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Phase synchronization in an array of driven Josephson junctions
Chitra R. N.a� and V. C. Kuriakoseb�
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We consider an array of N Josephson junctions connected in parallel and explore the condition for
chaotic synchronization. It is found that the outer junctions can be synchronized while they remain
uncorrelated to the inner ones when an external biasing is applied. The stability of the solution is
found out for the outer junctions in the synchronization manifold. Symmetry considerations lead to
a situation wherein the inner junctions can synchronize for certain values of the parameter. In the
presence of a phase difference between the applied fields, all the junctions exhibit phase synchro-
nization. It is also found that chaotic motion changes to periodic in the presence of phase
differences. © 2008 American Institute of Physics. �DOI: 10.1063/1.2889167�

Due to the application of chaotic synchronization in se-
cure communication to brain modeling, a great deal of
investigation has been done in this field. The presence of
even a small phase difference between the applied fields
was found to desynchronize a completely synchronized
system. Also the phase difference was found to have an
application in taming chaos in dynamical systems. Re-
cently it was observed that the end lasers in an array of
three laser system was found to synchronize while it re-
mained uncorrelated with the middle laser which origi-
nally connected the two. In this work we study an array
of Josephson junctions in the presence of a phase differ-
ence between the driving fields and its effect on synchro-
nization and suppression of chaos.

I. INTRODUCTION

Chaos in Josephson junctions �JJ� has been studied ex-
tensively after its presence was demonstrated using numeri-
cal simulation.1 When we treat JJs within the Stewart–
McCumber model, the equation describing the behavior of
the JJ is identical to the equation for a driven damped pen-
dulum which has been studied theoretically for several routes
to chaos.2,3 Thus, the JJ becomes an ideal physical system to
study chaos. The rf-biased JJs find practical importance in
the construction of devices like parametric amplifiers,
voltage standards, pulse generators, SQUID for detection of
very weak magnetic fields, etc.4–6 For these devices, it
is essential to avoid all types of noise, chaos, etc. JJs con-
sisting of superconductor-insulator-normal metal-insulator-
superconductor �SINIS� showing nonhysteretic I -V charac-
teristics with high damping has been fabricated for
programmable dc-voltage standards7 or ac-voltage standards
based on the synthesis of calculable waveforms.8

Pecora and Carroll in 1990 reported that synchronization
of chaotic systems9 could be achieved, since then different

types of synchronization such as complete, generalized, and
phase synchronization of chaotic oscillators have been de-
scribed theoretically and observed experimentally.10,11 Syn-
chronized chaotic oscillations have been found in many non-
linear systems like lasers, neural network, etc.12,13 Chaotic
synchronization also finds an application in communication.
It was demonstrated using Rössler oscillators that during the
transmission of information about a stimulus through an ac-
tive array, the stimulus created the way to be transmitted by
making the chaotic elements to phase synchronize.14 The sta-
bility of the synchronous state is analyzed by the Lyapunov
function method15 and the master stability approach.16 Phase
difference between the applied fields plays an important role
in suppressing chaos and the synchronization of chaotic sys-
tems. Duffing oscillator was studied for the effect of phase
difference on chaotic synchronization.17 Josephson junction
has been investigated for both periodic and chaotic synchro-
nization. Coupling between self-generated Josephson oscilla-
tions through a microwave transmission line was found to
play an important role in collective synchronization of the JJ
array.18 In a system of two JJs in parallel, the phase differ-
ence between the applied fields was found to bring chaotic
motion to a periodic one for a large range of parameter
values.19 A parallel array of coupled short JJs linked together
by inductors has been used to fabricate highly sensitive
detectors.20 Although there is extensive work on synchroni-
zation of coupled JJs, studies on chaotic synchronization of
JJs is much less.

In this work we analyze a parallel array of N-coupled JJs
with parameters lying in the chaotic regime and study syn-
chronization of the system. The paper is organized as fol-
lows: In Sec. II we discuss the model for an array of JJs
linked in parallel with the linking resistor Rs in between.
Section III contains the study of the synchronization in such
an array and discuss the stability of the synchronous solu-
tion. The effect of phase difference between the applied
fields on synchronization and its role in suppressing chaos is
also discussed. Results are summarized in Sec. IV.
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II. THE MODEL

The equation of a single Josephson junction represented
by the resistively and capacitively shunted junction �RCSJ�
model can be written by solving Kirchoff’s law as

�C

2e

d2�

dt�2 +
�

2eR

d�

dt�
+ ic sin � = idc� + i0� cos��t�� , �1�

where � is the phase difference of the wave function across
the junction, i0� cos��t�� is the driving rf field, and idc� is the
dc bias. The junction is characterized by a critical current ic,
capacitance C, and normal resistance R. The coupled JJ con-
sidered here consists of a pair of such junctions wired in
parallel with a linking resistor Rs.

21 A schematic representa-
tion of an array of JJ wired in parallel with linking resistors
is given in Fig. 1. The equation of motion for an array of N
coupled current driven JJs can be written in the normalized
form as

�1
¨ + ��1

˙ + sin �1 = idc + i0 cos��t� − �s��1
˙ − �2

˙ � �2a�

] ] ]

�i
¨ + ��i

˙ + sin �i = �s��̇i+1 + �̇i−1 − 2�i
˙ � �2b�

] ] ]

�N
¨ + ��N

˙ + sin �N = idc + i0 cos��t� − �s��N
˙ − �̇N−1� ,

�2c�

where i varies from 2 to N−1 and the dimensionless damp-
ing parameter � is defined as

� =
1

R
� �

2eic
.

The normalized time scale is written as t=�J1t�, where �J1

= �2eic1 /�C1�1/2. The dc bias current idc� and the rf amplitude
i0� are normalized to the critical current ic1. The actual fre-
quency � is rescaled to �=� /�J1 and the coupling factor is
defined as �s= �R1 /Rs��.

The Josephson junction is chaotic for the parameter val-
ues �=0.3, i0=1.2, �=0.6, and idc=0.3. We fix these param-
eter values for the numerical simulations. The junctions are
taken to be identical and for a coupling strength of �s

=0.37, the outer junctions synchronize while the inner junc-

tion remain uncorrelated with the two outer ones. It can be
seen from Fig. 2�a� that the outer junctions are synchronized,
whereas Fig. 2�b� shows that it is uncorrelated with the
middle junction for an array of three JJs.

III. STABILITY ANALYSIS

In order to perform the stability analysis for the synchro-
nized state of N-coupled Josephson junctions, we first con-
sider three JJs linked in parallel. In the first order form the
three identical junctions can be written as

�1
˙ = �1, �3a�

FIG. 1. Schematic representation of an array of JJ
linked in parallel with a linking resistor Rs. 1 and 2 are
the driving fields.

FIG. 2. �a� The outer junctions are synchronized. �b� The outer junction and
middle junction are uncorrelated. The parameter values are �=0.3, i0=1.2,
�=0.6, idc=0.3, �s=0.37.
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�1
˙ = − ��1 − sin �1 + idc + i0 cos��t� − �s��1 − �2� ,

�3b�
�2
˙ = �2,

�2
˙ = − ��2 − sin �2 + �s��1 + �3 − 2�2� ,

�3
˙ = �3, �3c�

�3
˙ = − ��3 − sin �3 + idc + i0 cos��t + �� − �s��3 − �2� .

From Eqs. �3a� and �3c� it can be observed that the outer
junctions are identical and symmetric with interchange of
variables in the absence of a phase difference � between the
applied fields. Hence there exists an identical solution for the
outer systems given by �1=�3=��t� and this type of behav-
ior where systems that show identical behavior is called
complete synchronization. Due to asymmetry the middle
junction may have different dynamics. The stability of the
synchronous solution of the outer junctions is analyzed by
two methods.

We define the difference variables �13
− = ��1−�3� /2 and

�13
− = ��1−�3� /2 and the approximate dynamics transverse to

the synchronization manifold is obtained by linearizing the
corresponding subsystem consisting of the outer junctions.
The equation may be given as

�̇13
− = �13

− ,

�4�
�̇13

− = − ��13
− − cos �13

+ sin �13
− − �s�13

− .

Linearizing Eq. �4� we get the approximate dynamics trans-
verse to the synchronization manifold. In terms of the Jaco-
bian matrix we can rewrite the above equation as

��̇1,3
−

�̇1,3
− � = � 0 1

cos �1 − � − �s
���1,3

−

�1,3
− � ,

where sin �1,3
− ��1,3− and cos �1,3

+ �cos �1 as �1��3 in the
synchronization manifold. The eigenvalues of the matrix are

m1,2 = −
��s + ��

2
	1 	�1 +

4 cos �1

��s + ��2
 . �5�

The stability of the synchronous state is controlled by the
eigenvalues m1,2.22 If m1,2 are complex conjugates with the
negative real part, the corresponding solution is stable. In the
above case the average of the term in the radical is found and
it is a complex number with real part greater than unity. The
real part of the largest eigenvalue is thus found to be nega-
tive and hence satisfy the criterion for stability of synchro-
nization.

As a second test, we follow the method given by Lands-
man et al.23 where the conditional Lyapunov exponents are
calculated with respect to the perturbation out of the syn-
chronization manifold. Equation �3� reduces to a set of four
equations in the synchronized state as the outer junctions
may be represented by a single set of equations. In terms of
the synchronous solutions ��t� and ��t�, we can define vari-

ables 
��t�=�1�t�−��t� and 
��t�=�1�t�−��t�. Linearizing
transverse to the synchronization manifold, we have

d
�i

dt
= J
�i �6�

and

d
�i

dt
= J
�i, �7�

where i=1,3 and J is the Jacobian matrix evaluated at 
��t�
and 
��t�. Thus we have

�
�̇1,3


�̇1,3

� = �0 1

1 − � − �s
��
�1,3


�1,3
� ,


�1,3 and 
�1,3 are the perturbations of the outer oscillators
from the synchronous solution ���t� ,��t��.

The Wronskian of the linearized system can be related to
the trace of the matrix by Abel’s formula23

W�t� = 
� 
�


�̇ 
�̇
 = exp	�

0

t

�− �s − ��dt�
 ,

where we have dropped the subscripts of the linearized vari-
able. The Wronskian gives the phase space dynamics of the
system. Taking the natural log of the Wronskian we get

ln�W�t�� = ln�
�
�̇ − 
�
�̇� = − �
0

t

��s + ��dt , �8�

which is a monotonically decreasing function of time. The
sum of the conditional Lyapunov exponents is given as

�
j=1

M

� j = lim
t→�

1

t
ln�det��
�1,3,
�1,3���t�� , �9�

where  is the matrix solution of Eqs. �6� and �7�. The sum
of the conditional Lyapunov exponents can be now approxi-
mated as

�1 + �2 � − ��s + �� . �10�

The sum of the conditional Lyapunov exponents is negative
indicating that the phase space of the coupled system shrinks
to a trajectory representing the synchronous solution. Thus
the two methods lead to the same conclusion �Fig. 3�.

Now we analyze the subsystem constituted by the outer
and the middle junctions. We define new variables �i2

− = �i

−�2 / 2 and �i3
− = �i−�2 / 2, where i=1,3. As the outer junc-

tions are identical, it is enough to study any one subsystem.
So considering the case with i=1, we write

�̇12
− = �12

− ,

�11�
�̇12

− = − ��12
− − cos �12

+ sin �12
− + 1

2 �idc + i0 cos��t��

− �s� 3
2�12

− � .

From Eq. �11� we conclude that in the presence of an exter-
nal applied field it is not possible to synchronize all three
junctions due to the asymmetry induced by the applied fields.
However in the absence of an external field, an identical
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solution can exist for all the three junctions. Extending the
symmetry analysis to a system of N JJs coupled in parallel to
the nearest neighbor coupling, the second and the �N−1�st
junction may have an identical solution for certain parameter
values. Similarly, the third and the �N−2�nd junctions may
have identical solutions, and so on. Thus in the case of an
array, from symmetry considerations we may deduce that
N /2 solutions may exist if there are an even number of junc-
tions in the array and �N+1� /2 solutions will be present for
an odd number of junctions. The time series plots for arrays
of seven and eight junctions are plotted in Fig. 4. It can be
observed from Fig. 4�a� that in an array of seven JJs the four
solutions exists for the parameter range considered. The
fourth junction has an independent solution. In Fig. 4�b� we
have plotted the time series for eight JJs.

The presence of a phase difference between the applied
fields changes the scenario completely. On the application of
a small phase difference between the applied fields, the outer
junctions desynchronize and all three junctions are thus un-
correlated. But for sufficiently large values of phase differ-
ences, all the three junctions are found to be in phase syn-
chronization. Considering the difference variables �1,2, �1,3,
�3,2 as defined earlier, we explain the phenomena as follows.
Due to the asymmetry that arises between the outer junctions
in the presence of the phase difference we need the extra

variable �3,2 to analyze this situation. The equations for the
three difference variables may be written by substituting Eq.
�3� as

�̇12
− = − ��12

− − cos �12
+ sin �12

− +
1

2
�idc + i0 cos��t��

− �s��12
−

2
+ �32

− � , �12a�

�̇13
− = − ��13

− − cos �13
+ sin �13

− + i0� sin��t +
�

2
�

− �s��13
− − �32

− � , �12b�

�̇32
− = − ��32

− − cos �32
+ sin �32

− +
1

2
�idc + i0 cos��t + ���

− �s��32
−

2
+ �12

− � , �12c�

where i0�= i0 sin � / 2. Thus each subsystem experiences a dif-
ferent driving field with the same frequency but different
phases. Due to the phase relationship between the driving

FIG. 3. �a� and �b� show that the junctions are phase correlated. �=0.3, i0

=1.2, �=0.6, idc=0.3, �s=0.37, and �=0.5�.

FIG. 4. �a� The time series plot for an array of seven JJs and �b� for eight
junctions. �=0.3, i0=1.2, �=0.6, idc=0.3, �s=0.37 and �=0.5�.
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fields, a definite phase relationship is found to exist between
all three junctions.

The level of mismatch of chaotic synchronization can be
given quantitatively by taking the similarity function S��� as
a time averaged difference between the variables �i taken
with time shift �,11

S2��� =
���1�t + �� − �2�t��2�
���1

2�t������2
2�t���1/2 �13�

and

S2��� =
���1�t + �� − �3�t��2�
���1

2�t������3
2�t���1/2 , �14�

and searching for its minimum �=min� S���. If �1�t�=�3�t�,
then S��� has a minimum value �=0 for �=0. If both �1�t�
and �3�t� are independent, then S����1 for all the time. Line
1 in Fig. 5 shows complete synchronization between the end
junctions and line 2 shows that the outer and middle junc-
tions are desynchronized when no phase difference is
present. A minimum of S��� indicates the existence of a time
shift between the two variables related to the phase shift. The
amplitudes are uncorrelated in this regime, but phase corre-
lation is present as indicated by lines 3 and 4 in the presence

of a phase difference between the applied fields. On the ap-
plication of a phase difference of � /2 the dynamics changes
to periodic one as can be observed from Fig. 6.

IV. RESULTS AND DISCUSSION

We consider a parallel array of JJs with linking resistor
Rs and the conditions for synchronization is discussed. The
outer junctions being symmetric, can possess identical solu-
tions and hence may synchronize depending on the param-
eter values. Linear stability analysis is done to find the sta-
bility of the synchronous solution of the outer junctions. The
sum of conditional Lyapunov exponents calculated for the
outer subsystem is found to be negative indicating a stable
synchronous state. From symmetry considerations we show
that all three junctions could be synchronized only in the
absence of an external field. Similarly in an array of N Jo-
sephson junctions, N /2 identical solutions may exist if the
number of junctions is even and �N+1� /2 solutions may ex-
ist if the number of junction is odd. In the presence of a
small phase difference, the system desynchronizes due to the
asymmetry induced by the phase difference. As the phase
difference is increased, in the case of three junctions, all
three junctions act as if they are driven by different driving
fields having the same frequency, but different phases. A
phase synchronization is observed between all three junc-
tions and the motion becomes periodic. Thus, suppression of
chaos can be obtained in Josephson junction systems in the
presence of a phase difference between the applied fields and
this property may find applications in the working of devices
constructed using JJs.
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