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Abstract. The dynamical behavior of a fluxon in a semi-annular long Josephson

junction in the presence of an ac-drive is studied. The non-uniformity due to the

non uniform distribution of bias current is investigated. The oscillating potential is

found to increase the depinning current. Finite difference method is used for numerical

analysis and the response of the system to the ac-bias is studied. The creation and

annihilation of fluxon is also demonstrated numerically for the first, second and third

Zero-Field step cases.

PACS numbers: 05.45.Yv, 82.20.Wt

http://arXiv.org/abs/0806.0124v1


Creation and annihilation of fluxons in ac-driven semi-annular Josephson junction 2

1. Introduction

A fluxon in long Josephson junctions (LJJ) is a well-known physical example of a sine-

Gordon fluxon. Fluxons, endemic to LJJs, have been employed in the fabrication of

devices like constant voltage standards [1, 2], flux flow oscillators [3, 4], logic gates

[5, 6]and also in qubits [7, 8]. LJJs of various geometries have been thoroughly studied

both experimentally and theoretically in the past. Fluxon dynamical properties like

fluxon pinning [9], fluxon trapping [10], and phase locked states have been studied for

rectangular [11, 12] and annular [13] LJJs.

The non rectangular Josephson junction has been in the focus of fluxon dynamics

study in recent years because of the non uniformity caused by the shape. Semicircular

geometry for Josephson junction has been proposed and fluxon dynamics has been

studied both analytically and numerically and its various applications has been discussed

[14]. It has been shown that in the presence of an external magnetic field applied

parallel to the dielectric barrier of such a geometry, the ends of the junction has opposite

polarities and because of that opposite polarity fluxons can enter the junction from the

ends under a properly biased dc current. If the direction of the current is reversed, flux

penetration and progression is not possible and flux free state exists in the junction.

This unique phenomenon cannot be achieved in any other geometry and thus this

junction behaves as a perfect diode. The effect of in-plane static and rf-magnetic field

on fluxon dynamics in a semiannular Josephson junction has also been studied [15].

The response of a fluxon to an ac-drive has investigated by several authors. It was

shown that in a system with periodic boundary condition average progrssive motion of

fluxon commenses after the amplitude of the ac drive exceeds a certain threshold value

[16]. Complex switching distributions has been obtained for ac-driven annular JJs and

theoretical explanation has been provided for the multipeaked experimental observations

[17]. The behavior of fluxon under two ac forces has been studied and it was shown that

the direction of motion of fluxon is dependent on ratio of frequencies, amplitudes and

phases of the harmonic forces [18]. In this work, we study the effect of an ac-bias applied

in the plane of a semi-annular Josephson junction. in section II we discuss the equation

representing the junction and arrive at an expression for the potential of the junction.

The numerical results are also presented. In section III we demonstrate creation and

annihilation of fluxons in semiannular JJs in the presence of an ac bias and an external

magnetic field. Section IV deals with the results and discussion.

2. Perturbation analysis of a fluxon in a semiannular junction

The dynamical equation for a semiannular LJJ in a harmonically oscillating field applied

in its plane is

ϕtt − ϕxx + sin ϕ = −αϕt + βϕxxt − b cos(kx) − γ + i0 sin(ωt) (1)

where ϕ(x, t) is the superconducting phase difference between the electrodes of the

junction with the spatial coordinate x normalized to λJ , the Josephson penetration
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depth and time t normalized to the inverse plasma frequency ω−1

0 and ω0 = c̃
λJ

, c̃ being

the maximum velocity of the electromagnetic waves in the junction. R is resistance per

unit length, Lp is the inductance per unit length, C is the capacitance per unit length,

and γ = j
j0

is the normalized amplitude of a dc bias normalized to maximum Josephson

current j0 and i0 sin(ωt) is the applied ac biasing. α is the quasiparticle tunneling loss

and β is the surface loss term in the electrodes and their values vary from 0.001 to

0.3 in experiments. The surface loss term is important and it will dominate fluxon

propagation in some cases. The term bsin(kx) is due to the semicircular geometry of

the junction and k = π
l

and b = 2πλJ∆Bk/Φ0 = 2k(B/Bc1), where Bc1 = Φ0

π∆λJ

is the

first critical field of the Josephson junction. Φ0 = h
2e

is the flux quantum and its value

is 2.064 × 10−15. The extra term bsin(kx) corresponds to a force that drives fluxons

towards the left and anti fluxon towards the right. Thus in the absence of an external

field a flux free state will exist in the junction as any static trapped fluxon present in

the junction will be removed [15]. In the absence of any perturbation (1) reduces to

simple sine-Gordon equation with fluxon solution given by

ϕ(x, t) = 4 tan−1[exp
σ(x − X)√

1 − u2
] (2)

where u is the velocity of the fluxon and X = ut + x0 is the instantaneous location

of the fluxon. σ = ±1 is the polarity of the flux quantum (which means there are

two orientations for the fluxon). A quantum of flux in one direction is called the kink

(fluxon) fluxon and that in other direction is called antikink fluxon (antifluxon).

2.1. Expression for potential function

The Lagrangian density of Eq. 1 with γ = α = i0 = β = 0 is

L =
1

2
ϕ2

t −
1

2

(
ϕx −

b

k
sin(kx)

)2

− 1 + cos ϕ (3)

where the first term is the kinetic energy associated with the energy density of the

electric field, the second term accounts for the potential energy density associated with

the magnetic field and the third term represents the Josephson coupling energy density.

From the potential energy density term, the change in potential energy due to the

combined effect of fluxon motion and the applied field can be determined by integrating

the term − b
k

sin(kx)ϕx over the length of the junction [15]. The fluxon induced potential

as a function of the fluxon coordinate X may be calculated as

U(X) = −
b

k

∫ ∞

−∞
sin(kx)ϕxdx (4)

The integration over −∞ to ∞ may be justified as the length of the junction is very

large as compared to the size of the fluxon. Substituting Eq. 2 in Eq. 4 and integrating

we get the expression for potential as

U(X) = −2bl sec h

(
π2

2l

√
1 − u2

)
sin(kX) (5)



Creation and annihilation of fluxons in ac-driven semi-annular Josephson junction 4

For u ≃ 0 we can write

U(X) = −2bl sec h

(
π2

2l

)
sin(kX) (6)

which has a potential well form with the depth of the well depending on b and l. The

vortex will be pinned to the potential minima as long as the bias current is smaller than

the depinning current. The pinned state of a vortex corresponds to a zero voltage state.

Now we arrive at an expression for the potential function of the perturbed system.

The Hamiltonian of the system can be written as a combination of the Hamiltonian of

the unperturbed sine Gordon part plus the hamiltonian of the perturbation part [11].

Energy of the unperturbed sine-Gordon system is

HSG =
∫ ∞

−∞
[
1

2
(ϕ2

t + ϕ2

x + 1 − cosϕ)]dx (7)

Substituting(2) in (7) we get

d

dt
HSG = 8u(1 − u2)−3/2

du

dt
(8)

Due to the perturbational part, energy is dissipated and rate of dissipation is given as

d

dt
(Hp) = [ϕxϕt]

∞
−∞ − (9)

∫ ∞

−∞
(αϕ2

t + βϕ2

xt + [b cos(kx) + γ + i0 sin(ωt)]ϕt)dx

Here the first term on the right hand side accounts for the boundary conditions

and vanishes. Substituting (2) in above equation we obtain the equation for rate of

dissipation as

d

dt
(Hp) = 2πu (γ + i0 sin(ωt)) −

8αu2

√
1 − u2

(10)

−
8βu2

3(1 − u2)3/2
− 2πbu sec h(

π2
√

1 − u2

2l
) cos(kX)

Following the perturbation analysis we get

du

dt
=

π

4
(γ + i0 sin(ωt))

(
1 − u2

)3/2

− αu
(
1 − u2

)
(11)

−
1

3
βu −

π

4
b
(
1 − u2

)3/2

sec h(
π2
√

1 − u2

2l
) cos(kX)

Eq. 11 describes the effect of perturbations on the vortex velocity. The first term

represents the effect of applied biasing, the second and the third term represents

dissipation and fourth term is the effect of the external magnetic field on the semicircular

geometry.

In perturbational analysis, a vortex is considered as a non-relativistic particle of

rest mass m0 = 8 moving in one dimension. Therefore the effective potential can be

obtained using the force relation

∂Ueff

∂X
= −m0

du

dt
(12)
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Substituting Eq. 11 in Eq. 12 and integration yields to the expression for effective

potential of the form

Ueff(X0) = −2bl sec h(
π2

2l
) sin(kX0) − 2π(γ + i0 sin(ωt))X0 (13)

The potential energy function Ueff(X) has a well form in the absence of external

biasing and the fluxon will remain pinned to the centre of the junction under such a

potential. As the biasing is increased the potential gets tilted finally favoring the motion

of the vortex. The dc bias at which the zero voltage switches to a finite voltage is called

the depinning current. Fig. 1 shows the form of the potential for b = 0.1 for a junction

of length l = 15 for different external biasing. It can be seen that in the presence of

an external bias the potential gets tilted favoring motion of the fluxon. While moving

through such a potential, the fluxon(antifluxon) after bouncing from the edge turns into

an antifluxon (fluxon) and hence will move in the opposite direction. In the presence

0 5 10 15 20 25 30
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0
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U
(X
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γ=0
γ=0.01

γ=0.1

γ=0.2

Figure 1. Potential well form for a JJ of length l=15. Other parameter values are

b = 0.1, i0 = 0. The γ value is increasing from top to bottom line.

of an ac, the potential gets oscillating with a frequency equal to the frequency of the

applied field and the shape of the potential depends on the amplitude of the applied ac

and dc biasing. In the presence of external ac biasing along with the dc, the potential

gets time varying as shown in fig2. In Fig. 2(a), the applied ac has an amplitude of

Figure 2. Form of the oscillating potential for a JJ of length l=15. Parameter values

are b = 0.1, i0 = 0.2, ω = 0.3, γ = 0.1. a) applied dc bias is γ = 0.1 b) γ = 0.4
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0.1 and it can be seen that as time goes on, the potential gets a well form in a time

period equal to the period of oscillation of the applied field. The applied dc bias is 0.1

in this case. Hence progressive motion of fluxon does not occur for this value of biasing

as the average velocity of a fluxon moving in such a potential would be zero. However

as the dc-biasing is increased though the form of the potential is still oscillating, there

is a definite tilt which makes progressive motion of fluxon possible. The response of the

system to such a potential can be investigated by measuring the velocity of the fluxon

in the potential. Thus when an ac biasing is applied in such a form to the semi-annular

JJs, progressive motion occurs only when dc bias vale exceeds certain threshold value.

2.2. Numerical Results

To solve Eq. 1 numerically, we use an explicit method treating φxx with a five point,

φtt with a three point and φt with a two point finite difference method. The boundary

conditions are treated by the introduction of imaginary points and the corresponding

finite difference equation is solved using standard tridiagonal algorithm[19]. Numerical

simulations are carried out on the JJ of normalized length (l=15). The time step was

taken as 0.0125 and the space step was 0.025. The numerical results were checked by

systematically halving and doubling the time steps and space steps. Details of the

simulation can be obtained from [12, 14]. After the simulation of the phase dynamics

for a transient time, we calculate the average voltage V for a time interval T to be

V =
1

T

∫ T

0

ϕtdt =
ϕ(T ) − ϕ(0)

T

Also for the faster convergence of the averaging procedure, the phases ϕ(x) in the

equation were averaged over the length of the junction. The spatial averaging increases

the accuracy in the calculation of the voltages in cases where the the time period over

which integration is made is not an exact multiple of the time period of oscillation.

Once the voltage averaging for a current γ is complete, it is increased in small steps of

0.01 to calculate the next point of the characteristic graph. The average velocity of the

fluxons can be calculated from the average voltage using the relation u = V (l/2π)

Taking β to be zero, the velocity change with increase in dc biasing is observed.

Fig.3 shows the velocity change with dc biasing for different values of amplitude of the

ac biasing. In the presence of ac biasing the averaging interval T was taken as a multiple

of the ac drive’s period 2π/ω [16]. If an ac-biasing is present, the depinning current is

found to increase which can be seen from Fig.3. Constant voltage steps are observed

for an ac-bias of amplitude 0.2 and 0.3.

In the presence of external magnetic fields, the velocity versus dc bias is shown in

Fig. 4. The value of dc bias to cause a finite velocity for the fluxon in a JJ with a

magnetic field of b = 0.1 and no ac-biasing is 0.1 while for b = 0 the depinning current

is 0.04. Thus the external magnetic filed also increases the depinning current value.

The depinning current increases for higher values of damping parameter β = 0.035.

The depinning current to be applied to the semi-annular JJ in the absence of ac, and
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Figure 3. The velocity- bias characteristics of a LJJ of length l=15 with no external

magnetic field applied. Other parameter values are ω = 0.3, β = 0.02, α = 0.05
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Figure 4. The velocity- bias characteristics of a LJJ of length l=15 in the presence

of an external magnetic field b = 0.1.

a magnetic field of b = 0.1 is 0.125. Also for an ac bias of amplitude 0.2 and 0.3

the velocity shoots to a higher value even for a dc-braising of 0.46 and 0.36. For dc

bias values of more than these values, quasiperiodic or chaotic motion may exist in the

system.

3. Creation and Annihilation of Fluxons

An annular LJJ preserves the number of trapped fluxons in it. However in an open

ended geometry the number of fluxons is not a conserved quantity. In this section

we investigate the creation and annihilation of fluxons in semiannular JJ with open

boundary conditions in the presence of an external field and an ac and dc biasing.
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Figure 5. The velocity- bias characteristics of a LJJ of length l=15 in the presence

of an external magnetic field b = 0.1. The damping parameter β = 0.035

3.1. First Fiske Step

The collision of fluxons with localized obstacles leads to creation and annihilation of

fluxons. The fluxon creation and annihilation process for a single kink solution as input

is described here. A kink solution is launched from the centre of the junction with an

initial velocity of v = 0.6. For each value of biasing the fluxon is allowed to propagate

for some time in order to stabilize its motion in the junction. The kink fluxon gets

reflected from the boundaries and moves on till γ = 0.57. Above this biasing, no

solitonic propagation is observed for an external magnetic field of strength 0.1.

However, the presence of an ac bias creation and annihilation of fluxon was observed

for values of dc which gave one fluxon solution earlier. For a γ value of 0.1 the fluxon

Figure 6. (a)The pattern shows annhilation of fluxon propagating in a JJ with l=15

for a dc bias of γ = 0.1 and iac = 0.2. (b) Creation of fluxon with γ = 0.1 and iac = 0.1

Other parameter values are ω = 0.3, β = 0.02, α = 0.05, b = 0.1

propagates through the semiannular junction, while an ac bias of 0.2 destroys the fluxon

as can be seen from Fig. 6(a). Similarly Fig. 6(b) shows that a fluxon is created for

γ = 0.5 and iac = 0.1.
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3.2. Second Fiske Step

Two kink solutions were launched with at differ initial points in the junction with intial

velocity v = 0.6. An dc bias of more than γ = 0.1 is needed to support motion of two

fluxons in the junction. For γ = 0.1 it is observed that only a single fluxon propagates

through the junction as can be seen from Fig. 7(a). A dc bias of 0.12 − 0.45 supports

two fluxon propagation in the junction in the absence of an ac biasing. However if an

ac bias of 0.1 is applied along with γ = 0.41 creation of a fluxon occurs as shown in Fig.

7 (b).

Figure 7. The pattern shows single fluxon propagating in a JJ with l=15 for idc = 0.1

for 2 fluxon input.(b)Creation of a fourth fluxon. iac = 0.1, idc = 0.41

3.3. Third Fiske Step

In this case, three kink fluxons are launched at different initial points. A dc bias of

γ = 0.4 is needed to support the three fluxon propagation in the junction. In Fig.8(a)

we numerically show that only two fluxons propagate through the junction for a γ value

of 0.3. Also for γ = 0.4, if an ac bias is applied annihilation of one fluxon occurs again

giving the two solitonic propagation as shown in 8(a). The ac biasing causes annihilation

and if the i0 value is increased to 0.19 or more the solitonic profile is lost.

Figure 8. The pattern shows two fluxons propagating in a JJ with l=15. Other

parameter values are idc = 0.3(b)Creation of fourth fluxon idc = 0.55

Creation of fluxon is observed for γ values of 0.55 as shown in Fig. 8(b) with ac
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biasing destroying the structure even for i0 = 0.1. it is to be noted that all these effects

takes place only in the presence of an external magnetic field in semiannular JJs. In

the absence of magnetic fields, we were not able to observe creationa nd annihilation of

fluxons.

4. Conclusions

We have studied the dynamics of a fluxon trapped in a semi annular JJ in the presence of

an external magnetic field along with an ac biasing. This method of applying ac biasing

offers a much easier and controllable way to induce a harmonic periodic modulation to

the junction. In the presence of an external magnetic field the vortex remains pinned

in the potential well. The ac biasing modulates the form of the potential and we obtain

an oscillating potential with frequency of oscillation equal to the driving field. In the

presence of an ac-drive and magnetic field , fluxon creation and annihilation phenomena

is observed. This has been demonstrated for one, two and three fluxons and can be

extended to higher number solutions. The fluxon creation and annihilation process

being crucial for the understanding of the internal dynamics of the junctions, it will have

important applications in design and fabrication of superconducting digital devices.
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