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Abstract

We investigate the effect of the phase difference of applied fields on the dynamics of mutually coupled Josephson junctions. A phase difference
between the applied fields desynchronizes the system. It is found that though the amplitudes of the output voltage values are uncorrelated, a phase
correlation is found to exist for small values of applied phase difference. The dynamics of the system is found to change from chaotic to periodic
for certain values of phase difference. We report that by keeping the value of phase difference as π , the system continues to be in periodic motion
for a wide range of values of system parameters. This result may find applications in devices like voltage standards, detectors, SQUIDS, etc.,
where chaos is least desired.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of the dynamics of Josephson junction (JJ) is of
great interest from theoretical as well as experimental points
of view. The interaction of Josephson junctions with external
fields have played important roles in the development of physics
and chaotic dynamics of Josephson junctions [1–4]. The exis-
tence of chaos in rf-biased Josephson junction has been verified
through theory, numerical simulation and experiments [5]. The
rf-biased junction finds applications as voltage standards, detec-
tors, etc., where chaotic behavior is least desired [6]. Control of
chaos continues to be an active area of research [7] because of
the many undesirable effects chaos brings in mechanical sys-
tems and other devices. It was shown earlier that it would be
possible to control chaos both theoretically and experimentally
using different methods such as giving a feed back [8], applica-
tion of a weak periodic force [9], etc. The problem of control-
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ling spatio-temporal chaotic pattern induced by an applied rf
signal in a Josephson junction has earlier been discussed [10].
By controlling chaos in rf-biased Josephson junctions it was
shown that even in the presence of thermal noise, they could
be used as voltage standards [11]. Suppression of temporal and
spatio-temporal chaos allows complex systems to be operated
in highly nonlinear regimes. This is required in many physi-
cal systems. By applying a small time-dependent modulation to
a parameter of the system, a chaotic system can be stabilized.
However in practical applications this method requires that the
characteristic times of the system is not too short compared with
the times of the feed back. In the case of JJ oscillators the char-
acteristic times of the dynamics response are of the order of
few picoseconds which is too short for any electronic feedback
control system.

Since it was shown that chaotic systems could be synchro-
nized by linking them to a common signal [12], many works
have been done in this direction because of its application in se-
cure communication [13]. Synchronization in Josephson junc-
tions has been an interesting area of research [14–16]. The role
of phase difference of the applied sinusoidal fields on Duffing
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oscillators has been studied earlier [17,18]. In the present work,
we consider the effect of phase difference of the applied rf-
fields on a mutually coupled Josephson junctions. We discuss
the coupled JJ in Section 2 and arrive at a dimensionless first
order equation of motion. In Section 3 the parameter range in
which the system may be synchronized is found and the effect
of phase difference of the applied rf-fields on synchronization
is found out. The dynamics of the Josephson junction after ap-
plying the phase difference and the effect of other parameters
on the junction after fixing the phase difference between the ap-
plied fields to a value at which system is in periodic motion are
also discussed in this section. In Section 4 the results are dis-
cussed.

2. Coupled Josephson junction

Josephson junction can be represented by a resistively and
capacitively shunted junction (RCSJ) model and the dynamics
of the system can be explored by writing the equation of motion
[19]. The equation of a single Josephson junction for this model
can be written by solving Kirchoff’s law as

(1)
h̄C

2e

d2φ

dt2
+ h̄

2eR

dφ

dt
+ ic sinφ = idc + i0 cos(ωt),

where φ is the phase difference of the wave function across the
junction, i0 cos(ωt) is the driving rf-field and idc is the dc bias.
The junction is characterized by a critical current ic , capaci-
tance C and normal resistance R. The coupled JJ considered
here consists of a pair of such junctions wired in parallel with a
linking resistor Rs [15]. Schematic representation of the system
is given in Fig. 1 and the dynamical equations can be written as

h̄C1

2e

d2φ1

dt ′2
+ h̄

2eR1

dφ1

dt ′
+ ic1 sinφ1

(2)= i′dc + i′0 cos(ωt ′) − is ,

h̄C2

2e

d2φ2

dt ′2
+ h̄

2eR2

dφ2

dt ′
+ ic2 sinφ2

(3)= i′dc + i′0 cos(ωt ′ + θ) + is ,

where is is the current flowing through the coupling resistor and
is given as

(4)is = h̄

2eRs

[
dφ1

dt ′
− dφ2

dt ′

]
.

In order to express Eqs. (2) and (3) in dimensionless form
the junction plasma frequencies ωJ1 and ωJ2 given by ωJ1 =
(2eic1/h̄C1)

1/2 and ωJ2 = (2eic2/h̄C2)
1/2 are introduced. The

normalized time scale is written as t = ωJ1t
′. The dimension-

less damping parameter β is defined as

β = 1

R1

√
h̄

2eic1C1
.

The dc bias current i′dc and the rf amplitude i′0 are normal-
ized to the critical current ic1. The actual frequency ω is re-
scaled to Ω = ω/ωJ1 and the coupling factor is defined as
αs = (R1/Rs)β . For identical Josephson junctions, Eqs. (2)
Fig. 1. Schematic representation of a coupled Josephson junction connected in
parallel with a linking resistor Rs . 1 and 2 represent the applied fields.

Fig. 2. Lyapunov exponent spectrum is plotted for different values of coupling
strength αs with θ = 0, β = 0.15, i0 = 0.7 and ω = 0.6. It can be seen that the
system is in chaotic motion for all values of coupling strength.

and (3) may be written as

φ̈1 + βφ̇1 + sinφ1 = idc + i0 cos(Ωt) − αs[φ̇1 − φ̇2],
(5)φ̈2 + βφ̇2 + sinφ2 = idc + i0 cos(Ωt + θ) − αs[φ̇2 − φ̇1].

It can be seen that the coupling arises as a natural consequence
of the exchange of current through the resistor Rs and it de-
pends on the differential voltage (ψ1 − ψ2). For Josephson
junction devices, phase derivatives are of central importance
because they are proportional to junction voltages. In order to
study the system numerically Eq. (5) is written in the first order
differential form as

φ̇1 = ψ1,

ψ̇1 = −βψ1 − sinφ1 + idc + i0 cos(Ωt) − αs[ψ1 − ψ2],
φ̇2 = ψ2,

(6)

ψ̇2 = −βψ2 − sinφ2 + idc + i0 cos
[
(Ωt) + θ

]
− αs[ψ2 − ψ1].

Eq. (6) is studied using fourth order Runge–Kutta method and
the maxima of normalized voltage values are plotted to study
the dynamics. The values of the system parameters were fixed
as β = 0.15, i0 = 0.7, idc = 0.3 and Ω = 0.6. From Fig. 2 we
observe that the maximum Lyapunov exponent is positive for
all values of coupling strength and it remains at the same pos-
itive value. Hence the system exhibits chaotic behavior for all
values of coupling strength in the parameter range we selected.
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Fig. 3. Maxima of the difference in voltage against coupling strength αs . θ = 0,
β = 0.15, i0 = 0.7 and ω = 0.6.

However as the coupling strength is increased, the difference in
voltage becomes smaller as can be seen from Fig. 3. Hence we
can suitably select a value for the coupling strength such that
the system is in the synchronization manifold.

3. The effect of phase difference

In order to study the effect of phase difference of the applied
sinusoidal driving fields on JJ system we write Sφ = φ1 − φ2
and Sψ = ψ1 − ψ2 and from Eq. (6) we get

Ṡφ = Sψ,

(7)

Ṡψ = −βSψ − sinφ1 + sinφ2 − 2αsSψ

+ 2i0 sin

(
Ωt + θ

2

)
sin

(
θ

2

)
.

When θ = 0 the term 2i0 sin(Ωt + θ/2) sin(θ/2) vanishes. The
values of αs may be chosen such that the difference in voltage is
negligible, i.e., ψ1 ≈ ψ2. Now both Ṡφ and Ṡψ go to zero. From
Fig. 3 the value of αs is chosen as 0.45 which satisfies this con-
dition. However even small values of applied phase differences
desynchronizes the system. Fig. 4(a) shows that the system is
synchronized and Fig. 4(b) shows that the system is desynchro-
nized by an applied phase difference of θ = 0.1π . The level
of mismatch of chaotic synchronization can be given quantita-
tively by taking the similarity function S(τ) as a time averaged
difference between the variables ψ1 and ψ2 taken with time
shift τ [20]

(8)S2(τ ) = 〈[ψ1(t + τ) − ψ2(t)]2〉
[〈ψ2

1 (t)〉][〈ψ2
2 (t)〉]1/2

.

The value S(τ) plotted against τ for different values of phase
difference θ is shown in Fig. 5. It is observed that for θ = 0,
the system is in complete synchronization. For a finite value of
phase difference, a minimum of S(τ0) appears which indicates
the existence of a certain phase difference between the interact-
ing systems. S(τ0) is finite in these cases which means that in
this regime the amplitudes are uncorrelated.
Fig. 4. (a) shows the system is synchronized for θ = 0, β = 0.15, i0 = 0.7,
idc = 0.3, αs = 0.45 and ω = 0.6. (b) shows the system is desynchronized for
a phase difference of θ = 0.1π .

Fig. 5. Similarity function S(τ) versus τ for different values of phase differ-
ence θ . Curve 1 is with phase difference θ = 0, curve 2 for θ = 0.1π and curve 3
for θ = 0.5π .

The values of θ is varied from 0 to 2π and the maxima of the
difference in voltage is plotted against the phase in Fig. 6. In the
synchronization manifold, i.e., when φ1 ≈ φ2 and ψ1 ≈ ψ2 we
can write Pφ = [φ1 + φ2]/2 and Pψ = [ψ1 + ψ2]/2 and from
Eq. (6) we get

Ṗφ = Pψ,

(9)Ṗψ = −βPψ − sin(Pφ) + idc + i0 cos

(
θ

2

)
cos

(
Ωt + θ

2

)
.

Eq. (9) is equivalent to Eq. (1) and we can see that i0 is replaced
by i0 cos(θ/2) and the phase of the driving field leads by (θ/2)

as a result of coupling. This may correspond to a parameter
space where the system is periodic which explains the change
in system dynamics. However the effect of applying a phase
difference between the driving fields and that of changing the
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Fig. 6. Maxima of the difference in voltage is plotted against phase difference
applied, θ = 0–2π . αs = 0.45, idc = 0.3, β = 0.15, i0 = 0.7 and ω = 0.6.

Fig. 7. Maxima of the difference in voltage is plotted against amplitude of
driving field, θ = 0. αs = 0.45, idc = 0.3, β = 0.15 and ω = 0.6.

amplitude of the driving fields on the dynamics of the system is
different as can be seen from Figs. 7 and 6.

From the inset of Fig. 6 it can be seen that the system ex-
hibits periodic window in the region where θ = 0.34π to 0.4π .
However in this region even a slight change in system parame-
ter values would bring the system back to chaotic regime. For a
phase difference of θ = 0.95π to 1.5π the system exhibits pe-
riodic motion. The difference in voltage and voltage of a single
junction for θ = π plotted against time are shown in Figs. 8(c)
and 8(d). Figs. 8(a) and 8(b) show difference in voltage and
voltage of a single junction against time for an applied phase
difference of θ = 0.

From the Lyapunov exponent spectrum in Fig. 9 with θ = π

it can be seen that the system is in periodic motion for most
of the coupling values. The system turns from hyperchaos (two
positive Lyapunov exponent) to chaos and then to a limit cycle
(two negative exponents) on increasing the coupling strength.
Fixing the phase difference between the driving fields as π , the
Fig. 8. (a) shows the differential voltage plotted against time and (b) is the volt-
age of one junction with θ = 0. It is observed that the variation is chaotic and
the maximum difference in voltage is 0.05. (c) and (d) show the correspond-
ing voltages with an applied phase difference of π . Other parameter values are
αs = 0.45, β = 0.15, i0 = 0.7 and ω = 0.6.

Fig. 9. Lyapunov exponent spectrum plotted against coupling strength αs for
θ = π , β = 0.15, i0 = 0.7 and ω = 0.6.

change in the response of the system to other parameter varia-
tions are then studied.

Fixing the value of α as 0.45 and the amplitude of the driving
rf-field is changed from 0 to 1. Without an applied phase differ-
ence the system exhibits chaotic motion from a value of 0.43
onwards with some periodic windows in between (Fig. 10).
However, on the application of a phase difference the system
stays in periodic state for a wide range of amplitude values
which were chaotic earlier. Fig. 11 shows the response of the
system when the amplitude of the driving field is changed from
0 to 1 with an applied phase difference of π .

The combined effect of phase difference and the applied dc
bias on the system is also studied. For this all other parame-
ter values were fixed and idc value is changed from 0 to 0.4.
Here also we observe that the system continues to be in peri-
odic motion for a large range of idc values. The comparison can
be obtained from Figs. 12 and 13. Thus we show that the system
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Fig. 10. Maxima of the normalized voltage against amplitude of applied field i0
with θ = 0. The other parameter values are αs = 0.45, idc = 0.3, β = 0.15 and
ω = 0.6.

Fig. 11. Maxima of the normalized voltage is plotted against the amplitude of
applied field. It can be seen that the system is in periodic motion for a wide
range of amplitude values. θ = π , αs = 0.45, idc = 0.3, β = 0.15 and ω = 0.6.

exhibits periodic motion for a wide range of parameter values
for an applied phase difference between the driving fields. This
may be of great practical importance in Josephson junction de-
vices like voltage standards, SQUIDS, detectors, etc.

An important point to be noted here is that the parameter
values at which we apply phase difference is to be chosen care-
fully. If the values we choose is in a region where the difference
in voltage (ψ1 − ψ2) is large, then by just applying a phase dif-
ference we may not be able to control chaos. Fig. 14 shows
the voltage across a junction plotted against θ with coupling
strength αs = 0.25. It is seen that a periodic motion cannot be
observed in this case.

4. Conclusion

In this work we have found that by applying a phase differ-
ence between the driving fields to coupled Josephson junctions
we can control chaos if the system is in the synchronization
Fig. 12. Maxima of the normalized voltage against the idc. θ = 0, αs = 0.45,
β = 0.15, i0 = 0.7 and ω = 0.6.

Fig. 13. Maxima of the normalized voltage against the idc. θ = π , αs = 0.45,
β = 0.15, i0 = 0.7 and ω = 0.6.

Fig. 14. Maxima of the normalized voltage against the θ with αs = 0.25.
idc = 0.3, β = 0.15, i0 = 0.7 and ω = 0.6.
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manifold. However if the difference in voltages between the two
junction is not negligible chaos cannot be controlled by just ap-
plying a phase difference between the driving fields. Though
the application of a phase difference between the applied fields
desynchronizes the system, a phase correlation has been found
to exist for small values of applied phase differences. The dif-
ference between changing the amplitude of the driving fields
and applying a phase difference between the fields has been
discussed. For a phase difference of θ = 0.95π to 1.5π the dy-
namics of the system has been found to change from chaotic
to periodic. Then fixing the phase difference as π and varying
other parameters such as dc bias, amplitude of applied field and
coupling strength the change in the response of the system has
been studied. It has been found that even for large variation of
these parameters, the system continues to be in periodic motion.
So this may be of great practical importance as phase difference
can be easily applied to the rf-field in an experimental set up.
Thus it offers an easier way to control chaos and thus will pro-
vide an enhanced capability to design superconducting circuits
in such a way as to maximize the advantages of nonlinearity
while minimizing the possibility of instabilities.
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