. .i) ==’ii) .Since R is reflexive and transitive, anon a(><) and anon

5(y).Therefore 6"(x) Q 6(}#).

=:> . _ .
H Ii) iii) .Since 50:) Q 66’) ,by definition 6 defines a dual
Moore family..-;=¢ .

iii) i). Since 8 defines a dual Moore famil
and transitive.

y,it is both reflexive
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6.2.9 Proposition

Let S be a set . Let N: S-+ P(S) corresponding to p by

’u’x,y E S, x E N(y)  3' E N(x) M xpy and N(x) = {y 6 S/‘xp}#}

Then (i) N separates S in a primary sense

(ii) (S, N) is a Poset geometry.

(iii) (S,N) is a To Alexandroff space.

6.2.10 Proposition

(S,N) is separated in a primary sense if N verifies the following

two properties.

For any family (xi), ;E I of elements and for any element xE S, verifying

N(x)§ um :~:(x.). 5; e 1 such that Not) sN(>< ,-)

N(x) = N(y) is equivalent to x=y for any x, y €S

6.2.11 Definition

¢ = sob‘ is called ta morphological closure and

wix) = E $6/50') Q 5(1) 1}
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6.2.12 Result

Let S be an infinite space and let N be defined by R. Then (S,N) is a

convex geometry if and only if VX 5.1 S,($ -- N(x),x{:) is a To~

Alexandroff space [1],[6]where q1(A) = U).M{N[N(X) U 3*) (1 5' -- N(X

6.2.13 Proposition

Let6= P(v) --> P(w)and s: P(w) -.> P(v) such that

N: v -—> Pflw) where N(v) -"= 5 ({v}) ,Vv E V and 5 = SN, £ = EN

Define 5;,(Y)= V -- as (W - Y),VYeP(W) and a£(X)= W - 6N (V-X),

XE P

Then 6;; and £3 are dual by complementation of 2N and SN.

Also Sig is a dilation and 83¢ is an erosion. AlSO6£ = 619*-i. and sg =

fip-=. where p" is defined as w p" v <===> vp w and

1:1 p w =1»  5(a) = N(v_).
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6.2.14 Proposition

Let 6 be a dilation and e an erosion. Let p be the relation defined as

before .Then

i) p is reflexive and transitive.

ii) 12> p W is equivalent to 5N(x) Q 8N(y).

iii) SN defines a Dual Moore family.

iv) en defines c1 Moore fomily.

6.3 Generalized Structure for Mathematical Morphology

6.3.1 Morphogenetic field

Let X¢ go and W_c_: P(X)such that i)l¢, X E W , ii) IfB e W then its

Q
complement B e W iii) If B; e W is a sequence of signals defined in

X, then 081' e W.
n=l

Let A= {¢ ; W -> U /¢(o/1,) = v¢(A,) & ¢(/V1,) = A¢(A,)} . Then WU is

called Morphogenetic field [22]where the family Wu is the set of all

image signals defined on the continuous or discrete image Plane X and

taking values in a set U .The pair ( Wu, A ) is called an operator space

where A is the collection of operators defined on X.
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6.3.2 Morphological space

The triplet ( X, Wu, A ) consisting of a set X, a morphogenetic field

Wu and an operator A(or collection of operators) defined on X is called

a Morphological space.

Note: If X = Z2 then it is called Discrete Morphological space

6.3.3 Definition

Let (X ,Wu,A) be a morphological space and (WU,A) be an operator

space in(X ,Wu,A).

If X is a class of concave functions then (X ,Wu,A) is called concave

morphological space. If X is a class of convex functions then

(X ,Wu, A) is called convex morphological space.[22]

6.3.4 Proposition

Every convex morphological space has * property.
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6.4 Results in Generalized Structure

6.4.1 Definition * property

Let (X ,Wu,A) be a morphological space and (WU,A) be an operator

spacein(X,Wu,/1).

Let x(a) e X , then x(a) has at least one maxima or minima in X.

6.4.2 Proposition

Every convex morphological space is optimizable.

6.4.3 Definition

Let (X ,Wu,A) be a morphological space and (WU,/1) be an operator

space in (X ,Wu, A) .

If ¢ is an operator in A and in particular if ¢ satisfies (or defines a mle )

in Pl/2, then the operator space (WU,¢)is called a geometrical space and

¢ defines a morphological geometry in WU .

6.4.4 Proposition

Let (X ,Wu,A) be a morphological space and (WU,/I) be an operator

space in (X,Wu,A)

Suppose thatgoe A,S e WU.Xl,X2 e WU :> X1mX2 eWU and
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¢(S) = r\{XI e WU / S C_'_I X1} then ¢ defines a morphological geometry,

known as convex geometry if

Vx,y e ¢(S),x ¢ y,x e ¢(S u Y) ::> y <-E ¢(S u x) . (WU,¢) is called a

convex geometrical space.[22]

Also if ¢(s) ¢ X then 32 6 X - ¢(s) and ¢(s u Z) = ¢(s) o Z.

6.4.5 Definition Poset Geometry

Let (P,S) be a poset and X be a subset of P. Define

Tp(X)={y eP/y£x,for some xeA}. Let (X,Wu,A)be a

morphological space and Wu = P,A =Tp.Then the operator space is

(P, T P) defines a geometry known as poset geometry and (P, T P) is called

a poset geometrical space.

6.14.6 Proposition

Let (X ,W;,A) be a morphological space and let (WU,¢)be a poset

geometrical space [22]in(X,Wu,A).Then (WU,¢)is called a convex

geometrical space iff ¢(X1uX2)=¢(X,)u¢(X2),‘v’X,,X2 EX.
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6.4.7 Proposition

Let (X ,Wu,A) be a morphological space. Then for y(x) e WU

, (X, y(x)) is called an anti matroid if (X, y(x)) satisfies the following.

i) gp e }/(x), 9/(x) is closed under union.

ii) For S e y(x),S ¢ ¢,3x e S such that S — x e 7/(x).

6.4.8 Proposition

Let (X ,Wu,A) & (Y, Wu,;1) be a morphological spaces. The pair (A,/*4) is

called an adjunction iff A(X) 3 Y ¢:> X S. A(Y) where Ais an inverse

operator of A.

6.4.9 Proposition

Let (X ,Wu,5 ) & (Y, Wu ,5) be a morphological spaces with operators

dilation and erosion on A. Then 5 (X ) s Y <:> X 3 z-:(Y).
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6.4.10 Proposition (For lattice)

Let (X ,Wu, A) &(Y,Wu,A) be a morphological spaces. The pair (A,/1) is

called an adjunction iff \t/u,'v e X ,3 an adjunction (lu,v,mv,u) on U such

that A(x(u)) = vXmv’u(x(v))

and A(y(v)) = /\ lu v(y(u)),V u veX x yeWueX ’ , ’ ’ U.
6.4.11 Definition

The operator¢ = s <> 6 defines a closure called morphological closure and

¢' = 5 0 e defines a kemel, called morphological kernel.

6.4.12 Lemma

Let (X ,Wu,A) be a morphological space.

¢'(S) = u{X, e WU /X, g; S }defines a kernel operator in A. The pair

(X ,¢'(S )) is an anti matroid if ¢' satisfies the axiom:

For¢',(S) _¢ go,Elz e ¢‘(S),¢‘(S — z)' = ¢'(S) — z .

Proof:

Since ¢'_(S) e WU where VVU is a morphogenetic field in a morphological

space (X, Wu , A) ¢"(S) is an anti matroid.
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Direct proof.

Since ¢'(S -— z) g S —- z ,so z es ¢'(S -— z) .From

monotonicity, S — z g: S :r> ¢'(S —- z) c: ¢'(S) .There fore

¢'(5 - 1’-‘)6 ¢'(5')

Conversely, ¢i‘(S) — z g S — z :> ¢'(¢l"(S) — 2) c_; ¢'(S — z).

There fore ¢‘(S) — z) C. ¢'(S -— z) ::> ¢'(S) - z) = ¢‘(S — z).

6.4.13 Theorem

Let (X ,1/Vu , A) be a morphological space. (X ,¢) defines a convex

geometry iff (X ,¢') is an antimatroid.

6.4.14 Definition Seperation

Let(X,Wu,A) , (X ,Wu,A) be morphological spaces. Let (A,A) be

adjunctions.(X,A)is separated in a primary sense if A verifies the

following two properties.

Let x e Xi, A(x) Q V UW A(x,.) :> Elj e I such that A(x) 5; A(xJ.)

A(x) -c= A( y) :> x = y\:/ x, y e X and ¢ = A0 .21 defines a morphological

closure.
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6.4.15 Theorem

i
Let (X, Wu ,A) be a morphological space and ¢ = A 0 A be the

morphological closure. Then the following statements are equivalent.

Aseparates X in a primary sense.

(W(',,¢) is a morphological geometrical space.

(WU,¢) is a poset geometrical space.

6.4.16 Theorem

Let (X ,Wu,A) be a morphological space and let X be an infinite set and

¢ -= A <> glbe the morphological closure. Then the following statements

are equivalent.

1) A separates X in a primary sense.

2) (WU,¢) is a morphological geometrical space.

3) (WU,¢) is a poset geometrical space

(WU , ¢) is a To Alexandroff space.
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Proof:

3) :> 4)

Let (WU,¢) be a poset geometrical space. Vy e ¢(y),3B <_; Y ,B being a

finite set such that y e ¢(B) .  y e ¢(y) -=:> y e ¢(z) for some ze Y.

(WU,¢) is an Alexandroff space

V x , 'y e ¢ (y) ,x¢y,xe¢(Yuy)=>"y6E¢(YL)x),.'.isaT0

space.

4) ::>il)

Let (WU,¢) is a To Alexandroff space.1 _ _- 
¢ = A0 A , ¢(Y) = {y e X/A(y) Q A(Y)}..'. Vx ¢ y,AseperaresX

in a primary sense.

1)::> 2)

Let L A separates X in a primaxy sense .Since A(x) _<_;i A( y)

¢(y> = A 0 2&0») and

¢(y)={y€X/A(Y);.A(y)}-¢(Y)=f\{11 EWU/YQK}

:>{yeX/yRxVxeY}
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(WU,¢) is a morphological geometrical space.

2) :2 3)

Let (WU,¢)is a morphological geometrical space. :> ¢(Y ) is an ideal of X.

:> ¢(Y)is closed and R is an order relation.  (WU,¢)is a poset

geometrical space.

Hence the result.

6.4.17 Definition Self Conjugate Operator Space

An operator space (Wu, A) is called self conjugate if it has a negation.

Example A clodum V has conjugate a * for every ‘a’ such that (avb)* =

a* /\ b* and (a*b)"=(a* *‘ b*) [23]

Example If V is a blog [4] then it becomes self conjugate by setting

V sup, whenV inf =a*: 0 -I , wh€!lV lflf. < Q < V Stlp
G

V inf, whenV sup = a

Example If X is a concave class then A* x (t)= x(~t) where A* = A/\

(A v ) .

6.4.18 Definition Self Conjugate Morphological Space

If the operator space (Wu, A) is self conjugate then the morphological

space (X, Wu, A) is called a self conjugate morphological space.
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6.4.19 Definition Operatable Functions

Let (X, Wu, A) be a morphological space. The collection K (X, W, A) of

operatable functions consists of all real valued morphologically

operatable functions x(t) defined on -X such that x(t) has finite

operatability with respect to A. A morphologically operatable function

xe K iff Ix] e K .ie. iff|A(x(0:))| S A[x(a')|

6.4 .20 Definition Morphological Transform Systems

Let ( X, Wu, A) be a perfect morphological space and K= K ( X,Wu, A)

be an operatable space. K is called a morphological transform system if

Alx. (1)1 = X<a> Q To)

Remark Since K is an operatable space,

l)A[x(t) + 31(1)] = X(a) + Y(a)

2) A[xT (r)] = X(a) O T(a)

6.4.21 Definition Morphological Slope Transform System

If A= Av in the previous definition, then K is called a Morphological

slope transform system where Av is the upper slope transform.

Let (X, Wu, A) be a self conjugate morphological space. If X is a

concave class then A * (x(t) )= x(-t) where A*= A /\ (A v) and A /\ is the

lower slope transform. Also Av (v xc) = XAV (xc)
Vc
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6.4.22 Proposition (Characterization of Slope Transf0rms).*

A Slope transform is an extended real valued fiinction Av (or A/\ )

defined on a Morphogenetic field Wu such that

1. Av (¢ )= 0

2. Av (xc) Z0 V xc G Wu

3. Av is countably additive in the sense that if (x¢)is any disjoint

sequence[or sampling Signal]then Av (v xc) = Z AV (xc)
Vc

Remark Av takes + oo i.e Av (xc) =00 if x(t) = oo

Av (0: ) > —oo,Va unless x(t) = —oo,‘v’t

Ifx=oo ~ then Av = -00

6.4.23 Proposition Let K be a morphological transform system. Let X

be a class of concave functions. Let x(a) eX with each x(a) has an

invertible derivative. Then AV (x(a)) = L(x(a)) where L is the Legendre

transform and Av is the upper slope transform.

Algebraic stmctures are important for defining Morphological operators.

Many properties of the algebraic structure may applicable to these

operators as Well.

* lntemational Joumal of Scientific & Engineering Research, Volume 2, Issue 4, April 2011.
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Chapter 7

Partial Self Similarity ,Mathematical Morphology and Fractals

CONTENTS
7.1 Introduction

7.2 Basic Concepts
7.3 Morphological Fractals
7.4 Class of Fractal Graphs

G(k J)
7.5 References

7.1 Introduction

Scale-space is an accepted and often used formalism in image processing

and computer vision. Today, this formalism is so important because it

makes the choice at what scale visual observations are to be made

explicit. A Scale space can be described as a family of filters which

transform a given signal (Image) into a simplified signal

(image).Morphological Dilation and Erosion ,with structuring functions

of increasing size in the scaling parameter ,define a class of scale spaces.

Fractals are mathematical sets with a high degree of geometrical

complexity. It can model many natural phenomena .
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Examples include physical objects such as clouds ,m0untains, trees and

coastlines ,image intensity signals eminating from certain fractal surfaces

etc.

7.2 Basic Concepts.

7.2.1 Definition Sensitive operator

Let (X, Wu. A) be a Morphological space[l6]. Let B1 be the

neighbourhood of x e X i.e., N(x)=B1; X .Then Vx e X , x e Bl, y e B,

332 such that B. Q82 <_;X and a"(x)eB2 anda"(y)ss§2 neZ+.

Then a e A is called a sensitive operator and the operator space [16]

(Wu, A) is called a sensitive space.

Example: Dilation is sensitive. Constant signals f(x)= c are not sensitive.

7.2.2 Proposition

Let N: X-¥P(X) be defined such that N(x) = {y e X /xpy} where p is

the relation, dilation defined between x and y Vx, ye X . i.e.,

xpy:>y=6(x) where 5 is the dilation and for a e A , 0: =5 :>

5" (x) EB; =N(x), 6"(y) E §2 n e Z* , x,y e B11. Thus 6 is sensitive.
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7.2.3 Definition Perfect Set

Let Fg X . Define S(F_) =- {a/ a e (Wu,A)besensitive[6]bya e F}. If S(F)

¢¢ and (X, Wu, A) is a convex morphological space [16] then F is

called Perfect.

7.2.4 -Definition Stirring Operator

Let (X, Wu, A) be a Morphological space and let U, V; X be two sets.

Let a e A. Then or is called stirring [6] if given any neighbourhoods N1

and N;,ofU and V, Vx e U , yeV in X, Elk e Z+ such that

ak(N1)mak(N2) ¢¢ 

ais strongly stirring if Elke Z * and a set G in X such that

G<__:_a"(Nl)rfia"(N,).

7.2.5 Definition Partial Similarity

Let (X, Wu, A) be a Morphological space.

Let KQX. K is called Partial self similar or asimilar if 3Kl,K2,....K,

such that K =UK,- and for each Ki, Elcontraction maps (ow-,,,), for
.~=1

i=l‘.).... t,r=l t ,j=l,....t and k=1. w(i,j) with w(i,j) >0 such that

K1 =U ,-,1, ¢(='.1.k)(K1)"
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7.2.6 Definition Scale space

Let S ascaling on an image space L. The family {T(t)},t> 0 of operators

on L is called an (S,+) scale — space if T(t).T(s)=T(t+ s) ,s ,t > 0 and

T(t).S(t)=S(t).T(l) ,t > 0

7.2.7 Proposition

The erosion s(f) =2 f 6 b with a convex structuring element b induces

an ( S I’ 2 , + ‘/2) scale space and f is % similar.

7.2.8 Definition Anamorphic Scaling

A family Si-= {S(t)/ I > 0} of operators on L is called a scaling if S(l) =

identity element.

S(t)S(s)=S(ts) for s,t > 0.Two scalings S and §are said to be anamorphic

if 3 an increasing bijection y on T such that

S(y(t)) = S'(!) Vt e T Also ;/(1) =1 , ;/(st) = )/(s);/(t)f0rs,t e T .

7.2.9 Proposition

Anamorphic scaling are a -— similar
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7.2.10 Proposition

The erosion s(f) = f 8 b with bESP(k) for K>1 induces a(S"‘,+v)

scale space if v = 1- or + K '(2a —- 1) which implies that f is a - similar . b

is called the structuring function.

7.2.11 Proposition

Let (X, Wu, A) be a Morphological space. Let f be a similar. Then

31/1 e A such that 1/"(f) = at//(f).

7.2.12 Definition

The cross — section X, (f) [l],'[2],[5] of f at level t is the set obtained by

thresholding f at level t.

X,(f)={x/f(x)2t},where -—oo<1‘<oo

7.2.13 Proposition

If f is a fractal then 31' el such that Vi, X ,i( f )are self similar and

X =UX,(f).
Vi
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7.3 Morphological Fractals

7.3.1 Surface area of a compact set

Morphological operators extracts the impact of a particular shape on

images using structuring elements. It encodes the primitive shape

information. The transformed image is obtained by using a structuring

element .Therefore it can be treated as a function of the structuring

element.

Dilation of a set X with a structuring element Y is given by the

expression X ® Y = {x/ Y ‘ uX ¢ ¢} , Y‘ denotes the translation of a set

Y with x.

Dilation operation can be used to define the surface area of a compact

set.

Surface area [19]0f a compact set X with respect to a compact convex

structuring element Y which is symmetrical with respect to the origin is

given by

S(X, Y) = lim ----V(5X ® py)p—+O

Where 8X is the boundary of set X and GB denotes the dilation of the

boundary of X by the structuring element Y and p is a scaling factor.

Volume of a set X is denoted by V(X) .
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7.3.2 Particular Case — Fractals :

If the object is regular, the surface area will not change with pl. .For a

fractal object, S is increases exponentially with decreasing p

7.3.3 Definition Fractal Identification:

An image is segmented into the regions R,,R2, ...... "Rn if El arelation p

on Regions such that R,.pRJa if R, r\RJ.= ¢ and UR, = X .

Also Image Property of R, n R J = ¢ ,if i ¢ j .lf Image Property of R, =

Property of R}. then each R, is a fractal.

Note: Converse is not always true. For every Fractal, it is not necessary

that Image Property of R, = Property of R J.

7.4 Class of Fractal Graphs- G(k ,t)

7.4.1 Definition

L@¢F(p)=]'[f,(p,) .......... ..(1) where (p=(p,,p,,...p,,,) and f,
i=1

i=1,2,....m is a set of completely defined functions and F is uniquely

defined on R.

Define G(F) as p e G(F)itT F(p)=1.i.e F is a characteristic function of

G(F) .The set of graphs which can be generated from (1) by allowing
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each  to vary over all possible logic functions is defined as Class of

Fractal Graphs, [A18] denoted by G(k,t) where the vectors

(k = (k,_,k2,...km)) and t=(t = (t,,t2,...tm) ).

7.4.2 Definition Compression

Let R be a rectangular plane and is divided into 2”’ ><2"’ grids

represented by R( 2”‘ ><2"* ).G is a graph on R and F :R —-> {0.l} is its

characteristic function.

Given two integers sl & s2 , 0 < sl < n1 , 0 < s2 < n2 construct a rectangular

plane R'(2""" ><2"*“=) regarding its left lower corner as an origin. A

function F’ : (R' —> {0,1}) is defined as follows.

‘v'p' = (x', y’) e R'(2""" >< 2"”‘1)g,ifEl integers a, & a2 where 0 5 0:, < 2“ ,

0 3 0:2 < 2‘? such that F(p) =1 where p ==(x,y) e R , (x = x'.2“ +a,)

And (y = y'.2‘* + a2) then F '( p’) =1 ,otherwise F '( p’) -= 0

Graph G’ with F’ as its characteristic function is called a compressed

graph of G based on (s,,s2) and a compressed graph of G is denoted by

G’ = C(sl,s2.)(G) and F '( p’) , p’ e R’ is given below.

F,( ,) __ l,zjElae R'(2" x 2" )suchthatF ( p) = lwherep = (p', a)
P 0, otherwise
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7.4.3 Definition Similarity

Assume that G'&G2 are two graphs on a plane. If El a compression

transformation C(s,,s2) such that G‘ is compressed into graph

G3 =C(s,,s2)(G‘) and G2 can coincide with G3 through translating

G2 ,then GI & G2 are similar, denoted by G1 _'> G2‘

Note: Compression is nonreversible. Therefore Similarity is an

asymmetric relation.

7.4.4 Definition Self Similarity:

Le_t_G be a graph. If 3 a partition G,,G,, ...... ..G, of G and G, is aproper

sub graph of G such that G and each non empty sub graph G, of G are

similar.

For any two non empty sub graphs G,andGj. , G,.andGJ. are similar or

GjandG,. are similar, [1], [4],[ll].Then G is said to be a self similar

graph

7.4.5 The Order of Self Similarity

G is a self similar graph, if any-proper sub graph among all partitions of

G which satisfy the definition of self similarity is not a self similar graph,

then the order of similarity of G is _l.
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If the maximal order of sub graphs among all partitions of G which

satisfy the definition of self similarity is r, then the order of self ~

similarity of G is r+1

7.4.6 Definition Mutual Similarity

Let G be a graph. If 3 apartitionG,,G2, ...... ..G, of G and G, is a proper

sub graph of G such that for any two non empty sub graphs

G,andGj.,G,andGJ. are similar or GjandG, are similar, then G is a

mutually similar graph.

7.4.7 Definition Fractal Graphs G(k,t)

If a graph G can be partitioned into several sub graphs and the sub graphs

are mutually similar and each sub graph can further be partitioned into

mutually similar sub graphs etc, then G is said to be a mutual- similar

graph. G(k,t) is a mutual similar graph.[l8]

7.4.8 Generation of G(k,t) using Mathematical Morphological

operators.

F01‘ GEG(k,[),3 a unique compressgd coding M(k,f) d€I10t6d by

M(G) , where M(G) = m(k,,l‘i),m(k2,t2), ..... ..m(km,tm) and

m(kl.,t,) e M(k,.,t,.).
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Vi a point set BG(t) is given by

B6 (t) = {0,0,..p,,0,.....0/M(ki,ti)(pi) = l,p, e R1} where M(k!.,t,.)(pi)

denotes the pl. th element in matrix M (k,,t,).

7.4.9 Matrix representation of G(k,t)

M (k,.,t,.) denotes [18]the whole set of 2*‘ x2" non zero matrices with 0

or 1 as their elements and k=(k1,k2...km),t=(t,,t2...tm), and M(k,t)

denotes the cartesian product space of
m(k,,f1),m(k2,z‘2), ..... ..m(km,tm) vs e cm) ,0 can be generated by the

dilation G = B6 (1) ED BG (2) ® ...® BO (m) .

7.4.10 Procedure for generating G(k,t)

Step 1

Let G e G(k,t).

Step 2

For any i, construct B0 (t) where
BG(t) = {0,0,..p,.,0,.....0/M(k,,ti)(p,) =1,p,. e RI} and

M(G) = m(kl,tl),m(k2,t2), ..... ..m(km,tm) and m(k,,t,.)eM(k,,ti).
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Smp3

Vary i from m to 1.

Step 4

Let C = D €B BG(t) -----(*) whereD = (0,0,..,0) . Step 5

If i > 1 replace D by C and leti = i—1 and again find C using * _

Step 5

If 1' =1 then C in * is the required graph.
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Chapter 8

Morphological operators as adjunctions

CONTENTS
8.1 Introduction

8.2 Various Adjunctions in
Mathematical Morphology

8.3 Complete Lattice
Adjunctions

8.4 Generalized Adjunctions
8.5 References

8.1 Introduction

Adjunctions are pairs of operators which satisfy, some mathematical

property. In mathematical Morphology Dilation and erosion are

fundamental operators. These operators form an adjunction between two

spaces. These operators are dual operators. In this chapter, a survey of

adjunctions is materialized.

8.2 Various Adjunctions in Mathematical Morphology

8.2.1 Poset Morphological Adjunction

Let A and B two posets with two operators 6: A—i~B and 2 : B-.—'¥A. (s,8)

is an adjunction if VaEA, ‘w’aEB, 6(a)5b mai .s(b)

6 Is lower adjoint of E ands is upper adjoint of 6.[5],[22]
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8.2.2 Definition Lattice Morphological Adjunction

Let L, M be complete lattices, let ac: L--QM and 5': M—-~>L. The pair (2,6)

is called an adjunction between L &M if 5(y)£l.X¢-:=i>Y<;_‘I a(X) VXeL,

Y*~'=*M-[2],[4],[22]

8.2.3 Definition Gray scale adjunction

The set L = Fun(R2,  is a complete lattice under the point wise

ordering. Every translation invariant adjunction on L is of the form (sh,

65)

Eb (f) (X) = ARER: (f(1r» ~ 11) + MR3)

at (o (X) = vnn mt»: + h) -~ mm

The function b is a structuring element.

8.2.4 Proposition

Let L, M be complete lattices. A pair of operators (s, 6) is an adjunction

if L-£(/\m Xi) = /\ms(Xi) and 5 (\/‘W 1;.) = Vii] 6(Y_';) for arbitrary

collections {xi/iEI} QL and { yj /j e] }§ M.
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8.2.5 Definition Adjoint upper slope transform:Given a signal f, its

upper slope transform is defined as Sv(t) (v) = Vfina f(x) - < x1, v 2:»

ve~R"= and its lower slope transform is SA(f) (12) =--e Axma .f(x) -e <1 3;» 3:»

vsR‘ [21],[22]

The adjoint upper slope transform S ‘K, is defined as $i",_,g(x) =

AWE: 9(1)‘)-i~<_ x. v >is an adjunction on Fun(Rd).

i~e S‘/(fig 9  f E; SPv(Q.)'

8.2.6 Definition Adjoint lower slope transform

Adjoint lower slope transfonn is defined as

$"",.(g) (x) =-.-.- Vwga g(v)-§- <1. x,v > and ( 55,5“ is an adjunction on

Fun(Rd).

8.2.7 Definition

For a set X5; Rd, its support function o(_x) [4],[2l] is defined by

aa(iX)-(v). '== V,“ <1 x, v .l>, ~v£R‘* and a(X) =-= -00 if X=@ and the

operator 5"-ff) Fun'(Rd)--+P(Rd) is defined as 5*(f) = fiwgu F(v, f(v)].

The pair ( 5", 0') constitutes an adjunction between Fun(Rd) and P (Rd).

i.¢. a 0<)sre=>x; 5 (t)
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8.2.8 Definition The polar[4],[21],[22] X° ofa set XQRd is defined by

X°={yeRd/<x,y>51*v‘x<-EX} and the operator me defined as 1; (X) = x°.

The pair (rt, n) is an adj unction between P'(Rd) and P(Rd) and

(U££IX€)o :'nieIXt-o-'VXi- Q Rabi E I

8.2.9 Definition

Let '}~'(X) (X) = inf {r>o/X6 yx}and

)7(t) = {xe Rdl Vr>0/f(1'x):~1ir} then (7, is an adj unction between P'(Rd)

and Fun(Rd).

8.3 Complete Lattice Adjunctions

8.3 .1 Definition Complete power lattice adjunction

Let L be a complete lattice and P an arbitrary non empty set. Denote the

elements of the power set LP by X. For a given pEP, the value of X at p

is denoted by Xp. LP is a complete lattice, known as a complete power

lattice with the point wise ordering )L€Y iff Xp $Yp, pEP wherever X,

YGLP. The pair (2,6) is an adjunction [l],[9],[10],[l6] between the

complete power lattices LP and Mk iff 3 adjunctions_such that

(fi(1=’J)e = Apee£?.a(Xp) and emse = veedieea for Xe’-tee‘
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8.3.2 Definition h-adjunction

Let R be a complete lattice and T be a non-empty set. Let h: T--:R be a

suxjective mapping. Define an equivalence relation =h on T as follows.

¢= .,¢‘¢.-;> h(t) = h(t1), t, t'€T

and t _<_h t‘ <===> h(t)_<;h(t‘), t, t‘eT

1'.‘

féh is an h 0rdering[l],[9],[16]. h: R---J.?'T is called semi inverse of h and

hl;(r)=r Vr 4:-‘R.

Let 2, 5' be two mappings with the property that for s, t ET, 6(5)

5*, t w-5,; s(t) then (s,8) is called an h-adjunction.[l],[5]

8.3.3Definition

A mapping : T—-l->T which is h-increasing, bijective and has an h

increasing inverse :1)“ is called an h-isomorphism [1] on T, and also

(1,!1,1;1" 1 ) and i(tP*1, 1(2) are h-adjunctions on T.

8.3.4 Definition

(8,5) is an adjunction on Fun(E,T)p iff Eladjunctions (é',,_m.._},, tiqww) on

T,Vx, yefi‘ p ,q eP such that (s(F))p(x) = P A_.“5»EM,m, (F?

(a(F)),, (X) =\/M \/$.55 &W,(Pq (y))for F 6 Fun (E,T)"
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8.3.5 Definition

An operator 1[!iS called an H-0perator[1],[9],[l0],[l6] if lb (F2) = [1,0(F)],,

F e Fun(E,T)p, zeE.For T= R an operator 1,6 : Fun (E, Ii)? Fauna (E,§)P is

called a T-operator if it is an H-operator and if 1,b{F + ti) = 1p(F') + t for

Fe Fun (E§)P and teRP.  Every T adjunction on Fun (E,  P is given by

(@(F))P (X) =Aq-£P Ass£[Fq (X + E) " BM (2)1

<¢<F>p><><> = var vim‘ <1: -~ 21+ Bq,,(3)l

8.3.6 Proposition

The pair (e ,d) on RP given by e(t) = t—b, d(t) = t +b where be RP defines

an h- adjunction arr 11(3) -;~=_,_11(¢) <=;-=:~h(s+b) 5,: h(t +1») for S, teRP'

8.3.7 Proposition

Let B: E--+ RP be a function such that h is an h adjunction [l*],[l6] for

every be{B/265}. Then the pair (s, A) of operators on F un(E, §P)

determined by the expressions h(e(F)(x))=1\,,g h(F(z; + 2‘) - 8(2))

and h(A(F‘)(fx) T-'= V“; h(F(;r - 2') -5- 8(2:)]defines and H-invariant h —

adjunction on Fun(E, 9" ) .
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8.4 Generalized Convolution Adjunctions

A T — invariant dilation AH (F) =F H can be represented via scalar

dilation[9],[10],[22] as AH

(F)(X):vy~sE F (1') * H(.1* — 1+’)  V5;-eE -’l¥!(x--73*) (F(}*)) Where the V

translation la (11) = a *1 v is a scalardilation and let /1"} be the scalar

adjoint erosion of lg.

Therefore,

Aflix-5'?  '3' d‘-)3-‘K (77)) H(x-1"} (W) 2: e~x,;;(w) :2" H(x._}.}1 )‘!i:’:=.¥%~;)‘)-)'

is the scalar adjunction of V translations with the scalar

adjtmction(em,, dwr) and the adjoint signal erosionAH is

sH(G)(y} = An; 1”“ _g_(,_),3 (G(x)). If V is a blog, i.e. VG = V—- {V;n;,

VSup}is‘a group under ‘*’multiplication: let V* denote the conjugate of

each scalar vsV.  The scalar adjoint erosion can be written as

21*’ a(w)=a*w.  The adjoint signal erosion becomes

£n(5)(.v) = Axefi 5%-') "‘ [ HUI -' >91
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Chapter 9

_ _ Concluding Remarks andAreas using Morphological operators

CONTENTS
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9.7 Future prospects
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9.1 Signal Processing

Mathematical Morphology is developed from set theory and Integral

geometry. It is concerned with the shape of a signal wave form in the

complete time domain. Morphological filters are useful for suppressing

noise [9],[1O]. In signal processing ,a structuring element is using for

collecting information from the signals. By moving the structuring

element constantly on the signal, interrelationship among every part of

the signal is obtained.
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Using Morphological operators, the radical shape of the distributed

signal can be recognized, reconstructed and enhanced, even if the

original signal is mixed with strong noise or serious distortion.[9],[l0]

Morhological transform can decompose a complicated signal into several

parts that have a different physical significance .It can pick up the signal

from the back ground and keep its main shape trait at the same time .[l0]

Erosion of f (11) by Mm] is a kind of shrinking transform ,which can

make the target signal contract while holes enlarging. Dually ,Dilation is

an expanding process, which realizes the target signal enlarging together

with holes contracting. Generally ,Erosion and Dilation are not reversible

to each other .So conjugation of them can form new Morphological

operators.[l 1]

9.2 Robotics

Mathematical Morphology is a useful tool in image analysis, commonly

used to-extract components of the image like contours, skeletons and

convex fonns. In Robotics ,path planning is strongly influenced by the

precision of the acquisition process .Thus it can be modified by the

quality of the information obtained from the environment , and the

attributes of the system and the environment in which it works.

[l9]Image segmentation is an essential part of any intelligent system.

Sinceit is used in further processing .It is used in feature extraction,

object or face recognition ,among others.[22]
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9.3 Medical Imaging using Mathematical Morphology

Many medical imaging techniques use mathematical morphology (MM),

with discs and spheres being the structuring elements (SE) of choice.

Given the non-linear nature of the underlying comparison operations

(min, max, AND, OR), MM optimization canbe challenging.

Examples in Medical Applications :

‘E I5
<-t - IQ, > ww

2-\ I-v —

' ‘ éaw '84::y _ - .
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Example of Morphological operations on MR brain image using a

1. O

structuring element of   a) The original MR brain image b) The

threshold MR brain image for morphological operations c) Dilation of

the threshold MR brain image d) resultant image after 5 successive

dilations e) Erosion of the threshold MR brain image 1) closing of the

image g) opening of the image h) morphological boundary detection on

the threshold MR brain image .

9.4 Oil Spills Detection

Ancimportant cause of marine "pollution is oilspills. [25] Oil spills are

constantly present in the main ship traffic routes. SAR images are being

widely used for monitoring such a kind of pollution. However, they

present some drawbacks which make difficult to develop a fully

automatic oil spills detection system. A polluted area will appear in the

SAR image as a zone darker than its surrounding. Therefore,_we have to

process the image to detect and segment dark spots. This procedure will

only possible if there is contrast between the dark spots and their

background. Non linear filters are more adequate for obtaining a correct

estimation of the background." Morphological filters are useful for

tracking the slow variations of the background while preserving the

contours of the dark spots. When a pixel belongs to a dark spot, there

should be a directional Structuring Element totally included in it. Then,
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the output of this directional closing will keep the level of the dark spot.

Accurate image segmentation is implemented to extract the candidates to

be oil sticks. An accurate extraction of possible oil sticks is performed

.T0p -— hat filter is commonly using for this.

9.5 Dynamic Mathematical Morphology

Object boundaries contain important shape information in an image.

Mathematical morphology is shape sensitive and can be used in

boundary detection. Dynamic mathematical morphology only operates

on the parts of interest in an image andreacts to certain characteristics of

the region.‘ The next position of the structuring element is dynamically

selected at each step of the operation. The technique is used to detect

object boundaries.

9.6 Conclusion

As a discipline mathematical morphology has its roots in the pioneering

work of G. Matheron (1975) and J. Serra (1982). It is a powerful tool for

solving problems ranging over the entire imaging spectrum, including

character recognition, medical imaging, microscopy, inspection,

metallurgy and robot vision (Matheron, 1975, Serra, 1982, Dougherty

and Astola, 1994, Gonzalez and Woods, 1992, Haralick and Shapiro,

1992, Pitas and Venetsanopoulos, 1990, Serra, 1989, Serra and Soille,

1994, Maragos, et al., 1996, Heijmans and Roerdink, 1998). Morphology
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is now a.necessary tool for engineers involved with imaging applications.

Morphological operations have been viewed as filters the properties of

which have been well studied (Heijmans, 1994). Another well-known

class of non-linear filters is the class of rank order filters (Pitas and

Venetsanopoulos, 1990). Soft morphological filters are a combination of

morphological and weighted rank order filters (Koskinen, et al., 1991,

Kuosmanen and Astola, 1995). They have been introduced to improve

the behaviour of traditional morphological filters in noisy environments.

The idea was to slightly relax the typical morphological definitions in

such a way that a degree of robustness is achieved, while most of the

desirable properties of typical morphological operations are maintained.

Soft morphological filters are less sensitive to additive noise and to small

variations in object shape than typical morphological filters. They can

remove positive and negative impulse noise, preserving at the same time

small details in images.

Currently, Mathematical Morphology allows processing images to

enhance fuzzy areas, segment objects, detect edges and analyze

structures. The techniques developed for binary images are a major step

forward in the application of this theory to gray level images. One of

these techniques is based on fuzzy logic and on the theory of fuzzy sets.

l48



Fuzzy sets have proved to be strongly advantageous when representing in

accuracies, not only regarding the spatial localization of objects in an

image but also the membership of a certain pixel to a given class. Such

inaccuracies are inherent to real images either because of the presence of

indefinite limits between the structures or objects to be segmented within

the image due to noisy acquisitions or directly because they are inherent

to the image formation methods.

Morphological Segmentation for Character Extraction from Scene

Image [24]

Source Image: Kentucky Result Image: Kentucky
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9.7 Future Prospects

Uses of Mathematical Morphology are mainly in the following areas:

1) Image enhancement 2)lmage segmentation 3)Image restoration

4)Edge detection 5)Texture analysis 6)Particle analysis 7)Feature

generation 8) Skeletonization 9)Shape analysis 10)Image

compressionll)Component analysis l2)Curve filling l3)General

thinning 14) Feature detection 15)Noise reduction 16) Space-time

filtering

Despite modern technologies (immunophenotyping, molecular probing,

etc.) cytomorphologic examination of stained peripheral blood smears by

microscopy remains the main way of diagnosis in a large variety of

diseases (e.g. leukaemic disorders). Using tools. from mathematical

morphology for processing peripheral blood colour images, there exist an

image-based approach, to provide an objective and understandable

description of lymphocyte populations according to a specifically

designed ontology. This ontology-based framework needs a

conceptualization of the problem from a morphological viewpoint, the

introduction of an adapted language, the generation of representative

image databases, the development of image processing and data

classification algorithms to automate the procedure and the validation of

the system by human expertise.
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Appendix A

Distance Transforms

Distance measures are positive definite, symmetrical and satisfy the triangle

inequality. Distances in the image can be approximated by the distances

between neighbouring pixels .The well —known distance measures are City

block and Chess board distance. The city block distance between two points

P=(x,y) and Q=(u,v) is defined as : d4(P,Q) =|x—u]+|y-v|.

The chess board distance between P,Q is d4(P,Q) = max(| x - u |,| y — v I).

The Euclidean distance between two points P = (x, y) and Q = (u,v) is

defined as: de(P,Q)=\/(Tx—Tu)2T+A()i;-4- ii)? .The subscripts "4” and "8”

indicate the 4- neighbour and 8- neighbour and "e” denotes Euclidean

distance.

The chess board and city block methods are useful for distance

transformation. They are very sensitive to the orientation of the object.

Mathematical Morphological approach to distance transform is useful for the

decomposition of global operations to local operations.
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Properties of Lattices

I In a lattice, the following properties hold

Commutativity

x/\y=inf(x,y)=inf(y,x)=yl‘\ X.

><Vy=S11P(X,y)=S11p(y,><)=yV X

Associativity

x A (y A2) = inf (x, (yfs 2))

= inf (X, inf (y,z))

= inf (X061)

= inf( inf (X, y), 1))

= inf )((X/Ky), Z)

= (xhy) A Z.

Now, X V (y V Z) = sup (X, (yV 2))

= Sup (X, Sup (y,z))

= Sup (X, y,Z)

= Sup (SHP (W), Z)

= Sup ((X V Y), Z)

=(x_V y) V2.

Absorptivity

Now, x A (x V y) = inf _(x, XV y)



= inf (x, sup (x, y))

= x [since x s sup (x, y)]

and

xV(xf\y)=sup(x,x/xy)

= sup (x, inf (x, y))

= x [since inf (x, y) e x ].

Idempotency

x/\x=inf(x,x)=xandxV x=sup(x,x)=x.

If a lattice L under the operations A , V satisfies all the above properties then

(L,/\ , V ) is an algebraic lattice.

Granulometry

Convex structuring elements are scalable: Dilation / erosion with stnlcturing

Element nB is equivalent to n dilations / erosions with structuring element B.

Scalability is important for implementations in hardware Rectangular

structuring elements are separable. Multiple openings or closings with the

same structuring element do not alter the image any more (idempotency).

Opening and closing are so-called sieve operations .
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Using structuring elements of increasing size, one can remove small-, middle

and coarse-scale structures step by step. Such a morphological image

decomposition into structures of different size is called granulometry.

Pattern Spectrum

Pattern Spectrum is known as granulometric size density. It is employed to

measure the size distribution of an object.

Pattern spectrum PSmk(F)of a set F in terms of SE qk is defined as:

Card((F 0 rile) — (F 0 r;+,K)),z' 2 0PS, k (F) = _ where Card(F) denotes the
" Card((F¢r_ik)—(F¢r_,_1K)),z <0

cardinality of set F

Recursive Dilation

i _ F,i 1: 0
Recursive Dilation is defined as: F €BK = ,-_, where i is

(F EEK) G9 K ,i .21

defined as scalar factor and K as its base.

Recursive Dilation is employed to compose SE series in the same shape but

different sizes.
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Recursive Erosion

Recursive_Erosion is also called successive erosion which is defined as:

1 F,i=0;_1
(F6-)K)®K,i21

0

When performing recursive erosions of an object, its components are

progressively shnlnk until completely disappeared. It is Useful for distance

transform and segmentation.

Fourier Transforms and Morphological Slope Transforms — A

comparison

There exists a morphological system theory that resembles linear system

theory.

The slope transform is the morphological analogue to the Fourier transform.

It transforms (tangential) dilation into addition. Parabolas / paraboloids as

structuring functions are the morphological analogues to Gaussians in linear

system theory. In linear system theory, Gaussian convolution plays a

fundamental role: Gaussians remain Gaussians under the Fourier transform.

Gaussians are the only separable and rotationally invariant convolution

kernels.
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Analog results for morphology:

Paraboloids remain paraboloids under the slope transform. Paraboloids are the

only structuring functions that are separable and rotationally invariant.

Morphological _filters are invariant under monotonously increasing grey scale

transformations. By replacing a grey value by its maximum or minimum

within a neighbourhood, dilation and erosion are obtained. Dilation and

erosion are used for shape analysis. Sequential combinations of erosion and

dilation create openings and closings. They act as morphological low pass

filters. Granulometries are examples for morphological band pass filters. Top

hats result from computing differences between closing, original image, and

opening. They act as morphological high pass fillers.
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APPENDIX B

Operators In Software

Creating a structuring element

The following function creates structuring elements. It creates standard

structuring element.

IplConvKernel* cvCreateStructuringElementEx(int cols,

int rows,

int anchor_x,

int anchor__y,

int shape,

int* values=-NULL)

where cols and rows is the number of columns and rows in the structuring

element

anch0r__x and anchor _y point to the anchor pixel. The pixel that is checked for

when the transformation should be made or not.

shape - choose from three standard structuring elements.

CV_SHAPE__RECT
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CV_SHAPE_CROSS

CV_SHAPE__ELLIPSE

CV_SHAPE__CUSTOM

Set shape to C V_SHAPE_C USTOM, also supply the custom element. This is

done using values. This parameter is used only if shape is set to custom.

values should be a 2D matrix,]corresponding to the structuring element itself.

If values is NULL (and shape is custom), then all points in the structuring

element will be considered nonzero (a rows*cols sized rectangle).

Dilation

This operation is the basic building block of morphology. The function is.

void cvDilate(const CvArr* src,

CvArr*_ dst,

IplConvKernel* element=NULL,

int iterations?-1);

The function takes four parameters:

src: The image to dilate

dst: This is where the dilated image is stored
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element: (optional) The structuring element (use

cvCreateStructuringElementEx to create one). If not specified, a 3><3 square is

used.

iterations; (optional) Nmnber of timesto dilate src. If not specified, this is set

to 1.

Use the same image as src and dst.

Erosion

Erosion is also a basic function of morphology. The function is:

void cvErode(const CvArr* src,

CvArr* dst,

IplConvKemel* e1ement=NULL,

int iterati0ns=1);

The parameters are the same as dilation. Perform erosion instead of dilation.

src: The image to erode

dst: This is where the eroded image is stored

element: (optional) The structuring element (use

cvCreateStn1cturingElementEx to create one). If not specified, a 3 ><3 square is

used.
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iterations: (optional) Number of times

T ‘* 1; 5

to erode src. If not specified, this is set

to 1.

V " me image.This is also an in-place operation src and dst can p

ni.
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